LP5890 [TI]

具有 16 位 PWM 调光和超低功耗的 48x16 LED 矩阵驱动器;
LP5890
型号: LP5890
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 16 位 PWM 调光和超低功耗的 48x16 LED 矩阵驱动器

驱动 驱动器
文件: 总70页 (文件大小:3084K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP5890  
ZHCSO29 JULY 2021  
LP5890 16 × 48 矩阵驱动器,具有超低功耗  
– 去除上下重影  
– 低灰度增强  
1 特性  
– 检测和消LED 开路、短路和弱短路  
• 支持分立VCC VR/G/B 电源  
VCC 电压范围2.5V 5.5V  
VR/G/B 电压范围2.5V 5.5V  
48 个电流源通道范围0.2mA 20mA  
2 应用  
LED 数字标牌  
• 键盘、游戏附件  
• 大型和智能家用电器  
• 智能音箱、有线和无线音箱  
• 混音器、DJ 设备和广播  
• 接入设备、交换机和服务器  
– 通道间精度±0.5%典型值),±2%最大  
);器件间精度±0.5%典型值),±2%  
最大值)  
– 低膝点电压IOUT = 5mA 0.26V最大  
)  
3 说明  
3 8 全局亮度控制  
8 256 色彩亮度控制  
– 最16 65536 PWM 灰度控制  
190mΩRDS(ON) 16 个扫描线开关  
• 超低功耗  
电子设备变得越来越智能而且需要使用更多的 LED  
提供动画效果和指示功能因此需要使用高性能 LED  
矩阵驱动器以小尺寸解决方案改善用户体验。  
LP5890 是高度集成的共阴极矩阵 LED 显示驱动器,  
48 个恒流源和 16 个扫描 FET。单个 LP5890 能驱  
16 × 16 RGB LED 像素两个 LP5890 堆叠后可驱  
32 × 32 RGB LED 像素。为实现低功耗该器件可  
通过其共阴极结构为红色、绿色和蓝色 LED 提供分立  
式电源。此外通过超低的工作电压范围Vcc 低至  
2.5V超低的工作电流Icc 3.9mA) ,  
LP5890 可显著降低运行功率。  
– 低2.5V 的独VCC  
– 超ICC3.9mA),50MHz GCLK  
– 智能省电模式  
• 内SRAM 1 32 路复用  
– 单个器件可驱动多16 × 48 LED 16 × 16  
RGB LED  
– 两个器件堆叠后可驱动多32 × 96 LED 或  
32 × 32 RGB LED  
• 高速和EMI 连续时钟串行接(CCSI)  
器件信息  
封装(1)  
VQFN (76)  
BGA (96)  
封装尺寸标称值)  
9mm × 9mm  
器件型号  
LP5890  
– 仅三条线SCLK/SIN/SOUT  
– 外50MHz最大值SCLK  
– 支40MHz 160MHz GCLK 的内部倍  
频器  
6mm × 6mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 经优化的显示性能  
单器件或双器件可堆叠连接LP5890  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGD5  
 
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................23  
8.5 Continuous Clock Series Interface............................24  
8.6 PWM Grayscale Control........................................... 29  
8.7 Register Maps...........................................................32  
9 Application and Implementation..................................46  
9.1 Application Information............................................. 46  
9.2 Typical Application.................................................... 46  
10 Power Supply Recommendations..............................54  
11 Layout...........................................................................55  
11.1 Layout Guidelines................................................... 55  
11.2 Layout Example...................................................... 55  
12 Device and Documentation Support..........................59  
12.1 接收文档更新通知................................................... 59  
12.2 支持资源..................................................................59  
12.3 Trademarks.............................................................59  
12.4 Electrostatic Discharge Caution..............................59  
12.5 术语表..................................................................... 59  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................2  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Timing Requirements..................................................9  
7.7 Switching Characteristics............................................9  
7.8 Typical Characteristics..............................................10  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
8.2 Functional Block Diagram.........................................12  
8.3 Feature Description...................................................13  
Information.................................................................... 60  
4 Revision History  
DATE  
REVISION  
NOTES  
July 2021  
*
Initial release.  
5 说明)  
LP5890 实现了一个高速传输接口可支持高设备数菊花链和高刷新率同时尽可能降低电磁干扰 (EMI)。该器件  
支持高达 50MHz SCLK 和高达 160MHz GCLK内部。同时该器件集成了增强电路和智能算法能够  
应对多种 LED 矩阵应用中的各种显示挑战LED 开路或短路引起的上下重影、低灰度不均匀、耦合以及毛虫  
(Caterpillar)使LP5890 成为此类应用的理想选择。  
LP5890 还可以在运行期间实现 LED 开路/弱短路/短路的检测和消除并可以将这些信息报告给配套的数字处理  
器。  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
2
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
R0  
G0  
R15  
G15  
B15  
R14  
G14  
B14  
VG  
3
B0  
4
R1  
5
G1  
6
B1  
7
GND  
8
VCC  
VR  
VG  
VB  
VB  
9
10  
11  
12  
VR  
R2  
G2  
GND  
R13  
G13  
B13  
13  
45  
B2  
R3  
G3  
B3  
R4  
G4  
14  
15  
16  
17  
18  
44  
43  
42  
41  
40  
R12  
G12  
B12  
R11  
G11  
B11  
19  
39  
B4  
6-1. LP5890 RRF Package 76-Pin VQFN With Exposed Thermal Pad Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
L12  
L13  
SOU  
T
SCL  
K
L2  
L1  
R1  
G1  
B1  
B0  
G0  
R0  
NC  
SIN  
NC  
GND  
GND  
R14  
G14  
B14  
R13  
G13  
R12  
R11  
L14  
L15  
GND  
VG  
L0  
GND  
GND  
GND  
GND  
R7  
GND  
GND  
GND  
GND  
B8  
GND  
GND  
GND  
GND  
B9  
GND  
R15  
G15  
B15  
B10  
GND  
VCC  
VR  
GND  
R2  
GND  
R3  
VG  
G
H
J
G2  
B2  
G3  
VB  
VR  
B3  
VB  
IREF  
G4  
R4  
B13  
G12  
B12  
K
L
B4  
R6  
B5  
G6  
B6  
G7  
B7  
G8  
R8  
G9  
R9  
G10  
R10  
B11  
G11  
R5  
G5  
6-2. LP5890 ZXL Package 96-Pin BGA Top View  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
RRF NO.  
ZXL NO.  
Pin for setting the maximum constant-current value. Connecting an external  
resistor between IREF and GND sets the maximum current for each constant-  
current output channel. When this pin is connected directly to GND, all outputs  
are forced off. The external resistor should be placed close to the device.  
IREF  
20  
J1  
I
VCC  
VR  
8
F1  
I
I
I
I
Device power supply.  
9, 10  
51, 50  
49, 48  
G1, H1  
E11, F11  
G11, H11  
Red LED power supply.  
Green LED power supply.  
Blue LED power supply.  
VG  
VB  
1, 4, 11, 14, B5, B2,F2, F4,  
17, 21, 24, J2, L1, K3, H5,  
27, 32, 35, L6, L7, L8, L10,  
38, 41, 44, K10, H10, E10,  
R0-R15  
G0-G15  
B0-B15  
O
O
O
Red LED Constant-current output.  
Green LED Constant-current output.  
Blue LED Constant-current output.  
47, 54, 57  
E8  
2, 5, 12, 15, B4, C2, G2, G4,  
18, 22, 25, K1, L2, K4, K5,  
28, 31, 34, K6, K7, K8, L9,  
37, 40, 43, K11, J10, F10,  
46, 53, 56  
F8  
3, 6, 13, 16, B3, D2, H2, H4,  
19, 23, 26, K2, L3, L4, L5,  
29, 30, 33, H6, H7, H8, K9,  
36, 39, 42, L11, J11, G10,  
45, 52, 55  
G8  
76, 75, 74,  
73, 72, 71,  
70, 69, 68,  
67, 66, 65,  
64, 63, 62,  
61  
D1, C1, B1, A1,  
A2, A3, A4, A5,  
A6, A7, A8, A9,  
A10, A11, B11,  
C11  
LINE0-  
LINE15  
O
Scan Lines.  
SCLK  
SIN  
60  
59  
58  
B9  
B8  
B7  
I
I
Clock-signal input pin.  
Serial-data input pin.  
Serial data output pin.  
SOUT  
O
C10, E1, E2,  
D5, D6, D7, D8,  
D10, D11,  
E1,E2, E4, E5,  
E6,E7, F5, F6,  
F7,G5, G6, G7  
GND  
7
-
-
-
Power-ground reference.  
Thermal  
pad  
-
The thermal pad and the GND pin must be connected together on the board.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LP5890  
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
40  
55  
MAX  
UNIT  
V
VCC  
6
6
VR/G/B  
V
Voltage  
IREF, SCLK, SIN, SOUT, VSYNC  
RX/GX/BX  
6
V
6
V
LINE0 to LINE15  
6
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
NOM  
MAX  
5.5  
UNIT  
V
VCC  
Device supply voltage  
VLEDR/G/B LED supply voltage  
2.5  
5.5  
V
VIH  
VIL  
IOH  
IOL  
ICH  
ILINE  
TA  
High level logic input voltage (SCLK, SIN, VSYNC)  
0.7 × VCC  
V
Low level logic input voltage (SCLK, SIN, VSYNC)  
High level logic output current (SOUT)  
Low level logic output current (SOUT)  
Constant output source current  
0.3 × VCC  
V
mA  
mA  
mA  
A
2  
2
0.2  
0
20  
2
Line scan switch load current  
Ambient operating temperature  
85  
°C  
40  
7.4 Thermal Information  
LP5890  
THERMAL METRIC(1)  
RRF (VQFN)  
76 PINS  
22.2  
ZXL (BGA)  
UNIT  
96 PINS  
33.5  
18.6  
11.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
10.7  
RθJB  
ψJT  
Junction-to-board thermal resistance  
7.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.1  
0.3  
7.1  
11.6  
ψJB  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LP5890  
 
 
 
 
 
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
LP5890  
THERMAL METRIC(1)  
RRF (VQFN)  
76 PINS  
1.7  
ZXL (BGA)  
96 PINS  
UNIT  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
At VCC = VR = 2.8V, VG/B = 3.8V and TA = 40°C to +85°C; Typical values are at TA = 25°C (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC  
VUVR  
VUVF  
Device supply voltage  
Undervoltage restart  
Undervoltage shutdown  
2.5  
5.5  
V
V
V
VCC rising  
2.3  
VCC falling  
2.0  
Undervoltage shutdown  
hysteresis  
VUV(HYS)  
0.1  
2.4  
V
SCLK/SIN = GND, internal  
GCLK=0MHz, GSn = 0000h, BC =  
2h, CCR/G/B = 63h, PS_EN= 1h,  
VOUTn = floating, RIREF = 7.8 kΩ  
mA  
SCLK = 10 MHz, internal GCLK = 50  
MHz, GSn = 1FFFh, BC = 2h,  
CCR/G/B = 63h,VOUTn = floating,  
RIREF = 7.8 kΩ, ICH = 2 mA  
ICC  
Device supply current  
3.9  
5
mA  
mA  
SCLK = 10 MHz, internal GCLK =  
100 MHz, GSn = 1FFFh, BC = 2h,  
CCR/G/B = 63h, VOUTn = floating,  
RIREF = 7.8 kΩ, ICH = 2 mA  
VR/G/B  
VIH  
LED supply voltage  
2.5  
5.5  
V
V
High level input voltage (SCLK,  
SIN)  
0.7 × VCC  
Low level input voltage (SCLK,  
SIN)  
VIL  
0.3 × VCC  
V
VOH  
High level output voltage (SOUT)  
VCC-0.4  
-1  
VCC  
0.4  
1
V
V
IOH = 2 mA at SOUT  
VOL  
Low level output voltage (SOUT) IOL = 2 mA at SOUT  
ILOGIC  
Logic pin current (SCLK, SIN)  
SCLK/SIN = VCC or GND  
VCC = 2.8 V, TA= 25°C  
uA  
Scan switches' on-state  
resistance (LINE0 to LINE15)  
RDS(ON)  
190  
0.8  
mΩ  
SCLK/SIN = GND, internal GCLK=  
0MHz, GSn = 0000h, BC = 2h,  
CCR/G/B = 63h, VOUTn = floating,  
RIREF = 7.8 kΩ  
VIREF  
Reference voltage  
V
VLEDR/G/B 2.8 V, all channel  
outputs on, output current at 1 mA  
0.25  
0.26  
0.3  
V
V
V
VLEDR/G/B 2.8 V, all channel  
outputs on, output current at 5 mA  
VLEDR/G/B 2.8 V, all channel  
outputs on, output current at 10 mA  
Channel knee voltage (R0-R15 /  
G0-G15 / B0-B15)  
VKNEE  
VLEDR/G/B 2.8 V, IMAX = 1b, all  
channel outputs on, output current at  
15 mA  
0.37  
0.41  
V
V
VLEDR/G/B 2.8 V, IMAX=1b, all  
channel outputs on, output current at  
20 mA  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
At VCC = VR = 2.8V, VG/B = 3.8V and TA = 40°C to +85°C; Typical values are at TA = 25°C (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Channel leakage current (R0-  
R15 / G0-G15 / B0-B15)  
ICH(LKG)  
Channel voltage at 0 V  
1
uA  
All CHn = on, BC = 00h, CC = 31h,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 0.2-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±1  
±2.5  
±1.5  
±1.5  
±2  
%
%
%
%
%
All CHn = on, BC = 00h, CC = 7Dh,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 0.5-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±0.5  
±0.5  
±0.5  
±0.5  
All CHn = on, BC = 00h, CC = FBh,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 1-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
Constant-current channel to  
channel deviation (R0-R15 / G0-  
G15 / B0-B15)(1)  
ΔIERR(CC)  
All CHn = on, BC = 2h, CC = FBh,  
VOUTn = (VLED-1)V, RIREF = 7.8  
kΩ(ICH = 5-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
All CHn = on, BC = 6h, CC = A7h,  
VOUTn = (VLED-1)V, RIREF = 7.8  
kΩ(ICH = 10-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±2  
All CHn = on, BC = 7h, CC = FBh,  
IMAX=1b, VOUTn = (VLED-1)V,  
RIREF = 6.8 kΩ(ICH = 20-mA target),  
TA = 25°C, includes the VIREF  
tolerance, at same color grouped  
outputs of R0-R15 / G0-G15 / B0-  
B15  
±0.5  
±2.5  
%
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LP5890  
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
At VCC = VR = 2.8V, VG/B = 3.8V and TA = 40°C to +85°C; Typical values are at TA = 25°C (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
All CHn = on, BC = 00h, CC = 31h,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 0.2-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±1  
±2.5  
%
All CHn = on, BC = 00h, CC = 7Dh,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 0.5-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±0.5  
±0.5  
±0.5  
±0.5  
±1.5  
%
%
%
%
All CHn = on, BC = 00h, CC = FBh,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 1-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±1  
Constant-current device to  
device deviation (R0-R15 / G0-  
G15 / B0-B15)(2)  
ΔIERR(DD)  
All CHn = on, BC = 2h, CC = FBh,  
VOUTn = (VLED-1)V, RIREF = 7.8  
kΩ(ICH = 5-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±1.5  
All CHn = on, BC = 6h, CC = A7h,  
VOUTn = (VLED-1)V, RIREF = 7.8  
kΩ(ICH = 10-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±2  
All CHn = on, BC = 7h, CC = FBh,  
IMAX=1b, VOUTn = (VLED-1)V,  
RIREF = 6.8 kΩ(ICH = 20-mA target),  
TA = 25°C, includes the VIREF  
tolerance, at same color grouped  
outputs of R0-R15 / G0-G15 / B0-  
B15  
±0.5  
±2  
%
VLED = 2.5 to 5.5V, All CHn = on,  
VOUTn = (VLED-1)V, at same color  
grouped outputs of R0-R15 / G0-  
G15 / B0-B15  
Line regulation (R0-R15 / G0-  
G15 / B0-B15)(3)  
±1  
±1  
%/V  
%/V  
ΔIREG(LINE)  
VOUTn = (VLED-1)V to (VLED-3)V,  
VR=VG/B=VLED=3.8V, All CHn =  
on, at same color grouped outputs of  
R0-R15 / G0-G15 / B0-B15  
Load regulation (R0-R15 / G0-  
G15 / B0-B15)(4)  
ΔIREG(LOAD)  
TTSD  
THYS  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
170  
15  
°C  
°C  
(1) The deviation of each output in same color group (OUTR0-15 or OUTG0-15 or OUTB0-15) from the average of same color group  
+
:J  
: ;  
¿ % = N  
F 1O × 100  
+
:0 + +:1 + ® + +:14 + +:15  
16  
constant current. The deviation is calculated by the formula. (X = R or G or B, n = 0-15)  
spacer  
(2) The deviation of the average of constant-current in each color group from the ideal constant-current value. (X = R or G or B):  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
+
:0  
+ +:1 + ® + +:14 + +:15  
16  
F Ideal Output Current  
: ;  
¿ % =  
N
O
× 100  
Ideal Output Current  
Ideal current is calculated by the following equation:  
8
1 + %%_4(KN %%_) KN %%_$)  
+4'(  
+
=
× )#+0  
×
+&'#._4(KN ) KN $)  
($%)  
4+4'(  
256  
spacer  
(3) Line regulation is calculated by the following equation. (X = R or G or B, n = 0-15):  
(+:J =P 8.'& = 5.58) F (+:J =P 8.'& = 2.58)  
100  
: ;  
¿ %8 = [  
] ×  
(+:J =P 8.'& = 2.58)  
5.58 F 2.58  
spacer  
(4) Load regulation is calculated by the following equation. (X = R or G or B, n = 0-15):  
(I at V =1V ) -(I at V = 3V )  
100  
Xn  
Xn  
Xn  
Xn  
D(%V ) =[  
]ì  
(I at V = 3V )  
3V -1V  
Xn  
Xn  
spacer  
7.6 Timing Requirements  
At VCC = VR = 2.8 V, VG/B = 3.8V and TA = 40°C to +85°C; Typical values are at TA = 25°C (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tw(H0)  
tw(L0)  
tsu(0)  
th(0)  
Clock frequency (SCLK)  
High level pulse duration (SCLK)  
Low level pulse duration (SCLK)  
Setup time  
50  
9
9
ns  
10  
2
ns  
SIN to SCLK↑  
SCLKto SIN↑↓  
Hold time  
ns  
7.7 Switching Characteristics  
At VCC = VR = 2.8 V, VG/B = 3.8V and TA = 40°C to +85°C; Typical values are at TA = 25°C (unless otherwise specified)  
PARAMETER  
Rise time (SOUT)  
Fall time (SOUT)  
TEST CONDITIONS  
VCC = 3.3 V, CSOUT = 30 pF  
VCC = 3.3 V, CSOUT = 30 pF  
MIN  
TYP  
MAX  
UNIT  
tr  
tf  
2
10  
ns  
2
10  
ns  
SCLKto SOUT↑↓, full  
temperature, CSOUT = 30 pF  
tpd(0)  
Propagation delay  
3.5  
14.2  
ns  
7-1. Timing and Switching Diagram  
(1). Input pulse rise and fall time is 2 ns typically.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LP5890  
 
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
7.8 Typical Characteristics  
0.016  
0.014  
0.012  
0.01  
0.016  
0.014  
0.012  
0.01  
0.2 mA  
1 mA  
5 mA  
10mA  
15 mA  
0.2 mA  
1 mA  
5 mA  
10 mA  
15 mA  
0.008  
0.006  
0.004  
0.002  
0
0.008  
0.006  
0.004  
0.002  
0
0
0.2 0.4 0.6 0.8  
1
VLED-VCH (V)  
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
VLED-VCH (V)  
1.2 1.4 1.6 1.8  
2
D001  
D002  
D001_SLVSEJ1.grf  
D002_SLVSEJ1.grf  
Vcc = 2.8 V  
Vcc = 5.5 V  
7-2. Channel Current vs (VLED-Vchannel) Voltage  
7-3. Channel Current vs (VLED-Vchannel) Voltage  
0.011  
1
-40 oC  
25 oC  
85 oC  
0.01  
0.8  
0.6  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
-40oC Min  
0.4  
0.2  
0
-0.2  
-40oC Max  
25oC Min  
25oC Max  
85oC Min  
85oC Max  
-0.4  
-0.6  
0
0.2 0.4 0.6 0.8  
1
VLED-VCH (V)  
1.2 1.4 1.6 1.8  
2
0
2
4
6
8
10  
12  
Output Current (mA)  
14  
16  
18  
20  
D003  
D004  
D003_SLVSEJ1.grf  
D004_SLVSEJ1.grf  
7-4. Channel Current vs (VLED-Vchannel) Voltage  
7-5. Channel to Channel Accuracy vs Output Current  
1
0.8  
0.6  
0.016  
0.2 mA, BC=00h, REF=19.05K  
0.014  
0.012  
0.01  
1 mA, BC=02h, REF=7.8K  
5 mA, BC=02h, REF=7.8K  
10 mA, BC=06h, REF=7.8K  
15 mA, BC=06h, REF=7.8K  
-40oC Min  
0.4  
0.2  
0
-0.2  
-40oC Max  
25oC Min  
0.008  
0.006  
0.004  
0.002  
0
25oC Max  
85oC Min  
85oC Max  
-0.4  
-0.6  
0
30  
60  
90  
Color Control Code (Decimal)  
120 150 180 210 240 270  
0
2
4
6
8
10  
12  
Output Current (mA)  
14  
16  
18  
20  
D005  
D004  
D005_SLVSEJ1.grf  
D004_SLVSEJ1.grf  
7-7. Color Control Code vs Output Current  
7-6. Channel to Channel Accuracy vs Output Current  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
10.5  
10  
9.5  
9
7.8  
7.7  
7.6  
7.5  
7.4  
7.3  
7.2  
7.1  
7
8.5  
8
7.5  
7
6.5  
6
6.9  
6.8  
6.7  
5.5  
5
40  
60  
80  
100  
120  
GCLK Frequency (MHz)  
140  
160  
180  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
Vcc voltage (V)  
4
4.2 4.4 4.6  
D006  
D007  
D006_SLVSEJ1.grf  
D007_SLVSEJ1.grf  
7-8. Icc Current vs GCLK Frequency  
GCLK = 83 MHz  
7-9. Icc Current vs Vcc Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LP5890  
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LP5890 is a highly integrated RGB LED driver with 48 constant current sources and 16 scanning FETs. A  
single LP5890 is capable of driving 16 × 16 RGB LED pixels while stacking two LP5890s can drive 32 × 32 RGB  
LED pixels. To achieve low power consumption, the device supports separated power supplies for the red,  
green, and blue LEDs by its common cathode structure. Furthermore, the operation power of the LP5890 is  
significantly reduced by ultra-low operation voltage range (VCC down to 2.5 V) and ultra-low operation current  
(ICC down to 3.9 mA).  
The LP5890 supports per channel current from 0.2 mA to 20 mA, with typical 1% channel-to-channel current  
deviation and typical 1% device-to-device current deviation. The DC current value of all 48 channels is set by an  
external IREF resistor and can be adjusted by the 8-step global brightness control (BC) and the 256-step per-  
color group brightness control (CCR/CCG/CCB).  
The LP5890 implements a high speed transmission interface to support high device count daisy-chained and  
high refresh rate while minimizing electrical-magnetic interference (EMI). The LP5890 supports up to 50-MHz  
SCLK (external) and up to 160-MHz GCLK (internal). Meanwhile, the device integrates enhanced circuits and  
intelligent algorithms to solve the various display challenges in Narrow Pixel Pitch(NPP) LED display applications  
and Mini or Micro-LED products: Dim at the fist scan line, Upper and downside ghosting, Non-uniformity in low  
grayscale, Coupling, Caterpillar caused by open or short LEDs, which make the LP5890 a perfect choice in such  
applications.  
The LP5890 also implements LED open/weak short/short detections and removals during operations and can  
also report this information to the accompanying digital processor.  
8.2 Functional Block Diagram  
VB VG VR  
VCC  
Internal LDO  
Bandgap  
TSD  
Power Save  
R0  
G0  
B0  
UVLO  
IREF  
GND  
3-Bits  
Brightness control  
R/G/B 8-Bits  
Color control  
Channel  
Drivers  
Channel  
Control  
R15  
G15  
Frequency  
Multiplier  
Frame  
Control  
Digital  
Core  
SCLK  
SIN  
B15  
Line  
Control  
Pre-discharge  
LED Short Detection  
SRAM  
Low Grayscale  
Compensation  
LED Open Detection  
Line Drivers  
SOUT  
Line Clamp  
GND  
LINE0  
LINE15  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Independent and Stackable Mode  
The LP5890 can operate in two different modes: independent or stackable. In independent mode, a single  
LP5890 can drive a 16 × 16 RGB LED matrix, while in stackable mode, up to three LP5890s can be stacked  
together, which means the line switches of one device can be shared to another. Stacking two LP5890s can  
drive a 32 × 32 RGB LED matrix while stacking three LP5890s can drive a 32 × 48 RGB matrix. The mode can  
be configured by the MOD_SIZE (For more details, see FC0).  
8.3.1.1 Independent Mode  
8-1 shows an implementation of a 16 × 32 RGB LED matrix using two LP5890s in independent mode. Each  
device is responsible for its own 16 × 16 RGB LED matrix which means that all the data for section A is stored in  
Device1 and the data for section B is stored in Device2.  
8-1. Two Devices in Independent Mode  
The unused line must be assigned to the last several lines of the device. For example, if there are only 14  
scanning lines, then the two unused lines should be assigned to 1_LS14 and 1_LS15.  
8.3.1.2 Stackable Mode  
While operating the LP5890 in stackable mode, as shown in 8-2 and 8-3, Device2 needs to be rotated  
180o relative to Device1. This action allows the position of line switches to be near the center column of the LED  
matrix for better routing. For Device1, the lines will be connected sequentially (line switch 0 connected to scan  
line 1). However, on Device2, it is connected in reverse order, with the 16th scan line is connected to line switch  
15 and the 32th scan line is connected to line switch 0.  
8-2 shows the connection between two LP5890 devices in stackable mode driving a 32 × 32 RGB LED pixels.  
The MOD_SIZE should be configured to 00b/10b. Device1 supplies 16 line switches for the first 16 scan line,  
and Device2 supplies 16 line switches for scan line 17-32. The data for matrix sections A and C are stored in  
Deivce1, while matrix sections B and D data are stored in Device2.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
Physical Line0  
A
B
1_LS0  
Device1  
1_LS15  
Physical Line15  
Physical Line16  
C
D
2_LS15  
Device2  
2_LS0  
Physical Line31  
32 RGBs  
8-2. Two Devices in Stackable Mode  
8-3 shows the connection between three devices connected in stackable mode with MOD_SIZE bits set to  
11b. In this configuration, Device1 supplies the line switches for the first 16 scan lines, Device2 supplies line  
switches for scan lines 17-32, and the line switches of Device3 are not used. Matrix A and D's data are stored in  
Device 1, matrix B and E's data are stored in Device2, and matrix C and F's data are stored in Device3.  
Physical Line0 A  
C
B
1_LS0  
Device1  
Device3  
1_LS15  
Physical Line15  
Physical Line16 D  
E
2_LS15  
F
Device2  
2_LS0  
Physical Line31  
48 RGBs  
8-3. Three Devices in Stackable Mode  
In order to make sure the scanning sequence is still from 1st line to 32nd line, the scan line switching order of the  
second device needs to be reversed. This action can be configured by the SCAN_REV (For more details, see  
FC4).  
8-1 shows the pin assignment between the LED matrix physical lines and the LP5890 corresponding pins,  
depending on the SCAN_REV.  
8-1. Stackable With Different SCAN_REV Value  
LED Matrix Physical Line  
Device Line Switch Pin (SCAN_REV = 1)  
Device Line Switch Pin (SCAN_REV = 0)  
L0  
L1  
L2  
L3  
L4  
L5  
1_LS0  
1_LS1  
1_LS2  
1_LS3  
1_LS4  
1_LS5  
1_LS0  
1_LS1  
1_LS2  
1_LS3  
1_LS4  
1_LS5  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-1. Stackable With Different SCAN_REV Value (continued)  
LED Matrix Physical Line  
Device Line Switch Pin (SCAN_REV = 1)  
Device Line Switch Pin (SCAN_REV = 0)  
L6  
L7  
1_LS6  
1_LS7  
1_LS8  
1_LS9  
1_LS10  
1_LS11  
1_LS12  
1_LS13  
1_LS14  
1_LS15  
2_LS15  
2_LS14  
2_LS13  
2_LS12  
2_LS11  
2_LS10  
2_LS9  
2_LS8  
2_LS7  
2_LS6  
2_LS5  
2_LS4  
2_LS3  
2_LS2  
2_LS1  
2_LS0  
1_LS6  
1_LS7  
1_LS8  
1_LS9  
1_LS10  
1_LS11  
1_LS12  
1_LS13  
1_LS14  
1_LS15  
2_LS0  
2_LS1  
2_LS2  
2_LS3  
2_LS4  
2_LS5  
2_LS6  
2_LS7  
2_LS8  
2_LS9  
2_LS10  
2_LS11  
2_LS12  
2_LS13  
2_LS14  
2_LS15  
L8  
L9  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
L31  
When the LP5890 devices are used in stackable mode, if there are unused line switches, these unused line  
switches must be the last line switches of the first or the second device. For example, if there are only 30  
scanning lines, and if,  
The unused line switches must be 2_LS14, 2_LS15 if SCAN_REV = '0'b, or 2_LS1, 2_LS0 if SCAN_REV = '1'b.  
8.3.2 Current Setting  
8.3.2.1 Brightness Control (BC) Function  
The LP5890 device is able to adjust the output current of all constant-current outputs simultaneously. This  
function is called global brightness control (BC). The global BC for all outputs is programmed with a 3-bit  
register, thus all output currents can be adjusted in 8 steps for a given current-programming resistor, RIREF  
.
When the 3-bit BC register changes, the gain of output current, GAINBC changes as 8-2 below.  
8-2. Current Gain Versus BC Code  
BC Register (BC)  
000b  
Current Gain (GAINBC)  
24.17  
30.57  
49.49  
86.61  
103.94  
129.92  
001b  
010b  
011b (default)  
100b  
101b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-2. Current Gain Versus BC Code (continued)  
BC Register (BC)  
Current Gain (GAINBC  
)
110b  
111b  
148.48  
173.23  
The maximum output current per channel, IOUTSET, is determined by resistor, RIREF, and the GAINBC. The  
voltage on IREF is typically 0.8 V. RIREF can be calculated by 方程式 1 below. For noise immunity purpose,  
suggest RIREF < 40 kΩ.  
8
+4'((8)  
8
+4'((8)  
4+4'( () =  
=
× )#+0($%)  
++4'( (I#)  
+1765'6 (I#)  
(1)  
8.3.2.2 Color Brightness Control (CC) Function  
The LP5890 device is able to adjust the output current of each of the three color groups R0-R15, G0-G15, and  
B0-B15 separately. This function is called color brightness control (CC). For each color, it has 8-bit data register,  
CC_R, CC_G, or CC_B. Thus, all color group output currents can be adjusted in 256 steps from 0% to 100% of  
the maximum output current, IOUTSET. The output current of each color, IOUT_R (or G or B), can be calculated by  
Equation 2 below.  
1 + %%_4(KN %%_) KN %%_$)  
+
= +1765'6 ×  
176_4(KN ) KN $)  
256  
(2)  
Table 8-3 shows the CC data versus the constant-current against IOUTSET  
:
8-3. CC Data vs Current Ratio  
CC Register (CC_R or CC_G or  
Ratio of IOUTSET  
CC_B)  
0000 0000b  
0000 0001b  
...  
1/256  
2/256  
...  
0.39%  
0.78%  
...  
0111 1111b (default)  
...  
128/256  
...  
50%  
...  
1111 1110b  
1111 1111b  
255/256  
256/256  
99.61%  
100%  
8.3.2.3 Choosing BC/CC for a Different Application  
BC is mainly used for global brightness adjustment to adapt to ambient brightness, such as between day and  
night, indoor and outdoor.  
Suggested BC is 3h or 4h, which is in the middle of the range, allowing flexible changes in brightness up and  
down.  
If the current of one color group (usually R LEDs) is close to the output maximum current (10 mA or 20 mA),  
choose the maximum BC value, 7h, to prevent the constant output current from exceeding the upper limit in  
case a larger BC code is input accidentally.  
If the current of one color group (usually B LEDs) is close to the output minimum current (0.2 mA), choose the  
minimum BC code, 0h, to prevent the constant output current from exceeding the lower limit in case a lower  
BC code is input accidentally.  
The CC can be used to fine tune the brightness in 256 steps. The CC is suitable for white balance adjustment  
between RGB color group. To get a pure white color, the general requirement for the luminous intensity ratio of  
R, G, B LED is 5:3:2. Depending on the characteristics of the LED (Electro-Optical conversion efficiency), the  
current ratio of R, G, B LED will be much different from this ratio. Usually, the Red LED needs the largest  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
current. Choose 255d (the maximum value) CC code for the color group that needs the largest initial current,  
then choose proper CC code for the other two color groups according to the current ratio requirement of the LED  
used.  
8.3.3 Frequency Multiplier  
The LP5890 has an internal frequency multiplier to generate the GCLK by SCLK. The GCLK frequency can be  
configured by FREQ_MOD (for more details, see FC0) and FREQ_MUL (for more details, see FC0) from 40  
MHz to 160 MHz. As 8-4 shows, if the GCLK frequency is not higher than 80 MHz, the GCLK_MOD is set to 0  
to disable the bypass switch (enable the ½ divider), while the GCLK frequency is higher than 80 MHz, the  
GCLK_MOD is set to 1 to enable the bypass switch (disable the ½ divider).  
GCLK_MUL  
GCLK_MOD  
SCLK  
GCLK  
1/2  
8-4. Frequency Multiplier Block Diagram  
8.3.4 Line Transitioning Sequence  
The LP5890 defines a timing sequence of scan line transition. T_SW is the total transitioning time.  
8-4 is the relation between LINE_SWT bits and the line switch time (GCLK numbers) with different internal  
GCLK frequency.  
8-4. Line Switch Time  
LINE_SW  
T
GCLK  
numbers  
T_SW (us, 40  
MHZ GCLK)  
T_SW (us, 60 MHZ T_SW (us, 100 MHZ T_SW (us, 120 MHZ T_SW(us, 160 MHZ  
GCLK)  
0.7515  
1.002  
1.503  
2.004  
2.505  
3.006  
3.507  
4.008  
4.509  
5.01  
GCLK)  
0.45  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
GCLK)  
0.3735  
0.498  
0.747  
0.996  
1.245  
1.494  
1.743  
1.992  
2.241  
2.49  
GCLK)  
0.2835  
0.378  
0.567  
0.756  
0.945  
1.134  
1.323  
1.512  
1.701  
1.89  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
45  
1.125  
1.5  
60  
90  
2.25  
3
120  
150  
180  
210  
240  
270  
300  
330  
360  
390  
420  
450  
480  
3.75  
4.5  
5.25  
6
6.75  
7.5  
8.25  
9
5.511  
6.012  
6.513  
7.014  
7.515  
8.016  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
2.739  
2.988  
3.237  
3.486  
3.735  
3.984  
2.079  
2.268  
2.457  
2.646  
2.835  
3.024  
9.75  
10.5  
11.25  
12  
T0 is set by the LINE_SW_T0 (see FC4 for more details). T2 constantly equals to 5 GCLKs.  
T1 and T3 can be calculated by LINE_TIMEMODE (see FC0 for more details).  
8.3.5 Protections and Diagnostics  
8.3.5.1 Thermal Shutdown Protection  
The Thermal Shutdown (TSD) function turns off all IC constant-current outputs when the junction temperature  
(TJ) exceeds 170°C (typical). Normal operation resumes when TJ falls below 155°C (typical).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8.3.5.2 IREF Resistor Short Protection  
The IREF resistor short protection (ISP) function prevents unwanted large currents from flowing though the  
constant-current output when the IREF resistor is shorted accidentally. The LP5890 device turns off all output  
channels when the IREF pin voltage is lower than 0.19 V (typical). When the IREF pin voltage goes higher than  
0.325 V (typical), the LP5890 device resumes normal operation.  
8.3.5.3 LED Open Load Detection and Removal  
8.3.5.3.1 LED Open Detection  
The LED Open Detection (LOD) function detects faults caused by an open circuit in any LED, or a short from  
OUTn to VLED with low impedance. LOD was realized by comparing the OUTn voltage to the LOD detection  
threshold voltage level set by LODVTH_R/LODVTH_G/LODVTH_B (see FC3 for more details). If the OUTn  
voltage is higher than the programmed voltage, the corresponding output LOD bit is set to 1 to indicate an open  
LED. Otherwise, the output of that LOD bit is 0. LOD data output by the detection circuit are valid only during the  
OUTn turning on period.  
8-5 shows the equivalent circuit of LED open detection.  
VG  
VB  
VR  
VR  
VG  
VB  
LODVTH_G  
LODVTH_B  
LODVTH_R  
LODVTH_G  
LODVTH_R  
LODVTH_G  
+
+
+
+
+
+
œ
œ
œ
œ
œ
œ
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
LOD Detection  
0b - Normal  
1b - LED-short  
48-bit LOD Data  
READLOD  
48-bit  
LSB  
MSB  
SCLK  
SIN  
48-bit Common Shift Register  
SOUT  
8-5. LED Open Detection Circuit  
The LED open detection function records the position of the open LED, which contains the scan line number and  
relevant channel number. The scan line order is stored in LOD_LINE_WARN register (for more details see  
FC12), and the channel number is latched into the internal 48-bit LOD data register for more details see FC14)  
at the end of each segment. 8-6 shows the bit arrangement of the LOD data register.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
LOD Data Register  
LSB  
LOD Bit0 LOD Bit1 LOD Bit2 LOD Bit3 LOD Bit4 LOD Bit5 LOD Bit6 LOD Bit7 LOD Bit8 LOD Bit9 LOD Bit10 LOD Bit11 LOD Bit12 LOD Bit13 LOD Bit14 LOD Bit15  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
LOD Bit16 LOD Bit17 LOD Bit18 LOD Bit19 LOD Bit20 LOD Bit21 LOD Bit22 LOD Bit23 LOD Bit24 LOD Bit25 LOD Bit26 LOD Bit27 LOD Bit28 LOD Bit29 LOD Bit30 LOD Bit31  
G0  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
G13  
G14  
G15  
MSB  
LOD Bit32 LOD Bit33 LOD Bit34 LOD Bit35 LOD Bit36 LOD Bit37 LOD Bit38 LOD Bit39 LOD Bit40 LOD Bit41 LOD Bit42 LOD Bit43 LOD Bit44 LOD Bit45 LOD Bit46 LOD Bit47  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
8-6. Bit Arrangement in LOD Data Register  
8.3.5.3.2 Read LED Open Information  
The LOD readback function needs to be enabled before read LED open information. This function is enabled by  
LOD_LSD_RB (for more details, see FC3).  
8-7 shows the steps to read LED open information. Wait at least one sub-period time between Step2 and  
Step3 command.  
8-7. Steps to Read LED Open Information  
8.3.5.3.3 LED Open Caterpillar Removal  
8-8 shows the caterpillar issue caused by open LED. Suppose the LED0-1 is an open LED. When line0 is  
chosen and the OUT1 is turned on, the OUT1 voltage will be forced to approach to VLED because of the broken  
path of the current source. However, the voltage of the un-chosen lines are below the Vclamp which is much  
lower than VLED, causing all LEDs which connect to the channel OUT1 light unwanted.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-8. LED Open Caterpillar  
The LP5890 implements circuits that can eliminate the caterpillar issue caused by open LEDs. The LED open  
caterpillar removal function is configured by LODRM_EN (fore more details, see FC0). When LODRM_EN is set  
to 1b, the caterpillar removal function is enabled. The corresponding channel OUTn is turned off when scanning  
to line with open LED. The caterpillar issue is eliminated until device resets or LODRM_EN is set to 0b.  
The internal caterpillar elimination circuit can handle a maximum of three lines that have open LEDs fault  
condition. If there are open LEDs located in three or fewer lines, the LP5890 is able to handle the open LEDs all  
in these lines. If there are open LEDs in more than three lines, the caterpillar issue is solved for the lines where  
the first three open LEDs were detected, but the open LEDs in the fourth and subsequent lines still cause the  
caterpillar issue.  
8.3.5.4 LED Short and Weak Short Circuitry Detection and Removal  
8.3.5.4.1 LED Short and Weak Short Detection  
The LED Short Detection (LSD) function detects faults caused by a short circuit in any LED. LSD was realized by  
comparing the OUTn voltage to the LSD threshold voltage. If the OUTn voltage is lower than the threshold  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
voltage, the corresponding output LSD bit is set to 1 to indicate an short LED, otherwise, the output of that LSD  
bit is 0. LSD data output by the detection circuit are valid only during the OUTn turning on period.  
LSD weak short can be detected by adjusting threshold voltage, which level is set by LSDVTH_R/LSDVTH_G/  
LSDVTH_B (for more details, see FC3).  
8-9 shows the equivalent circuit of LED short detection.  
VG  
VB  
VR  
VR  
VG  
VB  
LSDVTH_G  
LSDVTH_B  
LSDVTH_R  
LSDVTH_G  
LSDVTH_R  
LSDVTH_G  
+
+
+
+
+
+
œ
œ
œ
œ
œ
œ
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
LSD Detection  
0b - Normal  
1b - LED-short  
48-bit LSD Data  
READLSD  
48-bit  
LSB  
MSB  
SCLK  
SIN  
48-bit Common Shift Register  
SOUT  
8-9. LED Short Detection Circuit  
The LED short detection function records the position of the short LED, which contains the scan line order and  
relevant channel number. The scan line order is stored LSD_LINE_WARN register (for more details, see FC13),  
and the channel number is latched into the internal 48-bit LSD data register (fore more details see FC15) at the  
end of each segment. 8-10 shows the bit arrangement of the LSD data register.  
LSD Data Register  
LSB  
LSD Bit0  
R0  
LSD Bit1  
R1  
LSD Bit2  
R2  
LSD Bit3  
R3  
LSD Bit4  
R4  
LSD Bit5  
R5  
LSD Bit6  
R6  
LSD Bit7  
R7  
LSD Bit8  
R8  
LSD Bit9 LSD Bit10 LSD Bit11 LSD Bit12 LSD Bit13 LSD Bit14 LSD Bit15  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
LSD Bit16 LSD Bit17 LSD Bit18 LSD Bit19 LSD Bit20 LSD Bit21 LSD Bit22 LSD Bit23 LSD Bit24 LSD Bit25 LSD Bit26 LSD Bit27 LSD Bit28 LSD Bit29 LSD Bit30 LSD Bit31  
G0  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
G13  
G14  
G15  
MSB  
LSD Bit32 LSD Bit33 LSD Bit34 LSD Bit35 LSD Bit36 LSD Bit37 LSD Bit38 LSD Bit39 LSD Bit40 LSD Bit41 LSD Bit42 LSD Bit43 LSD Bit44 LSD Bit45 LSD Bit46 LSD Bit47  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
8-10. Bit Arrangement in the LSD Data Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8.3.5.4.2 Read LED Short Information  
The LSD readback function needs to be enabled before reading LED Short information. This function is enabled  
by LOD_LSD_RB (see FC3 for more details).  
8-11 shows the steps to read LED Short information. Wait at least one sub-period time between Step2 and  
Step3 command.  
8-11. Steps to Read LED Short Information  
8.3.5.4.3 LSD Caterpillar Removal  
8-12 shows the LSD caterpillar issue caused by short LED. Suppose the LED0-1 is a short LED. When it  
scans to the line1 and the OUT1 is turned off, the OUT1 voltage is the same with scan line0 voltage because of  
the short path of the LED0-1. At this time, there is a current path from the line0 to the GND through the LED1-1  
and SW1-1, which causes LED1-1 light to be unwanted.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-12. LED Short Caterpillar  
The LP5890 device implements internal circuits that can eliminate the caterpillar issue by short LEDs. As is  
shown in 8-12, the LED short caterpillar is caused by the voltage of the Vclamp on the line, so it can be  
solved by adjusting the LSD_RM (see FC3 for more details) to let the voltage drop of the LED1-1 be smaller than  
LED forward voltage.  
8.4 Device Functional Modes  
8-13 lists the device functional modes.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
Vcc Power Up  
Initialization  
UVLO  
From all states  
ISPin  
ISPout  
IREF Resistor Short  
Thermal Shutdown  
PSin  
Power Saving  
Normal  
PSout  
TSDin  
TSDout  
8-13. Functional Modes  
Initialization: The device enters into Initialization when Vcc goes down to UVLO voltage. In this mode, all the  
registers are reset. Entry can also be from any state.  
Normal: The device enters the normal mode when Vcc is higher than UVLO threshold. The display process  
is shown as below in normal mode.  
Power Saving: The device automatically enters and gets out from the power save mode when it detects the  
condition PSin and PSout. In this mode, all channels will turn off. PSin: after the device detects that the  
display data of the next frame all equal to zero, it will enter to power save mode when the VSYNC comes.  
PSout: after the device detects that there is non-zero display data of the next frame, it will get out from power  
save mode immediately.  
IREF Resistor Short Protection: The device automatically enters and gets out from the IREF Resistor Short  
Protection mode when it detects the condition ISPin and ISPout. In this mode, all channels will turn off. ISPin:  
the device detects that the reference voltage is smaller than 0.195 V. ISPout: the device detects that the  
reference voltage is larger than 0.325 V.  
Thermal Shutdown: The device automatically enters and gets out from the Thermal Shutdown mode when it  
detects the condition TSDin and TSDout. In this mode, all channels will turn off. TSDin: the device detects  
that the junction temperature exceeds 170° C. TSDout: the device detects that the junction temperature is  
below 155° C.  
8.5 Continuous Clock Series Interface  
The continuous Clock Series Interface (CCSI) provides access to the programmable functions and registers,  
SRAM data of the device. The interface contains two input digital pins. The pins are the serial data input (SIN)  
and serial clock (SCLK). Moreover, there is an another wire called serial data output (SOUT) as the output digital  
signal of the device. The SIN is set to HIGH when device is in idle status and the SCLK needs to be existent and  
continuous all the time considering it is the clock source of internal Frequency Multiplier. The SOUT is used to  
transmit the data or read the data of internal registers.  
This protocol can support up to 32 devices cascaded in a data chain. The devices will receive the chip index  
command after power up. The chip index command will configure addresses of the devices from 0x00 up to  
0x1F according to the sequence that receives the command. Then the controller can communicate with all the  
devices through the broadcast way or particular device through non-broadcast way.  
The broadcast is mainly used to transmit function control commands. All the devices in a data chain will receive  
the same data in this way. The non-broadcast is mainly used to transmit function control commands or display  
data, and each device receives its own data in this way. These two ways are distinguished by the command  
identification.  
8.5.1 Data Validity  
The data on DIN wire must be stable at rising edges of the SCLK.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8.5.2 CCSI Frame Format  
8-14 defines the format of the command and data transimission. There are four states in one frame.  
IDLE: SCLK is always existent and continuous, and DIN is always HIGH.  
START: DIN changes from HIGH to LOW after the IDLE states.  
DATA:  
Head_bytes: It is the command identifier, contains one 16-bit data and one check bit. It can be WRITE  
COMMAND ID or READ COMMAND ID (see Register Maps for more details).  
Data_bytes_N: The Nth data-bytes, contains 3 × 17-bit data, each 17-bit data contains one 16-bit data  
and one check bit. N is the number of devices cascaded in a data chain.  
END: The device recognizes continuous 18-bit HIGH on DIN, then returns to IDLE state.  
CHECK BIT: The check bit (17th bit) value is the NOT of 16th bit value, in order to avoid continuous 18-bit  
HIGH (to distinguish with END).  
SCLK  
SIN  
Y...  
Head_bytes  
Data_bytes_N  
Data_bytes_1  
End_bytes  
IDLE START  
DATA  
END  
IDLE  
8-14. CCSI Frame  
The IDLE state is not the necessary. That means the START state of next frame can connect to the END state of  
current frame.  
8.5.3 Write Command  
Take m devices cascaded in a data chain for example.  
8.5.3.1 Chip Index Write Command  
The chip index is used to set the identification of the device cascaded in a data chain. When the first device  
receives the chip index command, Head_bytes1, it sets the current address to 00h and meanwhile changes the  
chip index command, Head_bytes2, then sends to the next device. When the device receives the Head_bytes2,  
it sets the address to 01h and meanwhile changes the chip index command, Head_bytes3, then sends to the  
next device. Likewise, all the cascaded devices get their unique identifications.  
SOUT  
SCLK  
Controller  
SIN  
Device_1  
Device_...  
Device_m  
ST Head_bytes1  
END  
ST Head_bytes...  
END  
ST Head_bytesm  
END  
8-15. Chip Index Write Command  
8.5.3.2 VSYNC Write Command  
The VSYNC is used to sync the display of each frame for the devices in a cascaded chain. The VSYNC is a  
write-only command. The devices receive VSYNC command one time from the controller in each frame, and the  
VSYNC command needs to be active for all devices at the same time.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
Since some devices receive the command earlier in the data chain, they need to wait until the last device  
receives the command, then all the devices are active at that time. In order to realize such function, each device  
needs to know its delay time from receiving VSYNC command to enabling VSYNC. The device uses some  
register bits to restore the device number in a data chain. This number will minus the device identification, and  
the result is the delay time of the device.  
Since the sync function has been done by the device, the controller only needs to send the VSYNC command to  
the first device in a data chain.  
SOUT  
SCLK  
Controller  
SIN  
Device_1  
Device_...  
Device_m  
ST Head_bytes  
END  
ST Head_bytes  
END  
ST Head_bytes  
END  
ST Head_bytes  
END  
8-16. VSYNC Write Command  
8.5.3.3 Soft_Reset Command  
The Soft_Reset Command is used to reset all the function registers to the default value, except for SRAM data.  
The format of this command is the same with VSYNC shown as VSYNC Write Command. The difference is the  
headbytes.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LP5890  
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8.5.3.4 Data Write Command  
The device implements two kinds of transmission formats, which are called broadcast and non-broadcast. With  
broadcast way, the devices which are cascaded in a data chain receive the same data from the controller as  
Data Write Command with Broadcast shows. With non-broadcast way, each device will receive its own data sent  
from controller. The order of the data is the reverse of the order in which the device cascades as shown in Data  
Write Command with Non-Broadcast.  
For 48-bits RGB data, the Blue data is the first to be transmitted, then are the Green and the Red. Also, for all  
bits in one frame, it is always the MSB transmitted first and the LSB transmitted last.  
Here is the data write command with broadcast way. The devices copy to the internal registers after receiving the  
data. Generally, it is used to write FC0-FC11 command and read LOD/LSD command.  
SOUT  
SCLK  
Controller  
SIN  
Device_1  
Device_...  
Device_m  
ST Head_bytes  
Data  
END  
ST Head_bytes  
Data  
END  
ST Head_bytes  
Data  
ST Head_bytes  
END  
Data  
END  
8-17. Data Write Command With Broadcast  
8-18 shows the timing diagram of the data write command with broadcast.  
8-18. Data Write Command With Broadcast (Timing Diagram)  
Here is the data write command with non-broadcast way. When the first device recognizes End_bytes, it cuts off  
the last 51-bit (3×17-bit) data before End_bytes, and the left are shifted out from SOUT to the second device;  
likewise, when the last device recognizes End_bytes from the former device, it cuts off the last 51-bit (3 × 17-bit)  
data before End_bytes and the left are shifted out from SOUT. Generally, it is used for write SRAM command  
(WRTGS), details about how to write a frame data into memory bank can be found in Write a Frame Data into  
Memory Book.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
SOUT  
SCLK  
SIN  
Controller  
Device_1  
Device_...  
Device_m  
Data_...  
Data_m  
ST Head_bytes  
ST Head_bytes  
Data_m  
Data_1  
Data_...  
Data_m  
ST Head_bytes  
8-19. Data Write Command With Non-Broadcast  
END  
ST Head_bytes  
END  
END  
END  
8-20 shows the timing diagram of the Data Write Command with Non-Broadcast.  
8-20. Data Write Command with Non-Broadcast (Timing Diagram)  
8.5.4 Read Command  
The controller sends the read command. When the first device receives this command, it inserts its 48-bit data  
before End_bytes, and meanwhile shifts out to the second device. When the second device receives this  
command, it inserts its 48-bit data before End_bytes and meanwhile shifts out to the third device. The data of all  
the device will be shifted out from the last device SOUT with this flow. The MSB is always transmitted first and  
the LSB is transmitted last.  
SOUT  
SCLK  
Controller  
SIN  
Device_1  
Device_...  
Device_m  
ST Head_bytes  
END  
ST Head_bytes  
Data_1  
END  
Data_1  
ST Head_bytes  
ST Head_bytes  
Data_...  
Data_1  
END  
Data_...  
Data_m  
END  
8-21. Data Read Command  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8.6 PWM Grayscale Control  
8.6.1 Grayscale Data Storage and Display  
8.6.1.1 Memory Structure Overview  
The LP5890 implements a display memory unit to achieve high refresh rate and high contrast ratio in LED  
display products. The internal display memory unit is divided into two BANKs: BANK A and BANK B. During the  
normal operation, one BANK is selected to display the data of current frame, another is used to restore the data  
of next frame. The BANK switcher is controlled by the BANK_SEL bit, which is an internal flag register bit.  
After power on, BANK_SEL is initialized to 0, and BANK A is selected to restore the data of next frame.  
Meanwhile, the data in BANK B is read out for display. When one frame has elapsed, the controller sends the  
vertical synchronization (VSYNC) command to start the next frame. The BANK_SEL bit value is toggled and the  
selection of the two BANKs reverses. Repeat this operation until all the frame images are displayed.  
With this method, the LP5890 device can display the current frame image at a very high refresh rate. See 图  
8-22 for more details about the BANK-selection exchange operation.  
R0-R15/G0-G15/B0-B15  
R0-R15/G0-G15/B0-B15  
PWM Generator  
Timing Control  
PWM Generator  
Timing Control  
48-bit  
48-bit  
Memory  
BANK A  
Memory  
BANK B  
Memory  
BANK A  
Memory  
BANK B  
BANK_SEL=0  
BANK_SEL=1  
Write Grayscale Data  
for Next Frame  
Read Grayscale Data for  
Current Frame  
Read Grayscale Data for  
Current Frame  
Write Grayscale Data  
for Next Frame  
VSYNC  
VSYNC  
48-bit  
MSB  
48-bit  
MSB  
LSB  
LSB  
SIN  
SIN  
Common Shift Register  
SOUT  
Common Shift Register  
SOUT  
SCLK  
SCLK  
Select BANK A  
Select BANK B  
8-22. Bank Selection Exchange Operation  
8.6.1.2 Details of Memory Bank  
Each memory BANK contains the frame-image grayscale data of all the 32 lines. Each line comprises sixteen  
48-bit-width memory units. Each memory unit contains the grayscale data of the corresponding R/G/B channels.  
Depending on the number of scan lines set in SCAN_NUM (FC0 bit 20 to bit 16), the total number of memory  
units that must be written in one BANK is: 48 × the number of scan lines. For example, if the number of scan  
lines is set to 32, then 1536 (32 × 48 = 1536) memory units must be written during each frame period.  
8-23 shows the detailed memory structure of the LP5890 device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
LSB  
MSB  
SIN  
Common Shift Register  
SOUT  
SCLK  
48-bit  
Memory Units  
CHANNEL_COUNT  
R
Bit2  
G
B
LINE_COUNT  
R0/G0/B0  
R1/G1/B1  
Bit0  
Bit0  
...  
Bit1  
Bit1  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit47  
Bit47  
...  
...  
...  
...  
...  
...  
...  
...  
...  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Line0  
Bit0  
Bit1  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit47  
...  
...  
...  
R15/G15/B15  
BANK_SEL  
Bit0  
Bit0  
...  
Bit1  
Bit1  
Bit2  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit31 Bit32 Bit33 Bit34  
Bit47 R0/G0/B0  
Bit47 R1/G1/B1  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
Line1  
...  
BANK A  
Bit0  
Bit1  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit47  
R15/G15/B15  
...  
...  
...  
...  
...  
R0/G0/B0  
R1/G1/B1  
Bit0  
Bit0  
...  
Bit1  
Bit1  
Bit2  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit31 Bit32 Bit33 Bit34  
Bit47  
Bit47  
...  
...  
...  
...  
...  
...  
...  
...  
...  
Line31  
Bit0  
Bit1  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit47  
...  
...  
...  
R15/G15/B15  
Bit0  
Bit0  
...  
Bit1  
Bit1  
Bit2  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit31 Bit32 Bit33 Bit34  
Bit47 R0/G0/B0  
Bit47 R1/G1/B1  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
Line0  
Bit0  
Bit1  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit47  
R15/G15/B15  
Bit0  
Bit0  
...  
Bit1  
Bit1  
Bit2  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit31 Bit32 Bit33 Bit34  
Bit47 R0/G0/B0  
Bit47 R1/G1/B1  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
BANK B  
Line1  
...  
Bit0  
Bit1  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit47  
R15/G15/B15  
...  
...  
...  
...  
...  
Bit0  
Bit0  
...  
Bit1  
Bit1  
Bit2  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit31 Bit32 Bit33 Bit34  
Bit47 R0/G0/B0  
Bit47 R1/G1/B1  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
Line31  
Bit0  
Bit1  
Bit2  
Bit15 Bit16 Bit17 Bit18  
Bit31 Bit32 Bit33 Bit34  
Bit47  
R15/G15/B15  
8-23. LP5890 Memory-unit Structure  
8.6.1.3 Write a Frame Data into Memory Bank  
After power on, the LP5890 internal flag BANK_SEL, and counters LINE_COUNT, CHANNEL_COUNT, are all  
initialized to 0. Thus, the memory unit of channel R0/G0/B0, locating in line 0 of BANK A, is selected to restore  
the data transimitted the first time after VSYNC command.  
When the first WRTGS command is received, all the data in the common shift register is latched into the memory  
unit of channel R0/G0/B0, locating in line 0 of BANK A. Then CHANNEL_COUNT increases by 1 and  
LINE_COUNT stays the same. Thus, the memory unit of channel R1/G1/B1, locating in line 0 of BANK A, is  
selected to restore the data transimitted the second time after VSYNC command.  
When the second WRTGS command is received, all the data in the common shift register is latched into the  
memory unit of channel R1/G1/B1, locating in line 0 of BANK A. Then CHANNEL_COUNT increases by 1 and  
LINE_COUNT stays the same. Thus, the memory unit of channel R2/G2/B2, locating in line 0 of BANK A, is  
selected to restore the data transimitted the third time after VSYNC command.  
Repeat the grayscale-data-write operation until the 16th WRTGS command is received. Then  
CHANNEL_COUNT is reset to 0 and LINE_COUNT increases by 1. Thus, the memory unit of channel  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
R0/G0/B0, locating in line 1 of BANK A, is selected to restore the data transimitted the 17th time after VSYNC  
command.  
Repeat this operation for each line until the LINE_COUNT exceeds the number of scan lines set in the  
SCAN_NUM (See FC0 register bit20-16 ) and all scan lines have been updated with new GS data, which means  
one frame of GS data is restored into the memory BANK. Then the LINE_COUNT is reset to 0.  
8.6.2 PWM Control for Display  
In order to increase the refreash rate in time-multiplexing display system, an DS-PWM (Dynamic Spectrum-  
Pulse Width Modulation) algorithm is proposed in this device. One frame is divided into many segments shown  
as below. Note that one frame is divided into n sub-periods, n is set by SUBP_NUM (FC0 register bit23-21), and  
each sub-period is divided into 32 segments for 32 scan lines. Each segment contains GS GCLKs time for  
grayscale data display and T_SW GCLKs time for switching lines. GS is configured by the SEG_LENGTH (FC1  
register bit9-0 in 8-8), and T_SW is the line switch time, which is configured by the LINE_SWT (see FC1  
register bit 40-37 in 8-8).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LP5890  
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
Frame (display period)  
SP1  
Sub-period  
SP0  
SPn-1  
ꢀꢀ  
ꢀꢀ  
Segment  
SP0_L0  
SP0_L1  
SP0_L31  
SP1_L0  
SP1_L1  
SP1_L31  
SPn-1_L0  
SPn-1_L1  
SPn-1_L31  
Grayscale data display (GS × GCLK)  
Line switch (T_SW × GCLK)  
Note that, SP0: Sub-period 0, L0: Scan line 0  
8-24. DS-PWM Algorithm with 32 Scan Lines  
The DS-PWM can not only increse the refresh rate meanwhile keep the same frame rate, but also decrease the  
brightness loss in low grayscale, which can smoothly increase the sub-period number when the grayscale data  
increases.  
In order to achieve ultra-low luminance, the LED driver should have the ability to output a very short current  
pulse (1 GCLK time), however, because of the parasitic capacitor of the LEDs, such pulse could not turn on the  
LEDs. And the larger GCLK frequency is, the harder to turn on LEDs.  
DS-PWM algorithm has a parameter called subperiod threshold, which is used to calculate when to change  
subperiod number according to the giving grayscale data. Subperiod threshold defines the LED minimum turn-on  
time, so as to conquer the current loss caused by LED parasitic capacitor. Subperiod threshold is configured by  
the SUBP_TH_R/G/B (FC1 register bit24-10 in 8-8).  
With DS-PWM algorithm, the brightness has smoothly increased with the gradient grayscale data.  
8.7 Register Maps  
8-5. Register Maps  
WRITE COMMAND READ COMMAND  
REGISTER NAME  
TYPE  
DESCRIPTION  
ID  
ID  
FC0  
FC1  
R/ W  
R/ W  
R/ W  
R/ W  
R/ W  
R/ W  
R/ W  
R
AA00h  
AA01h  
AA02h  
AA03h  
AA04h  
AA0Ah  
AA0Bh  
AA60h  
AA61h  
AA62h  
AA63h  
AA64h  
AA6Ah  
AA6Bh  
AA6Ch  
AA6Dh  
AA6Eh  
AA6Fh  
AA70h  
Common configuration  
Common configuration  
FC2  
Common configuration  
FC3  
Common configuration  
FC4  
Common configuration  
FC10  
FC11  
FC12  
FC13  
FC14  
FC15  
Chip Index  
VSYNC  
Locate the line for LOD  
Locate the line for LSD  
Read the lines' warning of LOD  
Read the lines' warning of LSD  
Read the channel's warning of LOD  
Read the channel's warning of LSD  
Read/Write chip index  
R
R
R
R/ W  
W
AA10h  
AAF0h  
Write VSYNC command  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-5. Register Maps (continued)  
WRITE COMMAND READ COMMAND  
REGISTER NAME  
TYPE  
DESCRIPTION  
ID  
ID  
Soft_Reset  
SRAM  
W
W
AA80h  
AA30h  
Reset the all the registers expect the SRAM  
Write or read the SRAM data  
8-6. Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.7.1 FC0  
FC0 is shown in FC0 Register and described in FC0 Register Field Descriptions.  
8-25. FC0 Register  
47  
46  
45  
44  
43  
27  
42  
GRP_DLY_B  
R/W-000b  
26  
41  
40  
39  
GRP_DLY_G  
R/W-000b  
23  
38  
37  
21  
36  
GRP_DLY_R  
R/W-000b  
20  
35  
19  
34  
33  
32  
16  
MOD_SIZE  
R/W-00b  
RESERVED  
R-01b  
RESERVED  
R-0b  
18  
R/W-00b  
31  
30  
29  
28  
25  
24  
22  
17  
FREQ_MUL  
FREQ_  
MOD  
RESERVED  
SUBP_NUM  
SCAN_NUM  
R/W-0111b  
R/  
R-000b  
R/W-000b  
R/W-01111b  
W-0b  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LODR  
M_EN  
PSP_MOD  
PS_EN  
RESERVED  
PDC_E  
N
RESERVED  
CHIP_NUM  
R/  
R/W-00b  
R/  
R-000b  
R/  
R-000b  
R/W-00111b  
W-0b  
W-0b  
W-1b  
8-7. FC0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
4-0  
CHIP_NUM  
R/W  
00111b  
Set the device number  
00000b: 1 device  
...  
01111b: 16 devices  
...  
11111b: 32 devices  
7-5  
8
RESERVED  
PDC_EN  
R
000b  
1b  
R/W  
Enable or disable pre-discharge function  
0b: disable  
1b: enable  
11-9  
12  
RESERVED  
PS_EN  
R
000b  
0b  
R/W  
Enable or disable the power saving mode  
0b: disable  
1b: enable  
14-13  
PSP_MOD  
R/W  
00b  
Set the powering saving plus mode  
00b: disable  
01b: save power at high level  
10b: save power at middle level  
11b: save power at low level  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-7. FC0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
15  
LODRM_EN  
R/W  
0b  
Enable or disable the LED open load removal function  
0b: disable  
1b: enable  
20-16  
23-21  
SCAN_NUM  
SUBP_NUM  
R/W  
R/W  
01111b  
000b  
Set the scan line number  
00000b: 1 line  
...  
01111b: 16 lines  
...  
11111b: 32 lines  
Set the subperiod number  
000b: 16  
001b: 32  
010b: 48  
011b: 64  
100b: 80  
101b: 96  
110b: 112  
111b: 128  
26-24  
27  
RESERVED  
FREQ_MOD  
R
000b  
0b  
R/W  
Set the GCLK multiplier mode  
0b: low frequency mode, 40MHz to 80MHz  
1b: high frequency mode, 80MHz to 160MHz  
31-28  
FREQ_MUL  
R/W  
0111b  
Set the GCLK multiplier frequency  
0000b: 1 x SCLK frequency  
...  
0111b: 8 x SCLK frequency  
...  
1111b: 16 x SCLK frequency  
34-32  
37-35  
RESERVED  
GRP_DLY_R  
R
000b  
000b  
R/W  
Set the Red group delay, forward PWM mode only  
000b: no delay  
001b: 1 GCLK  
010b: 2 GCLK  
011b: 3 GCLK  
100b: 4 GCLK  
101b: 5 GCLK  
110b: 6 GCLK  
111b: 7 GCLK  
40-38  
43-41  
45-44  
GRP_DLY_G  
GRP_DLY_B  
RESERVED  
R/W  
R/W  
R
000b  
000b  
01b  
Set the Green group delay, forward PWM mode only  
000b: no delay  
001b: 1 GCLK  
010b: 2 GCLK  
011b: 3 GCLK  
100b: 4 GCLK  
101b: 5 GCLK  
110b: 6 GCLK  
111b: 7 GCLK  
Set the Blue group delay, forward PWM mode only  
000b: no delay  
001b: 1 GCLK  
010b: 2 GCLK  
011b: 3 GCLK  
100b: 4 GCLK  
101b: 5 GCLK  
110b: 6 GCLK  
111b: 7 GCLK  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LP5890  
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-7. FC0 Register Field Descriptions (continued)  
Bit  
Field  
MOD_SIZE  
Type  
Reset  
Description  
47-46  
R/W  
00b  
Set the module size  
00b: 2 devices stackable operation  
01b: 1 device non-stackable operation, SCAN_NUM must <=16  
10b: 2 devices stackable operation  
11b: 3 devices stackable operation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LP5890  
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8.7.2 FC1  
FC1 is shown in FC1 Register and described in FC1 Register Field Descriptions.  
8-26. FC1 Register  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
17  
32  
RESE  
RVED  
BLK_ADJ  
LINE_SWT  
LG_ENH_B  
LG_EN  
H_G  
R-0b  
31  
R/W-000000b  
R/W-0111b  
R/W-0000b  
30  
29  
13  
28  
27  
26  
25  
9
24  
8
23  
7
22  
21  
5
20  
4
19  
3
18  
16  
0
LG_ENH_G  
R/W-0000b  
14  
LG_ENH_R  
R/W-0000b  
LG_STEP_B  
R/W-01001b  
6
LG_STEP_G  
R/W-01001b  
15  
12  
11  
10  
2
1
LG_ST  
EP_G  
LG_STEP_R  
SEG_LENGTH  
R/W-01001b  
R/W-0'000'000'000b  
8-8. FC1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
9-0  
SEG_LENGTH  
LG_STEP_R  
R/W  
0'000'000'0 Set the GCLK number in each segment  
00b  
127d: 128 GCLK  
...  
1023d: 1024 GCLK  
others: 128 GCLK  
14-10  
19-15  
24-20  
28-25  
32-29  
36-33  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
01001b  
Adjust the smooth of the brightness in low grayscale  
00000b: level 1  
...  
01111b: level 16  
...  
11111b: level 32  
LG_STEP_G  
LG_STEP_B  
LG_ENH_R  
LG_ENH_G  
LG_ENH_B  
01001b  
01001b  
0000b  
0000b  
0000b  
Adjust the smooth of the brightness in low grayscale  
00000b: level 1  
...  
01111b: level 16  
...  
11111b: level 32  
Adjust the smooth of the brightness in low grayscale  
00000b: level 1  
...  
01111b: level 16  
...  
11111b: level 32  
Adjust low grayscale enhancement of red channels  
0000b: level 0  
...  
0111b: level 7  
...  
1111b: level 15  
Adjust low grayscale enhancement of green channels  
0000b: level 0  
...  
0111b: level 7  
...  
1111b: level 15  
Adjust low grayscale enhancement of blue channels  
0000b: level 0  
...  
0111b: level 7  
...  
1111b: level 15  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-8. FC1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
40-37  
LINE_SWT  
R/W  
0111b  
Set the scan line switch time.  
0000b: 45 GCLK  
0001b: 2x30 GCLK  
...  
0111b: 8x30 GCLK  
...  
1111b: 16x30 GCLK  
46-41  
BLK_ADJ  
R/W  
000000b  
Set the black field adjustment  
000000b: 0 GCLK  
...  
011111b: 31 GCLK  
...  
111111b: 63 GCLK  
47  
RESERVED  
R
0b  
Reserved bit.  
8.7.3 FC2  
FC2 is shown in FC2 Register and described in FC2 Register Field Descriptions.  
8-27. FC2 Register  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
RESERVED  
SUBP_ CH_B_ CH_G_ CH_R_  
MAX_2 IMMU IMMU IMMU  
RESERVED  
LG_COLOR_B  
56  
NITY  
NITY  
NITY  
R-000000b  
29  
R/  
W-0b  
R-111000b  
R/W-0000b  
31  
15  
30  
28  
12  
27  
11  
26  
25  
24  
23  
7
22  
21  
20  
4
19  
3
18  
17  
16  
0
LG_COLOR_G  
R/W-0000b  
LG_COLOR_R  
R/W-0000b  
DE_COUPLE1_B  
R/W-0000b  
DE_COUPLE1_G  
R/W-0000b  
14  
13  
10  
9
8
6
5
2
1
DE_COUPLE1_R  
R/W-0000b  
V_PDC_B  
R/W-0110b  
V_PDC_G  
R/W-0110b  
V_PDC_R  
R/W-0110b  
8-9. FC2 Register Field Descriptions  
Bit  
3-0  
Field  
Type  
Reset  
Description  
V_PDC_R  
R/W  
0110b  
Set the Red pre_discharge voltage, the voltage value must not  
be higher than (VR-1.3V).  
0000b: 0.1V  
0001b: 0.2V  
0010b: 0.3V  
0011b: 0.4V  
0100b: 0.5V  
0101b: 0.6V  
0110b: 0.7V  
0111b: 0.8V  
1000b: 0.9V  
1001b: 1.0V  
1010b: 1.1V  
1011b: 1.3V  
1100b: 1.5V  
1101b: 1.7V  
1110b: 1.9V  
1111b: 2.1V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-9. FC2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7-4  
V_PDC_G  
R/W  
0110b  
Set the Green pre_discharge voltage, the voltage value must not  
be higher than (VG-1.3V).  
0000b: 0.1V  
0001b: 0.2V  
0010b: 0.3V  
0011b: 0.4V  
0100b: 0.5V  
0101b: 0.6V  
0110b: 0.7V  
0111b: 0.8V  
1000b: 0.9V  
1001b: 1.0V  
1010b: 1.1V  
1011b: 1.3V  
1100b: 1.5V  
1101b: 1.7V  
1110b: 1.9V  
1111b: 2.1V  
11-8  
V_PDC_B  
R/W  
0110b  
Set the Blue pre_discharge voltage, the voltage value must not  
be higher than (VB-1.3V).  
0000b: 0.1V  
0001b: 0.2V  
0010b: 0.3V  
0011b: 0.4V  
0100b: 0.5V  
0101b: 0.6V  
0110b: 0.7V  
0111b: 0.8V  
1000b: 0.9V  
1001b: 1.0V  
1010b: 1.1V  
1011b: 1.3V  
1100b: 1.5V  
1101b: 1.7V  
1110b: 1.9V  
1111b: 2.1V  
15-12  
19-16  
23-20  
27-24  
DE_COUPLE1_R  
DE_COUPLE1_G  
DE_COUPLE1_B  
LG_COLOR_R  
R/W  
R/W  
R/W  
R/W  
0000b  
0000b  
0000b  
0000b  
Set the Red decoupling level  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
Set the Green decoupling level  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
Set the Blue decoupling level  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
Set the Red brightness compensation level of the low grayscale  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LP5890  
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-9. FC2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
31-28  
LG_COLOR_G  
R/W  
0000b  
Set the Red brightness compensation level of the low grayscale  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
35-32  
LG_COLOR_B  
R/W  
0000b  
Set the Red brightness compensation level of the low grayscale  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
38-36  
39  
RESERVED  
R
111000b  
1b  
CH_R_IMMUNITY  
R/W  
Set the immunity of the Red channels group  
0b: high immunity  
1b: low immunity  
40  
41  
42  
CH_G_IMMUNITY  
CH_B_IMMUNITY  
SUBP_MAX_256  
RESERVED  
R/W  
R/W  
R/W  
R
1b  
Set the immunity of the Green channels group  
0b: high immunity  
1b: low immunity  
1b  
Set the immunity of the Blue channels group  
0b: high immunity  
1b: low immunity  
0b  
Set the maximum subperiod to 256.  
0b: disable  
1b: enable  
47-43  
00000b  
8.7.4 FC3  
FC3 is shown in FC3 Register and described in FC3 Register Field Descriptions.  
8-28. FC3 Register  
47  
31  
15  
46  
45  
29  
13  
44  
28  
43  
LSDVTH_G  
R/W-000b  
27  
42  
26  
10  
41  
25  
9
40  
39  
23  
7
38  
22  
6
37  
LSD_RM  
R/W-0111b  
36  
35  
19  
34  
18  
2
33  
BC  
32  
16  
0
LSDVTH_B  
R/W-000b  
30  
LSDVTH_R  
R/W-000b  
24  
R/W-011b  
17  
21  
20  
CC_B  
CC_G  
R/W-0111 1111b  
R/W-0111 1111b  
12 11  
14  
8
5
4
3
1
CC_R  
R/W-0111 1111b  
RESERVED  
R-00000000b  
8-10. FC3 Register Field Descriptions  
Bit  
7-0  
15-8  
Field  
Type  
Reset  
Description  
RESERVED  
CC_R  
R
0000 0000b  
R/W  
0111 1111b Set the Red color brightness level  
0000 0000b: level 0 (lowest)  
...  
0111 1111b: level 127 (middle)  
...  
1111 1111b: level 255 (highest)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-10. FC3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
23-16  
CC_G  
R/W  
0111 1111b Set the Green color brightness level  
0000 0000b: level 0 (lowest)  
...  
0111 1111b: level 127 (middle)  
...  
1111 1111b: level 255 (highest)  
31-24  
34-32  
38-35  
CC_B  
R/W  
R/W  
R/W  
0111 1111b Set the Blue color brightness level  
0000 0000b: level 0 (lowest)  
...  
0111 1111b: level 127 (middle)  
...  
1111 1111b: level 255 (highest)  
BC  
011b  
Set the global brightness level  
000b: level 0 (lowest)  
...  
011b: level 3 (middle)  
...  
111b: level 7 (highest)  
LSD_RM  
0111b  
Set the LED short removal level  
0000b: level 1  
0001b: level 2  
0010b: level 3  
0011b: level 4  
0100b: level 5  
0101b: level 6  
0110b: level 7  
0111b: level 8  
1000b: level 9  
1001b: level 10  
1010b: level 11  
1011b: level 12  
1100b: level 13  
1101b: level 14  
1110b: level 15  
1111b: level 16  
41-39  
44-42  
47-45  
LSDVTH_R  
LSDVTH_G  
LSDVTH_B  
R/W  
R/W  
R/W  
000b  
000b  
000b  
Set the Red LED short/weak short circuitry detection threshold  
000b: 0.2 V  
001b: 0.4 V  
010b: 0.8 V  
011b: 1.0 V  
100b: 1.2 V  
101b: 1.4 V  
110b: 1.6 V  
111b: 1.8 V  
Set the Green LED short/weak short circuitry detection threshold  
000b: 0.2 V  
001b: 0.4 V  
010b: 0.8 V  
011b: 1.2 V  
100b: 1.6 V  
101b: 2 V  
110b: 2.4 V  
111b: 2.8 V  
Set the Blue LED short/weak short circuitry detection threshold  
000b: 0.2 V  
001b: 0.4 V  
010b: 0.8 V  
011b: 1.2 V  
100b: 1.6 V  
101b: 2 V  
110b: 2.4 V  
111b: 2.8 V  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LP5890  
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8.7.5 FC4  
FC4 is shown in FC4 Register and described in FC4 Register Field Descriptions.  
8-29. FC4 Register  
47  
31  
15  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
19  
34  
33  
32  
RESERVED  
DE_COU  
PLE3_EN  
DE_COUPLE3  
DE_COU  
PLE2  
FIRST_LINE_DIM  
LG_CAU LG_CAU LG_CAU  
RSE_B  
R/W-0b  
18  
RSE_G  
R/W-0b  
17  
RSE_R  
R/W-0b  
16  
R-000b  
30  
R/W-0b  
28  
R/W-1000b  
R/W-0b  
23  
R/W-0000b  
29  
27  
26  
SR_ON_B  
25  
SR_ON_G  
24  
22  
21  
20  
RESERVED  
SR_ON_R  
SR_OFF SR_OFF SR_OFF LG_FINE LG_FINE LG_FINE  
_B  
R/W-0b  
5
_G  
R/W-0b  
4
_R  
R/W-0b  
3
_B  
R-000b  
2
_G  
_R  
R-0000b  
R/W-01b  
R/W-01b  
R/W-01b  
14  
13  
12  
11  
10  
9
8
7
6
1
0
RESERV SCAN_R  
RESERVED  
IMAX  
RESERVED  
ED  
EV  
R-0b  
R/W-1b  
R-00 0000 0000b  
R/W-0b  
R-000b  
8-11. FC4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000b  
0b  
Description  
2-0  
3
RESERVED  
IMAX  
R
R/W  
Set the maximum current of each channel  
0b: 10mA maximum  
01b: 20 mA maximum  
13-4  
14  
RESERVED  
SCAN_REV  
R
000000000  
0b  
R/W  
1b  
When 2 device stackable or 3 devices stackable, the scan lines  
PCB layout is reversed. For the proper scan and SRAM read  
sequence, SCAN_REV register is provided.  
0b: the PCB layout sequence is L0-L15, L16-L31.  
1b: the PCB layout sequence is L0-L15, L31-L16.  
15  
16  
RESERVED  
LG_FINE_R  
R
0b  
0b  
R/W  
Enable the Red brightness compensation level fine range  
0b: disable  
1b: enable  
17  
18  
LG_FINE_G  
LG_FINE_B  
SR_OFF_R  
SR_OFF_G  
SR_OFF_B  
SR_ON_R  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
01b  
Enable the Green brightness compensation level fine range  
0b: disable  
1b: enable  
Enable the Blue brightness compensation level fine range  
0b: disable  
1b: enable  
19  
Slew rate control function when Red turns off operation  
0b: slow slew rate.  
1b: fast slew rate.  
20  
Slew rate control function when Green turns off operation  
0b: slow slew rate.  
1b: fast slew rate.  
21  
Slew rate control function when Blue turns off operation  
0b: slow slew rate.  
1b: fast slew rate.  
23-22  
Slew rate control function when Red turns on operation  
00b: the slower slew rate.  
01b: slow slew rate.  
10b: fast slew rate.  
11b: the faster slew rate.  
25-24  
SR_ON_G  
R/W  
01b  
Slew rate control function when Green turns on operation  
00b: the slower slew rate.  
01b: slow slew rate.  
10b: fast slew rate.  
11b: the faster slew rate.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-11. FC4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
27-26  
SR_ON_B  
R/W  
01b  
Slew rate control function when Blue turns on operation  
00b: the slower slew rate.  
01b: slow slew rate.  
10b: fast slew rate.  
11b: the faster slew rate.  
31-28  
32  
RESERVED  
R
0000b  
0b  
LG_CAURSE_R  
R/W  
Enable the Red brightness compensation level caurse range  
0b: disable  
1b: enable  
33  
34  
LG_CAURSE_G  
LG_CAURSE_B  
FIRST_LINE_DIM  
R/W  
R/W  
R/W  
0b  
Enable the Green brightness compensation level caurse range  
0b: disable  
1b: enable  
0b  
Enable the Blue brightness compensation level caurse range  
0b: disable  
1b: enable  
38-35  
0000b  
Adjust the first line dim level  
0000b: level 1  
...  
0111b: level 8  
...  
1111b: level 16  
39  
DE_COUPLE2  
DE_COUPLE3  
R/W  
R/W  
0b  
Decoupling between ON and OFF channels  
0b: disabled  
1b: enabled  
43-40  
1000b  
Set decoupling enhancement level  
0000b: level 1  
...  
0111b: level 8  
...  
1111b: level 16  
44  
DE_COUPLE3_EN  
RESERVED  
R/W  
R
0b  
Enable decoupling enhancement  
0b: disabled  
1b: enabled  
47-45  
000b  
8.7.6 FC10  
FC10 is shown in FC10 Register and described in FC10 Register Field Descriptions.  
8-30. FC10 Register  
47  
31  
15  
46  
30  
14  
45  
29  
13  
44  
28  
12  
43  
27  
11  
42  
26  
41  
25  
9
40  
39  
38  
22  
6
37  
21  
5
36  
20  
4
35  
19  
3
34  
18  
2
33  
17  
1
32  
16  
0
RESERVED  
R-0b  
24  
23  
RESERVED  
R-0b  
10  
8
7
RESERVED  
R-0b  
LOD_LINE_CMD  
R/W-00000b  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-12. FC10 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
4-0  
LOD_LINE_CMD  
R/W  
00000b  
Locate the line with LED open load warnings:  
00000b: Line 0  
...  
01111b: Line 15  
...  
11111b: Line 31  
47-5  
RESERVED  
R
0b  
Reserved bits  
8.7.7 FC11  
FC11 is shown in FC11 Register and described in FC11 Register Field Descriptions.  
8-31. FC11 Register  
47  
31  
15  
46  
30  
14  
45  
29  
13  
44  
28  
12  
43  
27  
11  
42  
26  
41  
25  
9
40  
39  
38  
22  
6
37  
21  
5
36  
20  
4
35  
19  
3
34  
18  
2
33  
17  
1
32  
16  
0
RESERVED  
R-0b  
24  
23  
RESERVED  
R-0b  
10  
8
7
RESERVED  
R-0b  
LSD_LINE_CMD  
R/W-00000b  
8-13. FC11 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
4-0  
LSD_LINE_CMD  
R/W  
00000b  
Locate the line with LED short circuitry warnings:  
00000b: Line 0  
...  
01111b: Line 15  
...  
11111b: Line 31  
47-5  
RESERVED  
R
0b  
Reserved bits  
8.7.8 FC12  
FC12 is shown in FC12 Register and described in FC12 Register Field Descriptions.  
8-32. FC12 Register  
47  
31  
15  
46  
30  
14  
45  
29  
13  
44  
28  
12  
43  
27  
11  
42  
26  
10  
41  
25  
9
40  
39  
38  
22  
6
37  
21  
5
36  
20  
4
35  
19  
3
34  
18  
2
33  
17  
1
32  
16  
0
RESERVED  
R-0b  
24  
23  
LOD_LINE_WARN  
R-0b  
8
7
LOD_LINE_WARN  
R-0b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LP5890  
 
 
 
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8-14. FC12 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
LOD_LINE_WARN  
R
0b  
Read the line with LED open load warnings:  
Bit 0 = 0, Line 0 has no warning; Bit 0 = 1, Line 0 has warning  
...  
Bit 31 = 0, Line 31 has no warning; Bit 31 = 1, Line 31 has  
warning  
47-32  
RESERVED  
R
0b  
Reserved bits  
8.7.9 FC13  
FC13 is shown in FC13 Register and described in FC13 Register Field Descriptions.  
8-33. FC13 Register  
47  
31  
15  
46  
30  
14  
45  
29  
13  
44  
28  
12  
43  
27  
11  
42  
26  
10  
41  
25  
9
40  
39  
38  
22  
6
37  
21  
5
36  
20  
4
35  
19  
3
34  
18  
2
33  
17  
1
32  
16  
0
RESERVED  
R-0b  
24  
23  
LSD_LINE_WARN  
R-0b  
8
7
LSD_LINE_WARN  
R-0b  
8-15. FC13 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
LSD_LINE_WARN  
R
0b  
Read the line with LED short circuitry warnings:  
Bit 0 = 0, Line 0 has no warning; Bit 0 = 1, Line 0 has warning  
...  
Bit 31 = 0, Line 31 has no warning; Bit 31 = 1, Line 31 has  
warning  
47-32  
RESERVED  
R
0b  
Reserved bits  
8.7.10 FC14  
FC14 is shown in FC14 Register and described in FC14 Register Field Descriptions.  
8-34. FC14 Register  
47  
31  
15  
46  
30  
14  
45  
29  
13  
44  
28  
12  
43  
27  
11  
42  
26  
10  
41  
25  
9
40  
LOD_CH  
R-0b  
39  
38  
22  
6
37  
21  
5
36  
20  
4
35  
19  
3
34  
18  
2
33  
17  
1
32  
16  
0
24  
23  
LOD_CH  
R-0b  
8
7
LOD_CH  
R-0b  
8-16. FC14 Register Field Descriptions  
Bit  
47-0  
Field  
LOD_CH  
Type  
Reset  
Description  
R
0b  
Locate the LED open load channel:  
Bit 0 = 0, CH 0 is normal; Bit 0 = 1, CH 0 is open load  
...  
Bit 47 = 0, CH 47 is normal; Bit 47 = 1, CH 47 is open load  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
 
 
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
8.7.11 FC15  
FC15 is shown in FC15 Register and described in FC15 Register Field Descriptions.  
8-35. FC15 Register  
47  
31  
15  
46  
30  
14  
45  
29  
13  
44  
28  
12  
43  
27  
11  
42  
26  
10  
41  
25  
9
40  
LSD_CH  
R-0b  
39  
38  
22  
6
37  
21  
5
36  
20  
4
35  
19  
3
34  
18  
2
33  
17  
1
32  
16  
0
24  
23  
LSD_CH  
R-0b  
8
7
LSD_CH  
R-0b  
8-17. FC15 Register Field Descriptions  
Bit  
47-0  
Field  
LSD_CH  
Type  
Reset  
Description  
R
0b  
Locate the LED short circuitry channel:  
Bit 0 = 0, CH 0 is normal; Bit 0 = 1, CH 0 is short circuitry  
...  
Bit 47 = 0, CH 47 is normal; Bit 47 = 1, CH 47 is short circuitry  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The LP5890 integrates 48 constant current sources and 16 scanning FETs. A single LP5890 is capable of  
driving 16 × 16 RGB LED pixels while stacking two LP5890s can drive 32 × 32 RGB LED pixels. To achieve low  
power consumption, the LP5890 supports separated power supplies for the red, green, and blue LEDs by its  
common cathode structure.  
The LP5890 implements a high speed rising-edge transmission interface (up to 50 MHz) to support high device  
count daisy-chained and high refresh rate while minimizing electrical-magnetic interference (EMI). SCLK must be  
continuous, no matter there are data on SIN or not, since SCLK is not only used to sample the data on SIN, but  
also used as an clock source to generate GCLK by internal frequency multiplier. Based on CCSI protocol, all the  
commands/FC registers/SRAM data are written from the SIN input terminal, and all the FC registers/ LED open  
and short flag can be read out from the SOUT output terminal. Moreover, the device supports up to 160-MHz  
GCLK frequency and can achieve 16-bit PWM resolution, with 3840 Hz or even higher refresh rate.  
Meanwhile, the LP5890 integrates enhanced circuits and intelligent algorithms to solve the various display  
challenges in Narrow Pixel Pitch (NPP) LED display applications and Mini and Micro-LED products: Dim at the  
fist scan line, Upper and downside ghosting, Non-uniformity in low grayscale, Coupling, Caterpillar caused by  
open or short LEDs, which make the LP5890 a perfect choice in such applications.  
The LP5890 also implements LED open or weak short or short detections and removals during operations and  
can also report those information out to the accompanying digital processor.  
9.2 Typical Application  
The LP5890 are typically connected in series in a daisy-chain to drive the LED matrix with only a few controller  
ports. 9-1 shows a typical application diagram with two LP5890 devices stackable connection to drive 32 × 32  
RGB LED pixels.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: LP5890  
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
9-1. LP5890 with Dual Devices Stackable Connection  
9.2.1 Design Requirements  
Taking 4K micro-LED elevation for example, the resolution of the screen is 3840 × 2160 and the screen consists  
of many modules. The following sections show an example of how to build an LED display module with 240 ×  
180 pixels.  
The example uses the following values as the system design parameters.  
9-1. LP5890 Design Parameters  
DESIGN PARAMETER  
VCC and VR  
EXAMPLE VALUE  
2.8 V  
VG and VB  
3.8 V  
Maximum current per LED  
PWM resolution  
IRED = 3 mA, IGREEN = 2 mA, IBLUE = 1 mA  
14 bits  
Frame rate  
120 Hz  
Refresh rate  
3840 Hz  
Display module size  
cascaded devices number  
devices number per LED display module  
240 × 180 pixels  
8
96  
9.2.1.1 System Structure  
To build an LED display module with 240 × 180 pixels, 96 LP5890s are required.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
240 Colume  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
180  
Lines  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
9-2. LED Display Module  
As shown in 9-2, the total module can be divided into 48 30 × 30 matrix, each matrix includes 2 devices with  
stackable connection.  
Note  
In order to achieve the best performance, TI suggests to distribute the redundant channels and lines  
to each 32 × 32 matrix. For this case, two Red/Green/Blue channels and two lines are not used in  
each matrix, and these unused pins can be floated. For the software, zero data is suggested to send  
to the unused channels. There is no need to send the zero data to unused lines.  
9.2.1.2 SCLK Frequency  
The SCLK frequency is determined by the data volume of one frame and frame rate. In this application, the data  
volume V_Data is 30 × 32 × 48 bits × 4 = 184.32 Kb, the frame rate is 120 Hz. Suppose the data transmission  
efficiency is 0.8, the minimum frequency of SCLK should be: fSCLK = V_Data × fframe / 0.8. So the minimum  
SCLK frequency is 27.65 MHz with rising-edge transmission.  
9.2.1.3 Internal GCLK Frequency  
The internal GCLK frequency is configured by the Frequency Multiplier (FREQ_MUL) and is determined by the  
PWM resolution. The GCLK frequency can be calculated by the below equations:  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
frefresh_ rate  
Nsub_ period  
=
f frame_ rate  
GSmax = 2K  
GSmax = NGCLK _ Seg ì Nsub_ period  
N
«
1
GCLK _ Seg  
=
+TSW ì NScan_line ì Nsub_ period +TBlank  
÷
f frame_ rate  
fGCLK  
(3)  
where  
frefresh_rate means the refresh rate  
fframe_rate means the frame rate  
K means the PWM resolution  
Nsub_period means the sub-period numbers within one frame  
NGCLK_seg means the GCLK number per segment (line switch time excluded)  
fGCLK means GCLK frequency  
TSW means line switching time  
Nscan_line means the scan line number  
Tblank means the blank time in one frame, equals to 0 in ideal configuration  
GSmax means the maximum grayscale that the device can output in one frame  
9-2 gives the values based on the system configuration and equation.  
9-2. LP5890 Design Parameters for GCLK Frequency Calculation  
DESIGN PARAMETER  
Nsub_period  
Nscan_line  
TSW  
EXAMPLE VALUE  
32  
30  
1.5 µs  
0
Tblank  
NGCLK_seg  
GSmax  
512  
16383  
71.3 MHz  
fGCLK  
Considering SCLK frequency and FREQ_MUL, the SCLK can be 27.7 MHz and FREQ_MUL can be 0010b. So  
the GCLK will be 83.1 MHz.  
9.2.1.4 Line Switch Time  
The line switch time is digitized with the GCLK number and can be set by the LINE_SWT (Bit 40-37 in FC1  
register). In this application, it is 1.5us × 83.1 MHz = 125 GCLKs, so the LINE_SWT equals to 0011b (120  
GCLKs), the actual line switch time is 1.44 us.  
9.2.1.5 Blank Time Removal  
The LP5890 has an algorithm to distribute the blank time into each subperiod in order to prevent the black field  
when taking photos or video.  
From Equation 3, 83.1-MHz GCLK frequency and 1.44-us line switch time, the calculated blank time is 1.0361  
ms (86100 GCLK), which is too long and will bring black field.  
Here are detailed steps of the algorithm:  
Step1: Distribute blank time into each segment  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: LP5890  
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
When the blank GCLK number is larger than Nsub_period × Nscan_line, it can be distributed into each segment.  
In this application, the blank GCLK number is 86100 and Nsub_period × Nscan_line is 960, so the distributed GCLK  
number in each segment is 86100/960 = 89...660. These 89 GCLKs can be used to increase PWM length or  
extend line switch time. If used to increase PWM length, the GCLK number in each segment will be 512 + 89 =  
601, so the SEG_LENGTH (Bit9-0 in FC1 register) will be 1001011001b.  
Step2: Distribute blank time into each sub-period  
If the left GCLK number is larger than Nsub_period, it can be distributed into each sub-period.  
In this application, the left GCLK is 600 and the distributed GCLK number in each sub-period is 600/32=18...24.  
The BLK_ADJ (Bit46-41 in FC1 register) is 010001b.  
After distributing into each sub-period, the left GCLK number is 24, which is about 289 ns. This time is too short  
to bring black field.  
9.2.1.6 BC and CC  
Select the reference current-setting resistor RIREF and configure a proper BC value to set the maximum current  
of the RGB LEDs (see Brightness Control (BC) Function for more details). Here the maximum current is 3 mA,  
BC value is 03h, according to equation 方程1, the reference resistor value is 0.8V/3mA × 86.61 = 23 k.  
Configure the CC_R/CC_G/CC_B registers to set the current of Red/ Green/Blue LED current to 3 mA/2 mA/1  
mA (see Color Birghtness Control (CC) Function for more details).  
9-3 shows the reference current setting resistor RIREF, BC and CC_R/CC_G/CC_B register value.  
9-3. Current Setting Value  
DESIGN PARAMETER  
EXAMPLE VALUE  
23 kΩ  
RIREF  
BC  
011 b  
CC_R  
CC_G  
CC_B  
11111110 b  
10101001 b  
01010100 b  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9-3 gives an detail design procedure for LED display. After power on and digital signals are ready, the first  
step for the controller is to send the chip index command to let the devices know their identifications. Then, it  
sends the configuration data to the FC registers. After this, it sends the VSYNC at the beginning of each frame  
and also sends the data to each device. The devices will display the data of last frame when the VSYNC comes  
and meanwhile receive the data of current frame transmitted from controller. The registers can be read at  
anytime of the frame.  
Begin  
Power Supply, SCLK/SIN  
Ready  
Write Chip Index  
Configure the  
register during  
sending data  
Write FC Registers  
Write SRAM  
Write next  
frame SRAM  
Data in normal  
operation  
Wait for the end of current  
frame  
Write VSYNC  
Read registers  
during each  
time of the  
frame  
Read Chip Index/FC/LOD/LSD  
9-3. Design Procedure for LED Display  
9.2.2.1 Chip Index Command  
The chip index is used to distribute the address of the devices in a data chain. Each device gets its unique  
address by this command. Details can be found in Chip Index Write Command.  
9.2.2.2 FC Registers Settings  
Some bits of FC0, FC1, FC3 registers must be configured properly before the devices work normally. In this  
application, the register values can be:  
9-4. FC Registers Value  
FC Registers  
FC0  
Register Value(BIN)  
Register Value(HEX)  
1000 283D 0107 h  
2460 0094 A659 h  
003B 54A9 FE00 h  
0001 0000 0000 0000 0001 1000 0011 1101 0000 0001 0000 0111 b  
0010 0100 0110 0000 0000 0000 1001 0100 1010 0110 0101 1001 b  
0000 0000 0011 1011 0101 0100 1010 1001 1111 1110 0000 0000 b  
FC1  
FC3  
The controller can configure the FC by the data write command with broadcast mode (see Data Write Command  
for more details). The FC0, FC1 registers are updated after the VSYNC command comes, and the other FC  
registers are updated right away regardless the VSYNC command.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
9.2.2.3 Grayscale Data Write  
The channel grayscale data will be written to SRAM of the device by the data write command with non-broadcast  
way, details can be found in Data Write Command and Write a Frame Data into Memory Book.  
Data Write Flow is the data write flow for this application, P(i, j) is the data of pixel locating in i+1 row and j+1  
column. Suppose channel R15/G15/B15 of each device is not used and not connected, but the channel  
R14/G14/B14 is connected to P(i, 0), the channel R13/G13/B13 is connected to P(i, 1),, and channel  
R0/G0/B0 is connected to P(i, 14). The data of unused channel should be zero noting D_Zero in below figure,  
and D_Zero = 00000000000000001 00000000000000001 00000000000000001b.  
i=0  
j=15  
ST+HB+P(i, jx7)+P(i, jx6)+Y+P(i, jx1)+P(i,0)+END  
j=j-1  
Write one  
line data  
N
Write one  
frame data  
j=0  
Y
ST+HB+D_Zero+D_Zero+Y+D_Zero+D_Zero+END  
i=i+1  
N
i=30  
Y
9-4. Data Write Flow  
9.2.2.4 VSYNC Command  
The VSYNC is used to sync the display of each frame for the devices in a cascaded chain. Details can be found  
in VSYNC Write Command.  
9.2.2.5 LED Open and Short Read  
FC10, FC11, FC12, FC13, FC14, FC15 are the read commands for LOD/LSD information. Details can be found  
in Read LED-open Information and Read LED-short Information.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
9.2.3 Application Curves  
9-5. Line and Channel Waveform in One Frame  
9-6. Line and Channel Waveform in One  
(GSn=0xFFFFh)  
Subperiod (GSn=0xFFFFh)  
9-8. Line and Channel Waveform in One Frame  
9-7. Line and Channel Waveform in One Frame  
(GSn=0x0001h)  
(GSn=0x0001h)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: LP5890  
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
Decouple the VCC power supply voltage by placing a 0.1-μF ceramic capacitor close to VCC pin and GND  
plane. Depending on panel size, several electrolytic capacitors must be placed on the board equally distributed  
to get well regulated LED supply voltage VR/VG/VB. The ripple of the LED supply voltage must be less than 5%  
of their nominal value. Generally, the green and blue LEDs have the similar forward voltage and can be supplied  
by the same power rail.  
Furthermore, the VR > Vf(R) + 0.35 V (10-mA constant current example), the VG = VB > Vf(G/B) + 0.35 V (10-  
mA constant current example), and here Vf(R), Vf(G/B) are representative for the maximum forward voltage of  
red, green/blue LEDs.  
Also in order to simplify the power design, VCC can be connected to VR power rail.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Place the decoupling capacitor near the VCC/VR, VG/VB pins and GND plane.  
Place the current programming resistor RIREF close to IREFpin and GND plane.  
Route the GND thermal pad as widely as possible for large GND currents. Maximum GND current is  
approximately 2 A for two devices (96-CH × 20 mA = 1.92 A).  
The Thermal pad must be connected to GND plane because the pad is used as power ground pin internally.  
There is a large current flow through this pad when all channels turn on. Furthermore, this pad should be  
connected to a heat sink layer by thermal via to reduce device temperature. For more information about  
suggested thermal via pattern and via size, see the PowerPAD™ Thermally Enhanced Package Application  
Report.  
Routing between the LED Anode side and the device OUTXn pin should be as short and straight as possible  
to reduce wire inductance.  
The line switch pins should be located in the middle of the matrix, which should be laid out as symmetrically  
as possible.  
11.2 Layout Example  
In order to simplify the system power rails design, we suggest that VR, VCC use one power rail, and VG, VB use  
another power rail. 11-1 gives an example for power rails routing.  
Connect the GND pin to thermal pad on board with the shortest wire and the thermal pad is connected to GND  
plane with the vias, as many as possible to help the power dissipation.  
32 RGB LEDs  
VR/VCC  
C
C
GND  
GND  
GND  
GND  
C
GND  
C
32 Lines  
VG/VB  
C
C
GND  
GND  
T  
GND  
GND  
C
GND  
C
VR/VCC  
11-1. Power Rails Routing Suggestion  
11-2 gives an example for line routing. Connect the line switch to the center of the line bus, so as to uniform  
the current flowing from the line switch to the left side and right side LEDs in white grayscale. With this  
connection, the unbalance of the parasitic inductor from the routing will be the smallest and the display  
performance will be better, especially in low grayscale condition.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: LP5890  
 
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
11-2. Line Routing Suggestion  
11-3 gives an example for channel routing with the shortest wire. With this connection, the channel to the LED  
path is the shortest, which can reduce the wire inductance, and be a benefit to the performance. However, the  
data transmission sequence should be adjusted to follow the pins routing map. For example, R0 connects to  
column 15 (LED15 ). The first data should be column 15 (LED15) rather than column 0 (LED0).  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
11-3. Channel Routing Suggestion with Shortest Wire  
11-4 gives an example for channel routing with pin number sequence. With this connection, the data  
transmission sequence will be the same with pin number sequence. For example, R0 connects to column 0  
(LED0 ). The first data will be column 0 (LED0). However, with this connection, the inductance for each channel  
may be different, which might bring a slight difference for the worst case.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
11-4. Channel Routing Suggestion with Channel Order Sequence  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: LP5890  
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: LP5890  
 
 
 
 
 
 
LP5890  
ZHCSO29 JULY 2021  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: LP5890  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP5890RRFR  
LP5890ZXLR  
ACTIVE  
ACTIVE  
VQFN  
RRF  
ZXL  
76  
96  
2000 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LP5890  
LP5890  
NFBGA  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Mar-2022  
Addendum-Page 2  
PACKAGE OUTLINE  
NFBGA - 1.08 mm max height  
PLASTIC BALL GRID ARRAY  
ZXL0096A  
A
6.1  
5.9  
B
BALL A1 CORNER  
6.1  
5.9  
1.08 MAX  
C
SEATING PLANE  
0.08 C  
0.25  
0.19  
BALL TYP  
5 TYP  
SYMM  
(0.5) TYP  
(0.5) TYP  
L
K
J
H
G
SYMM  
5
TYP  
F
E
D
C
0.35  
0.25  
96X Ø  
0.15  
0.05  
C A B  
C
B
A
0.5 TYP  
1
2
3
4
5
6
7
8
9
10 11  
0.5 TYP  
4225828/A 03/2020  
NanoFree is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1.08 mm max height  
PLASTIC BALL GRID ARRAY  
ZXL0096A  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
(0.5) TYP  
C
D
E
SYMM  
F
G
H
J
K
L
96X (Ø 0.25)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
EXPOSED  
METAL  
EXPOSED  
METAL  
ALL AROUND  
(Ø 0.25)  
SOLDER MASK  
OPENING  
(Ø 0.25)  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225828/A 03/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1.08 mm max height  
PLASTIC BALL GRID ARRAY  
ZXL0096A  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
(0.5) TYP  
C
D
E
SYMM  
F
G
H
J
(R0.05) TYP  
K
L
96X (0.25)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 15X  
4225828/A 03/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
RRF0076A  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
A
9.1  
8.9  
B
PIN 1 INDEX AREA  
9.1  
8.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.2  
SYMM  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
38  
20  
19  
39  
SYMM  
77  
2X 7.2  
6.3 0.1  
1
57  
72X 0.4  
0.25  
0.15  
76X  
76  
58  
PIN 1 ID  
0.1  
C A B  
0.6  
0.4  
76X  
0.05  
4224965/A 04/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RRF0076A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(6.3)  
SYMM  
SEE SOLDER MASK  
DETAIL  
58  
76  
76X (0.7)  
76X (0.2)  
1
57  
72X (0.4)  
(1.1) TYP  
(R0.05) TYP  
(1.2) TYP  
(0.6) TYP  
SYMM  
77  
(8.7)  
(
0.2) TYP  
VIA  
39  
19  
38  
20  
(0.6)  
TYP  
(1.2)  
TYP  
(1.1)  
TYP  
(8.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224965/A 04/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RRF0076A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
25X ( 1)  
(1.2) TYP  
58  
76  
76X (0.7)  
76X (0.2)  
1
57  
72X (0.4)  
(R0.05) TYP  
(1.2) TYP  
SYMM  
77  
(8.7)  
19  
39  
38  
20  
SYMM  
(8.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 77  
63% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224965/A 04/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY