LP3907SQ-PFX6W/NOPB [TI]

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | RTW | 24 | -40 to 85;
LP3907SQ-PFX6W/NOPB
型号: LP3907SQ-PFX6W/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | RTW | 24 | -40 to 85

开关 转换器
文件: 总61页 (文件大小:4147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
LP3907 双路1 A 600 mA 降压转换器和双路300 mA LDO 具有 I2C 接口  
1 特性  
3 说明  
1
输入电压范围:2.8V 5.5V  
LP3907 器件是专为低功耗 FPGA、微处理器和 DSP  
优化的多功能、可编程电源管理单元 (PMU)。该器件  
集成了两个具有动态电压调节 (DVS) 功能的高效 1A、  
600mA 降压直流/直流转换器、两个 300mA 线性稳压  
器和一个 400kHz I2C 接口,使主机控制器可以访问该  
器件的内部控制寄存器。LP3907 还 具有 可编程的加  
电序列。  
兼容高级 应用 处理器和现场可编程门阵列 (FPGA)  
2 个低压降线性稳压器 (LDO),用于为内部处理器  
的运行和 I/O 供电  
高速串行接口用于对器件功能和设置进行独立控制  
精密的内部基准电压  
热过载保护  
电流过载保护  
具备诸多功能, 其中包括可编程的加电序列、通信控  
(I2C)、动态电压调节、过流保护、电源正常指示、  
同步整流、热关断以及欠压锁定。对于 需要 轻负载的  
应用,此款高效同步开关降压稳压器可进入 PFM 模  
式,以较低的开关频率和电源电流运行,从而在极轻负  
载下保持高效率。  
软件可编程稳压器  
针对 Buck1 Buck2 的外部上电复位功能(带延  
迟功能的电源正常指示)  
配有欠压闭锁检测器,用于监视输入电源电压  
降压直流/直流转换器(降压)  
可编程 VOUT:  
器件信息(1)  
Buck11A 时为 0.8V 2V  
器件型号  
LP3907  
封装  
WQFN (24)  
DSBGA (25)  
封装尺寸(标称值)  
4.00mm x 4.00mm  
2.49mm × 2.49mm  
Buck2600mA 时为 1V 3.5V  
效率高达 96%  
2.1MHz 脉冲宽度调制 (PWM) 开关频率  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
低负载条件下  
PWM 模式自动切换到脉冲频率调制 (PFM)  
模式  
典型应用电路  
±3% 的输出电压精度  
VINLDO12  
EN_T  
自动软启动  
VDD  
100k  
1 mF  
ENLDO1  
ENLDO2  
线性稳压器 (LDO)  
nPOR  
VIN1  
可编程 VOUT 1V 3.5V  
JJ11FX6W JX6X 选项除外)  
ENSW1  
ENSW2  
LDO1  
10 mF  
2.2 mH  
300mA 输出电流  
SW1  
FB1  
30mV(典型值)压降  
使用 LP3907 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
10 mF  
0.47 mF  
VINLDO1  
VINLDO2  
LDO2  
GND_SW1  
1 mF  
1 mF  
LP3907  
VIN2  
2 应用  
10 mF  
现场可编程门阵列 (FPGA),数字信号处理器  
2.2 mH  
0.47 mF  
SW2  
FB2  
(DSP) 内核电源  
SDA  
SCL  
10 mF  
应用 处理器  
GND_SW2  
AVDD  
外设 I/O 电源  
助听器  
GND_L  
GND_C  
DAP  
电子测量装置  
备用电池供电型设备  
1 mF  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVS511  
 
 
 
 
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 19  
8.3 Feature Description................................................. 20  
8.4 Device Functional Modes........................................ 28  
8.5 Programming .......................................................... 29  
8.6 Register Maps ........................................................ 32  
Application and Implementation ........................ 42  
9.1 Application Information............................................ 42  
9.2 Typical Application ................................................. 42  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
器件比较 台式机....................................................... 4  
Pin Configuration and Functions......................... 6  
Specifications......................................................... 8  
7.1 Absolute Maximum Ratings ...................................... 8  
7.2 ESD Ratings.............................................................. 8  
7.3 Recommended Operating Conditions (Bucks).......... 8  
7.4 Thermal Information.................................................. 9  
7.5 General Electrical Characteristics............................ 9  
7.6 Low Dropout Regulators, LDO1 And LDO2........... 10  
7.7 Buck Converters SW1, SW2.................................. 10  
7.8 I/O Electrical Characteristics.................................. 11  
7.9 Power-On Reset (POR) Threshold/Function ........ 11  
7.10 I2C Interface Timing Requirements ..................... 11  
7.11 Typical Characteristics — LDO............................. 12  
7.12 Typical Characteristics — Bucks .......................... 14  
7.13 Typical Characteristics — Buck1 .......................... 15  
7.14 Typical Characteristics — Buck2 .......................... 16  
7.15 Typical Characteristics — Bucks .......................... 17  
Detailed Description ............................................ 19  
8.1 Overview ................................................................. 19  
9
10 Power Supply Recommendations ..................... 48  
10.1 Analog Power Signal Routing ............................... 48  
11 Layout................................................................... 49  
11.1 DSBGA Layout Guidelines.................................... 49  
11.2 Layout Example .................................................... 50  
11.3 Thermal Considerations of WQFN Package......... 50  
12 器件和文档支持 ..................................................... 51  
12.1 器件支持................................................................ 51  
12.2 文档支持................................................................ 51  
12.3 ....................................................................... 51  
12.4 接收文档更新通知 ................................................. 51  
12.5 社区资源................................................................ 51  
12.6 静电放电警告......................................................... 51  
12.7 Glossary................................................................ 51  
13 机械、封装和可订购信息....................................... 52  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision T (November 2016) to Revision U  
Page  
已添加 Webench 链接 ............................................................................................................................................................ 1  
已删除 删除已过时的 OPN 3 ............................................................................................................................................. 5  
Changes from Revision S (April 2016) to Revision T  
Page  
已更改 更改了改进的 SEO 的数据表标题,将动态电压管理更改为调节,向说明中添加了新段落.................................. 1  
Changes from Revision R (May 2015) to Revision S  
Page  
已添加 将附加条目添加至 应用 .............................................................................................................................................. 1  
Changed symbol "θn" to "eN" in Low Dropout Regulators, LDO1 And LDO2 Electrical Char table ..................................... 10  
Changes from Revision Q (January 2015) to Revision R  
Page  
Added last sentence to "NOTE" .......................................................................................................................................... 23  
Changes from Revision P (November 2014) to Revision Q  
Page  
已更改 将更新的附加值更改至新的默认器件选项 ................................................................................................................... 4  
Changed Handling Ratings table to ESD Ratings table; update Thermal Information........................................................... 8  
2
版权 © 2007–2018, Texas Instruments Incorporated  
 
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
Changes from Revision O (May 2013) to Revision P  
Page  
已添加 器件信息表和处理额定值表,特性 描述器件功能模式应用和实施电源相关建议布局器件和文档支持  
以及机械、封装和可订购信息部分;已将一些曲线移至应用曲线部分。 ................................................................................ 1  
版权 © 2007–2018, Texas Instruments Incorporated  
3
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
5 器件比较 台式机  
1. 默认 I2C 地址  
封装类型  
默认 I2C 地址  
24 引线 WQFN  
25 凸点 DSBGA  
60  
61  
2. 电源块  
电源块运行  
禁用  
电源块输入  
注释  
启用  
VIN+(1)  
VIN+  
VINLDO12  
AVDD  
VIN1  
VIN+  
始终供电  
始终供电  
VIN+  
VIN+  
VIN+  
VIN2  
VIN+  
VIN+  
LDO1  
VIN+  
VIN+  
VIN+  
VIN+  
如果启用,VIN 最小值为 1.74V  
如果启用,VIN 最小值为 1.74V  
LDO2  
(1) VIN+ 是设备支持的最大电压。  
4
版权 © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
3. 默认器件选项  
部件号(1)(2)  
BUCK1  
1.2V  
1.2V  
1.2V  
1V  
BUCK2  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
1.8V  
1.8V  
2.8V  
1.8V  
2.2V  
LDO1  
1.8V  
LDO2  
2.5V  
降压模式  
强制 PWM  
自动模式  
强制 PWM  
强制 PWM  
强制 PWM  
自动模式  
自动模式  
自动模式  
自动模式  
强制 PWM  
默认 EN_T 延迟  
默认 UVLO  
启用  
LP3907SQ-TJXIP/NOPB  
LP3907SQ-JXQX/NOPB  
LP3907SQ-PJXIX/NOPB  
LP3907SQ-PFX6W/NOPB  
LP3907SQ-BJXQX/NOPB  
LP3907TL-JJ11/NOPB  
LP3907TLX-JJ11/NOPB  
LP3907TL-JSXS/NOPB  
LP3907TL-JJCP/NOPB  
LP3907TL-PLNTO/NOPB  
001  
010  
010  
010  
010  
010  
010  
010  
010  
010  
2.6V  
3.3V  
启用  
1.8V  
2.65V(3)  
3.3V  
启用  
3.2V  
启用  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.3V  
2.6V  
3.3V  
禁用  
2.85V(3)  
2.85V(3)  
3.3V  
2.85V(3)  
2.85V(3)  
2.8V  
启用  
启用  
启用  
1.2V  
2.5V  
启用  
2.9V  
2.4V  
启用  
(1) 要获得最新的封装和订购信息,请参见本文档末尾的封装选项附录,或者浏览 TI 网站 www.ti.com.cn。  
(2) 封装图样、散热数据和符号可从网站 www.ti.com/packaging 中获取。  
(3) 电压为固定值,不可编程。  
Copyright © 2007–2018, Texas Instruments Incorporated  
5
 
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
RTW Package  
24-Pin WQFN  
Top View  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
YZR Package  
25-Pin DSBGA  
Top View  
VIN  
LDO12  
VIN  
LDO2  
GND_S  
W1  
5
SW1  
VIN1  
VIN  
LDO12  
EN_S  
W1  
4
EN_T  
FB1  
AVDD  
FB2  
LDO2  
EN_  
LDO2  
EN_  
LDO1  
GND_C  
nPOR  
SDA  
3
EN_  
SW2  
SCL  
LDO1  
2
1
VIN  
LDO1  
GND_  
SW2  
GND_  
L
SW2  
D
VIN2  
E
A
B
C
6
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
WQFN  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
Pin Functions  
PIN  
I/O  
TYPE(1)  
DESCRIPTION  
DSBGA  
NAME  
NUMBER NUMBER  
1
2
B4, B5  
C4  
VINLDO12  
EN_T  
I
I
PWR  
D
Analog power for internal functions (VREF, BIAS, I2C, Logic)  
Enable for preset power on sequence. (See .)  
nPOR power on reset pin for both Buck1 and Buck 2. Open drain logic  
output 100-kΩ pullup resistor. nPOR is pulled to ground when the voltages  
on these supplies are not good. See Flexible Power-On Reset (Power Good  
with Delay) section for more info.  
3
C3  
nPOR  
O
D
4
C5  
D5  
E5  
D4  
E4  
D3  
E3  
E2  
D2  
E1  
D1  
C1  
C2  
B2  
B1  
A1  
A2  
B3  
A3  
A4  
A5  
GND_SW1  
SW1  
G
G
PWR  
PWR  
D
Buck1 NMOS Power Ground  
5
O
Buck1 switcher output pin  
6
VIN1  
I
Power in from either DC source or battery to Buck1  
Enable pin for Buck1 switcher, a logic HIGH enables Buck1  
Buck1 input feedback terminal  
7
ENSW1  
FB1  
I
8
I
A
9
GND_C  
AVDD  
FB2  
G
G
Non switching core ground pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
DAP  
I
PWR  
A
Analog power for Buck converters  
Buck2 input feedback terminal  
I
ENSW2  
VIN2  
I
D
Enable pin for Buck2 switcher, a logic HIGH enables Buck2  
Power in from either DC source or Battery to Buck2  
Buck2 switcher output pin  
I
PWR  
PWR  
G
SW2  
O
GND_SW2  
SDA  
G
Buck2 NMOS power ground  
I2C cata (bidirectional)  
I2C clock  
I/O  
D
SCL  
I
D
GND_L  
VINLDO1  
LDO1  
G
G
LDO ground  
I
PWR  
PWR  
D
Power in from either DC source or battery to input terminal to LDO1  
LDO1 output  
O
ENLDO1  
ENLDO2  
LDO2  
I
LDO1 enable pin, a logic HIGH enables the LDO1  
LDO2 enable pin, a logic HIGH enables the LDO2  
LDO2 output  
I
O
D
PWR  
PWR  
GND  
VINLDO2  
DAP  
I
Power in from either DC source or battery to input terminal to LDO2.  
GND  
Connection is not necessary for electrical performance, but it is  
recommended for better thermal dissipation.  
(1) A: Analog Pin  
D: Digital Pin  
G: Ground Pin  
PWR: Power Pin  
I: Input Pin  
I/O: Input/Output Pin  
O: Output Pin.  
Copyright © 2007–2018, Texas Instruments Incorporated  
7
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
MIN  
MAX  
6
UNIT  
V
VIN, SDA, SCL  
–0.3  
GND to GND SLUG  
±0.3  
1.43  
0.78  
150  
260  
150  
V
Power dissipation (WQFN (RTW))(PD_MAX  
Power dissipation (DSBGA (YZR))(3) (PD_MAX  
)
(TA = 85°C, TMAX = 125°C)(3)  
(TA = 85°C, TMAX = 125°C)  
W
)
W
Junction temperature, TJ-MAX  
°C  
°C  
°C  
Maximum lead temperature (soldering)  
Storage temperature, Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions (Bucks). Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP (RθJA × PD-MAX).  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions (Bucks)  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)(4)  
MIN  
MAX  
UNIT  
VIN  
2.8  
0
5.5  
(VIN + 0.3 V)  
125  
V
V
VEN  
Junction temperature, TJ  
Ambient temperature, TA  
40  
40  
°C  
°C  
(5)  
85  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) Minimum (Minimum) and Maximum (Maximum) limits are ensured by design, test, or statistical analysis. Typical numbers are not  
ensured, but do represent the most likely norm.  
(4) Buck VIN VOUT + 1 V.  
(5) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power  
dissipation exists, special care must be paid to thermal dissipation issues in board design.  
8
Copyright © 2007–2018, Texas Instruments Incorporated  
 
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
7.4 Thermal Information  
See(1)(2)(3)  
LP3907  
THERMAL METRIC(4)  
RTW  
24 PINS  
32.7  
YZR  
25 PINS  
58.7  
0.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
31.2  
11.2  
8.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
0.6  
ψJB  
11.2  
8.0  
RθJC(bot)  
1.4  
N/A  
(1) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power  
dissipation exists, special care must be paid to thermal dissipation issues in board design.  
(2) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 160°C (typical) and  
disengages at TJ = 140°C (typical).  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP (RθJA × PD-MAX).  
(4) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 General Electrical Characteristics  
Unless otherwise noted, VIN = 3.6 V and TJ = 25°C.(1)(2)(3)(4)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3
MAX UNIT  
IQ  
VINLDO12 shutdown current  
Power-on reset threshold  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
VIN = 3.6 V  
µA  
V
VPOR  
TSD  
TSDH  
VDD falling edge(4)  
1.9  
160  
20  
°C  
°C  
Rising  
Falling  
2.9  
2.7  
UVLO  
Undervoltage lockout  
V
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) This specification is ensured by design.  
(4) VPOR is voltage at which the EPROM resets. This is different from the UVLO on VINLDO12, which is the voltage at which the  
regulators shut off, and is also different from the nPOR function, which signals if the regulators are in a specified range.  
Copyright © 2007–2018, Texas Instruments Incorporated  
9
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
MAX UNIT  
7.6 Low Dropout Regulators, LDO1 And LDO2  
Unless otherwise noted, VIN = 3.6 V, CIN = 1 µF, COUT = 0.47 µF, and TJ = 25°C.(1)(2)(3)(4)(5)(6)(7)  
PARAMETER  
TEST CONDITIONS  
VINLDO1 and VINLDO2 PMOS pins(8)  
Load current = 1 mA  
MIN  
1.74(9)  
TYP  
VIN  
Operational voltage range  
5.5(9)  
V
VOUT Accuracy Output voltage accuracy (default  
VOUT  
–3%(9)  
3%(9)  
)
Line regulation  
VIN = (VOUT + 0.3 V) to 5 V,  
(7), load current = 1 mA  
0.15(9)  
%/V  
ΔVOUT  
Load regulation  
VIN = 3.6 V,  
Load current = 1 mA to IMAX  
0.011(9) %/mA  
mA  
ISC  
Short circuit current limit  
Dropout voltage  
LDO1-2, VOUT = 0 V  
500  
30  
Load current = 50 mA  
VIN – VOUT  
200(9)  
mV  
(5)  
PSRR  
eN  
Power supply ripple rejection  
Supply output noise  
Quiescent current on  
Quiescent current on  
Quiescent current off  
Turnon time  
ƒ = 10 kHz, load current = IMAX  
10 Hz < F < 100 KHz  
IOUT = 0 mA  
45  
80  
dB  
µVrms  
µA  
40  
(6) (10)  
IQ  
IOUT = IMAX  
EN is de-asserted(11)  
60  
µA  
0.03  
300  
µA  
TON  
Start-up from shutdown  
µs  
Capacitance for stability  
0°C TJ 125°C  
0.33(9)  
0.47  
1
µF  
COUT  
Output capacitor  
40°C TJ 125°C  
0.68  
5(9)  
µF  
ESR  
500(9)  
mΩ  
(1) All voltages are with respect to the potential at the GND pin.  
(2) Minimum (MIN) and maximum (MAX) limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do  
represent the most likely norm.  
(3) CIN, COUT: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.  
(4) The device maintains a stable, regulated output voltage without a load.  
(5) Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its  
nominal value.  
(6) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT  
.
(7) VIN minimum for line regulation values is 1.8 V.  
(8) Pins 24, 19 can operate from VIN min of 1.74 V to a VIN max of 5.5 V. This rating is only for the series pass PMOS power FET. It allows  
the system design to use a lower voltage rating if the input voltage comes from a buck output.  
(9) Limits apply over the entire junction temperature range for operation, 40°C to +125°C.  
(10) The IQ can be defined as the standing current of the LP3907 when the I2C bus is active and all other power blocks have been disabled  
with the I2C bus, or it can be defined as the I2C bus active, and the other power blocks are active under no load condition. These two  
values can be used by the system designer when the LP3907 is powered using a battery.  
(11) The IQ exhibits a higher current draw when the EN pin is de-asserted because the I2C buffer pins draw an additional 2 µA.  
7.7 Buck Converters SW1, SW2  
Unless otherwise noted, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, LOUT = 2.2-µH ceramic, and TJ = 25°C.(1)(2)(3)(4)(5)(6)  
PARAMETER  
Feedback voltage  
Line regulation  
TEST CONDITIONS  
MIN  
–3%(7)  
TYP  
MAX  
3%(7)  
UNIT  
VFB  
2.8 V < VIN < 5.5 V  
0.089  
%/V  
IOUT = 10 mA  
VOUT  
Load regulation  
100 mA < IOUT < IMAX  
Load current = 250 mA  
EN is de-asserted  
0.0013  
96%  
0.01  
2.1  
%/mA  
Eff  
Efficiency  
ISHDN  
ƒOSC  
Shutdown supply current  
Internal oscillator frequency  
µA  
1.7(7)  
MHz  
(1) All voltages are with respect to the potential at the GND pin.  
(2) Minimum (Min) and Maximum (Max) limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do  
represent the most likely norm.  
(3) CIN, COUT: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.  
(4) The device maintains a stable, regulated output voltage without a load.  
(5) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT  
.
(6) Buck VIN VOUT + 1 V.  
(7) Limits apply over the entire junction temperature range for operation, 40°C to +125°C.  
10  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
Buck Converters SW1, SW2 (continued)  
Unless otherwise noted, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, LOUT = 2.2-µH ceramic, and TJ = 25°C.(1)(2)(3)(4)(5)(6)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.5  
1
MAX  
UNIT  
IPEAK  
Buck1 peak switching current limit  
Buck2 peak switching current limit  
Quiescent current “on”  
Pin-pin resistance PFET  
Pin-pin resistance NFET  
Turnon time  
A
(8)  
IQ  
No load PFM mode  
33  
µA  
mΩ  
mΩ  
µs  
RDSON (P)  
RDSON (N)  
TON  
200  
180  
500  
Start up from shutdown  
Capacitance for stability  
Capacitance for stability  
CIN  
Input capacitor  
10  
10  
µF  
COUT  
Output capacitor  
µF  
(8) The IQ can be defined as the standing current of the LP3907 when the I2C bus is active and all other power blocks have been disabled  
with the I2C bus, or it can be defined as the I2C bus active, and the other power blocks are active under no load condition. These two  
values can be used by the system designer when the device is powered using a battery.  
7.8 I/O Electrical Characteristics  
Unless otherwise noted: Limits apply over the entire junction temperature range for operation, TJ = 40°C to +125°C.(1)  
PARAMETER  
Input low level  
Input high level  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
VIL  
VIH  
0.4  
V
1.2  
(1) This specification is ensured by design.  
7.9 Power-On Reset (POR) Threshold/Function  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
nPOR  
nPOR = Power on reset forBuck1 and Default  
Buck2  
50  
ms  
VBUCK1 AND VBUCK2 rising  
94%  
85%  
0.23  
nPOR  
threshold  
Percentage of target voltage Buck1  
or Buck2  
VBUCK1 OR VBUCK2 falling  
Load = IoL = 500 mA  
VOL  
Output level low  
0.5  
V
7.10 I2C Interface Timing Requirements  
Unless otherwise noted, VIN = 3.6 V and TJ = 25°C.(1)  
MIN  
NOM  
MAX UNIT  
ƒCLK  
Clock frequency  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
tBF  
Bus-free time between start and stop  
Hold time repeated start condition  
CLK low period  
1.3  
0.6  
1.3  
0.6  
0.6  
0
tHOLD  
tCLKLP  
tCLKHP  
tSU  
CLK high period  
Set-up time repeated start condition  
Data hold time  
See(1)  
tDATAHLD  
tDATASU  
TSU  
Data set-up time  
100  
0.6  
Set-up time for start condition  
TTRANS  
Maximum pulse width of spikes that  
must be suppressed by the input filter  
of both DATA & CLK signals  
50  
ns  
(1) This specification is ensured by design.  
Copyright © 2007–2018, Texas Instruments Incorporated  
11  
 
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
7.11 Typical Characteristics — LDO  
TA = 25°C unless otherwise noted.  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-1.50  
-2.00  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-1.50  
-2.00  
-50 -35 -20 -5 10 25 40 55 70 85 100  
-50 -35 -20 -5 10 25 40 55 70 85 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VIN = 3.6 V  
VOUT = 2.6 V  
100-mA Load  
VIN = 3.6 V  
VOUT = 2.6 V  
100-mA Load  
Figure 1. Output Voltage Change vs Temperature (LDO1)  
Figure 2. Output Voltage Change vs Temperature (LDO2)  
VIN = 3.6 V  
VOUT = 2.6 V  
0 to 150-mA Load  
VIN = 3.6 V  
VOUT = 3.3 V  
0 to 150-mA Load  
Figure 3. Load Transient (LDO1)  
Figure 4. Load Transient (LDO2)  
VIN = 3.6 to 4.2 V  
VOUT = 2.6 V  
300-mA Load  
VIN = 3.6 to 4.2 V  
VOUT = 3.3 V  
300-mA Load  
Figure 5. Line Transient (LDO1)  
Figure 6. Line Transient (LDO2)  
12  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
Typical Characteristics — LDO (continued)  
TA = 25°C unless otherwise noted.  
VIN = 0 to 3.6 V  
VOUT = 2.6 V  
1-mA Load  
VIN = 0 to 3.6 V  
VOUT = 3.3 V  
1-mA Load  
Figure 7. Enable Start-Up Time (LDO1)  
Figure 8. Enable Start-Up Time (LDO2)  
300  
VIN = 1.74V  
250  
200  
150  
100  
1.00 1.10 1.20 1.30 1.40 1.50 1.60  
VOUT(V)  
VIN = 1.74 V  
Figure 9. LDO Maximum Load  
Copyright © 2007–2018, Texas Instruments Incorporated  
13  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
7.12 Typical Characteristics — Bucks  
VIN= 2.8 V to 5.5 V, TA = 25°C  
0.15  
1.05  
1.03  
1.01  
0.99  
0.97  
0.95  
0.12  
I
= 20 mA  
OUT  
I
= 750 mA  
OUT  
VIN = 5.5V  
0.09  
VIN = 3.6V  
0.06  
I
= 1.0A  
OUT  
VIN = 2.7V  
0.03  
0.00  
-40  
-20  
0
20  
40  
60  
80  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
VOUT = 1 V  
Figure 10. Shutdown Current vs. Temp  
Figure 11. Output Voltage vs. Supply Voltage  
1.85  
3.35  
1.83  
1.81  
1.79  
1.77  
1.75  
3.33  
I
= 20 mA  
OUT  
I
= 20 mA  
OUT  
I
= 300 mA  
OUT  
3.31  
3.29  
3.27  
3.25  
I
= 750 mA  
OUT  
I
= 600 mA  
OUT  
4.5  
I
= 1.0A  
4.4  
OUT  
2.7  
3.3  
3.8  
4.9  
4.0  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
VOUT = 1.8 V  
Figure 12. Output Voltage vs. Supply Voltage  
VOUT = 3.5 V  
Figure 13. Output Voltage vs. Supply Voltage  
14  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
7.13 Typical Characteristics — Buck1  
VIN= 2.8 V to 5.5 V, TA = 25°C, VOUT = 1.2 V, 2 V  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
V
IN  
= 2.8V  
= 2.8V  
VIN  
70  
60  
50  
40  
30  
20  
10  
V
= 3.6V  
IN  
= 3.6V  
VIN  
V
= 5.5V  
IN  
= 5.5V  
VIN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
VOUT = 1.2 V  
L= 2.2 µH  
VOUT = 2V  
L= 2.2 µH  
Figure 14. Efficiency vs Output Current (Forced PWM Mode)  
Figure 15. Efficiency vs Output Current (Forced PWM Mode)  
100  
100  
90  
90  
= 2.8V  
VIN  
V
= 2.8V  
IN  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
= 3.6V  
VIN  
V
= 3.6V  
IN  
= 5.5V  
VIN  
V
= 5.5V  
IN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
VOUT = 2 V  
L= 2.2 µH  
VOUT = 1.2 V  
L= 2.2 µH  
Figure 17. Efficiency vs Output Current (PWM-to-PFM Mode)  
Figure 16. Efficiency vs Output Current (PWM-to-PFM Mode)  
Copyright © 2007–2018, Texas Instruments Incorporated  
15  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
7.14 Typical Characteristics — Buck2  
VIN= 4.5 V to 5.5 V, TA = 25°C, VOUT = 1.8 V, 3.3 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
= 4.5V  
VIN  
70  
= 4.5V  
VIN  
60  
50  
40  
30  
20  
10  
= 5.5V  
VIN  
= 5.5V  
VIN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
VOUT = 1.8 V  
L= 2.2 µH  
VOUT = 3.3 V  
L= 2.2 µH  
Figure 18. Efficiency vs Output Current (Forced PWM Mode)  
Figure 19. Efficiency vs Output Current (Forced PWM  
Mode)  
100  
100  
90  
90  
= 4.5V  
VIN  
= 5.5V  
VIN  
= 4.5V  
VIN  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
= 5.5V  
VIN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
VOUT = 2 V  
L= 2.2 µH  
VOUT = 1.2 V  
L= 2.2 µH  
Figure 21. Efficiency vs Output Current (PWM-to-PFM Mode)  
Figure 20. Efficiency vs Output Current (PWM-to-PFM Mode)  
16  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
7.15 Typical Characteristics — Bucks  
VIN= 3.6 V, TA = 25°C, VOUT = 1.2 V unless otherwise noted.  
VOUT = 1.2 V  
ILOAD = 300 to 500 mA  
VOUT = 1.2 V  
ILOAD = 50 to 150 mA  
Figure 22. Load Transient Response (PWM Mode)  
Figure 23. Mode Change By Load Transient (PFM-to-PWM  
Mode)  
VIN = 3.6 to 4.2 V  
VOUT = 1.2 V  
250-mA Load  
VIN = 3.6 to 4.2 V  
VOUT = 3.3 V  
250-mA Load  
Figure 24. Line Transient Response  
Figure 25. Line Transient Response  
VOUT = 1.2 V  
1-A Load  
VOUT = 3.3 V  
600-mA Load  
Figure 26. Start-Up Into PWM Mode  
Figure 27. Start-Up Into PWM Mode  
Copyright © 2007–2018, Texas Instruments Incorporated  
17  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics — Bucks (continued)  
VIN= 3.6 V, TA = 25°C, VOUT = 1.2 V unless otherwise noted.  
VOUT = 3.3 V  
30-mA load  
VOUT = 1.2 V  
30-mA Load  
Figure 29. Start-Up Into PFM Mode  
Figure 28. Start-Up Into PFM Mode  
18  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
8 Detailed Description  
8.1 Overview  
The LP3907 supplies the various power needs of the application by means of two linear low drop regulators  
(LDO1 and LDO2) and two buck converters (SW1 and SW2). Table 4 lists the output characteristics of the  
various regulators.  
Table 4. Supply Specification  
OUTPUT  
(1)  
SUPPLY  
LOAD  
IMAX  
VOUT RANGE (V)  
RESOLUTION (mV)  
MAXIMUM OUTPUT CURRENT (mA)  
LDO1  
LDO2  
SW1  
analog  
analog  
digital  
digital  
1 to 3.5  
1 to 3.5  
0.8 to 2  
1 to 3.5  
100  
100  
50  
300  
300  
1000  
600  
SW2  
100  
(1) For default values of the regulators, consult 3.  
8.2 Functional Block Diagram  
DC SOURCE  
4.5V - 5.5V  
+
Li-ion/polymer cell 3.3V - 4.2V  
Cvdd  
4.7mF  
1mF  
1mF  
1mF  
1uF  
mF  
10 mF  
10  
ULVO  
Lsw1 2.2 mH  
1.2V  
OSC  
VBUCK1  
SW1  
VFB1  
10 mF  
Vin OK  
BUCK1  
AVDD  
ENLDO1  
2.2 mH  
Lsw1  
3.3V  
VBUCK2  
ENLDO2  
ENSW 1  
Power  
ON-OFF  
Logic  
SW2  
VFB2  
10 mF  
BUCK2  
AVDD  
ENSW 2  
EN_T  
VINLDO1  
Thermal  
Shutdown  
3.3V  
LDO1  
LDO1  
Cldo1  
0.47 mF  
RESET  
VinLDO12  
BIAS  
VINLDO2  
2
I
C_SCL  
I2C  
1.8V  
LDO2  
2
I
C_SDA  
LDO2  
Cldo2  
0.47 mF  
RDY1 RDY2  
VDD  
Logic Control  
and  
Registers  
100k  
nPOR  
Power On  
Reset  
GND_SW1  
GND_SW2  
GND_C  
GND_L  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2007–2018, Texas Instruments Incorporated  
19  
 
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 DC-DC Converters  
8.3.1.1 Linear Low Dropout Regulators (LDOs)  
LDO1 and LDO2 are identical linear regulators targeting analog loads characterized by low noise requirements.  
LDO1 and LDO2 are enabled through the ENLDO pin or through the corresponding LDO1 or LDO2 control  
register. The output voltages of both LDOs are register programmable. The default output voltages are factory  
programmed during final test, which can be tailored to the specific needs of the system designer.  
VLDO  
VIN  
LDO  
Register  
controlled  
+
-
ENLDO  
VREF  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 30. LDO Block Diagram  
8.3.1.2 No-Load Stability  
The LDOs remain stable and in regulation with no external load. This is an important consideration in some  
circuits, for example, CMOS RAM keep-alive applications.  
8.3.1.3 LDO and LDO2 Control Registers  
LDO1 and LDO2 can be configured by means of the LDO1 and LDO2 control registers. The output voltage is  
programmable in steps of 100 mV from 1 V to 3.5 V by programming bits D4-D0 in the LDO Control registers.  
Both LDO1 and LDO2 are enabled by applying a logic 1 to the ENLDO1 and ENLDO2 pin. Enable/disable control  
is also provided through enable bit of the LDO1 and LDO2 control registers. The value of the enable LDO bit in  
the register is logic 1 by default. The output voltage can be altered while the LDO is enabled.  
8.3.2 SW1, SW2: Synchronous Step-Down Magnetic DC-DC Converters  
8.3.2.1 Functional Description  
The LP3907 incorporates two high-efficiency synchronous switching buck regulators, SW1 and SW2, that deliver  
a constant voltage from a single Li-Ion battery to the portable system processors. Using a voltage mode  
architecture with synchronous rectification, both bucks have the ability to deliver up to 1000 mA and 600 mA,  
respectively, depending on the input voltage and output voltage (voltage headroom), and the inductor chosen  
(maximum current capability).  
There are three modes of operation depending on the current required: PWM, PFM, and shutdown. PWM mode  
handles current loads of approximately 70 mA or higher, delivering voltage precision of ±3% with 90% efficiency  
or better. Lighter output current loads cause the device to automatically switch into PFM for reduced current  
consumption (IQ = 15 µA typical) and a longer battery life. The standby operating mode turns off the device,  
offering the lowest current consumption. PWM or PFM mode is selected automatically or PWM mode can be  
forced through the setting of the buck control register.  
Both SW1 and SW2 can operate up to a 100% duty cycle (PMOS switch always on) for low drop out control of  
the output voltage. In this way the output voltage is controlled down to the lowest possible input voltage.  
Additional features include soft-start, undervoltage lockout, current overload protection, and thermal overload  
protection.  
20  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
Feature Description (continued)  
8.3.2.2 Circuit Operation Description  
A buck converter contains a control block, a switching PFET connected between input and output, a synchronous  
rectifying NFET connected between the output and ground (BCKGND pin) and a feedback path. During the first  
portion of each switching cycle, the control block turns on the internal PFET switch. This allows current to flow  
from the input through the inductor to the output filter capacitor and load. The inductor limits the current to a  
ramp with a slope of  
VIN - VOUT  
L
(1)  
by storing energy in a magnetic field. During the second portion of each cycle, the control block turns the PFET  
switch off, blocking current flow from the input, and then turns the NFET synchronous rectifier on. The inductor  
draws current from ground through the NFET to the output filter capacitor and load, which ramps the inductor  
current down with a slope of  
-VOUT  
L
(2)  
The output filter stores charge when the inductor current is high, and releases it when low, smoothing the voltage  
across the load.  
8.3.2.3 PWM Operation  
During PWM operation the converter operates as a voltage-mode controller with input voltage feed forward. This  
allows the converter to achieve excellent load and line regulation. The DC gain of the power stage is proportional  
to the input voltage. To eliminate this dependence, feed forward voltage inversely proportional to the input  
voltage is introduced.  
8.3.2.4 Internal Synchronous Rectification  
While in PWM mode, the buck uses an internal NFET as a synchronous rectifier to reduce rectifier forward  
voltage drop and associated power loss. Synchronous rectification provides a significant improvement in  
efficiency whenever the output voltage is relatively low compared to the voltage drop across an ordinary rectifier  
diode.  
8.3.2.5 Current Limiting  
A current limit feature allows the converter to protect itself and external components during overload conditions.  
PWM mode implements current limiting using an internal comparator that trips at 1.5 A for Buck1 and at 1 A for  
Buck2 (typical). If the output is shorted to ground the device enters a timed current limit mode where the NFET is  
turned on for a longer duration until the inductor current falls below a low threshold, ensuring inductor current has  
more time to decay, thereby preventing runaway.  
8.3.2.6 PFM Operation  
At very light loads, the converter enters PFM mode and operates with reduced switching frequency and supply  
current to maintain high efficiency.  
The part automatically transitions into PFM mode when either of two conditions occurs for a duration of 32 or  
more clock cycles:  
A. The inductor current becomes discontinuous, or  
B. The peak PMOS switch current drops below the IMODE level  
VIN  
(Typically IMODE < 66 mA +  
)
160W  
(3)  
Copyright © 2007–2018, Texas Instruments Incorporated  
21  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
Feature Description (continued)  
During PFM operation, the converter positions the output voltage slightly higher than the nominal output voltage  
during PWM operation, allowing additional headroom for voltage drop during a load transient from light to heavy  
load. The PFM comparators sense the output voltage with the feedback pin and control the switching of the  
output FETs such that the output voltage ramps between 0.8% and 1.6% (typical) above the nominal PWM  
output voltage. If the output voltage is below the low PFM comparator threshold, the PMOS power switch is  
turned on. It remains on until the output voltage exceeds the ‘high’ PFM threshold or the peak current exceeds  
the IPFM level set for PFM mode. The typical peak current in PFM mode is:  
VIN  
IPFM = 66 mA +  
80W  
(4)  
Once the PMOS power switch is turned off, the NMOS power switch is turned on until the inductor current ramps  
to zero. When the NMOS zero-current condition is detected, the NMOS power switch is turned off. If the output  
voltage is below the high PFM comparator threshold (see Figure 31), the PMOS switch is again turned on and  
the cycle is repeated until the output reaches the desired level. Once the output reaches the high PFM threshold,  
the NMOS switch is turned on briefly to ramp the inductor current to zero and then both output switches are  
turned off and the part enters an extremely low power mode. Quiescent supply current during this sleep mode is  
less than 30 µA, which allows the part to achieve high efficiencies under extremely light load conditions. When  
the output drops below the low PFM threshold, the cycle repeats to restore the output voltage to approximately  
1.6% above the nominal PWM output voltage.  
If the load current increases during PFM mode (see Figure 31) causing the output voltage to fall below the ‘low2’  
PFM threshold, the part automatically transitions into fixed-frequency PWM mode.  
8.3.2.7 SW1, SW2 Operation  
SW1 and SW2 have selectable output voltages ranging from 0.8 V to 3.5 V (typical). Both SW1 and SW2 in the  
LP3907 are I2C register controlled and are enabled by default through the internal state machine of the device  
following a power-on event that moves the operating mode to the Active state. (See Flexible Power Sequencing  
of Multiple Power Supplies.) The SW1 and SW2 output voltages revert to default values when the power-on  
sequence has been completed. The default output voltage for each buck converter is factory programmable.  
(See Application and Implementation.)  
8.3.2.8 SW1, SW2 Control Registers  
SW1, SW2 can be enabled/disabled through the corresponding control register.  
The Modulation mode PWM/PFM is by default automatic and depends on the load as described above in the  
functional description. The modulation mode can be overridden by setting I2C bit to a logic 1 in the corresponding  
buck control register, forcing the buck to operate in PWM mode regardless of the load condition.  
High PFM Threshold  
PFM Mode at Light Load  
~1.016 * Vout  
Load current  
increases  
Low1 PFM Threshold  
~1.008 * Vout  
Current load  
increases,  
draws Vout  
towards  
Low2 PFM  
Threshold  
High PFM  
Voltage  
Threshold  
reached,  
go into  
Nfet on  
drains  
inductor  
current  
until  
I inductor = 0  
Low PFM  
Threshold,  
turn on  
Pfet on  
until  
Ipfm limit  
reached  
PFET  
Low2 PFM Threshold  
Vout  
sleep mode  
PWM Mode at  
Moderate to Heavy  
Loads  
Low2 PFM Threshold,  
switch back to PWMmode  
Figure 31. Operation in PFM Mode and Transfer to PWM Mode  
22  
Copyright © 2007–2018, Texas Instruments Incorporated  
 
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
Feature Description (continued)  
8.3.2.9 Soft Start  
The soft-start feature allows the power converter to gradually reach the initial steady state operating point, thus  
reducing start-up stresses and surges. The two LP3907 buck converters have a soft-start circuit that limits in-  
rush current during start-up. During start-up the switch current limit is increased in steps. Soft start is activated  
only if EN goes from logic low to logic high after VIN reaches 2.8V. Soft start is implemented by increasing switch  
current limit in steps of 180 mA, 300 mA, and 720 mA for Buck1; 161 mA, 300 mA, and 536 mA for Buck2  
(typical switch current limit). The start-up time thereby depends on the output capacitor and load current  
demanded at start-up.  
8.3.2.10 Low Dropout Operation  
The LP3907 can operate at 100% duty cycle (no switching; PMOS switch completely on) for low dropout support  
of the output voltage. In this way the output voltage is controlled down to the lowest possible input voltage. When  
the device operates near 100% duty cycle, output voltage ripple is approximately 25 mV. The minimum input  
voltage needed to support the output voltage is:  
VIN, MIN = ILOAD × (RDSON, PFET + RINDUCTOR) + VOUT  
where  
ILOAD = Load current  
RDSON, PFET = Drain to source resistance of PFET switch in the triode region  
RINDUCTOR = Inductor resistance  
(5)  
8.3.2.11 Flexible Power Sequencing of Multiple Power Supplies  
The LP3907 provides several options for power on sequencing. The two bucks can be individually controlled with  
ENSW1 and ENSW2. The two LDOs can also be individually controlled with ENLDO1 and ENLDO2.  
If the user desires a set power on sequence, the chip is programmable through I2C and raise EN_T from LOW to  
HIGH to activate the power on sequencing.  
8.3.2.12 Power-Up Sequencing Using the EN_T Function  
EN_T assertion causes the LP3907 to emerge from Standby mode to Full Operation mode at a preset timing  
sequence. By default, the enables for the LDOs and Bucks (ENLDO1, ENLDO2, EN_T, ENSW1, ENSW2) are  
500 KΩ internally pulled down, which causes the part to stay OFF until enabled. If the user wishes to use the  
preset timing sequence to power on the regulators, transition the EN_T pin from Low to High. Otherwise, simply  
tie the enables of each specific regulator HIGH to turn on automatically.  
EN_T is edge triggered with rising edge signaling the chip to power on. The EN_T input is deglitched, and the  
default is set at 1 ms. As shown in Figure 32 and Figure 33, a rising EN_T edge starts a power-on sequence,  
while a falling EN_T edge starts a shutdown sequence. If EN_T is high, toggling the external enables of the  
regulators has no effect on the chip.  
The regulators can also be programmed through I2C to turn on and off. By default, I2C enables for the regulators  
turned ON.  
The regulators are on following the pattern below:  
Regulators on = (I2C enable) AND (External pin enable OR EN_T high).  
NOTE  
The EN_T power-up sequencing may also be employed immediately after VIN is applied to  
the device. However, VIN must be stable for approximately 8 ms minimum before EN_T be  
asserted high to ensure internal bias, reference, and the Flexible POR timing are  
stabilized. This initial EN_T delay is necessary only upon first time device power on for  
power sequencing function to operate properly. If the device is powered, the EN_T logic  
must be stable for 12 ms minimum before switching state.  
Copyright © 2007–2018, Texas Instruments Incorporated  
23  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
Feature Description (continued)  
2
I C  
Regulator ON  
Ext_Enable  
Pins  
0
1
Start Programmed  
Timing Sequence  
EN_T  
Figure 32. Power Rail Enable Logic  
EN_T  
t
1
Vout Buck1  
Vout Buck2  
t
2
t
3
Vout LDO1  
Vout LDO2  
t
4
Figure 33. LP3907 Default Power-Up Sequence  
Table 5. Power-On Timing Specification  
DESCRIPTION  
MIN  
NOM  
TYP  
UNIT  
ms  
t1  
t2  
t3  
t4  
Programmable delay from EN_T assertion to VCC_Buck1 On  
Programmable delay from EN_T assertion to VCC_Buck2 On  
Programmable delay from EN_T assertion to VCC_LDO1 On  
Programmable delay from EN_T assertion to VCC_LDO2 On  
1.5  
2
ms  
3
ms  
6
ms  
EN_T  
Vout Buck1  
t
1
Vout Buck2  
Vout LDO1  
t
2
t
3
Vout LDO2  
t
4
Figure 34. LP3907 Default Power-Off Sequence  
24  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
Table 6. Power-Off Timing Specification  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
ms  
t1  
t2  
t3  
t4  
Programmable delay from EN_T deassertion to VCC_Buck1 Off  
Programmable delay from EN_T deassertion to VCC_Buck2 Off  
Programmable delay from EN_T deassertion to VCC_LDO1 Off  
Programmable delay from EN_T deassertion to VCC_LDO2 Off  
1.5  
2
ms  
3
ms  
6
ms  
8.3.3 Flexible Power-On Reset (Power Good with Delay)  
The LP3907 is equipped with an internal power-on-reset (POR) circuit which monitors the output voltage levels  
on Bucks 1 and 2. The nPOR is an open drain logic output which is logic LOW when either of the buck outputs  
are below 91% of the rising value, or when one or both outputs fall below 82% of the desired value. The time  
delay between output voltage level and nPOR is enabled is (50 µs, 50 ms, 100 ms, 200 ms) 50 ms by default.  
The system designer can choose the external pullup resistor (that is, 100 k) for the nPOR pin.  
t2  
t1  
Case1  
EN1  
EN2  
RDY1  
RDY2  
nPOR  
0V  
Counter  
delay  
t2  
t1  
Case2  
EN1  
EN2  
RDY1  
0V  
RDY2  
nPOR  
Counter  
delay  
t2  
t1  
Case3  
EN1  
EN2  
RDY1  
RDY2  
nPOR  
Counter  
delay  
Figure 35. nPOR with Counter Delay  
Copyright © 2007–2018, Texas Instruments Incorporated  
25  
 
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
Figure 35 shows the simplest application of the POR, where both switcher enables are tied together. In Case 1,  
EN1 causes nPOR to transition LOW and triggers the nPOR delay counter. If the power supply for Buck2 does  
not come on within that period, nPOR stays LOW, indicating a power fail mode. Case 2 indicates the vice versa  
scenario if Buck1 supply did not come on. In both cases the nPOR remains LOW.  
Case 3 shows a typical application of the POR, where both switcher enables are tied together. Even if RDY1  
ramps up slightly faster than RDY2 (or vice versa), then nPOR signal triggers a programmable delay before  
going HIGH, as explained below.  
t0 t1  
t2  
t3  
t4  
EN1  
RDY1  
Counter  
delay  
Counter  
delay  
nPOR  
EN2  
RDY2  
Figure 36. Faults Occurring in Counter Delay After Start-Up  
Figure 36 details the power good with delay with respect to the enable signals EN1, and EN2. The RDY1, RDY2  
are internal signals derived from the output of two comparators. Each comparator has been trimmed as follows:  
COMPARATOR LEVEL  
BUCK SUPPLY LEVEL  
Greater than 94%  
Less than 85%  
HIGH  
LOW  
The circuits for EN1 and RDY1 is symmetrical to EN2 and RDY2, so each reference to EN1 and RDY1 also  
works for EN2 and RDY2 and vice versa.  
If EN1 and RDY1 signals are High at time t1, then the RDY1 signal rising edge triggers the programmable delay  
counter (50 μs, 50 ms, 100 ms, 200 ms). This delay forces nPOR LOW between time interval t1 and t2. nPOR is  
then pulled high after the programmable delay is completed. Now if EN2 and RDY2 are initiated during this  
interval the nPOR signal ignores this event.  
If either RDY1or RDY2 were to go LOW at t3 then the programmable delay is triggered again.  
26  
Copyright © 2007–2018, Texas Instruments Incorporated  
 
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
t0 t1  
t2  
t3  
t4  
EN1  
RDY1  
nPOR  
Counter  
delay  
Case 1:  
EN2  
RDY2  
Mask Time  
nPOR  
Mask  
Window  
Counter  
delay  
Case 2:  
EN2  
RDY2  
0V  
Mask  
Window  
Mask Time  
Counter  
delay  
nPOR  
Figure 37. nPOR Mask Window  
If the EN1 and RDY1 are initiated in normal operation, then nPOR is asserted and deasserted as explained in  
Figure 37.  
Case 1 shows the case where EN2 and RDY2 are initiated after triggered programmable delay. To prevent the  
nPOR being asserted again, a masked window (5 ms) counter delay is triggered off the EN2 rising edge. nPOR  
is still held HIGH for the duration of the mask, whereupon the nPOR status afterwards depends on the status of  
both RDY1 and RDY2 lines.  
Case 2 shows the case where EN2 is initiated after the RDY1 triggered programmable delay, but RDY2 never  
goes HIGH (Buck2 never turns on). Normal operation operation of nPOR occurs wilth respect to EN1 and RDY1,  
and the nPOR signal is held HIGH for the duration of the mask window. We see that nPOR goes LOW after the  
masking window has timed out because it is now dependent on RDY1 and RDY2, where RDY2 is LOW.  
Copyright © 2007–2018, Texas Instruments Incorporated  
27  
 
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
Delay Mask Counter  
EN1  
RDY1  
S
R
Q
Q
EN2  
nPOR  
RDY2  
Delay  
POR  
Delay Mask Counter  
Figure 38. Design Implementation of the Flexible Power-On Reset  
An internal power-on reset of the device is used with EN1, and EN2 to produce a reset signal (LOW) to the delay  
timer nPOR. EN1 and RDY1 or EN2 and RDY2 are used to generate the set signal (HIGH) to the delay timer. S  
= R = 1 never occurs. The mask timers are triggered off EN1 and EN2 which are gated with RDY1, and RDY2 to  
generate outputs to the final AND gate to generate the nPOR.  
8.3.4 Undervoltage Lockout  
The LP3907 features an undervoltage lockout circuit. The function of this circuit is to continuously monitor the  
raw input supply voltage (VINLDO12) and automatically disables the four voltage regulators whenever this supply  
voltage is less than 2.8 VDC.  
The circuit incorporates a bandgap based circuit that establishes the reference used to determine the 2.8 VDC  
trip point for a VIN OK – Not OK detector. This VIN OK signal is then used to gate the enable signals to the four  
regulators of the device. When VINLDO12 is greater than 2.8 VDC the four enables control the four regulators,  
when VINLDO12 is less than 2.8 VDC the four regulators are disabled by the VIN detector being in the “Not OK”  
state. The circuit has built-in hysteresis to prevent chattering occurring.  
8.4 Device Functional Modes  
8.4.1 Shutdown Mode  
During shutdown the PFET switch, reference, control and bias circuitry of the converters are turned off. The  
NFET switch is on in shutdown to discharge the output. When the converter is enabled, soft start is activated. It  
is recommended to disable the converter during the system power up and undervoltage conditions when the  
supply is less than 2.8 V.  
28  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
8.5 Programming  
8.5.1 I2C-Compatible Serial Interface  
8.5.1.1 I2C Signals  
The LP3907features an I2C-compatible serial interface, using two dedicated pins: SCL and SDA for I2C clock and  
data respectively. Both signals need a pullup resistor according to the I2C specification. The LP3907 interface is  
an I2C slave that is clocked by the incoming SCL clock.  
Signal timing specifications are according to the I2C bus specification. The maximum bit rate is 400kbit/s. See I2C  
specification from NXP Semiconductors for further details.  
8.5.1.2 I2C Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL); for example, the state  
of the data line can only be changed when CLK is LOW.  
2
I C_SCL  
2
I C_SDA  
data  
change  
allowed  
data  
valid  
data  
change  
allowed  
data  
valid  
data  
change  
allowed  
Figure 39. I2C Signals: Data Validity  
8.5.1.3 I2C Start and Stop Conditions  
START and STOP bits classify the beginning and the end of the I2C session. START condition is defined as the  
SDA signal transitioning from HIGH to LOW while the SCL line is HIGH. STOP condition is defined as the SDA  
2
transitioning from LOW to HIGH while the SCL is HIGH. The C master always generates START and STOP  
bits. The I2C bus is considered to be busy after START condition and free after STOP condition. During data  
transmission, I2C master can generate repeated START conditions. First START and repeated START  
conditions are equivalent, function-wise.  
2
I C_SDA  
2
I C_SCL  
S
P
START condition  
STOP condition  
Figure 40. Start and Stop Conditions  
8.5.1.4 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledged related clock pulse is generated  
by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver  
must pull down the SDA line during the 9th clock pulse, signifying acknowledgment. A receiver which has been  
addressed must generate an acknowledgment (“ACK”) after each byte has been received.  
After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (R/W).  
Copyright © 2007–2018, Texas Instruments Incorporated  
29  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
Programming (continued)  
NOTE  
According to industry I2C standards for 7-bit addresses, the MSB of an 8-bit address is  
removed, and communication actually starts with the 7th most significant bit. For the  
eighth bit (LSB), a “0” indicates a WRITE and a “1” indicates a READ. The second byte  
selects the register to which the data is written. The third byte contains data to write to the  
selected register.  
The LP3907 has factory-programmed I2C addresses. The WQFN chip has a chip address of 60'h, while the  
DSBGA chip has a chip address of 61'h.  
MSB  
LSB  
ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0  
R/W  
bit0  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
1
1
0
0
0
0
0
I2C SLAVE address (chip address)  
Figure 41. I2C Chip Address (see note above)  
ack from slave  
ack from slave  
ack from slave  
start msb Chip Address lsb  
w
ack msb Register Add lsb ack msb  
DATA  
lsb ack stop  
SCL  
SDA  
1
3 4 5 6  
2
7
8
9
1 2 3 ...  
start  
id = h‘60  
w
ack  
addr = h‘02  
ack  
address h‘AA data  
ack stop  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by either master or slave)  
rs = repeated start  
id = LP3907 WQFN chip address: 0x60; DSBGA chip address: 0x61  
Figure 42. I2C Write Cycle  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in  
the Read Cycle waveform.  
ack from slave  
ack from slave repeated start  
ack from slave data from slave ack from master  
start msb Chip Address lsb  
w
ack msb Register Add lsb ack rs  
msb Chip Address lsb  
r
ack msb  
DATA  
lsb ack stop  
.
SCL  
SDA  
start  
id = h‘60  
w
ack  
register addr = h‘10  
ack rs  
id = h‘60  
r
ack  
data addr h‘6A  
ack stop  
Figure 43. I2C Read Cycle  
30  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
Programming (continued)  
8.5.2 Factory Programmable Options  
Table 7 shows options EPROM programmed during final test of the LP3907. The system designer that needs  
specific options is advised to contact the TI sales office.  
Table 7. Factory-Programmable Options  
FACTORY PROGRAMMABLE OPTIONS  
Enable delay for power on  
CURRENT VALUE  
code 010 (see Control 1 Register (SCR1) 0x07)  
SW1 ramp speed  
SW2 ramp speed  
8 mV/µs  
8 mV/µs  
The I2C Chip ID address is offered as a metal mask option. The current address for the WQFN chip equals 0x60,  
while the address for the DSBGA chip is 0x61.  
Copyright © 2007–2018, Texas Instruments Incorporated  
31  
 
 
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
8.6 Register Maps  
8.6.1 LP3907 Control Registers  
REGISTER  
ADDRESS  
REGISTER  
NAME  
READ/WRITE  
REGISTER DESCRIPTION  
0x02  
0x07  
0x10  
0x11  
0x20  
0x23  
0x24  
0x25  
0x29  
0x2A  
0x2B  
0x38  
0x39  
0x3A  
ICRA  
SCR1  
R
Interrupt Status Register A  
System Control 1 Register  
R/W  
R/W  
R
BKLDOEN  
BKLDOSR  
VCCR  
Buck and LDO Output Voltage Enable Register  
Buck and LDO Output Voltage Status Register  
Voltage Change Control Register 1  
Buck1 Target Voltage 1 Register  
Buck1 Target Voltage 2 Register  
Buck1 Ramp Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
B1TV1  
B1TV2  
B1RC  
B2TV1  
Buck2 Target Voltage 1 Register  
Buck2 Target Voltage 2 Register  
Buck2 Ramp Control  
B2TV2  
B2RC  
BFCR  
Buck Function Register  
LDO1VCR  
LDO2VCR  
LDO1 Voltage Control Registers  
LDO2 Voltage Control Registers  
8.6.1.1 Interrupt Status Register (ISRA) 0x02  
This register informs the System Engineer of the temperature status of the chip.  
D7-D2  
D1  
D0  
Name  
Access  
Data  
Temp 125°C  
R
Reserved  
0
Status bit for thermal warning  
PMIC T>125°C  
0 – PMIC Temp. < 125°C  
1 – PMIC Temp. > 125°C  
Reserved  
0
Reset  
0
8.6.1.2 Control 1 Register (SCR1) 0x07  
This register allows the user to select the preset delay sequence for power-on timing, to switch between PFM  
and PWM mode for the bucks, and also to select between an internal and external clock for the bucks.  
D7  
D6-D4  
EN_DLY  
D3  
D2  
D1  
D0  
Name  
Access  
Data  
FPWM2  
R/W  
FPWM1  
R/W  
ECEN  
R/W  
R/W  
Reserved  
Selects the preset  
delay sequence from  
EN_T assertion  
Reserved  
Buck2 PWM /PFM Mode Buck 1 PWM /PFM  
Reserved  
select  
Mode select  
0 – Auto Switch PFM -  
PWM operation  
1 – PWM Mode Only  
0 – Auto Switch PFM -  
PWM operation  
1 – PWM Mode Only  
(shown below)  
Reset  
0
Factory-Programmed  
Default  
1
Factory-Programmed  
Default  
Factory-Programmed  
Default  
0
32  
Copyright © 2007–2018, Texas Instruments Incorporated  
 
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
8.6.1.3 EN_DLY Preset Delay Sequence After EN_T Assertion  
DELAY (ms)  
EN_DLY<2:0>  
BUCK1  
BUCK2  
LDO1  
LDO2  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
1.5  
2
1
2
3
1
3
2
1
6
1
2
1.5  
1.5  
1.5  
1.5  
3
6
2
1
2
6
1.5  
2
2
1.5  
11  
2
3
8.6.1.4 Buck and LDO Output Voltage Enable Register (BKLDOEN) – 0x10  
This register controls the enables for the Bucks and LDOs.  
D7  
D6  
LDO2EN  
R/W  
D5  
D4  
LDO1EN  
R/W  
D3  
D2  
BK2EN  
D1  
D0  
BK1EN  
R/W  
Name  
Access  
Data  
R/W  
Reserved  
0 – Disable  
1 – Enable  
Reserved  
0 – Disable  
1 – Enable  
Reserved  
0 – Disable  
1 – Enable  
Reserved  
0 – Disable  
1 – Enable  
Reset  
0
1
1
1
0
1
0
1
8.6.1.5 Buck and LDO Status Register (BKLDOSR) – 0x11  
This register monitors whether the Bucks and LDOs meet the voltage output specifications.  
D7  
BKS_OK  
R
D6  
LDOS_OK  
R
D5  
LDO2_OK  
R
D4  
LDO1_OK  
R
D3  
D2  
BK2_OK  
D1  
D0  
Name  
Access  
Data  
BK1_OK  
R
R
0 – Buck 1-2  
Not Valid  
0 – LDO 1-2  
Not Valid  
0 – LDO2 Not  
Valid  
0 – LDO1 Not  
Valid  
Reserve 0 – Buck2 Not  
Reserve 0 – Buck1 Not  
d
Valid  
d
Valid  
1 – Bucks Valid 1 – LDOs Valid 1 – LDO2 Valid 1 – LDO1 Valid  
1 – Buck2 Valid  
1 – Buck1 Valid  
Reset  
0
0
0
0
0
0
0
0
8.6.1.6 Buck Voltage Change Control Register 1 (VCCR) – 0x20  
This register selects and controls the output target voltages for the buck regulators.  
D7-6  
D5  
D4  
D3-2  
D1  
D0  
Name  
Access  
Data  
B2VS  
R/W  
B2GO  
R/W  
B1VS  
R/W  
B1GO  
R/W  
Reserved  
Buck2 Target Voltage  
Select  
Buck2 Voltage Ramp  
CTRL  
Reserved  
Buck1 Target Voltage  
Select  
Buck1 Voltage Ramp  
CTRL  
0 – B2VT1  
0 – Hold  
0 – B1VT1  
0 – Hold  
1 – B2VT2  
1 – Ramp to B2VS  
selection  
1 – B1VT2  
1 – Ramp to B1VS  
selection  
Reset  
00  
0
0
00  
0
0
Copyright © 2007–2018, Texas Instruments Incorporated  
33  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
8.6.1.7 Buck1 Target Voltage 1 Register (B1TV1) – 0x23  
This register allows the user to program the output target voltage of Buck1.  
D7-D5  
D4-D0  
BK1_VOUT1  
Name  
Access  
Data  
R/W  
Reserved  
Buck1 Output Voltage (V)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
Ext Ctrl  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.00  
Reset  
000  
Factory-Programmed Default  
34  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
8.6.1.8 Buck1 Target Voltage 2 Register (B1TV2) – 0x24  
This register allows the user to program the output target voltage of Buck1.  
D7-D5  
D4-D0  
BK1_VOUT2  
Name  
Access  
Data  
R/W  
Reserved  
Buck1 Output Voltage (V)  
(1)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
Ext Ctrl  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.00  
Reset  
000  
Factory-Programmed Default  
(1) If using Ext Ctrl, contact TI Sales for support.  
Copyright © 2007–2018, Texas Instruments Incorporated  
35  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
8.6.1.9 Buck1 Ramp Control Register (B1RC) - 0x25  
This register allows the user to program the rate of change between the target voltages of Buck1.  
D7  
- - - -  
D6-D4  
- - - -  
D3-D0  
B1RS  
R/W  
Name  
Access  
Data  
- - - -  
- - - -  
Reserved  
Reserved  
Data Code  
4h'0  
Ramp Rate mV/us  
Instant  
4h'1  
1
2
4h'2  
4h'3  
3
4h'4  
4
4h'5  
5
4h'6  
6
4h'7  
7
4h'8  
8
4h'9  
9
4h'A  
10  
10  
4h'B - 4h'F  
Reset  
0
010  
1000  
36  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
8.6.1.10 Buck2 Target Voltage 1 Register (B2TV1) – 0x29  
This register allows the user to program the output target voltage of Buck2.  
D7-D5  
D4-D0  
Name  
Access  
Data  
BK2_VOUT1  
R/W  
Reserved  
Buck2 Output Voltage (V)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
Ext Ctrl  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.5  
Reset  
000  
Factory-Programmed Default  
Copyright © 2007–2018, Texas Instruments Incorporated  
37  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
8.6.1.11 Buck2 Target Voltage 2 Register (B2TV2) – 0x2A  
This register allows the user to program the output target voltage of Buck2.  
D7-5  
D4-0  
BK2_VOUT2  
Name  
Access  
Data  
R/W  
Reserved  
Buck2 Output Voltage (V)  
(1)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
Ext Ctrl  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.5  
Reset  
000  
Factory-Programmed Default  
(1) If using Ext Ctrl, contact TI Sales for support.  
38  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
8.6.1.12 Buck2 Ramp Control Register (B2RC) - 0x2B  
This register allows the user to program the rate of change between the target voltages of Buck2.  
D7  
- - - -  
D6-D4  
- - - -  
D3-D0  
B2RS  
R/W  
Name  
Access  
Data  
- - - -  
- - - -  
Reserved  
Reserved  
Data Code  
4h'0  
Ramp Rate mV/us  
Instant  
4h'1  
1
2
4h'2  
4h'3  
3
4h'4  
4
4h'5  
5
4h'6  
6
4h'7  
7
4h'8  
8
4h'9  
9
4h'A  
10  
10  
4h'B - 4h'F  
Reset  
0
010  
1000  
8.6.1.13 Buck Function Register (BFCR) – 0x38  
This register allows the Buck switcher clock frequency to be spread across a wider range, allowing for less  
Electro-magnetic Interference (EMI). The spread spectrum modulation frequency refers to the rate at which the  
frequency ramps up and down, centered at 2 MHz.  
Spread Spectrum  
frequency  
Peak frequency deviation  
2 kHz triangle  
wave  
10 kHz triangle  
wave  
2 MHz  
Time  
Figure 44. Spread Spectrum Modulation Frequency  
This register also allows dynamic scaling of the nPOR Delay Timing. The LP3907 is equipped with an internal  
POR circuit which monitors the output voltage levels on the buck regulators, allowing the user to more actively  
monitor the power status of the chip.  
The UVLO feature continuously monitor the raw input supply voltage (VINLDO12) and automatically disables the  
four voltage regulators whenever this supply voltage is less than 2.8 VDC. This prevents the user from damaging  
the power source (such as battery), but can be disabled if the user wishes.  
Note that if the supply to VDD_M is close to 2.8 V with a heavy load current on the regulators, the chip is in  
danger of powering down due to UVLO. If the user wishes to keep the chip active under those conditions, enable  
the Bypass UVLO feature.  
Copyright © 2007–2018, Texas Instruments Incorporated  
39  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
D0  
D7-D5  
D4  
D3-D2  
D1  
BK_SLOMOD  
Name  
Access  
Data  
BP_UVLO  
R/W  
TPOR  
R/w  
BK_SSEN  
R/W  
R/W  
Reserved  
Bypass UVLO  
monitoring  
nPOR Delay Timing  
00 - 50 µs  
Buck Spread Spectrum  
Modulation  
Spread Spectrum  
Function Output  
0 - Allow UVLO  
1 - Disable UVLO  
01 - 50 ms  
10 - 100 ms  
11 - 200 ms  
0 – 10 kHz triangular wave 0 – Disabled  
1 – 2 kHz triangular wave  
1 – Enabled  
Reset  
000  
Factory-Programmed  
Default  
01  
1
0
8.6.1.14 LDO1 Control Register (LDO1VCR) – 0x39  
This register allows the user to program the output target voltage of LDO 1.  
For “JJ11” voltage options LDO1 has a fixed output voltage of 2.85 V.  
D7-D5  
D4-D0  
LDO1_OUT  
R/W  
Name  
Access  
Data  
Reserved  
LDO1 Output voltage (V)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.5  
Reset  
000  
Factory-Programmed Default  
40  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
8.6.1.15 LDO2 Control Register (LDO2VCR) – 0x3A  
This register allows the user to program the output target voltage of LDO 2.  
For “JJ11” voltage options LDO2 has a fixed output voltage of 2.85 V.  
D7-D5  
D4-D0  
Name  
Access  
Data  
LDO2_OUT  
R/W  
Reserved  
LDO2 Output voltage (V)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.5  
Reset  
000  
Factory-Programmed Default  
Copyright © 2007–2018, Texas Instruments Incorporated  
41  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LP3907 provides three control methods to turn ON/OFF four power rails:  
1. EN_T Control: Provides pre-defined power up/down sequence. (Note: VIN/Battery voltage must be settled  
approximately 8 ms, minimum, before EN_T be asserted high).  
2. Individual GPIO/EN pin control: four EN pins provide max control flexibility without I2C.  
3. I2C control: besides simple ON/OFF control, also provides access to all the user programmable registers.  
See Register Maps for details.  
9.2 Typical Application  
VINLDO12  
EN_T  
VDD  
100k  
1 mF  
ENLDO1  
ENLDO2  
nPOR  
VIN1  
ENSW1  
ENSW2  
LDO1  
10 mF  
2.2 mH  
SW1  
FB1  
10 mF  
0.47 mF  
VINLDO1  
VINLDO2  
LDO2  
GND_SW1  
1 mF  
1 mF  
LP3907  
VIN2  
10 mF  
2.2 mH  
0.47 mF  
SW2  
FB2  
SDA  
SCL  
10 mF  
GND_SW2  
AVDD  
GND_L  
GND_C  
DAP  
1 mF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 45. LP3907 Typical Application  
9.2.1 Design Requirements  
Ten ceramic capacitors and two inductors are required for this application. These three external components  
must be selected very carefully for property operation. See Detailed Design Procedure.  
42  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
Typical Application (continued)  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LP3907 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Component Selection  
9.2.2.2.1 Inductors for SW1 And SW2  
There are two main considerations when choosing an inductor; the inductor must not saturate and the inductor  
current ripple is small enough to achieve the desired output voltage ripple. Care must be taken when reviewing  
the different saturation current ratings that are specified by different manufacturers. Saturation current ratings are  
typically specified at 25ºC, so ratings at maximum ambient temperature of the application must be requested  
from the manufacturer.  
There are two methods to choose the inductor saturation current rating:  
9.2.2.2.1.1 Method 1:  
The saturation current is greater than the sum of the maximum load current and the worst case average-to-peak  
inductor current. This can be written as follows:  
Isat > Ioutmax + Iripple  
VIN - VOUT  
2L  
x VOUT  
1
≈ ’  
«
x
where  
Iripple  
= « f ◊  
V
◊ «  
IN  
where  
IRIPPLE = Maximum load current  
IOUTMAX = Average to peak inductor current  
VIN = Maximum input voltage to the buck  
L = Min inductor value including worse case tolerances (30% drop can be considered for method 1)  
f = Minimum switching frequency (1.6 MHz)  
VOUT = Buck output voltage  
(6)  
9.2.2.2.1.2 Method 2:  
A more conservative and recommended approach is to choose an inductor that has saturation current rating  
greater than the maximum current limit of 1250 mA for Buck1 and 1750 mA for Buck2.  
Given a peak-to-peak current ripple (IPP) the inductor needs to be at least  
VIN - VOUT  
IPP  
x VOUT  
≈ ’  
1
« f ◊  
«
x
L í  
V
◊ «  
IN  
(7)  
43  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
Typical Application (continued)  
space  
Table 8. Suggested Inductor Values  
INDUCTOR  
VALUE (µH)  
2.2  
DESCRIPTION  
NOTES  
DCR: 70 mΩ  
LSW1,2  
SW1,2 inductor  
9.2.2.2.2 External Capacitors  
The regulators on the LP3907 require external capacitors for regulator stability. These are specifically designed  
for portable applications requiring minimum board space and smallest components. These capacitors must be  
correctly selected for good performance.  
9.2.2.3 LDO Capacitor Selection  
9.2.2.3.1 Input Capacitor  
An input capacitor is required for stability. It is recommended that a 1-μF capacitor be connected between the  
LDO input pin and ground (this capacitance value may be increased without limit).  
This capacitor must be located a distance of not more than 1 cm from the input pin and returned to a clean  
analog ground. Any good quality ceramic, tantalum, or film capacitor may be used at the input.  
Important: Tantalum capacitors can suffer catastrophic failures due to surge currents when connected to a low  
impedance source of power (such as a battery or a very large capacitor). If a tantalum capacitor is used at the  
input, it must be ensured by the manufacturer to have a surge current rating sufficient for the application.  
There are no requirements for the equivalent series resistance (ESR) on the input capacitor, but tolerance and  
temperature coefficient must be considered when selecting the capacitor to ensure the capacitance remains  
approximately 1 μF over the entire operating temperature range.  
9.2.2.3.2 Output Capacitor  
The LDOs on the LP3907 are designed specifically to work with very small ceramic output capacitors. A 0.47-µF  
ceramic capacitor (temperature types Z5U, Y5V or X7R) with ESR between 5 mto 500 m, is suitable in the  
application circuit.  
It is also possible to use tantalum or film capacitors at the device output, COUT (or VOUT), but these are not as  
attractive for reasons of size and cost.  
The output capacitor must meet the requirement for the minimum value of capacitance and also have an ESR  
value that is within the range 5 mto 500 mfor stability.  
9.2.2.3.3 Capacitor Characteristics  
The LDOs are designed to work with ceramic capacitors on the output to take advantage of the benefits they  
offer. For capacitance values in the range of 0.47 µF to 4.7 µF, ceramic capacitors are the smallest, least  
expensive and have the lowest ESR values, thus making them best for eliminating high frequency noise. The  
ESR of a typical 1-µF ceramic capacitor is in the range of 20 mto 40 m, which easily meets the ESR  
requirement for stability for the LDOs.  
For both input and output capacitors, careful interpretation of the capacitor specification is required to ensure  
correct device operation. The capacitor value can change greatly, depending on the operating conditions and  
capacitor type.  
In particular, the output capacitor selection should take account of all the capacitor parameters, to ensure that the  
specification is met within the application. The capacitance can vary with DC bias conditions as well as  
temperature and frequency of operation. Capacitor values will also show some decrease over time due to aging.  
The capacitor parameters are also dependent on the particular case size, with smaller sizes giving poorer  
performance figures in general. As an example, Figure 46 is a typical graph comparing different capacitor case  
sizes.  
44  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
0603, 10V, X5R  
100%  
80%  
60%  
40%  
20%  
0402, 6.3V, X5R  
0
1.0  
2.0  
3.0  
4.0  
5.0  
DC BIAS (V)  
Figure 46. Graph Showing Typical Variation in Capacitance vs. DC Bias  
As shown in the graph, increasing the DC Bias condition can result in the capacitance value that falls below the  
minimum value given in the recommended capacitor specifications table. Note that the graph shows the  
capacitance out of spec for the 0402 case size capacitor at higher bias voltages. It is therefore recommended  
that the capacitor manufacturers' specifications for the nominal value capacitor are consulted for all conditions,  
as some capacitor sizes (for example, 0402) may not be suitable in the actual application.  
The ceramic capacitor’s capacitance can vary with temperature. The capacitor type X7R, which operates over a  
temperature range of 55°C to 125°C, only varies the capacitance to within ±15%. The capacitor type X5R has a  
similar tolerance over a reduced temperature range of 55°C to 85°C. Many large value ceramic capacitors,  
larger than 1 µF are manufactured with Z5U or Y5V temperature characteristics. Their capacitance can drop by  
more than 50% as the temperature varies from 25°C to 85°C. Therefore, X7R is recommended over Z5U and  
Y5V in applications where the ambient temperature changes significantly above or below 25°C.  
Tantalum capacitors are less desirable than ceramic for use as output capacitors because they are more  
expensive when comparing equivalent capacitance and voltage ratings in the 0.47-µF to 4.7-µF range.  
Another important consideration is that tantalum capacitors have higher ESR values than equivalent size  
ceramics. This means that while it may be possible to find a tantalum capacitor with an ESR value within the  
stable range, it would have to be larger in capacitance (which means bigger and more costly) than a ceramic  
capacitor with the same ESR value. Note, also, that the ESR of a typical tantalum increases about 2:1 as the  
temperature goes from 25°C down to 40°C, so some guard band must be allowed.  
9.2.2.3.4 Input Capacitor Selection for SW1 And SW2  
A ceramic input capacitor of 10 µF, 6.3 V is sufficient for the magnetic DC-DC converters. Place the input  
capacitor as close to the input of the device as possible. A large value may be used for improved input voltage  
filtering. The recommended capacitor types are X7R or X5R. Y5V type capacitors should not be used. DC bias  
characteristics of ceramic capacitors must be considered when selecting case sizes like 0805 and 0603. The  
input filter capacitor supplies current to the PFET switch of the DC-DC converter in the first half of each cycle  
and reduces voltage ripple imposed on the input power source. A ceramic capacitor’s low ESR provides the best  
noise filtering of the input voltage spikes due to fast current transients. A capacitor with sufficient ripple current  
rating must be selected. The Input current ripple can be calculated as:  
r2  
VOUT  
«
(Vin œ Vout) x Vout  
Irms = Ioutmax  
1 +  
where  
r =  
VIN  
12  
L x f x Ioutmax x Vin  
(8)  
The worse case is when VIN = 2 VOUT  
.
Copyright © 2007–2018, Texas Instruments Incorporated  
45  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
9.2.2.3.5 Output Capacitor Selection for SW1, SW2  
A 10-μF, 6.3-V ceramic capacitor must be used on the output of the SW1 and SW2 magnetic DC-DC converters.  
The output capacitor must be mounted as close to the output of the device as possible. A large value may be  
used for improved input voltage filtering. The recommended capacitor types are X7R or X5R. Y5V type  
capacitors should not be used. DC bias characteristics of ceramic capacitors must be considered when selecting  
case sizes like 0805 and 0603. DC bias characteristics vary from manufacturer to manufacturer, and DC bias  
curves should be requested from them and analyzed as part of the capacitor selection process.  
The output filter capacitor of the magnetic DC-DC converter smooths out current flow from the inductor to the  
load, helps maintain a steady output voltage during transient load changes and reduces output voltage ripple.  
These capacitors must be selected with sufficient capacitance and sufficiently low ESD to perform these  
functions.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
ESR and can be calculated as follows:  
Iripple  
Vpp-c  
=
4 x f x C  
(9)  
Voltage peak-to-peak ripple due to ESR can be expressed as follows:  
VPP–ESR = 2 × IRIPPLE × RESR  
(10)  
Because the VPP-C and VPP-ESR are out of phase, the rms value can be used to get an approximate value of the  
peak-to-peak ripple:  
Vpp-c2 + Vpp-esr  
2
Vpp-rms  
=
(11)  
Note that the output voltage ripple is dependent on the inductor current ripple and the equivalent series  
resistance of the output capacitor (RESR). The RESR is frequency dependent as well as temperature dependent.  
Calculate the RESR with the applicable switching frequency and ambient temperature.  
Table 9. Suggested Capacitor Values  
CAPACITOR  
CLDO1  
MIN VALUE (µF)  
DESCRIPTION  
RECOMMENDED TYPE  
Ceramic, 6.3 V, X5R  
Ceramic, 6.3 V, X5R  
Ceramic, 6.3 V, X5R  
Ceramic, 6.3 V, X5R  
0.47  
0.47  
10  
LDO1 output capacitor  
LDO2 output capacitor  
SW1 output capacitor  
SW2 output capacitor  
CLDO2  
CSW1  
CSW2  
10  
9.2.2.3.6 I2C Pullup Resistor  
Both SDA and SCL pins must have pullup resistors connected to VINLDO12 or to the power supply of the I2C  
master. The values of the pullup resistors (typical approximately 1.8 k) are determined by the capacitance of  
the bus. A resistor that is too large, combined with a given bus capacitance, results in a rise time that would  
violate the maximum rise time specification. A too-small resistor results in a contention with the pulldown  
transistor on either slave(s) or master.  
9.2.2.4 Operation Without I2C Interface  
Operation of the LP3907 without the I2C interface is possible if the system can operate with default values for the  
LDO and Buck regulators (see Factory Programmable Options.) The I2C-less system must rely on the correct  
default output values of the LDO and Buck converters.  
9.2.2.4.1 High VIN High-Load Operation  
Additional information is provided when the IC is operated at extremes of VIN and regulator loads. These are  
described in terms of the junction temperature and, buck output ripple management.  
46  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
9.2.2.4.2 Junction Temperature  
The maximum junction temperature TJ-MAX-OP of 125°C of the device package Equation 12 through Equation 17  
demonstrate junction temperature determination, ambient temperature TA-MAX, and total chip power must be  
controlled to keep TJ below this maximum:  
TJ-MAX-OP = TA-MAX + (RθJA) [°C/ Watt] × (PD-MAX) [Watts]  
(12)  
Total device power dissipation PD-MAX is the sum of the individual power dissipation of the four regulators plus a  
minor amount for chip overhead. Chip overhead is Bias, TSD, and LDO analog.  
PD-MAX = PLDO1 + PLD02 + PBUCK1 + PBUCK2 + (0.0001A × VIN) [Watts].  
(13)  
(14)  
(15)  
Power dissipation of LDO1:  
PLDO1 = (VINLDO1 – VOUTLDO1) × IOUTLDO1 [V × A]  
Power dissipation of LDO2:  
PLDO2 = (VINLDO2 – VOUTLDO2) × IOUTLDO2 [V × A]  
Power dissipation of Buck1:  
PBuck1 = PIN – POUT = VOUTBuck1 × IOUTBuck1 × (1 – η1) / η1 [V × A]  
where  
η1 = efficiency of buck 1  
(16)  
(17)  
Power dissipation of Buck2:  
PBuck2 = PIN – POUT = VOUTBuck2 × IOUTBuck2 × (1 – η2) / η2 [V × A]  
where  
η2 = efficiency of Buck2  
where  
η is the efficiency for the specific condition taken from efficiency graphs.  
9.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
= 4.5V  
VIN  
V
= 2.8V  
IN  
= 5.5V  
VIN  
V
= 3.6V  
IN  
V
= 5.5V  
IN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
VOUT = 2 V  
L= 2.2 µH  
VOUT = 2 V  
L= 2.2 µH  
Figure 48. Efficiency vs Output Current  
(PWM-to-PFM Mode)  
Figure 47. Efficiency vs Output Current  
(Forced PWM Mode)  
Copyright © 2007–2018, Texas Instruments Incorporated  
47  
 
 
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
10 Power Supply Recommendations  
If the EN_T is used to power up the device instead individual ENs , then VIN must be stable for approximately 8  
ms minimum before EN_T be asserted high to ensure internal bias, reference, and the Flexible POR timing are  
stabilized. This initial EN_T delay is necessary only upon first time device power on for power sequencing  
function to operate properly.  
10.1 Analog Power Signal Routing  
All power inputs must be tied to the main VDD source (for example, battery), unless the user wishes to power it  
from another source. (that is, external LDO output).  
The analog VDD inputs power the internal bias and error amplifiers, so they must be tied to the main VDD. The  
analog VDD inputs must have an input voltage between 2.8 V and 5.5 V, as specified in the Recommended  
Operating Conditions (Bucks) table earlier in the data sheet.  
The other VINs (VINLDO1, VINLDO2) can have inputs lower than 2.8 V, as long as the input it higher than the  
programmed output (0.3 V).  
The analog and digital grounds must be tied together outside of the chip to reduce noise coupling.  
48  
Copyright © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
11 Layout  
11.1 DSBGA Layout Guidelines  
PC board layout is an important part of DC-DC converter design. Poor board layout can disrupt the performance  
of a DC-DC converter and surrounding circuitry by contributing to EMI, ground bounce, and resistive voltage loss  
in the traces. These can send erroneous signals to the DC-DC converter device, resulting in poor regulation or  
instability.  
Good layout for the LP3907 device bucks can be implemented by following a few simple design rules below.  
Refer to Figure 49 for top-layer board buck layout.  
1. Place the LP3907 bucks, inductor, and filter capacitors close together and make the traces short. The traces  
between these components carry relatively high switching currents and act as antennas. Following this rule  
reduces radiated noise. Special care must be given to place the input filter capacitor very close to the VIN  
and GND pin.  
2. Arrange the components so that the switching current loops curl in the same direction. During the first half of  
each cycle, current flows from the input filter capacitor through the LP3907 bucks and inductor to the output  
filter capacitor and back through ground, forming a current loop. In the second half of each cycle, current is  
pulled up from ground through the LP3907 bucks by the inductor to the output filter capacitor and then back  
through ground forming a second current loop. Routing these loops so the current curls in the same direction  
prevents magnetic field reversal between the two half-cycles and reduces radiated noise.  
3. Connect the ground pins of the LP3907 bucks and filter capacitors together using generous component-side  
copper fill as a pseudo-ground plane. Then, connect this to the ground-plane (if one is used) with several  
vias. This reduces ground-plane noise by preventing the switching currents from circulating through the  
ground plane. It also reduces ground bounce at the LP3907 bucks by giving it a low-impedance ground  
connection.  
4. Use wide traces between the power components and for power connections to the DC-DC converter circuit.  
This reduces voltage errors caused by resistive losses across the traces.  
5. Route noise sensitive traces, such as the voltage feedback path, away from noisy traces between the power  
components. The voltage feedback trace must remain close to the circuit of the LP3907 buck and must be  
direct but must be routed opposite to noisy components. This reduces EMI radiated onto the DC-DC  
converter’s own voltage feedback trace. A good approach is to route the feedback trace on another layer and  
to have a ground plane between the top layer and layer on which the feedback trace is routed. In the same  
manner for the adjustable part it is desired to have the feedback dividers on the bottom layer.  
6. Place noise sensitive circuitry, such as radio IF blocks, away from the DC-DC converter, CMOS digital blocks  
and other noisy circuitry. Interference with noise-sensitive circuitry in the system can be reduced through  
distance.  
For more detailed layout specifications and information, refer to AN-1112 DSBGA Wafer Level Chip Scale  
Package.  
Copyright © 2007–2018, Texas Instruments Incorporated  
49  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
11.2 Layout Example  
Figure 49. LP3907 DSBGA Layout Example  
11.3 Thermal Considerations of WQFN Package  
The LP3907 is a monolithic device with integrated power FETs. For that reason, it is important to pay special  
attention to the thermal impedance of the WQFN package and to the PCB layout rules in order to maximize  
power dissipation of the WQFN package.  
The WQFN package is designed for enhanced thermal performance and features an exposed die attach pad at  
the bottom center of the package that creates a direct path to the PCB for maximum power dissipation.  
Compared to the traditional leaded packages where the die attach pad is embedded inside the molding  
compound, the WQFN reduces one layer in the thermal path.  
The thermal advantage of the WQFN package is fully realized only when the exposed die attach pad is soldered  
down to a thermal land on the PCB board with thermal vias planted underneath the thermal land. Based on  
thermal analysis of the WQFN package, the junction-to-ambient thermal resistance (RθJA) can be improved by a  
factor of two when the die attach pad of the WQFN package is soldered directly onto the PCB with thermal land  
and thermal vias, as opposed to an alternative with no direct soldering to a thermal land. Typical pitch and outer  
diameter for thermal vias are 1.27 mm and 0.33 mm, respectively. Typical copper via barrel plating is 1 oz,  
although thicker copper may be used to further improve thermal performance. The LP3907 die attach pad is  
connected to the substrate of the device, and therefore, the thermal land and vias on the PCB board must be  
connected to ground (GND pin).  
For more information on board layout techniques, refer to AN–1187 Leadless Lead Frame Package (LLP) on  
http://www.ti.com. This application note also discusses package handling, solder stencil, and the assembly  
process.  
50  
版权 © 2007–2018, Texas Instruments Incorporated  
LP3907  
www.ti.com.cn  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
12.1.1.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 LP3907 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先键入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键参数设计,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
AN-1112 DSBGA 晶圆级芯片级封装  
AN–1187 无引线型引线框架封装 (LLP)》  
12.3 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 接收文档更新通知  
如需接收文档更新通知,请导航至ti.com 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产 品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2007–2018, Texas Instruments Incorporated  
51  
LP3907  
ZHCSEA3U JUNE 2007REVISED JANUARY 2018  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
52  
版权 © 2007–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP3907SQ-BJXQX/NOPB  
LP3907SQ-JXQX/NOPB  
LP3907SQ-PFX6W/NOPB  
LP3907SQ-PJXIX/NOPB  
LP3907SQ-TJXIP/NOPB  
LP3907TL-JJ11/NOPB  
LP3907TL-JJCP/NOPB  
LP3907TL-JSXS/NOPB  
LP3907TL-PLNTO/NOPB  
LP3907TLX-JJ11/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
RTW  
RTW  
RTW  
RTW  
RTW  
YZR  
YZR  
YZR  
YZR  
YZR  
24  
24  
24  
24  
24  
25  
25  
25  
25  
25  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
07BJXQX  
SN  
07-JXQX  
7PFX6W  
07PJXIX  
07TJXIP  
V013  
SN  
SN  
SN  
250  
250  
250  
250  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
V016  
V012  
V027  
3000 RoHS & Green  
V013  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP3907SQ-BJXQX/NOPB WQFN  
LP3907SQ-JXQX/NOPB WQFN  
LP3907SQ-PFX6W/NOPB WQFN  
LP3907SQ-PJXIX/NOPB WQFN  
LP3907SQ-TJXIP/NOPB WQFN  
LP3907TL-JJ11/NOPB DSBGA  
LP3907TL-JJCP/NOPB DSBGA  
LP3907TL-JSXS/NOPB DSBGA  
LP3907TL-PLNTO/NOPB DSBGA  
LP3907TLX-JJ11/NOPB DSBGA  
RTW  
RTW  
RTW  
RTW  
RTW  
YZR  
YZR  
YZR  
YZR  
YZR  
24  
24  
24  
24  
24  
25  
25  
25  
25  
25  
1000  
1000  
1000  
1000  
1000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
12.4  
12.4  
12.4  
12.4  
12.4  
8.4  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
8.0  
4.0  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
4.3  
4.3  
1.3  
4.3  
4.3  
1.3  
4.3  
4.3  
1.3  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
0.76  
0.76  
0.76  
0.76  
0.76  
250  
8.4  
8.0  
250  
8.4  
8.0  
250  
8.4  
8.0  
3000  
8.4  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP3907SQ-BJXQX/NOPB  
LP3907SQ-JXQX/NOPB  
LP3907SQ-PFX6W/NOPB  
LP3907SQ-PJXIX/NOPB  
LP3907SQ-TJXIP/NOPB  
LP3907TL-JJ11/NOPB  
LP3907TL-JJCP/NOPB  
LP3907TL-JSXS/NOPB  
LP3907TL-PLNTO/NOPB  
LP3907TLX-JJ11/NOPB  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
RTW  
RTW  
RTW  
RTW  
RTW  
YZR  
YZR  
YZR  
YZR  
YZR  
24  
24  
24  
24  
24  
25  
25  
25  
25  
25  
1000  
1000  
1000  
1000  
1000  
250  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
250  
250  
250  
3000  
Pack Materials-Page 2  
MECHANICAL DATA  
YZR0025xxx  
0.600±0.075  
D
E
TLA25XXX (Rev D)  
D: Max = 2.521 mm, Min = 2.46 mm  
E: Max = 2.521 mm, Min = 2.46 mm  
4215055/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
PACKAGE OUTLINE  
RTW0024A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.1) TYP  
EXPOSED  
THERMAL PAD  
7
12  
20X 0.5  
6
13  
2X  
25  
2.5  
2.6 0.1  
1
18  
0.3  
24X  
0.2  
24  
19  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
0.5  
0.3  
24X  
4222815/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.6)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(1.05)  
SYMM  
25  
(3.8)  
20X (0.5)  
(R0.05)  
TYP  
6
13  
(
0.2) TYP  
VIA  
7
12  
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222815/A 03/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.15)  
(0.675) TYP  
19  
(R0.05) TYP  
24  
24X (0.6)  
1
18  
24X (0.25)  
(0.675)  
TYP  
SYMM  
20X (0.5)  
25  
(3.8)  
6
13  
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222815/A 03/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LP3907SQ-PJXIX/NOPB

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | RTW | 24 | -40 to 85
TI

LP3907SQ-PXPP

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C Compatible Interface
INTERSIL

LP3907SQ-PXPP/NOPB

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C-Compatible Interface 24-WQFN -40 to 85
TI

LP3907SQ-TJXIP/NOPB

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | RTW | 24 | -40 to 85
TI

LP3907SQX-JIXI

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C Compatible Interface
INTERSIL

LP3907SQX-JXQX

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C Compatible Interface
NSC

LP3907SQX-JXQX

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C Compatible Interface
INTERSIL

LP3907SQX-PXPP

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C Compatible Interface
INTERSIL

LP3907TL-JJ11/NOPB

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | YZR | 25 | -40 to 85
TI

LP3907TL-JJCP/NOPB

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | YZR | 25 | -40 to 85
TI

LP3907TL-JSXS

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C Compatible Interface
INTERSIL

LP3907TL-JSXS/NOPB

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | YZR | 25 | -40 to 85
TI