LP3954TLX/NOPB [TI]

高级照明管理单元 | YZR | 36 | -30 to 85;
LP3954TLX/NOPB
型号: LP3954TLX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高级照明管理单元 | YZR | 36 | -30 to 85

驱动 接口集成电路
文件: 总59页 (文件大小:1005K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
Advanced Lighting Management Unit  
Check for Samples: LP3954  
1
FEATURES  
DESCRIPTION  
LP3954 is an advanced lighting management unit for  
handheld devices. It drives any phone lights including  
display backlights, RGB, keypad and camera flash  
LEDs. The boost DC-DC converter drives high  
current loads with high efficiency. White LED  
backlight drivers are high efficiency low voltage  
structures with excellent matching and automatic fade  
in/ fade out function. The new stand-alone command  
based RGB controller is feature rich and easy to  
configure. Built-in audio synchronization feature  
allows user to synchronize the color LEDs to audio  
input. Integrated high current driver can drive camera  
flash LED or motor/vibra. Internal ADC can be used  
for ambient light or temperature sensing. The flexible  
SPI/I2C interface allows easy control of LP3954.  
Small DSBGA package together with minimum  
number of external components is a best fit for  
handheld devices.  
2
Audio Synchronization for Color/RGB LEDs  
Command Based PWM Controlled RGB LED  
Drivers  
High Current Driver for Flash LED With Built-in  
Timing  
4+2 or 6 Low Voltage Constant Current White  
LED Drivers With Orogrammable 8-Bit  
Adjustment (0…25mA/LED)  
High Efficiency Boost DC-DC Converter  
SPI / I2C Compatible Interface  
Possibility for External PWM Dimming Control  
Possibility for Clock Synchronization for RGB  
Timing  
Ambient Light and Temperature Sensing  
Possibility  
Small Package – DSBGA, 3.0 x 3.0 x 0.6mm  
APPLICATIONS  
Cellular Phones  
PDAs, MP3 players  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2013, Texas Instruments Incorporated  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Typical Application  
D1  
L1 4.7 mH  
I
= 300...400 mA  
C
C
C
MAX  
V
OUT  
IN  
VDD  
10 mF  
= 4...5.3V  
10 mF  
100 nF  
OUT  
SW  
FB  
V
V
DD1  
C
VDDA  
DD2  
WLED1  
WLED2  
WLED3  
WLED4  
1 éF  
BATTERY  
V
DDA  
MAIN  
BACKLIGHT  
0...25 mA/LED  
C
REF  
V
REF  
100 nF  
R
RGB  
IRGB  
IRT  
R
RT  
SO  
SUB  
BACKLIGHT  
0...25 mA/LED  
WLED5  
WLED6  
SI  
SCK/SCL  
MCU  
SS/SDA  
SYNC/PWM  
LP3954  
R1  
G1  
B1  
RGB1  
Up to 40 mA/LED  
V
DDIO  
C
VDDIO  
IF_SEL  
100 nF  
EN_FLASH  
CAMERA  
R2  
RGB2  
Up to 40 mA/LED  
G2  
B2  
TEMP SENSOR  
or  
ASE  
LIGHT  
SENSOR  
FLASH  
Up to 300 mA  
FLASH  
IFLASH  
or  
or  
AUDIO INPUT  
GNDs  
R
FLASH  
2
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
Connection Diagrams  
DSBGA Package, 3.0 x 3.0 x 0.6mm, 0.5mm pitch Package Number YZR0036AAA or  
DSBGA Package, 3.0 x 3.0 x 0.65mm, 0.5mm pitch Package Number YPG0036AAA  
6
5
4
3
2
1
SW  
FB  
FLASH  
R1  
G1  
IRGB  
SO  
B1  
B1  
G1  
IRGB  
SO  
R1  
SS/SDA  
SI  
FLASH  
FB  
SW  
6
5
4
3
2
1
GND_  
SW  
SS/  
SDA  
GND_  
RGB  
GND_  
RGB  
GND_  
SW  
GND  
V
DDIO  
GND  
V
DDIO  
GND_  
WLED  
SYNC_  
PWM  
SYNC_  
PWM  
GND_  
WLED  
IFLASH  
SI  
R2  
G2  
B2  
R2  
G2  
B2  
IFLASH  
WLED  
5
WLED  
6
FLASH  
_EN  
SCK/  
SCL  
SCK/  
SCL  
FLASH  
_EN  
WLED  
6
WLED  
5
V
DD1  
V
DD1  
WLED  
3
WLED  
4
WLED  
4
WLED  
3
ASE  
IRT  
IF_SEL  
IF_SEL  
IRT  
ASE  
WLED  
1
WLED  
2
WLED  
2
WLED  
1
GNDA  
V
REF  
V
DDA  
V
DD2  
GNDA  
V
V
V
REF  
DD2  
DDA  
F
E
D
C
B
A
A
B
C
D
E
F
TOP VIEW  
BOTTOM VIEW  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Table 1. Pin Descriptions  
Pin No.  
6F  
Name  
SW  
Type  
Output  
Description  
Boost Converter Power Switch  
Boost Converter Feedback  
High Current Flash Output  
Red LED 1 Output  
6E  
6D  
6C  
6B  
6A  
5F  
FB  
Input  
FLASH  
R1  
Output  
Output  
G1  
Output  
Green LED 1 Output  
Blue LED 1 Output  
B1  
Output  
GND_SW  
GND  
Ground  
Ground  
Power  
Power Switch Ground  
Ground  
5E  
5D  
5C  
5B  
5A  
4F  
VDDIO  
SS/SDA  
IRGB  
Supply Voltage for Input/output Buffers and Drivers  
Slave Select (SPI), Serial Data In/Out (I2C)  
Bias Current Set Resistor for RGB Drivers  
Ground for RGB Currents  
Logic Input/Output  
Input  
GND_RGB  
GND_WLED  
IFLASH  
SYNC_PWM  
SI  
Ground  
Ground  
Input  
Ground for WLED Currents  
High Current Flash Current Set Resistor  
External PWM Control for LEDs or External Clock for RGB Sync  
Serial Input (SPI), Address Select (I2C)  
Serial Data Out (SPI)  
4E  
4D  
4C  
4B  
4A  
3F  
Logic Input  
Logic Input  
Logic Output  
Output  
SO  
R2  
Red LED 2 output  
WLED5  
WLED6  
VDD1  
EN_FLASH  
SCK/SCL  
G2  
Output  
White LED 5 output  
3E  
3D  
3C  
3B  
3A  
2F  
Output  
White LED 6 output  
Power  
Supply voltage  
Logic Input  
Logic Input  
Output  
Enable for High Current Flash  
Clock (SPI/I2C)  
Green LED 2 Output  
WLED3  
WLED4  
ASE  
Output  
White LED 3 output  
2E  
2D  
2C  
2B  
2A  
1F  
Output  
White LED 4 output  
Input  
Audio Synchronization Input  
Oscillator Frequency Resistor  
Interface (SPI or I2C compatible) Selection (IF_SEL = 1 for SPI)  
Blue LED 2 Output  
IRT  
Input  
IF_SEL  
B2  
Logic Input  
Output  
WLED1  
WLED2  
GNDA  
VREF  
VDDA  
VDD2  
Output  
White LED 1 Output  
1E  
1D  
1C  
1B  
1A  
Output  
White LED 2 Output  
Ground  
Output  
Ground for Analog Circuitry  
Reference Voltage  
Power  
Internal LDO Output  
Power  
Supply Voltage  
4
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1) (2)(3)  
V (SW, FB, R1-2, G1-2, B1-2, FLASH, WLED1-6)(4) (5)  
-0.3V to +7.2V  
VDD1, VDD2, VDD_IO, VDDA  
-0.3V to +6.0V  
Voltage on ASE, IRT, IFLASH, IRGB, VREF  
Voltage on Logic Pins  
-0.3V to VDD1+0.3V with 6.0V max  
-0.3V to VDD_IO +0.3V with 6.0V max  
V(all other pins): Voltage to GND  
-0.3V to 6.0V  
10µA  
I (VREF  
)
I(R1, G1, B1, R2, G2, B2)  
I(FLASH)(6)  
100mA  
400mA  
Continuous Power Dissipation(7)  
Internally Limited  
150°C  
Junction Temperature (TJ-MAX  
Storage Temperature Range  
)
-65°C to +150°C  
260ºC  
(8)  
Maximum Lead Temperature (Soldering)  
ESD Rating, Human Body Model(9)  
2kV  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under  
which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits  
and associated test conditions, see the Electrical Characteristics tables.  
(2) All voltages are with respect to the potential at the GND pins.  
(3) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.  
(4) Battery/Charger voltage should be above 6V no more than 10% of the operational lifetime.  
(5) Voltage tolerance of LP3954 above 6.0V relies on fact that VDD1 and VDD2 (2.8V) are available (ON) at all conditions. If VDD1 and VDD2  
are not available (ON) at all conditions, TI does not ensure any parameters or reliability for this device.  
(6) The total load current of the boost converter in worst-case conditions should be limited to 300mA (min. input and max. output voltage).  
(7) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ=160°C (typ.) and  
disengages at TJ=140°C (typ.).  
(8) For detailed soldering specifications and information, please refer to Application Note AN1112 : Micro SMD Wafer Level Chip Scale  
Package SNVA009 or Application Note AN1412 : Micro SMDxt Wafer Level Chip Scale Package SNVA131.  
(9) The Human body model is a 100pF capacitor discharged through a 1.5kresistor into each pin. The machine model is a 200pF  
capacitor discharged directly into each pin. MIL-STD-883 3015.7  
Operating Ratings(1) (2)  
V (SW, FB, WLED1-6, R1-2, G1-2, B1-2, FLASH)  
VDD1,2 with external LDO  
VDD1,2 with internal LDO  
VDDA  
0 to 6.0V  
2.7 to 5.5V  
3.0 to 5.5V  
2.7 to 2.9V  
VDD_IO  
1.65V to VDD1  
0.1V to VDDA –0.1V  
0mA to 300mA  
-30°C to +125°C  
-30°C to +85°C  
Voltage on ASE  
Recommended Load Current  
Junction Temperature (TJ) Range  
Ambient Temperature (TA) Range(3)  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under  
which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits  
and associated test conditions, see the Electrical Characteristics tables.  
(2) All voltages are with respect to the potential at the GND pins.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application (θJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (θJA × PD-MAX).  
Thermal Properties  
Junction-to-Ambient Thermal Resistance(θJA), YZR0036AAA or YPG0036AAA Package(1)  
60°C/W  
(1) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power  
dissipation exists, special care must be paid to thermal dissipation issues in board design.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Electrical Characteristics(1) (2)  
Limits in standard typeface are for TJ = 25° C. Limits in boldface type apply over the operating ambient temperature range (-  
30°C < TA < +85°C). Unless otherwise noted, specifications apply to the LP3954 Block Diagram with: VDD1 = VDD2 = 3.6V,  
VDDIO = 2.8V, CVDD = CVDDIO = 100nF, COUT = CIN = 10µF, CVDDA = 1µF, CREF = 100nF, L1 = 4.7µH, RFLASH =1.2k, RRGB =5.6k  
(3)  
and RRT =82k  
.
Parameter  
Standby supply current  
(VDD1, VDD2  
No-boost supply current  
(VDD1, VDD2  
Test Conditions  
NSTBY = L  
SCK, SS, SI  
Min  
Typ  
Max  
8
Unit  
IVDD  
1
µA  
)
NSTBY = H,  
EN_BOOST = L  
SCK, SS, SI  
400  
µA  
)
Audio sync and LEDs OFF  
No-load supply current  
(VDD1, VDD2  
NSTBY = H,  
EN_BOOST = H  
SCK, SS, SI  
1
mA  
)
Audio sync and LEDs OFF  
Autoload OFF  
RGB drivers  
CC mode at R1, G1, B1 and R2, G2,  
B2 set to 15mA  
150  
µA  
µA  
µA  
(VDD1, VDD2  
)
SW mode  
150  
500  
WLED drivers  
4+2 banks IOUT/LED 25mA  
(VDD1, VDD2  
)
Audio synchronization  
Audio sync ON  
VDD1,2 = 2.8V  
VDD1,2 = 3.6V  
(VDD1, VDD2  
)
390  
700  
2
Flash  
I(RFLASH)=1mA  
Peak current during flash  
mA  
µA  
(VDD1, VDD2  
)
IVDDIO  
VDDIO Standby Supply current  
NSTBY = L  
1
SCK, SS, SI = H  
VDDIO supply current  
1MHz SCK frequency in SPI mode,  
CL = 50pF at SO pin  
20  
µA  
IEXT_LDO  
VDDA  
External LDO output current  
7V tolerant application only  
IBOOST = 300mA  
6.5  
mA  
(VDD1, VDD2, VDDA  
)
(4)  
Output voltage of internal LDO  
for analog parts  
2.72  
-3  
2.80  
2.88  
+3  
V
%
(1) All voltages are with respect to the potential at the GND pins.  
(2) Min and Max limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely  
norm.  
(3) Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.  
(4) VDDA output is not recommended for external use.  
6
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
DETAILED DESCRIPTION  
Block Diagram  
L1  
4.7 µH  
I
= 300...400 mA  
MAX  
D1  
V
= 4...5.3 V  
OUT  
SW  
C
OUT  
FB  
10 µF  
V
C
C
VDD  
DD1  
IN  
10 µF 100 nF  
Logic supply  
LDO  
BG  
V
DD2  
PWM  
Li-Ion  
Battery  
Or  
V
DDA  
POR  
GND_SW  
WLED1  
Charger  
V
REF  
BOOST  
THSD  
OSC  
REF  
C
C
VDDA  
REF  
100 nF  
IRGB  
8-Bit  
IDAC  
1 µF  
WLED2  
WLED3  
WLED4  
MAIN  
BACKLIGHT  
0...25 mA/LED  
BIAS  
D
A
IRT  
GND_WLED  
R
RGB  
R
RT  
8-Bit  
IDAC  
WLED5  
WLED6  
SUB  
BACKLIGHT  
0...25 mA/LED  
SO  
SI  
D
A
CONTROL  
SCK/SCL  
SS/SDA  
IF_SEL  
MCU  
SPI  
I2C  
SYNC/PWM  
R1  
G1  
B1  
V
DDIO  
RGB1  
Up to  
40 mA/LED  
C
VDDIO  
100 nF  
COMMAND  
BASED  
PATTERN  
GENERATOR  
R2  
G2  
B2  
RGB2  
Up to  
40 mA/LED  
SINGLE ENDED  
ANALOG  
AUDIO  
ASE  
AUDIO SYNC  
GND_RGB  
FLASH  
FLASH  
Up to 300 mA  
EN_FLASH  
FLASH  
CTRL  
CAMERA  
FLASH  
LOGIC  
IFLASH  
GNDA  
GND  
R
FLASH  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Modes of Operation  
RESET: In the RESET mode all the internal registers are reset to the default values and the chip goes to  
STANDBY mode after reset. NSTBY control bit is low after reset by default. Reset is entered always if  
Reset Register is written or internal Power On Reset is active. There is no dedicated Reset pin available.  
LP3954 can be reset by writing any data to Reset Register in address 60H. Power On Reset (POR) will  
activate during the chip startup or when the supply voltage VDD2 falls below 1.5V. Once VDD2 rises  
above 1.5V, POR will inactivate and the chip will continue to the STANDBY mode.  
STANDBY: The STANDBY mode is entered if the register bit NSTBY is LOW. This is the low power  
consumption mode, when all circuit functions are disabled. Registers can be written in this mode and the  
control bits are effective immediately after power up.  
STARTUP: When NSTBY bit is written high, the INTERNAL STARTUP SEQUENCE powers up all the needed  
internal blocks (Vref, Bias, Oscillator etc..). To ensure the correct oscillator initialization, a 10ms delay is  
generated by the internal state-machine. If the chip temperature rises too high, the Thermal Shutdown  
(THSD) disables the chip operation and STARTUP mode is entered until no thermal shutdown event is  
present.  
BOOST STARTUP:Soft start for boost output is generated in the BOOST STARTUP mode. The boost output is  
raised in PFM mode during the 10ms delay generated by the state-machine. The Boost startup is entered  
from Internal Startup Sequence if EN_BOOST is HIGH or from Normal mode when EN_BOOST is written  
HIGH. During the 10ms Boost Startup time all LED outputs are switched off to ensure smooth start-up.  
NORMAL: During NORMAL mode the user controls the chip using the Control Registers. The registers can be  
written in any sequence and any number of bits can be altered in a register in one write  
RESET  
Reset Register write  
or POR = H  
POR = L  
STANDBY  
NSTBY = L  
NSTBY = H  
INTERNAL  
STARTUP  
SEQUENCE  
VREF = 95% OK*  
THSD = H  
~10 ms Delay  
EN_BOOST = H*  
EN_BOOST = L*  
BOOST STARTUP  
~10 ms Delay  
EN_BOOST  
rising edge*  
NORMAL MODE  
* THSD = L  
Figure 1. Modes of Operation  
8
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
Magnetic Boost DC/DC Converter  
The LP3954 Boost DC/DC Converter generates a 4.0 – 5.3V voltage for the LEDs from single Li-Ion battery  
(3V…4.5V). The output voltage is controlled with an 8-bit register in 9 steps. The converter is a magnetic  
switching PWM mode DC/DC converter with a current limit. The converter has three options for switching  
frequency, 1MHz, 1.67MHz and 2MHz (default), when timing resistor RT is 82kohm. Timing resistor defines the  
internal oscillator frequency and thus directly affects boost frequency and all circuit's internally generated timing  
(RGB, Flash, WLED fading).  
The LP3954 Boost Converter uses pulse-skipping elimination to stabilize the noise spectrum. Even with light load  
or no load a minimum length current pulse is fed to the inductor. An active load is used to remove the excess  
charge from the output capacitor at very light loads. At very light load and when input and output voltages are  
very close to each other, the pulse skipping is not completely eliminated. Output voltage should be at least 0.5V  
higher than input voltage to avoid pulse skipping. Reducing the switching frequency will also reduce the required  
voltage difference.  
Active load can be disabled with the en_autoload bit. Disabling will increase the efficiency at light loads, but the  
downside is that pulse skipping will occur. The Boost Converter should be stopped when there is no load to  
minimise the current consumption.  
The topology of the magnetic boost converter is called CPM control, current programmed mode, where the  
inductor current is measured and controlled with the feedback. The user can program the output voltage of the  
boost converter. The output voltage control changes the resistor divider in the feedback loop.  
The following figure shows the boost topology with the protection circuitry. Four different protection schemes are  
implemented:  
1. Over voltage protection, limits the maximum output voltage  
Keeps the output below breakdown voltage.  
Prevents boost operation if battery voltage is much higher than desired output.  
2. Over current protection, limits the maximum inductor current  
Voltage over switching NMOS is monitored; too high voltages turn the switch off.  
3. Feedback break protection. Prevents uncontrolled operation if FB pin gets disconnected.  
4. Duty cycle limiting, done with digital control.  
V
V
OUT  
2 MHz clock  
Duty control  
IN  
SW  
FBNCCOMP  
FB  
+
-
R
S
R
R
OVPCOMP  
SWITCH  
+
-
RESETCOMP  
+
-
-
+
R
ERRORAMP  
ACTIVE  
LOAD  
+
-
R
+
-
LOOPC  
OLPCOMP  
SLOPER  
Figure 2. Boost Converter Topology  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
MAGNETIC BOOST DC/DC CONVERTER ELECTRICAL CHARACTERISTICS  
Parameter  
Test Conditions  
3.0V VIN  
VOUT = 5V  
Min  
Typ  
Max  
Unit  
ILOAD  
Load Current  
0
300  
mA  
3.0V VIN  
VOUT = 4V  
0
400  
VOUT  
Output Voltage Accuracy  
(FB Pin)  
3.0V VIN VOUT - 0.5  
VOUT = 5.0V  
5  
+5  
%
Output Voltage  
(FB Pin)  
1 mA ILOAD 300 mA  
VIN > 5V + V(SCHOTTKY)  
VIN–V(SCHOTT  
V
KY)  
RDSON  
fPWF  
Switch ON Resistance  
VDD1,2 = 2.8V, ISW = 0.5A  
0.4  
0.8  
PWM Mode Switching Frequency RT = 82 kΩ  
freq_sel[2:0] = 1XX  
2
MHz  
Frequency Accuracy  
2.7 VDDA 2.9  
RT = 82 kΩ  
6  
9  
±3  
+6  
%
+9  
tPULSE  
Switch Pulse Minimum Width  
Startup Time  
no load  
25  
10  
ns  
tSTARTUP  
ISW_MAX  
Boost startup from STANDBY  
ms  
SW Pin Current Limit  
700  
800  
900  
mA  
550  
950  
BOOST STANDBY MODE  
User can stop the Boost Converter operation by writing the Enables register bit EN_BOOST low. When  
EN_BOOST is written high, the converter starts for 10ms in PFM mode and then goes to PWM mode.  
BOOST OUTPUT VOLTAGE CONTROL  
User can control the boost output voltage by boost output 8-bit register.  
Boost Output [7:0]  
Register 0DH  
Boost Output  
Voltage (typical)  
Bin  
Hex  
00  
01  
03  
07  
0F  
1F  
3F  
7F  
FF  
0000 0000  
0000 0001  
0000 0011  
0000 0111  
0000 1111  
0001 1111  
0011 1111  
0111 1111  
1111 1111  
4.00  
4.25  
4.40  
4.55  
4.70  
4.85  
5.00 Default  
5.15  
5.30  
10  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
Figure 3. Boost Output Voltage Control  
BOOST FREQUENCY CONTROL  
freq_sel[2:0](1)  
frequency  
2.00 MHz  
1.67 MHz  
1.00 MHz  
1XX  
01X  
001  
(1) Register ‘boost freq’ (address 0EH). Register default value after  
reset is 07H.  
Boost Converter Typical Performance Characteristics  
Vin = 3.6V, Vout = 5.0V if not otherwise stated  
Boost Converter Efficiency  
Boost Typical Waveforms at 100mA Load  
TIME (200 ns/DIV)  
Figure 4.  
Figure 5.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Vin = 3.6V, Vout = 5.0V if not otherwise stated  
Battery Current vs Voltage  
Battery Current vs Voltage  
Figure 6.  
Figure 7.  
Boost Line Regulation  
Boost Startup with No Load  
Figure 8.  
Figure 9.  
Boost Load Transient, 50 mA–100 mA  
Boost Switching Frequency  
Figure 10.  
Figure 11.  
12  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
Vin = 3.6V, Vout = 5.0V if not otherwise stated  
Output Voltage vs Load Current  
Efficiency At Low Load vs Autoload  
90  
80  
70  
60  
50  
40  
30  
20  
5.2  
5.0  
4.8  
4.6  
V
= 3V  
IN  
4.4  
4.2  
4.0  
3.8  
3.6  
f = 2 MHz  
L - TDK VLF0410 4.7 mH  
C
= C = 10 mF  
OUT  
IN  
Autoload ON  
Autoload OFF  
0
5
10  
15  
20  
25  
30  
0
100  
200  
300  
400  
500  
LOAD CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 12.  
Figure 13.  
Functionality of Color LED Outputs (R1, G1, B1; R2, G2, B2)  
LP3954 has 2 sets of RGB/color LED outputs. Both sets have 3 outputs and the sets can be controlled in 4  
different ways:  
1. Command based pattern generator control (internal PWM)  
2. Audio synchronization control  
3. Direct ON/OFF control  
4. External PWM control  
By using command based pattern generator user can program any kind of color effect patterns. LED intensity,  
blinking cycles and slopes are independently controlled with 8 16-bit commands. Also real time commands are  
possible as well as loops and step by step control. If analog audio is available on system, the user can use  
audio synchronization for synchronizing LED blinking to the music. The different modes together with the  
various sub modes generate very colorful and interesting lighting effects. Direct ON/OFF control is mainly for  
switching on and off LEDs. External PWM control is for applications where external PWM signal is available  
and required to control the color LEDs. PWM signal can be connected to any color LED separately as shown  
later.  
COLOR LED CONTROL MODE SELECTION  
The RGB_SEL[1:0] bits in the Enables register (08H) control the output modes for RGB1 (R1, G1, B1) and RGB2  
(R2, G2, B2) outputs. The following table shows the RGB_SEL functionality.  
Command Based Pattern Generator  
RGB_SEL[1:0]  
Audio Sync Connected To  
Connected To  
RGB1 & RGB2  
RGB2  
00  
01  
10  
11  
none  
RGB1  
RGB2  
RGB1  
RGB1 & RGB2  
none  
RGB Control register (00H) has control bits for direct on/off control of all color LEDs. Note that the LEDs have  
to be turned on in order to control them with audio synchronization or pattern generator.  
The external PWM signal controls any LED depending on the control register setup. The controls are in the Ext.  
PWM Control register (address 07H) except the FLASH control in HC_Flash (10H) register as follows:  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Ext. PWM Control(1)  
PWM controls WLED 1-4  
wled1-4_pwm  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
wled5-6_pwm  
r1_pwm  
PWM controls WLED 5-6  
PWM controls R1 output  
PWM controls G1 output  
PWM controls B1 output  
PWM controls R2 output  
PWM controls G2 output  
PWM controls B2 output  
HC_Flash  
g1_pwm  
b1_pwm  
r2_pwm  
g2_pwm  
b2_pwm  
hc_pwm  
bit 5  
PWM controls high current flash  
(1) Note: If DISPL=1, wled1-4pwm controls WLED1-6  
Note: Maximum external PWM frequency is 1kHz. If during the  
external PWM control the internal PWM is on the result will be  
product of both functions.  
CURRENT CONTROL OF COLOR LED OUTPUTS (R1, R2, G1, G2, B1, B2)  
Both RGB output sets can be separately controlled as constant current sinks or as switches. This is done using  
cc_rgb1/2 bits in the RGB control register. In constant current mode one or both RGB output sets are controlled  
with constant current sinks (no external ballast resistors required). The maximum output current for both drivers  
is set by one external resistor RRGB. User can decrease the maximum current for an individual LED driver by  
programming as shown later.  
The maximum current for all RGB drivers is set with RRGB. The equation for calculating the maximum current is  
IMAX = 100 ×1.23V / (RRGB + 50)  
(1)  
where  
IMAX - maximum RGB current in any RGB output in constant current mode  
1.23V - reference voltage  
100 - internal current mirror multiplier  
RRGB- resistor value in Ohms  
50- internal resistor in the IRGB input  
For example if 22mA is required for maximum RGB current RRGB equals to  
RRGB = 100 × 1.23V / IMAX –50= 123V / 0.022A –50= 5.54k  
(2)  
Each individual RGB output has a separate maximum current programming. The control bits are in registers  
RGB1 max current and RGB2 max current (12H and 13H) and programming is shown in table below. The  
default value after reset is 00.  
IR1[1:0], IG1[1:0],  
Maximum  
IB1[1:0], IR2[1:0],  
Current/Output  
IG2[1:0], IB2[1:0]  
00  
01  
10  
11  
0.25 × IMAX  
0.50 × IMAX  
0.75 × IMAX  
1.00 × IMAX  
SWITCH MODE  
The switch mode is used if there is a need to connect parallel LEDs to output or if the RGB output current needs  
to be increased.  
Please note that the switch mode requires an external ballast resistors at each output to limit the LED current.  
The switch/current mode and on/off controls for RGB are in the RGB_ctrl register (00H) as follows:  
14  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
Table 2. RGB_ctrl Register (00H)  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
R1, G1 and B1 are switches limit current with ballast resistor  
CC_RGB1  
CC_RGB2  
r1sw  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
R1, G1 and B1 are constant current sinks, current limited internally  
R2, G2 and B2 are switches limit current with ballast resistor  
R2, G2 and B2 are constant current sinks, current limited internally  
R1 is on  
R1 is off  
G1 is on  
G1 is off  
B1 is on  
B1 is off  
R2 is on  
R2 is off  
G2 is on  
G2 is off  
B2 is on  
B2 is off  
g1sw  
b1sw  
r2sw  
g2sw  
b2sw  
V
OUT  
V
OUT  
RR1  
R1  
G1  
R1  
RR2  
RG1  
R1  
control  
R1  
control  
G1  
B1  
RG2  
RB1  
RB2  
G1  
control  
G1  
control  
B1  
B1  
control  
B1  
control  
RGB1 output as a constant  
current sink (CC)  
RGB1 output as switch (SW)  
Command Based Pattern Generator for Color LEDs  
The LP3954 has a unique stand-alone command based pattern generator with 8 user controllable 16-bit wide  
commands. Since write registers are 8-bit long one command requires 2 write cycles. Each command has  
intensity level for each LED, command execution time (CET) and transition time (TT). The command structure is  
shown in following two figures.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
16 bits  
RED[2:0]  
GREEN[2:0]  
CET [3:0]  
BLUE[2:0]  
TT[2:0]  
16 bits  
16 bits  
ADDESS[7:0]  
RED[2:0]  
GREEN[2:0]  
CET[3:2]  
NEXT ADDESS[7:0]  
CET[1:0]  
BLUE[2:0]  
TT[2:0]  
COMMAND REGISTER WITH 8 COMMANDS  
COMMAND 1  
COMMAND 2  
COMMAND 3  
COMMAND 4  
COMMAND 5  
COMMAND 6  
COMMAND 7  
COMMAND 8  
ADDRESS 50H  
ADDRESS 51H  
ADDRESS 52H  
ADDRESS 53H  
ADDRESS 54H  
ADDRESS 55H  
ADDRESS 56H  
ADDRESS 57H  
ADDRESS 58H  
ADDRESS 59H  
ADDRESS 5AH  
ADDRESS 5BH  
ADDRESS 5CH  
ADDRESS 5DH  
ADDRESS 5EH  
ADDRESS 5FH  
R2  
CET1  
R2  
R1  
CET0  
R1  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G0  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
CET0  
TT2  
COLOR INTENSITY CONTROL  
Each color, Red, Green and Blue, has 3-bit intensity levels. The level control is logarithmic. 2 logarithmic curves  
are available. The LOG bit in Pattern_gen_ctrl register (11H) defines the curve used. The values for both  
logarithmic curves are shown in following table.  
CURRENT  
[% × IMAX(COLOR)  
R[2:0], G[2:0],  
]
B[2:0]  
LOG=0  
0
LOG=1  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
7
14  
2
21  
4
32  
10  
21  
46  
100  
46  
71  
100  
16  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
100  
80  
60  
40  
20  
0
LOG=0  
LOG=1  
000 001 010 011 100 101 110 111  
R[2:0], G[2:0], B[2:0]  
COMMAND EXECUTION TIME (CET) AND TRANSITION TIME (TT)  
The command execution CET time is the duration of one single command. Command execution times CET are  
defined as follows, when RT=82k:  
CET [3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
CET duration, ms  
197  
393  
590  
786  
983  
1180  
1376  
1573  
1769  
1966  
2163  
2359  
2556  
2753  
2949  
3146  
Transition time TT is duration of transition from the previous RGB value to programmed new value. Transition  
times TT are defined as follows:  
TT [2:0]  
000  
Transition time, ms  
0
001  
55  
010  
110  
221  
442  
885  
1770  
3539  
011  
100  
101  
110  
111  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
The figure below shows an example of RGB CET and TT times.  
COMMAND EXECUTION TIME = CET  
CET  
TT  
CET  
3
1
2
TT  
3
TRANSITION TIME = TT  
2
1
BLUE  
GREEN  
RED  
TT < CET  
The command execution time also may be less than the transition time – the figure below illuminates this case.  
TRANSITION TIME = TT  
1
COMMAND EXECUTION TIME = CET  
CET  
CET  
1
2
3
TT  
2
TT  
3
Target values  
BLUE  
GREEN  
RED  
TT > CET  
TT < CET  
TT < CET  
3
1
1
2
2
3
LOOP CONTROL  
Pattern generator commands can be looped using the LOOP bit (D1) in Pattern gen ctrl register (11H). If  
LOOP=1 the program will be looped from the command 8 register or if there is 0000 0000 and 0000 0000 in one  
command register. The loop will start from command 1 and continue until stopped by writing rgb_start=0 or  
loop=0. The example of loop is shown in following figure:  
IF 0000 0000 and 0000 0000 then LOOP  
LOOP=1  
ADDRESS 50H  
COMMAND 1  
ADDRESS 51H  
ADDRESS 52H  
COMMAND 2  
ADDRESS 53H  
ADDRESS 54H  
ADDRESS 55H  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
COMMAND 3  
18  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
SINGLE PROGRAM  
If control bit LOOP=0 the program will start from Command 1 and run to either last command or to empty “0000  
0000 / 0000 0000” command.  
IF 0000 0000 and 0000 0000 then STOP  
LOOP=0  
ADDRESS 50H  
start  
COMMAND 1  
COMMAND 2  
ADDRESS 51H  
ADDRESS 52H  
ADDRESS 53H  
ADDRESS 54H  
ADDRESS 55H  
stop  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
COMMAND 3  
The LEDs maintain the brightness of the last command when the single program stops. Changes in command  
register will not be effective in this phase. The RGB_START bit has to be toggled off and on to make changes  
effective.  
START BIT  
Pattern_gen_ctrl register’s RGB_START bit will enable command execution starting from Command 1.  
Pattern gen ctrl register (11H)  
0 – Pattern generator disabled  
1 – execution pattern starting from command 1  
rgb_start  
loop  
Bit 2  
Bit 1  
Bit 0  
0 – pattern generator loop disabled (single pattern)  
1 – pattern generator loop enabled (execute until stopped)  
0 – color intensity mode 0  
1 – color intensity mode 1  
log  
HARDWARE ON/OFF CONTROL AND DIMMING  
PWM_LED input can be used as direct ON/OFF control or PWM dimming control for selected RGB outputs or  
the WLED groups. PWM_LED control can be enabled with the control bits in the Ext. PWM Control register.  
Audio Synchronization  
The color LEDs connected to RGB outputs can be synchronized to incoming audio with Audio Synchronization  
feature. Audio Sync has 2 modes. Amplitude mode synchronizes color LEDs based on input signal’s peak  
amplitude. In the amplitude mode the user can select between 3 different amplitude mapping modes and 4  
different speed configurations. The frequency mode synchronizes the color LEDs based on bass, middle and  
treble amplitudes (= low pass, band pass and high pass filters). User can select between 2 different frequency  
responses and 4 different speed configurations for best audio-visual user experience. Programmable gain and  
AGC function are also available for adjustment of input signal amplitude to light response. The Audio Sync  
functionality is described more closely below.  
USING A DIGITAL PWM AUDIO SIGNAL AS AN AUDIO SYNCHRONIZATION SOURCE  
If the input signal is a PWM signal, use a first or second order low pass filter to convert the digital PWM audio  
signal into an analog waveform. There are two parameters that need to be known to get the filter to work  
successfully: frequency of the PWM signal and the voltage level of the PWM signal. Suggested cut-off frequency  
(-3dB) should be around 2 kHz to 4 kHz and the stop-band attenuation at sampling frequency should be around -  
48dB or better. Use a resistor divider to reduce the digital signal amplitude to meet the specification of the analog  
audio input. Because a low-order low-pass filter attenuates the high-frequency components from audio signal,  
MODE_CONTROL=[01] selection is recommended when frequency synchronization mode is enabled.  
Application example 5 shows an example of a second order RC-filter for 29 kHz PWM signal with 3.3V  
amplitude. Active filters, such as a Sallen-Key filter, may also be applied. An active filter gives better stop-band  
attenuation and cut-off frequency can be higher than for a RC-filter.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
To make sure that the filter rolls off sufficiently quickly, connect your filter circuit to the audio input(s), turn on the  
audio synchronization feature, set manual gain to maximum, apply the PWM signal to the filter input and keep an  
eye on LEDs. If they are blinking without an audio signal (modulation), a sharper roll-off after the cut-off  
frequency, more stop-band attenuation, or smaller amplitude of the PWM signal is required.  
AUDIO SYNCHRONIZATION SIGNAL PATH  
LP3954 audio synchronization is mainly done digitally and it consists of the following signal path blocks:  
Input Buffers  
AD Converter  
DC Remover  
Automatic Gain Control (AGC)  
Programmable Gain  
3 Band Digital Filter  
Peak Detector  
Look-up Tables (LUT)  
Mode Selector  
Integrators  
PWM Generator  
Output Drivers  
MODE  
HIGH / LOW  
3 FILTERS  
EN  
GAIN  
SPEED  
INT  
LUT  
LUT  
R
G
B
ASE  
PW  
M
DC  
REMOVER  
LED  
DRIVER  
ADC  
AGC  
BUFFER  
PEAK  
DETECTOR  
The digitized input signal has DC component that is removed by digital DC REMOVER (-3dB at 400Hz). Since  
the light response of input audio signal is very much amplitude dependent the AGC adjusts the input signal to  
suitable range automatically. User can disable AGC and the gain can be set manually with PROGRAMMABLE  
GAIN. LP3954 has 2 audio synchronization modes: amplitude and frequency. For amplitude based  
synchronization the PEAK DETECTION method is used. For frequency based synchronization 3 BAND FILTER  
separates high pass, low pass and band bass signals. For both modes the predefined LUT is used to optimize  
the audio visual effect. MODE SELECTOR selects the synchronization mode. Different response times to music  
beat can be selected using INTEGRATOR speed variables. Finally PWM GENERATOR sets the driver FET duty  
cycles.  
INPUT SIGNAL TYPE AND BUFFERING  
LP3954 supports single ended audio input as shown in the figure below. The electric parameters of the buffer are  
described in the Audio Synch table. The buffer is rail-to-rail input operational amplifier connected as a voltage  
follower. DC level of the input signal is set by a simple resistor divider  
V
DDA  
1 MW  
ASE  
10 nF  
1 MW  
AGND  
20  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
AUDIO SYNC ELECTRICAL PARAMETERS  
Symbol  
ZIN  
Parameter  
Input Impedance of ASE  
Test Conditions  
Min  
250  
0.1  
Typ  
Max  
Unit  
kOhm  
V
500  
AIN  
Audio Input Level Range (peak-to-peak)  
Gain = 21dB  
Gain = 0 dB  
VDDA - 0.1  
f3dB  
Crossover Frequencies (-3 dB)  
Narrow Frequency Response  
Low Pass  
0.5  
Band Pass  
1.0 and  
1.5  
High Pass  
Low Pass  
Band Pass  
2.0  
1.0  
kHz  
Wide Frequency Response  
2.0 and  
3.0  
High Pass  
4.0  
CONTROL OF AUDIO SYNCHRONIZATION  
The following table describes the controls required for audio synchronization.  
Audio_sync_CTRL1 (2AH)  
Input signal gain control. Range 0...21 dB, step 3 dB:  
[000] = 0 dB (default) [011] = 9 dB  
[110] = 18 dB  
[111] = 21 dB  
GAIN_SEL[2:0]  
Bits 7-5  
[001] = 3 dB  
[010] = 6 dB  
[100] = 12 dB  
[101] = 15 dB  
Synchronization mode selector.  
SYNC_MODE  
EN_AGC  
Bit 4  
Bit 3  
SYNCMODE = 0 Amplitude Mode (default)  
SYNCMODE = 1 Frequency Mode  
Automatic Gain Control enable  
1 = enabled  
0 = disabled (Gain Select enabled) (default)  
Audio synchronization enable  
1 = Enabled  
Note : If AGC is enabled, AGC gain starts from current GAIN_SEL gain value.  
0 = Disabled (default)  
EN_SYNC  
Bit 2  
[00] = Single ended input signal, ASE.  
[01] = Temperature measurement  
[10] = Ambient light measurement  
[11] = No input (default)  
INPUT_SEL[1:0]  
Bits 1-0  
Audio_sync_CTRL2 (2BH)  
0 – average disabled (not applicable in audio synchronization mode)  
1 – average enabled (not applicable in audio synchronization mode)  
EN_AVG  
Bit 4  
MODE_CTRL[1:0]  
Bits 3-2  
See below: Mode control  
Sets the LEDs light response time to audio input.  
[00] = FASTEST (default)  
[01] = FAST  
SPEED_CTRL[1:0]  
Bits 1-0  
[10] = MEDIUM  
[11] = SLOW  
(For SLOW setting in amplitude mode fMAX=3.8Hz,  
Frequency mode fMAX=7.6Hz)  
MODE CONTROL IN FREQUENCY MODE  
Mode control has two setups based on audio synchronization mode select: the frequency mode and the  
amplitude mode. During the frequency mode user can select two filter options by MODE_CTRL as shown  
below. User can select the filters based on the music type and light effect requirements. In the first mode the  
frequency range extends to 8 kHz in the secont to 4 kHz.  
The lowpass filter is used for the red, the bandpass filter for the blue and the hipass filter for the green LED.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
BANDPASS  
LOWPASS  
HIPASS  
BANDPASS  
LOWPASS  
HIPASS  
1.0 2.0 3.0 4.0 5.0 6.0 7.0  
kHz  
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
kHz  
0
8.0  
0
4.0  
Figure 14. Higher frequency mode  
MODE_CTRL = 00 and SYNC_MODE = 1  
Figure 15. Lower frequency mode  
MODE_CTRL = 01 and SYNC_MODE = 1  
MODE CONTROL IN AMPLITUDE MODE  
During the amplitude synchronization mode user can select between three different amplitude mappings by  
using MODE_CTRL select. These three mapping option gives different light response. The modes are shown in  
the tables below.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
BLUE  
GREEN  
RED  
BLUE  
GREEN  
RED  
0
10 20 30 40 50 60 70 80 90 100  
INPUT AMPLITUDE (%)  
0
10 20 30 40 50 60 70 80 90 100  
INPUT AMPLITUDE (%)  
Figure 16. Non-overlapping mode  
MODE_CTRL[1:0] = [01]  
Figure 17. Partly overlapping mode  
MODE_CTRL[1:0] = [00]  
22  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
5.00  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
BLUE  
GREEN  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.30  
0.25  
0.20  
0.15  
0.10  
RED  
0.05  
0
3
6
9
12  
15  
18  
21  
0
10 20 30 40 50 60 70 80 90 100  
INPUT AMPLITUDE (%)  
GAIN (dB)  
Figure 18. Overlapping mode MODE_CTRL[1:0] =  
[10]  
Figure 19. Peak Input Signal Level  
Range vs Gain Setting  
RGB OUTPUT SYNCHRONIZATION TO EXTERNAL CLOCK  
The RGB pattern generator and high current flash driver timing can be synchronized to external clock with  
following configuration.  
1. Set PWM_SYNC bit in Enables register to 1  
2. Feed PWM_SYNC pin with 5 MHz clock  
By this the internal 5 MHz clock is disabled from pattern generator and flash timing circuitry.  
The external clock signal frequency will fully determine the timings related to RGB and Flash.  
Note: The boost converter will use internal 5 MHz clock even if the external clock is available.  
RGB Driver Typical Performance Characteristics  
RGB DRIVER ELECTRICAL CHARACTERISTICS (R1, G1, B1, R2, G2, B2 OUTPUTS)  
Parameter  
Test Conditions  
Min  
Typ  
Max  
1
Unit  
ILEAKAGE  
IMAX(RGB)  
R1, G1, B1, R2, G2, B2 pin  
leakage current  
0.1  
µA  
Maximum recommended sink CC mode  
40  
50  
mA  
mA  
%
current(1)  
SW mode  
Accuracy at 37mA  
Current mirror ratio  
RRGB=3.3 k±1%, CC mode  
CC mode  
±5  
1:100  
±5  
RGB1 and RGB2 current  
mismatch  
IRGB=37mA, CC mode  
%
RSW  
Switch resistance  
SW mode  
2.5  
20  
4
ƒRGB  
RGB switching frequency  
Accuracy proportional to internal  
clock freq.  
18.2  
21.8  
kHz  
If external SYNC 5MHz is in use  
20  
kHz  
(1) Note: RGB current should be limited as follows:  
constant current mode – limit by external RRGB resistor;  
switch mode – limit by external ballast resistors  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Figure 20. Output Current vs Pin Voltage (Current  
Sink Mode)  
Figure 21. Pin Voltage vs Output Current (Switch  
Mode)  
Figure 22. Output Current vs RRGB (Current Sink Mode)  
Single High Current Driver  
LP3954 has internal constant current driver that is capable for driving high current mainly targeted for FLASH  
LED in camera phone applications.  
MAXIMUM CURRENT SETUP FOR FLASH  
The user sets the maximum current of FLASH with RFLASH resistor based on following equation:  
IMAX = 300 × 1.23V / (RFLASH + 50),  
(3)  
where  
Imax = maximum flash current in Amps (ie. 0.3A)  
1.23V = reference voltage  
300 = internal current mirror multiplier  
RFLASH = Resistor value in Ohms  
50= Internal resistor in the IFLASH input  
For example if 300mA is required for maximum flash current RFLASH equals to  
RFLASH = 300 × 1.23V / IMAX – 50= 369V / 0.3A – 50= 1.18kΩ  
(4)  
24  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
CURRENT CONTROL FOR FLASH  
To minimize the internal current consumption, the flash function has an enable bit EN_HCFLASH in the  
HC_Flash register.  
EN_HCFLASH  
0
1
FLASH disabled, no extra current consumption through RFLASH  
FLASH enabled, IFLASH set by HC_SW[1:0] (see below)  
HC[1:0] bits in the HC_Flash register control the FLASH current as show in following table.  
HC[1:0]  
00  
I(FLASH)  
0.25 × IMAX(FLASH)  
0.50 × IMAX(FLASH)  
0.75 × IMAX(FLASH)  
1.00 × IMAX(FLASH)  
01  
10  
11  
Figure 23 shows the internal structure for the FLASH driver.  
L
OUT  
LED  
1 mA  
1 mA  
FLASH  
1.23V  
+
-
up to 300 mA  
IFLASH  
(1.23V)  
1 mA  
R
FLASH  
Figure 23. Internal Structure of Flash Driver  
FLASH TIMING  
Flash output is turned on in lower current View finder mode when the EN_HCFLASH bit is written high. The  
actual Flash at maximum current starts when the EN_FLASH i/o-pin goes high. The Flash length can be selected  
from 3 pre-defined values or EN_FLASH pin pulse length can determine the length. The pulse length is  
controlled by the FT_T[1:0] bits as show in the table below.  
Current During View  
FL_T[1:0]  
Flash Duration Typ  
Current During FLASH  
Finder/Focusing  
Set by HC[1:0]  
Set by HC[1:0]  
Set by HC[1:0]  
Set by HC[1:0]  
00  
01  
10  
11  
200ms  
400ms  
HC[11] = IMAX(FLASH)  
HC[11] = IMAX(FLASH)  
HC[11] = IMAX(FLASH)  
HC[11] = IMAX(FLASH)  
600ms  
EN_FLASH on duration  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LP3954  
 
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Figure 24 shows the functionality of the built-in flash.  
Current  
HIGH CURRENT  
FLASH  
VIEW FINDER / FOCUS  
HC[1:0] = 11  
HC[1:0] = 10  
HC[1:0] = 01  
HC[1:0] = 00  
FL_T[1:0]  
HC[11] = IMAX  
HC[1:0]  
For mode  
FL_T[1:0]=11  
Time  
FLASH_EN input  
EN_HCFLASH bit  
Figure 24. Built-In Flash  
HIGH CURRENT DRIVER ELECTRICAL CHARACTERISTICS  
Parameter  
Test Conditions  
Min  
Typ  
Max  
2
Unit  
µA  
ILEAKAGE  
FLASH pin leakage current  
Maximum Sink Current  
Accuracy at 300 mA  
Current mirror ratio  
0.1  
IMAX(FLASH)  
400  
±10  
mA  
%
RFLASH=1.18 k±1%  
±5  
1:300  
Backlight Drivers  
LP3954 has 2 independent backlight drivers. Both drivers are regulated constant current sinks. LED current for  
both LED banks (WLED1…4 and WLED5…6) are controlled by 8-bit current mode DACs with 0.1 mA step.  
WLED1…4 and WLED5…6 can be also controlled with one DAC for better matching allowing the use of larger  
displays having up to 6 white LEDs in parallel.  
Display configuration is controlled with DISPL bit as shown below.  
DISPL  
Configuration  
Matching  
Main display up to 4 LEDs  
Sub display up to 2 LEDs  
Large display up to 6 LEDs  
Good btw WLED1…4  
Good btw WLED5…6  
Good btw WLED 1…6  
0
1
Display backlight enables  
1
0
1
0
WLED1-4 enabled  
EN_W1-4  
EN_W5-6  
WLED1-4 disabled  
WLED5-6 enabled  
WLED5-6 disabled  
26  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
 
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
External PWM  
WLED1-4_pwm  
&
8-Bit IDAC  
WLED1-4  
WLED1-4[7:0]  
EN_W1-4  
Figure 25. Main Display up to 4 LEDs (WLED1…4)  
External PWM  
&
WLED5-6_pwm  
8-Bit IDAC  
WLED5-6  
WLED5-6[7:0]  
EN_W5-6  
Figure 26. Sub Display Driver up to 2 LEDs (WLED5…6)  
External PWM  
&
WLED1-4_pwm  
8-Bit IDAC  
WLED1-4  
WLED1-4[7:0]  
EN_W1-4  
Figure 27. Main Display up to 6 LEDs (WLED1…6) (DISPL=1)  
BACKLIGHT DRIVER ELECTRICAL CHARACTERISTICS  
Parameter  
Test Conditions  
Min  
Typical  
25.5  
Max  
29.4  
1
Unit  
mA  
µA  
mA  
%
IMAX  
Maximum Sink Current  
Leakage Current  
21.3  
ILeakage  
IWLED1  
VFB =5V  
0.03  
WLED1 Current tolerance  
IWLED1 set to 12.8mA (80H)  
10.52  
-18  
12.8  
14.78  
+16  
IMatch1-4  
IMatch5-6  
IMatch1-6  
Sink Current Matching  
Sink Current Matching  
Sink Current Matching  
ISINK=13mA, Between WLED1…4  
ISINK=13mA, Between WLED5…6  
ISINK=13mA, Between WLED1…6  
0.2  
0.2  
0.3  
%
%
%
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
ADJUSTMENT  
WLED1-4[7:0]  
WLED5-6[7:0]  
Driver Current,  
mA (typical)  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0
0.1  
0.2  
0.3  
1111 1101  
1111 1110  
1111 1111  
25.3  
25.4  
25.5  
30  
25  
20  
15  
10  
5
25oC  
85oC  
-40oC  
0
0
0.05 0.10 0.15 0.20 0.25 0.30  
WLED OUTPUT VOLTAGE (V)  
Figure 28. WLED Output Current vs. Voltage  
FADE IN / FADE OUT  
LP3954 has an automatic fade in and out for main and sub backlight. The fade function is enabled with  
EN_FADE bit. The slope of the fade curve is set by the SLOPE bit. Fade control for main and sub display is set  
by FADE_SEL bit.  
0
1
0
1
0
1
Automatic fade disabled  
Automatic fade enabled  
Fade execution time 1.3s  
Fade execution time 0.65s  
Fade controls WLED1-4  
Fade controls WLED5-6  
EN_FADE  
SLOPE  
FADE_SEL  
Recommended fading sequence:  
1. ASSUMPTION: Current WLED value in register  
2. Set SLOPE  
3. Set FADE_SEL  
4. Set EN_FADE = 1  
5. Set target WLED value  
6. Fading will be done either within 0.5s or 1s based on Slope selection  
28  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
FADE OUT  
FADE IN  
FADE OUT  
FADE IN  
0
0.1  
0.5 0.6 0.7  
0
0.2  
0.1 1.2 1.4  
0.2 0.3 0.4  
TIME (s)  
0.4 0.6 0.8  
TIME (s)  
Figure 29. WLED Dimming, SLOPE=0  
Figure 30. WLED Dimming, SLOPE=1  
Ambient Light and Temperature Measurement with LP3954  
The Analog-to-Digital converter (ADC) in the Audio Syncronization block can be also used for ambient light  
measurement or temperature measurement.  
The selection between these modes is controlled with input selector bits INPUT_SEL[1:0] as follows  
INPUT_SEL[1:0]  
Mode  
00  
Audio synchronization  
Temperature measurement  
(voltage input)  
01  
Ambient light measurement  
(current input)  
10  
11  
No input  
AMBIENT LIGHT MEASUREMENT  
The ambient light measurement requires only one external component: Ambient light sensor (photo transistor or  
diode). The ADC reads the current level at ASE pin and converts the result in digital word. User can read the  
ADC output from the ADC output register. The known ambient light condition allows user to set the backlight  
current to optimal level thus saving power especially in low light and bright sunlight condition.  
V
DDA  
I
BIAS  
R
1 mA  
S2  
AMBIENT  
LIGHT  
AIN  
ADC  
DDA  
SENSOR  
-
+
S1  
S3  
V
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
FF  
E0  
C0  
A0  
80  
60  
40  
20  
00  
0
1
2
3
4
5
6
7
INPUT CURRENT (mA)  
Figure 31. ADC Code vs Input Current in Light Measurement Mode  
TEMPERATURE MEASUREMENT  
The temperature measurement requires two external components: resistor and thermistor (resistor that has  
known temperature vs resistance curve). The ADC reads the voltage level at ASE pin and converts the result in  
digital word. User can read the ADC output from register. The known temperature allows for example to monitor  
the temperature inside the display module and decrease the current level of the LEDs if temperature raises too  
high. This function may increase lifetime of LEDs in some applications.  
R
ADC  
-
+
V
V
DDA  
DDA  
TEMPERATURE  
SENSOR  
AIN  
S1  
S2  
Figure 32. Temperature Sensor Connection Example  
30  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
FF  
E0  
C0  
A0  
80  
60  
40  
20  
00  
100  
10  
1
0.1  
0.01  
-40 -20  
0
20 40 60 80 100 120  
0
0.2  
0.4  
0.6  
0.8  
1
TEMPERATURE (°C)  
INPUT VOLTAGE × V  
DDA  
Figure 33. ADC Code vs Input Voltage in  
Temperature Measurement Mode  
Figure 34. Example Curve for Thermistor  
EXAMPLE TEMP SENSOR READING AT DIFFERENT TEMPERATURES (R(25°C)=1M)  
T°C  
-40  
0
R(M)  
Rt(M)  
60  
V(ASE)  
2.7540984  
2.24  
1
1
1
1
1
4
25  
1
1.4  
60  
0.2  
0.04  
0.4666667  
0.1076923  
100  
7V Shielding  
To shield LP3954 from high input voltages 6…7.2V the use of external 2.8V LDO is required. This 2.8V voltage  
protects internally the device against high voltage condition. The recommended connection is as shown in the  
picture below. Internally both logic and analog circuitry works at 2.8V supply voltage. Both supply voltage pins  
should have separate filtering capacitors.  
4.7 mH  
BATTERY  
C
IN  
10 mF  
SW  
Digital  
supply  
voltage  
V
V
DD1  
DD2  
V
DDA  
2.8V  
LDO  
2.8V  
LDO  
C
VDDA  
1 mF  
C
VDD  
100 nF  
Analog  
supply  
voltage  
LP3954  
In cases where high voltage is not an issue the connection is as shown below.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
4.7 H  
BATTERY  
C
IN  
10 F  
C
VDD  
100 nF  
SW  
Digital  
supply  
voltage  
V
V
DD1  
DD2  
V
DDA  
2.8V  
LDO  
C
VDDA  
1 mF  
Analog  
supply  
voltage  
LP3954  
Logic Interface Characteristics  
(1.65V VDDIO VDD1,2V) (Unless otherwise noted)  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS SS, SI, SCK/SCL, SYNC/PWM, IF_SEL, EN_FLASH  
VIL  
VIH  
II  
Input Low Level  
Input High Level  
Logic Input Current  
0.2 ×  
VDDIO  
V
V
0.8 ×  
VDDIO  
1.0  
1.0  
µA  
I2C Mode  
400  
kHz  
SPI Mode,  
VDDIO > 1.8V  
13  
5
MHz  
MHz  
fSCL  
Clock Frequency  
SPI Mode,  
1.65V VDDIO < 1.8V  
LOGIC OUTPUT SO  
ISO = 3 mA  
VDDIO > 1.8V  
0.3  
0.3  
0.5  
0.5  
VOL  
Output Low Level  
V
V
ISO = 2 mA  
1.65V VDDIO < 1.8V  
ISO = 3 mA  
VDDIO > 1.8V  
VDDIO  
0.5  
VDDIO  
0.3  
VOH  
Output High Level  
ISO = -2 mA  
1.65V VDDIO < 1.8V  
VDDIO  
0.5  
VDDIO  
0.3  
IL  
Output Leakage Current  
VSO = 2.8V  
ISDA = 3 mA  
1.0  
0.5  
µA  
V
LOGIC OUTPUT SDA  
VOL  
Output Low Level  
0.3  
Control Interface  
The LP3954 supports two different interface modes:  
SPI interface (4 wire, serial)  
I2C compatible interface (2 wire, serial)  
User can define the serial interface by IF_SEL pin. IF_SEL=0 selects the I2C mode.  
32  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
SPI INTERFACE  
LP3954 is compatible with SPI serial bus specification and it operates as a slave. The transmission consists of  
16-bit Write and Read Cycles. One cycle consists of 7 Address bits, 1 Read/Write (RW) bit and 8 Data bits. RW  
bit high state defines a Write Cycle and low defines a Read Cycle. SO output is normally in high-impedance state  
and it is active only when Data is sent out during a Read Cycle. A pull-up resistor may be needed in SO line if a  
floating logic signal can cause unintended current consumption in the input circuits where SO is connected.The  
Address and Data are transmitted MSB first. The Slave Select signal SS must be low during the Cycle  
transmission. SS resets the interface when high and it has to be taken high between successive Cycles. Data is  
clocked in on the rising edge of the SCK clock signal, while data is clocked out on the falling edge of SCK.  
SS  
SCK  
1
R/W  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SI  
SO  
Figure 35. SPI Write Cycle  
SS  
SCK  
SI  
R/W  
0
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Don't Care  
D4 D3  
SO  
D7  
D6  
D5  
D2  
D1  
D0  
Figure 36. SPI Read Cycle  
SS  
5
3
12  
2
1
4
SCK  
SI  
7
6
MSB IN BIT 14  
BIT 9  
BIT 8  
R/W  
BIT 7  
BIT 1  
LSB IN  
11  
8
9
10  
MSBOUT  
BIT 1  
LSB OUT  
SO  
Address  
Data  
Figure 37. SPI Timing Diagram  
SPI Timing Parameters  
VDD = VDD_IO = 2.775V  
Limit(1)  
Symbol  
Parameter  
Unit  
Min  
Max  
1
2
Cycle Time  
Enable Lead Time  
70  
35  
ns  
ns  
(1) Note: Data ensured by design.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Unit  
Limit(1)  
Symbol  
Parameter  
Min  
35  
35  
35  
20  
0
Max  
3
4
Enable Lag Time  
Clock Low Time  
Clock High Time  
Data Setup Time  
Data Hold Time  
Data Access Time  
Disable Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
6
7
8
20  
10  
20  
9
10  
11  
Data Valid  
Data Hold Time  
0
I2C COMPATIBLE INTERFACE  
I2C Signals  
In I2C mode the LP3954 pin SCK is used for the I2C clock SCL and the pin SS is used for the I2C data signal  
SDA. Both these signals need a pull-up resistor according to I2C specification. SI pin is the address select pin.  
I2C address for LP3954 is 54h when SI = 0 and 55h when SI = 1. Unused pin SO can be left unconnected.  
I2C Data Validity  
The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of  
the data line can only be changed when CLK is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
Figure 38. I2C Signals: Data Validity  
I2C Start and Stop Conditions  
START and STOP bits classify the beginning and the end of the I2C session. START condition is defined as SDA  
signal transitioning from HIGH to LOW while SCL line is HIGH. STOP condition is defined as the SDA  
transitioning from LOW to HIGH while SCL is HIGH. The I2C master always generates START and STOP bits.  
The I2C bus is considered to be busy after START condition and free after STOP condition. During data  
transmission, I2C master can generate repeated START conditions. First START and repeated START  
conditions are equivalent, function-wise.  
SDA  
SCL  
S
P
START condition  
STOP condition  
34  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver  
must pull down the SDA line during the 9th clock pulse, signifying an acknowledge. A receiver which has been  
addressed must generate an acknowledge after each byte has been received.  
After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (R/W). The LP3954 address is 54h or 55H as selected with SI pin. For the  
eighth bit, a “0” indicates a WRITE and a “1” indicates a READ. The second byte selects the register to which the  
data will be written. The third byte contains data to write to the selected register.  
MSB  
LSB  
ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0 R/W  
Bit7  
bit6  
2
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
I C SLAVE address (chip address)  
Figure 39. I2C Chip Address  
Register changes take an effect at the SCL rising edge during the last ACK from slave.  
ack from slave  
ack from slave  
ack from slave  
msb Chip Address lsb  
w
ack  
msb Register Add lsb  
ack  
msb DATA lsb  
ack  
stop  
start  
SCL  
SDA  
start  
Id = 54h  
w
ack  
addr = 02h  
ack  
address 02h data  
ack  
stop  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by either master or slave)  
rs = repeated start  
id = 7-bit chip address, 54h (SI=0) or 55h (SI=1) for LP3954.  
Figure 40. I2C Write Cycle  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in  
the Read Cycle waveform.  
ack from slave  
repeated start  
ack from slave data from slave ack from master  
ack from slave  
start  
msb Chip Address lsb  
w
msb Register Add lsb  
rs  
msb Chip Address lsb  
r
msb DATA lsb  
stop  
SCL  
SDA  
start  
Id = 54h  
w
ack  
addr = h00  
ack rs  
Id = 54h  
r
ack  
Address 00h data ack stop  
Figure 41. I2C Read Cycle  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
SDA  
10  
8
7
6
1
7
8
2
SCL  
5
1
4
9
3
Figure 42. I2C Timing Diagram  
I2C Timing Parameters (VDD1,2 = 3.0 to 4.5V, VDD_IO = 1.65V to VDD1,2  
)
Limit(1)  
Symbol  
Parameter  
Hold Time (repeated) START Condition  
Unit  
Min  
0.6  
1.3  
600  
600  
300  
0
Max  
1
2
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
pF  
Clock Low Time  
3
Clock High Time  
4
Setup Time for a Repeated START Condition  
Data Hold Time (Output direction, delay generated by LP3954)  
Data Hold Time (Input direction, delay generated by the Master)  
Data Setup Time  
5
900  
900  
5
6
100  
7
Rise Time of SDA and SCL  
20+0.1Cb  
15+0.1Cb  
600  
300  
300  
8
Fall Time of SDA and SCL  
9
Set-up Time for STOP condition  
10  
Cb  
Bus Free Time between a STOP and a START Condition  
Capacitive Load for Each Bus Line  
1.3  
10  
200  
(1) NOTE: Data ensured by design  
Autoincrement mode is available, with this possible read or write few byte with autoincreasing addresses, but  
LP3954 has holes in address register map, and is recommended to use autoincrement mode only for the pattern  
command registers.  
Recommended External Components  
OUTPUT CAPACITOR, COUT  
The output capacitor COUT directly affects the magnitude of the output ripple voltage. In general, the higher the  
value of COUT, the lower the output ripple magnitude. Multilayer ceramic capacitors with low ESR are the best  
choice. At the lighter loads, the low ESR ceramics offer a much lower Vout ripple that the higher ESR tantalums  
of the same value. At the higher loads, the ceramics offer a slightly lower Vout ripple magnitude than the  
tantalums of the same value. However, the dv/dt of the Vout ripple with the ceramics is much lower that the  
tantalums under all load conditions. Capacitor voltage rating must be sufficient, 10V or greater is recommended.  
Some ceramic capacitors, especially those in small packages, exhibit a strong capacitance reduction  
with the increased applied voltage. The capacitance value can fall to below half of the nominal  
capacitance. Too low output capacitance will increase the noise and it can make the boost converter  
unstable.  
INPUT CAPACITOR, CIN  
The input capacitor CIN directly affects the magnitude of the input ripple voltage and to a lesser degree the VOUT  
ripple. A higher value CIN will give a lower VIN ripple. Capacitor voltage rating must be sufficient, 10V or greater is  
recommended.  
36  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
OUTPUT DIODE, DOUT  
A Schottky diode should be used for the output diode. To maintain high efficiency the average current rating of  
the schottky diode should be larger than the peak inductor current (1A). Schottky diodes with a low forward drop  
and fast switching speeds are ideal for increasing efficiency in portable applications. Choose a reverse  
breakdown of the schottky diode larger than the output voltage. Do not use ordinary rectifier diodes, since slow  
switching speeds and long recovery times cause the efficiency and the load regulation to suffer.  
INDUCTOR, L1  
The LP3954’s high switching frequency enables the use of the small surface mount inductor. A 4.7 µH shielded  
inductor is suggested for 2 MHz operation, 10 µH should be used at 1 MHz. The inductor should have a  
saturation current rating higher than the peak current it will experience during circuit operation (1A). Less than  
300 mESR is suggested for high efficiency. Open core inductors cause flux linkage with circuit components  
and interfere with the normal operation of the circuit. This should be avoided. For high efficiency, choose an  
inductor with a high frequency core material such as ferrite to reduce the core losses. To minimize radiated  
noise, use a toroid, pot core or shielded core inductor. The inductor should be connected to the SW pin as close  
to the IC as possible.  
LIST OF RECOMMENDED EXTERNAL COMPONENTS  
Symbol  
CVDD1  
CVDD2  
CVDDIO  
CVDDA  
COUT  
Symbol Explanation  
C between VDD1 and GND  
Value  
100  
100  
100  
1
Unit  
nF  
nF  
nF  
µF  
µF  
µF  
µH  
nF  
nF  
kΩ  
kΩ  
kΩ  
V
Type  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R, 10V  
Ceramic, X7R / X5R  
Shielded,low ESR, Isat 1A  
Ceramic, X7R  
C between VDD2 and GND  
C between VDDIO and GND  
C between VDDA and GND  
C between FB and GND  
10  
CIN  
C between battery voltage and GND  
L between SW and VBAT at 2 MHz  
C between VREF and GND  
10  
LBOOST  
CVREF  
CVDDIO  
RFLASH  
RRBG  
4.7  
100  
100  
1.2  
5.6  
82  
C between VDDIO and GND  
R between IFLASH and GND  
R between IRGB and GND  
Ceramic, X7R  
±1%  
±1%  
RRT  
R between IRT and GND  
±1%  
DOUT  
Rectifying Diode (Vf at maxload)  
C between Audio input and ASE  
0.3  
100  
Schottky diode  
CASE  
nF  
Ceramic, X7R / X5R  
LEDs  
DLIGHT  
User defined  
Light Sensor  
TDK BSC2015  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Application Examples  
EXAMPLE 1  
I
= 300...400 mA  
= 4...5.3V  
MAX  
L1  
4.7 éH  
+
D1  
V
OUT  
C
OUT  
10 éF  
C
IN  
10 éF  
C
VDD1  
100 nF  
-
FB  
SW  
BATTERY  
V
V
DD2  
WLED1  
DD1  
WLED2  
WLED3  
MAIN  
&
SUB  
V
DDA  
C
WLED4  
BACKLIGHT  
VDDA  
V
REF  
1 éF  
C
REF  
WLED5  
WLED6  
100 nF  
IRGB  
IRT  
R1  
R
RT  
R
RGB  
LP3954  
G1  
B1  
FUNLIGHTS  
SO  
SI  
SCK/SCL  
MCU  
SS/SDA  
SYNC/PWM  
VDDIO  
VBAT  
IF_SEL  
R2  
G2  
B2  
C
VDDIO  
RGB  
INDICATION  
LED  
100 nF  
FLASH_EN  
ASE  
CAMERA  
AUDIO  
SINGLE  
WHITE  
FLASH LED  
300 mA  
FLASH  
IFLASH  
GNDS  
GND  
R
FLASH  
MAIN BACKLIGHT  
SUB BACKLIGHT  
AUDIO SYNCHRONIZED FUNLIGHTS  
RGB INDICATION LIGHT  
FLASH LED  
Figure 43. Flip Phone  
38  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
EXAMPLE 2  
I
= 300...400 mA  
= 4...5.3V  
L1  
4.7 éH  
MAX  
D1  
V
OUT  
C
C
VDD1  
C
OUT  
10 éF  
IN  
10 éF 100 nF  
FB  
SW  
BATTERY  
V
V
DD2  
WLED1  
DD1  
WLED2  
WLED3  
SMART  
PHONE  
BACKLIGHT  
V
V
DDA  
C
WLED4  
WLED5  
VDDA  
REF  
1 éF  
C
REF  
100 nF  
WLED6  
IRGB  
IRT  
R1  
R
R
RGB  
RT  
LP3954  
KEYPAD  
LEDS  
G1  
B1  
SO  
SI  
SCK/SCL  
MCU  
SS/SDA  
SYNC/PWM  
VDDIO  
VBAT  
IF_SEL  
R2  
G2  
B2  
C
VDDIO  
100 nF  
RGB  
INDICATION  
LED  
FLASH_EN  
ASE  
CAMERA  
SINGLE  
WHITE  
FLASH LED  
300 mA  
LDO 2.8V  
TEMPERATURE  
SENSOR  
FLASH  
IFLASH  
GNDS  
R
FLASH  
6 WHITE LED BACKLIGHT  
KEY PAD LIGHTS  
RGB INDICATION LED  
WHITE SINGLE LED FLASH  
TEMPERATURE SENSOR  
Figure 44. Smart Phone  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
EXAMPLE 3  
L1  
4.7 éH  
I
= 300...400 mA  
= 4...5.3V  
MAX  
D1  
V
OUT  
C
C
VDD1  
C
OUT  
10 éF  
IN  
10 éF 100 nF  
FB  
SW  
BATTERY  
V
V
DD2  
WLED1  
DD1  
WLED2  
WLED3  
MAIN  
BACKLIGHT  
V
DDA  
C
WLED4  
VDDA  
V
REF  
1 éF  
C
REF  
100 nF  
WLED5  
IRGB  
IRT  
KEYPAD  
LEDS  
R
R
RT  
RGB  
WLED6  
LP3954  
SO  
SI  
R1  
G1  
SCK/SCL  
MCU  
SS/SDA  
SYNC/PWM  
VDDIO  
AUDIO  
SYNC  
FUNLIGHTS  
B1  
R2  
IF_SEL  
C
VDDIO  
100 nF  
G2  
B2  
FLASH_EN  
ASE  
AUDIO  
FLASH  
IFLASH  
VIBRA  
GNDS  
GND  
R
FLASH  
MAIN BACKLIGHT  
KEYPAD LIGHTS  
AUDIO SYNCHRONIZED FUNLIGHTS  
VIBRA  
Figure 45. Candybar Phone  
40  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
EXAMPLE 4  
I
= 300...400 mA  
= 4...5.3V  
MAX  
L1  
4.7 éH  
+
-
D1  
V
OUT  
C
IN  
10 éF  
C
C
OUT  
10 éF  
VDD1  
100 nF  
SW  
FB  
BATTERY  
V
V
DD2  
WLED1  
WLED2  
WLED3  
C
DD1  
DDA  
VDDA  
1 éF  
V
C
REF  
100 nF  
V
REF  
WLED4  
R
RGB  
IRGB  
IRT  
WLED5  
WLED6  
R
RT  
SO  
SI  
SCK/SCL  
R1  
MCU  
SS/SDA  
SYNC/PWM  
VDDIO  
G1  
B1  
IF_SEL  
C
VDDIO  
100 nF  
FLASH_EN  
R4  
100k  
R3  
100k  
V
DDA  
VBAT  
R2  
G2  
B2  
AUDIO  
LMV321  
+
-
ASE  
C2  
10 nF  
R1  
10k  
C1  
100 nF  
R2  
100k  
FLASH  
IFLASH  
GNDS  
MAIN BACKLIGHT  
SUB BACKLIGHT  
AUDIO SYNCHRONIZED FUNLIGHTS  
RGB INDICATION LIGHT  
There may be cases where the audio input signal going into the LP3954 is too weak for audio synchronization. This  
figure presents a single-supply inverting amplifier connected to the ASE input for audio signal amplification. The  
amplification is +20 dB, which is well enough for 20 mVp-p audio signal. Because the amplifier (LMV321) is operating  
in single supply voltage, a voltage divider using R3 and R4 is implemented to bias the amplifier so the input signal is  
within the input common-mode voltage range of the amplifier. The capacitor C1 is placed between the inverting input  
and resistor R1 to block the DC signal going into the audio signal source. The values of R1 and C1 affect the cutoff  
frequency, fc = 1/(2*Pi*R1*C1), in this case it is around 160 Hz. As a result, the LMV321 output signal is centered  
around mid-supply, that is VDDA/2. The output can swing to both rails, maximizing the signal-to-noise ratio in a low  
voltage system  
Figure 46. Using Extra Amplifier  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
EXAMPLE 5  
I
= 300...400 mA  
= 4...5.3V  
L1  
4.7 éH  
MAX  
+
D1  
V
OUT  
C
IN  
10 éF  
C
C
OUT  
10 mF  
VDD1  
100 nF  
-
SW  
FB  
BATTERY  
V
V
DD2  
WLED1  
WLED2  
WLED3  
C
VDDA  
DD1  
DDA  
1 éF  
V
C
REF  
100 nF  
WLED4  
V
REF  
R
RGB  
IRGB  
IRT  
WLED5  
WLED6  
R
RT  
SO  
SI  
SCK/SCL  
R1  
MCU  
SS/SDA  
SYNC/PWM  
VDDIO  
G1  
B1  
IF_SEL  
C
VDDIO  
100 nF  
FLASH_EN  
PWM  
AUDIO  
SIGNAL  
VBAT  
C1  
10 nF  
R2  
10k  
R1  
10k  
R2  
G2  
B2  
ASE  
C2  
10 nF  
C3  
10 nF  
FLASH  
IFLASH  
GNDS  
MAIN BACKLIGHT  
SUB BACKLIGHT  
AUDIO SYNCHRONIZED FUNLIGHTS  
RGB INDICATION LIGHT  
Here, a second order RC-filter is used on the ASE input to convert a PWM signal to an analog waveform.  
Figure 47. Using PWM Signal  
More application information is available in the document "LP3954 Evaluation Kit".  
42  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
LP3954 Control Registers  
Table 3. LP3954 Control Register Names and Default Values  
ADDR  
(HEX)  
REGISTER  
RGB Ctrl  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
00  
cc_rgb1  
cc_rgb2  
r1sw  
0
g1sw  
0
b1sw  
0
r2sw  
0
g2sw  
0
b2sw  
0
1
1
07  
Ext. PWM control  
wled1_4  
_pwm  
wled5_6  
_pwm  
r1_pwm  
g1_pwm  
b1_pwm  
r2_pwm  
g2_pwm  
b2_pwm  
0
0
0
0
slope  
0
0
fade_sel  
0
0
en_fade  
0
0
displ  
0
0
en_w1_4  
0
0
en_w5_6  
0
08  
09  
0A  
0B  
WLED control  
WLED1-4  
WLED5-6  
Enables  
wled1_4[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
wled5_6[7:0]  
0
0
pwm_  
sync  
nstby  
en_  
boost  
en_  
autoload  
rgb_sel[1:0]  
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
0C  
0D  
0E  
10  
ADC output  
Boost output  
Boost_frq  
data[7:0]  
0
1
0
1
boost[7:0]  
1
freq_sel[2:0]  
1
HC_Flash  
hc_pwm  
fl_t[1:0]  
hc[1:0]  
en_  
hcflash  
0
0
0
0
0
rgb_start  
0
0
loop  
0
0
log  
0
11  
12  
13  
2A  
2B  
50  
51  
52  
53  
54  
55  
56  
57  
Pattern gen ctrl  
RGB1 max current  
RGB2 max current  
audio sync CTRL1  
audio sync CTRL2  
Command 1A  
ir1[1:0]  
ir2[1:0]  
ig1[1:0]  
ib1[1:0]  
0
0
0
0
0
0
0
0
0
0
0
1
ig2[1:0]  
ib2[1:0]  
0
en_agc  
0
gain_sel[2:0]  
sync_mode  
en_sync  
input_sel[1:0]  
0
0
0
0
en_avg  
0
0
1
mode_ctrl[1:0]  
speed_ctrl[1:0]  
0
g[2:0]  
0
0
0
0
0
0
0
0
0
0
0
0
r[2:0]  
cet[3:2]  
cet[3:2]  
cet[3:2]  
cet[3:2]  
0
0
0
0
0
0
0
0
0
0
b[2:0]  
0
0
tt[2:0]  
0
0
0
0
0
0
0
0
0
Command 1B  
cet[1:0]  
0
0
0
0
0
0
0
0
r[2:0]  
0
0
g[2:0]  
0
Command 2A  
0
b[2:0]  
0
0
tt[2:0]  
0
Command 2B  
cet[1:0]  
0
r[2:0]  
0
0
g[2:0]  
0
Command 3A  
0
b[2:0]  
0
0
tt[2:0]  
0
Command 3B  
cet[1:0]  
cet[1:0]  
0
r[2:0]  
0
0
g[2:0]  
0
Command 4A  
0
b[2:0]  
0
0
tt[2:0]  
0
Command 4B  
0
0
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Table 3. LP3954 Control Register Names and Default Values (continued)  
ADDR  
(HEX)  
REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
Command 5A  
r[2:0]  
g[2:0]  
cet[3:2]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
b[2:0]  
0
0
0
0
0
0
0
0
0
0
0
tt[2:0]  
0
0
0
0
0
0
0
0
0
Command 5B  
Command 6A  
Command 6B  
Command 7A  
Command 7B  
Command 8A  
Command 8B  
Reset  
cet[1:0]  
cet[1:0]  
cet[1:0]  
cet[1:0]  
0
r[2:0]  
0
0
g[2:0]  
0
cet[3:2]  
cet[3:2]  
cet[3:2]  
0
b[2:0]  
0
0
tt[2:0]  
0
0
r[2:0]  
0
0
g[2:0]  
0
0
b[2:0]  
0
0
tt[2:0]  
0
0
r[2:0]  
0
0
g[2:0]  
0
0
b[2:0]  
0
0
tt[2:0]  
0
0
0
Writing any data to Reset Register resets LP3954  
LP3954 Registers  
REGISTER BIT EXPLANATIONS  
Each register is shown with a key indicating the accessibility of the each individual bit, and the initial condition:  
Register Bit Accessibility and Initial Condition  
Key  
rw  
Bit Accessibility  
Read/write  
r
Read only  
–0,–1  
Condition after POR  
RGB CTRL (00H) – RGB LEDS CONTROL REGISTER  
D7  
cc_rgb1  
rw-1  
D6  
cc_rgb2  
rw-1  
D5  
D4  
D3  
D2  
D1  
D0  
r1sw  
rw-0  
g1sw  
rw-0  
b1sw  
rw-0  
r2sw  
rw-0  
g2sw  
rw-0  
b2sw  
rw-0  
0 - R1, G1 and B1 are constant current sinks, current limited internally  
1 - R1, G1 and B1 are switches, limit current with external ballast resistor  
cc_rgb1  
Bit 7  
Bit 6  
Bit 5  
0 – R2, G2 and B2 are constant current sinks, current limited internally  
1 – R2, G2 and B2 are switches, limit current with external ballast resistor  
cc_rgb2  
r1sw  
0 – R1 disabled  
1 – R1 enabled  
0 – G1 disabled  
1 – G1 enabled  
g1sw  
b1sw  
r2sw  
Bit 4  
Bit 3  
0 – B1 disabled  
1 – B1 enabled  
0 – R2 disabled  
1 – R2 enabled  
Bit 2  
Bit 1  
Bit 0  
0 – G2 disabled  
1 – G2 enabled  
g2sw  
b2sw  
0 – B2 disabled  
1 – B2 enabled  
44  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
EXT_PWM_CONTROL (07H) – EXTERNAL PWM CONTROL REGISTER  
D7  
D6  
D5  
r1_pwm  
rw-0  
D4  
g1_pwm  
rw-0  
D3  
b1_pwm  
rw-0  
D2  
r2_pwm  
rw-0  
D1  
g2_pwm  
rw-0  
D0  
b2_pwm  
rw-0  
wled1_4_pwm wled5_6_pwm  
rw-0  
rw-0  
0 – WLED1…WLED4 PWM control disabled  
1 – WLED1…WLED4 PWM control enabled  
wled1_4_pwm Bit 7  
wled5_6_pwm Bit 6  
0 – WLED5, WLED6 PWM control disabled  
1 – WLED5, WLED6 PWM control enabled  
0 – R1 PWM control disabled  
1 – R1 PWM control enabled  
r1_pwm  
g1_pwm  
b1_pwm  
r2_pwm  
g2_pwm  
b2_pwm  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0 – G1 PWM control disabled  
1 – G1 PWM control enabled  
0 – RB PWM control disabled  
1 – B1 PWM control enabled  
0 – R2 PWM control disabled  
1 – R2 PWM control enabled  
0 – G2 PWM control disabled  
1 – G2 PWM control enabled  
0 – B2 PWM control disabled  
1 – B2 PWM control enabled  
WLED CONTROL (08H) – WLED CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
D4  
fade_sel  
rw-0  
D3  
en_fade  
rw-0  
D2  
D1  
en_w1_4  
rw-0  
D0  
en_w5_6  
rw-0  
slope  
rw-0  
displ  
rw-0  
0 – fade execution time 1.3 sec  
1 – fade execution time 0.65 sec  
slope  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0 – fade control for WLED1… WLED4  
1 – fade control for WLED5, WLED6  
fade_sel  
en_fade  
displ  
0 – automatic fade disabled  
1 – automatic fade enabled  
0 – WLED1-4 and WLED5-6 are controlled separately  
1 – WLED1-4 and WLED5-6 are controlled with WLED1-4 controls  
0 – WLED1…WLED4 disabled  
1 – WLED1…WLED4 enabled  
en_w1_4  
en_w5_6  
0 – WLED5,WLED6 disabled  
1 – WLED5,WLED6 enabled  
WLED1-4 (09H) – WLED1…WLED4 BRIGHTNESS CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
wled1_4[7:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Adjustment  
Typical driver current (ma)  
wled1_4[7:0]  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
0
0.1  
0.2  
0.3  
0.4  
wled1_4[7:0]  
Bits 7-0  
1111 1101  
1111 1110  
1111 1111  
25.3  
25.4  
25.5  
WLED5-6 (0AH) – WLED5, WLED6 BRIGHTNESS CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
wled5_5[7:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Adjustment  
wled5_6[7:0]  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
Typical driver current (ma)  
0
0.1  
0.2  
0.3  
0.4  
wled5_6[7:0]  
Bits 7-0  
1111 1101  
1111 1110  
1111 1111  
25.3  
25.4  
25.5  
ENABLES (0BH) – ENABLES REGISTER  
D7  
pwm_sync  
rw-0  
D6  
D5  
en_boost  
rw-0  
D4  
r-0  
D3  
r-0  
D2  
en_autoload  
rw-1  
D1  
D0  
nstby  
rw-0  
rgb_sel[1:0]  
rw-0  
rw-0  
0 – synchronization to external clock disabled  
1 – synchronization to external clock enabled  
pwm_sync  
nstby  
Bit 7  
0 – LP3954 standby mode  
1 – LP3954 active mode  
Bit 6  
Bit 5  
Bit 2  
0 – boost converter disabled  
1 – boost converter enabled  
en_boost  
en_autoload  
0 – internal boost converter active load off  
1 – internal boost converter active load on  
Color LED control mode selection  
rgb_sel[1:0]  
Audio sync connected  
to  
Pattern generator  
connected to  
00  
01  
10  
11  
none  
RGB1  
RGB1 & RGB2  
RGB2  
rgb_sel[1:0]  
Bits 1-0  
RGB2  
RGB1  
RGB1 & RGB2  
none  
46  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
ADC_OUTPUT (0CH) – ADC DATA REGISTER  
D7  
D6  
D5  
r-0  
D4  
r-0  
D3  
r-0  
D2  
r-0  
D1  
r-0  
D0  
r-0  
data[7:0]  
r-0  
r-0  
data[7:0]  
Bits 7-0  
Data register ADC (Audio input, light or temperature sensors)  
BOOST_OUTPUT (0DH) – BOOST OUTPUT VOLTAGE CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
rw-1  
D1  
D0  
Boost[7:0]  
rw-0  
rw-0  
rw-1  
rw-1  
rw-1  
rw-1  
rw-1  
Adjustment  
Boost[7:0]  
0000 0000  
0000 0001  
0000 0011  
0000 0111  
0000 1111  
0001 1111  
0011 1111  
0111 1111  
1111 1111  
Typical boost output (V)  
4.00  
4.25  
4.40  
Boost[7:0]  
Bits 7-0  
4.55  
4.70  
4.85  
5.00 (default)  
5.15  
5.30  
BOOST_FRQ (0EH) – BOOST FREQUENCY CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
r-0  
D4  
r-0  
D3  
r-0  
D2  
D1  
freq_sel[2:0]  
rw-1  
D0  
rw-1  
rw-1  
Adjustment  
freq_sel[2:0]  
Frequency  
freq_sel[2:0]  
Bits 7-0  
1xx  
01x  
00x  
2.00 MHz  
1.67 MHz  
1.00 MHz  
HC_FLASH (10H) – HIGH CURRENT FLASH DRIVER CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
hc_pwm  
rw-0  
D4  
D3  
D2  
D1  
D0  
en_hcflash  
rw-0  
fl_t[1:0]  
hc[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
0 – PWM for high current flash driver disabled  
1 – PWM for high current flash driver enabled  
hc_pwm  
Bit 5  
Flash duration for high current driver  
fl_t[1:0]  
00  
Typical flash duration  
200 ms  
fl_t[1:0]  
Bits 4-3  
01  
400 ms  
600 ms  
10  
11  
According EN_FLASH pin on duration  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Current control for high current flash driver  
current  
hc[1:0]  
00  
0.25×IMAX(FLASH)  
hc[1:0]  
Bits 2-1  
Bit 0  
01  
0.50×IMAX(FLASH)  
10  
0.75×IMAX(FLASH)  
11  
1.00×IMAX(FLASH)  
0 – high current flash driver disabled  
1 – high current flash driver enabled  
en_hcflash  
PATTERN_GEN_CTRL (11H) – PATTERN GENERATOR CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
r-0  
D4  
r-0  
D3  
r-0  
D2  
rgb_start  
rw-0  
D1  
D0  
log  
loop  
rw-0  
rw-0  
0 – Pattern generator disabled  
1 – execution pattern starting from command 1  
rgb_start  
loop  
Bit 2  
Bit 1  
Bit 0  
0 – pattern generator loop disabled (single patter)  
1 – pattern generator loop enabled (execute until stopped)  
0 – color intensity mode 0  
1 – color intensity mode 1  
log  
RGB1_MAX_CURRENT (12H) – RGB1 DRIVER INDIVIDUAL MAXIMUM CURRENT CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
D4  
D3  
D2  
D1  
D0  
ir1[1:0]  
ig1[1:0]  
ib1[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Maximum current for R1 driver  
ir1[2:0]  
Maximum output current  
0.25×IMAX  
00  
01  
10  
11  
ir1[1:0]  
Bits 5-4  
Bits 3-2  
Bits 1-0  
0.50×IMAX  
0.75×IMAX  
1.00×IMAX  
1aximum current for G1 driver  
ig2[1:0]  
00  
Maximum output current  
0.25×IMAX  
ig1[1:0]  
ib1[1:0]  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
Maximum current for B1 driver  
ib1[1:0]  
00  
Maximum output current  
0.25×IMAX  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
RGB2_MAX_CURRENT (13H) – RGB2 DRIVER INDIVIDUAL MAXIMUM CURRENT CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ir2[1:0]  
ig2[1:0]  
ib2[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
48  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
ir2[1:0]  
SNVS340D JUNE 2005REVISED MARCH 2013  
Maximum current for R2 driver  
ir2[2:0]  
00  
Maximum output current  
0.25×IMAX  
Bits 5-4  
Bits 3-2  
Bits 1-0  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
Maximum current for G2 driver  
ig2[1:0]  
00  
Maximum output current  
0.25×IMAX  
ig2[1:0]  
ib2[1:0]  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
Maximum current for B2 driver  
ib2[1:0]  
00  
Maximum output current  
0.25×IMAX  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
AUDIO_SYNC_CTRL1 (2AH) – AUDIO SYNCHRONIZATION AND ADC CONTROL REGISTER 1  
D7  
D6  
gain_sel[2:0]  
rw-0  
D5  
D4  
sync_mode  
rw-0  
D3  
en_agc  
rw-0  
D2  
en_sync  
rw-0  
D1  
D0  
input_sel[1:0]  
rw-0  
rw-0  
rw-1  
rw-1  
Input signal gain control  
gain, db  
gain_sel[2:0]  
000  
0 (default)  
001  
3
6
010  
gain_sel[2:0]  
Bits 7-5  
011  
9
100  
12  
15  
18  
21  
101  
110  
111  
Input filter mode control  
0 – Amplitude mode  
sync_mode  
Bit 4  
1 – Frequency mode  
0 – automatic gain control disabled  
1 – automatic gain control enabled  
en_agc  
Bit 3  
Bit 2  
0 – audio synchronization disabled  
1 – audio synchronization enabled  
en_sync  
ADC input selector  
input_sel[1:0]  
Input  
00  
01  
10  
11  
Single ended input signal (ASE)  
Temperature measurement  
Ambient light measurement  
No input (default)  
input_sel[1:0]  
Bits 1-0  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
AUDIO_SYNC_CTRL2 (2BH) – AUDIO SYNCHRONIZATION AND ADC CONTROL REGISTER 2  
D7  
r-0  
D6  
r-0  
D5  
r-0  
D4  
en_avg  
rw-0  
D3  
D2  
D1  
D0  
mode_ctrl[1:0]  
speed_ctrl[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
0 – averaging disabled  
1 – averaging enabled  
en_avg  
Bit 4  
mode_ctrl[1:0]  
Bits 3-2  
Filtering mode control  
LEDs light response time to audio input  
speed_ctrl[1:0]  
Response  
FASTEST (default)  
FAST  
00  
01  
10  
11  
speed_ctrl[1:0]  
Bits 1-0  
MEDIUM  
SLOW  
PATTERN CONTROL REGISTERS  
Command_[1:8]A – Pattern Control Register A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
r[2:0]  
rw-0  
g[2:0]  
rw-0  
cet[3:2]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Command_[1:8]B – Pattern Control Register B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
cet[1:0]  
b[2:0]  
rw-0  
tt[2:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Red color intensity  
current, %  
r[2:0]  
log=0  
log=1  
000  
001  
010  
011  
100  
101  
110  
111  
0×IMAX  
0×IMAX  
7%×IMAX  
14%×IMAX  
21%×IMAX  
32%×IMAX  
46%×IMAX  
71%×IMAX  
100%×IMAX  
1%×IMAX  
2%×IMAX  
Bits  
7-5A  
r[2:0]  
4%×IMAX  
10%×IMAX  
21%×IMAX  
46%×IMAX  
100%×IMAX  
* log bit is in pattern_gen_ctrl register  
50  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
Green color intensity  
current, %  
g[2:0]  
log=0  
log=1  
0×IMAX  
000  
0×IMAX  
001  
7%×IMAX  
14%×IMAX  
21%×IMAX  
32%×IMAX  
46%×IMAX  
71%×IMAX  
100%×IMAX  
1%×IMAX  
2%×IMAX  
4%×IMAX  
10%×IMAX  
21%×IMAX  
46%×IMAX  
100%×IMAX  
010  
Bits  
4-2A  
g[2:0]  
011  
100  
101  
110  
111  
* log bit is in pattern_gen_ctrl register  
Command execution time  
cet[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
CET duration, ms  
197  
393  
590  
786  
983  
1180  
1376  
1573  
1769  
1966  
2163  
2359  
2556  
2753  
2949  
3146  
Bits  
1-0A  
7-6B  
cet[3:0]  
Blue color intensity  
current, %  
b[2:0]  
log=0  
log=1  
0×IMAX  
000  
001  
010  
011  
100  
101  
110  
111  
0×IMAX  
7%×IMAX  
14%×IMAX  
21%×IMAX  
32%×IMAX  
46%×IMAX  
71%×IMAX  
100%×IMAX  
1%×IMAX  
2%×IMAX  
4%×IMAX  
10%×IMAX  
21%×IMAX  
46%×IMAX  
100%×IMAX  
Bits  
5-3B  
b[2:0]  
* log bit is in pattern_gen_ctrl register  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: LP3954  
LP3954  
SNVS340D JUNE 2005REVISED MARCH 2013  
www.ti.com  
Transition time  
Transition time, ms  
tt[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
0
55  
110  
221  
442  
885  
1770  
3539  
Bits  
2-0B  
tt[2:0]  
RESET (60H) - RESET REGISTER  
D7  
r-0  
D6  
r-0  
D5  
Writing any data to Reset Register in address 60H can reset LP3954  
r-0 r-0 r-0 r-0  
D4  
D3  
D2  
D1  
r-0  
D0  
r-0  
52  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LP3954  
 
LP3954  
www.ti.com  
SNVS340D JUNE 2005REVISED MARCH 2013  
REVISION HISTORY  
Changes from Revision C (March 2013) to Revision D  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 52  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: LP3954  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP3954TL/NOPB  
LP3954TLX/NOPB  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YZR  
YZR  
36  
36  
250  
RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-30 to 85  
-30 to 85  
D49B  
D49B  
Samples  
Samples  
1000 RoHS & Green  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-May-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-May-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP3954TL/NOPB  
LP3954TLX/NOPB  
DSBGA  
DSBGA  
YZR  
YZR  
36  
36  
250  
178.0  
178.0  
12.4  
12.4  
3.21  
3.21  
3.21  
3.21  
0.76  
0.76  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
1000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-May-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP3954TL/NOPB  
LP3954TLX/NOPB  
DSBGA  
DSBGA  
YZR  
YZR  
36  
36  
250  
208.0  
208.0  
191.0  
191.0  
35.0  
35.0  
1000  
Pack Materials-Page 2  
MECHANICAL DATA  
YZR0036xxx  
D
0.600±0.075  
E
TLA36XXX (Rev D)  
D: Max = 3.013 mm, Min =2.952 mm  
E: Max = 3.013 mm, Min =2.952 mm  
4215058/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

LP3958

Lighting Management Unit with High Voltage Boost Converter
NSC

LP3958

具有高压升压转换器的照明管理单元
TI

LP3958TL

Lighting Management Unit with High Voltage Boost Converter
NSC

LP3958TL/NOPB

具有高压升压转换器的照明管理单元 | YZR | 25 | -30 to 85
TI

LP3958TLX

Lighting Management Unit with High Voltage Boost Converter
NSC

LP3958TLX/NOPB

Lighting Management Unit with High Voltage Boost Converter 25-DSBGA -30 to 85
TI

LP395Z

Ultra Reliable Power Transistor
NSC

LP395Z/NOPB

TRANSISTOR 100 mA, 36 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92, TO-92, 3 PIN, BIP General Purpose Small Signal
NSC

LP3961

800mA Fast Ultra Low Dropout Linear Regulators
NSC

LP3961

LP396x 800-mA Fast Ultra-Low-Dropout Linear Regulators
TI

LP3961EMP-1.8

800mA Fast Ultra Low Dropout Linear Regulators
NSC

LP3961EMP-1.8/NOPB

IC VREG 1.8 V FIXED POSITIVE LDO REGULATOR, 0.7 V DROPOUT, PDSO5, SOT-223, 5 PIN, Fixed Positive Single Output LDO Regulator
NSC