LP590712QDQNRQ1 [TI]

具有低 IQ 和使能功能的汽车类 250mA、低噪声、高 PSRR、超低压降稳压器 | DQN | 4 | -40 to 125;
LP590712QDQNRQ1
型号: LP590712QDQNRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有低 IQ 和使能功能的汽车类 250mA、低噪声、高 PSRR、超低压降稳压器 | DQN | 4 | -40 to 125

光电二极管 输出元件 稳压器 调节器
文件: 总33页 (文件大小:1461K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP5907-Q1  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
LP5907-Q1 汽车 250mA 超低噪声、低 IQ LDO  
1 特性  
3 说明  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列结果:  
LP5907-Q1 是一款能提供 250mA 输出电流的低噪声  
LDOLP5907-Q1 符合射频和模拟电路要求,可提供  
低噪声、高 PSRR、低静态电流以及低线路或负载瞬  
态响应系数。LP5907-Q1 采用创新的设计技术,无需  
噪声旁路电容便可提供出色的噪声性能,并且支持远距  
离安置输出电容。  
器件温度 1 级:–40°C 125°C 的环境工作温  
度范围  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级 C6  
输入电压范围:2.2V 5.5V  
输出电压范围:1.2V 4.5V  
1µF 陶瓷输入和输出电容搭配使用,性能稳定  
无需噪声旁路电容  
此器件可与 1µF 输入和 1µF 输出陶瓷电容搭配使用  
(无需独立的噪声旁路电容)。  
其固定输出电压介于 1.2V 4.5V 之间(阶跃为  
25mV)。如需特定的电压选项,请联系德州仪器 (TI)  
销售代表。  
支持输出电容远端布置  
热过载保护和短路保护  
输出电流:250mA  
器件信息(1)  
输出电压噪声低:小于 6.5µVRMS  
电源抑制比 (PSRR)1kHz 频率时为 82dB  
输出电压容差:±2%  
器件型号  
LP5907-Q1  
封装  
SOT-23 (5)  
X2SON (4)(2)  
封装尺寸(标称值)  
2.90mm × 1.60mm  
1.00mm x 1.00mm  
几乎没有 IQ(已禁用):< 1µA  
极低 IQ(使能时):12µA  
启动时间:80µs  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
(2) 预览器件。  
低压降:120mV(典型值)  
运行结温范围:–40°C 125°C  
2 应用  
ADAS 摄像机和雷达  
汽车信息娱乐系统  
车载通讯系统  
导航系统  
简化原理图  
INPUT  
IN  
OUT  
OUTPUT  
1 mF  
1 mF  
LP5907-Q1  
ENABLE  
GND  
EN  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSA34  
 
 
 
 
 
 
 
LP5907-Q1  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application .................................................. 14  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Output and Input Capacitors..................................... 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Examples................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 接收文档更新通知 ................................................. 19  
11.2 社区资源................................................................ 19  
11.3 ....................................................................... 19  
11.4 静电放电警告......................................................... 19  
11.5 术语表 ................................................................... 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (May 2018) to Revision D  
Page  
已添加 向文档添加了 DQN (X2SON) 封装(预览版) ........................................................................................................... 1  
Added Layout Example for the DQN Package figure........................................................................................................... 18  
Changes from Revision B (September 2016) to Revision C  
Page  
已添加 向特性 部分中添加了 ESD 分类级别子项目................................................................................................................ 1  
Changed DBV values in Thermal Information table .............................................................................................................. 4  
Deleted footnote 1 from Thermal Information table ............................................................................................................... 4  
Added Overshoot on start-up with EN row to Electrical Characteristics table ...................................................................... 6  
Changed Device Comparison table: changed table title, added new rows and new data, moved to new sub-section ...... 12  
Changes from Revision A (June 2016) to Revision B  
Page  
已更改 标题措辞...................................................................................................................................................................... 1  
已更改 将低输出电压噪声:小于 10µVRMS更改成了低输出电压噪声:小于 6.5µVRMS” ...................................................... 1  
已更改 更改了应用中所列的项目 ......................................................................................................................................... 1  
已更改 更改了说明中第一个句子的措辞 ................................................................................................................................. 1  
Changes from Original (September 2014) to Revision A  
Page  
已添加 特性项目修改:汽车 ................................................................................................................................................... 1  
已添加 TI 设计的顶部导航图标 ............................................................................................................................................... 1  
已更改 线性稳压器更改为“LDO........................................................................................................................................... 1  
Changed storage temperature from Handling Ratings to Abs Max table; replaced Handling Ratings with ESD  
Ratings per new format ......................................................................................................................................................... 4  
2
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LP5907-Q1  
www.ti.com.cn  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
5 Pin Configuration and Functions  
DBV Package  
5-Pin SOT-23  
Top View  
DQN Package (Preview)  
4-Pin X2SON  
Bottom View  
OUT GND  
1
2
3
IN  
GND  
EN  
1
2
OUT  
N/C  
5
4
5
4
3
IN  
EN  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SOT23-5  
X2SON-4  
Enable input. A low voltage (< VIL) on this pin turns the regulator off and  
discharges the output pin to GND through an internal 230-Ω pulldown resistor. A  
high voltage (> VIH) on this pin enables the regulator output. This pin has an  
internal 1-MΩ pulldown resistor to hold the regulator off by default.  
EN  
3
3
I
GND  
IN  
2
1
4
2
4
I
Common ground  
Input voltage supply. Connect a 1-µF capacitor at this input.  
No internal electrical connection.  
N/C  
Regulated output voltage. Connect a minimum 1-µF low-ESR capacitor to this  
pin. Connect this output to the load circuit. An internal 230-Ω (typical) pulldown  
resistor prevents a charge remaining on VOUT when the regulator is in the  
shutdown mode (VEN low).  
OUT  
5
1
O
Copyright © 2014–2018, Texas Instruments Incorporated  
3
LP5907-Q1  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VIN  
Input voltage  
6
(3)  
VOUT  
VEN  
Output voltage  
See  
6
V
Enable input voltage  
Continuous power dissipation(4)  
Junction temperature  
Storage temperature  
V
Internally limited  
W
TJMAX  
Tstg  
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the GND pin.  
(3) Abs Max VOUT is the VIN + 0.3 V or 6 V, whichever is less.  
(4) Internal thermal shutdown circuitry protects the device from permanent damage.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC  
Q100-002(1)  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
V
Corner pins (1,3,4,5)  
Other pin (2)  
±1000  
±1000  
Charged-device model (CDM), per AEC  
Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
5.5  
UNIT  
V
VIN  
Input supply voltage  
Enable input voltage  
Output current  
2.2  
0
VEN  
5.5  
V
IOUT  
0
250  
125  
mA  
°C  
TJ-MAX-OP  
Operating junction temperature(3)  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the GND pin.  
(3) TJ-MAX-OP = [TA(MAX) + (PD(MAX) × RθJA )].  
6.4 Thermal Information  
LP5907-Q1  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
186.9  
DQN (X2SON-4)  
4-PINS  
198.4  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
112.3  
109.3  
52.3  
128.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
27.5  
2.6  
ψJB  
51.8  
128.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2014–2018, Texas Instruments Incorporated  
LP5907-Q1  
www.ti.com.cn  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
6.5 Electrical Characteristics  
VIN = VOUT(NOM) + 1 V, VEN = 1.2 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF (unless otherwise noted)(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
VIN  
Input voltage  
TA = 25°C  
2.2  
–2  
5.5  
2
V
VIN = (VOUT(NOM) + 1 V) to 5.5 V,  
IOUT = 1 mA to 250 mA, VOUT 1.8 V  
Output voltage tolerance  
Line regulation  
%VOUT  
VIN = (VOUT(NOM) + 1 V) to 5.5 V,  
IOUT = 1 mA to 250 mA, VOUT < 1.8 V  
–3  
3
ΔVOUT  
VIN = (VOUT(NOM) + 1 V) to 5.5 V,  
IOUT = 1 mA  
0.02  
%/V  
Load regulation  
IOUT = 1 mA to 250 mA  
0.001  
%/mA  
mA  
ILOAD  
Output load current  
0
250  
25  
VEN = 1.2 V, IOUT = 0 mA  
VEN = 1.2 V, IOUT = 250 mA  
VEN = 0.3 V (Disabled)  
VEN = 1.2 V, IOUT = 0 mA  
IOUT = 100 mA  
12  
250  
0.2  
14  
IQ  
Quiescent current(4)  
425  
1
µA  
IG  
Ground current(5)  
µA  
mV  
mA  
50  
VDO  
ISC  
Dropout voltage(6)  
Short-circuit current limit  
IOUT = 250 mA  
TA = 25°C(7)  
250  
250  
500  
90  
f = 100 Hz, IOUT = 20 mA  
f = 1 kHz, IOUT = 20 mA  
f = 10 kHz, IOUT = 20 mA  
f = 100 kHz, IOUT = 20 mA  
82  
PSRR  
Power-supply rejection ratio(8)  
dB  
65  
60  
IOUT = 1 mA  
IOUT = 250 mA  
10  
eN  
Output noise voltage(8)  
BW = 10 Hz to 100 kHz  
µVRMS  
Ω
6.5  
Output automatic discharge  
pulldown resistance  
RAD  
TSD  
VEN < VIL (output disabled)  
230  
Thermal shutdown  
Thermal hysteresis  
TJ rising  
160  
15  
°C  
TJ falling from shutdown  
LOGIC INPUT THRESHOLDS  
VIN = 2.2 V to 5.5 V,  
VEN falling until the output is disabled  
VIL  
VIH  
Low input threshold  
High input threshold  
0.4  
V
V
VIN = 2.2 V to 5.5 V,  
VEN rising until the output is enabled  
1.2  
VEN = 5.5 V and VIN = 5.5 V  
VEN = 0 V and VIN = 5.5 V  
5.5  
IEN  
Input current at EN pin(9)  
µA  
0.001  
(1) All voltages are with respect to the device GND terminal, unless otherwise stated.  
(2) Minimum and maximum limits are ensured through test, design, or statistical correlation over the junction temperature (TJ) range of  
–40°C to 125°C, unless otherwise stated. Typical values represent the most likely parametric norm at TA = 25°C, and are provided for  
reference purposes only.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX). See Application and  
Implementation.  
(4) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT  
.
(5) Ground current is defined here as the total current flowing to ground as a result of all input voltages applied to the device.  
(6) Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its  
nominal value.  
(7) Short-circuit current (ISC) for the LP5907-Q1 is equivalent to current limit. To minimize thermal effects during testing, ISC is measured  
with VOUT pulled to 100 mV below its nominal voltage.  
(8) This specification is verified by design.  
(9) There is a 1-MΩ resistor between EN and ground on the device.  
Copyright © 2014–2018, Texas Instruments Incorporated  
5
 
LP5907-Q1  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
VIN = VOUT(NOM) + 1 V, VEN = 1.2 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF (unless otherwise noted)(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TRANSIENT CHARACTERISTICS  
VIN = (VOUT(NOM) + 1 V) to  
(VOUT(NOM) + 1.6 V) in 30 µs  
–1  
Line transient(8)  
VIN = (VOUT(NOM) + 1.6 V) to  
(VOUT(NOM) + 1.6 V) in 30 µs  
1
mV  
IOUT = 1 mA to 250 mA in 10 µs  
–40  
Load transient(8)  
ΔVOUT  
IOUT = 250 mA to 1 mA in 10 µs  
40  
Overshoot on start-up(8)  
Stated as a percentage of VOUT(NOM)  
Stated as a percentage of VOUT(NOM), VIN  
5%  
=
VOUT + 1 V to 5.5 V, 0.7 µF < COUT < 10 µF, 0  
mA < IOUT < 250 mA, EN rising until the output  
is enabled  
Overshoot on start-up with EN(8)  
1%  
From VEN > VIH to VOUT = 95% of VOUT(NOM)  
TA = 25°C  
,
tON  
Turnon time  
80  
150  
µs  
6.6 Output and Input Capacitors  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP  
MAX  
UNIT  
µF  
CIN  
Input capacitance(2)  
Output capacitance(2)  
Output/input capacitance(2)  
0.7  
0.7  
5
1
1
Capacitance for stability  
COUT  
ESR  
10  
500  
mΩ  
(1) The minimum capacitance should be greater than 0.5 μF over the full range of operating conditions. The capacitor tolerance should be  
30% or better over the full temperature range. The full range of operating conditions for the capacitor in the application should be  
considered during device selection to ensure this minimum capacitance specification is met. X7R capacitors are recommended however  
capacitor types X5R, Y5V and Z5U may be used with consideration of the application and conditions.  
(2) This specification is verified by design.  
6
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LP5907-Q1  
www.ti.com.cn  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
6.7 Typical Characteristics  
VIN = 3.7 V, VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TA = 25°C (unless otherwise noted)  
1
0.9  
0.8  
0.7  
0.6  
0.5  
16  
14  
12  
10  
8
6
4
2
VIH Rising  
VIL Falling  
0
2.3 2.8 3.3 3.8 4.3 4.8 5.3 5.8  
(V)  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V
VIN (V)  
IN  
D001  
SVA-30180569  
Figure 2. VEN Thresholds vs VIN  
Figure 1. Quiescent Current vs Input Voltage  
1.4  
1.2  
1
5
4.5  
4
3.5  
3
0.8  
0.6  
0.4  
0.2  
0
2.5  
2
1.5  
1
RLOAD = 1.2 kW  
RLOAD = 4.8 W  
RLOAD = 4.5 kW  
RLOAD = 18 W  
0.5  
0
0
0.5  
1
1.5  
2
2.5  
0
1
2
3
4
5
6
VIN (V)  
VIN (V)  
D002  
D003  
VOUT = 1.2 V, VEN = VIN  
VOUT = 4.5 V, VEN = VIN  
Figure 4. VOUT vs VIN  
Figure 3. VOUT vs VIN  
350  
300  
250  
200  
150  
100  
50  
2.900  
2.875  
2.850  
2.825  
2.800  
2.775  
2.750  
2.725  
2.700  
V
= 3.6V  
IN  
VIN = 3.0V  
VIN = 3.8V  
VIN = 4.2V  
VIN = 5.5V  
-40°C  
90°C  
25°C  
0
0
50 100 150 200 250 300  
(mA)  
0
50  
100  
LOAD (mA)  
150  
200  
250  
I
OUT  
SVA-30180567  
SVA-30180571  
Figure 6. Load Regulation  
Figure 5. Ground Current vs Output Current  
Copyright © 2014–2018, Texas Instruments Incorporated  
7
LP5907-Q1  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
VIN = 3.7 V, VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TA = 25°C (unless otherwise noted)  
2.900  
2V/DIV  
2V/DIV  
Load = 10 mA  
2.875  
2.850  
2.825  
2.800  
2.775  
2.750  
2.725  
2.700  
V
OUT  
V
V
IN = EN  
-40°C  
90°C  
25°C  
1A/DIV  
I
IN  
2 ms/DIV  
3.0  
3.5  
4.0  
V
4.5  
(V)  
5.0  
5.5  
IN  
SVA-30180568  
SVA-30180509  
Figure 7. Line Regulation  
Figure 8. Inrush Current  
V
V
10 mV/  
DIV  
10 mV/  
DIV  
OUT  
OUT  
(AC Coupled)  
(AC Coupled)  
V
V
1V/DIV  
IN  
IN  
1V/DIV  
10 s/DIV  
10 s/DIV  
SVA-30180511  
SVA-30180510  
VIN = 3.2 V 4.2 V, load = 250 mA  
VIN = 3.2 V 4.2 V, load = 1 mA  
Figure 10. Line Transient  
Figure 9. Line Transient  
V
OUT  
V
OUT  
100 mV/DIV  
100 mV/DIV  
LOAD  
200 mA/DIV  
SVA-30180513  
200 mA/DIV  
SVA-30180512  
LOAD  
100 s/DIV  
100 s/DIV  
Load = 0 mA 250 mA, 90°C  
Load = 0 mA 250 mA, –40°C  
Figure 12. Load Transient  
Figure 11. Load Transient  
8
Copyright © 2014–2018, Texas Instruments Incorporated  
LP5907-Q1  
www.ti.com.cn  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
Typical Characteristics (continued)  
VIN = 3.7 V, VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TA = 25°C (unless otherwise noted)  
1V/DIV  
100 mV/DIV  
V
OUT  
V
OUT  
1V/DIV  
LOAD  
200 mA/DIV  
SVA-30180514  
EN  
100 s/DIV  
20 s/DIV  
SVA-30180515  
0 mA  
Load = 0 mA 250 mA, 25°C  
Figure 14. Start-Up  
Figure 13. Load Transient  
1V/DIV  
V
OUT  
1V/DIV  
EN  
20 s/DIV  
SVA-30180516  
250 mA  
Figure 15. Start-Up  
Figure 16. Noise Density Test  
140  
120  
100  
80  
0
250 mA  
200 mA  
150 mA  
100 mA  
50 mA  
-20  
-40  
20 mA  
-60  
60  
40  
-80  
Dropout Voltage  
20  
-100  
0
0
50  
100  
150  
200  
250  
-120  
LOAD CURRENT (mA)  
0.1  
1
10  
100  
SVA-30180573  
FREQUENCY (kHz)  
D004  
Figure 17. Dropout Voltage vs Load Current  
Figure 18. PSRR Loads Averaged 100 Hz To 100 KHz  
Copyright © 2014–2018, Texas Instruments Incorporated  
9
LP5907-Q1  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
VIN = 3.7 V, VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TA = 25°C (unless otherwise noted)  
0
-20  
-40  
-60  
250 mA  
200 mA  
150 mA  
-80  
100 mA  
50 mA  
20 mA  
-100  
-120  
0.01  
0.1  
1
10  
100  
1000  
10000  
FREQUENCY (kHz)  
D005  
Figure 19. PSRR Loads Averaged 10 Hz To 10 MHz  
10  
Copyright © 2014–2018, Texas Instruments Incorporated  
LP5907-Q1  
www.ti.com.cn  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
7 Detailed Description  
7.1 Overview  
Designed to meet the needs of sensitive RF and analog circuits, the LP5907-Q1 provides low noise, high PSRR,  
low quiescent current, as well as low line and load transient response figures. Using new innovative design  
techniques, the LP5907-Q1 offers class leading noise performance without the need for a separate noise filter  
capacitor.  
The LP5907-Q1 is designed to perform with a single 1-µF input capacitor and a single 1-µF ceramic output  
capacitor. With a reasonable PCB layout, the single 1-µF ceramic output capacitor can be placed up to 10 cm  
away from the LP5907-Q1 package.  
7.2 Functional Block Diagram  
OUT  
IN  
POR  
EN  
EN  
+
R
F
C
F
+
V
1.20V  
BG  
R
AD  
EN  
EN  
+
EN  
1 M  
VIH  
GND  
Copyright © 2014–2018, Texas Instruments Incorporated  
11  
LP5907-Q1  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 LP5907-Q1 Voltage Options  
Table 1 lists the available voltage options for the LP5907-Q1 SOT-23 package.  
Table 1. Voltage Options  
SOT-23 PACKAGE ORDER NUMBER  
LP5907QMFX-1.2Q1  
VOLTAGE OPTION (V)  
1.2  
1.3  
1.5  
1.8  
2.5  
2.8  
2.85  
2.9  
3.0  
3.3  
3.8  
4.5  
LP5907QMFX-1.8Q1  
LP5907QMFX-2.5Q1  
LP5907QMFX-2.8Q1  
LP5907QMFX-3.0Q1  
LP5907QMFX-3.3Q1  
LP5907QMFX-3.8Q1  
LP5907QMFX-4.5Q1  
7.3.2 Enable (EN)  
The LP5907-Q1 EN pin is internally held low by a 1-MΩ resistor to GND. The EN pin voltage must be higher than  
the VIH threshold to ensure that the device is fully enabled under all operating conditions. The EN pin voltage  
must be lower than the VIL threshold to ensure that the device is fully disabled and the automatic output  
discharge is activated.  
7.3.3 Low Output Noise  
Any internal noise at the LP5907-Q1 reference voltage is reduced by a first order low-pass RC filter before it is  
passed to the output buffer stage. The low-pass RC filter has a –3 dB cut-off frequency of approximately 0.1 Hz.  
7.3.4 Output Automatic Discharge  
The LP5907-Q1 output employs an internal 230-Ω (typical) pulldown resistance to discharge the output when the  
EN pin is low, and the device is disabled.  
7.3.5 Remote Output Capacitor Placement  
The LP5907-Q1 requires at least a 1-µF capacitor at the OUT pin, but there are no strict requirements about the  
location of the capacitor in regards the OUT pin. In practical designs, the output capacitor may be located up to  
10 cm away from the LDO.  
7.3.6 Thermal Overload Protection (TSD  
)
Thermal shutdown disables the output when the junction temperature rises to approximately 160°C which allows  
the device to cool. When the junction temperature cools to approximately 145°C, the output circuitry enables.  
Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may  
cycle on and off. This thermal cycling limits the dissipation of the regulator and protects it from damage as a  
result of overheating.  
The thermal shutdown circuitry of the LP5907-Q1 has been designed to protect against temporary thermal  
overload conditions. The thermal shutdown circuitry was not intended to replace proper heat-sinking.  
Continuously running the LP5907-Q1 device into thermal shutdown may degrade device reliability.  
12  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LP5907-Q1  
www.ti.com.cn  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
7.4 Device Functional Modes  
7.4.1 Enable (EN)  
The LP5907-Q1 Enable (EN) pin is internally held low by a 1-MΩ resistor to GND. The EN pin voltage must be  
higher than the VIH threshold to ensure that the device is fully enabled under all operating conditions.  
When the EN pin is pulled low, and the output is disabled, the output automatic discharge circuitry is activated.  
Any charge on the OUT pin is discharged to GND through the internal 230-Ω (typical) pull-down resistance.  
7.4.2 Minimum Operating Input Voltage (VIN)  
The LP5907-Q1 does not include any dedicated undervoltage lockout circuitry. The LP5907-Q1 internal circuitry  
is not fully functional until VIN is at least 2.2 V. The output voltage is not regulated until VIN has reached at least  
the greater of 2.2 V or (VOUT + VDO).  
Copyright © 2014–2018, Texas Instruments Incorporated  
13  
LP5907-Q1  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
Figure 20 shows the typical application circuit for the LP5907-Q1. Input and output capacitances may need to be  
increased above the 1 µF minimum for some applications.  
8.2 Typical Application  
INPUT  
IN  
OUT  
OUTPUT  
1 mF  
1 mF  
LP5907-Q1  
ENABLE  
GND  
EN  
GND  
Figure 20. LP5907-Q1 Typical Application  
8.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
2.2 to 5.5 V  
1.8 V  
Input voltage range  
Output voltage  
Output current  
200 mA  
Output capacitor range  
Input/output capacitor ESR range  
0.7 to 10 µF  
5 to 500 mΩ  
8.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Available input voltage range  
Output voltage needed  
Output current needed  
Input and Output capacitors  
8.2.2.1 Power Dissipation and Device Operation  
The permissible power dissipation for any package is a measure of the capability of the device to pass heat from  
the power source, the junctions of the device, to the ultimate heat sink, the ambient environment. Thus, the  
power dissipation is dependent on the ambient temperature and the thermal resistance across the various  
interfaces between the die junction and ambient air.  
14  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LP5907-Q1  
www.ti.com.cn  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
The maximum allowable power dissipation for the device in a given package can be calculated using Equation 1:  
PD-MAX = ((TJ-MAX – TA) / RθJA  
)
(1)  
The actual power being dissipated in the device can be represented by Equation 2:  
PD = (VIN - VOUT) × IOUT  
(2)  
Equation 1 and Equation 2 establish the relationship between the maximum power dissipation allowed due to  
thermal consideration, the voltage drop across the device, and the continuous current capability of the device.  
These two equations should be used to determine the optimum operating conditions for the device in the  
application.  
In applications where lower power dissipation (PD) and/or excellent package thermal resistance (RθJA) is present,  
the maximum ambient temperature (TA-MAX) may be increased.  
In applications where high power dissipation and/or poor package thermal resistance is present, the maximum  
ambient temperature (TA-MAX) may have to be derated. TA-MAX is dependent on the maximum operating junction  
temperature (TJ-MAX-OP = 125°C), the maximum allowable power dissipation in the device package in the  
application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (RθJA),  
as given by Equation 3:  
TA-MAX = (TJ-MAX-OP – (RθJA × PD-MAX))  
(3)  
Alternately, if TA-MAX can not be derated, the PD value must be reduced. This can be accomplished by reducing  
VIN in the VIN – VOUT term as long as the minimum VIN is met, or by reducing the IOUT term, or by some  
combination of the two.  
8.2.2.2 External Capacitors  
Like most LDOs, the LP5907-Q1 requires external capacitors for regulator stability. The device is specifically  
designed for portable applications requiring minimum board space and smallest components. These capacitors  
must be correctly selected for good performance.  
8.2.2.3 Input Capacitor  
An input capacitor is required for stability. The input capacitor should be at least equal to, or greater than, the  
output capacitor for good load transient performance. At least a 1-µF capacitor has to be connected between the  
LP5907-Q1 input pin and ground for stable operation over full load current range. Basically, it is acceptable to  
have more output capacitance than input, as long as the input is at least 1 µF.  
The input capacitor must be located a distance of not more than 1 cm from the IN pin and returned to a clean  
analog ground. Any good quality ceramic, tantalum, or film capacitor may be used at the input.  
Important: To ensure stable operation it is essential that good PCB practices are employed to minimize ground  
impedance and keep input inductance low. If these conditions cannot be met, or if long leads are to be used to  
connect the battery or other power source to the LP5907-Q1, TI recommends increasing the input capacitor to at  
least 10 µF. Also, tantalum capacitors can suffer catastrophic failures due to surge current when connected to a  
low-impedance source of power (like a battery or a very large capacitor). If a tantalum capacitor is used at the  
input, it must be verified by the manufacturer to have a surge current rating sufficient for the application. The  
initial tolerance, applied voltage de-rating, and temperature coefficient must all be considered when selecting the  
input capacitor to ensure the actual capacitance is never less than 0.7 µF over the entire operating range.  
8.2.2.4 Output Capacitor  
The LP5907-Q1 is designed specifically to work with a very small ceramic output capacitor, typically 1 µF. A  
ceramic capacitor (dielectric types X5R or X7R) in the 1-µF to 10-µF range, and with equivalent series resistance  
(ESR) between 5 mΩ to 500 mΩ, is suitable in the LP5907-Q1 application circuit. For this device connect the  
output capacitor between the OUT pin and a good connection back to the GND pin.  
It may also be possible to use tantalum or film capacitors at the device output, VOUT, but these are not as  
attractive for reasons of size and cost (see Capacitor Characteristics).  
The output capacitor must meet the requirement for the minimum value of capacitance and have an ESR value  
that is within the range 5 mΩ to 500 mΩ for stability. Like the input capacitor, the initial tolerance, applied voltage  
de-rating, and temperature coefficient must all be considered when selecting the input capacitor to ensure the  
actual capacitance is never less than 0.7 µF over the entire operating range.  
Copyright © 2014–2018, Texas Instruments Incorporated  
15  
 
 
 
LP5907-Q1  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
8.2.2.5 Capacitor Characteristics  
The LP5907-Q1 is designed to work with ceramic capacitors on the input and output to take advantage of the  
benefits they offer. For capacitance values in the range of 1 µF to 10 µF, ceramic capacitors are the smallest,  
least expensive, and have the lowest ESR values, thus making them best for eliminating high frequency noise.  
The ESR of a typical 1-µF ceramic capacitor is in the range of 20 mΩ to 40 mΩ, which easily meets the ESR  
requirement for stability for the LP5907-Q1.  
A better choice for temperature coefficient in a ceramic capacitor is X7R. This type of capacitor is the most stable  
and holds the capacitance within ±15% over the temperature range. Tantalum capacitors are less desirable than  
ceramic for use as output capacitors because they are more expensive when comparing equivalent capacitance  
and voltage ratings in the 1 µF to 10 µF range.  
Another important consideration is that tantalum capacitors have higher ESR values than equivalent size  
ceramics. This means that while it may be possible to find a tantalum capacitor with an ESR value within the  
stable range, it would have to be larger in capacitance (which means bigger and more costly) than a ceramic  
capacitor with the same ESR value. The ESR of a typical tantalum increases about 2:1 as the temperature goes  
from 25°C down to –40°C, so some guard band must be allowed.  
8.2.2.6 Remote Capacitor Operation  
The LP5907-Q1 requires at least a 1-µF capacitor at the OUT pin, but there are no strict requirements about the  
location of the capacitor in regards to the pin. In practical designs the output capacitor may be located up to 10  
cm away from the LDO. This means that there is no need to have a special capacitor close to the output pin if  
there is already respective capacitors in the system (like a capacitor at the input of supplied part). The remote  
capacitor feature helps user to minimize the number of capacitors in the system.  
As a good design practice, keep the wiring parasitic inductance at a minimum, which means to use as wide as  
possible traces from the LDO output to the capacitors, keeping the LDO output trace layer as close as possible  
to ground layer and avoiding vias on the path. If there is a need to use vias, implement as many as possible vias  
between the connection layers. The recommendation is to keep parasitic wiring inductance less than 35 nH. For  
the applications with fast load transients, it is recommended to use an input capacitor equal to or larger to the  
sum of the capacitance at the output node for the best load transient performance.  
8.2.2.7 No-Load Stability  
The LP5907-Q1 remains stable, and in regulation, with no external load.  
8.2.2.8 Enable Control  
The LP5907-Q1 may be switched ON or OFF by a logic input at the EN pin. A voltage on this pin greater than  
VIH turns the device on, while a voltage less than VIL turns the device off.  
When the EN pin is low, the regulator output is off and the device typically consumes less than 1 µA.  
Additionally, an output pulldown circuit is activated which ensures that any charge stored on COUT is discharged  
to ground.  
If the application does not require the use of the shutdown feature, the EN pin can be tied directly to the IN pin to  
keep the regulator output permanently on.  
An internal 1-MΩ pulldown resistor ties the EN input to ground, ensuring that the device remains off if the EN pin  
is left open circuit. To ensure proper operation, the signal source used to drive the EN pin must be able to swing  
above and below the specified turnon or turnoff voltage thresholds listed in the Electrical Characteristics under  
VIL and VIH.  
16  
Copyright © 2014–2018, Texas Instruments Incorporated  
LP5907-Q1  
www.ti.com.cn  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
8.2.3 Application Curves  
1V/DIV  
100 mV/DIV  
200 mA/DIV  
V
OUT  
V
OUT  
1V/DIV  
LOAD  
EN  
100 s/DIV  
20 s/DIV  
SVA-30180514  
SVA-30180515  
Figure 22. Load Transient Response  
Figure 21. Start-Up  
9 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 2.2 V to 5.5 V. The input supply must  
be well regulated and free of spurious noise. To ensure that the LP5907-Q1 output voltage is well regulated and  
dynamic performance is optimum, the input supply must be at least VOUT + 1 V. A minimum capacitor value of  
1 µF is required to be within 1 cm of the IN pin.  
Copyright © 2014–2018, Texas Instruments Incorporated  
17  
LP5907-Q1  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The dynamic performance of the LP5907-Q1 is dependant on the layout of the PCB. PCB layout practices that  
are adequate for typical LDOs may degrade the PSRR, noise, or transient performance of the LP5907-Q1.  
Best performance is achieved by placing CIN and COUT on the same side of the PCB as the LP5907-Q1, and as  
close as is practical to the package. The ground connections for CIN and COUT must be back to the LP5907-Q1  
ground pin using as wide and short copper traces as are practical.  
Avoid connections using long trace lengths, narrow trace widths, and/or connections through vias. These add  
parasitic inductances and resistance that results in inferior performance especially during transient conditions  
10.2 Layout Examples  
V
V
OUT  
IN  
C
IN  
OUT  
5
C
1
2
3
OUT  
IN  
GND  
GND  
GND  
EN  
Enable  
4
N/C  
Figure 23. LP5907MF-x.x (SOT-23) Typical Layout  
OUT  
IN  
1
4
COUT  
CIN  
EN  
3
2
GND PLANE  
Represents via used for application  
specific connections  
Figure 24. Layout Example for the DQN Package  
18  
版权 © 2014–2018, Texas Instruments Incorporated  
LP5907-Q1  
www.ti.com.cn  
ZHCSD11D SEPTEMBER 2014REVISED DECEMBER 2018  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2018, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP590712QDQNRQ1  
LP590713QDQNRQ1  
LP590715QDQNRQ1  
LP590718QDQNRQ1  
LP590722QDQNRQ1  
LP590725QDQNRQ1  
LP5907285QDQNRQ1  
LP590728QDQNRQ1  
LP590729QDQNRQ1  
LP590730QDQNRQ1  
LP590733QDQNRQ1  
LP590738QDQNRQ1  
LP590745QDQNRQ1  
LP5907QMFX-1.2Q1  
LP5907QMFX-1.8Q1  
LP5907QMFX-2.5Q1  
LP5907QMFX-2.8Q1  
LP5907QMFX-3.0Q1  
LP5907QMFX-3.3Q1  
LP5907QMFX-3.8Q1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
D1  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
SN  
D2  
D3  
D4  
FV  
D5  
D7  
D6  
D8  
D9  
DA  
DB  
DC  
RAFQ  
SN  
RAGQ  
RAJQ  
RAKQ  
RALQ  
RAHQ  
RAMQ  
SN  
SN  
SN  
SN  
SN  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP5907QMFX-4.5Q1  
ACTIVE  
SOT-23  
DBV  
5
3000 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
-40 to 125  
RAIQ  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LP5907-Q1 :  
Catalog : LP5907  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP590712QDQNRQ1  
LP590713QDQNRQ1  
LP590715QDQNRQ1  
LP590718QDQNRQ1  
LP590722QDQNRQ1  
LP590725QDQNRQ1  
LP5907285QDQNRQ1  
LP590728QDQNRQ1  
LP590729QDQNRQ1  
LP590730QDQNRQ1  
LP590733QDQNRQ1  
LP590738QDQNRQ1  
LP590745QDQNRQ1  
LP5907QMFX-1.2Q1  
LP5907QMFX-1.8Q1  
LP5907QMFX-2.5Q1  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
SOT-23  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DBV  
DBV  
DBV  
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
3.2  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
3.2  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q3  
Q3  
Q3  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP5907QMFX-2.8Q1  
LP5907QMFX-3.0Q1  
LP5907QMFX-3.3Q1  
LP5907QMFX-3.8Q1  
LP5907QMFX-4.5Q1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP590712QDQNRQ1  
LP590713QDQNRQ1  
LP590715QDQNRQ1  
LP590718QDQNRQ1  
LP590722QDQNRQ1  
LP590725QDQNRQ1  
LP5907285QDQNRQ1  
LP590728QDQNRQ1  
LP590729QDQNRQ1  
LP590730QDQNRQ1  
LP590733QDQNRQ1  
LP590738QDQNRQ1  
LP590745QDQNRQ1  
LP5907QMFX-1.2Q1  
LP5907QMFX-1.8Q1  
LP5907QMFX-2.5Q1  
LP5907QMFX-2.8Q1  
LP5907QMFX-3.0Q1  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DBV  
DBV  
DBV  
DBV  
DBV  
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
208.0  
208.0  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP5907QMFX-3.3Q1  
LP5907QMFX-3.8Q1  
LP5907QMFX-4.5Q1  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
5
5
5
3000  
3000  
3000  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
Pack Materials-Page 4  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
1
1.05  
0.95  
PIN 1  
INDEX AREA  
C
0.4 MAX  
SEATING PLANE  
0.08  
NOTE 6  
+0.12  
-0.1  
0.05  
0.00  
0.48  
(0.05) TYP  
NOTE 6  
2
1
3
EXPOSED  
THERMAL PAD  
5
2X 0.65  
(0.07) TYP  
NOTE 5  
4
0.28  
PIN 1 ID  
(OPTIONAL)  
NOTE 4  
4X  
0.15  
(0.11)  
0.3  
0.2  
0.1  
C A B  
0.05  
C
0.30  
0.15  
3X  
4215302/E 12/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
4. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
5. Shape of exposed side leads may differ.  
6. Number and location of exposed tie bars may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.86)  
SYMM  
SEE DETAIL  
4X  
4X (0.36)  
(0.03)  
4
4X (0.21)  
1
5
SYMM  
(0.65)  
4X (0.18)  
2
3
(
0.48)  
(0.22) TYP  
EXPOSED METAL  
CLEARANCE  
LAND PATTERN EXAMPLE  
SCALE: 40X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4215302/E 12/2016  
NOTES: (continued)  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
8. If any vias are implemented, it is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
SYMM  
4X (0.4)  
4X (0.03)  
4
1
4X (0.21)  
5
SYMM  
(0.65)  
SOLDER MASK  
EDGE  
4X (0.22)  
2
3
(
0.45)  
4X (0.235)  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1mm THICK STENCIL  
EXPOSED PAD  
88% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 60X  
4215302/E 12/2016  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY