LP5912-0.9DRVT [TI]

具有反向电流保护功能的 500mA、低噪声、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125;
LP5912-0.9DRVT
型号: LP5912-0.9DRVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有反向电流保护功能的 500mA、低噪声、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125

光电二极管 输出元件 稳压器 调节器
文件: 总36页 (文件大小:2841K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
LP5912 500mA 低噪声、低 IQ LDO  
1 特性  
3 说明  
1
输入电压范围:1.6V 6.5V  
LP5912 是一款能提供高达 500mA 输出电流的低噪声  
LDOLP5912 器件专为满足射频 (RF) 和模拟电路的  
要求而设计,具备低噪声、高 PSRR、低静态电流以  
及低线路或负载瞬态响应等特性。LP5912 无需噪声旁  
路电容便可提供出色的噪声性能,并且支持远距离安置  
输出电容。  
输出电压范围:0.8V 5.5V  
输出电流最高达 500 mA  
低输出电压噪声:12µVRMS 典型值  
1kHz 时的电源抑制比 (PSRR)75dB(典型值)  
输出电压容差 (VOUT 3.3V)±2%  
IQ(使能时,无负载):30µA(典型值)  
此器件适合与 1µF 输入和 1µF 输出陶瓷电容搭配使用  
(无需独立的噪声旁路电容)。  
低压降 (VOUT 3.3V)500mA 负载时典型值为  
95mV  
其固定输出电压介于 0.8V 5.5V 之间(以 25mV 为  
单位增量)。如需特定的电压选项,请联系德州仪器  
(TI) 销售代表。  
1µF 陶瓷输入和输出电容搭配使用,性能稳定  
热过载保护和短路保护  
反向电流保护  
无需噪声旁路电容  
器件信息(1)  
自动输出放电实现快速关断  
电源正常状态输出具有 140µs 典型延迟  
内部软启动限制浪涌电流  
器件型号  
LP5912  
封装  
WSON (6)  
封装尺寸(标称值)  
2.00mm x 2.00mm  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录  
(POA)。  
–40°C +125°C 的运行结温范围  
空白  
空白  
空白  
空白  
空白  
2 应用  
摄像机模块  
传感器  
HiFi 音频无线电收发器  
锁相环 (PLL)/合成器,定时  
中等电流,噪声敏感 应用  
空格  
空格  
简化电路原理图  
VIN  
VOUT  
IN  
OUT  
NC  
CIN  
LP5912  
COUT  
GND  
RPG  
VEN  
VPG  
EN  
PG  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSA77  
 
 
 
 
 
 
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 17  
8.4 Device Functional Modes........................................ 19  
Applications and Implementation ...................... 20  
9.1 Application Information............................................ 20  
9.2 Typical Application .................................................. 20  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Voltage Options ..................................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions ...................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Output and Input Capacitors..................................... 7  
7.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 17  
8.1 Overview ................................................................. 17  
8.2 Functional Block Diagram ....................................... 17  
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 相关文档ꢀ ........................................................... 25  
12.2 接收文档更新通知 ................................................. 25  
12.3 社区资源................................................................ 25  
12.4 ....................................................................... 25  
12.5 静电放电警告......................................................... 25  
12.6 Glossary................................................................ 25  
13 机械、封装和可订购信息....................................... 25  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (September 2016) to Revision D  
Page  
已添加 封装图 ........................................................................................................................................................................ 1  
Changes from Revision B (June 2016) to Revision C  
Page  
已更改 数据表标题的措辞 ...................................................................................................................................................... 1  
已更改 的第一句的措辞说明.................................................................................................................................................... 1  
Changes from Revision A (April 2016) to Revision B  
Page  
已更改 "1 页的线性稳压器改为“LDO” .............................................................................................................................. 1  
2
Copyright © 2015–2016, Texas Instruments Incorporated  
 
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
5 Voltage Options  
This device is capable of providing fixed output voltages from 0.8 V to 5.5 V in 25-mV steps. For all available  
package and voltage options, see the POA at the end of this datasheet. Contact Texas Instruments Sales for  
specific voltage option needs.  
6 Pin Configuration and Functions  
DRV Package  
6-Pin WSON With Thermal Pad  
Top View  
1
2
3
6
5
4
IN  
OUT  
NC  
GND  
EN  
PG  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NUMBER  
NAME  
OUT  
NC  
1
2
3
O
O
Regulated output voltage  
No internal connection. Leave open, or connect to ground.  
Power-good indicator. Requires external pullup.  
PG  
Enable input. Logic high = device is ON, logic low = device is OFF, with internal 3-MΩ  
pulldown.  
4
EN  
I
5
6
GND  
IN  
G
I
Ground  
Unregulated input voltage  
Connect to copper area under the package to improve thermal performance. The use of  
thermal vias to transfer heat to inner layers of the PCB is recommended. Connect the  
thermal pad to ground, or leave floating. Do not connect the thermal pad to any potential  
other than ground.  
Exposed  
thermal pad  
Copyright © 2015–2016, Texas Instruments Incorporated  
3
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
-0.3  
–0.3  
MAX  
UNIT  
V
VIN  
Input voltage  
7
7
VOUT  
VEN  
VPG  
TJ  
Output voltage  
V
Enable input voltage  
Power Good (PG) pin OFF voltage  
Junction temperature  
Continuous power dissipation(3)  
Storage temperature  
7
V
7
V
150  
°C  
W
°C  
PD  
Internally Limited  
–65  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the GND pin.  
(3) Internal thermal shutdown circuitry protects the device from permanent damage.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process..  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
1.6  
0.8  
0
MAX  
6.5  
UNIT  
VIN  
Input supply voltage  
Output voltage  
VOUT  
VEN  
5.5  
V
Enable input voltage  
PG pin OFF voltage  
Output current  
VIN  
VPG  
0
6.5  
IOUT  
0
500  
125  
mA  
°C  
TJ-MAX-OP  
Operating junction temperature(2)  
–40  
(1) All voltages are with respect to the GND pin.  
(2) TJ-MAX-OP = (TA(MAX) + (PD(MAX) × RθJA )).  
7.4 Thermal Information  
LP5912  
DRV (WSON)  
6 PINS  
71.2(3)  
93.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance, High-K(2)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
40.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.5  
ψJB  
41.1  
RJC(bot)  
11.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) Thermal resistance value RθJA is based on the EIA/JEDEC High-K printed circuit board defined by: JESD51-7 - High Effective Thermal  
Conductivity Test Board for Leaded Surface Mount Packages.  
(3) The PCB for the WSON (DRV) package RθJA includes two (2) thermal vias under the exposed thermal pad per EIA/JEDEC JESD51-5.  
4
Copyright © 2015–2016, Texas Instruments Incorporated  
 
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
7.5 Electrical Characteristics  
VIN = VOUT(NOM) + 0.5 V or 1.6 V, whichever is greater; VEN = 1.3 V, CIN = 1 µF, COUT = 1 µF, IOUT = 1 mA (unless otherwise  
stated).(1)(2)(3)  
PARAMETER  
OUTPUT VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
For VOUT(NOM) 3.3 V:  
VOUT(NOM) + 0.5 V VIN 6.5 V,  
–2%  
2%  
IOUT = 1 mA to 500 mA  
For 1.1 V VOUT(NOM) < 3.3 V:  
VOUT(NOM) + 0.5 V VIN 6.5 V,  
IOUT = 1 mA to 500 mA  
Output voltage tolerance  
–3%  
3%  
For VOUT(NOM) < 1.1 V:  
1.6 V VIN 6.5 V,  
ΔVOUT  
IOUT = 1 mA to 500 mA  
For VOUT(NOM) 1.1V:  
VOUT(NOM) + 0.5 V VIN 6.5 V  
Line regulation  
Load regulation  
0.8  
%/V  
For VOUT(NOM) < 1.1V :  
1.6 V VIN 6.5 V  
IOUT = 1 mA to 500 mA  
0.0022  
%/mA  
CURRENT LEVELS  
ISC Short-circuit current limit  
IRO  
TJ = 25°C, see(4)  
Reverse leakage current(5) VEN = VIN = 0 V, VOUT = 5.5 V  
700  
900  
10  
1100  
150  
55  
mA  
µA  
VEN = 1.3 V, IOUT = 0 mA  
Quiescent current(6)  
30  
IQ  
µA  
VEN = 1.3 V, IOUT = 500 mA  
400  
600  
VEN = 0 V  
0.2  
1.5  
5
Quiescent current,  
–40°C TJ 85°C  
IQ(SD)  
µA  
µA  
shutdown mode(6)  
VEN = 0 V  
0.2  
35  
IG  
VDO DROPOUT VOLTAGE  
Ground current(7)  
VEN = 1.3 V, IOUT = 0 mA  
IOUT = 500 mA, 1.6 V VOUT(NOM) < 3.3 V  
IOUT = 500 mA, 3.3 V VOUT(NOM) 5.5 V  
170  
95  
250  
180  
mV  
mV  
VDO  
Dropout voltage(8)  
(1) All voltages are with respect to the device GND pin, unless otherwise stated.  
(2) Minimum and maximum limits are ensured through test, design, or statistical correlation over the junction temperature (TJ) range of  
–40°C to +125°C, unless otherwise stated. Typical values represent the most likely parametric norm at TA = 25°C, and are provided for  
reference purposes only.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).  
(4) Short-circuit current (ISC) is equivalent to current limit. To minimize thermal effects during testing, ISC is measured with VOUT pulled to  
100 mV below its nominal voltage.  
(5) Reverse current (IRO) is measured at the IN pin.  
(6) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT  
.
(7) Ground current is defined here as the total current flowing to ground as a result of all input voltages applied to the device.  
(8) Dropout voltage (VDO) is the voltage difference between the input and the output at which the output voltage drops to 150 mV below its  
nominal value when VIN = VOUT + 0.5 V. Dropout voltage is not a valid condition for output voltages less than 1.6 V as compliance with  
the minimum operating voltage requirement cannot be assured.  
Copyright © 2015–2016, Texas Instruments Incorporated  
5
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
VIN = VOUT(NOM) + 0.5 V or 1.6 V, whichever is greater; VEN = 1.3 V, CIN = 1 µF, COUT = 1 µF, IOUT = 1 mA (unless otherwise  
stated).(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN to VOUT RIPPLE REJECTION  
ƒ = 100 Hz, VOUT 1.1 V, IOUT = 20 mA  
ƒ = 1 kHz, VOUT 1.1 V, IOUT = 20 mA  
80  
75  
65  
40  
65  
65  
65  
40  
ƒ = 10 kHz, VOUT 1.1 V, IOUT = 20 mA  
ƒ = 100 kHz, VOUT 1.1 V, IOUT = 20 mA  
ƒ = 100 Hz, 0.8 V < VOUT < 1.1 V, IOUT = 20 mA  
ƒ = 1 kHz, 0.8 V < VOUT < 1.1 V, IOUT = 20 mA  
ƒ = 10 kHz, 0.8 V < VOUT < 1.1 V, IOUT = 20 mA  
ƒ = 100 kHz, 0.8 V < VOUT < 1.1 V, IOUT = 20 mA  
Power Supply Rejection  
PSRR  
dB  
Ratio(9)  
OUTPUT NOISE VOLTAGE  
IOUT = 1 mA, BW = 10 Hz to 100 kHz  
IOUT = 500 mA, BW = 10 Hz to 100 kHz  
12  
12  
eN  
Noise voltage  
µVRMS  
THERMAL SHUTDOWN  
Thermal shutdown  
temperature  
TSD  
160  
15  
°C  
°C  
Thermal shutdown  
hysteresis  
THYS  
LOGIC INPUT THRESHOLDS  
VIN = 1.6 V to 6.5 V  
VEN falling until device is disabled  
VEN(OFF)  
VEN(ON)  
OFF Threshold  
ON Threshold  
0.3  
V
1.6 V VIN 6.5 V  
VEN rising until device is enabled  
1.3  
VEN = 6.5 V, VIN = 6.5 V  
VEN = 0 V, VIN = 3.3 V  
2.5  
IEN  
Input current at EN pin(10)  
PG high threshold (% of  
µA  
0.001  
PGHTH  
PGLTH  
VOL(PG)  
94%  
90%  
nominal VOUT  
PG low threshold (% of  
nominal VOUT  
)
)
PG pin low-level output  
voltage  
VOUT < PGLTH, sink current = 1 mA  
100  
1
mV  
IlKG(PG)  
tPGD  
PG pin leakage current  
PG delay time  
VOUT < PGHTH, VPG = 6.5 V  
µA  
µs  
Time from VOUT > PG threshold to PG toggling  
140  
(9) This specification is ensured by design.  
(10) There is a 3-MΩ pulldown resistor between the EN pin and GND pin on the device.  
6
Copyright © 2015–2016, Texas Instruments Incorporated  
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
Electrical Characteristics (continued)  
VIN = VOUT(NOM) + 0.5 V or 1.6 V, whichever is greater; VEN = 1.3 V, CIN = 1 µF, COUT = 1 µF, IOUT = 1 mA (unless otherwise  
stated).(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TRANSITION CHARACTERISTICS  
For VIN and VOUT(NOM) 1.1 V:  
VIN = (VOUT(NOM) + 0.5 V) to (VOUT(NOM) + 1.1 V)  
VIN trise = 30 µs  
1
For VIN and VOUT(NOM) < 1.1 V:  
VIN = 1.6 V to 2.2 V  
VIN trise = 30 µs  
Line transients(9)  
mV  
For VIN and VOUT(NOM) 1.1 V  
VIN = (VOUT(NOM) + 1.1 V) to (VOUT(NOM) + 0.5 V)  
VIN tfall = 30 µs  
ΔVOUT  
–1  
For VIN and VOUT(NOM) < 1.1 V:  
VIN = 2.2 V to 1.6 V  
VIN tfall = 30 µs  
IOUT = 5 mA to 500 mA  
IOUT trise = 10 µs  
–45  
Load transients(9)  
mV  
IOUT = 500 mA to 5 mA  
IOUT tfall = 10 µs  
45  
Overshoot on start-up(9)  
Stated as a percentage of VOUT(NOM)  
5%  
Time from VEN > VEN(ON) to VOUT = 95% of  
VOUT(NOM)  
tON  
Turnon time  
200  
100  
µs  
OUTPUT AUTO DISCHARGE RATE  
Output discharge pull-down  
resistance  
RAD  
VEN = 0 V, VIN = 3.6 V  
Ω
7.6 Output and Input Capacitors  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Input capacitance(2)  
Output capacitance(2)  
Output voltage(2)  
TEST CONDITIONS  
MIN(1)  
TYP  
MAX  
UNIT  
µF  
CIN  
0.7  
0.7  
5
1
1
Capacitance for stability  
COUT  
ESR  
10  
µF  
500  
mΩ  
(1) The minimum capacitance must be greater than 0.5 μF over full range of operating conditions. The capacitor tolerance must be 30% or  
better over the full temperature range. The full range of operating conditions for the capacitor in the application must be considered  
during device selection to ensure this minimum capacitance specification is met. X7R capacitors are recommended however capacitor  
types X5R, Y5V, and Z5U may be used with consideration of the application conditions.  
(2) This specification is verified by design.  
Copyright © 2015–2016, Texas Instruments Incorporated  
7
 
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
7.7 Typical Characteristics  
Unless otherwise stated: VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C, unless otherwise  
stated.  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.1  
VOUT at IOUT = 1mA  
VPG at IOUT = 1mA  
VOUT at IOUT = 500 mA  
VPG at IOUT = 500 mA  
VEN(ON)  
VEN(OFF)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Input Voltage (V)  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Input Voltage (V)  
D001  
D002  
Figure 1. VEN Thresholds vs Input Voltage  
Figure 2. LP5912-0.9 Output Voltage, VPG vs Input Voltage  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
3.5  
VOUT at IOUT =1 mA  
VPG at IOUT =1 mA  
VOUT at IOUT = 500 mA  
VPG at IOUT = 500 mA  
VOUT at IOUT = 1mA  
VPG at IOUT = 1mA  
VOUT at IOUT = 500 mA  
VPG at IOUT = 500mA  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
Input Voltage (V)  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
D003  
D004  
Figure 3. LP5912-1.8 Output Voltage, VPG vs Input Voltage  
Figure 4. LP5912-3.3 Output Voltage, VPG vs Input Voltage  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.4  
0.2  
0.0  
VIN  
VOUT  
VPG  
VIN  
VOUT  
VPG  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
Time (ms)  
D005  
D006  
VIN = 0 V to 1.6 V  
IOUT = 1 mA  
VIN = 0 V to 1.6 V  
IOUT = 500 mA  
Figure 5. LP5912-0.9 Power Up  
Figure 6. LP5912-0.9 Power Up  
8
Copyright © 2015–2016, Texas Instruments Incorporated  
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
Typical Characteristics (continued)  
Unless otherwise stated: VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C, unless otherwise  
stated.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN  
VOUT  
VPG  
VIN  
VOUT  
VPG  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
Time (ms)  
D007  
D008  
VIN = 0 V to 2.3 V  
IOUT = 1 mA  
VIN = 0 V to 2.3 V  
IOUT = 500 mA  
Figure 7. LP5912-1.8 Power Up  
Figure 8. LP5912-1.8 Power Up  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN  
VOUT  
VPG  
VIN  
VOUT  
VPG  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
Time (ms)  
D009  
D010  
VIN = 0 V to 3.8 V  
IOUT = 1 mA  
VIN = 0 V to 3.8 V  
IOUT = 500 mA  
Figure 9. LP5912-3.3 Power Up  
Figure 10. LP5912-3.3 Power Up  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
VIN (V)  
VIN (V)  
D051  
D052  
IOUT = 0 mA  
IOUT = 0 mA  
Figure 12. LP5912-1.8 IQ (No Load) vs VIN  
Figure 11. LP5912-0.9 IQ (No Load) vs VIN  
Copyright © 2015–2016, Texas Instruments Incorporated  
9
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise stated: VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C, unless otherwise  
stated.  
50  
TA = +125°C  
TA = +85°C  
45  
TA = +25°C  
TA = -40°C  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
VIN (V)  
D053  
IOUT = 0 mA  
VEN = 0 V  
Figure 14. LP5912-0.9 IQ(SD) vs VIN  
Figure 13. LP5912-3.3 IQ (No Load) vs VIN  
VEN = 0 V  
Figure 15. LP5912-1.8 IQ(SD) vs VIN  
VEN = 0 V  
Figure 16. LP5912-3.3 IQ(SD) vs VIN  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA = -40°C  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
0
0
0
50 100 150 200 250 300 350 400 450 500  
IOUT (mA)  
0
50 100 150 200 250 300 350 400 450 500  
IOUT (mA)  
D057  
D058  
VIN = 1.6 V  
Figure 17. LP5912-0.9 IGND vs IOUT  
Figure 18. LP5912-1.8 IGND vs IOUT  
10  
Copyright © 2015–2016, Texas Instruments Incorporated  
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
Typical Characteristics (continued)  
Unless otherwise stated: VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C, unless otherwise  
stated.  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
0
0
50 100 150 200 250 300 350 400 450 500  
IOUT (mA)  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
D059  
D011  
VIN = 1.6 V  
IOUT = 20 mA  
Figure 19. LP5912-3.3 IGND vs IOUT  
Figure 20. LP5912-0.9 PSRR vs Frequency  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 500 mA  
-20  
-40  
-60  
-80  
-100  
-120  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
Frequency (Hz)  
D012  
D013  
VIN = 1.6 V  
IOUT = 20 mA  
Figure 21. LP5912-0.9 PSRR vs Frequency  
Figure 22. LP5912-1.8 PSRR vs Frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 500 mA  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
Frequency (Hz)  
D014  
D015  
IOUT = 20 mA  
Figure 23. LP5912-1.8 PSRR vs Frequency  
Figure 24. LP5912-3.3 PSRR vs Frequency  
Copyright © 2015–2016, Texas Instruments Incorporated  
11  
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise stated: VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C, unless otherwise  
stated.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1
0.8  
0.6  
0.4  
0.2  
0
2.4  
2.3  
2.2  
2.1  
2
IOUT = 1 mA  
D VOUT (mV)  
VIN (V)  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 500 mA  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
Frequency (Hz)  
D016  
D017  
VIN = 1.6 V to 2.2 V  
trise = 30 µs  
Figure 25. LP5912-3.3 PSRR vs Frequency  
Figure 26. LP5912-0.9 Line Transient  
1
0.8  
0.6  
0.4  
0.2  
0
2.4  
1
0.8  
0.6  
0.4  
0.2  
0
3.1  
3
DVOUT (mV)  
VIN (V)  
D VOUT (mV)  
VIN (V)  
2.3  
2.2  
2.1  
2
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
Time (ms)  
D018  
D019  
VIN = 2.2 V to 1.6 V  
tfall = 30 µs  
VIN = 2.3 V to 2.9 V  
trise = 30 µs  
Figure 27. LP5912-0.9 Line Transient  
Figure 28. LP5912-1.8 Line Transient  
1
0.8  
0.6  
0.4  
0.2  
0
3.1  
3
1
0.8  
0.6  
0.4  
0.2  
0
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
D VOUT (mV)  
VIN (V)  
D VOUT (mV)  
VIN (V)  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
3.9  
3.8  
3.7  
3.6  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D020  
D021  
VIN = 2.9 V to 2.3 V  
tfall = 30 µs  
VIN = 3.8 V to 4.4 V  
trise = 30 µs  
Figure 29. LP5912-1.8 Line Transient  
Figure 30. LP5912-3.3 Line Transient  
12  
Copyright © 2015–2016, Texas Instruments Incorporated  
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
Typical Characteristics (continued)  
Unless otherwise stated: VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C, unless otherwise  
stated.  
1
0.8  
0.6  
0.4  
0.2  
0
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
60  
600  
500  
400  
300  
200  
100  
0
D VOUT (mV)  
VIN (V)  
D VOUT (mV)  
IOUT (mA)  
40  
20  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-20  
-40  
-60  
3.9  
3.8  
3.7  
3.6  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
D022  
D023  
VIN = 4.4 V to 3.8 V  
tfall = 30 µs  
VIN = 1.6 V  
IOUT = 5 mA to 500 mA  
trise = 10 µs  
Figure 31. LP5912-3.3 Line Transient  
Figure 32. LP5912-0.9 Load Transient Response  
60  
40  
600  
500  
400  
300  
200  
100  
0
60  
40  
600  
D VOUT (mV)  
IOUT (mA)  
D VOUT (mV)  
IOUT (mA)  
500  
400  
300  
200  
100  
0
20  
20  
0
0
-20  
-40  
-60  
-20  
-40  
-60  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
D024  
D025  
VIN = 1.6 V  
IOUT = 500 mA to 5 mA  
tfall = 10 µs  
IOUT = 5 mA to 500 mA  
trise = 10 µs  
Figure 33. LP5912-0.9 Load Transient Response  
Figure 34. LP5912-1.8 Load Transient Response  
60  
40  
600  
60  
40  
600  
D VOUT (mV)  
IOUT (mA)  
D VOUT (mV)  
IOUT (mA)  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
20  
20  
0
0
-20  
-40  
-60  
-20  
-40  
-60  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
D026  
D027  
IOUT = 500 mA to 5 mA  
tfall = 10 µs  
IOUT = 5 mA to 500 mA  
trise = 10 µs  
Figure 35. LP5912-1.8 Load Transient Response  
Figure 36. LP5912-3.3 Load Transient Response  
Copyright © 2015–2016, Texas Instruments Incorporated  
13  
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise stated: VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C, unless otherwise  
stated.  
3
2.5  
2
60  
600  
500  
400  
300  
200  
100  
0
VEN (V)  
VOUT (V)  
VPG (V)  
D VOUT (mV)  
IOUT (mA)  
40  
20  
1.5  
1
0
-20  
-40  
-60  
0.5  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D028  
D031  
IOUT = 500 mA to 5 mA  
tfall = 10 µs  
IOUT = 0 mA  
COUT = 1 µF  
Figure 37. LP5912-3.3 Load Transient Response  
Figure 38. LP5912-1.8 VOUT vs VEN(ON)  
2.5  
2
3
2.5  
2
VEN (V)  
VOUT (V)  
VPG (V)  
VEN (V)  
VOUT (V)  
VPG (V)  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D032  
D033  
IOUT = 0 mA  
COUT = 1 µF  
IOUT = 1 mA  
COUT = 1 µF  
Figure 40. LP5912-1.8 VOUT vs VEN(ON)  
Figure 39. LP5912-1.8 VOUT vs VEN(OFF)  
2.5  
2
3
2.5  
2
VEN (V)  
VOUT (V)  
VPG (V)  
VEN (V)  
VOUT (V)  
VPG (V)  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D034  
D035  
IOUT = 1 mA  
COUT = 1 µF  
Figure 41. LP5912-1.8 VOUT vs VEN(OFF)  
IOUT = 500 mA  
COUT = 1 µF  
Figure 42. LP5912-1.8 VOUT vs VEN(ON)  
14  
Copyright © 2015–2016, Texas Instruments Incorporated  
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
Typical Characteristics (continued)  
Unless otherwise stated: VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C, unless otherwise  
stated.  
225  
200  
175  
150  
125  
100  
75  
2.2  
VEN (V)  
VOUT (V)  
VPG (V)  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-40°C  
25°C  
85°C  
50  
25  
125°C  
0
0
5
10  
15  
20  
25  
Time (µs)  
30  
35  
40  
45  
50  
0
50 100 150 200 250 300 350 400 450 500  
IOUT (mA)  
D036  
D041  
IOUT = 500 mA  
COUT = 1 µF  
Figure 43. LP5912-1.8 VOUT vs VEN(OFF)  
Figure 44. LP5912-1.8 Dropout Voltage (VDO) vs IOUT  
225  
200  
175  
150  
125  
100  
75  
1.2  
1
-40°C  
1 mA  
500 mA  
25°C  
85°C  
125°C  
0.8  
0.6  
0.4  
0.2  
0
50  
25  
0
0
50 100 150 200 250 300 350 400 450 500  
IOUT (mA)  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
1000000  
D042  
D043  
VIN = 1.6 V  
Figure 45. LP5912-3.3 Dropout Voltage (VDO) vs IOUT  
Figure 46. LP5912-0.9 Noise vs Frequency  
1.2  
1
1.2  
1
1 mA  
500 mA  
1 mA  
500 mA  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
10  
100  
1000  
10000  
100000  
1000000  
10  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
Frequency (Hz)  
D044  
D045  
Figure 47. LP5912-1.8 Noise vs Frequency  
Figure 48. LP5912-3.3 Noise vs Frequency  
Copyright © 2015–2016, Texas Instruments Incorporated  
15  
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise stated: VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C, unless otherwise  
stated.  
5
4
3
2
1
0
500  
400  
300  
200  
100  
0
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
VEN (V)  
VOUT (V)  
IIN (mA)  
-50  
0
50 100 150 200 250 300 350 400 450  
-50  
-25  
0
25  
50  
75  
100  
125  
Time (ms)  
D061  
Junction Temperature (°C)  
D060  
CIN = Open  
IOUT = 500 mA  
COUT = 1 µF  
IOUT = 0 mA (No Load)  
Figure 49. LP5912-3.3 Turnon Time vs Junction  
Temperature  
Figure 50. LP5912-3.3 In-Rush Current  
5
4.5  
4
100  
5
1.5  
VEN (V)  
VOUT (V)  
IIN (mA)  
VEN (V)  
VOUT (V)  
IIN (A)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.5  
4
1.35  
1.2  
3.5  
3
3.5  
3
1.05  
0.9  
2.5  
2
2.5  
2
0.75  
0.6  
1.5  
1
1.5  
1
0.45  
0.3  
0.5  
0
0.5  
0
0.15  
0
-50  
0
50 100 150 200 250 300 350 400 450  
-50  
0
50 100 150 200 250 300 350 400 450  
Time (ms)  
Time (ms)  
D062  
D063  
CIN = Open  
IOUT = 1 mA  
COUT = 1 µF  
CIN = Open  
IOUT = 500 mA  
COUT = 10 µF  
Figure 51. LP5912-3.3 In-Rush Current  
Figure 52. LP5912-3.3 In-Rush Current  
5
1.5  
VEN (V)  
VOUT (V)  
IIN (A)  
4
4.5  
1.35  
1.2  
3.5  
3
1.05  
0.9  
2.5  
2
0.75  
0.6  
1.5  
1
0.45  
0.3  
0.5  
0
0.15  
0
-50  
0
50 100 150 200 250 300 350 400 450  
Time (ms)  
D064  
CIN = Open  
IOUT = 1 mA  
COUT = 10 µF  
Figure 53. LP5912-3.3 In-Rush Current  
16  
Copyright © 2015–2016, Texas Instruments Incorporated  
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
8 Detailed Description  
8.1 Overview  
The LP5912 is a low-noise, high PSRR, LDO capable of sourcing a 500-mA load. The LP5912 can operate down  
to 1.6-V input voltage and 0.8-V output voltage. This combination of low noise, high PSRR, and low output  
voltage makes the device an ideal low dropout (LDO) regulator to power a multitude of loads from noise-sensitive  
communication components to battery-powered system.  
The LP5912 Functional Block Diagram contains several features, including:  
Internal output resistor divider feedback;  
Small size and low-noise internal protection circuit current limit;  
Reverse current protection;  
Current limit and in-rush current protection;  
Thermal shutdown;  
Output auto discharge for fast turnoff; and  
Power-good output, with fixed 140-µs typical delay.  
8.2 Functional Block Diagram  
Current  
Limit  
IN  
OUT  
RAD  
100  
45 kꢀ  
VIN  
EA  
Output  
Discharge  
+
VBG  
œ
PG  
EN  
Control  
EN  
140-µs  
DELAY  
3 Mꢀ  
Copyright © 2016, Texas Instruments Incorporated  
GND  
8.3 Feature Description  
8.3.1 Enable (EN)  
The LP5912 EN pin is internally held low by a 3-Mresistor to GND. The EN pin voltage must be higher than the  
VEN(ON) threshold to ensure that the device is fully enabled under all operating conditions. The EN pin voltage  
must be lower than the VEN(OFF) threshold to ensure that the device is fully disabled and the automatic output  
discharge is activated.  
When the device is disabled the output stage is disabled, the PG output pin is low, and the output automatic  
discharge is ON.  
Copyright © 2015–2016, Texas Instruments Incorporated  
17  
 
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
8.3.2 Output Automatic Discharge (RAD  
)
The LP5912 output employs an internal 100-(typical) pulldown resistance to discharge the output when the EN  
pin is low. Note that if the LP5912 EN pin is low (the device is OFF) and the OUT pin is held high by a secondary  
supply, current flows from the secondary supply through the automatic discharge pulldown resistor to ground.  
8.3.3 Reverse Current Protection (IRO  
)
The LP5912 input is protected against reverse current when output voltage is higher than the input. In the event  
that extra output capacitance is used at the output, a power-down transient at the input would normally cause a  
large reverse current through a conventional regulator. The LP5912 includes a reverse voltage detector that trips  
when VIN drops below VOUT, shutting off the regulator and opening the PMOS body diode connection, preventing  
any reverse current from the OUT pin from flowing to the IN pin.  
If the LP5912 EN pin is low (the LP5912 is OFF) and the OUT pin is held high by a secondary supply, current  
flows from the secondary supply through the automatic discharge pulldown resistor to ground. This is not reverse  
current, this is automatic discharge pulldown current.  
Note that reverse current (IRO) is measured at the IN pin.  
8.3.4 Internal Current Limit (ISC  
)
The internal current limit circuit is used to protect the LDO against high-load current faults or shorting events. The  
LDO is not designed to operate continuously at the ISC current limit. During a current-limit event, the LDO  
sources constant current. Therefore, the output voltage falls when load impedance decreases. Note also that if a  
current limit occurs and the resulting output voltage is low, excessive power may be dissipated across the LDO,  
resulting in a thermal shutdown of the output.  
8.3.5 Thermal Overload Protection (TSD  
)
Thermal shutdown disables the output when the junction temperature rises to approximately 160°C, which allows  
the device to cool. When the junction temperature cools to approximately 145°C, the output circuitry enables.  
Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may  
cycle on and off. This thermal cycling limits the dissipation of the regulator and protects it from damage as a  
result of overheating.  
8.3.6 Power-Good Output (PG)  
The LP5912 device has a power-good function that works by toggling the state of the PG output pin. When the  
output voltage falls below the PG threshold voltage (PGLTH), the PG pin open-drain output engages (low  
impedance to GND). When the output voltage rises above the PG threshold voltage (PGVHTH), the PG pin  
becomes high impedance. By connecting a pullup resistor to an external supply, any downstream device can  
receive PG as a logic signal. Make sure that the external pullup supply voltage results in a valid logic signal for  
the receiving device or devices. Use a pullup resistor from 10 kto 100 kfor best results.  
The input supply, VIN, must be no less than the minimum operating voltage of 1.6 V to ensure that the PG pin  
output status is valid. The PG pin output status is undefined when VIN is less than 1.6 V.  
In power-good function, the PG output pin being pulled high is typically delayed 140 µs after the output voltage  
rises above the PGHTH threshold voltage. If the output voltage rises above the PGHTH threshold and then falls  
below the PGLTH threshold voltage the PG pin falls immediately with no delay time.  
If the PG function is not needed, the pullup resistor can be eliminated, and the PG pin can be either connected to  
ground or left floating.  
18  
Copyright © 2015–2016, Texas Instruments Incorporated  
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
8.4 Device Functional Modes  
8.4.1 Enable (EN)  
The LP5912 EN pin is internally held low by a 3-Mresistor to GND. The EN pin voltage must be higher than the  
VEN(ON) threshold to ensure that the device is fully enabled under all operating conditions. When the EN pin  
voltage is lower than the VEN(OFF) threshold, the output stage is disabled, the PG pin goes low, and the output  
automatic discharge circuit is activated. Any charge on the OUT pin is discharged to ground through the internal  
100-(typical) output auto discharge pulldown resistance.  
8.4.2 Minimum Operating Input Voltage (VIN)  
The LP5912 device does not include any dedicated UVLO circuit. The device internal circuit is not fully functional  
until VIN is at least 1.6 V. The output voltage is not regulated until VIN has reached at least the greater of 1.6 V or  
(VOUT + VDO).  
Copyright © 2015–2016, Texas Instruments Incorporated  
19  
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
9 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers must  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LP5912 is designed to meet the requirements of RF and analog circuits, by providing low noise, high PSRR,  
low quiescent current, and low line or load transient response. The device offers excellent noise performance  
without the need for a noise bypass capacitor and is stable with input and output capacitors with a value of 1 μF.  
The device delivers this performance in an industry standard WSON package, which for this device is specified  
with an operating junction temperature (TJ) of –40°C to +125°C.  
9.2 Typical Application  
Figure 54 shows the typical application circuit for the LP5912. Input and output capacitances may need to be  
increased above the 1-μF minimum for some applications.  
VIN  
VOUT  
IN  
OUT  
NC  
CIN  
LP5912  
COUT  
GND  
RPG  
VEN  
VPG  
EN  
PG  
Copyright © 2016, Texas Instruments Incorporated  
Figure 54. LP5912 Typical Application  
9.2.1 Design Requirements  
For typical RF linear regulator applications, use the parameters listed in Table 1.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
1.6 to 6.5 V  
0.8 to 5.5 V  
500 mA  
Output voltage  
Output current  
Output capacitor  
1 to 10 µF  
Input/output capacitor ESR range  
5 mΩ to 500 mΩ  
20  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
9.2.2 Detailed Design Procedure  
9.2.2.1 External Capacitors  
Like most low-dropout regulators, the LP5912 requires external capacitors for regulator stability. The device is  
specifically designed for portable applications requiring minimum board space and smallest components. These  
capacitors must be correctly selected for good performance.  
9.2.2.2 Input Capacitor  
An input capacitor is required for stability. The input capacitor must be at least equal to, or greater than, the  
output capacitor for good load-transient performance. A capacitor of at least 1 µF must be connected between  
the LP5912 IN pin and ground for stable operation over full load-current range. It is acceptable to have more  
output capacitance than input, as long as the input is at least 1 µF.  
The input capacitor must be located a distance of not more than 1 cm from the input pin and returned to a clean  
analog ground. Any good-quality ceramic, tantalum, or film capacitor may be used at the input.  
NOTE  
To ensure stable operation it is essential that good PCB practices are employed to  
minimize ground impedance and keep input inductance low. If these conditions cannot be  
met, or if long leads are to be used to connect the battery or other power source to the  
LP5912, increasing the value of the input capacitor to at least 10 µF is recommended.  
Also, tantalum capacitors can suffer catastrophic failures due to surge current when  
connected to a low-impedance source of power (such as a battery or a very large  
capacitor). If a tantalum capacitor is used at the input, it must be verified by the  
manufacturer to have a surge current rating sufficient for the application. There are no  
requirements for the equivalent series resistance (ESR) on the input capacitor, but  
tolerance and temperature coefficient must be considered when selecting the capacitor to  
ensure the capacitance remains 1 μF ±30% over the entire operating temperature range.  
9.2.2.3 Output Capacitor  
The LP5912 is designed specifically to work with a very small ceramic output capacitor, typically 1 µF. A ceramic  
capacitor (dielectric types X5R or X7R) in the 1-µF to 10-µF range, and with an ESR from 5 mΩ to 500 mΩ, is  
suitable in the LP5912 application circuit. For this device the output capacitor must be connected between the  
OUT pin with a good connection back to the GND pin.  
Tantalum or film capacitors may also be used at the device output, VOUT, but these are not as attractive for  
reasons of size and cost (see Capacitor Characteristics).  
The output capacitor must meet the requirement for the minimum value of capacitance and have an ESR value  
that is within the range 5 mΩ to 500 mΩ for stability.  
9.2.2.4 Capacitor Characteristics  
The LP5912 is designed to work with ceramic capacitors on the input and output to take advantage of the  
benefits they offer. For capacitance values in the range of 1 µF to 10 µF, ceramic capacitors are the smallest,  
least expensive, and have the lowest ESR values, thus making them best for eliminating high frequency noise.  
The ESR of a typical 1-µF ceramic capacitor is in the range of 20 mΩ to 40 mΩ, which easily meets the ESR  
requirement for stability for the LP5912.  
The preferred choice for temperature coefficient in a ceramic capacitor is X7R. This type of capacitor is the most  
stable and holds the capacitance within ±15% over the temperature range. Tantalum capacitors are less  
desirable than ceramic for use as output capacitors because they are more expensive when comparing  
equivalent capacitance and voltage ratings in the 1-µF to 10-µF range.  
Another important consideration is that tantalum capacitors have higher ESR values than equivalent size  
ceramics. While it may be possible to find a tantalum capacitor with an ESR value within the stable range, it  
would have to be larger in capacitance (which means bigger and more costly) than a ceramic capacitor with the  
same ESR value. Also, the ESR of a typical tantalum increases about 2:1 as the temperature goes from 25°C  
down to –40°C, so some guard band must be allowed.  
Copyright © 2015–2016, Texas Instruments Incorporated  
21  
 
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
9.2.2.5 Remote Capacitor Operation  
To ensure stability the LP5912 requires at least a 1-μF capacitor at the OUT pin. There is no strict requirement  
about the location of the output capacitor in regards to the LDO OUT pin; the output capacitor may be located 5  
to 10 cm away from the LDO. This means that there is no need to have a special capacitor close to the OUT pin  
if there are already respective capacitors in the system. This placement flexibility requires that the output  
capacitor be connected directly between the LP5912 OUT pin and GND pin with no vias. This remote capacitor  
feature can help users to minimize the number of capacitors in the system.  
As a good design practice, keep the wiring parasitic inductance at a minimum, which means using as wide as  
possible traces from the LDO output to the capacitors, keeping the LDO output trace layer as close to ground  
layer as possible, avoiding vias on the path. If there is a need to use vias, implement as many as possible vias  
between the connection layers. Keeping parasitic wiring inductance less than 35 nH is recommended. For  
applications with fast load transients use an input capacitor equal to, or larger than, the sum of the capacitance  
at the output node for the best load-transient performance.  
9.2.2.6 Power Dissipation  
Knowing the device power dissipation and proper sizing of the thermal plane connected to the tab or pad is  
critical to ensuring reliable operation. Device power dissipation depends on input voltage, output voltage, and  
load conditions and can be calculated with Equation 1.  
PD(MAX) = (VIN(MAX) – VOUT) × IOUT  
(1)  
Power dissipation can be minimized, and greater efficiency can be achieved, by using the lowest available  
voltage drop option that is greater than the dropout voltage (VDO). However, keep in mind that higher voltage  
drops result in better dynamic (that is, PSRR and transient) performance.  
On the WSON (DRV) package, the primary conduction path for heat is through the exposed power pad into the  
PCB. To ensure the device does not overheat, connect the exposed pad, through thermal vias, to an internal  
ground plane with an appropriate amount of copper PCB area.  
Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance  
(RθJA) of the combined PCB and device package and the temperature of the ambient air (TA), according to  
Equation 2 or Equation 3:  
TJ(MAX) = TA(MAX) + (RθJA × PD(MAX)  
PD = (TJ(MAX) – TA(MAX)) / RθJA  
)
(2)  
(3)  
Unfortunately, this RθJA is highly dependent on the heat-spreading capability of the particular PCB design, and  
therefore varies according to the total copper area, copper weight, and location of the planes. The RθJA recorded  
in Thermal Information is determined by the specific EIA/JEDEC JESD51-7 standard for PCB and copper-  
spreading area, and is to be used only as a relative measure of package thermal performance. For a well-  
designed thermal layout, RθJA is actually the sum of the package junction-to-case (bottom) thermal resistance  
(RθJCbot) plus the thermal resistance contribution by the PCB copper area acting as a heat sink.  
22  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
 
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
9.2.2.7 Estimating Junction Temperature  
The EIA/JEDEC standard recommends the use of psi (Ψ) thermal characteristics to estimate the junction  
temperatures of surface mount devices on a typical PCB board application. These characteristics are not true  
thermal resistance values, but rather package specific thermal characteristics that offer practical and relative  
means of estimating junction temperatures. These psi metrics are determined to be significantly independent of  
copper-spreading area. The key thermal characteristics (ΨJT and ΨJB) are given in Thermal Information and are  
used in accordance with Equation 4 or Equation 5.  
TJ(MAX) = TTOP + (ΨJT × PD(MAX)  
)
where  
PD(MAX) is explained in Equation 3  
TTOP is the temperature measured at the center-top of the device package.  
(4)  
TJ(MAX) = TBOARD + (ΨJB × PD(MAX)  
)
where  
PD(MAX) is explained in Equation 3.  
TBOARD is the PCB surface temperature measured 1 mm from the device package and centered on the  
package edge.  
(5)  
For more information about the thermal characteristics ΨJT and ΨJB, see Semiconductor and IC Package Thermal  
Metrics ; for more information about measuring TTOP and TBOARD, see Using New Thermal Metrics ; and for more  
information about the EIA/JEDEC JESD51 PCB used for validating RθJA, see the TI Application Report Thermal  
Characteristics of Linear and Logic Packages Using JEDEC PCB Designs. These application notes are available  
at www.ti.com.  
9.2.3 Application Curves  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VEN (V)  
VOUT (V)  
VPG (V)  
VEN (V)  
VOUT (V)  
VPG (V)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
5
10  
15  
20  
25  
Time (µs)  
D029  
D030  
VIN = 2.3 V  
IOUT = 500 mA  
COUT = 1 µF  
VIN = 2.3 V  
IOUT = 500 mA (3.6 Ω)  
COUT = 1 µF  
Figure 55. LP5912-1.8 VOUT vs VEN (ON)  
Figure 56. LP5912-1.8 VOUT vs VEN (OFF)  
10 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 1.6 V to 6.5 V. The input supply must  
be well regulated and free of spurious noise. To ensure that the LP5912 output voltage is well regulated and  
dynamic performance is optimum, the input supply must be at least VOUT + 0.5 V. A minimum capacitor value of  
1 µF is required to be within 1 cm of the IN pin.  
Copyright © 2015–2016, Texas Instruments Incorporated  
23  
 
 
LP5912  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The dynamic performance of the LP5912 is dependant on the layout of the PCB. PCB layout practices that are  
adequate for typical LDOs may degrade the PSRR, noise, or transient performance of the LP5912.  
Best performance is achieved by placing CIN and COUT on the same side of the PCB as the LP5912, and as  
close to the package as is practical. The ground connections for CIN and COUT must be back to the LP5912  
ground pin using as wide and as short of a copper trace as is practical.  
Connections using long trace lengths, narrow trace widths, or connections through vias must be avoided. Such  
connections add parasitic inductances and resistance that result in inferior performance especially during  
transient conditions.  
11.2 Layout Example  
Thermal Vias (2)  
IN  
1
2
3
6
5
4
OUT  
NC  
COUT  
CIN  
GND  
EN  
PG  
RPG  
Figure 57. LP5912 Typical Layout  
24  
版权 © 2015–2016, Texas Instruments Incorporated  
LP5912  
www.ti.com.cn  
ZHCSEY5D DECEMBER 2015REVISED NOVEMBER 2016  
12 器件和文档支持  
12.1 相关文档ꢀ  
更多信息,请参见以下文档:  
AN1187 无引线框架封装 (LLP)》  
半导体和集成电路 (IC) 封装热度量  
《使用新的热指标》  
《采用 JEDEC PCB 设计的线性和逻辑封装散热特性》  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2016, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP5912-0.9DRVR  
LP5912-0.9DRVT  
LP5912-1.0DRVR  
LP5912-1.0DRVT  
LP5912-1.1DRVR  
LP5912-1.1DRVT  
LP5912-1.2DRVR  
LP5912-1.2DRVT  
LP5912-1.5DRVR  
LP5912-1.5DRVT  
LP5912-1.8DRVR  
LP5912-1.8DRVT  
LP5912-2.5DRVR  
LP5912-2.5DRVT  
LP5912-2.8DRVR  
LP5912-2.8DRVT  
LP5912-3.0DRVR  
LP5912-3.0DRVT  
LP5912-3.3DRVR  
LP5912-3.3DRVT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
12-A  
12-A  
1NPU  
1NPU  
12-H  
12-H  
12-B  
12-B  
12-C  
12-C  
12-D  
12-D  
1NQU  
1NQU  
12-E  
12-E  
12-G  
12-G  
12-F  
12-F  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
250  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP5912-5.0DRVR  
LP5912-5.0DRVT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DRV  
DRV  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
12-I  
12-I  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP5912-0.9DRVR  
LP5912-0.9DRVR  
LP5912-0.9DRVT  
LP5912-0.9DRVT  
LP5912-1.0DRVR  
LP5912-1.0DRVT  
LP5912-1.1DRVR  
LP5912-1.1DRVR  
LP5912-1.1DRVT  
LP5912-1.1DRVT  
LP5912-1.2DRVR  
LP5912-1.2DRVT  
LP5912-1.5DRVR  
LP5912-1.5DRVR  
LP5912-1.5DRVT  
LP5912-1.5DRVT  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
250  
3000  
250  
3000  
3000  
250  
250  
3000  
250  
3000  
3000  
250  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Dec-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP5912-1.8DRVR  
LP5912-1.8DRVR  
LP5912-1.8DRVT  
LP5912-1.8DRVT  
LP5912-2.5DRVR  
LP5912-2.5DRVT  
LP5912-2.8DRVR  
LP5912-2.8DRVR  
LP5912-2.8DRVT  
LP5912-2.8DRVT  
LP5912-3.0DRVR  
LP5912-3.0DRVR  
LP5912-3.0DRVT  
LP5912-3.0DRVT  
LP5912-3.3DRVR  
LP5912-3.3DRVT  
LP5912-5.0DRVR  
LP5912-5.0DRVT  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
250  
3000  
250  
3000  
3000  
250  
250  
3000  
3000  
250  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP5912-0.9DRVR  
LP5912-0.9DRVR  
LP5912-0.9DRVT  
LP5912-0.9DRVT  
LP5912-1.0DRVR  
LP5912-1.0DRVT  
LP5912-1.1DRVR  
LP5912-1.1DRVR  
LP5912-1.1DRVT  
LP5912-1.1DRVT  
LP5912-1.2DRVR  
LP5912-1.2DRVT  
LP5912-1.5DRVR  
LP5912-1.5DRVR  
LP5912-1.5DRVT  
LP5912-1.5DRVT  
LP5912-1.8DRVR  
LP5912-1.8DRVR  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
250  
182.0  
210.0  
182.0  
210.0  
210.0  
210.0  
182.0  
210.0  
182.0  
210.0  
182.0  
182.0  
210.0  
182.0  
210.0  
182.0  
182.0  
210.0  
182.0  
185.0  
182.0  
185.0  
185.0  
185.0  
182.0  
185.0  
182.0  
185.0  
182.0  
182.0  
185.0  
182.0  
185.0  
182.0  
182.0  
185.0  
20.0  
35.0  
20.0  
35.0  
35.0  
35.0  
20.0  
35.0  
20.0  
35.0  
20.0  
20.0  
35.0  
20.0  
35.0  
20.0  
20.0  
35.0  
250  
3000  
250  
3000  
3000  
250  
250  
3000  
250  
3000  
3000  
250  
250  
3000  
3000  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Dec-2022  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP5912-1.8DRVT  
LP5912-1.8DRVT  
LP5912-2.5DRVR  
LP5912-2.5DRVT  
LP5912-2.8DRVR  
LP5912-2.8DRVR  
LP5912-2.8DRVT  
LP5912-2.8DRVT  
LP5912-3.0DRVR  
LP5912-3.0DRVR  
LP5912-3.0DRVT  
LP5912-3.0DRVT  
LP5912-3.3DRVR  
LP5912-3.3DRVT  
LP5912-5.0DRVR  
LP5912-5.0DRVT  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
250  
250  
182.0  
210.0  
210.0  
210.0  
210.0  
182.0  
210.0  
182.0  
210.0  
182.0  
210.0  
182.0  
182.0  
182.0  
210.0  
210.0  
182.0  
185.0  
185.0  
185.0  
185.0  
182.0  
185.0  
182.0  
185.0  
182.0  
185.0  
182.0  
182.0  
182.0  
185.0  
185.0  
20.0  
35.0  
35.0  
35.0  
35.0  
20.0  
35.0  
20.0  
35.0  
20.0  
35.0  
20.0  
20.0  
20.0  
35.0  
35.0  
3000  
250  
3000  
3000  
250  
250  
3000  
3000  
250  
250  
3000  
250  
3000  
250  
Pack Materials-Page 4  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY