LP2950CDT-5.0 [TI]

5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PSSO2, TO-252, DPAK-3/2;
LP2950CDT-5.0
型号: LP2950CDT-5.0
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PSSO2, TO-252, DPAK-3/2

输出元件 调节器
文件: 总54页 (文件大小:2337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
LP295x-N Series of Adjustable Micropower Voltage Regulators  
1 Features  
3 Description  
The LP2950-N and LP2951-N are micropower  
1
Input Voltage Range: 2.3 V to 30 V  
voltage regulators with very low quiescent current  
(75 µA typical) and very low dropout voltage (typical  
40 mV at light loads and 380 mV at 100 mA). They  
are ideally suited for use in battery-powered systems.  
Furthermore, the quiescent current of the device  
increases only slightly in dropout, prolonging battery  
life.  
5-V, 3-V, and 3.3-V Output Voltage Versions  
Available  
High Accuracy Output Voltage  
Ensured 100-mA Output Current  
Extremely Low Quiescent Current  
Low Dropout Voltage  
Careful design of the LP2950-N/LP2951-N has  
minimized all contributions to the error budget. This  
Extremely Tight Load and Line Regulation  
Very Low Temperature Coefficient  
Use as Regulator or Reference  
Needs Minimum Capacitance for Stability  
Current and Thermal Limiting  
includes  
a tight initial tolerance (0.5% typical),  
extremely good load and line regulation (0.05%  
typical) and a very low output voltage temperature  
coefficient, making the part useful as a low-power  
voltage reference.  
Stable With Low-ESR Output Capacitors (10 m  
to 6 )  
One such feature is an error flag output which warns  
of a low output voltage, often due to falling batteries  
on the input. It may be used for a power-on reset. A  
second feature is the logic-compatible shutdown input  
which enables the regulator to be switched on and  
off. Also, the part may be pin-strapped for a 5-V, 3-V,  
or 3.3-V output (depending on the version), or  
programmed from 1.24 V to 29 V with an external  
pair of resistors.  
LP2951-N Versions Only:  
Error Flag Warns of Output Dropout  
Logic-Controlled Electronic Shutdown  
Output Programmable From 1.24 V to 29 V  
2 Applications  
High-Efficiency Linear Regulator  
The LP2950-N is available in the surface-mount TO-  
252 package and in the popular 3-pin TO-92 package  
for pin-compatibility with older 5-V regulators. The 8-  
pin LP2951-N is available in plastic, ceramic dual-in-  
line, WSON, or metal can packages and offers  
additional system functions.  
Regulator with Undervoltage Shutdown  
Low Dropout Battery-powered Regulator  
Snap-ON/Snap-OFF Regulator  
space  
space  
space  
space  
space  
space  
space  
space  
space  
Device Information(1)  
PART NUMBER PACKAGE  
BODY SIZE (NOM)  
4.30 mm × 4.30 mm  
9.91 mm × 6.58 mm  
4.90 mm × 3.91 mm  
3.00 mm × 3.00 mm  
4.00 mm × 4.00 mm  
9.81 mm × 6.35 mm  
TO-92 (3)  
LP2950-N  
TO-252 (3)  
SOIC (8)  
VSSOP (8)  
LP2951-N  
WSON (8)  
PDIP (8)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
LP2951 Simplified Schematic  
LP2951  
VOUT  
VIN  
LP2950-N Simplified Schematic  
OUT  
IN  
LP2950  
COUT  
2.2 µF  
CIN  
1 µF  
SENSE  
FEEDBACK  
VOUT  
VIN  
IN  
OUT  
VFEEDBACK  
SHUTDOWN  
SHUTDOWN  
GND  
VTAP  
COUT  
2.2 µF  
CIN  
1 µF  
R1  
330 kꢀ  
GND  
VOUT  
ERROR  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
Table of Contents  
8.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 19  
9.1 Application Information............................................ 19  
9.2 Typical Applications ................................................ 20  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Voltage Options ..................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information: LP2950-N................................ 6  
7.5 Thermal Information: LP2951-N................................ 6  
7.6 Electrical Characteristics........................................... 7  
7.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagrams ..................................... 16  
8.3 Feature Description................................................. 17  
9
10 Power Supply Recommendations ..................... 32  
11 Layout................................................................... 32  
11.1 Layout Guidelines ................................................. 32  
11.2 Layout Example .................................................... 32  
11.3 WSON Mounting ................................................... 33  
12 Device and Documentation Support ................. 34  
12.1 Documentation Support ....................................... 34  
12.2 Related Links ........................................................ 34  
12.3 Community Resources.......................................... 34  
12.4 Trademarks........................................................... 34  
12.5 Electrostatic Discharge Caution............................ 34  
12.6 Glossary................................................................ 34  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 34  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision P (May 2016) to Revision Q  
Page  
Changed LP2951-N ESD parameter pin references and added SENSE pin row to LP2951-N ESD parameter in ESD  
Ratings table........................................................................................................................................................................... 5  
Changes from Revision O (December 2014) to Revision P  
Page  
Added rows to ESD Ratings table to differentiate values for pins 3 and 7 of the LP2951-N device...................................... 5  
Added footnotes 2 and 3 to both Thermal Information tables ............................................................................................... 6  
Changes from Revision N (May 2013) to Revision O  
Page  
Added Device Information and ESD Rating tables, Feature Description, Device Functional Modes, Application and  
Implementation, Power Supply Recommendations, Layout, Device and Documentation Support, and Mechanical,  
Packaging, and Orderable Information sections; moved some curves to Application Curves section; update pin  
names; change package nomenclature from National to TI .................................................................................................. 1  
Changes from Revision M (April 2013) to Revision N  
Page  
Changed layout of National Data Sheet to TI format ............................................................................................................ 1  
2
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
 
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
5 Voltage Options  
DEVICE NUMBER  
PACKAGE  
VOLTAGE OPTION (V)  
3 (±0.5%, ±1 %)  
3.3 (±0.5%, ±1 %)  
5 (±0.5%, ±1 %)  
3 (±1 %)  
TO-92 (LP)  
LP2950-N  
TO-252 (NDP)  
SOIC (D)  
3.3 (±1%)  
5 (±1%)  
3 (±0.5%, ±1%)  
3.3 (±0.5%, ±1%)  
5 (±0.5%, ±1%)  
3 (±0.5%, ±1%)  
3.3 (±0.5%, ±1%)  
5 (±0.5%, ±1%)  
3 (±0.5%, ±1%)  
3.3 (±0.5%, ±1%)  
5 (±0.5%, ±1%)  
5 (±0.5%, ±1%)  
VSSOP (DGK)  
LP2951-N  
WSON (NGT)  
PDIP (P)  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
6 Pin Configuration and Functions  
LP Package  
3-Pin TO-92  
Bottom View  
NDP Package  
3-Pin TO-252  
Front View  
P, D, DGK Packages  
8-Pin PDIP, SOIC, VSSOP  
Top View  
NGT Package  
8-Pin WSON  
Top View  
IN  
OUT  
SENSE  
1
2
3
4
8
7
6
5
FEEDBACK  
VTAP  
DAP  
SHUTDOWN  
GND  
ERROR  
Connect DAP to GND at device pin 4.  
Pin Functions: LP2950-N  
PIN  
LP2950  
I/O  
DESCRIPTION  
NAME  
LP  
2
NDP  
GND  
IN  
2
1
3
I
Ground  
3
Input supply voltage  
OUT  
1
O
Regulated output voltage  
Pin Functions: LP2951-N  
PIN  
LP2951  
I/O  
DESCRIPTION  
NAME  
D, DGK, P  
NGT  
ERROR  
FEEDBACK  
GROUND  
IN  
5
7
4
8
1
2
3
6
5
7
4
8
1
2
3
6
O
I
Error output  
Voltage feedback input  
Ground  
I
Input supply voltage  
Regulated output voltage  
Output voltage sense  
Disable device  
OUT  
O
I
SENSE  
SHUTDOWN  
VTAP  
I
O
Internal resistor divider  
4
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–1.5  
MAX  
30  
UNIT  
V
Input supply voltage - SHUTDOWN input voltage error comparator output voltage(3)  
FEEDBACK input voltage(3)(4)  
30  
V
Power dissipation  
Internally Limited  
150  
Junction temperature, TJ  
Wave  
4 seconds, 260  
10 seconds, 240  
75 seconds, 219  
150  
°C  
°C  
Soldering dwell time, temperature  
Infrared  
Vapor phase  
Storage temperature, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(3) May exceed input supply voltage.  
(4) When used in dual-supply systems where the output terminal sees loads returned to a negative supply, the output voltage should be  
diode-clamped to ground.  
7.2 ESD Ratings  
VALUE  
UNIT  
LP2950-N  
Electrostatic  
discharge  
LP2951-N  
V(ESD)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2500  
V
IN, OUT, GND, ERROR  
SHUTDOWN  
±2500  
±2000  
±1500  
±1000  
Electrostatic  
discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-  
001(1)  
V(ESD)  
V
SENSE  
VTAP, FEEDBACK  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
30  
UNIT  
V
Maximum input supply voltage  
LP2950AC-XX, LP2950C-XX  
LP2951  
–40  
–55  
–40  
125  
150  
125  
°C  
(2)  
Junction temperature, TJ  
°C  
LP2951AC-XX, LP2951C-XX  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The junction-to-ambient thermal resistances are as follows: 157.4°C/W for the TO-92 (LP) package, 51.3°C/W for the TO-252 (NDP)  
package, 56.3°C/W for the molded PDIP (P), 117.7°C/W for the molded plastic SOIC (D), 171°C/W for the molded plastic VSSOP  
(DGK). The above thermal resistances for the P, D, and DGK packages apply when the package is soldered directly to the PCB. The  
value of RθJA for the WSON (NGT) package is typically 43.3°C/W but is dependent on the PCB trace area, trace material, and the  
number of layers and thermal vias. For details of thermal resistance and power dissipation for the WSON package, see AN-1187  
Leadless Leadframe Package (LLP).  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
7.4 Thermal Information: LP2950-N  
LP2950-N  
LP (TO-92)  
THERMAL METRIC(1)  
NDP (TO-252)  
3 PINS  
51.3(3)  
53.5  
UNIT  
3 PINS  
157.4  
81.2  
153.6  
25.2  
n/a  
(2)  
RθJA  
Junction-to-ambient thermal resistance, High-K  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
30.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.5  
ψJB  
30  
RθJC(bot)  
n/a  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Thermal resistance value RθJA is based on the EIA/JEDEC High-K printed circuit board defined by JESD51-7 - High Effective Thermal  
Conductivity Test Board for Leaded Surface Mount Packages.  
(3) The PCB for the TO-252 (NDP) package RθJA includes twelve (12) thermal vias under the tab per EIA/JEDEC JESD51-5.  
7.5 Thermal Information: LP2951-N  
LP2951-N  
P (PDIP)  
D (SOIC)  
DGK  
(VSSOP)  
NGT  
(WSON)  
THERMAL METRIC(1)  
UNIT  
8 PINS  
56.3  
45.7  
33.5  
22.9  
33.3  
n/a  
8 PINS  
117.7  
63.7  
57.9  
15.9  
57.5  
n/a  
8 PINS  
171.0  
62.3  
91.4  
8.9  
8 PINS  
43.3(3)  
35.0  
23.3  
0.5  
(2)  
RθJA  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance, High K  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
90.1  
n/a  
20.5  
9.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Thermal resistance value RθJA is based on the EIA/JEDEC High-K printed circuit board defined by JESD51-7 - High Effective Thermal  
Conductivity Test Board for Leaded Surface Mount Packages.  
(3) The PCB for the WSON (NGT) package RθJA includes six (6) thermal vias under the exposed thermal pad per EIA/JEDEC JESD51-5.  
6
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
7.6 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)(1)  
LP2950AC-XX  
LP2951AC-XX  
LP2950C-XX  
LP2951C-XX  
LP2951(2)  
PARAMETER  
TEST CONDITIONS(1)  
UNIT  
MIN  
2.985  
2.964  
2.955  
TYP  
MAX  
3.015  
3.036  
3.045  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
3-V VERSIONS(3)  
TJ = 25°C  
3
3
3
2.985  
2.970  
3
3
3.015 2.970  
3.030 2.955  
3
3
3.030  
3.045  
V(4)  
V(5)  
V(4)  
V(5)  
V(4)  
25°C TJ 85°C  
Output voltage  
Full operating  
temperature range  
2.964  
2.958  
3
3
3.036 2.940  
3.042 2.928  
3
3
3.060  
3.072  
100 µA IL 100 mA,  
100 µA IL 100 mA,  
TJ TJMAX  
Output voltage  
V(5)  
3.3-V VERSIONS(3)  
TJ = 25°C  
3.284  
3.260  
3.251  
3.3  
3.3  
3.3  
3.317  
3.340  
3.350  
3.284  
3.267  
3.3 3.317 3.267  
3.3 3.333 3.251  
3.3 3.333  
3.3 3.350  
V(4)  
V(5)  
V(4)  
V(5)  
V(4)  
V(5)  
25°C TJ 85°C  
Output voltage  
Full operating  
temperature range  
3.260  
3.254  
3.3 3.340 3.234  
3.3 3.346 3.221  
3.3 3.366  
3.3 3.379  
3.3  
100 µA IL 100 mA, TJ  
TJMAX  
Output voltage  
5-V VERSIONS(3)  
TJ = 25°C  
4.975  
4.94  
5
5
5
5.025  
5.06  
4.975  
4.95  
5
5
5.025  
4.95  
5
5
5.05  
V(4)  
V(5)  
V(4)  
V(5)  
V(4)  
V(5)  
25°C TJ 85°C  
5.05 4.925  
5.075  
Output voltage  
Output voltage  
Full operating  
temperature range  
4.94  
5
5
5.06  
4.9  
5
5
5.1  
4.925  
5
5.075  
100 µA IL 100 mA, TJ  
TJMAX  
4.925  
5.075  
4.88  
5.12  
ALL VOLTAGE OPTIONS  
Output voltage  
temperature  
coefficient  
20  
120  
ppm/°C(4)  
See(6), –40°C TJ ≤  
125°C  
20  
100  
50  
150 ppm/°C(5)  
(VONOM + 1 V) Vin 30  
0.03%  
0.03%  
0.1%  
0.5%  
0.03% 0.11%  
0.04% 0.2%  
See(4)  
V(8)  
Line regulation(7)  
Load regulation(7)  
See(4)  
(5)  
(VONOM + 1 V) Vin 30  
V(8), –40°C TJ 125°C  
0.03% 0.2%  
0.04% 0.1%  
0.04% 0.4%  
0.1% 0.2%  
100 µA IL 100 mA  
0.04%  
0.04%  
0.1%  
0.3%  
See(4)  
See(4)  
See(5)  
100 µA IL 100 mA,  
–40°C TJ 125°C  
0.04% 0.2%  
0.1% 0.3%  
(1) Unless otherwise noted, all limits apply for TA = TJ = 25°C as well as specified for VIN = (VONOM + 1 V), IL = 100 µA and CL = 1 µF for  
5-V versions and 2.2 µF for 3-V and 3.3-V versions. Additional conditions for the 8-pin versions are FEEDBACK tied to VTAP, OUTPUT  
tied to SENSE, and VSHUTDOWN 0.8 V.  
(2) A Military RETS specification is available on request.  
(3) All LP2950 devices have the nominal output voltage coded as the last two digits of the part number. In the LP2951 products, the 3-V  
and 3.3-V versions are designated by the last two digits, but the 5-V version is denoted with no code at this location of the part number  
(refer to the Package Option Addendum at end of data sheet).  
(4) Ensured and 100% production tested.  
(5) Ensured but not 100% production tested. These limits are not used to calculate outgoing AQL levels.  
(6) Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.  
(7) Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to  
heating effects are covered under the specification for thermal regulation.  
(8) Line regulation for the LP2951-N is tested at 150°C for IL = 1 mA. For IL = 100 µA and TJ = 125°C, line regulation is specified by design  
to 0.2%. See Typical Characteristics for line regulation versus temperature and load current.  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)(1)  
LP2950AC-XX  
LP2951AC-XX  
LP2950C-XX  
LP2951C-XX  
LP2951(2)  
PARAMETER  
TEST CONDITIONS(1)  
UNIT  
MIN  
TYP  
MAX  
80  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
IL = 100 µA  
50  
50  
80  
50  
80  
mV(4)  
mV(4)  
mV(5)  
mV(4)  
mV(4)  
mV(5)  
µA(4)  
µA(4)  
µA(5)  
mA(4)  
mA(4)  
mA(5)  
150  
IL = 100 µA, –40°C TJ ≤  
125°C  
150  
450  
600  
600  
120  
150  
450  
600  
600  
120  
Dropout voltage(9)  
IL = 100 mA  
380  
75  
8
450  
600  
380  
75  
8
380  
75  
8
IL = 100 mA, –40°C TJ ≤  
125°C  
IL = 100 µA  
120  
140  
IL = 100 µA, –40°C TJ ≤  
125°C  
140  
12  
140  
12  
Ground current  
IL = 100 mA  
12  
14  
IL = 100 mA, –40°C TJ ≤  
125°C  
14  
14  
VIN = (VONOM 0.5)V, IL  
= 100 µA  
110  
160  
170  
200  
110  
160  
170  
110  
160  
170  
µA(4)  
Dropout ground  
current  
VIN = (VONOM 0.5 V), IL  
= 100 µA, –40°C TJ ≤  
125°C  
200  
200  
200  
200  
200  
200  
µA(4)  
µA(5)  
VOUT = 0 V  
200  
220  
mA(4)  
mA(4)  
mA(5)  
%/W(4)  
µVRMS  
µVRMS  
Current limit  
VOUT = 0 V, –40°C TJ ≤  
125°C  
220  
0.2  
220  
0.2  
Thermal regulation See(10)  
CL = 1µF (5 V Only)  
0.05  
430  
160  
0.2  
0.05  
430  
160  
0.05  
430  
160  
CL = 200 µF  
Output noise  
CL = 3.3 µF  
10 Hz to 100 kHz  
(Bypass = 0.01 µF  
Pins 7 to 1 (LP2951-N)  
100  
100  
100  
µVRMS  
8-PIN VERSIONS ONLY  
LP2951  
LP2951AC-XX  
LP2951C-XX  
1.22 1.235  
1.2  
1.25  
1.26  
1.22 1.235  
1.25  
1.21 1.235  
1.26  
1.27  
V(4)  
V(4)  
V(5)  
V(4)  
V(5)  
nA(4)  
Reference voltage  
–40°C TJ 125°C  
1.2  
1.26 1  
1.2  
See(11), –40°C TJ ≤  
125°C  
1.19  
1.27  
Reference voltage  
1.19  
1.27 1.185  
1.285  
40  
20  
40  
60  
20  
40  
20  
Feedback pin bias  
current  
(4)  
nA  
–40°C TJ 125°C  
60  
60  
nA(5)  
Reference voltage  
temperature  
See(6)  
20  
20  
50  
ppm/°C  
coefficient  
Feedback pin bias  
current  
temperature  
coefficient  
0.1  
0.1  
0.1  
nA/°C  
(9) Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured  
at 1-V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2 V (2.3 V over temperature)  
must be taken into account.  
(10) Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load  
or line regulation effects. Specifications are for a 50 mA load pulse at VIN = 30 V (1.25-W pulse) for T = 10 ms.  
(11) VREF VOUT (VIN 1 V), 2.3 V VIN 30 V, 100 µA IL 100 mA, TJ TJMAX  
.
8
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)(1)  
LP2950AC-XX  
LP2951AC-XX  
LP2950C-XX  
LP2951C-XX  
LP2951(2)  
PARAMETER  
TEST CONDITIONS(1)  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
ERROR COMPARATOR  
VOH = 30 V  
0.01  
1
2
0.01  
1
0.01  
1
µA(4)  
µA(4)  
µA(5)  
Output leakage  
current  
VOH = 30 V, –40°C TJ ≤  
125°C  
2
2
VIN = (VONOM 0.5 V),  
IOL = 400 µA  
150  
250  
400  
150  
250  
150  
250  
mV(4)  
mV(4)  
mV(5)  
Output low voltage  
VIN = (VONOM 0.5 V),  
IOL = 400 µA,  
–40°C TJ 125°C  
400  
400  
400  
400  
See(12)  
40  
25  
60  
75  
40  
25  
60  
75  
40  
25  
60  
75  
mV(4)  
mV(4)  
mV(5)  
mV(4)  
mV(4)  
mV(5)  
mV  
Upper threshold  
voltage  
See(12), –40°C TJ ≤  
125°C  
See(12)  
95  
95  
95  
Lower threshold  
voltage  
See(12), –40°C TJ ≤  
125°C  
140  
140  
140  
Hysteresis  
See(12)  
15  
15  
15  
SHUTDOWN INPUT  
Input  
1.3  
1.3  
1.3  
V
0.6  
V(4)  
V(5)  
V(4)  
V(5)  
µA(4)  
µA(4)  
µA(5)  
µA(4)  
µA(4)  
µA(5)  
µA(4)  
µA(4)  
µA(5)  
Low (Regulator ON),  
–40°C TJ 125°C  
Logic voltage  
Logic voltage  
0.7  
50  
0.7  
50  
2
High (Regulator OFF),  
–40°C TJ 125°C  
2
2
Vshutdown = 2.4 V  
30  
450  
3
50  
30  
450  
3
30  
450  
3
100  
Vshutdown = 2.4 V  
–40°C TJ 125°C  
100  
600  
100  
600  
Shutdown pin input  
current  
Vshutdown = 30 V  
600  
750  
Vshutdown = 30 V,  
–40°C TJ 125°C  
750  
10  
750  
10  
See(13)  
10  
20  
Regulator output  
current in  
shutdown  
–40°C TJ 125°C  
20  
20  
(12) Comparator thresholds are expressed in terms of a voltage differential at the FEEDBACK pin below the nominal reference voltage  
measured at VIN = (VO(NOM) + 1) V. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain =  
VOUT/VREF = (R1 + R2) / R2.For example, at a programmed output voltage of 5 V, the ERROR output is specified to go low when the  
output drops by 95 mV × 5 V / 1.235 V = 384 mV. Thresholds remain constant as a percent of VOUT as VOUT is varied, with the dropout  
warning occurring at typically 5% below nominal, 7.5% ensured.  
(13) VSHUTDOWN 2 V, VIN 30 V, VOUT = 0, FEEDBACK pin tied to VTAP  
.
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LP2950-N LP2951-N  
 
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
7.7 Typical Characteristics  
Figure 1. Quiescent Current  
Figure 2. Dropout Characteristics  
Figure 3. Input Current  
Figure 4. Input Current  
Figure 6. Quiescent Current  
Figure 5. Output Voltage vs. Temperature of 3  
Representative Units  
10  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
Typical Characteristics (continued)  
Figure 7. Quiescent Current  
Figure 8. Quiescent Current  
Figure 10. Short Circuit Current  
Figure 12. Dropout Voltage  
Figure 9. Quiescent Current  
Figure 11. Dropout Voltage  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
Typical Characteristics (continued)  
Figure 13. LP2951-N Minimum Operating Voltage  
Figure 15. LP2951-N Feedback Pin Current  
Figure 17. LP2951-N Comparator Sink Current  
Figure 14. LP2951-N Feedback Bias Current  
Figure 16. LP2951-N Error Comparator Output  
Figure 18. LP2951-N Enable Transient  
12  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
Typical Characteristics (continued)  
Figure 19. Output Impedance  
Figure 20. Ripple Rejection  
Figure 21. Ripple Rejection  
Figure 22. Ripple Rejection  
Figure 24. LP2951-N Divider Resistance  
Figure 23. LP2951-N Output Noise  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
Typical Characteristics (continued)  
Figure 25. Shutdown Threshold Voltage  
Figure 27. LP2951-N Maximum Rated Output Current  
Figure 29. Thermal Response  
Figure 26. Line Regulation  
Figure 28. LP2950-N Maximum Rated Output Current  
Figure 30. Output Capacitor ESR Range  
14  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
Typical Characteristics (continued)  
120  
120  
100  
80  
60  
40  
20  
0
V
= 2.0V  
SD  
V
= 2.0V  
SD  
Output Load = Open  
Output Load = Short to Ground  
100  
80  
60  
40  
20  
0
Ta= -50°C  
Ta= -40°C  
Ta= +25°C  
Ta= +125°C  
Ta= -50°C  
Ta= -40°C  
Ta= +25°C  
Ta= +125°C  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
INPUT PIN VOLTAGE, V (V)  
INPUT PIN VOLTAGE, V (V)  
IN  
IN  
Figure 31. LP2951-N Input Pin Current vs Input Voltage  
Figure 32. LP2951-N Input Pin Current vs Input Voltage  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The LP2950-N and LP2951-N are very high accuracy micro power voltage regulators with low quiescent current  
(75 µA typical) and low dropout voltage (typical 40 mV at light loads and 380 mV at 100 mA). They are ideally  
suited for use in battery-powered systems.  
The LP2950-N and LP2951-N block diagram contains several features, including:  
Very high accuracy 1.23-V reference;  
Fixed 5-V, 3-V, and 3.3-V versions; and  
Internal protection circuitry, such as foldback current limit, and thermal shutdown.  
The LP2951-N VERSIONS ONLY:  
Fixed 5-V, 3-V, and 3.3-V versions and programmable output version from 1.24 V to 29 V with an external  
pair of resistors;  
Shutdown input, allowing turn off the regulator when the SHUTDOWN pin is pulled low; and  
Error flag output, which may be used for a power-on reset.  
8.2 Functional Block Diagrams  
Figure 33. LP2950-N Functional Block Diagram  
Figure 34. LP2951-N Functional Block Diagram  
16  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
8.3 Feature Description  
8.3.1 Fixed Voltage Options and Programmable Voltage Version  
The LP2950-N and LP2951-N provide 3 fixed output options: 3 V, 3.3 V, and 5 V. Please consult factory for  
custom voltages. In order to meet different application requirements, LP2951-N can also be used as a  
programmable voltage regulator, with an external resistors network; please refer to Application and  
Implementation for more details.  
8.3.2 High Accuracy Output Voltage  
With special carful design to minimize all contributions to the output voltage error, the LP2950-N/LP2951-N  
distinguished itself as a very high output voltage accuracy micro power LDO. This includes a tight initial tolerance  
(0.5% typical), extremely good load and line regulation (.05% typical) and a very low output voltage temperature  
coefficient, making the part an ideal a low-power voltage reference.  
8.3.3 Low Dropout Voltage  
Generally speaking, the dropout voltage often refers to the voltage difference between the input and output  
voltage (VDO = VIN – VOUT), where the main current pass-FET is fully on in the ohmic region of operation and is  
characterized by the classic RDS(ON) of the FET. VDO indirectly specifies a minimum input voltage above the  
nominal programmed output voltage at which the output voltage is expected to remain within its accuracy  
boundary.  
8.3.4 Shutdown Mode  
When the SHUTDOWN pin is pulled to high level, LP2951-N enters shutdown mode and a very low quiescent  
current is consumed. This function is designed for the application which needs a shutdown mode to effectively  
enhance battery life cycle.  
8.3.5 Error Detection Comparator Output  
The LP2951-N generates a logic low output whenever its output falls out of regulation by more than  
approximately 5%. Please refer to Application and Implementation for more details.  
8.3.6 Internal Protection Circuitry  
8.3.6.1 Short-Circuit Protection (Current Limit)  
The internal current limit circuit is used to protect the LDO against high-load current faults or shorting events. The  
LDO is not designed to operate in a steady-state current limit. During a current-limit event, the LDO sources  
constant current. Therefore, the output voltage falls when load impedance decreases. Note also that if a current  
limit occurs and the resulting output voltage is low, excessive power may be dissipated across the LDO, resulting  
in a thermal shutdown of the output. A fold back feature limits the short-circuit current to protect the regulator  
from damage under all load conditions. If OUT is forced below 0 V before EN goes high and the load current  
required exceeds the fold back current limit, the device may not start up correctly.  
8.3.6.2 Thermal Protection  
The device contains a thermal shutdown protection circuit to turn off the output current when excessive heat is  
dissipated in the LDO. The thermal time-constant of the semiconductor die is fairly short, and thus the output  
cycles on and off at a high rate when thermal shutdown is reached until the power dissipation is reduced. The  
internal protection circuitry of the device is designed to protect against thermal overload conditions. The circuitry  
is not intended to replace proper heat sinking. Continuously running the device into thermal shutdown degrades  
its reliability.  
8.3.7 Enhanced Stability  
The LP2950-N and LP2951-N is designed specifically to work with ceramic output capacitors, utilizing circuitry  
which allows the regulator to be stable across the entire range of output current with an output capacitor whose  
ESR is as low as 6 mΩ. For output capacitor requirement, please refer to Application and Implementation.  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
8.4 Device Functional Modes  
8.4.1 Operation with 30 V VIN > VOUT(TARGET) + 1 V  
The device operate if the input voltage is equal to, or exceeds VOUT(TARGET) + 1 V. At input voltages below the  
minimum VIN requirement, the devices do not operate correctly and output voltage may not reach target value.  
8.4.2 Operation with Shutdown Control  
If the voltage on the SHUTDOWN pin is higher than 1.3 V, the device is disabled. Decreasing shutdown below  
0.7 V initiates the start-up sequence of the device.  
18  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LP2950-N and LP2951-N are linear voltage regulator operating from 2.3 V to 30 V on the input and  
regulates voltages between 1.24 V to 29 V with 0.5% accuracy and 160 mA maximum outputs current. Efficiency  
is defined by the ratio of output voltage to input voltage because the LP2950-N and LP2951-N is a linear voltage  
regulator. To achieve high efficiency, the dropout voltage (VIN – VOUT) must be as small as possible, thus  
requiring a very low dropout LDO. Successfully implementing an LDO in an application depends on the  
application requirements. If the requirements are simply input voltage and output voltage, compliance  
specifications (such as internal power dissipation or stability) must be verified to ensure a solid design. If timing,  
start-up, noise, PSRR, or any other transient specification is required, the design becomes more challenging.  
Figure 35. Schematic Diagram  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
9.2 Typical Applications  
9.2.1 1-A Regulator with 1.2-V Dropout  
Figure 36. 1-A Regulator with 1.2-V Dropout  
9.2.1.1 Design Requirements  
For this design example, use the parameters listed in Table 1 as the input parameters.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
DESIGN REQUIREMENT  
6.5 V, ±10%, provided by the DC-DC converter switching at 1 MHz  
Output voltage  
5 V, ±1%  
100 mA (maximum), 1 mA (minimum)  
< 200 µVRMS  
Output current  
RMS noise, 10 Hz to 100 kHz  
PSRR at 1 KHz  
> 50 dB  
9.2.1.2 Detailed Design Procedure  
At 100-mA loading, the dropout of the LP2950-N/LP2951-N has 600 mV maximum dropout over temperature,  
thus an 1500-mV headroom is sufficient for operation over both input and output voltage accuracy. The efficiency  
of the LP2950-N/LP2951-N in this configuration is VOUT / VIN = 76.9%. To achieve the smallest form factor, the  
TO-92 package is selected. Input and output capacitors are selected in accordance with the Capacitor  
Recommendation section. Ceramic capacitances of 1 µF for the input and one 2.2-µF capacitors for the output  
are selected. With an efficiency of 73.3% and a 100-mA maximum load, the internal power dissipation is 150  
mW, which corresponds to a 18.9°C junction temperature rise for the TO-92 package. With an 85°C maximum  
ambient temperature, the junction temperature is at 103.9°C. To minimize noise, a bypass capacitance (CBYPASS  
)
of 0.01-µF is selected between pin 7 to pin 1 for LP2951-N.  
9.2.1.2.1 Output Capacitor Requirements  
A 1-µF (or greater) capacitor is required between the output and ground for stability at output voltages of 5 V or  
higher. At lower output voltages, more capacitance is required (2.2 µF or more is recommended for 3-V and  
3.3-V versions). Without this capacitor the device oscillates. Most types of tantalum or aluminum electrolytic work  
fine here; even film types work but are not recommended for reasons of cost. Many aluminum electrolytics have  
electrolytes that freeze at about 30°C, so solid tantalums are recommended for operation below 25°C. The  
important parameters of the capacitor are an ESR of about 5 Ω or less and a resonant frequency above 500 kHz.  
The value of this capacitor may be increased without limit.  
20  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
 
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
Figure 37. Output Capacitor ESR Range  
The reason for the lower ESR limit is that the loop compensation of the feedback loop relies on the capacitance  
value and the ESR value of the output capacitor to provide the zero that gives added phase lead (See  
Figure 37).  
fZ = (1 / (2 × π × COUT × ESR))  
(1)  
Using the 2.2 µF value from the Output Capacitor ESR Range curve (Figure 37), a useful range for fZ can be  
estimated:  
fZ(MIN)= (1 / (2 x π × 2.2 µF x 5 )) = 14.5 kHz  
fZ(MAX)= (1 / (2 x π × 2.2 µF x 0.05 )) = 318 kHz  
(2)  
(3)  
For ceramic capacitors, the low ESR produces a zero at a frequency that is too high to be useful, so meaningful  
phase lead does not occur. A ceramic output capacitor can be used if a series resistance is added  
(recommended value of resistance about 0.1 to 2 ) to simulate the needed ESR. Only X5R, X7R, or better,  
MLCC types should be used, and should have a DC voltage rating at least twice the VOUT(NOM) value.  
At lower values of output current, less output capacitance is required for stability. The capacitor can be reduced  
to 0.33 µF for currents below 10 mA or 0.1 µF for currents below 1 mA. Using the adjustable versions at voltages  
below 5 V runs the error amplifier at lower gains so that more output capacitance is needed. For the worst-case  
situation of a 100-mA load at 1.23 V output (output shorted to Feedback) a 3.3-µF (or greater) capacitor should  
be used.  
Unlike many other regulators, the LP2950-N remains stable and in regulation with no load in addition to the  
internal voltage divider. This is especially important in CMOS RAM keep-alive applications. When setting the  
output voltage of the LP2951-N versions with external resistors, a minimum load of 1 µA is recommended.  
Applications having conditions that may drive the LP2950-N/51 into nonlinear operation require special  
consideration. Nonlinear operation occurs when the output voltage is held low enough to force the output stage  
into output current limiting while trying to pull the output voltage up to the regulated value. The internal loop  
response time controls how long it takes for the device to regain linear operation when the output has returned to  
the normal operating range. There are three significant nonlinear conditions that need to be considered, all can  
force the output stage into output current limiting mode, all can cause the output voltage to over-shoot with low  
value output capacitors when the condition is removed, and the recommended generic solution is to set the  
output capacitor to a value not less than 10 µF. Although the 10 µF value for COUT may not eliminate the output  
voltage over-shoot in all cases, it should lower it to acceptable levels (< 10% of VOUT(NOM)) in the majority of  
cases. In all three of these conditions, applications with lighter load currents are more susceptible to output  
voltage over-shoot than applications with higher load currents.  
1. At power-up, with the input voltage rising faster than output stage can charge the output capacitor.  
VIN tRISE(MIN) > ((COUT / 100 mA) × ΔVIN)  
where  
ΔVIN = VOUT(NOM) + 1 V  
(4)  
(5)  
2. Recovery from an output short circuit to ground condition.  
C
OUT(MIN) (160 mA – ILOAD(NOM))/((VOUT(NOM)/10)/25 µs))  
3. Toggling the LP2951-N SHUTDOWN pin from high (OFF) to low (ON).  
C
OUT(MIN) (160 mA – ILOAD(NOM))/((VOUT(NOM)/10)/25 µs))  
(6)  
21  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LP2950-N LP2951-N  
 
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
Figure 38. LP2951-N Enable Transient  
9.2.1.2.2 Input Capacitor Requirements  
A minimum 1 µF tantalum, ceramic or aluminum electrolytic capacitor should be placed from the LP2950-  
N/LP2951-N input pin to ground if there is more than 10 inches of wire between the input and the AC filter  
capacitor or if a battery is used as the input.  
9.2.1.2.3 Error Detection Comparator Output  
The comparator produces a logic low output whenever the LP2951-N output falls out of regulation by more than  
approximately 5%. This figure is the comparator's built-in offset of about 60 mV divided by the 1.235 reference  
voltage. (Refer to the block diagram in the front of the datasheet.) This trip level remains “5% below normal”  
regardless of the programmed output voltage of the 2951. For example, the error flag trip level is typically 4.75 V  
for a 5-V output or 11.4 V for a 12-V output. The out of regulation condition may be due either to low input  
voltage, current limiting, or thermal limiting.  
Figure 39 below gives a timing diagram depicting the ERROR signal and the regulated output voltage as the  
LP2951-N input is ramped up and down. For 5 V versions, the ERROR signal becomes valid (low) at about 1.3-V  
input. It goes high at about 5-V input (the input voltage at which VOUT = 4.75 V). Because the LP2951-N dropout  
voltage is load-dependent (see curve in typical performance characteristics), the input voltage trip point (about  
5 V) varies with the load current. The output voltage trip point (approx. 4.75 V) does not vary with load.  
The error comparator has an open-collector output which requires an external pull up resistor. This resistor may  
be returned to the output or some other supply voltage depending on system requirements. In determining a  
value for this resistor, note that while the output is rated to sink 400 µA, this sink current adds to battery drain in  
a low battery condition. Suggested values range from 100 k to 1 MΩ. The resistor is not required if this output is  
unused.  
*When VIN 1.3 V, the error flag pin becomes a high impedance, and the error flag voltage rises to its pullup voltage.  
Using VOUT as the pullup voltage (see Figure 40), rather than an external 5-V source, keeps the error flag voltage  
under 1.2 V (typical) in this condition. The user may wish to divide down the error flag voltage using equal-value  
resistors (10 ksuggested), to ensure a low-level logic signal during any fault condition, while still allowing a valid  
high logic level during normal operation.  
Figure 39. ERROR Output Timing  
22  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
 
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
9.2.1.2.4 Programming the Output Voltage (LP2951-N)  
The LP2951-N may be pin-strapped for the nominal fixed output voltage using its internal voltage divider by tying  
the output and sense pins together, and also tying the FEEDBACK and VTAP pins together. Alternatively, it may  
be programmed for any output voltage between its 1.235-V reference and its 30-V maximum rating. As seen in  
Figure 40, an external pair of resistors is required.  
The complete equation for the output voltage is  
where  
VREF is the nominal 1.235-V reference voltage and IFB is the FEEDBACK pin bias current, nominally –20 nA (7)  
The minimum recommended load current of 1 µA forces an upper limit of 1.2 MΩ on the value of R2, if the  
regulator must work with no load (a condition often found in CMOS in standby). IFB produces a 2% typical error in  
VOUT which may be eliminated at room temperature by trimming R1. For better accuracy, choosing R2 = 100 kΩ  
reduces this error to 0.17% while increasing the resistor program current to 12 µA. Because the LP2951-N  
typically draws 60 µA at no load with pin 2 open-circuited, this is a small price to pay.  
*Drive with TTL-high to shut down. Ground or leave open if shutdown feature is not to be used.  
Note: Pins 2 and 6 are left open.  
Figure 40. Adjustable Regulator  
Stray capacitance to the LP2951-N FEEDBACK pin can cause instability. This may especially be a problem  
when using high value external resistors to set the output voltage. Adding a 100-pF capacitor between the OUT  
pin and the FEEDBACK pin, and increasing the output capacitor to at least 3.3 µF, fixes this problem.  
9.2.1.2.5 Reducing Output Noise  
In reference applications it may be advantageous to reduce the AC noise present at the output. One method is to  
reduce the regulator bandwidth by increasing the size of the output capacitor. This is the only way noise can be  
reduced on the 3-lead LP2950-N but is relatively inefficient, as increasing the capacitor from 1 µF to 220 µF only  
decreases the noise from 430 µVRMS to 160 µVRMS for a 100-kHz bandwidth at 5-V output.  
Noise can be reduced fourfold by a bypass capacitor across R1, because it reduces the high frequency gain from  
4 to unity. Pick  
(8)  
or about 0.01 µF. When doing this, the output capacitor must be increased to 3.3 µF to maintain stability. These  
changes reduce the output noise from 430 µV to 100 µV rms for a 100-kHz bandwidth at 5-V output. With the  
bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at  
higher output voltages.  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LP2950-N LP2951-N  
 
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
9.2.1.3 Application Curves  
Figure 42. Load Transient Response  
Figure 41. Line Transient Response  
Figure 43. Load Transient Response  
24  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
9.2.2 300-mA Regulator with 0.75-V Dropout  
In Figure 44, by paralleling the LP2951 together with 2x2N5432 (150-mA N channel JFET), a user can get a  
higher output current capability around 300 mA.  
Figure 44. 300-mA Regulator with 0.75-V Dropout  
9.2.3 Wide Input Voltage Range Current Limiter  
The LP2951 can be used as a 160-mA current limiter as Figure 45. When FB is connected to ground, the pass  
element is fully turned on and out voltage will be close to input voltage. Input-output voltage ranges from 40 mV  
to 400 mV, depending on load current.  
*Minimum input-output voltage ranges from 40 mV to 400 mV, depending on load current. Current limit is typically  
160 mA.  
Figure 45. Wide Input Voltage Range Current Limiter  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LP2950-N LP2951-N  
 
 
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
9.2.4 Low Drift Current Source  
The LP2951 can be used as a low drift current source as Figure 46 shows. By connected Vout to FB, Vout will  
regulated at 1.235 V, and current consumption at R is IL = 1.23/R.  
Figure 46. Low Drift Current Source  
9.2.5 5-V Current Limiter  
The LP2950 internal current limit function can be leveraged to build 5-V current limiter as Figure 47 shows. The  
minimum input-output voltage ranges from 40 mV to 400 mV, depending on load current. Current limit is typically  
160 mA.  
*Minimum input-output voltage ranges from 40 mV to 400 mV, depending on load current. Current limit is typically  
160 mA.  
Figure 47. 5-V Current Limiter  
26  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
 
 
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
9.2.6 Regulator with Early Warning and Auxiliary Output  
The LP2951 can be used to build a Regulator with early warning and auxiliary output as Figure 48 shows. it has  
below features:  
Early warning flag on low input voltage  
Main output latches off at lower input voltages  
Battery backup on auxiliary output  
Operation: VOUT of regulator 1 is programmed one diode drop above 5 V. Its error flag becomes active when  
VIN 5.7 V. When VIN drops below 5.3 V, the error flag of regulator 2 becomes active and via Q1 latches the  
main output off. When VIN again exceeds 5.7 V regulator 1 is back in regulation and the early warning signal  
rises, unlatching regulator 2 via D3.  
Figure 48. Regulator With Early Warning and Auxiliary Output  
9.2.7 Latch Off When Error Flag Occurs  
As Figure 49 presents, a latch off when error flag occurs circuit works in below two mode:  
When output is within ±95% of VOUT option, the error flag pin keep output high, which turns off PNP bipolar and  
pulls SD pin to low, then the LP2951 keeps output regulated voltage.  
When output drop to less than 95% of VOUT option, it triggers error flag output a low voltage, which turns on PNP  
bipolar and pulls SD pin to high, then the device enters shutdown mode and turns off output voltage. During a  
shutdown sequence, the ERROR pin continues output low, and the LP2951 device latches in shutdown mode.  
Figure 49. Latch Off When Error Flag Occurs  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LP2950-N LP2951-N  
 
 
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
9.2.8 2-A Low Dropout Regulator  
As Figure 50 shows, the 2-A low dropout regulator has below features:  
For 5 VOUT, use internal resistors. Wire pin 6 to pin 7 and wire pin 2 to + VOUT bus.  
Figure 50. 2-A Low Dropout Regulator  
9.2.9 5-V Regulator with 2.5-V Sleep Function  
In Figure 51, the 5-V regulator with 2.5-V sleep function works in below mode:  
When sleep input is low, C-MOS output a high voltage and 2N3906 is off, then Vout = (1 + 300 KΩ/100 KΩ) × VFB  
5 V  
when sleep input is high, C-MOS output a low voltage, turns on 2N3906, then 200-KΩ resistor is bypassed from  
circuit, and VOUT = (1+100 KΩ/100 KΩ) × VFB 2.5 V.  
28  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
 
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
*High input lowers Vout to 2.5 V.  
Figure 51. 5-V Regulator with 2.5-V Sleep Function  
9.2.10 Open Circuit Detector for 4 20-mA Current Loop  
Figure 52 shows the open circuit detector for 4 20-mA current loop. The circuit outputs a high level while input  
current is less than 3.5 mA.  
Figure 52. Open Circuit Detector for 4 20-mA Current Loop  
9.2.11 Regulator with State-of-Charge Indicator  
In Figure 53, the LP339, a quad comparator, is used to indicate battery voltage state. The comparator’s negative  
input voltage is equal to the LP2951 1.235-V feedback voltage. By adjusting R3, we can adjust positive input  
voltage of C1~C3 to target value.  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LP2950-N LP2951-N  
 
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
*Optional latch off when drop out occurs. Adjust R3 for C2 Switching when Vin is 6 V.  
**Outputs go low when VIN drops below designated thresholds.  
Figure 53. Regulator with State-of-Charge Indicator  
30  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
9.2.12 Low Battery Disconnect  
In Figure 54, a band-gap voltage reference LM385 is used to generate shutdown signal, when Vin < 5.5 V, the  
LP2951 turns off and turns on again when VIN > 6 V.  
For values shown, regulator shuts down when Vin < 5.5 V and turns on again at 6 V. Current drain in disconnected  
mode is approximately 150 µA.  
*Sets disconnect voltage.  
**Sets disconnect hysteresis.  
Figure 54. Low Battery Disconnect  
9.2.13 System Overtemperature Protection Circuit  
In Figure 55, temperature sensors LM34/35's output voltage is linearly proportional to the Celsius (Centigrade)  
temperature.  
At room temperature, LM34/35's output voltage is lower than 1.235-V feedback voltage, the internal pass  
transistor fully turns on, and the LP2951 output voltage is close to VIN.  
When ambient temperature raise higher than protection target, LM34/35's output voltage is higher than 1.235-V  
feedback voltage, the internal pass transistor turns off, and the LP2951 output goes off.  
LM34 for 125°F shutdown  
LM35 for 125°C shutdown  
Figure 55. System Overtemperature Protection Circuit  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LP2950-N LP2951-N  
 
 
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
10 Power Supply Recommendations  
The LP2950-N and LP2951-N are designed to operate from an input voltage supply range between 2.3 V and  
30 V. The input voltage range provides adequate headroom in order for the device to have a regulated output.  
This input supply must be well regulated. If the input supply is noisy, additional input capacitors with low ESR can  
help improve the output noise performance.  
11 Layout  
11.1 Layout Guidelines  
For best overall performance, place all circuit components on the same side of the circuit board and as near as  
practical to the respective LDO pin connections. Place ground return connections to the input and output  
capacitor, and to the LDO ground pin as close to each other as possible, connected by a wide, component-side,  
copper surface. The use of vias and long traces to create LDO circuit connections is strongly discouraged and  
negatively affects system performance. This grounding and layout scheme minimizes inductive parasitics, and  
thereby reduces load-current transients, minimizes noise, and increases circuit stability.  
A ground reference plane is also recommended and is either embedded in the PCB itself or located on the  
bottom side of the PCB opposite the components. This reference plane serves to assure accuracy of the output  
voltage, shield noise, and behaves similar to a thermal plane to spread (or sink) heat from the LDO device. In  
most applications, this ground plane is necessary to meet thermal requirements.  
11.2 Layout Example  
Input  
Output  
Capacitor  
Capacitor  
Ground  
VIN  
OUT  
SENSE  
IN  
VOUT  
FEEDBACK  
VTAP  
Ground  
2
3
1
SHUTDOWN  
Error Pullup  
Resistor  
GND  
ERROR  
VOUT  
Input  
Capacitor  
Output  
Capacitor  
VOUT  
VIN  
Figure 56. LP2950 Board Layout  
Figure 57. LP2951 VSSOP Board Layout  
32  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
www.ti.com  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
Layout Example (continued)  
Ground  
Output  
Input  
Capacitor  
Capacitor  
Exposed  
Thermal Pad  
IN  
1
2
3
4
8
VIN  
OUT  
SENSE  
VOUT  
7
FEEDBACK  
VTAP  
SHUTDOWN  
6
5
Error Pullup  
Resistor  
6 Thermal Vias  
Ground  
ERROR  
VOUT  
GND  
Figure 58. LP2951 WSON Board Layout  
11.3 WSON Mounting  
The NGT (no pullback) 8-lead WSON package requires specific mounting techniques which are detailed in AN-  
1187 Leadless Leadframe Package (LLP). Referring to the PCB Design Recommendations section, note that the  
pad style which should be used with the WSON package is the NSMD (non-solder mask defined) type.  
Additionally, TI recommends that the PCB terminal pads to be 0.2 mm longer than the package pads to create a  
solder fillet to improve reliability and inspection.  
The thermal dissipation of the WSON package is directly related to the printed circuit board construction and the  
amount of additional copper area connected to the DAP.  
For the LP2951-N in the NGT 8-lead WSON package, the junction-to-case thermal rating, RθJC, is 35°C/W, where  
the case is the bottom of the package at the center of the DAP.  
The DAP (exposed pad) on the bottom of the WSON package is connected to the die substrate with a conductive  
die attach adhesive. The DAP has no direct electrical (wire) connection to any of the eight pins. There is a  
parasitic PN junction between the die substrate and the device ground. As such, it is strongly recommend that  
the DAP be connected directly to the ground at device lead 4 (that is, GND). Alternately, but not recommended,  
the DAP may be left floating (that is, no electrical connection). The DAP must not be connected to any potential  
other than ground.  
Copyright © 2000–2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LP2950-N LP2951-N  
LP2950-N, LP2951-N  
SNVS764Q JANUARY 2000REVISED DECEMBER 2017  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
AN-1187 Leadless Leadframe Package (LLP)  
12.2 Related Links  
Table 2 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to sample or buy.  
Table 2. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
LP2950-N  
LP2951-N  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
34  
Submit Documentation Feedback  
Copyright © 2000–2017, Texas Instruments Incorporated  
Product Folder Links: LP2950-N LP2951-N  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Dec-2017  
PACKAGING INFORMATION  
Orderable Device  
LP2950ACZ-3.0/NOPB  
LP2950ACZ-3.3/NOPB  
LP2950ACZ-5.0/LFT1  
LP2950ACZ-5.0/LFT3  
LP2950ACZ-5.0/LFT7  
LP2950ACZ-5.0/NOPB  
LP2950CDT-3.0/NOPB  
LP2950CDT-3.3  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
TO-92  
TO-92  
TO-92  
TO-92  
TO-92  
TO-92  
TO-252  
TO-252  
TO-252  
TO-252  
TO-252  
TO-252  
TO-252  
TO-252  
TO-92  
TO-92  
TO-92  
LP  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1800  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
Level-2-260C-1 YEAR  
Call TI  
2950A  
CZ3.0  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NRND  
LP  
LP  
1800  
2000  
2000  
2000  
1800  
75  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
2950A  
CZ3.3  
Green (RoHS  
& no Sb/Br)  
2950A  
CZ5.0  
LP  
Green (RoHS  
& no Sb/Br)  
2950A  
CZ5.0  
LP  
Green (RoHS  
& no Sb/Br)  
2950A  
CZ5.0  
LP  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2950A  
CZ5.0  
NDP  
NDP  
NDP  
NDP  
NDP  
NDP  
NDP  
NDP  
LP  
Green (RoHS  
& no Sb/Br)  
LP2950  
CDT-3.0  
75  
TBD  
LP2950  
CDT-3.3  
LP2950CDT-3.3/NOPB  
LP2950CDT-5.0/NOPB  
LP2950CDTX-3.0/NOPB  
LP2950CDTX-3.3/NOPB  
LP2950CDTX-5.0  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NRND  
75  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
LP2950  
CDT-3.3  
75  
Green (RoHS  
& no Sb/Br)  
LP2950  
CDT-5.0  
2500  
2500  
2500  
2500  
1800  
2000  
1800  
Green (RoHS  
& no Sb/Br)  
LP2950  
CDT-3.0  
Green (RoHS  
& no Sb/Br)  
LP2950  
CDT-3.3  
TBD  
LP2950  
CDT-5.0  
LP2950CDTX-5.0/NOPB  
LP2950CZ-3.0/NOPB  
LP2950CZ-3.3/LFT3  
LP2950CZ-3.3/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
LP2950  
CDT-5.0  
Green (RoHS  
& no Sb/Br)  
2950  
CZ3.0  
LP  
Green (RoHS  
& no Sb/Br)  
2950  
CZ3.3  
LP  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
2950  
CZ3.3  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Dec-2017  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
LP2950CZ-5.0/LFT1  
LP2950CZ-5.0/LFT3  
LP2950CZ-5.0/LFT7  
LP2950CZ-5.0/NOPB  
LP2951ACM  
ACTIVE  
TO-92  
TO-92  
TO-92  
TO-92  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
LP  
3
3
3
3
8
8
8
8
8
2000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
CU SN  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
Call TI  
2950  
CZ5.0  
ACTIVE  
ACTIVE  
ACTIVE  
NRND  
LP  
LP  
LP  
D
2000  
2000  
1800  
95  
Green (RoHS  
& no Sb/Br)  
2950  
CZ5.0  
Green (RoHS  
& no Sb/Br)  
2950  
CZ5.0  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2950  
CZ5.0  
TBD  
2951  
ACMC  
LP2951ACM-3.0/NOPB  
LP2951ACM-3.3  
ACTIVE  
NRND  
D
95  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Call TI  
2951A  
CM30C  
D
95  
TBD  
2951A  
CM33C  
LP2951ACM-3.3/NOPB  
LP2951ACM/NOPB  
ACTIVE  
ACTIVE  
D
95  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2951A  
(CM33>D, CM33C)  
D
95  
Green (RoHS  
& no Sb/Br)  
2951  
ACM>D  
LP2951ACMM  
LP2951ACMM-3.0  
NRND  
NRND  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
8
8
8
1000  
1000  
1000  
TBD  
TBD  
Call TI  
Call TI  
CU SN  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
L0DA  
L0BA  
L0BA  
LP2951ACMM-3.0/NOPB  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LP2951ACMM-3.3  
NRND  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
1000  
1000  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 125  
-40 to 125  
L0CA  
L0CA  
LP2951ACMM-3.3/NOPB  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LP2951ACMM/NOPB  
LP2951ACMMX-3.0/NOPB  
LP2951ACMMX-3.3/NOPB  
LP2951ACMMX/NOPB  
LP2951ACMX  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NRND  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
8
1000  
3500  
3500  
3500  
2500  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
L0DA  
L0BA  
L0CA  
L0DA  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TBD  
2951  
(ACM>D, ACMC)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Dec-2017  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
LP2951ACMX-3.0/NOPB  
LP2951ACMX-3.3/NOPB  
LP2951ACMX/NOPB  
LP2951ACN/NOPB  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
D
8
8
8
8
2500  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-NA-UNLIM  
2951A  
CM30C  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
P
2500  
2500  
40  
Green (RoHS  
& no Sb/Br)  
2951A  
(CM33>D, CM33C)  
Green (RoHS  
& no Sb/Br)  
2951  
(ACM>D, ACMC)  
Green (RoHS  
& no Sb/Br)  
LP  
2951ACN  
LP2951ACSD  
NRND  
WSON  
WSON  
NGT  
NGT  
8
8
1000  
1000  
TBD  
Call TI  
-40 to 125  
-40 to 125  
2951AC  
2951AC  
LP2951ACSD/NOPB  
ACTIVE  
Green (RoHS CU NIPDAU | CU SN  
& no Sb/Br)  
Level-1-260C-UNLIM  
LP2951ACSDX-3.3/NOPB  
LP2951ACSDX/NOPB  
LP2951CM  
ACTIVE  
ACTIVE  
NRND  
WSON  
WSON  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
NGT  
NGT  
D
8
8
8
8
8
8
8
4500  
4500  
95  
Green (RoHS CU NIPDAU | CU SN  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
51AC33  
2951AC  
Green (RoHS  
& no Sb/Br)  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
CU SN  
TBD  
2951  
CMC  
LP2951CM-3.0/NOPB  
LP2951CM-3.3  
ACTIVE  
NRND  
D
95  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Call TI  
2951C  
M30C  
D
95  
TBD  
2951C  
M33C  
LP2951CM-3.3/NOPB  
LP2951CM/NOPB  
ACTIVE  
ACTIVE  
D
95  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2951C  
M33>D  
D
95  
Green (RoHS  
& no Sb/Br)  
2951  
(CM>D, CMC)  
LP2951CMM  
NRND  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
1000  
1000  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 125  
-40 to 125  
L0DB  
L0BB  
LP2951CMM-3.0/NOPB  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LP2951CMM-3.3/NOPB  
LP2951CMM/NOPB  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
1000  
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
L0CB  
L0DB  
Green (RoHS  
& no Sb/Br)  
LP2951CMMX  
NRND  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
3500  
3500  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 125  
-40 to 125  
L0DB  
L0BB  
LP2951CMMX-3.0/NOPB  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Dec-2017  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
LP2951CMMX-3.3/NOPB  
LP2951CMMX/NOPB  
LP2951CMX  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGK  
8
8
8
8
8
8
8
8
8
8
8
8
3500  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
L0CB  
L0DB  
2951  
ACTIVE  
NRND  
DGK  
D
3500  
2500  
2500  
2500  
2500  
40  
Green (RoHS  
& no Sb/Br)  
TBD  
(CM>D, CMC)  
LP2951CMX-3.0/NOPB  
LP2951CMX-3.3/NOPB  
LP2951CMX/NOPB  
LP2951CN/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-NA-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2951C  
M30C  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
2951C  
(M33>D, M33C)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
2951  
CM>D  
PDIP  
P
Green (RoHS  
& no Sb/Br)  
LP  
2951CN  
LP2951CSD-3.0/NOPB  
LP2951CSD-3.3/NOPB  
LP2951CSD/NOPB  
LP2951CSDX-3.3/NOPB  
LP2951CSDX/NOPB  
WSON  
WSON  
WSON  
WSON  
WSON  
NGT  
NGT  
NGT  
NGT  
NGT  
1000  
1000  
1000  
4500  
4500  
Green (RoHS CU NIPDAU | CU SN  
& no Sb/Br)  
51AC30B  
51AC33B  
2951ACB  
51AC33B  
2951ACB  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS CU NIPDAU | CU SN  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS CU NIPDAU | CU SN  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Dec-2017  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LP2951-N :  
Automotive: LP2951-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Dec-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP2950CDTX-3.0/NOPB TO-252  
LP2950CDTX-3.3/NOPB TO-252  
NDP  
NDP  
NDP  
NDP  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
3
3
3
3
8
8
8
8
8
8
8
2500  
2500  
2500  
2500  
1000  
1000  
1000  
1000  
1000  
1000  
3500  
330.0  
330.0  
330.0  
330.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
330.0  
16.4  
16.4  
16.4  
16.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.9  
6.9  
6.9  
6.9  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
10.5  
10.5  
10.5  
10.5  
3.4  
2.7  
2.7  
2.7  
2.7  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
16.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LP2950CDTX-5.0  
TO-252  
LP2950CDTX-5.0/NOPB TO-252  
LP2951ACMM  
VSSOP  
VSSOP  
LP2951ACMM-3.0  
3.4  
LP2951ACMM-3.0/NOPB VSSOP  
LP2951ACMM-3.3 VSSOP  
LP2951ACMM-3.3/NOPB VSSOP  
LP2951ACMM/NOPB VSSOP  
3.4  
3.4  
3.4  
3.4  
LP2951ACMMX-3.0/NOP VSSOP  
B
3.4  
LP2951ACMMX-3.3/NOP VSSOP  
B
DGK  
8
3500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
LP2951ACMMX/NOPB VSSOP  
DGK  
D
8
8
8
8
8
3500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
6.5  
6.5  
6.5  
6.5  
3.4  
5.4  
5.4  
5.4  
5.4  
1.4  
2.0  
2.0  
2.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
LP2951ACMX  
SOIC  
SOIC  
SOIC  
SOIC  
