LP591209MDRVREP [TI]

Enhanced-product, 500-mA, low-noise, low-IQ, low-dropout regulator with reverse current protection | DRV | 6 | -55 to 125;
LP591209MDRVREP
型号: LP591209MDRVREP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Enhanced-product, 500-mA, low-noise, low-IQ, low-dropout regulator with reverse current protection | DRV | 6 | -55 to 125

文件: 总31页 (文件大小:3657K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP5912-EP  
ZHCSOW8 JULY 2022  
LP5912-EP 500mA、低噪声、IQ 增强LDO 产品  
1 特性  
3 说明  
• 输入电压范围1.6V 6.5V  
• 输出电压范围0.8V 5.5V  
• 输出电流500 mA  
• 低输出电压噪声12μVRMS典型值)  
1kHz PSRR75 dB (typ)  
• 输出电压容(VOUT 3.3V)±2%  
IQ使能时无负载):30μA典型值)  
• 低压(VOUT 3.3V):  
500mA 负载下95mV典型值)  
1µF 陶瓷输入和输出电容搭配使用性能稳定  
• 具备热过载和短路保护功能  
• 反向电流保护  
• 无需噪声旁路电容  
LP5912-EP 是一款能提供高达 500mA 输出电流的低  
噪声低压降稳压器 (LDO)LP5912-EP 符合射频和模  
拟电路要求可提供低噪声、高 PSRR、低静态电流  
以及低线路和负载瞬态响应。LP5912-EP 无需噪声旁  
路电容器便可提供出色的噪声性能并且支持远距离安  
置输出电容。  
该器件可与 1µF 输入和 1µF 输出陶瓷电容搭配使用  
无需独立的噪声旁路电容。  
其固定输出电压介于 0.8V 5.5V 之间25mV 为  
单位增量。有关特定的电压选项要求请联系德州仪  
(TI) 销售办事处。  
封装信息(1)  
• 输出自动放电以实现快速关断  
• 电源正常状态输出140µs典型值延迟  
• 内部软启动可限制浪涌电流  
• 工作结温55°C +125°C  
• 支持国防、航空航天和医疗应用:  
封装尺寸标称值)  
器件型号  
LP5912-EP  
封装  
WSON (6)  
2.00mm × 2.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 受控基线  
– 一个组装和测试基地  
– 一个制造基地  
– 延长了产品生命周期  
– 延长了产品变更通知  
– 产品可追溯性  
2 应用  
监控系统  
惯性导航  
陆地移动无线电  
全球定位系统接收器  
数据集中器单元  
VIN  
VOUT  
IN  
OUT  
CIN  
LP5912-EP  
COUT  
GND  
NC  
RPG  
VEN  
VPG  
EN  
PG  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSC57  
 
 
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................16  
7.4 Device Functional Modes..........................................18  
8 Applications and Implementation................................19  
8.1 Application Information............................................. 19  
8.2 Typical Application.................................................... 19  
8.3 Power Supply Recommendations.............................23  
8.4 Layout....................................................................... 23  
9 Device and Documentation Support............................24  
9.1 Documentation Support............................................ 24  
9.2 接收文档更新通知..................................................... 24  
9.3 支持资源....................................................................24  
9.4 Trademarks...............................................................24  
10 Electrostatic Discharge Caution................................ 24  
11 术语表............................................................................24  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Output and Input Capacitors.......................................6  
6.7 Typical Characteristics................................................7  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................16  
Information.................................................................... 24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
July 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LP5912-EP  
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
6
5
4
IN  
OUT  
NC  
GND  
EN  
PG  
5-1. DRV Package, 6-Pin WSON With Thermal Pad (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
OUT  
NC  
O
Regulated output voltage.  
2
No internal connection. Leave open, or connect to ground.  
Power-good indicator. Requires an external pullup resistor.  
3
PG  
O
Enable input. Logic high = device is on, logic low = device is off, with an internal 3-MΩ  
pulldown resistor.  
4
EN  
I
5
6
GND  
IN  
G
I
Ground.  
Unregulated input voltage.  
Connect this pad to the copper area under the package to improve thermal performance.  
Use thermal vias to transfer heat to inner layers of the printed circuit board (PCB).  
Connect the thermal pad to ground, or leave floating. Do not connect the thermal pad to  
any potential other than ground.  
Thermal pad  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LP5912-EP  
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.3  
MAX  
UNIT  
V
VIN  
IN pin voltage  
7
7
VOUT  
VEN  
VPG  
TJ  
OUT pin voltage  
-0.3  
V
EN pin voltage  
7
V
0.3  
PG pin voltage  
7
V
0.3  
Junction temperature  
Continuous power dissipation(3)  
Storage temperature  
150  
°C  
W
°C  
55  
PDISS  
Tstg  
Internally Limited  
65  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) Internal thermal shutdown circuitry protects the device from permanent damage.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.6  
0.8  
0
NOM  
MAX  
6.5  
UNIT  
V
VIN  
Input voltage  
VOUT  
VEN  
Output voltage  
5.5  
V
EN input voltage  
PG pin off voltage  
Output current  
VIN  
V
VPG  
0
6.5  
V
IOUT  
0
500  
125  
mA  
°C  
TJ-MAX-OP  
Operating junction temperature  
55  
6.4 Thermal Information  
LP5912-EP  
THERMAL METRIC(1)  
DRV (WSON)  
6 PINS  
75.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
92.6  
Junction-to-board thermal resistance  
40.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.3  
ψJT  
40.0  
ψJB  
RθJC(bot)  
15.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LP5912-EP  
 
 
 
 
 
 
 
 
 
 
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
VIN = VOUT(NOM) + 0.5 V or 1.6 V, whichever is greater; VEN = 1.35 V, CIN = 1 μF, COUT = 1 μF, IOUT = 1 mA (unless  
otherwise stated).(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT VOLTAGE AND REGULATION  
For VOUT(NOM) 3.3 V,  
-2  
2
VOUT(NOM) + 0.5 V VIN 6.5 V,  
IOUT = 1 mA to 500 mA  
For 1.1 V VOUT(NOM) < 3.3 V,  
VOUT(NOM) + 0.5 V VIN 6.5 V,  
IOUT = 1 mA to 500 mA  
Output voltage tolerance  
%
-3  
3
For VOUT(NOM) < 1.1 V,  
1.6 V VIN 6.5 V,  
IOUT = 1 mA to 500 mA  
ΔVOUT  
For VOUT(NOM) 1.1V,  
VOUT(NOM) + 0.5 V VIN 6.5 V  
Line regulation  
0.8  
%/V  
For VOUT(NOM) < 1.1 V,  
1.6 V VIN 6.5 V  
Load regulation  
For IOUT = 1mA to 500 mA  
0.0022  
%/mA  
CURRENT LEVELS  
ISC  
IRO  
Short-circuit current limit  
TJ = 25°C, (4)  
700  
900  
10  
1100  
150  
55  
mA  
µA  
Reverse leakage current (5)  
VIN < VOUT  
VEN = 1.35 V, IOUT = 0 mA  
VEN = 1.35 V, IOUT = 500 mA  
30  
IQ  
Quiescent current (6)  
µA  
400  
600  
VEN = 0 V,  
55°C TJ 85°C  
0.2  
1.5  
5
Quiescent current  
shutdown mode (6)  
IQ(SD)  
µA  
µA  
VEN = 0 V  
0.2  
35  
IG  
Ground-current (7)  
VEN = 1.35 V, IOUT = 0 mA  
VDO DROPOUT VOLTAGE  
VDO  
Dropout voltage (8)  
VIN to VOUT RIPPLE REJECTION  
170  
95  
250  
180  
mV  
mV  
IOUT = 500 mA, 1.6 V VOUT(NOM) < 3.3 V  
IOUT = 500 mA, 3.3 V VOUT(NOM) 5.5 V  
80  
75  
65  
40  
65  
65  
65  
40  
f = 100 Hz, VOUT 1.1 V, IOUT = 20 mA  
f = 1 kHz, VOUT 1.1 V, IOUT = 20 mA  
f = 10 kHz, VOUT 1.1 V, IOUT = 20 mA  
f = 100 kHz, VOUT 1.1 V, IOUT = 20 mA  
f = 100 Hz, 0.8V VOUT < 1.1 V, IOUT = 20 mA  
f = 1 kHz, 0.8V VOUT < 1.1 V, IOUT = 20 mA  
f = 10 kHz, 0.8V VOUT < 1.1 V, IOUT = 20 mA  
f = 100 kHz, 0.8V VOUT < 1.1 V, IOUT = 20 mA  
PSRR  
Power-supply rejection ratio (9)  
dB  
OUTPUT NOISE VOLTAGE  
IOUT = 1 mA, BW = 10 Hz to 100 kHz  
IOUT = 500 mA, BW = 10 Hz to 100 kHz  
12  
12  
eN  
Noise voltage  
μVRMS  
THERMAL SHUTDOWN  
Thermal shutdown  
temperature  
TSD  
160  
15  
°C  
°C  
THYS  
Thermal shutdown hysteresis  
LOGIC INPUT THRESHOLDS  
VEN(OFF)  
VEN(ON)  
Off threshold  
On threshold  
0.25  
V
V
1.35  
VIN = 6 V, VEN = 6 V  
VIN = 3.3 V, VEN = 0 V  
3
µA  
µA  
Input current at EN  
terminal (10)  
IEN  
0.001  
PG threshold hysteresis (% of  
PGHYS  
4
%
nominal VOUT  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LP5912-EP  
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
VIN = VOUT(NOM) + 0.5 V or 1.6 V, whichever is greater; VEN = 1.35 V, CIN = 1 μF, COUT = 1 μF, IOUT = 1 mA (unless  
otherwise stated).(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PG low threshold (% of  
PGLTH  
86  
90  
93  
%
nominal VOUT  
)
VOL(PG)  
ILKG(PG)  
PG pin low-level output voltage VOUT < PGLTH, sink current = 1 mA  
400  
1
mV  
µA  
PG pin leakage current  
VOUT < PGHTH, VPG = 6 V  
TRANSITION CHARACTERISTICS  
For VIN and VOUT(NOM) 1.1 V,  
VIN = (VOUT(NOM) + 0.5 V) to (VOUT(NOM) + 1.1 V),  
VIN trise = 30 µs  
1
For VIN and VOUT(NOM) < 1.1 V,  
VIN = 1.6 V to 2.2 V,  
VIN trise = 30 µs  
Line transients (9)  
mV  
For VIN and VOUT(NOM) 1.1 V,  
VIN = (VOUT(NOM) + 0.5 V) to (VOUT(NOM) + 1.1 V),  
VIN trise = 30 µs  
ΔVOUT  
-1  
For VIN and VOUT(NOM) < 1.1 V,  
VIN = 1.6 V to 2.2 V,  
VIN trise = 30 µs  
IOUT = 5 mA to 500 mA,  
IOUT tRISE = 10 μs  
-45  
Load transients (9)  
mV  
IOUT = 500 mA to 5 mA,  
IOUT tFALL = 10 μs  
45  
5
Overshoot on start-up (9)  
%
tON  
Turnon time  
From VEN > VEN(ON) to VOUT = 95% of VOUT(NOM)  
200  
100  
µs  
OUTPUT AUTO DISCHARGE RATE  
Output discharge pulldown  
resistance  
RAD  
VEN = 0 V, VIN = 3.6 V  
(1) All voltages are with respect to the device GND pin, unless otherwise stated.  
(2) Minimum and maximum limits are specified through test, design, or statistical correlation over the junction temperature (TJ ) range of  
55°C to +125°C, unless otherwise stated. Typical values represent the most likely parametric norm at TA = 25°C, and are provided  
for reference purposes only.  
(3) In applications where high power dissipation and poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
= 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of  
the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP (RθJA × PD-MAX).  
(4) Short-circuit current (ISC) is equivalent to current limit. To minimize thermal effects during testing, ISC is measured with VOUT pulled to  
100 mV below its nominal voltage.  
(5) Reverse current (IRO) is measured at the IN pin.  
(6) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT  
.
(7) Ground current is defined here as the total current flowing to ground as a result of all input voltages applied to the device (IQ + IEN).  
(8) Dropout voltage (VDO) is the voltage difference between the input and the output at which the output voltage drops to 150 mV below its  
nominal value when VIN = VOUT + 0.5 V. Dropout voltage is not a valid condition for output voltages less than 1.6 V as compliance with  
the minimum operating voltage requirement cannot be assured.  
(9) This specification is specified by design.  
(10) There is a 3-MΩpulldown resistor between the EN pin and GND pin on the device.  
6.6 Output and Input Capacitors  
over operating free-air temperature range (unless otherwise noted)  
PARAMETERS  
TEST CONDITIONS  
Capacitance for stability  
Capacitance for stability  
MIN  
0.7  
0.7  
5
NOM  
MAX  
UNIT  
µF  
CIN  
Input capacitance (1)  
Output capacitance (1)  
Output voltage (1)  
1
1
COUT  
ESR  
10  
µF  
500  
m  
(1) This specification is verified by design.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LP5912-EP  
 
