LP8720TLX/NOPB [TI]

一个降压直流/直流转换器和五个线性稳压器,具有 I2C 兼容接口 | YZR | 20 | -40 to 125;
LP8720TLX/NOPB
型号: LP8720TLX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

一个降压直流/直流转换器和五个线性稳压器,具有 I2C 兼容接口 | YZR | 20 | -40 to 125

转换器 稳压器
文件: 总27页 (文件大小:421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP8720  
www.ti.com  
SNVS575B JULY 2008REVISED MAY 2013  
LP8720 One Step-Down DC-DC and Five Linear Regulators with I2C-Compatible Interface  
Check for Samples: LP8720  
1
FEATURES  
APPLICATIONS  
2
5 Low Noise LDO’s for up to 300 mA  
Cellular Handsets  
One High-Efficiency Synchronous Magnetic  
Buck Regulator, IOUT 400 mA  
Portable Hand-Held Products  
DESCRIPTION  
High Efficiency PFM Mode @Low IOUT  
Auto Mode PFM/PWM Switch  
The LP8720 is a multi-function, programmable Power  
Management Unit, optimized for sub block power  
requirement solutions. This device integrates one  
highly efficient 400 mA step-down DC-DC converter  
with Dynamic Voltage Scale (DVS), five low-noise low  
dropout (LDO) voltage regulators, and a 400 KHz I2C-  
compatible interface to allow a host controller access  
to the internal control registers of the LP8720.  
Additionally, the LP8720 features programmable  
power-on sequencing.  
Low Inductance 2.2 µH @ 2 MHz Clock  
Dynamic Voltage Scale Control  
I2C-Compatible Interface for the Controlling of  
Internal Registers  
20-Bump 2.5 x 2.0 mm DSBGA Package  
KEY SPECIFICATIONS  
Programmable VOUT from 0.8V to 2.3V on DC-  
DC  
LDO regulators provide high PSRR and low noise  
ideally suited for supplying power to both analog and  
digital loads. The package will be the smallest 2.5  
mm x 2.0 mm 20-bump DSBGA package.  
Automatic Soft Start on DC-DC  
200 mV Typ Dropout Voltage at 300 mA on  
LDO’s  
2% (Typ) Output Voltage Accuracy on LDO’s  
Typical Application Diagram  
V
BATT  
2.2 µF  
2.2 µF  
2.2 µF  
V
BATT  
VINB  
LDO1  
1.2V-3.3V  
@300 mA  
10 µF  
LDO1  
D-type  
FB  
1 µF  
SW  
V
0.8V...2.3V  
@400mA  
DD  
2.2 µH  
Buck  
LP8720  
10 µF  
GNDB  
LDO2  
1.2V-3.3V  
@300 mA  
Voltage  
LDO2  
A-type  
V
SI  
Reference  
1 µF  
Thermal  
1.5k  
1.5k  
10k  
Shutdown  
IRQ_N  
SDA  
LDO3  
1.2V-3.3V  
@300 mA  
LDO3  
A-type  
1 µF  
SCL  
DVS  
EN  
Serial Interface  
and  
LDO4  
0.8V-2.85V  
@300 mA  
Control  
LDO4  
V
BATT  
LO-type  
1 µF  
DEFSEL  
IDSEL  
V
BATT  
LDO5  
1.2V-3.3V  
@300 mA  
LDO5  
D-type  
1 µF  
GND  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008–2013, Texas Instruments Incorporated  
LP8720  
SNVS575B JULY 2008REVISED MAY 2013  
www.ti.com  
Device Pin Diagram (20-Bump DSBGA)  
Top View  
VBATT  
LDO1  
SDA  
SCL  
GNDB  
DVS  
FB  
VINB  
SW  
4
LDO2  
IRQ_N  
3
VIN1  
DEFSEL IDSEL  
EN  
2
1
LDO3  
GND  
LDO4  
VIN2  
LDO5  
A
B
C
D
E
Figure 1. Package Number YZR002011A  
LP8720 PIN DESCRIPTIONS(1)  
Description  
Pin Number  
Name  
VBATT  
VINB  
VIN1  
VIN2  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
SW  
Type  
P
A4  
E4  
A2  
D1  
B4  
A3  
A1  
C1  
E1  
E3  
D2  
D4  
B1  
C4  
Battery Input for LDO1 and all internal circuitry.  
Battery Input for Buck.  
Battery Input for LDO2 and LDO3.  
Battery Input for LDO4 and LDO5.  
LDO1 Output.  
P
P
P
A
A
LDO2 Output.  
A
LDO3 Output.  
A
LDO4 Output.  
A
LDO5 Output.  
A
Buck Output.  
FB  
A
Buck Feedback.  
GNDB  
GND  
SDA  
G
Power Ground for Buck.  
G
IC Ground.  
DI/O  
I2C-compatible Serial Interface Data Input/Output. Open Drain output, external pull up resistor is  
needed, typ 1.5 k. If not in use then hard wire to GND.  
C3  
B3  
E2  
B2  
SCL  
IRQ_N  
EN  
DI  
DO  
DI  
I2C-compatible Serial Interface Clock input. External pull-up resistor is needed, typ 1.5 k. If not  
in use then hard-wire to GND.  
Interrupt output, active LOW. Open Drain output, external pull-up resistor is needed, typ 10 k.  
If not in use then hard-wire to GND or leave floating.  
Enable. EN=LO standby. EN=HI power on. Internal pull-down resistor 500 k.  
If not in use then hard wire to VBATT.  
DEFSEL  
DI  
Control input that sets the default voltages and startup sequence. Must be hard wired to BATT  
or GND or left floating (Hi-Z) for specific application.  
When DEFSEL= VBATT then setup 1 is used for default voltages and startup sequence.  
When DEFSEL= GND then setup 2 is used for default voltages and startup sequence.  
When DEFSEL= floating (Hi-Z) setup 3 is used for default voltages and startup sequence.  
C2  
IDSEL  
DI  
Control input that sets the slave address for serial interface. Must be hard-wired to BATT or  
GND or left floating (Hi-Z) for specific application.  
When IDSEL= VBATT then slave address is 7h’7F.  
When IDSEL= floating (Hi-Z) then slave address is 7h’7C.  
When IDSEL= GND then slave address is 7h’7D.  
(1) A:Analog Pin D: Digital Pin I: Input Pin DI/O: Digital Input/Output Pin G:Ground Pin O: Output Pin P: Power Connection  
Submit Documentation Feedback  
2
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LP8720  
LP8720  
www.ti.com  
SNVS575B JULY 2008REVISED MAY 2013  
LP8720 PIN DESCRIPTIONS(1) (continued)  
Pin Number  
D3  
Name  
Type  
Description  
DVS  
DI  
Dynamic Voltage Scaling.  
When DVS=HI then Buck voltage set BUCK_V1 is in use.  
When DVS=LO then Buck voltage set BUCK_V2 is in use.  
Buck voltage set BUCK_V1 should be higher than Buck voltage set BUCK_V2.  
If not in use then hard wire to VBATT or GND.  
Device Description  
Operation Modes  
POWER-ON-RESET: After VBATT gets above POR higher threshold, the DEFSEL pin and IDSEL pin are read.  
All internal registers of LP8720 then are reset to the default values; after that the LP8720 goes to  
STANDBY mode. This process duration max is 500 µs.  
STANDBY: In STANDBY mode only serial interface is working and all other PMU functions are disabled – PMU  
is in low-power condition. In STANDBY mode the LP8720 can be (re)configured via Serial Interface.  
STARTUP: STARTUP sequence is defined by registers contents. STARTUP sequence starts:  
1) If rising edge on EN pin.  
2) After cooling down from thermal shutdown event if EN = HI.  
It is not recommended to write to LP8720 registers during startup. If doing so then current startup  
sequence may become undefined.  
IDLE: PMU will enter into IDLE mode (normal operating mode) after end of startup sequence. In IDLE mode all  
LDO’s and BUCK can be enabled/disabled via Serial Interface. Also in IDLE mode LP8720 can be  
(re)configured via Serial Interface.  
SHUTDOWN: SHUTDOWN sequence is “reverse order of startup sequence,” and this is defined by registers  
contents. SHUTDOWN starts:  
1) If falling edge on EN pin.  
2) If temperature exceeds thermal shutdown threshold TSD +160°C.  
It is not recommended to write to LP8720 registers during SHUTDOWN. If doing so then current  
SHUTDOWN sequence may become undefined.  
POWER  
ON  
RESET  
STANDBY  
SHUT  
START UP  
DOWN  
IDLE  
Additional Functions  
SLEEP: If sum of all LDOs' load currents and BUCK load current is no higher than 5 mA , the user can put PMU  
to SLEEP. In SLEEP PMU GND current is minimized, and LDO’s and BUCK cannot be loaded with bigger  
current.  
There are 2 possibilities to use SLEEP:  
1) Control via Serial Interface.  
2) Control by DVS pin.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LP8720  
 
LP8720  
SNVS575B JULY 2008REVISED MAY 2013  
www.ti.com  
DVS: Dynamic Voltage Scaling allows using 2 voltage sets for BUCK. There are 2 possibilities to use DVS:  
1) Control via Serial Interface.  
2) Control by DVS pin.  
INTERRUPT: If interrupt is not masked, the PMU forces IRQ_N low if the temperature crosses the TSD_EW limit  
(thermal shutdown early warning) or/and a thermal shutdown event has taken place. IRQ_N is released by  
reading Interrupt register.  
Power-On and Power-Off Sequences  
SHUT DOWN sequence  
START UP sequence  
is in reverse order of START UP sequence  
Timing Code  
Timing Code  
0
1
2
3
4
5
6
7
7
6
5
4
3
2
1
0
EN  
EN  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
BUCK  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
BUCK  
Note 3  
Note 3  
t
t
S
t
S
t
t
t
t
t
t
t
t
t
t
t
t
S
BON  
S
S
S
S
S
S
S
S
S
S
S
Note 4  
Note 5  
STANDBY  
START UP  
IDLE  
SHUT DOWN  
STANDBY  
tBON 150 µs – Reference and bias turn ON. Min 100 µs max 200 µs.  
tS 25 µs – time step. Time step accuracy is defined by OSC frequency accuracy.  
(1) STARTUP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the  
registers are not rewritten via Serial Interface.  
(2) The timing showed here define time points when LDO’s and BUCK are enabled/disabled. Enabling /disabling process  
duration depends on loading conditions. Buck startup duration is 140 µs for no load. LDO startup duration is no more  
than 35 µs. For details please see LDO’s and BUCK Electrical Specifications.  
(3) LDO5 and BUCK are disabled. If LDO5 and/or BUCK are enabled via Serial Interface, and startup sequence is not  
changed via Serial interface, then LDO5 and BUCK are disabled with no delay from falling edge on EN pin.  
(4) At this time point registers 0x09 and 0x0C are reset to POR default values.  
(5) At this time point registers 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 and 0x08 are reset to POR default values.  
Figure 2. Startup Sequence if DEFSEL=VBATT or DEFSEL=Hi-Z  
4
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LP8720  
 
LP8720  
www.ti.com  
SNVS575B JULY 2008REVISED MAY 2013  
SHUT DOWN sequence  
is in reverse order of START UP sequence  
Timing Code  
START UP sequence  
Timing Code  
0
1
2
3
4
5
6
7
7
6
5
4
3
2
1
0
EN  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
BUCK  
EN  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
BUCK  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
S
BON  
S
S
S
S
S
S
S
S
S
S
S
S
S
Note 4  
Note 5  
STANDBY  
START UP  
IDLE  
SHUT DOWN  
STANDBY  
tBON 150 µs – Reference and bias turn ON. Min 100 µs max 200 µs.  
tS 25 µs – time step. Time step accuracy is defined by OSC frequency accuracy.  
(1) STARTUP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the  
registers are not rewritten via Serial Interface.  
(2) The timing showed here define time points when LDO’s and BUCK are enabled/disabled. Enabling /disabling process  
duration depends on loading conditions. Buck startup duration is 140 µs for no load. LDO startup duration is no more  
than 35 µs. For details please see LDO’s and BUCK Electrical Specifications.  
(3) LDO1, LDO2, LDO4, LDO5 and BUCK are disabled. If LDO1, LDO2, LDO4, LDO5 and/or BUCK are enabled via  
Serial Interface and startup sequence is not changed via Serial interface, then LDO1, LDO2, LDO4, LDO5 and BUCK  
are disabled with no delay from falling edge on EN-pin.  
(4) At this time point registers 0x09 and 0x0C are reset to POR default values.  
(5) At this time point registers 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 and 0x08 are reset to POR default values.  
Figure 3. Startup Sequence if DEFSEL=GND  
Table 1. Startup Sequence(1)  
DEFSEL  
Startup Sequence  
LDO1, 2, 3, 4 enable same time.  
Shutdown Sequence  
VBATT  
In reverse order of startup sequence.  
LDO5 and BUCK enable via Serial Interface.  
GND  
Hi-Z  
LDO3 enable.  
LDO1, 2, 4, 5 and BUCK enable via Serial Interface .  
In reverse order of startup sequence.  
In reverse order of startup sequence.  
LDO1, 2, 3, 4 enable same time.  
LDO5 and BUCK enable via Serial Interface.  
(1) When IDSEL= VBATT then slave address is 7h’7F.  
When IDSEL= floating (Hi-Z) then slave address is 7h’7C.  
When IDSEL= GND then slave address is 7h’7D.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LP8720  
LP8720  
SNVS575B JULY 2008REVISED MAY 2013  
www.ti.com  
Table 2. Default Output Voltages(1)(2)  
Output  
Max Current [mA]  
Default output Voltage [V] and default ON/OFF if EN=HI  
DEFSEL=VBATT  
3.0 ON  
DEFSEL=GND  
3.0 OFF  
DEFSEL=Hi-Z  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
BUCK  
300  
300  
300  
300  
300  
400  
2.8 ON  
2.6 ON  
1.8 ON  
1.2 ON  
3.3 OFF  
1.2 OFF  
2.6 ON  
3.0 OFF  
1.8 ON  
2.6 ON  
1.0 ON  
2.6 OFF  
3.3 OFF  
1.0 OFF  
3.3 OFF  
1.2/1.31) OFF  
(1) BUCK voltage is 1.2V if DVS=LO and 1.3V if DVS=HI.  
(2) When IDSEL= VBATT then slave address is 7h’7F  
When IDSEL= floating (Hi-Z) then slave address is 7h’7C  
When IDSEL= GND then slave address is 7h’7D  
Table 3. Control Register Map(1)  
POR default  
DEFSEL  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VBATT  
GND  
Hi-Z  
GENERAL_  
SETTINGS  
EXT_DVS_  
CONTROL  
EXT_SLEEP_  
CONTROL  
SHORT_  
TIMESTEP  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0000 0001 0000 0101 0000 0001  
0111 1101 1111 1101 0111 1001  
0111 0101 1111 1101 0111 0101  
0110 1100 0111 0101 0110 1100  
0110 0011 1111 1010 0110 0101  
1111 1111 1111 1111 1111 1111  
1110 0101 1110 1011 1110 1001  
0000 0101 0000 1001 0000 1001  
1000 1111 1000 0100 1000 1111  
0011 1111 0011 1111 0011 1111  
0000 0000 0000 0000 0000 0000  
0000 0000 0000 0000 0000 0000  
0000 0011 0000 0011 0000 0011  
LDO1_  
SETTINGS  
LDO1_  
T[2]  
LDO1_  
T[1]  
LDO1_  
T[0]  
LDO1_  
V[4]  
LDO1_  
V[3]  
LDO1_  
V[2]  
LDO1_  
V[1]  
LDO1_  
V[0]  
LDO2_  
SETTINGS  
LDO2_  
T[2]  
LDO2_  
T[1]  
LDO2_  
T[0]  
LDO2_  
V[4]  
LDO2_  
V[3]  
LDO2_  
V[2]  
LDO2_  
V[1]  
LDO2_  
V[0]  
LDO3_  
SETTINGS  
LDO3_  
T[2]  
LDO3_  
T[1]  
LDO3_  
T[0]  
LDO3_  
V[4]  
LDO3_  
V[3]  
LDO3_  
V[2]  
LDO3_  
V[1]  
LDO3_  
V[0]  
LDO4_  
SETTINGS  
LDO4_  
T[2]  
LDO4_  
T[1]  
LDO4_  
T[0]  
LDO4_  
V[4]  
LDO4_  
V[3]  
LDO4_  
V[2]  
LDO4_  
V[1]  
LDO4_  
V[0]  
LDO5_  
SETTINGS  
LDO5_  
T[2]  
LDO5_  
T[1]  
LDO5_  
T[0]  
LDO5_  
V[4]  
LDO5_  
V[3]  
LDO5_  
V[2]  
LDO5_  
V[1]  
LDO5_  
V[0]  
BUCK_  
SETTINGS1  
BUCK_  
T[2]  
BUCK_  
T[1]  
BUCK_  
T[0]  
BUCK_  
V1[4]  
BUCK_  
V1[3]  
BUCK_  
V1[2]  
BUCK_  
V1[1]  
BUCK_  
V1[0]  
BUCK_  
SETTINGS2  
FORCE_  
PWM  
BUCK_  
V2[4]  
BUCK_  
V2[3]  
BUCK_  
V2[2]  
BUCK_  
V2[1]  
BUCK_  
V2[0]  
ENABLE_  
BITS  
DVS_  
V2/V1  
SLEEP_  
MODE  
BUCK_  
EN  
LDO5_  
EN  
LDO4_  
EN  
LDO3_  
EN  
LDO2_  
EN  
LDO1_  
EN  
PULLDOWN_  
BITS  
APU_  
TSD  
BUCK_  
LDO5_  
LDO4_  
LDO3_  
LDO2_  
PULLDOWN  
LDO1_  
PULLDOWN  
PULLDOWN PULLDOWN PULLDOWN PULLDOWN  
STATUS_  
BITS  
TSD  
TSD_EW  
INTERRUPT_  
BITS(2)  
TSD_  
INT  
TSD_EW_  
INT  
INTERRUPT_  
MASK(2)  
TSD_  
MASK  
TSD_EW_  
MASK  
(1) When IDSEL= VBATT then slave address is 7h’7F.  
When IDSEL= floating (Hi-Z) then slave address is 7h’7C.  
When IDSEL= GND then slave address is 7h’7D.  
(2) Registers STATUS_BITS 0x0A and INTERRUPT_BITS 0x0B are read only.  
6
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LP8720  
LP8720  
www.ti.com  
SNVS575B JULY 2008REVISED MAY 2013  
Table 4. Register 0x00  
EXT_DVS_CONTROL  
1 – DVS pin control:  
DVS = HI then BUCK_V1[4:0]  
DVS = LO then BUCK_V2[4:0]  
0 – Serial interface control:  
DVS_V2/V1 = 1 then BUCK_V1[4:0]  
DVS_V2/V1 = 0 then BUCK_V2[4:0]  
EXT_SLEEP_CONTROL  
1 – DVS-pin control:  
DVS = HI then normal  
DVS = LO then SLEEP  
0 – Serial interface control:  
SLEEP_MODE = 0 then normal  
SLEEP_MODE = 1 then SLEEP  
SHORT_TIMESTEP  
1 – time step tS = 25 µs  
0 – time step tS= 50 µs  
By request time step 100 µs/200 µs is available.  
Table 5. Registers 0x01 – 0x07  
LDO1_V[4:0]  
LDO2_V[4:0]  
LDO3_V[4:0]  
LDO5_V[4:0]  
00000 – 1.20V  
00001 – 1.25V  
00010 – 1.30V  
00011 – 1.35V  
00100 – 1.40V  
00101 – 1.45V  
00110 – 1.50V  
00111 – 1.55V  
01000 – 1.60V  
01001 – 1.65V  
01010 – 1.70V  
01011 – 1.75V  
01100 – 1.80V  
01101 – 1.85V  
01110 – 1.90V  
01111 – 2.00V  
10000 – 2.10V  
11000 – 2.75V  
11001 – 2.80V  
11010 – 2.85V  
11011 – 2.90V  
11100 – 2.95V  
11101 – 3.00V  
11110 – 3.10V  
11111 – 3.30V  
10001 – 2.20V  
10010 – 2.30V  
10011 – 2.40V  
10100 – 2.50V  
10101 – 2.60V  
10110 – 2.65V  
10111 – 2.70V  
LDO4_V[4:0]  
00000 – 0.80V  
00001 – 0.85V  
00010 – 0.90V  
00011 – 1.00V  
00100 – 1.10V  
00101 – 1.20V  
00110 – 1.25V  
00111 – 1.30V  
01000 – 1.35V  
01001 – 1.40V  
01010 – 1.45V  
01011 – 1.50V  
01100 – 1.55V  
01101 – 1.60V  
01110 – 1.65V  
01111 – 1.70V  
10000 – 1.75V  
10001 – 1.80V  
10010 – 1.85V  
10011 – 1.90V  
10100 – 2.00V  
10101 – 2.10V  
10110 – 2.20V  
10111 – 2.30V  
11000 – 2.40V  
11001 – 2.50V  
11010 – 2.60V  
11011 – 2.65V  
11100 – 2.70V  
11101 – 2.75V  
11110 – 2.80V  
11111 – 2.85V  
BUCK_V1[4:0] BUCK_V2[4:0]  
0000  
01000 – 1.15V  
10000 – 1.55V  
10001 – 1.60V  
10010 – 1.65V  
10011 – 1.70V  
10100 – 1.75V  
10101 – 1.80V  
10110 – 1.85V  
10111 – 1.90V  
11000 – 1.95V  
11001 – 2.00V  
11010 – 2.05V  
11011 – 2.10V  
11100 – 2.15V  
11101 – 2.20V  
11110 – 2.25V  
11111 – 2.30V  
External resistor divider 01001 – 1.20V  
00001 – 0.80V  
00010 – 0.85V  
00011 – 0.90V  
00100 – 0.95V  
00101 – 1.00V  
00110 – 1.05V  
00111 – 1.10V  
01010 – 1.25V  
01011 – 1.30V  
01100 – 1.35V  
01101 – 1.40V  
01110 – 1.45V  
01111 – 1.50V  
BUCK_V1[4:0] should be higher (or equal) than BUCK_V2[4:0].  
LDO1_T[2:0]  
LDO2_T[2:0]  
LDO3_T[2:0]  
LDO4_T[2:0]  
LDO5_T[2:0]  
BUCK_T[2:0]  
000 – startup delay 0  
100 – startup delay = 4 * time step tS  
101 – startup delay = 5 * time step tS  
110 – startup delay = 6 * time step tS  
111 – NO startup  
001 – startup delay = 1 * time step tS  
010 – startup delay = 2 * time step tS  
011 – startup delay = 3 * time step tS  
For proper startup operation “111 NO startup” should have corresponding bit in ENABLE_BITS register  
0x08 set to 0 (disable).  
FORCE_PWM  
1 – Buck is forced to work in PWM mode  
0 – Buck works in automatic PFM/PWM selection mode.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LP8720  
LP8720  
SNVS575B JULY 2008REVISED MAY 2013  
www.ti.com  
Table 6. Register 0x08  
LDO1_EN LDO2_EN LDO3_EN In STANDBY mode  
In IDLE mode the bit has immediate  
LDO4_EN LDO5_EN BUCK_EN 1 – During next startup sequence will be enabled.  
0 – During next startup sequence will be NOT enabled.  
For proper operation output having “111 NO startup” should  
have corresponding enable bit 0 (disable).  
effect.  
1 – Enable  
0 – Disable  
SLEEP_MODE  
1 – SLEEP  
0 – normal  
This bit has effect only if EXT_SLEEP_CONTROL=0 (register 0x00)  
DVS_V2/V1  
1 – buck voltage is BUCK_V1[4:0]  
0 – buck voltage is BUCK_V2[4:0]  
This bit has effect only if EXT_DVS_CONTROL=0 (register 0x00)  
Table 7. Register 0x09  
LDO1_PULLDOWN  
LDO2_PULLDOWN  
LDO3_PULLDOWN  
LDO4_PULLDOWN  
LDO5_PULLDOWN  
BUCK_PULLDOWN  
1 – pull-down enabled  
0 – pull-down disabled  
APU_TSD  
This bit defines either to reset registers or not before LP8720 automatically starts startup sequence from  
Thermal Shutdown after cooling down if EN-pin is High.  
1 – No change to registers – registers content stays the same as before Thermal Shutdown.  
0 – Reset registers to default values before startup from Thermal Shutdown.  
Table 8. Register 0x0A (Read Only)  
TSD  
1 – device is in Thermal Shutdown.  
0 – device is NOT in Thermal Shutdown .  
TSD_EW  
1 – device temperature is higher than Thermal Shutdown Early Warning threshold.  
0 – device temperature is lower than Thermal Shutdown Early Warning threshold.  
Table 9. Register 0x0B (Read Only)  
TSD_INT  
TSD_EW  
1 – Interrupt that was caused by Thermal Shutdown  
0 – No Interrupt that was caused by Thermal Shutdown  
1 – Interrupt that was caused by Thermal Shutdown Early Warning  
0 – No Interrupt that was caused by Thermal Shutdown Early Warning  
Table 10. Register 0x0C  
TSD_MASK  
1 – TSD interrupt is masked  
0 – TSD interrupt is NOT masked  
TSD_EW_MASK  
1 – TSD_EW interrupt is masked  
0 – TSD_EW interrupt is NOT masked  
Support Functions  
Reference  
The LP8720 has an internal reference block creating all necessary references and biasing for all blocks.  
Oscillator  
There is an internal oscillator giving clock to the bucks and to logic control.  
Parameter  
Typ  
Min  
Max  
Unit  
Oscillator frequency  
2.0  
1.9  
2.1  
MHz  
8
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LP8720  
LP8720  
www.ti.com  
SNVS575B JULY 2008REVISED MAY 2013  
Thermal Shutdown  
The Thermal Shutdown (TSD) function monitors the chip temperature to protect the chip from temperature  
damage caused eg. by excessive power dissipation. The temperature monitoring function has two threshold  
values, TSD and TSD_EW, that result in protective actions.  
When TSD_EW +125ºC is exceeded, IRQ_N is set to low, and “1” is written to the TSD_EW bit in both the  
STATUS register and in INTERRUPT register.  
If the temperature exceeds TSD +160ºC, then PMU initiates Emergency Shutdown.  
The POWER-UP operation after Thermal Shutdown can be initiated only after the chip has cooled down to the  
+115ºC threshold.  
Parameter  
Typ  
160  
125  
10  
Unit  
°C  
TSD(1)  
TSD_EW(1)  
TSD_EW Hysteresis(1)  
°C  
°C  
(1) Ensured by design.  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
Absolute Maximum Ratings(1)(2)(3)  
VBATT = VINB, VBATT  
-0.3V to +6V  
-0.3V to VBATT+0.15V, max 6V  
-0.3V to VBATT+0.3V, max 6V  
150ºC  
VIN1, VIN2  
All other pins  
Junction Temperature (TJ-MAX)  
Storage Temperature  
-40 to 150ºC  
(4)  
Maximum Continuous Power Dissipation, PD-MAX  
1.75 W  
2 kV HBM  
ESD(5)  
200V MM  
(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which  
operation of the device is specified. Operating Ratings do not imply ensured performance limits. For specified performance limits and  
associated test conditions, see the Electrical Characteristics tables.  
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.  
(3) All voltages are with respect to the potential at the GND pin.  
(4) The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using the formula P = (TJ –  
TA)/θJA, (eq. 1) where TJ is the junction temperature, TA is the ambient temperature, and θJA is the junction-to-ambient thermal  
resistance. The 1.75-W rating appearing under Absolute Maximum Ratings results from substituting the Absolute Maximum junction  
temperature, 150ºC for TJ, 70ºC for TA, and 45°C/W for θJA. More power can be dissipated safely at ambient temperatures below 70°C.  
Less power can be dissipated safely at ambient temperatures above 70°C. The Absolute Maximum power dissipation can be increased  
by 22 mW for each degree below 70°C, and it must be de-rated by 22 mW for each degree above 70ºC.  
(5) The human-body model is 100 pF discharged through 1.5 k. The machine model is a 200-pF capacitor discharged directly into each  
pin, MIL-STD-883 3015.7.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LP8720  
LP8720  
SNVS575B JULY 2008REVISED MAY 2013  
www.ti.com  
Operating Ratings(1)(2)  
VBATT = VINB, VBATT  
2.7 to 4.5V  
2.5V to VBATT  
0V to VBATT  
-40 to 125ºC  
-40 to 85ºC  
1.2 W  
VIN1, VIN2  
All input-only pins  
Junction Temperature (TJ)  
Ambient Temperature (TA)  
Maximum Power Dissipation (TA = 70ºC)(3)  
(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which  
operation of the device is specified. Operating Ratings do not imply ensured performance limits. For specified performance limits and  
associated test conditions, see the Electrical Characteristics tables.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) Like the Absolute Maximum power dissipation, the maximum power dissipation for operation depends on the ambient temperature. The  
1.2W rating for DSBGA 20 appearing under Operating Ratings results from substituting the maximum junction temperature for operation,  
125°C, for TJ, 70°C for TA, and 45°C/W for θJA into (eg. 1) above. More power can be dissipated at ambient temperatures below 70°C.  
Less power can be dissipated at ambient temperatures above 70°C. The maximum power dissipation for operation can be increased by  
22mW for each degree below 70°C, and it must be de-rated by 22 mW for each degree above 70°C.  
Thermal Properties(1)  
Junction-to-Ambient Thermal Resistance (θJA  
)
(Jedec Standard Thermal PCB)  
45°C/W  
20-bump DSBGA package  
(1) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power  
dissipation exists, special care must be paid to thermal dissipation issues in board design.  
Current Consumption  
Unless otherwise noted, VVBATT = VVINB =VVIN1 = VVIN2 = 3.6V, GND = GNDB = 0V, CVBATT = CVIN1= CVIN2 = 2.2 µF, CVINB = 10  
µF. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the  
entire junction temperature range for operation, TJ= -40 to +125°C(1)  
Limit  
Parameter  
Test Conditions  
Typ  
Units  
Min  
Max  
IQ(STANDBY)  
IQ(SLEEP)  
Battery Standby Current  
VBATT = 3.6V  
0.7  
5
µA  
µA  
Battery Current in SLEEP  
Mode @ 0 load  
BUCK and all LDO’s enabled  
LDO1, LDO2, LDO3 and LDO4 enabled  
LDO3 enabled  
190  
270  
IQ(SLEEP)  
IQ(SLEEP)  
IQ(SLEEP)  
Battery Current in SLEEP  
Mode @ 0 load  
170  
100  
100  
µA  
µA  
µA  
Battery Current in SLEEP  
Mode @ 0 load  
150  
Battery Current in SLEEP  
Mode @ 0 load  
LDO1 and BUCK enabled  
IQ  
IQ  
IQ  
IQ  
Battery Current @ 0 load  
Battery Current @ 0 load  
Battery Current @ 0 load  
Battery Current @ 0 load  
BUCK and all LDO’s enabled  
LDO1, LDO2, LDO3 and LDO4 enabled  
LDO3 enabled  
270  
230  
120  
120  
400  
200  
µA  
µA  
µA  
µA  
LDO1 and BUCK enabled  
(1) All limits are specified. All electrical characteristics having room-temperature limits are tested during production with TJ = 25°C. All hot  
and cold limits are ensured by correlating the electrical characteristics to process and temperature variations and applying statistical  
process control.  
10  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LP8720  
LP8720  
www.ti.com  
SNVS575B JULY 2008REVISED MAY 2013  
Power-On Reset(1)  
Unless otherwise noted, VVBATT = VVINB = VVIN1 =VVIN2 = 3.6V, GND = GNDB = 0V, CVBATT =CVIN1= CVIN2=2.2 µF, CVINB = 10  
µF. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the  
(1)  
entire junction temperature range for operation, TJ= -40 to +125°C.  
Limit  
Parameter  
Test Conditions  
Typ  
Units  
Min  
Max  
VPOR_HI  
VPOR_LO  
POR higher threshold  
POR lower threshold  
VVBATT rising  
VVBATT falling(2)  
2.2  
1.4  
2.0  
2.4  
V
V
(1) All limits are specified. All electrical characteristics having room-temperature limits are tested during production with TJ = 25°C. All hot  
and cold limits are ensured by correlating the electrical characteristics to process and temperature variations and applying statistical  
process control.  
(2) Ensured by design.  
Logic and Control  
Unless otherwise noted, VVBATT = VVINB = VVIN1 = VVIN2 = 3.6V, GND=GNDB=0V, CVBATT =CVIN1= CVIN2 = 2.2 µF, CVINB = 10 µF.  
Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in boldface type apply over the entire  
junction temperature range for operation, TJ= -40 to +125°C(1)  
Limit  
Parameter  
Test Conditions  
Typ  
Units  
Min  
Max  
0.4  
Logic and Control Inputs  
VIL  
VIH  
IIL  
Input Low Level  
Input High Level  
Input Current  
EN, SCL, SDA, DVS  
V
V
EN, SCL, SDA, DVS  
All logic inputs  
1.2  
-5  
+5  
µA  
kΩ  
RPD  
Pull-Down Resistance  
From EN to GND  
550  
300  
900  
Logic and Control Outputs  
VOL  
VOH  
Output Low Level  
Output High Level  
IRQ_N, SDA, IOUT = 2 mA  
0.4  
V
IRQ_N, SDA are Open drain outputs.  
NA  
µA  
(1) All limits are specified. All electrical characteristics having room-temperature limits are tested during production with TJ = 25°C. All hot  
and cold limits are ensured by correlating the electrical characteristics to process and temperature variations and applying statistical  
process control.  
Buck Converter  
Unless otherwise noted, VVBATT = VVINB = VVIN1 = VVIN2 = 3.6V, GND = GNDB = 0V, CVBATT = CVIN1 = CVIN2 = 2.2 µF, CVINB = 10  
µF. Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in boldface type apply over the  
entire junction temperature range for operation, TJ= -40 to +125°C(1)(2)  
Limit  
Parameter  
Test Conditions  
Typ  
Units  
Min  
Max  
0.515  
1.236  
VFB  
Feedback Voltage  
3.0V VIN 4.5V external resistor divider  
0.5  
1.2  
0.485  
1.164  
V
V
VBUCK  
VVOUT,PFM  
Output Voltage, PWM Mode 3.0V VIN 4.5V  
Output Voltage regulation in See(3)  
PFM mode relative to  
1.5%  
regulation in PWM mode  
VOUT  
Line Regulation  
3.0V VIN 4.5V  
IOUT = 10 mA  
0.14  
0.09  
900  
%/V  
%/mA  
mA  
VOUT  
Load Regulation  
100mA IOUT 300mA  
ILIM_PWM  
Switch Peak Current Limit  
PWM Mode @ 400 mA  
3.0V VIN 4.5V  
500  
RDSON(P)  
RDSON(N)  
P channel FET on resistance VIN = 3.6V, ID = 100 mA  
N channel FET on resistance  
310  
160  
500  
300  
mΩ  
mΩ  
(1) All limits are specified. All electrical characteristics having room-temperature limits are tested during production with TJ = 25°C. All hot  
and cold limits are ensured by correlating the electrical characteristics to process and temperature variations and applying statistical  
process control.  
(2) Ensured for output voltages no less than 1.0V  
(3) Ensured by design.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LP8720  
LP8720  
SNVS575B JULY 2008REVISED MAY 2013  
www.ti.com  
Buck Converter (continued)  
Unless otherwise noted, VVBATT = VVINB = VVIN1 = VVIN2 = 3.6V, GND = GNDB = 0V, CVBATT = CVIN1 = CVIN2 = 2.2 µF, CVINB = 10  
µF. Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in boldface type apply over the  
entire junction temperature range for operation, TJ= -40 to +125°C(1)(2)  
Limit  
Parameter  
Test Conditions  
Typ  
Units  
Min  
Max  
fOSC  
Internal Oscillator Frequency PWM Mode  
1.9  
1.7  
2.1  
2.3  
2
MHz  
Efficiency  
IOUT = 5 mA, PFM-mode  
VOUT = 1.2V(3)  
88%  
IOUT = 200 mA, PWM-mode  
VOUT = 1.2V(3)  
IOUT = 0, VOUT = 1.2V(3)  
90%  
140  
TSTUP  
Startup Time  
µs  
Table 11. Buck Output Voltage Programming in Register 0x06 and 0x07  
BUCK1_Vx  
5h’00  
5h’01  
5h’02  
5h’03  
5h’04  
5h’05  
5h’06  
5h’07  
5h’08  
5h’09  
5h’0A  
5h’0B  
5h’0C  
5h’0D  
5h’0E  
5h’0F  
VOUT  
BUCK1_Vx  
5h’10  
5h’11  
5h’12  
5h’13  
5h’14  
5h’15  
5h’16  
5h’17  
5h’18  
5h’19  
5h’1A  
5h’1B  
5h’1C  
5h’1D  
5h’1E  
5h’1F  
VOUT  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
External resistor divider  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
Output Voltage Selection Using External Resistor Divider  
Buck1 output voltage can be programmed via the selection of the external feedback resistor network.  
L1  
VOUT  
SW  
2.2 µH  
C1  
RFB1  
COUT  
10 µF  
FB  
RFB2  
LP8720  
VOUT will be adjusted to make the voltage at FB equal to 0.5V. The resistor from FB to ground RFB2 should be  
around 200 kto keep the current drawn through the resistor network to a minimum but large enough that it is  
not susceptible to noise. With RFB2= 200 kand VFB at 0.5V, the current through the resistor feedback network  
will be 2.5 µA.  
12  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LP8720  
LP8720  
www.ti.com  
SNVS575B JULY 2008REVISED MAY 2013  
The formula for output voltage selection is  
©
§
R
FB1  
§
VOUT = VFB x 1+  
R
FB2  
©
VOUT – output voltage  
VFB – feedback voltage (0.5V)  
(1)  
For any out voltage greater than or equal to 0.8V a transfer function zero should be added by the addition of a  
capacitor C1. The formula for calculation of C1 is:  
1
C1 =  
(2 x S x RFB1 x 45 x 103)  
(2)  
For recommended component values see the table below.  
VOUT [V]  
1.0  
RFB1 [k]  
200  
RFB2 [k]  
200  
C1 [pF]  
18  
L [µH]  
2.2  
COUT [µF]  
10  
10  
10  
10  
10  
10  
1.2  
280  
200  
12  
2.2  
1.4  
360  
200  
10  
2.2  
1.5  
360  
180  
10  
2.2  
1.6  
440  
200  
8.2  
6.8  
2.2  
1.85  
540  
200  
2.2  
LDO’s  
There are, all together, 5 LDO’s in the LP8720 grouped as:  
A-type LDO’s (LDO2, 3)  
D-type LDO’s (LDO1, 5)  
LO-type LDO (LDO 4)  
The A-type LDO’s are optimized for supplying of analog loads and have ultra low noise (15 µVRMS) and excellent  
PSRR (70 dB) performance.  
The D-type LDO’s are optimized for good dynamic performance to supply different fast changing (digital) loads.  
The LO-type LDO is optimized for low output voltage and for good dynamic performance to supply different fast  
changing (digital) loads.  
All LDO’s can be programmed through serial interface for 32 different output voltage values, which are  
summarized in the Ouput Voltage Programming tables below.  
At the PMU power on, LDO’s start up according to the selected startup sequence, and the default voltages after  
startup sequence depend on startup setup. See section Power-On and Power-Off Sequences for details.  
For stability all LDO’s have to be connected to output an external capacitor COUT with recommended value of 1  
µF. It is important to select the type of capacitor which capacitance will in no case (voltage, temperature, etc) be  
outside of limits specified in the LDO Electrical Characteristics.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LP8720  
LP8720  
SNVS575B JULY 2008REVISED MAY 2013  
www.ti.com  
Table 12. LDO1, 2, 3 and 5 Output Voltage Programming  
Data Code LDOx_V  
5h’00  
LDOx [V]  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
2.00  
Data Code LDOx_V  
5h’10  
LDOx [V]  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.10  
3.30  
5h’01  
5h’11  
5h’02  
5h’12  
5h’03  
5h’13  
5h’04  
5h’14  
5h’05  
5h’15  
5h’06  
5h’16  
5h’07  
5h’17  
5h’08  
5h’18  
5h’09  
5h’19  
5h’0A  
5h’1A  
5h’0B  
5h’1B  
5h’0C  
5h’1C  
5h’0D  
5h’1D  
5h’0E  
5h’1E  
5h’0F  
5h’1F  
Table 13. LDO4 Output Voltage Programming  
Data Code LDO4_V  
5h’00  
LDO4 [V]  
0.80  
0.85  
0.90  
1.00  
1.10  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
Data Code LDO4_V  
5h’10  
LDO4 [V]  
1.75  
1.80  
1.85  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
5h’01  
5h’11  
5h’02  
5h’12  
5h’03  
5h’13  
5h’04  
5h’14  
5h’05  
5h’15  
5h’06  
5h’16  
5h’07  
5h’17  
5h’08  
5h’18  
5h’09  
5h’19  
5h’0A  
5h’1A  
5h’0B  
5h’1B  
5h’0C  
5h’1C  
5h’0D  
5h’1D  
5h’0E  
5h’1E  
5h’0F  
5h’1F  
14  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LP8720  
LP8720  
www.ti.com  
SNVS575B JULY 2008REVISED MAY 2013  
A-Type LDO Electrical Characteristics  
Unless otherwise noted, VVBATT = VVINB = VVIN1 = VVIN2 = 3.6V, GND = GNDB = 0V, CVBATT = CVIN1 = CVIN2 = 2.2 µF, CVINB = 10  
µF. Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in boldface type apply over the  
entire junction temperature range for operation, TJ= -40 to +125°C(1)  
Limit  
Parameter  
Test Conditions  
LDO#  
Typ  
Units  
Min  
-2%  
-3%  
Max  
+2%  
+3%  
VOUT  
Output Voltage Accuracy  
IOUT = 1mA, VOUT = 2.85V  
2,3  
ISC  
Output Current Limit  
Dropout Voltage  
Line Regulation  
VOUT = 0V  
2,3  
2,3  
600  
200  
mA  
mV  
(2)  
VDO  
IOUT = IMAX  
400  
ΔVOUT  
VOUT + 0.5V VIN 4.5V  
IOUT = IMAX  
2,3  
1
mV  
Load Regulation  
1 mA IOUT IMAX  
10Hz f 100kHz COUT = 1 µF(3)  
2,3  
2,3  
5
mV  
eN  
Output Noise Voltage  
15  
µVRMS  
PSRR  
Power Supply Ripple  
Rejection Ratio  
f = 10 kHz, COUT = 1 µF, IOUT = 20  
2,3  
70  
35  
dB  
mA(3)  
(3)  
tstartup  
Startup Time from Shutdown COUT = 1 µF, IOUT = IMAX  
Startup Transient Overshoot COUT = 1 µF, IOUT = IMAX  
2,3  
2,3  
µs  
(3)  
VTransient  
COUT  
30  
20  
mV  
External output capacitance  
for stability  
2,3  
1.0  
0.5  
µF  
(1) All limits are specified. All electrical characteristics having room-temperature limits are tested during production with TJ = 25°C. All hot  
and cold limits are ensured by correlating the electrical characteristics to process and temperature variations and applying statistical  
process control.  
(2) Dropout voltage is the input-to-output voltage difference at which the output voltage is 100mV below its nominal value. This specification  
does not apply in cases it implies operation with an input voltage below the 2.5V minimum appearing under Operating Ratings. For  
example, this specification does not apply for devices having 1.5V outputs because the specification would imply operation with an input  
voltage at or about 1.5V.  
(3) Ensured by design.  
D-Type and LO-Type LDO Electrical Characteristics  
Unless otherwise noted, VVBATT = VVINB = VVIN1 = VVIN2 = 3.6V, GND = GNDB = 0V, CVBATT = CVIN1 = CVIN2 = 2.2 µF, CVINB = 10  
µF. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the  
entire junction temperature range for operation, TJ= -40 to +125°C(1)  
Limit  
Parameter  
Test Conditions  
LDO#  
Typ  
Units  
Min  
-2%  
-3%  
-2%  
-3%  
-3%  
-4%  
Max  
+2%  
+3%  
+2%  
+3%  
+3%  
+4%  
VOUT  
Output Voltage Accuracy  
IOUT = 1mA, VOUT = 2.85V  
1,5  
4
IOUT = 1mA, VOUT = 1.20V  
IOUT = 1mA, VOUT = 2.60V  
VOUT = 0V  
4
ISC  
Output Current Limit  
Dropout Voltage  
Line Regulation  
1,4,5  
1,4,5  
600  
190  
mA  
mV  
(2)  
VDO  
IOUT = IMAX  
400  
ΔVOUT  
VOUT + 0.5V VIN 4.5V  
IOUT = IMAX  
1,4,5  
2
mV  
Load Regulation  
1mA IOUT IMAX  
10Hz f 100kHz, COUT = 1 µF(3)  
1,4,5  
1,4,5  
5
mV  
eN  
Output Noise Voltage  
100  
µVRMS  
(1) All limits are specified. All electrical characteristics having room-temperature limits are tested during production with TJ = 25°C. All hot  
and cold limits are ensured by correlating the electrical characteristics to process and temperature variations and applying statistical  
process control.  
(2) Dropout voltage is the input-to-output voltage difference at which the output voltage is 100mV below its nominal value. This specification  
does not apply in cases it implies operation with an input voltage below the 2.5V minimum appearing under Operating Ratings. For  
example, this specification does not apply for devices having 1.5V outputs because the specification would imply operation with an input  
voltage at or about 1.5V.  
(3) Ensured by design.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LP8720  
LP8720  
SNVS575B JULY 2008REVISED MAY 2013  
www.ti.com  
D-Type and LO-Type LDO Electrical Characteristics (continued)  
Unless otherwise noted, VVBATT = VVINB = VVIN1 = VVIN2 = 3.6V, GND = GNDB = 0V, CVBATT = CVIN1 = CVIN2 = 2.2 µF, CVINB = 10  
µF. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the  
entire junction temperature range for operation, TJ= -40 to +125°C(1)  
Limit  
Parameter  
Test Conditions  
LDO#  
Typ  
Units  
Min  
Max  
PSRR  
Power Supply Ripple  
Rejection Ratio  
f =10 kHz, COUT = 1 µF, IOUT = 20  
1,4,5  
55  
35  
dB  
mA(3)  
(3)  
tstartup  
Startup Time from Shutdown COUT = 1 µF, IOUT = IMAX  
1,4,5  
1,4,5  
µs  
(3)  
VTransient  
COUT  
Startup Transient Overshoot COUT = 1µF, IOUT = IMAX  
30  
20  
mV  
External output capacitance  
for stability  
1,4,5  
1.0  
0.5  
µF  
Serial Interface  
Unless otherwise noted, VVBATT = VVINB = VVIN1 = VVIN2 = 3.6V, GND = GNDB = 0V, CVBATT = CVIN1 = CVIN2 = 2.2 µF, CVINB = 10  
µF. Typical values and limits appearing in normal type apply for TJ= 25°C. Limits appearing in boldface type apply over the  
entire junction temperature range for operation, TJ= -40 to +125°C(1)(2)  
Limit  
Unit  
s
Parameter  
Test Conditions  
Typ  
Min Max  
fCLK  
Clock Frequency  
400 kHz  
tBF  
Bus-Free Time between START and STOP  
Hold Time Repeated START Condition  
CLK Low Period  
1.3  
0.6  
1.3  
0.6  
0.6  
50  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
tHOLD  
tCLK-LP  
tCLK-HP  
tSU  
CLK High Period  
Set-Up Time Repeated START Condition  
Data Hold Time  
tDATA-HOLD  
tDATA-SU  
tSU  
Data Set-Up Time  
100  
0.6  
Set-Up Time for STOP Condition  
tTRANS  
Maximum Pulse Width of Spikes that Must Be Suppressed by  
the Input Filter of Both DATA and CLK Signals  
50  
ns  
(1) All limits are specified. All electrical characteristics having room-temperature limits are tested during production with TJ = 25°C. All hot  
and cold limits are ensured by correlating the electrical characteristics to process and temperature variations and applying statistical  
process control.  
(2) Ensured by design.  
16  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LP8720  
 
LP8720  
www.ti.com  
SNVS575B JULY 2008REVISED MAY 2013  
I2C-COMPATIBLE SERIAL BUS INTERFACE  
Interface Bus Overview  
The I2C compatible synchronous serial interface provides access to the programmable functions and registers on  
the device.  
This protocol uses a two-wire interface for bi-directional communications between the IC’s connected to the bus.  
The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL). These lines should be  
connected to a positive supply, via a pull-up resistor of 1.5 k, and remain HIGH even when the bus is idle.  
Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on  
whether it generates or receives the serial clock (SCL).  
Data Transactions  
One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock  
(SCL). Consequently, throughout the clock’s high period, the data should remain stable. Any changes on the  
SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New  
data should be sent during the low SCL state. This protocol permits a single data line to transfer both  
command/control information and data using the synchronous serial clock.  
SDA  
SCL  
Data Line  
Stable:  
Data Valid  
Change  
of Data  
Allowed  
Figure 4. Bit Transfer  
Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a  
Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is  
transferred with the most significant bit first. After each byte, an Acknowledge signal must follow. The following  
sections provide further details of this process.  
Start and Stop  
The Master device on the bus always generates the Start and Stop Conditions (control codes). After a Start  
Condition is generated, the bus is considered busy and it retains this status until a certain time after a Stop  
Condition is generated. A high-to-low transition of the data line (SDA) while the clock (SCL) is high indicates a  
Start Condition. A low-to-high transition of the SDA line while the SCL is high indicates a Stop Condition.  
SDA  
SCL  
S
P
START CONDITION  
STOP CONDITION  
Figure 5. Start and Stop Conditions  
In addition to the first Start Condition, a repeated Start Condition can be generated in the middle of a transaction.  
This allows another device to be accessed, or a register read cycle.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LP8720  
LP8720  
SNVS575B JULY 2008REVISED MAY 2013  
www.ti.com  
Acknowledge Cycle  
The Acknowledge Cycle consists of two signals: the acknowledge clock pulse the master sends with each byte  
transferred, and the acknowledge signal sent by the receiving device.  
The master generates the acknowledge clock pulse on the ninth clock pulse of the byte transfer. The transmitter  
releases the SDA line (permits it to go high) to allow the receiver to send the acknowledge signal. The receiver  
must pull down the SDA line during the acknowledge clock pulse and ensure that SDA remains low during the  
high period of the clock pulse, thus signaling the correct reception of the last data byte and its readiness to  
receive the next byte.  
Transmitter Stays Off the  
Bus During the  
Acknowledgement Clock  
Data Output  
by  
Transmitter  
Data Output  
by  
Receiver  
Acknowledgement  
Signal From Receiver  
3 - 6  
SCL  
1
2
7
8
9
S
Start  
Condition  
Figure 6. Bus Acknowledge Cycle  
”Acknowledge After Every Byte” Rule  
The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge  
signal after every byte received.  
There is one exception to the “acknowledge after every byte” rule.  
When the master is the receiver, it must indicate to the transmitter an end of data by not-acknowledging  
(“negative acknowledge”) the last byte clocked out of the slave. This “negative acknowledge” still includes the  
acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.  
Addressing Transfer Formats  
Each device on the bus has a unique slave address. The LP8720 operates as a slave device. Slave address is  
selectable by IDSEL-pin.  
When IDSEL= VBATT then slave address is 7h’7F.  
When IDSEL= floating (Hi-Z) then slave address is 7h’7C.  
When IDSEL= GND then slave address is 7h’7D.  
Before any data is transmitted, the master transmits the address of the slave being addressed. The slave device  
should send an acknowledge signal on the SDA line, once it recognizes its address.  
The slave address is the first seven bits after a Start Condition. The direction of the data transfer (R/W) depends  
on the bit sent after the slave address — the eighth bit.  
When the slave address is sent, each device in the system compares this slave address with its own. If there is a  
match, the device considers itself addressed and sends an acknowledge signal. Depending upon the state of the  
R/W bit (1:read, 0:write), the device acts as a transmitter or a receiver.  
Control Register Write Cycle  
Master device generates start condition.  
Master device sends slave address (7 bits) and the data direction bit (r/w = '0').  
Slave device sends acknowledge signal if the slave address is correct.  
Master sends control register address (8 bits).  
Slave sends acknowledge signal.  
Master sends data byte to be written to the addressed register.  
18  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LP8720  
LP8720  
www.ti.com  
SNVS575B JULY 2008REVISED MAY 2013  
Slave sends acknowledge signal.  
If master will send further data bytes the control register address will be incremented by one after  
acknowledge signal.  
Write cycle ends when the master creates stop condition.  
Control Register Read Cycle  
Master device generates a start condition.  
Master device sends slave address (7 bits) and the data direction bit (r/w = '0').  
Slave device sends acknowledge signal if the slave address is correct.  
Master sends control register address (8 bits).  
Slave sends acknowledge signal.  
Master device generates repeated start condition.  
Master sends the slave address (7 bits) and the data direction bit (r/w = “1”).  
Slave sends acknowledge signal if the slave address is correct.  
Slave sends data byte from addressed register.  
If the master device sends acknowledge signal, the control register address will be incremented by one. Slave  
device sends data byte from addressed register.  
Read cycle ends when the master does not generate acknowledge signal after data byte and generates stop  
condition.  
Address Mode  
Data Read  
<Start Condition>  
<Slave Address><r/w = ‘0’>[Ack]  
<Register Addr.>[Ack]  
<Repeated Start Condition>  
<Slave Address><r/w = ‘1’>[Ack]  
[Register Data]<Ack or NAck>  
… additional reads from subsequent register address possible  
<Stop Condition>  
Data Write  
<Start Condition>  
<Slave Address><r/w = ‘0’>[Ack]  
<Register Addr.>[Ack]  
<Register Data>[Ack]  
… additional writes to subsequent register address possible  
<Stop Condition>  
< > Data from master [ ] Data from slave  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LP8720  
LP8720  
SNVS575B JULY 2008REVISED MAY 2013  
www.ti.com  
Register Read and Write Detail  
Slave Address  
(7 bits)  
Control Register Add.  
(8 bits)  
Register Data  
(8 bits)  
S
'0'  
A
A
A P  
Data transferred, byte +  
Ack  
R/W  
From Slave to Master  
From Master to Slave  
A - ACKNOWLEDGE (SDA Low)  
S - START CONDITION  
P - STOP CONDITION  
Figure 7. Register Write Format  
Slave Address  
(7 bits)  
Control Register Add.  
(8 bits)  
Slave Address  
(7 bits)  
Register Data  
(8 bits)  
A/  
NA  
S
'0'  
A
A
Sr  
'1'  
A
P
Data transferred, byte +  
Ack/NAck  
R/W  
R/W  
Direction of the transfer  
will change at this point  
A - ACKNOWLEDGE (SDA Low)  
NA - ACKNOWLEDGE (SDA High)  
S - START CONDITION  
From Slave to Master  
From Master to Slave  
Sr - REPEATED START CONDITION  
P - STOP CONDITION  
Figure 8. Register Read Format  
20  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LP8720  
 
LP8720  
www.ti.com  
SNVS575B JULY 2008REVISED MAY 2013  
REVISION HISTORY  
Changes from Revision A (May 2013) to Revision B  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 20  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LP8720  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP8720TLE/NOPB  
LP8720TLX/NOPB  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YZR  
YZR  
20  
20  
250  
RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
8720  
8720  
3000 RoHS & Green  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP8720TLE/NOPB  
LP8720TLX/NOPB  
DSBGA  
DSBGA  
YZR  
YZR  
20  
20  
250  
178.0  
178.0  
8.4  
8.4  
2.18  
2.18  
2.69  
2.69  
0.76  
0.76  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP8720TLE/NOPB  
LP8720TLX/NOPB  
DSBGA  
DSBGA  
YZR  
YZR  
20  
20  
250  
208.0  
208.0  
191.0  
191.0  
35.0  
35.0  
3000  
Pack Materials-Page 2  
MECHANICAL DATA  
YZR0020xxx  
D
0.600±0.075  
E
TLA20XXX (Rev D)  
D: Max = 2.49 mm, Min = 2.43 mm  
E: Max = 1.99 mm, Min = 1.93 mm  
4215053/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

LP8725

Power Management Unit for Application/Multimedia Processors and Sub-Systems
NSC

LP8725

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC)
TI

LP8725TLE

Power Management Unit for Application/Multimedia Processors and Sub-Systems
NSC

LP8725TLE-A

Power Management Unit for Application/Multimedia Processors and Sub-Systems
NSC

LP8725TLE-A/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30 | -40 to 85
TI

LP8725TLE-B

Power Management Unit for Application/Multimedia Processors and Sub-Systems
NSC

LP8725TLE-B/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30 | -40 to 85
TI

LP8725TLE-C/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30 | -40 to 85
TI

LP8725TLE-D

Power Management Unit for Application/Multimedia Processors and Sub-Systems
NSC

LP8725TLE-D/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30
TI

LP8725TLE/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30 | -40 to 85
TI

LP8725TLX

Power Management Unit for Application/Multimedia Processors and Sub-Systems
NSC