LP2951ACMX-3.0/NOPB  
LP2951ACMX-3.3/NOPB  
LP2951ACMX/NOPB  
D
D
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Dec-2017  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP2951ACSD  
WSON  
WSON  
NGT  
NGT  
NGT  
NGT  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
1000  
1000  
4500  
4500  
1000  
1000  
1000  
1000  
3500  
3500  
3500  
3500  
2500  
2500  
2500  
2500  
1000  
1000  
1000  
4500  
4500  
178.0  
180.0  
330.0  
330.0  
178.0  
178.0  
178.0  
178.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
178.0  
180.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
6.5  
6.5  
6.5  
6.5  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
5.4  
5.4  
5.4  
5.4  
4.3  
4.3  
4.3  
4.3  
4.3  
1.3  
1.1  
1.1  
1.3  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
2.0  
2.0  
2.0  
2.0  
1.1  
1.3  
1.1  
1.3  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LP2951ACSD/NOPB  
LP2951ACSDX-3.3/NOPB WSON  
LP2951ACSDX/NOPB  
LP2951CMM  
WSON  
VSSOP  
LP2951CMM-3.0/NOPB VSSOP  
LP2951CMM-3.3/NOPB VSSOP  
LP2951CMM/NOPB  
LP2951CMMX  
VSSOP  
VSSOP  
LP2951CMMX-3.0/NOPB VSSOP  
LP2951CMMX-3.3/NOPB VSSOP  
LP2951CMMX/NOPB  
LP2951CMX  
VSSOP  
SOIC  
LP2951CMX-3.0/NOPB  
LP2951CMX-3.3/NOPB  
LP2951CMX/NOPB  
LP2951CSD-3.0/NOPB  
LP2951CSD-3.3/NOPB  
LP2951CSD/NOPB  
SOIC  
D
SOIC  
D
SOIC  
D
WSON  
WSON  
WSON  
NGT  
NGT  
NGT  
NGT  
NGT  
LP2951CSDX-3.3/NOPB WSON  
LP2951CSDX/NOPB WSON  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Dec-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP2950CDTX-3.0/NOPB  
LP2950CDTX-3.3/NOPB  
LP2950CDTX-5.0  
TO-252  
TO-252  
TO-252  
TO-252  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
NDP  
NDP  
NDP  
NDP  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
D
3
3
3
3
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2500  
2500  
2500  
2500  
1000  
1000  
1000  
1000  
1000  
1000  
3500  
3500  
3500  
2500  
2500  
2500  
2500  
1000  
1000  
4500  
367.0  
367.0  
367.0  
367.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
210.0  
203.0  
346.0  
367.0  
367.0  
367.0  
367.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
185.0  
203.0  
346.0  
38.0  
38.0  
35.0  
38.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
LP2950CDTX-5.0/NOPB  
LP2951ACMM  
LP2951ACMM-3.0  
LP2951ACMM-3.0/NOPB  
LP2951ACMM-3.3  
LP2951ACMM-3.3/NOPB  
LP2951ACMM/NOPB  
LP2951ACMMX-3.0/NOPB  
LP2951ACMMX-3.3/NOPB  
LP2951ACMMX/NOPB  
LP2951ACMX  
LP2951ACMX-3.0/NOPB  
LP2951ACMX-3.3/NOPB  
LP2951ACMX/NOPB  
LP2951ACSD  
SOIC  
D
SOIC  
D
SOIC  
D
WSON  
WSON  
WSON  
NGT  
NGT  
NGT  
LP2951ACSD/NOPB  
LP2951ACSDX-3.3/NOPB  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Dec-2017  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP2951ACSDX/NOPB  
LP2951CMM  
WSON  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
NGT  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
4500  
1000  
1000  
1000  
1000  
3500  
3500  
3500  
3500  
2500  
2500  
2500  
2500  
1000  
1000  
1000  
4500  
4500  
367.0  
210.0  
210.0  
210.0  
210.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
203.0  
210.0  
203.0  
367.0  
346.0  
367.0  
185.0  
185.0  
185.0  
185.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
203.0  
185.0  
203.0  
367.0  
346.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
LP2951CMM-3.0/NOPB  
LP2951CMM-3.3/NOPB  
LP2951CMM/NOPB  
LP2951CMMX  
LP2951CMMX-3.0/NOPB  
LP2951CMMX-3.3/NOPB  
LP2951CMMX/NOPB  
LP2951CMX  
LP2951CMX-3.0/NOPB  
LP2951CMX-3.3/NOPB  
LP2951CMX/NOPB  
LP2951CSD-3.0/NOPB  
LP2951CSD-3.3/NOPB  
LP2951CSD/NOPB  
LP2951CSDX-3.3/NOPB  
LP2951CSDX/NOPB  
SOIC  
D
SOIC  
D
SOIC  
D
WSON  
WSON  
WSON  
WSON  
WSON  
NGT  
NGT  
NGT  
NGT  
NGT  
Pack Materials-Page 4  
MECHANICAL DATA  
NDP0003B  
TD03B (Rev F)  
www.ti.com  
MECHANICAL DATA  
NGT0008A  
SDC08A (Rev A)  
www.ti.com  
PACKAGE OUTLINE  
LP0003A  
TO-92 - 5.34 mm max height  
S
C
A
L
E
1
.
2
0
0
S
C
A
L
E
1
.
2
0
0
TO-92  
5.21  
4.44  
EJECTOR PIN  
OPTIONAL  
5.34  
4.32  
(1.5) TYP  
(2.54)  
NOTE 3  
SEATING  
PLANE  
2X  
4 MAX  
(0.51) TYP  
6X  
0.076 MAX  
SEATING  
PLANE  
3X  
12.7 MIN  
0.43  
3X  
0.55  
0.38  
2X  
2.6 0.2  
3X  
0.35  
2X 1.27 0.13  
FORMED LEAD OPTION  
OTHER DIMENSIONS IDENTICAL  
TO STRAIGHT LEAD OPTION  
STRAIGHT LEAD OPTION  
2.67  
2.03  
3X  
4.19  
3.17  
3
1
2
3.43 MIN  
4215214/B 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Lead dimensions are not controlled within this area.  
4. Reference JEDEC TO-226, variation AA.  
5. Shipping method:  
a. Straight lead option available in bulk pack only.  
b. Formed lead option available in tape and reel or ammo pack.  
c. Specific products can be offered in limited combinations of shipping medium and lead options.  
d. Consult product folder for more information on available options.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
LP0003A  
TO-92 - 5.34 mm max height  
TO-92  
FULL R  
TYP  
0.05 MAX  
ALL AROUND  
TYP  
(1.07)  
METAL  
TYP  
3X ( 0.85) HOLE  
2X  
METAL  
(1.5)  
2X (1.5)  
2X  
SOLDER MASK  
OPENING  
2
3
1
(R0.05) TYP  
2X (1.07)  
(1.27)  
SOLDER MASK  
OPENING  
(2.54)  
LAND PATTERN EXAMPLE  
STRAIGHT LEAD OPTION  
NON-SOLDER MASK DEFINED  
SCALE:15X  
0.05 MAX  
ALL AROUND  
TYP  
( 1.4)  
2X ( 1.4)  
METAL  
3X ( 0.9) HOLE  
METAL  
2X  
2
3
1
SOLDER MASK  
OPENING  
(R0.05) TYP  
(2.6)  
SOLDER MASK  
OPENING  
(5.2)  
LAND PATTERN EXAMPLE  
FORMED LEAD OPTION  
NON-SOLDER MASK DEFINED  
SCALE:15X  
4215214/B 04/2017  
www.ti.com  
TAPE SPECIFICATIONS  
LP0003A  
TO-92 - 5.34 mm max height  
TO-92  
13.7  
11.7  
32  
23  
(2.5) TYP  
0.5 MIN  
16.5  
15.5  
11.0  
8.5  
9.75  
8.50  
19.0  
17.5  
3.7-4.3 TYP  
2.9  
2.4  
6.75  
5.95  
TYP  
13.0  
12.4  
FOR FORMED LEAD OPTION PACKAGE  
4215214/B 04/2017  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its  
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers  
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.  
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated  
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and  
services.  
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced  
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements  
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the  
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers  
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have  
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products  
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with  
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous  
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and  
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will  
thoroughly test such applications and the functionality of such TI products as used in such applications.  
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,  
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to  
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any  
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource  
solely for this purpose and subject to the terms of this Notice.  
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI  
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,  
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically  
described in the published documentation for a particular TI Resource.  
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that  
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE  
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY  
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or  
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR  
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO  
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF  
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL  
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,  
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF  
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,  
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN  
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN  
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949  
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.  
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such  
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards  
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must  
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in  
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.  
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life  
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all  
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.  
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).  
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications  
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory  
requirements in connection with such selection.  
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-  
compliance with the terms and provisions of this Notice.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2017, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY