LOG112AIDR [TI]

LOGARITHMIC AND LOG RATIO AMPLIFIERS; 对数和对数比放大器
LOG112AIDR
型号: LOG112AIDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LOGARITHMIC AND LOG RATIO AMPLIFIERS
对数和对数比放大器

放大器
文件: 总16页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOG112  
LOG2112  
L
O
G
2
1
1
2
L
O
G
1
1
2
SBOS246C – JUNE 2002 – REVISED APRIL 2003  
Precision  
LOGARITHMIC AND LOG RATIO AMPLIFIERS  
FEATURES  
DESCRIPTION  
The LOG112 and LOG2112 are versatile integrated circuits  
that compute the logarithm or log ratio of an input current  
relative to a reference current. VLOGOUT of the LOG112 and  
LOG2112 are trimmed to 0.5V per decade of input current,  
ensuring high precision over a wide dynamic range of input  
signals.  
EASY-TO-USE COMPLETE FUNCTION  
OUTPUT SCALING AMPLIFIER  
ON-CHIP 2.5V VOLTAGE REFERENCE  
HIGH ACCURACY: 0.2% FSO Over 5 Decades  
WIDE INPUT DYNAMIC RANGE:  
The LOG112 and LOG2112 features a 2.5V voltage refer-  
ence that may be used to generate a precision current  
reference using an external resistor.  
7.5 Decades, 100pA to 3.5mA  
LOW QUIESCENT CURRENT: 1.75mA  
WIDE SUPPLY RANGE: ±4.5V to ±18V  
PACKAGES: SO-14 (narrow) and SO-16  
Low DC offset voltage and temperature drift allow accurate  
measurement of low-level signals over the specified tem-  
perature range of –5°C to +75°C.  
APPLICATIONS  
LOG, LOG RATIO:  
Communication, Analytical, Medical, Industrial,  
Test, General Instrumentation  
PHOTODIODE SIGNAL COMPRESSION AMP  
ANALOG SIGNAL COMPRESSION IN FRONT  
OF ANALOG-TO-DIGITAL (A/D) CONVERTER  
ABSORBANCE MEASUREMENT  
OPTICAL DENSITY MEASUREMENT  
R1  
R2  
VLOGOUT = (0.5V)LOG (I1/I2)  
CC  
VO3 = K (0.5V)LOG (I1/I2), K = 1 + R2/R1  
+IN3  
V+  
IN3  
VLOGOUT  
I1  
LOG112  
Q1  
Q2  
A2  
A1  
I2  
RREF  
A3  
VO3  
VREF  
VREF  
GND  
VCM  
VREF GND  
V–  
NOTE: Internal resistors are used to compensate gain change over temperature.  
The VCM pin is internally connected to GND in the LOG2112.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2002-2003, Texas Instruments Incorporated  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
Supply Voltage, V+ to V.................................................................. ±18V  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
Inputs ................................................................................................. ±18V  
Input Current ................................................................................... ±10mA  
This integrated circuit can be damaged by ESD. Texas Instru-  
ments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Output Short-Circuit Current(2) ................................................ Continuous  
Operating Temperature ....................................................40°C to +85°C  
Storage Temperature .....................................................55°C to +125°C  
Junction Temperature .................................................................... +150°C  
Lead Temperature (soldering, 10s) ............................................... +300°C  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
NOTES: (1) Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods may degrade  
device reliability. (2) One output per package.  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
PACKAGE  
DESIGNATOR(1)  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
LOG112  
SO-14  
D
"
5°C to +75°C  
LOG112A  
LOG112AID  
LOG112AIDR  
Rails, 250  
Tape and Reel, 2500  
Rails, 250  
"
LOG2112  
"
"
SO-16  
"
"
"
DW  
5°C to +75°C  
LOG2112A  
LOG2112AIDW  
LOG2112AIDWR  
"
"
"
Tape and Reel, 2500  
NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com.  
PIN CONFIGURATION  
Top View  
SO  
I1  
NC  
1
2
3
4
5
6
7
14 I2  
I1A  
I2A  
1
2
3
4
5
6
7
8
16 I1B  
13 VCM IN  
12 NC  
15 I2B  
+IN3  
IN3  
VLOGOUT  
V+  
+IN3A  
IN3A  
VLOGOUTA  
V+  
14 +IN3B  
13 IN3B  
11 VREF GND  
10 GND  
LOG112  
LOG2112  
12 VLOGOUTB  
11 V–  
9
8
V–  
VO3  
VREF  
VO3A  
10 V03B  
GND  
9
VREF  
NC = No Internal Connection  
LOG112, 2112  
2
SBOS246C  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
Boldface limits apply over the specified temperature range, TA = 5°C to +75°C.  
At TA = +25°C, VS = ±5V, and ROUT = 10k, unless otherwise noted.  
LOG112, LOG2112  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
CORE LOG FUNCTION  
V
IN /VOUT Equation  
VLOGOUT = (0.5V)LOG (I1/I2)  
V
LOG CONFORMITY ERROR(1)  
Initial  
1nA to 100µA (5 decades)  
100pA to 3.5mA (7.5 decades)  
1nA to 100µA (5 decades)  
100pA to 3.5mA (7.5 decades)  
0.01  
0.13  
0.0001  
0.005  
0.2  
%
%
%/°C  
%/°C  
over Temperature  
GAIN(2)  
Initial Value  
Gain Error  
vs Temperature  
1nA to 100µA  
1nA to 100µA  
TMIN to TMAX  
0.5  
0.10  
0.003  
V/decade  
%
%/°C  
±1  
0.01  
INPUT, A1A and A1B, A2A, A2B  
Offset Voltage  
vs Temperature  
vs Power Supply (PSRR)  
Input Bias Current  
vs Temperature  
±0.3  
±2  
5
±5  
±1.5  
mV  
µV/°C  
µV/V  
pA  
TMIN to TMAX  
VS = ±4.5V to ±18V  
20  
TMIN to TMAX  
f = 10Hz to 10kHz  
f = 1kHz  
Doubles Every 10°C  
Voltage Noise  
3
30  
4
µVrms  
nV/Hz  
fA/Hz  
V
V
µV/V  
Current Noise  
Common-Mode Voltage Range (Positive)  
(Negative)  
f = 1kHz  
(V+) 2  
(V) + 2  
(V+) 1.5  
(V) + 1.2  
10  
Common-Mode Rejection Ratio (CMRR)  
OUTPUT, (VLOG OUT) A2A, A2B  
Output Offset, VOSO, Initial  
vs Temperature  
Full-Scale Output (FSO)  
Short-Circuit Current  
±3  
±10  
±15  
mV  
µV/°C  
V
TMIN to TMAX  
VS = ±5V  
(V) + 1.2  
(V+) 1.5  
±18  
mA  
TOTAL ERROR(3)(4)  
Initial  
I1 or I2 remains fixed while other varies.  
Min to Max  
I1 or I2 = 5mA (VS ≥ ±6V)  
I1 or I2 = 3.5mA  
I1 or I2 = 1mA  
±150  
±75  
±20  
±20  
±20  
±20  
±20  
±20  
±20  
±20  
±20  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
I1 or I2 = 100µA  
I1 or I2 = 10µA  
I1 or I2 = 1µA  
I1 or I2 = 100nA  
I1 or I2 = 10nA  
I1 or I2 = 1nA  
I1 or I2 = 350pA  
I1 or I2 = 100pA  
I1 or I2 = 3.5mA  
I1 or I2 = 1mA  
I1 or I2 = 100µA  
I1 or I2 = 10µA  
I1 or I2 = 1µA  
I1 or I2 = 100nA  
I1 or I2 = 10nA  
I1 or I2 = 1nA  
I1 or I2 = 350pA  
I1 or I2 = 100pA  
I1 or I2 = 3.5mA  
I1 or I2 = 1mA  
I1 or I2 = 100µA  
I1 or I2 = 10µA  
I1 or I2 = 1µA  
I1 or I2 = 100nA  
I1 or I2 = 10nA  
I1 or I2 = 1nA  
mV  
mV  
vs Temperature  
±1.2  
±0.4  
±0.1  
±0.05  
±0.05  
±0.09  
±0.2  
±0.3  
±0.1  
±0.3  
±3.0  
±0.1  
±0.1  
±0.1  
±0.1  
±0.1  
±0.1  
±0.25  
±0.1  
±0.1  
mV/°C  
mV/°C  
mV/°C  
mV/°C  
mV/°C  
mV/°C  
mV/°C  
mV/°C  
mV/°C  
mV/°C  
mV/V  
mV/V  
mV/V  
mV/V  
mV/V  
mV/V  
mV/V  
mV/V  
mV/V  
mV/V  
vs Supply  
I1 or I2 = 350pA  
I1 or I2 = 100pA  
NOTES: (1) Log Conformity Error is the peak deviation from the best-fit-straight line of VO versus LOG (I1/I2) curve expressed as a percent of peak-to-peak full-  
scale output. K, scale factor, equals 0.5V output per decade of input current. (2) Scale factor of core log function is trimmed to 0.5V output per decade change of  
input current. (3) Worst-case Total Error for any ratio of I1/I2, as the largest of the two errors, when I1 and I2 are considered separately. (4) Total Error includes offset  
voltage, bias current, gain, and log conformity. (5) Bandwidth (3dB) and transient response are a function of both the compensation capacitor and the level of input  
current.  
LOG112, 2112  
3
SBOS246C  
www.ti.com  
ELECTRICAL CHARACTERISTICS (Cont.)  
Boldface limits apply over the specified temperature range, TA = 5°C to +75°C.  
At TA = +25°C, VS = ±5V, and RL = 10k, unless otherwise noted.  
LOG112, LOG2112  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
FREQUENCY RESPONSE, CORE LOG(5)  
BW, 3dB  
I2 = 10nA  
I2 = 1µA  
I2 = 10µA  
I2 = 1mA  
CC = 4500pF  
CC = 150pF  
CC = 150pF  
CC = 50pF  
0.1  
38  
40  
45  
kH  
kH  
kH  
kHz  
Step Response  
Increasing  
I1 = 10nA to 100nA  
I1 = 1µA to 100µA  
I1 = 1µA to 1mA  
Decreasing  
CC = 120pF, I2 = 31.6nA  
CC = 375pF, I2 = 10µA  
CC = 950pF, I2 = 31.6µA  
1.1  
1.6  
1.5  
ms  
µs  
µs  
I1 = 100nA to 10nA  
I1 = 100µA to 1µA  
I1 = 1mA to 1µA  
Increasing  
CC = 120pF, I2 = 31.6nA  
CC = 375pF, I2 = 10µA  
CC = 950pF, I2 = 31.6µA  
2.1  
31.2  
39  
ms  
µs  
µs  
I2 = 10nA to 100nA  
I2 = 1µA to 100µA  
I2 = 1µA to 1mA  
Decreasing  
CC = 125pF, I1 = 31.6nA  
CC = 750pF, I1 = 10µA  
CC = 10.5nF, I1 = 31.6µA  
2.6  
113  
1.2  
ms  
µs  
ms  
I2 = 100nA to 10nA  
I2 = 100µA to 1µA  
I2 = 1mA to 1µA  
CC = 125pF, I1 = 31.6nA  
CC = 750pF, I1 = 10µA  
CC = 10.5nF, I1 = 31.6µA  
630  
6.6  
13.3  
µs  
µs  
µs  
OP AMP, A3  
Input Offset Voltage  
vs Temperature  
vs Supply  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
Input Noise, f = 0.1Hz to 10Hz  
f = 1kHz  
Open-Loop Voltage Gain  
Gain-Bandwidth Product  
Slew Rate  
Settling Time, 0.01%  
Rated Output  
+250  
±2  
5
10  
±0.5  
±1000  
µV  
µV/°C  
µV/V  
nA  
nA  
V
µVp-p  
Hz  
nV/  
dB  
MHz  
V/µs  
µs  
V
mA  
TMIN to TMAX  
VS = ±4.5V to ±18V  
50  
(V)  
(V+) 1.5  
1
28  
88  
1.4  
0.5  
16  
G = 1, 3V Step, CL = 100pF  
(V) + 1.5  
(V+) 0.9  
±0.5  
Short-Circuit Current  
±4  
VOLTAGE REFERENCE  
Bandgap Voltage  
Error, Initial  
vs Temperature  
vs Supply  
2.5  
±0.05  
±25  
±10  
±600  
16  
V
%
TMIN to TMAX  
VS = ±4.5V to ±18V  
ILOAD = 10mA  
ppm/°C  
ppm/V  
ppm/mA  
mA  
vs Load  
Short-Circuit Current  
POWER SUPPLY  
Operating Range  
Quiescent Current  
LOG112  
VS  
IO = 0  
±4.5  
±18  
V
±1.25  
±2.5  
±1.75  
±3.5  
mA  
mA  
LOG2112  
TEMPERATURE RANGE  
Specified Range, TMIN to TMAX  
Operating Range  
5  
40  
55  
75  
85  
125  
°C  
°C  
°C  
Storage Range  
Thermal Resistance, θJA SO-14  
SO-16  
110  
80  
°C/W  
°C/W  
NOTES: (1) Log Conformity Error is the peak deviation from the best-fit-straight line of VO vs LOG(I1/I2) curve expressed as a percent of peak-to-peak full-scale  
output. K, scale factor, equals 0.5V output per decade of input current. (2) Scale factor of core log function is trimmed to 0.5V output per decade change of input  
current. (3) Worst-case Total Error for any ratio of I1/I2, as the largest of the two errors, when I1 and I2 are considered separately. (4) Total Error includes offset  
voltage, bias current, gain, and log conformity. (5) Bandwidth (3dB) and transient response are a function of both the compensation capacitor and the level of input  
current.  
LOG112, 2112  
4
SBOS246C  
www.ti.com  
TYPICAL CHARACTERISTICS  
At TA = +25°C, VS = ±5V, and RL = 10k, unless otherwise noted.  
NORMALIZED TRANSFER FUNCTION  
ONE CYCLE OF NORMALIZED TRANSFER FUNCTION  
2.0  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
VLOGOUT = (0.5V)LOG (I1/I2)  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.0001 0.001 0.01  
0.1  
1
10  
100  
1k  
10k  
1
10  
Current Ratio, I1/I2  
Current Ratio, I1/I2  
TOTAL ERROR (25°C)  
TOTAL ERROR (5°C)  
20  
15  
20  
20  
15  
20  
15  
15  
10  
5
10  
5
10  
5
10  
5
0
0
0
0
5  
5  
5  
5  
10  
10  
15  
20  
10  
15  
20  
10  
15  
20  
10 to 15  
5 to 10  
0 to 5  
15  
20  
5 to 10  
0 to 5  
5 to 0  
5 to 0  
I1  
I1  
I2  
I2  
TOTAL ERROR (70°C)  
GAIN ERROR (I2 = 1µA)  
8
7
6
5
4
3
2
1
0
+85°C  
+75°C  
100  
80  
100  
80 to 100  
60 to 80  
40 to 60  
20 to 40  
0 to 20  
80  
60  
60  
40  
40°C  
40  
20  
0
20 to 0  
20  
0
20  
20  
1  
5°C +25°C  
2  
100pA 1nA 10nA 100nA 1µA 10µA 100µA 1mA 10mA  
I1  
I2  
Input Current (I1 or I2)  
LOG112, 2112  
5
SBOS246C  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
At TA = +25°C, VS = ±5V, and RL = 10k, unless otherwise noted.  
3dB FREQUENCY RESPONSE  
MINIMUM VALUE OF COMPENSATION CAPACITOR  
100M  
1M  
100k  
10k  
1k  
Select CC for I1 min.  
10µA  
1µA  
100µA  
100µA  
1mA  
10M  
1M  
100k  
10k  
1k  
and I2 max. Values  
below 2pF may be ignored.  
I1 = 100pA  
I
= 1mA  
1
100µA  
I1 = 1nA  
I1 = 10nA  
100µA  
1µA  
1nA  
10nA  
1mA  
to 10µA  
10nA  
I1 = 100nA  
100  
10  
100nA  
10nA  
I1 = 1nA  
1µA  
100  
10  
I = 1nA  
1
I1 = 10µA  
100µA  
1mA  
1
0.1  
1
100pA 1nA 10nA 100nA 1µA  
10µA 100µA 1mA  
100pA 1nA 10nA 100nA 1µA 10µA 100µA 1mA 10mA  
I2  
I2  
LOG CONFORMITY vs TEMPERATURE  
LOG CONFORMITY vs INPUT CURRENT  
17  
700  
15  
13  
600  
500  
400  
300  
200  
100  
0
7.5 Decade  
7 Decade  
+85°C  
11  
9
7
+75°C  
5 Decade  
6 Decade  
5
40°C to +25°C  
3
1
1  
100pA  
1nA 10nA 100nA 1µA  
10µA 100µA 1mA  
40  
20  
0
20  
40  
60  
80  
Input Current (I1 or I2)  
Temperature (°C)  
LOG112, 2112  
6
SBOS246C  
www.ti.com  
INPUT CURRENT RANGE  
APPLICATION INFORMATION  
To maintain specified accuracy, the input current range of the  
LOG112 and LOG2112 should be limited from 100pA to  
3.5mA. Input currents outside of this range may compromise  
the LOG112 performance. Input currents larger than 3.5mA  
result in increased nonlinearity. An absolute maximum input  
current rating of 10mA is included to prevent excessive power  
dissipation that may damage the input transistor.  
The LOG112 is a true logarithmic amplifier that uses the  
base-emitter voltage relationship of bipolar transistors to  
compute the logarithm, or logarithmic ratio of a current ratio.  
Figure 1 and Figure 2 show the basic connections required  
for operation of the LOG112 and LOG2112. In order to  
reduce the influence of lead inductance of power-supply  
lines, it is recommended that each supply be bypassed with  
a 10µF tantalum capacitor in parallel with a 1000pF ceramic  
capacitor, as shown in Figure 1 and Figure 2. Connecting  
the capacitors as close to the LOG112 and LOG2112 as  
possible will contribute to noise reduction as well.  
On ±5V supplies, the total input current (I1 + I2) is limited to  
4.5mA. Due to compliance issues internal to the LOG112 and  
LOG2112, to accommodate larger total input currents, supplies  
should be increased.  
SETTING THE REFERENCE CURRENT  
V+  
When the LOG112 and LOG2112 are used to compute loga-  
rithms, either I1 or I2 can be held constant to become the  
reference current to which the other is compared.  
10µF  
1000pF  
VLOGOUT is expressed as:  
6
1
VLOGOUT = (0.5V)LOG (I1/IREF  
)
(1)  
8
VREF  
VLOGOUT  
I
REF can be derived from an external current source (such as  
5
LOG112  
that shown in Figure 3), or it may be derived from a voltage  
source with one or more resistors. When a single resistor is  
used, the value may be large depending on IREF. If IREF is  
10nA and +2.5V is used:  
VREF GND  
11  
14  
9
10  
13  
I1  
I2  
VCM IN  
CC  
RREF = 2.5V/10nA = 250MΩ  
(2)  
10µF  
1000pF  
IREF  
V–  
2N2905  
FIGURE 1. Basic Connections of the LOG112.  
RREF  
3.6kΩ  
2N2905  
+15V  
15V  
V+  
6V  
IN834  
6V  
IREF  
=
RREF  
1000pF  
10µF  
FIGURE 3. Temperature Compensated Current Source.  
CCA  
6
A voltage divider may be used to reduce the value of the  
resistor, as shown in Figure 4. When using this method, one  
must consider the possible errors caused by the amplifiers  
input offset voltage. The input offset voltage of amplifier A1  
has a maximum value of 1.5mV, making VREF a suggested  
value of 100mV.  
5
9
2
1
VLOGOUTA  
VREF  
I2A  
I1A  
LOG2112  
16  
15  
12  
VLOGOUTB  
VREF = 100mV  
R1 R3  
VOS  
11  
8
+
I1B  
I2B  
1
+5V  
CCB  
A1  
IREF  
R2  
R3 >> R2  
10µF  
1000pF  
V–  
FIGURE 4. T Network for Reference Current.  
FIGURE 2. Basic Connections of the LOG2112.  
LOG112, 2112  
7
SBOS246C  
www.ti.com  
Figure 5 shows a low-level current source using a series  
resistor. The low offset op amp reduces the effect of the  
LOG112 and LOG2112s input offset voltage.  
FREQUENCY COMPENSATION  
Frequency compensation for the LOG112 is obtained by  
connecting a capacitor between pins 5 and 14. Frequency  
compensation for the LOG2112 is obtained by connecting a  
capacitor between pins 2 and 5, or 15 and 12. The size of the  
capacitor is a function of the input currents, as shown in the  
Typical Characteristic curves (Minimum Value of Compensa-  
tion Capacitor). For any given application, the smallest value  
of the capacitor which may be used is determined by the  
maximum value of I2 and the minimum value of I1. Larger  
values of CC make the LOG112 and LOG2112 more stable,  
but reduce the frequency response.  
VREF  
V+  
I1 = 2.5nA to 1mA  
8
6
1
5
VLOGOUT  
100kΩ  
LOG112  
I
2 = 2.5nA  
10MΩ  
14  
+25mV  
In an application, highest overall bandwidth can be achieved  
by detecting the signal level at VOUT, then switching in  
appropriate values of compensation capacitors.  
9
10  
GND  
+2.5V  
CC  
V–  
100Ω  
OPA335 Chopper Op Amp  
2.5V  
NEGATIVE INPUT CURRENTS  
The LOG112 and LOG2112 function only with positive input  
currents (conventional current flows into input current pins).  
In situations where negative input currents are needed, the  
circuits in Figures 6, 7, and 8 may be used.  
FIGURE 5. Current Source with Offset Compensation.  
FREQUENCY RESPONSE  
The frequency response curves seen in the Typical Charac-  
teristic curves are shown for constant DC I1 and I2 with a  
small-signal AC current on one input.  
QA  
QB  
IIN  
National  
LM394  
The 3dB frequency response of the LOG112 and LOG2112 are  
a function of the magnitude of the input current levels and of the  
value of the frequency compensation capacitor. See typical  
characteristic curve 3dB Frequency Responsefor details.  
D1  
D2  
The transient response of the LOG112 and LOG2112 are  
different for increasing and decreasing signals. This is due to  
the fact that a log amp is a nonlinear gain element and has  
different gains at different levels of input signals. Smaller  
input currents require greater gain to maintain full dynamic  
range, and will slow the frequency response of the LOG112  
and LOG2112.  
OPA703  
IOUT  
FIGURE 6. Current Inverter/Current Source.  
+5V  
TLV271 or 1/2 OPA2335  
+3.3V  
1/2  
OPA2335  
1.5kΩ  
1kΩ  
+5V  
BSH203  
1/2  
OPA2335  
Back Bias  
+3.3V  
10nA to 1mA  
LOG112  
10nA to 1mA  
Pin 1 or Pin 14  
Photodiode  
FIGURE 7. Precision Current Inverter/Current Source.  
LOG112, 2112  
8
SBOS246C  
www.ti.com  
VOLTAGE INPUTS  
age to VCM of at least +1V and up to 2.5V, brings the log  
transistors out of saturation and reduces output error to  
approximately 10%. To avoid forward biasing a photodiode,  
return the cathode to the VCM pin, as shown in Figure 9. To  
reverse bias the photodiode, apply a more positive voltage to  
the cathode than the anode.  
The LOG112 and LOG2112 give the best performances with  
current inputs. Voltage inputs may be handled directly with  
series resistors, but the dynamic input range is limited to  
approximately three decades of input voltage by voltage  
noise and offsets. The transfer function of Equation 13  
applies to this configuration.  
APPLICATION CIRCUITS  
ACHIEVING HIGHER ACCURACY WITH HIGHER  
INPUT CURRENTS  
LOG RATIO  
One of the more common uses of log ratio amplifiers is  
to measure absorbance. See Figure 10 for a typical application.  
As input current to the LOG112 increases, output accuracy  
degrades. For a 4.5mA input current on ±5V supplies and a  
10mA input current on ±12V supplies, total output error can  
be between 15% and 25%. Applying a common-mode volt-  
Absorbance of the sample is A = logλ1´/ λ1  
(3)  
(4)  
If D1 and D2 are matched A (0.5V) logI1/I2  
1kΩ  
100kΩ  
100kΩ  
+5V  
10nA to 1mA  
+3.3V  
1/2  
OPA2335  
Back Bias  
+5V  
1.5kΩ  
1.5kΩ  
+3.3V  
Photodiode  
1/2  
OPA2335  
100kΩ  
100kΩ  
LOG112  
10nA to 1mA  
Pin 1 or Pin 14  
FIGURE 8. Precision Current Inverter/Current Source.  
R1  
R2  
CC  
+IN3  
V+ = +5V  
IN3  
VLOGOUT  
6
5
3
4
I1  
1
LOG112  
Q1  
Q2  
A2  
A1  
I2  
RREF  
7
14  
A3  
VO3  
+2.5V  
8
VREF  
VREF  
100kΩ  
11  
13  
10  
9
GND  
VREF GND  
VCM  
V= 5V  
150kΩ  
+1.5V  
FIGURE 9. Extending Input Current Level and Improving Accuracy by Applying a Common-Mode Voltage.  
LOG112, 2112  
9
SBOS246C  
www.ti.com  
DATA COMPRESSION  
MEASURING AVALANCHE PHOTODIODE CURRENT  
In many applications, the compressive effects of the logarith-  
mic transfer function are useful. For example, a LOG112  
preceding a 12-bit A/D converter can produce the dynamic  
range equivalent to a 20-bit converter.  
The wide dynamic range of the LOG112 and LOG2112 is  
useful for measuring avalanche photodiode current (APD), as  
shown in Figure 12.  
OPERATION ON SINGLE SUPPLY  
Single Supply +5V  
Many applications do not have the dual supplies required to  
operate the LOG112 and LOG2112. Figure 11 shows the  
LOG112 and LOG2112 configured for operation with a single  
+5V supply.  
6
VLOGOUT  
5
1
I1  
LOG112  
10  
14  
V+  
6
9
I1  
VLOGOUT  
I2  
1
5
CC  
D1  
Sample  
λ1´  
1µF  
LOG112  
λ1  
3
5
I2  
14  
10  
2
1
5V  
λ1  
TPS(1)  
4
Light  
Source  
9
D2  
1µF  
1µF  
CC  
NOTE: (1) TPS60402DBV  
negative charge pump.  
V–  
FIGURE 11. Single +5V Power-Supply Operation.  
FIGURE 10. Absorbance Measurement.  
ISHUNT  
+15V to +60V  
500Ω  
Irx = 1µA to 1mA  
Receiver  
5kΩ  
5kΩ  
+5V  
10Gbits/sec  
APD  
I-to-V  
Converter  
INA168  
SOT23-5  
IOUT = 0.1 ISHUNT  
1
2
IOUT  
CC  
10kΩ  
16.7kΩ  
+5V  
6
4
5
1
Q1  
Q2  
7
V03 = 2.5V to 0V  
A3  
A2  
A1  
14  
25kΩ  
100µA  
8
VREF  
LOG112  
SO-14  
9
11  
13  
10  
3
5V  
FIGURE 12. High-Side Shunt for APD Measures 3 Decades of APD Current.  
LOG112, 2112  
10  
SBOS246C  
www.ti.com  
INSIDE THE LOG112  
Using the base-emitter voltage relationship of matched  
also  
bipolar transistors, the LOG112 establishes a logarith-  
mic function of input current ratios. Beginning with the  
base-emitter voltage defined as:  
R1 +R2  
VOUT = VL  
(9)  
R1  
R1 +R2  
I1  
I2  
IC  
IS  
VOUT  
=
n VT log  
kT  
q
(10)  
VBE = VT ln  
where : VT =  
R1  
(1)  
k = Boltzmans constant = 1.381 1023  
T = Absolute temperature in degrees Kelvin  
q = Electron charge = 1.602 1019 Coulombs  
IC = Collector current  
I1  
VOUT = (0.5V)LOG  
or  
(11)  
I2  
IS = Reverse saturation current  
I2  
Q1  
Q2  
I1  
From the circuit in Figure 12:  
VOUT  
+
+
A2  
VBE VBE  
VL = VBE VBE  
(2)  
(3)  
1
2
1
2
I1  
A1  
Substituting (1) into (2) yields:  
I1  
I2  
R2  
VL  
R1  
VOUT = (0.5V)LOG  
I2  
I1  
VL = VT1 ln  
VT2 ln  
I2  
IS1  
IS2  
If the transistors are matched and isothermal and  
VTI = VT2, then (3) becomes:  
I1  
I2  
VL = V ln ln  
T1  
(4)  
IS  
IS  
FIGURE 13. Simplified Model of a Log Amplifier.  
I1  
VL = VT ln and since  
I2  
NOTE: R1 is a metal resistor used to compensate for gain  
over temperature.  
(5)  
(6)  
ln x = 2.3log10  
I1  
x
VL = n VT log  
(7)  
(8)  
I2  
where n = 2.3  
DEFINITION OF TERMS  
TRANSFER FUNCTION  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
The ideal transfer function is:  
VLOGOUT = (0.5V)LOG (I1/I2)  
Figure 14 shows the graphical representation of the transfer  
over valid operating range for the LOG112 and LOG2112.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
I1  
ACCURACY  
VLOGOUT = (0.5V)LOG (I1/I2)  
Accuracy considerations for a log ratio amplifier are some-  
what more complicated than for other amplifiers. This is  
because the transfer function is nonlinear and has two  
inputs, each of which can vary over a wide dynamic range.  
The accuracy for any combination of inputs is determined  
from the total error specification.  
FIGURE 14. Transfer Function with Varying I2 and I1.  
It represents the sum of all the individual components of error  
normally associated with the log amp when operated in the  
current input mode. The worst-case error for any given ratio  
of I1/I2 is the largest of the two errors when I1 and I2 are  
considered separately. Temperature can affect total error.  
TOTAL ERROR  
The total error is the deviation (expressed in mV) of the actual  
output from the ideal output of VLOGOUT = (0.5V)LOG (I1/I2).  
Thus,  
VLOGOUT(ACTUAL) = VLOGOUT(IDEAL) ± Total Error  
(6)  
LOG112, 2112  
11  
SBOS246C  
www.ti.com  
ERRORS RTO AND RTI  
The individual component of error is:  
As with any transfer function, errors generated by the func-  
tion may be Referred-to-Output (RTO) or Referred-to-Input  
(RTI). In this respect, log amps have a unique property: given  
some error voltage at the log amps output, that error corre-  
sponds to a constant percent of the input regardless of the  
actual input level.  
K = gain error (0.10%, typ), as specified in the specifica-  
tion table.  
IB1 = bias current of A1 (5pA, typ)  
IB2 = bias current of A2 (5pA, typ)  
N = log conformity error (0.01%, 0.13%, typ)  
0.01% for m = 5, 0.13% for m = 7.5  
LOG CONFORMITY  
VOSO = output offset voltage (3mV, typ)  
m = number of decades over which N is specified  
For example, what is the error when:  
For the LOG112 and LOG2112, log conformity is calculated  
the same as linearity and is plotted I1/I2 on a semi-log scale.  
In many applications, log conformity is the most important  
specification. This is true because bias current errors are  
negligible (5pA compared to input currents of 100pA and  
above) and the scale factor and offset errors may be trimmed  
to zero or removed by system calibration. This leaves log  
conformity as the major source of error.  
I1 = 1µA and I2 = 100nA  
(10)  
(11)  
106 51012  
107 51012  
= 0.505V  
VLOGOUT = 0.5 ± 0.001 log  
± 2 0.00015 ± 3.0mV  
(
)
(
)
(
)
Log conformity is defined as the peak deviation from the best  
fit straight line of the VLOGOUT versus log (I1/I2) curve. This is  
expressed as a percent of ideal full-scale output. Thus, the  
nonlinearity error expressed in volts over m decades is:  
Since the ideal output is 0.5V, the error as a percent of the  
reading is:  
0.505V  
% error =  
100% = 1.01%  
(12)  
0.5  
VLOGOUT (NONLIN) = 0.5V/dec 2NmV  
(7)  
For the case of voltage inputs, the actual transfer function is:  
where N is the log conformity error, in percent.  
(13)  
E
V
OS1  
1 IB  
±
±
INDIVIDUAL ERROR COMPONENTS  
1
R1  
V2  
R1  
E
VLOGOUT = 0.5V 1± ∆K log  
± Nm ± VOSO  
(
)
(
)
The ideal transfer function with current input is:  
OS2  
IB  
2
R2  
R2  
I1  
VLOGOUT = 0.5V LOG  
(
)
(8)  
I2  
E
EOS2  
R2  
OS1 and  
Where  
(offset error) are considered to be  
The actual transfer function with the major components of  
error is:  
R1  
zero for large values of resistance from external input current  
sources.  
I1 IB1  
VLOGOUT = 0.5V 1± ∆K log  
± Nm ± VOSO  
(
)
(
)
(9)  
I2 IB2  
LOG112, 2112  
12  
SBOS246C  
www.ti.com  
PACKAGE DRAWINGS  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
8 PINS SHOWN  
0.020 (0,51)  
0.014 (0,35)  
0.050 (1,27)  
8
0.010 (0,25)  
5
0.244 (6,20)  
0.228 (5,80)  
0.008 (0,20) NOM  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
1
4
0.010 (0,25)  
0°8°  
A
0.044 (1,12)  
0.016 (0,40)  
Seating Plane  
0.010 (0,25)  
0.069 (1,75) MAX  
0.004 (0,10)  
0.004 (0,10)  
PINS **  
8
14  
16  
DIM  
A MAX  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/E 09/01  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
LOG112, 2112  
13  
SBOS246C  
www.ti.com  
PACKAGE DRAWINGS (Cont.)  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PINS SHOWN  
0.050 (1,27)  
16  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
9
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.291 (7,39)  
Gage Plane  
0.010 (0,25)  
1
8
0° 8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
PINS **  
16  
18  
20  
24  
0.610  
28  
DIM  
0.410  
0.462  
0.510  
0.710  
A MAX  
A MIN  
(10,41) (11,73) (12,95) (15,49) (18,03)  
0.400  
0.453  
0.500  
0.600  
0.700  
(10,16) (11,51) (12,70) (15,24) (17,78)  
4040000 /E 08/01  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
LOG112, 2112  
14  
SBOS246C  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Oct-2003  
PACKAGING INFORMATION  
ORDERABLE DEVICE  
STATUS(1)  
PACKAGE TYPE  
PACKAGE DRAWING  
PINS  
PACKAGE QTY  
LOG112AID  
LOG112AIDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
14  
14  
16  
16  
58  
2500  
48  
LOG2112AIDW  
LOG2112AIDWR  
DW  
DW  
48  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

LOG112AIDRE4

Precision LOGARITHMIC AND LOG RATIO AMPLIFIERS
TI

LOG114

Precision, High-Speed Transimpedance Amplifier
BB

LOG114

具有 2.5V 基准电压和非限定输出运算放大器的精密高速对数放大器
TI

LOG114AIRGVR

Single-Supply, High-Speed, Precision LOGARITHMIC AMPLIFIER
BB

LOG114AIRGVR

具有 2.5V 基准电压和非限定输出运算放大器的精密高速对数放大器 | RGV | 16 | 0 to 70
TI

LOG114AIRGVRG4

Single-Supply, High-Speed, Precision LOGARITHMIC AMPLIFIER
BB

LOG114AIRGVT

Single-Supply, High-Speed, Precision LOGARITHMIC AMPLIFIER
BB

LOG114AIRGVT

LOG114EVM User Guide
TI

LOG114AIRGVTG4

Single-Supply, High-Speed, Precision LOGARITHMIC AMPLIFIER
BB

LOG114EVM

LOG114EVM User Guide
TI

LOG114_12

Single-Supply, High-Speed, Precision LOGARITHMIC AMPLIFIER
BB

LOG1527

由CMOS工艺设计制造的可内烧的学习码编码IC.
ETC