 
 
 
 
 
 
 
 
 
 
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TJ = 25°C (unless otherwise noted)  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.1  
VOUT at IOUT = 1mA  
VPG at IOUT = 1mA  
VOUT at IOUT = 500 mA  
VPG at IOUT = 500 mA  
VEN(ON)  
VEN(OFF)  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Input Voltage (V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Input Voltage (V)  
D002  
D001  
6-2. LP5912-0.9 Output Voltage (VPG) vs Input Voltage  
6-1. VEN Thresholds vs Input Voltage  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
3.5  
VOUT at IOUT =1 mA  
VPG at IOUT =1 mA  
VOUT at IOUT = 500 mA  
VPG at IOUT = 500 mA  
VOUT at IOUT = 1mA  
VPG at IOUT = 1mA  
VOUT at IOUT = 500 mA  
VPG at IOUT = 500mA  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Input Voltage (V)  
3.0  
3.5  
4.0  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
Input Voltage (V)  
D004  
D003  
6-4. LP5912-3.3 Output Voltage (VPG) vs Input Voltage  
6-3. LP5912-1.8 Output Voltage (VPG) vs Input Voltage  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.4  
0.2  
0.0  
VIN  
VOUT  
VPG  
VIN  
VOUT  
VPG  
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
D005  
D006  
VIN = 0 V to 1.6 V, IOUT = 1 mA  
VIN = 0 V to 1.6 V, IOUT = 500 mA  
6-5. LP5912-0.9 Power Up  
6-6. LP5912-0.9 Power Up  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LP5912-EP  
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TJ = 25°C (unless otherwise noted)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN  
VOUT  
VPG  
VIN  
VOUT  
VPG  
0
0
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
D007  
D008  
VIN = 0 V to 2.3 V, IOUT = 1 mA  
VIN = 0 V to 2.3 V, IOUT = 500 mA  
6-8. LP5912-1.8 Power Up  
6-7. LP5912-1.8 Power Up  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN  
VOUT  
VPG  
VIN  
VOUT  
VPG  
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
D009  
D010  
VIN = 0 V to 3.8 V, IOUT = 1 mA  
VIN = 0 V to 3.8 V, IOUT = 500 mA  
6-9. LP5912-3.3 Power Up  
6-10. LP5912-3.3 Power Up  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
TA = +125°C  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0
0
0.5  
1
1.5  
2
2.5  
3 3.5  
VIN (V)  
4
4.5  
5
5.5  
6
6.5  
0
0.5  
1
1.5  
2
2.5  
3 3.5  
VIN (V)  
4
4.5  
5
5.5  
6
6.5  
D051  
D052  
IOUT = 0 mA  
6-11. LP5912-0.9 IQ (No Load) vs VIN  
IOUT = 0 mA  
6-12. LP5912-1.8 IQ (No Load) vs VIN  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LP5912-EP  
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TJ = 25°C (unless otherwise noted)  
50  
TA = +125°C  
TA = +85°C  
45  
TA = +25°C  
TA = -40°C  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0.5  
1
1.5  
2
2.5  
3 3.5  
VIN (V)  
4
4.5  
5
5.5  
6
6.5  
D053  
IOUT = 0 mA  
VEN = 0 V  
6-13. LP5912-3.3 IQ (No Load) vs VIN  
6-14. LP5912-0.9 IQ(SD) vs VIN  
VEN = 0 V  
VEN = 0 V  
6-15. LP5912-1.8 IQ(SD) vs VIN  
6-16. LP5912-3.3 IQ(SD) vs VIN  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
0
0
0
50 100 150 200 250 300 350 400 450 500  
IOUT (mA)  
0
50 100 150 200 250 300 350 400 450 500  
IOUT (mA)  
D057  
D058  
VIN = 1.6 V  
6-17. LP5912-0.9 IQ(SD) vs IOUT  
6-18. LP5912-1.8 IQ(SD) vs IOUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LP5912-EP  
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TJ = 25°C (unless otherwise noted)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
0
10 20  
100  
1000  
10000 100000 1000000 1E+7  
0
50 100 150 200 250 300 350 400 450 500  
IOUT (mA)  
Frequency (Hz)  
D011  
D059  
VIN = 1.6 V, IOUT = 20 mA  
6-20. LP5912-0.9 PSRR vs Frequency  
6-19. LP5912-3.3 IQ(SD) vs IOUT  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 500 mA  
-20  
-40  
-60  
-80  
-100  
-120  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
Frequency (Hz)  
D012  
D013  
VIN = 1.6 V  
IOUT = 20 mA  
6-22. LP5912-1.8 PSRR vs Frequency  
6-21. LP5912-0.9 PSRR vs Frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 500 mA  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
Frequency (Hz)  
D014  
D015  
IOUT = 20 mA  
6-24. LP5912-3.3 PSRR vs Frequency  
6-23. LP5912-1.8 PSRR vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LP5912-EP  
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TJ = 25°C (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
2.4  
2.3  
2.2  
2.1  
2
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
D VOUT (mV)  
VIN (V)  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 500 mA  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
D017  
Frequency (Hz)  
D016  
VIN = 1.6 V to 2.2 V, tr = 30 µs  
6-26. LP5912-0.9 Line Transient  
6-25. LP5912-3.3 PSRR vs Frequency  
1
0.8  
0.6  
0.4  
0.2  
0
2.4  
2.3  
2.2  
2.1  
2
1
0.8  
0.6  
0.4  
0.2  
0
3.1  
3
DVOUT (mV)  
VIN (V)  
D VOUT (mV)  
VIN (V)  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D018  
D019  
VIN = 2.2 V to 1.6 V, tf = 30 µs  
VIN = 2.3 V to 2.9 V, tr = 30 µs  
6-27. LP5912-0.9 Line Transient  
6-28. LP5912-1.8 Line Transient  
1
0.8  
0.6  
0.4  
0.2  
0
3.1  
3
1
0.8  
0.6  
0.4  
0.2  
0
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
D VOUT (mV)  
VIN (V)  
D VOUT (mV)  
VIN (V)  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
3.9  
3.8  
3.7  
3.6  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D020  
D021  
VIN = 2.9 V to 2.3 V, tf = 30 µs  
VIN = 3.8 V to 4.4 V, tr = 30 µs  
6-29. LP5912-1.8 Line Transient  
6-30. LP5912-3.3 Line Transient  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LP5912-EP  
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TJ = 25°C (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
60  
600  
500  
400  
300  
200  
100  
0
D VOUT (mV)  
VIN (V)  
D VOUT (mV)  
IOUT (mA)  
40  
20  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-20  
-40  
-60  
3.9  
3.8  
3.7  
3.6  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
D022  
D023  
VIN = 4.4 V to 3.8 V, tf = 30 µs  
VIN = 1.6 V, IOUT = 5 mA to 500 mA, tr = 10 µs  
6-31. LP5912-3.3 Line Transient  
6-32. LP5912-0.9 Load Transient Response  
60  
40  
600  
500  
400  
300  
200  
100  
0
60  
40  
600  
500  
400  
300  
200  
100  
0
D VOUT (mV)  
IOUT (mA)  
D VOUT (mV)  
IOUT (mA)  
20  
20  
0
0
-20  
-40  
-60  
-20  
-40  
-60  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
D024  
D025  
VIN = 1.6 V, IOUT = 500 mA to 5 mA, tf = 10 µs  
IOUT = 5 mA to 500 mA, tr = 10 µs  
6-33. LP5912-0.9 Load Transient Response  
6-34. LP5912-1.8 Load Transient Response  
60  
40  
600  
500  
400  
300  
200  
100  
0
60  
40  
600  
D VOUT (mV)  
IOUT (mA)  
D VOUT (mV)  
IOUT (mA)  
500  
400  
300  
200  
100  
0
20  
20  
0
0
-20  
-40  
-60  
-20  
-40  
-60  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
D026  
D027  
IOUT = 500 mA to 5 mA, tf = 10 µs  
6-35. LP5912-1.8 Load Transient Response  
IOUT = 5 mA to 500 mA, tr = 10 µs  
6-36. LP5912-3.3 Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LP5912-EP  
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TJ = 25°C (unless otherwise noted)  
60  
600  
500  
400  
300  
200  
100  
0
3
2.5  
2
D VOUT (mV)  
IOUT (mA)  
VEN (V)  
VOUT (V)  
VPG (V)  
40  
20  
0
1.5  
1
-20  
-40  
-60  
0.5  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
D028  
0
0
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
IOUT = 500 mA to 5 mA, tf = 10 µs  
6-37. LP5912-3.3 Load Transient Response  
D031  
IOUT = 0 mA, COUT = 1 µF  
6-38. LP5912-1.8 VOUT vs VEN(ON)  
2.5  
2
3
2.5  
2
VEN (V)  
VOUT (V)  
VPG (V)  
VEN (V)  
VOUT (V)  
VPG (V)  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D032  
D033  
IOUT = 0 mA, COUT = 1 µF  
IOUT = 1 mA, COUT = 1 µF  
6-39. LP5912-1.8 VOUT vs VEN(OFF)  
6-40. LP5912-1.8 VOUT vs VEN(ON)  
2.5  
2
3
2.5  
2
VEN (V)  
VOUT (V)  
VPG (V)  
VEN (V)  
VOUT (V)  
VPG (V)  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D034  
D035  
IOUT = 1 mA, COUT = 1 µF  
IOUT = 500 mA, COUT = 1 µF  
6-41. LP5912-1.8 VOUT vs VEN(OFF)  
6-42. LP5912-1.8 VOUT vs VEN(ON)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LP5912-EP  
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TJ = 25°C (unless otherwise noted)  
2.2  
2
225  
200  
175  
150  
125  
100  
75  
VEN (V)  
VOUT (V)  
VPG (V)  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-40°C  
25°C  
85°C  
125°C  
50  
25  
0
0
50 100 150 200 250 300 350 400 450 500  
IOUT (mA)  
0
5
10  
15  
20  
25  
Time (µs)  
30  
35  
40  
45  
50  
D041  
D036  
IOUT = 500 mA, COUT = 1 µF  
6-43. LP5912-1.8 VOUT vs VEN(OFF)  
6-44. LP5912-1.8 Dropout Voltage (VDO) vs IOUT  
225  
200  
175  
150  
125  
100  
75  
1.2  
-40°C  
25°C  
85°C  
125°C  
1 mA  
500 mA  
1
0.8  
0.6  
0.4  
0.2  
0
50  
25  
0
10  
100  
1000 10000  
Frequency (Hz)  
100000  
1000000  
0
50 100 150 200 250 300 350 400 450 500  
IOUT (mA)  
D043  
D042  
VIN = 1.6 V  
6-46. LP5912-0.9 Noise vs Frequency  
6-45. LP5912-3.3 Dropout Voltage (VDO) vs IOUT  
1.2  
1.2  
1
1 mA  
500 mA  
1 mA  
500 mA  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
10  
100  
1000 10000  
Frequency (Hz)  
100000  
1000000  
10  
100  
1000 10000  
Frequency (Hz)  
100000  
1000000  
D044  
D045  
6-47. LP5912-1.8 Noise vs Frequency  
6-48. LP5912-3.3 Noise vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LP5912-EP  
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TJ = 25°C (unless otherwise noted)  
5
4
3
2
1
0
500  
400  
300  
200  
100  
0
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
VEN (V)  
VOUT (V)  
IIN (mA)  
-50  
0
50 100 150 200 250 300 350 400 450  
Time (ms)  
-50  
-25  
0
25  
50  
Junction Temperature (°C)  
75  
100  
125  
D061  
D060  
CIN = open, IOUT = 500 mA, COUT = 1 µF  
6-50. LP5912-3.3 Inrush Current  
IOUT = 0 mA (no load)  
6-49. LP5912-3.3 Turn-On Time vs Junction Temperature  
5
4.5  
4
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
4.5  
4
1.5  
VEN (V)  
VOUT (V)  
IIN (mA)  
VEN (V)  
VOUT (V)  
IIN (A)  
1.35  
1.2  
3.5  
3
1.05  
0.9  
3.5  
3
2.5  
2
0.75  
0.6  
2.5  
2
1.5  
1
0.45  
0.3  
1.5  
1
0.5  
0
0.15  
0
0.5  
0
-50  
0
50 100 150 200 250 300 350 400 450  
Time (ms)  
-50  
0
50 100 150 200 250 300 350 400 450  
Time (ms)  
D063  
D062  
CIN = open, IOUT = 500 mA, COUT = 10 µF  
CIN = open, IOUT = 1 mA, COUT = 1 µF  
6-52. LP5912-3.3 Inrush Current  
6-51. LP5912-3.3 Inrush Current  
5
1.5  
VEN (V)  
VOUT (V)  
IIN (A)  
4.5  
1.35  
1.2  
4
3.5  
3
1.05  
0.9  
2.5  
2
0.75  
0.6  
1.5  
1
0.45  
0.3  
0.5  
0
0.15  
0
-50  
0
50 100 150 200 250 300 350 400 450  
Time (ms)  
D064  
CIN = open, IOUT = 1 mA, COUT = 10 µF  
6-53. LP5912-3.3 Inrush Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LP5912-EP  
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LP5912-EP is a low-noise, high PSRR, low-dropout regulator (LDO) capable of sourcing a 500-mA load.  
The LP5912-EP can operate down to a 1.6-V input voltage and a 0.8-V output voltage. With this combination of  
low noise, high PSRR, and low output voltage, the device is designed to power a multitude of loads from noise-  
sensitive communication components to battery-powered systems.  
The LP5912-EP contains several features, as shown in the Functional Block Diagram:  
Internal output resistor divider feedback  
Small size and low-noise internal protection circuit current limit  
Reverse current protection  
Current limit and inrush current protection  
Thermal shutdown  
Output auto discharge for fast turnoff  
Power-good output, with a fixed 140-µs typical delay  
7.2 Functional Block Diagram  
Current  
Limit  
IN  
OUT  
RAD  
100  
45 kꢀ  
VIN  
EA  
Output  
Discharge  
+
VBG  
t
PG  
EN  
Control  
EN  
140-µs  
DELAY  
3 Mꢀ  
GND  
7.3 Feature Description  
7.3.1 Enable (EN)  
The LP5912-EP enable (EN) pin is internally held low by a 3-Mresistor to GND. The EN pin voltage must be  
higher than the VEN(ON) threshold to ensure that the device is fully enabled under all operating conditions. The  
EN pin voltage must be lower than the VEN(OFF) threshold to ensure that the device is fully disabled and the  
automatic output discharge is activated.  
When the device is disabled the output stage is disabled, the PG output pin is low, and the output automatic  
discharge is on.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LP5912-EP  
 
 
 
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
7.3.2 Output Automatic Discharge (RAD  
)
The LP5912-EP output employs an internal 100-(typical) pulldown resistance to discharge the output when the  
EN pin is low. If the LP5912-EP EN pin is low (the device is off) and the OUT pin is held high by a secondary  
supply, current flows from the secondary supply through the automatic discharge pulldown resistor to ground.  
7.3.3 Reverse Current Protection (IRO  
)
The LP5912-EP input is protected against reverse current when the output voltage is higher than the input  
voltage. In the event that extra output capacitance is used at the output, a power-down transient at the input  
normally causes a large reverse current through a conventional regulator. The LP5912-EP includes a reverse  
voltage detector that trips when VIN drops below VOUT, shutting off the regulator and opening the p-channel  
metal-oxide-semiconductor field effect transistor (PMOS) body diode connection, preventing any reverse current  
from the OUT pin from flowing to the IN pin.  
If the LP5912-EP EN pin is low (the LP5912-EP is off) and the OUT pin is held high by a secondary supply,  
current flows from the secondary supply through the automatic discharge pulldown resistor to ground. This  
scenario is not reverse current, but is instead automatic discharge pulldown current.  
Reverse current (IRO) is measured at the IN pin.  
7.3.4 Internal Current Limit (ISC  
)
The internal current limit circuit protects the LDO against high-load current faults or shorting events. The LDO is  
not designed to operate continuously at the ISC current limit. During a current-limit event, the LDO sources  
constant current. Therefore, the output voltage falls when load impedance decreases. If a current limit occurs  
and the resulting output voltage is low, excessive power may be dissipated across the LDO, resulting in a  
thermal shutdown of the output.  
7.3.5 Thermal Overload Protection (TSD  
)
Thermal shutdown disables the output when the junction temperature rises to approximately 160°C, which  
allows the device to cool. When the junction temperature cools to approximately 145°C, the output circuitry  
enables. Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit  
may cycle on and off. This thermal cycling limits the dissipation of the regulator, thus protecting the regulator  
from damage as a result of overheating.  
7.3.6 Power-Good Output (PG)  
The LP5912-EP has a power-good function that works by toggling the state of the PG output pin. When the  
output voltage falls below the PG threshold voltage (PGLTH), the PG pin open-drain output engages (low  
impedance to GND). When the output voltage rises above the PG threshold voltage (PGVHTH), the PG pin  
becomes high impedance. By connecting a pullup resistor to an external supply, any downstream device can  
receive PG as a logic signal. Make sure that the external pullup supply voltage results in a valid logic signal for  
the receiving device or devices. Use a pullup resistor from 10 kto 100 kfor best results.  
The input supply, VIN, must be no less than the minimum operating voltage of 1.6 V to ensure that the PG pin  
output status is valid. The PG pin output status is undefined when VIN is less than 1.6 V.  
In the power-good function, the PG output pin being pulled high is typically delayed 140 µs after the output  
voltage rises above the PGHTH threshold voltage. If the output voltage rises above the PGHTH threshold and then  
falls below the PGLTH threshold voltage, the PG pin falls immediately with no delay time.  
If the PG function is not needed, the pullup resistor can be eliminated, and the PG pin can be either connected  
to ground or left floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LP5912-EP  
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Enable (EN)  
The LP5912-EP EN pin is internally held low by a 3-Mresistor to GND. The EN pin voltage must be higher  
than the VEN(ON) threshold to ensure that the device is fully enabled under all operating conditions. When the EN  
pin voltage is lower than the VEN(OFF) threshold, the output stage is disabled, the PG pin goes low, and the  
output automatic discharge circuit is activated. Any charge on the OUT pin is discharged to ground through the  
internal 100-(typical) output auto discharge pulldown resistance.  
7.4.2 Minimum Operating Input Voltage (VIN)  
The LP5912-EP does not include a dedicated undervoltage lockout (UVLO) circuit. The device internal circuit is  
not fully functional until VIN is at least 1.6 V. The output voltage is not regulated until VIN has reached at least the  
greater of 1.6 V or (VOUT + VDO).  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LP5912-EP  
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
8 Applications and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The LP5912-EP is designed to meet the requirements of RF and analog circuits by providing low noise, high  
PSRR, low quiescent current, and low line or load transient response. The device offers excellent noise  
performance without the need for a noise bypass capacitor and is stable with input and output capacitors with a  
value of 1 μF. The device delivers this performance in an industry standard WSON package, which for this  
device is specified with an operating junction temperature (TJ) of 55°C to +125°C.  
8.2 Typical Application  
8-1 shows a typical application circuit for the LP5912-EP. Input and output capacitances may need to be  
increased above the 1-μF minimum for some applications.  
VIN  
VOUT  
IN  
OUT  
NC  
CIN  
LP5912-EP  
COUT  
GND  
RPG  
VEN  
VPG  
EN  
PG  
8-1. LP5912-EP Typical Application  
8.2.1 Design Requirements  
Use the parameters listed in 8-1 for typical RF linear regulator applications.  
8-1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
1.6 V to 6.5 V  
0.8 V to 5.5 V  
500 mA  
Output voltage  
Output current  
Output capacitor  
1 µF to 10 µF  
5 mto 500 mΩ  
Input and output capacitor ESR range  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LP5912-EP  
 
 
 
 
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 External Capacitors  
As with most low-dropout regulators, the LP5912-EP requires external capacitors for regulator stability. The  
device is specifically designed for portable applications requiring minimum board space and the smallest  
possible components. These capacitors must be correctly selected for good performance.  
8.2.2.2 Input Capacitor  
An input capacitor is required for stability. The input capacitor must be at least equal to, or greater than, the  
output capacitor for good load-transient performance. A capacitor of at least 1 µF must be connected between  
the LP5912-EP IN pin and ground for stable operation over full load-current range. Having more output than  
input capacitance is acceptable, as long as the input is at least 1 µF.  
The input capacitor must be located no more than 1 cm from the input pin and returned to a clean analog  
ground. Any good-quality ceramic, tantalum, or film capacitor can be used at the input.  
备注  
To ensure stable operation, good PCB practices must be employed to minimize ground impedance  
and keep input inductance low. If these conditions cannot be met, or if long leads connect the battery  
or other power source to the LP5912-EP, increase the value of the input capacitor to at least 10 µF.  
Also, tantalum capacitors can suffer catastrophic failures resulting from surge current when connected  
to a low-impedance source of power (such as a battery or a very large capacitor). If a tantalum  
capacitor is used at the input, the capacitor must be verified by the manufacturer to have a surge  
current rating sufficient for the application. There are no requirements for the equivalent series  
resistance (ESR) on the input capacitor, but tolerance and temperature coefficient must be considered  
when selecting the capacitor to ensure the capacitance remains at 1 μF ±30% over the entire  
operating temperature range.  
8.2.2.3 Output Capacitor  
The LP5912-EP is designed specifically to work with a very small ceramic output capacitor, typically 1 µF. Use a  
ceramic capacitor (dielectric types of X5R or X7R) in the 1-µF to 10-µF range, and with an ESR from 5 mto  
500 m, in the LP5912-EP application circuit. For this device, the output capacitor must be connected between  
the OUT pin with a good connection back to the GND pin.  
Tantalum or film capacitors can also be used at the device output, VOUT, but these components are not as  
attractive for reasons of size and cost (see the Capacitor Characteristics section).  
The output capacitor must meet the requirement for the minimum value of capacitance and have an ESR value  
that is within the range of 5 mto 500 mfor stability.  
8.2.2.4 Capacitor Characteristics  
The LP5912-EP is designed to work with ceramic capacitors on the input and output to take advantage of the  
benefits they offer. For capacitance values in the range of 1 µF to 10 µF, ceramic capacitors are the smallest,  
least expensive, and have the lowest ESR values, thus making them best for eliminating high-frequency noise.  
The ESR of a typical 1-µF ceramic capacitor is in the range of 20 mto 40 m, which easily meets the ESR  
stability requirement for the LP5912-EP.  
The preferred choice for temperature coefficient in a ceramic capacitor is X7R. This type of capacitor is the most  
stable and holds the capacitance within ±15% over the temperature range. Tantalum capacitors are less  
desirable than ceramic for use as output capacitors because they are more expensive when comparing  
equivalent capacitance and voltage ratings in the 1-µF to 10-µF range.  
Another important consideration is that tantalum capacitors have higher ESR values than equivalent size  
ceramics. Although a tantalum capacitor can possibly be found with an ESR value within the stable range, low  
ESR tantalum capacitors are offered with larger capacitance (which means bigger and more costly) than a  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LP5912-EP  
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
ceramic capacitor with the same ESR value. Also, the ESR of a typical tantalum increases at approximately 2:1  
as the temperature goes from 25°C down to 40°C, so some guard band must be allowed.  
8.2.2.5 Remote Capacitor Operation  
To ensure stability, the LP5912-EP requires at least a 1-μF capacitor at the OUT pin. There is no strict  
requirement for the location of the output capacitor in regards to the LDO OUT pin; the output capacitor can be  
located 5 cm to 10 cm away from the LDO. This flexibility means that there is no need to have a special  
capacitor close to the OUT pin if there are already respective capacitors in the system. This placement flexibility  
requires that the output capacitor be connected directly between the LP5912-EP OUT pin and GND pin with no  
vias. This remote capacitor feature can help designers minimize the number of capacitors in the system.  
As a good design practice, keep the wiring parasitic inductance at a minimum. Thus, use traces that are as wide  
as possible from the LDO output to the capacitors, keeping the LDO output trace layer as close to ground layer  
as possible and avoiding vias on the path. If there is a need to use vias, implement as many vias as possible  
between the connection layers. Keep parasitic wiring inductance less than 35 nH. For applications with fast load  
transients, use an input capacitor equal to (or larger than) the sum of the capacitance at the output node for the  
best load-transient performance.  
8.2.2.6 Power Dissipation  
Knowing the device power dissipation and proper sizing of the thermal plane connected to the tab or pad is  
critical to ensuring reliable operation. Device power dissipation can be calculated with 方程式 1, and depends on  
input voltage, output voltage, and load conditions of the design.  
PD(MAX) = (VIN(MAX) VOUT) × IOUT  
(1)  
Power dissipation can be minimized, and greater efficiency can be achieved, by using the lowest available  
voltage drop option that is greater than the dropout voltage (VDO). However, keep in mind that higher voltage  
drops result in better dynamic (that is, PSRR and transient) performance.  
On the WSON (DRV) package, the primary conduction path for heat is through the exposed power pad into the  
PCB. To ensure the device does not overheat, connect the exposed pad (through thermal vias) to an internal  
ground plane with an appropriate amount of copper PCB area.  
According to 方程式 2 or 方程式 3, power dissipation and junction temperature are most often related by the  
junction-to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of  
the ambient air (TA):  
TJ(MAX) = TA(MAX) + (RθJA × PD(MAX)  
)
(2)  
(3)  
PD = (TJ(MAX) TA(MAX)) / RθJA  
Unfortunately, this RθJA is highly dependent on the heat-spreading capability of the particular PCB design, and  
therefore varies according to the total copper area, copper weight, and location of the planes. The RθJA  
recorded in the Thermal Information table is determined by the specific EIA/JEDEC JESD51-7 standard for PCB  
and copper-spreading area, and is to be used only as a relative measure of package thermal performance. For a  
well-designed thermal layout, RθJA is actually the sum of the package junction-to-case (bottom) thermal  
resistance (RθJCbot) plus the thermal resistance contribution by the PCB copper area acting as a heat sink.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LP5912-EP  
 
 
 
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
8.2.2.7 Estimating Junction Temperature  
The EIA/JEDEC standard recommends the use of psi (Ψ) thermal characteristics to estimate the junction  
temperatures of surface-mount devices on a typical PCB board application. These characteristics are not true  
thermal resistance values, but rather package-specific thermal characteristics that offer practical and relative  
means of estimating junction temperatures. These psi metrics are determined to be significantly independent of  
copper-spreading area. The key thermal characteristics (ΨJT and ΨJB) are used in accordance with 方程式 4 or  
方程5 and are given in the Thermal Information table.  
TJ(MAX) = TTOP + (ΨJT × PD(MAX)  
)
(4)  
where:  
PD(MAX) is explained in 方程3  
TTOP is the temperature measured at the center-top of the device package  
TJ(MAX) = TBOARD + (ΨJB × PD(MAX)  
)
(5)  
where:  
PD(MAX) is explained in the Power Dissipation section  
TBOARD is the PCB surface temperature measured 1 mm from the device package and centered on the  
package edge  
For more information about the thermal characteristics ΨJT and ΨJB, see the Semiconductor and IC Package  
Thermal Metrics application note; for more information about measuring TTOP and TBOARD, see the Using New  
Thermal Metrics application note; and for more information about the EIA/JEDEC JESD51 PCB used for  
validating RθJA, see the Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs  
application note. These application notes are available at www.ti.com.  
8.2.3 Application Curves  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VEN (V)  
VOUT (V)  
VPG (V)  
VEN (V)  
VOUT (V)  
VPG (V)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
5
10  
15  
20  
25  
Time (µs)  
D029  
D030  
VIN = 2.3 V, IOUT = 500 mA, COUT = 1 µF  
VIN = 2.3 V, IOUT = 500 mA (3.6 Ω), COUT = 1 µF  
8-2. LP5912-1.8 VOUT vs VEN (On)  
8-3. LP5912-1.8 VOUT vs VEN (Off)  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LP5912-EP  
 
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
8.3 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 1.6 V to 6.5 V. The input supply must  
be well regulated and free of spurious noise. To ensure that the LP5912-EP output voltage is well regulated and  
dynamic performance is optimum, the input supply must be at least VOUT + 0.5 V. A minimum capacitor value of  
1 µF is required to be within 1 cm of the IN pin.  
8.4 Layout  
8.4.1 Layout Guidelines  
The dynamic performance of the LP5912-EP is dependent on the layout of the PCB. PCB layout practices that  
are adequate for typical LDOs can degrade the PSRR, noise, or transient performance of the LP5912-EP.  
Best performance is achieved by placing CIN and COUT on the same side of the PCB as the LP5912-EP, and as  
close to the package as practical. The ground connections for CIN and COUT must route back to the LP5912-EP  
ground pin using as wide and as short of a copper trace as practical.  
Connections using long trace lengths, narrow trace widths, or connections through vias must be avoided. Such  
connections add parasitic inductances and resistance that result in inferior performance, especially during  
transient conditions.  
8.4.2 Layout Example  
Thermal Vias (2)  
IN  
1
2
3
6
5
4
OUT  
NC  
COUT  
CIN  
GND  
EN  
PG  
RPG  
8-4. LP5912-EP Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LP5912-EP  
 
 
LP5912-EP  
ZHCSOW8 JULY 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For additional information, see the following:  
Texas Instruments, AN1187 Leadless Leadframe Package (LLP) application note  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
Texas Instruments, Using New Thermal Metrics application report  
Texas Instruments, Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs  
application report  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LP5912-EP  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP591209MDRVREP  
LP591212MDRVREP  
LP591218MDRVREP  
LP591225MDRVREP  
LP591230MDRVREP  
LP591233MDRVREP  
LP591250MDRVREP  
V62/22601-04XE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
6
6
6
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
2VC5  
12MB  
12MD  
2VD5  
12MG  
12MF  
2VE5  
12MB  
12MD  
2VD5  
12MG  
12MF  
2VE5  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
V62/22601-06XE  
V62/22601-07XE  
V62/22601-09XE  
V62/22601-10XE  
V62/22601-11XE  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LP5912-EP :  
Catalog : LP5912  
Automotive : LP5912-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY