LP2987AIMX-5.0/NOPB [TI]

具有电源正常指示和使能功能的 200mA、16V、低压降稳压器 | D | 8 | -40 to 125;
LP2987AIMX-5.0/NOPB
型号: LP2987AIMX-5.0/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电源正常指示和使能功能的 200mA、16V、低压降稳压器 | D | 8 | -40 to 125

光电二极管 输出元件 稳压器 调节器
文件: 总36页 (文件大小:1352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP2987, LP2988  
www.ti.com  
SNVS004J MARCH 1999REVISED APRIL 2013  
LP2987/LP2988 Micropower, 200 mA Ultra Low-Dropout Voltage Regulator with  
Programmable Power-On Reset Delay; Low Noise Version Available (LP2988)  
Check for Samples: LP2987, LP2988  
1
FEATURES  
DESCRIPTION  
The LP2987/8 are fixed-output 200 mA precision LDO  
voltage regulators with power-ON reset delay which  
can be implemented using a single external capacitor.  
2
Ultra Low Dropout Voltage  
Power-ON Reset Delay Requires Only One  
Component  
The LP2988 is specifically designed for noise-critical  
applications. A single external capacitor connected to  
the Bypass pin reduces regulator output noise.  
Bypass Pin for Reduced Output Noise  
(LP2988)  
Specified Continuous Output Current 200 mA  
Specified Peak Output Current > 250 mA  
SOIC-8 and VSSOP-8 Surface Mount Packages  
<2 μA Quiescent Current when Shutdown  
Low Ground Pin Current at All Loads  
Using an optimized VIP (Vertically Integrated PNP)  
process,  
these  
regulators  
deliver  
superior  
performance:  
Dropout Voltage: 180 mV @ 200 mA load, and 1  
mV @ 1 mA load (typical).  
0.5% Output Voltage Accuracy (“A” Grade)  
Wide Supply Voltage Range (16V Max)  
Overtemperature/overcurrent Protection  
40°C to +125°C Junction Temperature Range  
Ground Pin Current: 1 mA @ 200 mA load, and 200  
μA @ 10 mA load (typical).  
Sleep Mode: The LP2987/8 draws less than 2 μA  
quiescent current when shutdown pin is held low.  
Error Flag/Reset: The error flag goes low when the  
output drops approximately 5% below nominal. This  
pin also provides a power-ON reset signal if a  
capacitor is connected to the DELAY pin.  
APPLICATIONS  
Cellular Phone  
Palmtop/Laptop Computer  
Camcorder, Personal Stereo, Camera  
Precision Output: Standard product versions of the  
LP2987 and LP2988 are available with output  
voltages of 5.0V, 3.8V, 3.3V, 3.2V, 3.0V, or 2.8V, with  
specified accuracy of 0.5% (“A” grade) and 1%  
(standard grade) at room temperature.  
Block Diagram  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 1999–2013, Texas Instruments Incorporated  
LP2987, LP2988  
SNVS004J MARCH 1999REVISED APRIL 2013  
www.ti.com  
Connection Diagram (LP2987)  
Figure 1. Top View  
SOIC-8/VSSOP-8 Package  
Surface Mount Packages  
See Package Drawing Number D0008A/DGK0008A  
1
8
SHUTDOWN  
N/C  
DELAY  
2
7
ERROR  
SENSE  
GROUND  
6
5
3
4
INPUT  
OUTPUT  
Figure 2. Top View  
8-Lead WSON Surface Mount Package  
See Package Drawing Number NGN0008A  
Connection Diagram (LP2988)  
Figure 3. Top View  
SOIC-8/VSSOP-8 Package  
Surface Mount Packages  
See Package Drawing Number D0008A/DGK0008A  
BYPASS  
DELAY  
1
2
8
7
SHUTDOWN  
ERROR  
GROUND  
INPUT  
3
4
6
5
SENSE  
OUTPUT  
Figure 4. Top View  
8-Lead WSON Surface Mount Package  
See Package Drawing Number NGN0008A  
2
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
www.ti.com  
SNVS004J MARCH 1999REVISED APRIL 2013  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ABSOLUTE MAXIMUM RATINGS(1)(2)  
Storage Temperature Range  
65°C to +150°C  
40°C to +125°C  
Operating Junction  
Temperature Range  
Lead Temperature  
(Soldering, 5 seconds)  
260°C  
2 kV  
(3)  
ESD Rating  
(4)  
Power Dissipation  
Internally Limited  
Input Supply Voltage  
(Survival)  
0.3V to +16V  
Input Supply Voltage  
(Operating)  
2.1V to +16V  
0.3V to +16V  
0.3V to +6V  
Shutdown Pin  
Sense Pin  
Output Voltage  
(5)  
(Survival)  
0.3V to +16V  
IOUT (Survival)  
Short Circuit Protected  
Input-Output Voltage  
(6)  
(Survival)  
0.3V to +16V  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply  
when operating the device outside of its rated operating conditions.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(3) The ESD rating of the Bypass pin is 500V (LP2988 only). The ESD rating of the VIN pin is 1kV and the Delay pin is ESD rated at 1.5kV.  
(4) The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(MAX), the junction-to-ambient thermal  
resistance, θJA, and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated  
using:  
The value of θJA for the SOIC-8 (D) package is 160°C/W, and the VSSOP-8 (DGK) package is 200°C/W.  
The value θJA for the WSON (NGN) package is specifically dependent on PCB trace area, trace material, and the number of layers and  
thermal vias. For improved thermal resistance and power dissipation for the WSON package, refer to Application Note AN-1187  
(literature number SNOA401). Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the  
regulator will go into thermal shutdown.  
(5) If used in a dual-supply system where the regulator load is returned to a negative supply, the LM2987/8 output must be diode-clamped  
to ground.  
(6) The output PNP structure contains a diode between the VIN and VOUT terminals that is normally reverse-biased. Forcing the output  
above the input will turn on this diode and may induce a latch-up mode which can damage the part (see APPLICATION HINTS).  
ELECTRICAL CHARACTERISTICS  
Limits in standard typeface are for TJ = 25°C, and limits in boldface type apply over the full operating temperature range.  
Unless otherwise specified: VIN = VO(NOM) + 1V, IL = 1 mA, COUT = 4.7 µF, CIN = 2.2 µF, VS/D = 2V.  
(1)  
(1)  
LM2987/8AI-X.X  
LM2987/8I-X.X  
Symbol  
ΔVO  
Parameter  
Conditions  
Typical  
Units  
%VNOM  
%/V  
Min  
0.5  
0.8  
1.8  
Max  
0.5  
0.8  
1.8  
Min  
1.0  
1.6  
2.8  
Max  
1.0  
Output Voltage Tolerance  
0.1 mA < IL < 200 mA  
1.6  
2.8  
ΔVO/ΔVIN  
Output Voltage Line  
Regulation  
VO(NOM) + 1V VIN 16V  
0.014  
0.014  
0.032  
0.007  
0.032  
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using  
Statistical Quality Control (SQC) methods. The limits are used to calculate TI's Average Outgoing Quality Level (AOQL).  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LP2987 LP2988  
 
 
LP2987, LP2988  
SNVS004J MARCH 1999REVISED APRIL 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
Limits in standard typeface are for TJ = 25°C, and limits in boldface type apply over the full operating temperature range.  
Unless otherwise specified: VIN = VO(NOM) + 1V, IL = 1 mA, COUT = 4.7 µF, CIN = 2.2 µF, VS/D = 2V.  
(1)  
(1)  
LM2987/8AI-X.X  
LM2987/8I-X.X  
Symbol  
VIN–VO  
Parameter  
Conditions  
IL = 100 µA  
Typical  
1
Units  
Min  
Max  
2.0  
Min  
Max  
2.0  
Dropout Voltage  
(2)  
3.5  
3.5  
120  
170  
230  
350  
120  
150  
800  
1400  
2.1  
IL = 75 mA  
IL = 200 mA  
IL = 100 µA  
IL = 75 mA  
IL = 200 mA  
VS/D < 0.3V  
120  
170  
230  
350  
120  
150  
800  
90  
mV  
180  
100  
500  
1
IGND  
Ground Pin Current  
µA  
1400  
2.1  
mA  
µA  
3.7  
3.7  
0.05  
400  
400  
1.5  
1.5  
IO(PK)  
IO(MAX)  
en  
Peak Output Current  
Short Circuit Current  
VOUT VO(NOM) 5%  
250  
250  
mA  
(3)  
RL = 0 (Steady State)  
LP2987 Output Noise  
Voltage (RMS)  
BW = 300 Hz to  
50 kHz, VOUT = 3.3V  
COUT = 10 µF  
100  
µV(RMS)  
LP2988 Output Noise  
Voltage (RMS)  
BW = 300 Hz to 50 kHz,  
VOUT = 3.3V  
COUT = 10 µF  
20  
CBYPASS = .01 µF  
ΔVOUT/ΔVIN  
ΔVOUT/ΔT  
IDELAY  
Ripple Rejection  
f = 1 kHz, COUT = 10 µF  
CBYP = 0 (LP2988)  
(4)  
65  
20  
dB  
Output Voltage  
Temperature Coefficient  
ppm/°C  
Delay Pin Current Source  
1.6  
2.8  
1.6  
2.8  
2.2  
µA  
1.4  
3.0  
1.4  
3.0  
SHUTDOWN INPUT  
VS/D  
S/D Input Voltage  
VH = O/P ON  
VL = O/P OFF  
VS/D = 0  
1.4  
0.55  
0
1.6  
1.6  
(5)  
V
0.18  
1  
0.18  
1  
IS/D  
S/D Input Current  
µA  
VS/D = 5V  
5
15  
15  
(2) Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a  
1V differential.  
(3) See TYPICAL PERFORMANCE CHARACTERISTICS curves.  
(4) Temperature coefficient is defined as the maximum (worst-case) change divided by the total temperature range.  
(5) To prevent mis-operation, the Shutdown input must be driven by a signal that swings above VH and below VL with a slew rate not less  
than 40 mV/µs (see APPLICATION HINTS).  
4
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
www.ti.com  
SNVS004J MARCH 1999REVISED APRIL 2013  
ELECTRICAL CHARACTERISTICS (continued)  
Limits in standard typeface are for TJ = 25°C, and limits in boldface type apply over the full operating temperature range.  
Unless otherwise specified: VIN = VO(NOM) + 1V, IL = 1 mA, COUT = 4.7 µF, CIN = 2.2 µF, VS/D = 2V.  
(1)  
(1)  
LM2987/8AI-X.X  
LM2987/8I-X.X  
Symbol  
Parameter  
Conditions  
Typical  
Units  
Min  
Max  
Min  
Max  
ERROR COMPARATOR  
IOH  
Output “HIGH” Leakage  
VOH = 16V  
1
1
0.01  
150  
µA  
2
2
VOL  
Output “LOW” Voltage  
Upper Threshold Voltage  
Lower Threshold Voltage  
Hysteresis  
VIN = VO(NOM) 0.5V,  
IO(COMP) = 300 µA  
220  
350  
3.5  
2.5  
4.9  
3.3  
220  
350  
mV  
VTHR  
(MAX)  
5.5  
7.7  
5.5  
7.7  
3.5  
2.5  
4.9  
3.3  
4.6  
VTHR  
(MIN)  
8.9  
8.9  
%VOUT  
6.6  
13.0  
13.0  
HYST  
2.0  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
SNVS004J MARCH 1999REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise specified: TA = 25°C, COUT = 4.7 µF, CIN = 2.2 µF, S/D is tied to VIN, VIN = VO(NOM) + 1V, IL = 1 mA.  
VOUT  
vs  
Temperature  
Dropout Voltage  
vs  
Temperature  
Figure 5.  
Figure 6.  
Dropout Voltage  
vs  
Load Current  
Dropout Characteristics  
Figure 7.  
Figure 8.  
Ground Pin Current vs  
Temperature and Load  
Ground Pin Current vs  
Load Current  
Figure 9.  
Figure 10.  
6
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
www.ti.com  
SNVS004J MARCH 1999REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise specified: TA = 25°C, COUT = 4.7 µF, CIN = 2.2 µF, S/D is tied to VIN, VIN = VO(NOM) + 1V, IL = 1 mA.  
Input Current  
Input Current  
vs  
vs  
VIN  
VIN  
Figure 11.  
Figure 12.  
Load Transient Response  
Load Transient Response  
Figure 13.  
Figure 14.  
Line Transient Response  
Line Transient Response  
Figure 15.  
Figure 16.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
SNVS004J MARCH 1999REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise specified: TA = 25°C, COUT = 4.7 µF, CIN = 2.2 µF, S/D is tied to VIN, VIN = VO(NOM) + 1V, IL = 1 mA.  
Turn-On Waveform  
Turn-On Waveform  
Figure 17.  
Figure 18.  
Short Circuit Current  
Short Circuit Current  
Figure 19.  
Figure 20.  
Short Circuit Current  
vs Output Voltage  
Instantaneous Short Circuit Current  
vs Temperature  
Figure 21.  
Figure 22.  
8
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
www.ti.com  
SNVS004J MARCH 1999REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise specified: TA = 25°C, COUT = 4.7 µF, CIN = 2.2 µF, S/D is tied to VIN, VIN = VO(NOM) + 1V, IL = 1 mA.  
Shutdown Pin Current vs  
Shutdown Pin Voltage  
DC Load Regulation  
Figure 23.  
Figure 24.  
Shutdown Voltage  
vs Temperature  
Input to Output Leakage  
vs Temperature  
Figure 25.  
Figure 26.  
Delay Pin Current  
vs  
Delay Pin Current vs  
Delay Pin Voltage  
VIN  
Figure 27.  
Figure 28.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
SNVS004J MARCH 1999REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise specified: TA = 25°C, COUT = 4.7 µF, CIN = 2.2 µF, S/D is tied to VIN, VIN = VO(NOM) + 1V, IL = 1 mA.  
Delay Sink Current  
Delay Sink Current  
vs Temperature  
vs  
Temperature  
Figure 29.  
Figure 30.  
Output Impedance  
vs  
Output Impedance  
vs  
Frequency  
Frequency  
Figure 31.  
Figure 32.  
Ripple Rejection (LP2987)  
Ripple Rejection (LP2988)  
Figure 33.  
Figure 34.  
10  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
www.ti.com  
SNVS004J MARCH 1999REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise specified: TA = 25°C, COUT = 4.7 µF, CIN = 2.2 µF, S/D is tied to VIN, VIN = VO(NOM) + 1V, IL = 1 mA.  
Output Noise Density (LP2987)  
Output Noise Voltage (LP2988)  
Figure 35.  
Figure 36.  
Output Noise Density (LP2988)  
Output Noise Density (LP2988)  
Figure 37.  
Figure 38.  
Turn-On Time (LP2988)  
Turn-On Time (LP2988)  
Figure 39.  
Figure 40.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
SNVS004J MARCH 1999REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise specified: TA = 25°C, COUT = 4.7 µF, CIN = 2.2 µF, S/D is tied to VIN, VIN = VO(NOM) + 1V, IL = 1 mA.  
Turn-On Time (LP2988)  
Figure 41.  
12  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
www.ti.com  
SNVS004J MARCH 1999REVISED APRIL 2013  
BASIC APPLICATION CIRCUITS  
Figure 42.  
*Capacitance value shown is minimum required to assure stability, but may be increased without limit. Larger output  
capacitor provides improved dynamic response.  
**Shutdown must be actively terminated (see APPLICATION HINTS). Tie to INPUT (pin 4) if not used.  
Figure 43.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
SNVS004J MARCH 1999REVISED APRIL 2013  
www.ti.com  
APPLICATION HINTS  
WSON Package Devices  
The LP2987/LP2988 is offered in the 8 lead WSON surface mount package to allow for increased power  
dissipation compared to the SOIC-8 and the VSSOP-8. For details on thermal performance as well as mounting  
and soldering specifications, refer to Application Note AN-1187 (literature number SNOA401).  
EXTERNAL CAPACITORS  
As with any low-dropout regulator, external capacitors are required to assure stability. These capacitors must be  
correctly selected for proper performance.  
INPUT CAPACITOR: An input capacitor (2.2 µF) is required between the LP2987/8 input and ground (amount  
of capacitance may be increased without limit).  
This capacitor must be located a distance of not more than 0.5” from the input pin and returned to a clean analog  
ground. Any good quality ceramic or tantalum may be used for this capacitor.  
OUTPUT CAPACITOR: The output capacitor must meet the requirement for minimum amount of capacitance  
and also have an appropriate E.S.R. (equivalent series resistance) value.  
Curves are provided which show the allowable ESR range as a function of load current for 3V and 5V outputs.  
Figure 44. ESR Curves For 5V Output  
Figure 45. ESR Curves For 3V Output  
IMPORTANT: The output capacitor must maintain its ESR in the stable region over the full operating  
temperature range of the application to assure stability.  
The minimum required amount of output capacitance is 4.7 µF. Output capacitor size can be increased without  
limit.  
It is important to remember that capacitor tolerance and variation with temperature must be taken into  
consideration when selecting an output capacitor so that the minimum required amount of output capacitance is  
provided over the full operating temperature range. A good Tantalum capacitor will show very little variation with  
temperature, but a ceramic may not be as good (see next section).  
The output capacitor should be located not more than 0.5” from the output pin and returned to a clean analog  
ground.  
14  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
www.ti.com  
SNVS004J MARCH 1999REVISED APRIL 2013  
CAPACITOR CHARACTERISTICS  
TANTALUM: A solid tantalum capacitor is the best choice for the output capacitor on the LM2987/8. Available  
from many sources, their typical ESR is very close to the ideal value required on the output of many LDO  
regulators.  
Tantalums also have good temperature stability: a 4.7 µF was tested and showed only a 10% decline in  
capacitance as the temperature was decreased from +125°C to 40°C. The ESR increased only about 2:1 over  
the same range of temperature.  
However, it should be noted that the increasing ESR at lower temperatures present in all tantalums can cause  
oscillations when marginal quality capacitors are used (where the ESR of the capacitor is near the upper limit of  
the stability range at room temperature).  
CERAMIC: The ESR of ceramic capacitor can be low enough to cause an LDO regulator to oscillate: a 2.2 µF  
ceramic was measured and found to have an ESR of 15 m.  
If a ceramic capacitor is to be used on the LP2987/8 output, a 1resistor should be placed in series with the  
capacitor to provide a minimum ESR for the regulator.  
A disadvantage of ceramic capacitors is that their capacitance varies a lot with temperature: Large ceramic  
capacitors are typically manufactured with the Z5U temperature characteristic, which results in the capacitance  
dropping by 50% as the temperature goes from 25°C to 80°C.  
This means you have to buy a capacitor with twice the minimum COUT to assure stable operation up to 80°C.  
ALUMINUM: The large physical size of aluminum electrolytics makes them unsuitable for most applications.  
Their ESR characteristics are also not well suited to the requirements of LDO regulators. The ESR of a typical  
aluminum electrolytic is higher than a tantalum, and it also varies greatly with temperature.  
A typical aluminum electrolytic can exhibit an ESR increase of 50X when going from 20°C to 40°C. Also, some  
aluminum electrolytics can not be used below 25°C because the electrolyte will freeze.  
POWER-ON RESET DELAY  
A power-on reset function can be easily implemented using the LP2987/8 by adding a single external capacitor to  
the Delay pin. The Error output provides the power-on reset signal when input power is applied to the regulator.  
The reset signal stays low for a pre-set time period after power is applied to the regulator, and then goes high  
(see Timing Diagram below).  
Figure 46. Timing Diagram for Power-Up  
The external capacitor cDLY sets the delay time (TDELAY). The value of capacitor required for a given time delay  
may be calculated using the formula:  
CDLY = TDELAY/(5.59 X 105)  
To simplify design, a plot is provided below which shows values of CDLY versus delay time.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
SNVS004J MARCH 1999REVISED APRIL 2013  
www.ti.com  
Figure 47. Plot of CDLY vs TDELAY  
DETAILS OF ERR/RESET CIRCUIT OPERATION: (Refer to LP2987/8 Equivalent Circuit).  
Figure 48. LP2987/8 Equivalent Circuit  
The output of comparator U2 is the ERR/RESET flag. Since it is an open-collector output, it requires the use of a  
pull-up resistor (RP). The 1.23V reference is tied to the inverting input of U2, which means that its output is  
controlled by the voltage applied to the non-inverting input.  
The output of U1 (also an open-collector) will force the non-inverting input of U2 to go low whenever the  
LP2987/8 regulated output drops about 5% below nominal.  
U1's inverting input is also held at 1.23V. The other input samples the regulated output through a resistive divider  
(RA and RB). When the regulated output is at nominal voltage, the voltage at the divider tap point will be 1.23V. If  
this voltage drops about 60 mV below 1.23V, the output of U1 will go low forcing the output of U2 low (which is  
the ERROR state).  
16  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
www.ti.com  
SNVS004J MARCH 1999REVISED APRIL 2013  
Power-ON reset delay occurs when a capacitor (shown as CDLY) is connected to the Delay pin. At turn-ON, this  
capacitor is initially fully discharged (which means the voltage at the Delay pin is 0V). The output of U1 keeps  
CDLY fully discharged (by sinking the 2.2 µA from the current source) until the regulator output voltage comes up  
to within about 5% of nominal. At this point, U1's output stops sinking current and the 2.2 µA starts charging up  
CDLY  
.
When the voltage across CDLY reaches 1.23V, the output of U2 will go high (note that D1 limits the maximum  
voltage to about 2V).  
SELECTING CDLY: The maximum recommended value for this capacitor is 1 µF. The capacitor must not have  
excessively high leakage current, since it is being charged from a 2.2 µA current source.  
Aluminum electrolytics can not be used, but good-quality tantalum, ceremic, mica, or film types will work.  
SHUTDOWN INPUT OPERATION  
The LP2987/8 is shut off by driving the Shutdown input low, and turned on by pulling it high. If this feature is not  
to be used, the Shutdown input should be tied to VIN to keep the regulator output on at all times.  
To assure proper operation, the signal source used to drive the Shutdown input must be able to swing above and  
below the specified turn-on/turn-off voltage thresholds listed as VH and VL, respectively (see Electrical  
Characteristics).  
It is also important that the turn-on (and turn-off) voltage signals applied to the Shutdown input have a slew rate  
which is not less than 40 mV/µs.  
CAUTION  
The regulator output state can not be ensured if a slow-moving AC (or DC) signal is  
applied that is in the range between VH and VL.  
REVERSE INPUT-OUTPUT VOLTAGE  
The PNP power transistor used as the pass element in the LP2987/8 has an inherent diode connected between  
the regulator output and input.  
During normal operation (where the input voltage is higher than the output) this diode is reverse-biased.  
However, if the output is pulled above the input, this diode will turn ON and current will flow into the regulator  
output.  
In such cases, a parasitic SCR can latch which will allow a high current to flow into VIN (and out the ground pin),  
which can damage the part.  
In any application where the output may be pulled above the input, an external Schottky diode must be  
connected from VIN to VOUT (cathode on VIN, anode on VOUT), to limit the reverse voltage across the LP2987/8 to  
0.3V (see Absolute Maximum Ratings).  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LP2987 LP2988  
LP2987, LP2988  
SNVS004J MARCH 1999REVISED APRIL 2013  
www.ti.com  
BYPASS CAPACITOR (LP2988)  
The capacitor connected to the Bypass pin must have very low leakage. The current flowing out of the Bypass  
pin comes from the Bandgap reference, which is used to set the output voltage. Since the Bandgap circuit has  
only a few microamps flowing in it, loading effects due to leakage current will cause a change in the regulated  
output voltage.  
Curves are provided which show the effect of loading the Bypass pin on the regulated output voltage.  
Care must be taken to ensure that the capacitor selected for bypass will not have significant leakage current over  
the operating temperature range of the application.  
A high quality ceramic capacitor which uses either NPO or COG type dielectiric material will typically have very  
low leakage. Small surface-mount polypropolene or polycarbonate film capacitors also have extremely low  
leakage, but are slightly larger in size than ceramics.  
18  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LP2987 LP2988  
 
LP2987, LP2988  
www.ti.com  
SNVS004J MARCH 1999REVISED APRIL 2013  
REVISION HISTORY  
Changes from Revision I (April 2013) to Revision J  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 18  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LP2987 LP2988  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP2987AILD-3.0/NOPB  
LP2987AILD-5.0/NOPB  
LP2987AILDX-5.0/NOPB  
LP2987AIMM-5.0/NOPB  
LP2987AIMX-5.0/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
VSSOP  
SOIC  
NGN  
NGN  
NGN  
DGK  
D
8
8
8
8
8
1000 RoHS & Green  
1000 RoHS & Green  
4500 RoHS & Green  
1000 RoHS & Green  
2500 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
L007A  
Samples  
Samples  
Samples  
Samples  
Samples  
SN  
SN  
SN  
SN  
L009A  
L009A  
L44A  
2987A  
IM5.0  
LP2987ILD-3.3/NOPB  
LP2987IM-3.0/NOPB  
LP2987IM-3.3/NOPB  
LP2987IM-5.0/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
SOIC  
SOIC  
SOIC  
NGN  
D
8
8
8
8
1000 RoHS & Green  
SN  
SN  
SN  
SN  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
L008A  
B
Samples  
Samples  
Samples  
Samples  
95  
95  
95  
RoHS & Green  
RoHS & Green  
RoHS & Green  
2987I  
M3.0  
D
2987I  
M3.3  
D
2987I  
M5.0  
LP2987IMM-3.3/NOPB  
LP2987IMM-5.0/NOPB  
LP2987IMMX-3.3/NOPB  
LP2987IMX-3.0/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
8
8
8
8
1000 RoHS & Green  
1000 RoHS & Green  
3500 RoHS & Green  
2500 RoHS & Green  
SN  
SN  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
L43B  
L44B  
L43B  
Samples  
Samples  
Samples  
Samples  
2987I  
M3.0  
LP2987IMX-5.0/NOPB  
LP2988AIM-5.0  
ACTIVE  
NRND  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
2500 RoHS & Green  
SN  
Call TI  
SN  
Level-1-260C-UNLIM  
Level-1-235C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
2987I  
M5.0  
Samples  
95  
95  
Non-RoHS  
& Green  
2988A  
IM5.0  
LP2988AIM-5.0/NOPB  
ACTIVE  
RoHS & Green  
2988A  
IM5.0  
Samples  
LP2988AIMM-3.0/NOPB  
LP2988AIMM-3.3/NOPB  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
1000 RoHS & Green  
1000 RoHS & Green  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
L49A  
Samples  
Samples  
L50A  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2023  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP2988AIMM-5.0/NOPB  
LP2988AIMX-3.3/NOPB  
ACTIVE  
ACTIVE  
VSSOP  
SOIC  
DGK  
D
8
8
1000 RoHS & Green  
2500 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
L51A  
Samples  
Samples  
SN  
2988A  
IM3.3  
LP2988ILD-3.8/NOPB  
LP2988IM-5.0/NOPB  
ACTIVE  
ACTIVE  
WSON  
SOIC  
NGN  
D
8
8
1000 RoHS & Green  
SN  
SN  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
L083A B  
Samples  
Samples  
95  
RoHS & Green  
2988I  
M5.0  
LP2988IMM-3.0/NOPB  
LP2988IMM-3.3/NOPB  
LP2988IMM-5.0  
ACTIVE  
ACTIVE  
NRND  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
8
8
8
1000 RoHS & Green  
1000 RoHS & Green  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
L49B  
L50B  
L51B  
Samples  
Samples  
1000  
Non-RoHS  
& Green  
Call TI  
LP2988IMM-5.0/NOPB  
LP2988IMMX-3.3/NOPB  
LP2988IMX-5.0/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
1000 RoHS & Green  
3500 RoHS & Green  
2500 RoHS & Green  
SN  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
L51B  
L50B  
Samples  
Samples  
Samples  
2988I  
M5.0  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2023  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP2987AILD-3.0/NOPB  
LP2987AILD-5.0/NOPB  
WSON  
WSON  
NGN  
NGN  
NGN  
DGK  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
1000  
1000  
4500  
1000  
2500  
1000  
1000  
1000  
3500  
2500  
2500  
1000  
1000  
1000  
2500  
1000  
178.0  
178.0  
330.0  
178.0  
330.0  
178.0  
178.0  
178.0  
330.0  
330.0  
330.0  
178.0  
178.0  
178.0  
330.0  
178.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
5.3  
6.5  
4.3  
5.3  
5.3  
5.3  
6.5  
6.5  
5.3  
5.3  
5.3  
6.5  
4.3  
4.3  
4.3  
4.3  
3.4  
5.4  
4.3  
3.4  
3.4  
3.4  
5.4  
5.4  
3.4  
3.4  
3.4  
5.4  
4.3  
1.3  
1.3  
1.3  
1.4  
2.0  
1.3  
1.4  
1.4  
1.4  
2.0  
2.0  
1.4  
1.4  
1.4  
2.0  
1.3  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LP2987AILDX-5.0/NOPB WSON  
LP2987AIMM-5.0/NOPB VSSOP  
LP2987AIMX-5.0/NOPB  
LP2987ILD-3.3/NOPB  
SOIC  
WSON  
NGN  
DGK  
DGK  
DGK  
D
LP2987IMM-3.3/NOPB VSSOP  
LP2987IMM-5.0/NOPB VSSOP  
LP2987IMMX-3.3/NOPB VSSOP  
LP2987IMX-3.0/NOPB  
LP2987IMX-5.0/NOPB  
SOIC  
SOIC  
D
LP2988AIMM-3.0/NOPB VSSOP  
LP2988AIMM-3.3/NOPB VSSOP  
LP2988AIMM-5.0/NOPB VSSOP  
DGK  
DGK  
DGK  
D
LP2988AIMX-3.3/NOPB  
LP2988ILD-3.8/NOPB  
SOIC  
WSON  
NGN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP2988IMM-3.0/NOPB VSSOP  
LP2988IMM-3.3/NOPB VSSOP  
DGK  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
8
8
1000  
1000  
1000  
1000  
3500  
2500  
178.0  
178.0  
178.0  
178.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
6.5  
3.4  
3.4  
3.4  
3.4  
3.4  
5.4  
1.4  
1.4  
1.4  
1.4  
1.4  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LP2988IMM-5.0  
VSSOP  
LP2988IMM-5.0/NOPB VSSOP  
LP2988IMMX-3.3/NOPB VSSOP  
LP2988IMX-5.0/NOPB  
SOIC  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP2987AILD-3.0/NOPB  
LP2987AILD-5.0/NOPB  
LP2987AILDX-5.0/NOPB  
LP2987AIMM-5.0/NOPB  
LP2987AIMX-5.0/NOPB  
LP2987ILD-3.3/NOPB  
LP2987IMM-3.3/NOPB  
LP2987IMM-5.0/NOPB  
LP2987IMMX-3.3/NOPB  
LP2987IMX-3.0/NOPB  
LP2987IMX-5.0/NOPB  
LP2988AIMM-3.0/NOPB  
LP2988AIMM-3.3/NOPB  
LP2988AIMM-5.0/NOPB  
LP2988AIMX-3.3/NOPB  
LP2988ILD-3.8/NOPB  
LP2988IMM-3.0/NOPB  
LP2988IMM-3.3/NOPB  
WSON  
WSON  
WSON  
VSSOP  
SOIC  
NGN  
NGN  
NGN  
DGK  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
1000  
1000  
4500  
1000  
2500  
1000  
1000  
1000  
3500  
2500  
2500  
1000  
1000  
1000  
2500  
1000  
1000  
1000  
208.0  
208.0  
356.0  
208.0  
367.0  
208.0  
208.0  
208.0  
367.0  
367.0  
367.0  
208.0  
208.0  
208.0  
367.0  
208.0  
208.0  
208.0  
191.0  
191.0  
356.0  
191.0  
367.0  
191.0  
191.0  
191.0  
367.0  
367.0  
367.0  
191.0  
191.0  
191.0  
367.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
WSON  
VSSOP  
VSSOP  
VSSOP  
SOIC  
NGN  
DGK  
DGK  
DGK  
D
SOIC  
D
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
WSON  
VSSOP  
VSSOP  
NGN  
DGK  
DGK  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP2988IMM-5.0  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
8
8
8
8
1000  
1000  
3500  
2500  
208.0  
208.0  
367.0  
367.0  
191.0  
191.0  
367.0  
367.0  
35.0  
35.0  
35.0  
35.0  
LP2988IMM-5.0/NOPB  
LP2988IMMX-3.3/NOPB  
LP2988IMX-5.0/NOPB  
Pack Materials-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LP2987IM-3.0/NOPB  
LP2987IM-3.3/NOPB  
LP2987IM-5.0/NOPB  
LP2988AIM-5.0  
D
D
D
D
D
D
D
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
8
8
8
8
8
8
8
95  
95  
95  
95  
95  
95  
95  
495  
495  
495  
495  
495  
495  
495  
8
8
8
8
8
8
8
4064  
4064  
4064  
4064  
4064  
4064  
4064  
3.05  
3.05  
3.05  
3.05  
3.05  
3.05  
3.05  
LP2988AIM-5.0  
LP2988AIM-5.0/NOPB  
LP2988IM-5.0/NOPB  
Pack Materials-Page 5  
PACKAGE OUTLINE  
NGN0008A  
WSON - 0.8 mm max height  
SCALE 3.000  
PLASTIC SMALL OUTLINE - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
PIN 1 ID  
DETAIL A  
PIN 1 ID  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.2 0.05  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
6X 0.8  
4
5
2X  
2.4  
SYMM  
9
3
0.05  
SEE  
DETAIL A  
8
1
0.35  
0.25  
8X  
(0.25)  
(0.25)  
0.6  
0.4  
(0.2)  
8X  
0.1  
C A B  
C
0.05  
PIN 1 ID  
(0.15)  
4214794/A 11/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NGN0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.2)  
SYMM  
8X (0.5)  
8X (0.3)  
1
8
SYMM  
9
(3)  
(1.25)  
5
6X (0.8)  
4
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.85)  
(3.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214794/A 11/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NGN0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
0.59  
SYMM  
METAL  
TYP  
8X (0.5)  
8X (0.3)  
1
8
4X (1.31)  
SYMM  
9
(0.755)  
6X (0.8)  
5
4
(R0.05) TYP  
4X (0.98)  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4214794/A 11/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY