LP8732-Q1_V01 [TI]

LP8732xx-Q1 Dual High-Current Buck Converter and Dual Linear Regulator;
LP8732-Q1_V01
型号: LP8732-Q1_V01
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LP8732xx-Q1 Dual High-Current Buck Converter and Dual Linear Regulator

文件: 总85页 (文件大小:6563K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
LP8732xx-Q1 Dual High-Current Buck Converter and Dual Linear Regulator  
1 Features  
2 Applications  
1
AEC-Q100 Qualified With the Following Results:  
Automotive Head Unit and Cluster  
Automotive Camera Module  
Surround View System ECU  
Radar System ECU  
Device Temperature Grade 1: –40°C to  
+125°C Ambient Operating Temperature  
Input Voltage: 2.8 V to 5.5 V  
Two High-Efficiency Step-Down DC/DC  
Converters:  
3 Description  
The LP8732xx-Q1 is designed to meet the power  
Output Voltage: 0.7 V to 3.36 V  
management  
requirements  
in  
automotive  
Maximum Output Current 2 A per phase  
applications. The device has two step-down DC/DC  
converters which can be configured as single dual-  
phase regulator or two single-phase regulators and  
two linear regulators and general-purpose digital-  
output signals. The device is controlled by an I2C-  
compatible serial interface and by an enable signal.  
Auto Phase Adding/Shedding and Force Multi-  
Phase Operations in Dual-Phase Configuration  
Remote Differential Feedback Voltage Sensing  
in Dual-Phase Configuration  
Programmable Output-Voltage Slew Rate  
From 0.5 mV/µs to 10 mV/µs  
The automatic PWM/PFM (AUTO mode) operation  
together with the automatic phase adding/shedding  
maximizes gives high efficiency over a wide output-  
current range. The LP8732xx-Q1 supports remote  
2-MHz Switching Frequency  
Spread-Spectrum Mode and Phase  
Interleaving for EMI Reduction  
voltage  
sensing  
(differential  
in  
dual-phase  
configuration) to compensate IR drop between the  
regulator output and the point-of-load (POL), thus  
improving the accuracy of the output voltage. In  
addition, the switching clock can be forced to PWM  
mode and also synchronized to an external clock to  
minimize the disturbances.  
Two Linear Regulators:  
Input Voltage: 2.5 V to 5.5 V  
Output Voltage: 0.8 V to 3.3 V  
Maximum Output Current 300 mA  
Configurable General-Purpose Output Signals  
(GPO, GPO2)  
The LP8732xx-Q1 device supports programmable  
start-up and shutdown delays and sequences  
including GPO signals synchronized to the enable  
signal. During start-up and voltage change, the  
device controls the output slew rate to minimize  
output voltage overshoot and the in-rush current.  
Interrupt Function With Programmable Masking  
Programmable Power-Good Signal (PGOOD)  
Output Short-Circuit and Overload Protection  
Overtemperature Warning and Protection  
Overvoltage Protection (OVP) and Undervoltage  
Lockout (UVLO)  
Device Information  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
28-pin, 5-mm × 5-mm VQFN Package with  
Wettable Flanks  
LP8732xx-Q1  
VQFN (28)  
5.00 mm × 5.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Simplified Schematic  
Configurable  
multi-phase  
VIN  
DC/DC Efficiency vs Output Current (Dual-Phase)  
VIN_B0  
VIN_B1  
SW_B0  
SW_B1  
100  
1 œ 2  
Outputs  
VIN_LDO0  
VIN_LDO1  
90  
80  
FB_B0  
FB_B1  
VANA  
SDA  
SCL  
nINT  
EN  
VOUT_LDO0  
VOUT_LDO1  
70  
VOUT_LDO0  
VOUT_LDO1  
CLKIN (GPO2)  
GPO  
1PH, Vin=3.7V, Vout=1.0V  
1PH, Vin=3.7V, Vout=2.5V  
60  
PGOOD  
2PH, Vin=3.7V, Vout=1.0V  
2PH, Vin=3.7V, Vout=2.5V  
50  
GNDs  
0.025  
0.1  
1
4
Output Current (A)  
D421  
Copyright © 2018, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Table of Contents  
7.5 Programming........................................................... 39  
7.6 Register Maps......................................................... 42  
Application and Implementation ........................ 60  
8.1 Application Information............................................ 60  
8.2 Typical Applications ................................................ 60  
Power Supply Recommendations...................... 73  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 I2C Serial Bus Timing Parameters.......................... 12  
6.7 Typical Characteristics............................................ 14  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description ................................................ 17  
7.4 Device Functional Modes........................................ 38  
8
9
10 Layout................................................................... 73  
10.1 Layout Guidelines ................................................. 73  
10.2 Layout Example .................................................... 75  
11 Device and Documentation Support ................. 76  
11.1 Device Support...................................................... 76  
11.2 Receiving Notification of Documentation Updates 76  
11.3 Community Resources.......................................... 76  
11.4 Trademarks........................................................... 76  
11.5 Electrostatic Discharge Caution............................ 76  
11.6 Glossary................................................................ 76  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 76  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
September 2018  
*
Initial release  
2
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
 
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
5 Pin Configuration and Functions  
RHD Package  
28-Pin VQFN With Thermal Pad  
Top View  
21  
20  
19  
18  
17  
16  
15  
SW_B0  
SW_B0  
VIN_B0  
VIN_B0  
GPO  
SW_B1  
SW_B1  
VIN_B1  
VIN_B1  
CLKIN  
22  
23  
24  
25  
26  
27  
28  
14  
13  
12  
11  
10  
9
THERMAL PAD  
PGOOD  
VIN_LDO0  
nINT  
VIN_LDO1  
8
1
2
3
4
5
6
7
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NUMBER  
NAME  
1
2
VOUT_LDO0  
FB_B0  
P/O  
A
LDO0 output. If LDO0 is not used, leave the pin floating.  
Output voltage feedback (positive) for Buck 0  
Output voltage feedback (positive) for Buck 1 in two single-phase configuration / Output ground  
feedback (negative) for Buck 0 in dual-phase configuration  
3
FB_B1  
A
4
5
AGND  
VANA  
G
Ground  
P/I  
Supply voltage for analog and digital blocks. Must be connected to same node with VIN_Bx.  
Programmable enable signal for regulators and GPOs. If the pin is not used, leave the pin  
floating.  
6
EN  
D/I  
7
8
9
VOUT_LDO1  
VIN_LDO1  
nINT  
P/O  
P/I  
LDO1 output. If LDO1 is not used, leave the pin floating.  
Power input for LDO1. If LDO1 is not used, connect the pin to VANA.  
Open-drain interrupt output. Active LOW. If the pin is not used, connect the pin to ground.  
D/O  
External clock input. Alternative function is general-purpose digital output (GPO2). If the pin is not  
used, leave the pin floating.  
10  
CLKIN  
D/I/O  
P/I  
Input for Buck 1. The separate power pins VIN_Bx are not connected together internally -  
VIN_Bx pins must be connected together in the application and be locally bypassed.  
11, 12  
VIN_B1  
13, 14  
15, 16  
SW_B1  
P/O  
P/G  
Buck 1 switch node. If the Buck 1 is not used, leave the pin floating.  
Power ground for Buck 1  
PGND_B1  
Serial interface clock input for I2C access. Connect a pullup resistor. If the I2C interface is not  
used, connect the pin to Ground.  
17  
SCL  
D/I  
Serial interface data input and output for I2C access. Connect a pullup resistor. If the I2C  
interface is not used, connect the pin to Ground.  
18  
19  
SDA  
D/I/O  
G
SGND  
Ground  
(1) A: Analog Pin, D: Digital Pin, G: Ground Pin, P: Power Pin, I: Input Pin, O: Output Pin  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NUMBER  
20, 21  
NAME  
PGND_B0  
SW_B0  
P/G  
P/O  
Power ground for Buck 0  
Buck 0 switch node. If the Buck 0 is not used, leave the pin floating.  
22, 23  
Input for Buck 0. The separate power pins VIN_Bx are not connected together internally -  
VIN_Bx pins must be connected together in the application and be locally bypassed.  
24, 25  
VIN_B0  
P/I  
26  
27  
28  
GPO  
D/O  
D/O  
P/I  
General-purpose digital output. If the pin is not used, leave the pin floating.  
Power-good indication signal. If the pin is not used, leave the pin floating.  
Power input for LDO0. If LDO0 is not used, connect the pin to VANA.  
PGOOD  
VIN_LDO0  
Thermal  
Pad  
Connect to PCB ground plane using multiple vias for good thermal performance.  
4
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
Voltage on power connections (must use the same  
VIN_Bx, VANA  
input supply)  
6
6
V
V
V
VIN_LDOx  
Voltage on power connections  
(VIN_Bx + 0.3 V) with 6-V  
maximum  
SW_Bx  
Voltage on buck switch nodes  
(VANA + 0.3 V) with 6-V  
maximum  
FB_Bx  
Voltage on buck voltage sense nodes  
–0.3  
V
(VIN_LDOx + 0.3 V) with 6-V  
maximum  
VOUT_LDOx  
Voltage on LDO output  
-0.3  
–0.3  
–0.3  
V
V
V
SDA, SCL, nINT, EN  
Voltage on logic pins (input or output pins)  
Voltage on logic pins (input or output pins)  
6
PGOOD, GPO, CLKIN  
(GPO2)  
(VANA + 0.3 V) with 6-V  
maximum  
TJ-MAX  
Tstg  
Junction temperature  
Storage temperature  
40  
150  
150  
260  
–65  
°C  
Maximum lead temperature (soldering, 10 seconds)  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM)  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM)  
Corner pins (1, 7, 8, 14,  
15, 21, 22, 28)  
±750  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
INPUT VOLTAGE  
Voltage on power connections (must use the same input  
VIN_Bx, VANA  
supply)  
2.8  
5.5  
V
VIN_LDOx  
EN, nINT  
Voltage on LDO inputs  
2.5  
0
5.5  
5.5  
V
V
Voltage on logic pins (input or output pins)  
Voltage on logic pins (input pin)  
0
VANA with 5.5-V  
maximum  
CLKIN  
V
V
V
PGOOD, GPO, GPO2  
Voltage on logic pins (output pins)  
0
0
VANA  
Voltage on I2C interface, Standard (100 kHz), Fast (400  
kHz), Fast+ (1 MHz), and High-Speed (3.4 MHz) Modes  
1.95  
SCL, SDA  
Voltage on I2C interface, Standard (100 kHz), Fast (400  
kHz), and Fast+ (1 MHz) Modes  
VANA with 3.6-V  
maximum  
0
V
TEMPERATURE  
TJ  
Junction temperature  
Ambient temperature  
40  
40  
140  
125  
°C  
°C  
TA  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
 
 
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
6.4 Thermal Information  
LP8732xx-Q1  
THERMAL METRIC(1)  
RHD (VQFN)  
28 PINS  
36.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
26.6  
8.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
8.8  
RθJCbot  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
note.  
6.5 Electrical Characteristics  
Limits apply over the junction temperature range –40°C TJ +140°C, specified VVANA, VVIN_Bx, VVIN_LDOx, VVOUT_Bx, VVOUT_LDOx  
and IOUT range, unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = VVIN_LDOx = 3.7 V, and VOUT = 1 V,  
unless otherwise noted.(1)(2)  
PARAMETER  
.
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL COMPONENTS  
Input filtering  
capacitance for buck  
regulators  
Effective capacitance, connected from VIN_Bx  
to PGND_Bx  
CIN_BUCK  
1.9  
10  
10  
22  
22  
µF  
µF  
Output filtering  
capacitance for buck  
regulators  
COUT_BUCK  
Effective capacitance per phase  
500  
500  
Point-of-load (POL)  
capacitance for buck  
regulators  
CPOL_BUCK  
Optional POL capacitance  
µF  
µF  
µF  
COUT-  
TOTAL_BUCK  
Buck output capacitance,  
total (local and POL)  
Total output capacitance per phase  
Input filtering  
capacitance for LDO  
regulators  
Effective capacitance, connected from  
VIN_LDOx to AGND. CIN_LDO must be at least  
two times larger than COUT_LDO  
CIN_LDO  
0.6  
0.4  
2.2  
1
Output filtering  
capacitance for LDO  
regulators  
COUT_LDO  
Effective capacitance  
2.7  
10  
µF  
Input and output  
capacitor ESR  
ESRC  
[1-10] MHz  
2
mΩ  
0.47  
L
Inductor  
Inductance of the inductor  
µH  
–30%  
30%  
DCRL  
Inductor DCR  
25  
mΩ  
BUCK REGULATORS  
V(VIN_Bx)  
V(VANA)  
,
VIN_Bx and VANA pins must be connected to  
the same supply line  
Input voltage range  
Output voltage  
2.8  
0.7  
3.7  
5.5  
V
V
Programmable voltage range  
1
10  
5
3.36  
Step size, 0.7 V VOUT < 0.73 V  
Step size, 0.73 V VOUT < 1.4 V  
Step size, 1.4 V VOUT 3.36 V  
Output current, single-phase output  
Output current, dual-phase output  
VOUT_Bx  
mV  
A
20  
2(3)  
4(3)  
IOUT_Bx  
Output current  
(1) All voltage values are with respect to network ground.  
(2) Minimum (MIN) and Maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified,  
but do represent the most likely norm.  
(3) The maximum output current can be limited by the forward current limit ILIM FWD. The power dissipation inside the die increases the  
junction temperature and limits the maximum current depending of the length of the current pulse, efficiency, board and ambient  
temperature.  
6
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, specified VVANA, VVIN_Bx, VVIN_LDOx, VVOUT_Bx, VVOUT_LDOx  
and IOUT range, unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = VVIN_LDOx = 3.7 V, and VOUT = 1 V,  
unless otherwise noted.(1)(2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Input and Output voltage Minimum voltage between V(VIN_Bx) and  
difference  
0.8  
VOUT to fulfill the electrical characteristics  
Force PWM mode, VOUT < 1 V  
–20  
20  
mV  
DC output voltage  
accuracy, includes  
voltage reference, DC  
load and line regulations,  
process and temperature  
Force PWM mode, VOUT 1 V  
–2%  
2%  
PFM mode, VOUT < 1 V, the average output  
voltage level is increased by max. 20 mV  
VOUT_Bx_DC  
–20mV  
–2%  
40mV  
mV  
PFM mode, VOUT 1 V, the average output  
voltage level is increased by max. 20 mV  
2% + 20  
mV  
PWM mode  
10  
25  
Ripple voltage, single-  
phase output  
mVp-p  
PFM mode, IOUT = 10 mA  
PWM mode  
5
Ripple voltage, dual-  
phase output  
mVp-p  
%/V  
PFM mode, IOUT = 10 mA  
IOUT = 1 A  
4
DCLNR  
DCLDR  
DC line regulation  
±0.05  
DC load regulation in  
PWM mode  
VOUT_Bx = 1 V, IOUT from 0 to IOUT(max)  
0.3%  
±55  
Transient load step  
response, single-phase  
output  
IOUT = 0.1 A to 2 A, TR = TF = 400 ns, PWM  
mode  
mV  
mV  
TLDSR  
Transient load step  
response, dual-phase  
output  
IOUT = 0.1 A to 4 A, TR = TF = 400 ns, PWM  
mode  
±50  
±10  
V(VIN_Bx) stepping 3 V 3.5 V, TR = TF = 10  
µs, IOUT = IOUT(max)  
TLNSR  
Transient line response  
mV  
A
Programmable range  
1.5  
3
Forward current limit per  
phase (peak for every  
switching cycle)  
Step size  
0.5  
7.5%  
7.5%  
ILIM FWD  
Accuracy, V(VIN_Bx) 3 V, ILIM = 3 A  
Accuracy, 2.8 V V(VIN_Bx) < 3 V, ILIM = 3 A  
–5%  
20%  
20%  
–20%  
Negative current limit per  
phase  
ILIM NEG  
1.6  
2.0  
50  
3.0  
A
On-resistance, high-side Each phase, between VIN_Bx and SW_Bx  
FET  
RDS(ON) HS FET  
110  
mΩ  
pins (I = 1 A)  
On-resistance, low-side  
FET  
Each phase, between SW_Bx and PGND_Bx  
pins (I = 1 A)  
RDS(ON) LS FET  
ƒSW  
45  
2
90  
2.2  
mΩ  
Switching frequency  
PWM mode  
1.8  
MHz  
Current balancing for  
dual-phase output  
Current mismatch between phases, IOUT > 1  
mA  
10%  
From ENx to VOUT_Bx = 0.35 V (slew-rate  
control begins)  
Start-up time (soft start)  
120  
10  
µs  
SLEW_RATEx[2:0] = 010, COUT-TOTAL_BUCK  
80 µF per phase  
<
<
<
SLEW_RATEx[2:0] = 011, COUT-TOTAL_BUCK  
130 µF per phase  
7.5  
SLEW_RATEx[2:0] = 100, COUT-TOTAL_BUCK  
250 µF per phase  
3.8  
Output voltage slew-  
rate(4)  
–15%  
15% mV/µs  
SLEW_RATEx[2:0] = 101, COUT-TOTAL_BUCK  
< 500 µF per phase  
1.9  
SLEW_RATEx[2:0] = 110, COUT-TOTAL_BUCK  
< 500 µF per phase  
0.94  
0.47  
SLEW_RATEx[2:0] = 111, COUT-TOTAL_BUCK  
< 500 µF per phase  
(4) The slew-rate can be limited by the current limit (forward or negative current limit), output capacitance and load current.  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
7
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, specified VVANA, VVIN_Bx, VVIN_LDOx, VVOUT_Bx, VVOUT_LDOx  
and IOUT range, unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = VVIN_LDOx = 3.7 V, and VOUT = 1 V,  
unless otherwise noted.(1)(2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PFM-to-PWM - current  
threshold(5)  
IPFM-PWM  
IPWM-PFM  
IADD  
550  
mA  
PWM-to-PFM - current  
threshold(5)  
290  
1000  
650  
mA  
mA  
mA  
Ω
Phase adding level  
(dual-phase output)  
From 1-phase to 2-phase  
Phase shedding level  
(dual-phase output)  
ISHED  
From 2-phase to 1-phase  
Regulator disabled  
Output pulldown  
resistance  
RDIS_Bx  
150  
250  
350  
V(VIN_Bx) and V(VANA) fixed 3.7 V  
Overvoltage threshold (compared to DC  
39  
–53  
4
50  
64  
–29  
15  
Output voltage  
output voltage level, VVOUT_Bx_DC  
Undervoltage threshold (compared to DC  
output voltage level, VVOUT_Bx_DC  
)
monitoring for PGOOD  
pin and for power-good  
Interrupt  
mV  
–40  
)
Deglitch time during operation and after  
voltage change  
µs  
µs  
Gating time for PGOOD  
signal after regulator  
enable or voltage  
change  
PGOOD_MODE = 0  
800  
LDO REGULATORS  
Input voltage range for  
VIN_LDOx  
VIN_LDOx can be higher or lower than V(VANA)  
2.5  
0.8  
3.7  
0.1  
5.5  
3.3  
V
LDO power inputs  
Output voltage  
Output current  
Programmable voltage range  
Step size  
VOUT_LDOx  
IOUT_LDOx  
V
300  
200  
20  
mA  
V(VIN_LDOx) – V(VOUT_LDOx), IOUT = IOUT(max)  
Programmed output voltage is higher than  
V(VIN_LDOx)  
,
Dropout voltage  
mV  
mV  
DC output voltage  
VOUT < 1 V  
–20  
accuracy, includes  
VOUT_LDO_DC  
voltage reference, DC  
load and line regulations,  
process, temperature  
VOUT 1 V  
–2%  
2%  
DCLNR  
DCLDR  
DC line regulation  
DC load regulation  
IOUT = 1 mA  
0.1  
%/V  
IOUT = 1 mA to IOUT(max)  
0.8%  
Transient load step  
response  
TLDSR  
TLNSR  
PSRR  
IOUT = 1 mA to 300 mA, TR = TF = 1 µs  
–50/+40  
±7  
mV  
mV  
dB  
V(VIN_LDOx) stepping 3 V 3.5 V, TR = TF  
10 µs, IOUT = IOUT(max)  
=
Transient line response  
Power supply ripple  
rejection  
ƒ = 10 kHz, IOUT = IOUT(max)  
53  
Noise  
10 Hz < F < 100 kHz, IOUT = IOUT(max)  
VOUT = 0 V  
82  
500  
300  
15  
µVrms  
mA  
ISHORT(LDOx)  
LDO current limit  
Start-up time  
400  
150  
600  
350  
From enable to valid output voltage  
µs  
Slew rate during start-up  
mV/µs  
Output pulldown  
resistance  
RDIS_LDOx  
Regulator disabled  
250  
Ω
(5) The final PFM-to-PWM and PWM-to-PFM switchover current varies slightly and is dependent on the output voltage, input voltage and  
the inductor current level.  
8
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, specified VVANA, VVIN_Bx, VVIN_LDOx, VVOUT_Bx, VVOUT_LDOx  
and IOUT range, unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = VVIN_LDOx = 3.7 V, and VOUT = 1 V,  
unless otherwise noted.(1)(2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
106%  
3%  
TYP  
108%  
3.5%  
92%  
MAX  
110%  
4%  
UNIT  
Overvoltage monitoring, voltage rising  
(compared to DC output voltage level,  
VOUT_LDO_DC  
)
Overvoltage monitoring, hysteresis  
Output voltage  
monitoring for PGOOD  
pin and for power-good  
interrupt  
Undervoltage monitoring, voltage falling  
(compared to DC output voltage level,  
90%  
94%  
VOUT_LDO_DC  
)
Undervoltage monitoring, hysteresis  
3%  
4
3.5%  
4%  
15  
Deglitch time during operation and after  
voltage change  
µs  
µs  
Gating time for PGOOD  
signal after regulator  
enable or voltage  
change  
PGOOD_MODE = 0  
800  
EXTERNAL CLOCK AND PLL  
Nominal frequency  
1
24  
MHz  
µs  
fEXT_CLK  
External input clock(6)  
Nominal frequency step size  
1
Required accuracy from nominal frequency  
Delay for missing clock detection  
Delay and debounce for clock detection  
–30%  
10%  
1.8  
20  
External clock detection  
Clock change delay  
(internal to external)  
Delay from valid clock detection to use of  
external clock  
600  
300  
µs  
PLL output clock jitter  
Cycle to cycle  
ps, p-p  
PROTECTION FUNCTIONS  
Temperature rising, TDIE_WARN_LEVEL = 0  
115  
127  
125  
137  
20  
135  
147  
Thermal warning  
Temperature rising, TDIE_WARN_LEVEL = 1  
Hysteresis  
°C  
°C  
Temperature rising  
Hysteresis  
140  
150  
20  
160  
Thermal shutdown  
VANA overvoltage  
Voltage rising  
5.6  
5.45  
40  
5.8  
6.1  
V
mV  
V
VANAOVP  
Voltage falling  
5.73  
5.96  
Hysteresis  
Voltage rising  
2.51  
2.5  
2.63  
2.6  
2.75  
2.7  
VANA undervoltage  
lockout  
VANAUVLO  
Voltage falling  
Buck short-circuit  
detection  
Threshold  
Threshold  
280  
190  
360  
300  
440  
450  
mV  
mV  
LDO short-circuit  
detection  
LOAD CURRENT MEASUREMENT FOR BUCK REGULATORS  
Current measurement  
Maximum code  
range  
10.22  
A
Resolution  
LSB  
20  
mA  
Measurement accuracy  
IOUT > 1 A per phase  
<10%  
PFM mode (automatically changing to PWM  
mode for the measurement)  
45  
4
Measurement time  
µs  
PWM mode  
CURRENT CONSUMPTION  
(6) The external clock frequency must be selected so that buck switching frequency is above 1.7 MHz.  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
9
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, specified VVANA, VVIN_Bx, VVIN_LDOx, VVOUT_Bx, VVOUT_LDOx  
and IOUT range, unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = VVIN_LDOx = 3.7 V, and VOUT = 1 V,  
unless otherwise noted.(1)(2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Standby current  
consumption, regulators  
disabled  
9
µA  
Active current  
consumption, one buck  
regulator enabled in auto Single-phase output: IOUT_Bx = 0 mA, not  
58  
100  
72  
µA  
µA  
µA  
mode, internal RC  
oscillator, PGOOD  
monitoring enabled  
switching  
Active current  
consumption, two buck  
regulators enabled in  
auto mode, internal RC  
oscillator, PGOOD  
monitoring enabled  
Single-phase output: IOUT_Bx = 0 mA, not  
switching  
Active current  
consumption, one buck  
regulator enabled in auto Dual-phase output: IOUT_Bx = 0 mA, not  
mode, internal RC  
oscillator, PGOOD  
monitoring enabled  
switching  
Active current  
consumption during  
PWM operation, one  
buck regulator enabled  
Single-phase output: IOUT_Bx = 0 mA  
Single-phase output: IOUT_Bx = 0 mA  
Dual-phase output: IOUT_Bx = 0 mA  
15  
30  
15  
mA  
mA  
mA  
Active current  
consumption during  
PWM operation, two  
buck regulators enabled  
Active current  
consumption during  
PWM operation, buck  
regulator enabled  
Additional current consumption per LDO,  
IOUT_LDOx = 0 mA  
LDO regulator enabled  
86  
2
µA  
PLL and clock detector  
current consumption  
fEXT_CLK = 1 MHz, Additional current  
consumption when enabled  
mA  
DIGITAL INPUT SIGNALS EN, SCL, SDA, CLKIN  
VIL  
VIH  
Input low level  
Input high level  
0.4  
V
1.2  
10  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
80  
200  
mV  
EN/CLKIN pulldown  
resistance  
EN_PD/CLKIN_PD = 1  
500  
kΩ  
DIGITAL OUTPUT SIGNALS nINT, SDA  
nINT: ISOURCE = 2 mA  
SDA: ISOURCE = 20 mA  
0.4  
0.4  
V
V
VOL  
RP  
Output low level  
External pullup resistor  
for nINT  
To VIO Supply  
10  
kΩ  
DIGITAL OUTPUT SIGNALS PGOOD, GPO, GPO2  
VOL  
Output low level  
ISOURCE = 2 mA  
0.4  
V
V
Output high level,  
configured to push-pull  
VVANA  
VOH  
ISINK = 2 mA  
VVANA  
0.4  
10  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, specified VVANA, VVIN_Bx, VVIN_LDOx, VVOUT_Bx, VVOUT_LDOx  
and IOUT range, unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = VVIN_LDOx = 3.7 V, and VOUT = 1 V,  
unless otherwise noted.(1)(2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supply voltage for  
VPU  
external pullup resistor,  
configured to open-drain  
VVANA  
V
External pullup resistor,  
configured to open-drain  
RPU  
10  
kΩ  
ALL DIGITAL INPUTS  
ILEAK  
Input current  
All logic inputs over pin voltage range  
1  
1
µA  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
 
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
6.6 I2C Serial Bus Timing Parameters  
These specifications are ensured by design. Unless otherwise noted, VIN_Bx = 3.7 V. See (1) and Figure 1.  
MIN  
MAX  
100  
400  
1
UNIT  
Standard mode  
Fast mode  
kHz  
fSCL  
Serial clock frequency  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
3.4  
1.7  
MHz  
µs  
4.7  
1.3  
0.5  
0.16  
0.32  
4
Fast mode  
tLOW  
SCL low time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
0.6  
0.26  
0.06  
0.12  
250  
100  
50  
tHIGH  
SCL high time  
Data setup time  
Data hold time  
Fast mode+  
µs  
ns  
ns  
µs  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
tSU;DAT  
tHD;DAT  
tSU;STA  
Fast mode+  
High-speed mode  
Standard mode  
10  
10  
3450  
900  
Fast mode  
10  
Fast mode+  
10  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
70  
10  
150  
4.7  
0.6  
0.26  
0.16  
4
Setup time for a start or  
a repeated start  
condition  
Fast mode  
Fast mode+  
High-speed mode  
Standard mode  
Fast mode  
0.6  
0.26  
0.16  
4.7  
1.3  
0.5  
4
Hold time for a start or a  
repeated start condition  
tHD;STA  
µs  
µs  
µs  
Fast mode+  
High-speed mode  
Standard mode  
Bus free time between a  
stop and start condition  
tBUF  
Fast mode  
Fast mode +  
Standard mode  
Fast mode  
0.6  
0.26  
0.16  
Setup time for a stop  
condition  
tSU;STO  
Fast mode+  
High-speed mode  
Standard mode  
1000  
300  
120  
80  
Fast mode  
20  
trDA  
Rise time of SDA signal Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
ns  
10  
20  
160  
(1) Cb refers to the capacitance of one bus line.  
12 Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
I2C Serial Bus Timing Parameters (continued)  
These specifications are ensured by design. Unless otherwise noted, VIN_Bx = 3.7 V. See (1) and Figure 1.  
MIN  
MAX  
UNIT  
Standard mode  
300  
20 × (VDD / 5.5  
Fast mode  
300  
120  
V)  
tfDA  
Fall time of SDA signal  
20 × (VDD / 5.5  
V)  
ns  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
30  
80  
160  
1000  
300  
120  
40  
Fast mode  
20  
trCL  
Rise time of SCL signal Fast mode+  
High-speed mode, Cb = 100 pF  
ns  
ns  
10  
20  
10  
High-speed mode, Cb = 400 pF  
80  
Rise time of SCL signal High-speed mode, Cb = 100 pF  
after a repeated start  
80  
trCL1  
condition and after an  
acknowledge bit  
High-speed mode, Cb = 400 pF  
20  
160  
Standard mode  
Fast mode  
300  
300  
20 × (VDD / 5.5  
V)  
tfCL  
Fall time of a SCL signal  
20 × (VDD / 5.5  
V)  
ns  
Fast mode+  
120  
High-speed mode, Cb = 10 – 100 pF  
High-speed mode, Cb = 400 pF  
10  
20  
40  
80  
Capacitive load for each  
bus line (SCL and SDA)  
Cb  
400  
50  
pF  
ns  
Pulse width of spike  
suppressed (SCL and  
SDA spikes that are less  
then the indicated width  
are suppressed)  
Standard mode, fast mode, and fast mode+  
High-speed mode  
tSP  
10  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
Figure 1. I2C Timing  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
 
 
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
6.7 Typical Characteristics  
Unless otherwise specified: V(VIN_Bx) = V(VIN_LDOx) = V(VANA) = 3.7 V, VOUT_Bx = 1 V, VOUT_LDO = 1 V, TA = 25°C, L = 0.47 µH  
(TOKO DFE252012PD-R47M), COUT_BUCK = 22 µF / phase, CPOL_BUCK = 22 µF, and COUT_LDO = 1 µF.  
15  
14  
13  
12  
11  
10  
9
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
8
7
6
5
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D101  
D102  
Regulators disabled  
VOUT_Bx = 1 V  
Load = 0 mA  
Figure 2. Standby Current Consumption vs Input Voltage  
Figure 3. Active State Current Consumption vs Input  
Voltage, One Buck Regulator Enabled in PFM Mode (single-  
phase)  
24  
22  
20  
18  
16  
14  
12  
10  
8
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
6
4
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D103  
D422  
VOUT_Bx = 1 V  
Load = 0 mA  
VOUT_Bx = 1 V  
Load = 0 mA  
Figure 5. Active State Current Consumption vs Input  
Voltage, One Buck Regulator Enabled in Forced PWM Mode  
(single-phase)  
Figure 4. Active State Current Consumption vs Input  
Voltage, Regulator Enabled in PFM Mode (dual-phase)  
14  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Typical Characteristics (continued)  
Unless otherwise specified: V(VIN_Bx) = V(VIN_LDOx) = V(VANA) = 3.7 V, VOUT_Bx = 1 V, VOUT_LDO = 1 V, TA = 25°C, L = 0.47 µH  
(TOKO DFE252012PD-R47M), COUT_BUCK = 22 µF / phase, CPOL_BUCK = 22 µF, and COUT_LDO = 1 µF.  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D104  
D423  
VOUT_LDOx = 1 V  
Load = 0 mA  
'
VOUT_Bx = 1 V  
Load = 0 mA  
Figure 7. Active State Current Consumption vs Input  
Voltage, One LDO Regulator Enabled  
Figure 6. Active State Current Consumption vs Input  
Voltage, Regulator Enabled in Forced PWM Mode (dual-  
phase)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The LP8732xx-Q1 is a high-efficiency, high-performance flexible power supply device with two step-down DC/DC  
converter cores (Buck0 and Buck1) and two low-dropout (LDO) linear regulators (LDO0 and LDO1) for  
automotive applications. The cores can be configured for a two single-phase output and dual-phase single output  
configuration. Table 1 lists the output characteristics of the regulators.  
Table 1. Supply Specification  
OUTPUT  
SUPPLY  
VOUT RANGE (V)  
RESOLUTION (mV)  
IMAX MAXIMUM OUTPUT CURRENT (mA)  
10 (0.7 V to 0.73 V)  
5 (0.73 V to 1.4 V)  
20 (1.4 V to 3.36 V)  
Buck0 (single-phase)  
Buck1 (single-phase)  
Buck0/1 (dual-phase)  
0.7 to 3.36  
2000  
10 (0.7 V to 0.73 V)  
5 (0.73 V to 1.4 V)  
20 (1.4 V to 3.36 V)  
0.7 to 3.36  
0.7 to 3.36  
2000  
4000  
10 (0.7 V to 0.73 V)  
5 (0.73 V to 1.4 V)  
20 (1.4 V to 3.36 V)  
LDO0  
LDO1  
0.8 to 3.3  
0.8 to 3.3  
100  
100  
300  
300  
The LP8732xx-Q1 also supports switching clock synchronization to an external clock (CLKIN pin). The nominal  
frequency of the external clock can be from 1 MHz to 24 MHz with 1-MHz steps.  
Additional features include:  
Soft-start  
Input voltage protection:  
Undervoltage lockout  
Overvoltage protection  
Output voltage monitoring and protection:  
Overvoltage monitoring  
Undervoltage monitoring  
Overload protection  
Thermal warning  
Thermal shutdown  
The LP8732xx-Q1 has one dedicated general purpose digital output (GPO) signal. CLKIN pin can be  
programmed as a second GPO signal (GPO2) if external clock is not needed. The output type (open-drain or  
push-pull) is programmable for the GPOs.  
16  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
 
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
7.2 Functional Block Diagram  
VANA  
nINT  
Interrupts  
Buck0  
ILIM Det  
Pwrgood Det  
Enable/  
Disable,  
Delay  
Control  
Slew-Rate  
Control  
Overload and  
SC Det  
EN  
Iload ADC  
GPO  
Buck1  
ILIM Det  
Pwrgood Det  
SDA  
SCL  
I2C  
Overload and  
SC Det  
Iload ADC  
OTP  
EPROM  
Registers  
LDO0  
PGOOD  
ILIM Det  
Pwrgood Det  
Overload  
Digital  
Logic  
and SC Det  
Thermal  
Monitor  
UVLO  
LDO1  
ILIM Det  
Pwrgood Det  
Overload  
SW  
Reset  
Ref &  
Bias  
Oscillator  
and SC Det  
CLKIN (GPO2)  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 DC/DC Converters  
7.3.1.1 Overview  
The LP8732xx-Q1 includes two step-down DC/DC converter cores. The cores are designed for flexibility; most of  
the functions are programmable, thus giving a possibility to optimize the regulator operation for each application.  
The cores can be configured either for a dual-phase single output configuration or for a single-phase dual output  
configuration. The buck regulators deliver 0.7-V to 3.36-V regulated voltage rails from a 2.8-V to 5.5-V supply  
voltage.  
The LP8732xx-Q1 has the following features:  
DVS support with programmable slew rate  
Automatic mode control based on the loading (PFM or PWM mode)  
Forced PWM mode option  
Optional external clock input to minimize crosstalk  
Optional spread-spectrum technique to reduce EMI  
Phase control for optimized EMI  
Synchronous rectification  
Current mode loop with PI compensator  
Soft start  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Feature Description (continued)  
Power Good flag with maskable interrupt  
Power Good signal (PGOOD) with selectable sources  
Average output current sensing (for PFM entry, phase shedding/adding in dual-phase configuration, and load  
current measurement)  
Current balancing between the phases of the converter in dual-phase configuration  
Differential voltage sensing from point of the load in dual-phase configuration  
Dynamic phase shedding/adding, each output being phase shifted in dual-phase configuration  
The following parameters can be programmed via registers, the default values are set by OTP bits:  
Output voltage  
Forced PWM operation  
Forced dual-phase operation (forces also the PWM operation)  
Switch current limit  
Output voltage slew rate  
Enable and disable delays  
There are two modes of operation for the buck converter, depending on the output current required: pulse-width  
modulation (PWM) and pulse-frequency modulation (PFM). The converter operates in PWM mode at high load  
currents of approximately 600 mA or higher. When operating in PWM mode in dual-phase configuration the  
phases are automatically added/shedded based on the load current level. Lighter output current loads cause the  
converter to automatically switch into PFM mode for reduced current consumption when forced PWM mode is  
disabled. The forced PWM mode can be selected to maintain fixed switching frequency at all load current levels.  
A block diagram of a single core is shown in Figure 8.  
HS FET  
CURRENT  
SENSE  
VIN  
FB  
POS  
CURRENT  
LIMIT  
RAMP  
GENERATOR  
V
OUT  
-
GATE  
CONTROL  
ERROR  
AMP  
SW  
+
LOOP  
COMP  
VOLTAGE  
SETTING  
SLEW RATE  
CONTROL  
NEG  
CURRENT  
LIMIT  
POWER  
+
VDAC  
-
GOOD  
ZERO  
CROSS  
DETECT  
LS FET  
CURRENT  
SENSE  
MASTER  
INTERFACE  
PROGRAMMABLE  
PARAMETERS  
CONTROL  
BLOCK  
SLAVE  
INTERFACE  
IADC  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 8. Detailed Block Diagram Showing One Core  
7.3.1.2 Dual-Phase Operation and Phase-Adding/Shedding  
Under heavy load conditions, the dual-phase converter switches both channel 180° apart. As a result, the dual-  
phase converter has an effective ripple frequency two times greater than the switching frequency of a single  
phase. However, the parallel operation decreases the efficiency at light load conditions. In order to overcome this  
operational inefficiency, the LP8732xx-Q1 can change the number of active phases to optimize efficiency for the  
variations of the load. This is called phase adding/shedding. The concept is shown in Figure 9.  
The converter can be forced to dual-phase operation by the BUCK0_FPWM_MP bit in BUCK0_CTRL_1 register.  
If the regulator operates in forced dual-phase mode the forced PWM operation is automatically used. If the dual-  
phase operation is not forced, the number of phases are added and shedded automatically to follow the required  
output current.  
18  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
 
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Feature Description (continued)  
BEST EFFICIENCY OBTAINED WITH  
N=1  
N=2  
LOAD CURRENT  
Figure 9. Multiphase Buck Converter Efficiency vs Number of Phases. All Converters in PWM mode.  
(1)  
(UPDATE)  
Interleaving switching action of the converters and channels in a 2-phase configuration is shown in Figure 10.  
(1) Graph is not in scale and is for illustrative purposes only.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Feature Description (continued)  
IL_TOT_2PH  
IL0  
IL1  
0
90  
180  
270  
360  
450  
540  
630  
720  
PWM0  
PWM1  
SWITCHING CYCLE 360º  
0
90  
180  
270  
360  
450  
540  
630  
720  
PHASE, DEGREES  
(2)  
Figure 10. PWM Timings and Inductor Current Waveforms in 2-phase Configuration. (UPDATE)  
7.3.1.3 Transition Between PWM and PFM Modes  
PWM mode operation with phase-adding/shedding optimizes efficiency at mid to full load at the expense of light-  
load efficiency. The LP8732xx-Q1 converter operates in PWM mode at load current of about 600 mA or higher.  
At lighter load current levels the device automatically switches into PFM mode for reduced current consumption  
when forced PWM mode is disabled (AUTO mode operation). By combining the PFM and the PWM modes a  
high efficiency is achieved over a wide output-load current range.  
7.3.1.4 Dual-Phase Switcher Configurations  
The LP8732xx-Q1 device supports the following regulator configurations:  
Single dual-phase configuration, Buck0 is master (buck0 and buck1)  
Two single-phase configuration (buck0 and buck1)  
In the dual-phase configuration the control of the dual-phase regulator settings is done using the control registers  
of the master buck. The following slave registers are ignored:  
BUCK1_CTRL_1, except EN_RDIS1 bit  
BUCK1_CTRL_2, except ILIM1[2:0] bits  
BUCK1_VOUT  
BUCK1_DELAY  
interrupt bits related to the slave buck, except BUCK1_ILIM_INT  
(2) Graph is not in scale and is for illustrative purposes only.  
20 Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Feature Description (continued)  
7.3.1.5 Buck Converter Load Current Measurement  
Buck load current can be monitored via I2C registers. The monitored buck converter is selected with the  
LOAD_CURRENT_BUCK_SELECT bit in SEL_I_LOAD register. A write to this selection register starts a current  
measurement sequence. The regulator is automatically forced to PWM mode for the measurement period. The  
measurement sequence is 50 µs long, maximum.  
LP8732xx-Q1 can be configured to give out an interrupt (I_MEAS_INT bit in INT_TOP_1 register) after the load  
current measurement sequence is finished. Load current measurement interrupt can be masked with  
I_MEAS_MASK bit (TOP_MASK_1 register). The measurement result can be read from registers I_LOAD_1 and  
I_LOAD_2. Register I_LOAD_1 bits BUCK_LOAD_CURRENT[7:0] give out the LSB bits and register I_LOAD_2  
bit BUCK_LOAD_CURRENT[8] the MSB bit. The measurement result BUCK_LOAD_CURRENT[8:0] LSB is 20  
mA, and maximum code value of the measurement corresponds to 10.22 A. In dual-phase configuration the  
measured current is the total value of the master and slave phases.  
7.3.1.6 Spread-Spectrum Mode  
Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband  
frequencies (the switching frequency and its harmonics). The usual solution to reduce noise coupling is to add  
EMI-filters and shields to the boards. The LP8732xx-Q1 has register selectable spread-spectrum mode which  
minimizes the need for output filters, ferrite beads, or chokes. In spread spectrum mode, the switching frequency  
varies around the center frequency, reducing the EMI emissions radiated by the converter and associated  
passive components and PCB traces (see Figure 11). This feature is available only when internal RC oscillator is  
used (EN_PLL bit is 0 in PLL_CTRL register), and it is enabled with the EN_SPREAD_SPEC bit in CONFIG  
register, and it affects both buck cores.  
Frequency  
Where a fixed frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread  
spectrum architecture of the LP8732xx-Q1 spreads that energy over a large bandwidth.  
Figure 11. Spread-Spectrum Modulation  
7.3.2 Sync Clock Functionality  
The LP8732xx-Q1 device contains a CLKIN input to synchronize the switching clock of the buck regulators with  
the external clock. The block diagram of the clocking and PLL module is shown in Figure 12. Depending on the  
EN_PLL bit in PLL_CTRL register and the external clock availability, the external clock is selected and interrupt  
is generated as shown in Table 2. The interrupt can be masked with SYNC_CLK_MASK bit in TOP_MASK_1  
register. The nominal frequency of the external input clock is set by EXT_CLK_FREQ[4:0] bits in PLL_CTRL  
register, and it can be from 1 MHz to 24 MHz with 1-MHz steps. The external clock must be inside accuracy  
limits (–30%/+10%) of the selected frequency for valid clock detection.  
The SYNC_CLK_INT interrupt in INT_TOP_1 register is also generated in cases where the external clock is  
expected but it is not available. These cases are start-up (read OTP-to-standby transition) when EN_PLL is 1  
and Buck regulator enable (standby-to-active transition) when EN_PLL is 1.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
 
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Feature Description (continued)  
24MHz  
RC  
Oscillator  
Internal  
24MHz  
clock  
CLKIN  
Detector  
Divider  
“EXT_CLK_  
FREQ“  
Clock Select  
Logic  
CLKIN  
1MHz  
24MHz  
PLL  
“EN_PLL“  
1MHz  
Divider  
24  
Figure 12. Clock and PLL Module  
Table 2. PLL Operation  
DEVICE  
OPERATION MODE  
PLL AND CLOCK  
DETECTOR STATE  
INTERRUPT FOR  
EXTERNAL CLOCK  
EN_PLL  
CLOCK  
STANDBY  
ACTIVE  
0
0
Disabled  
Disabled  
No  
No  
Internal RC  
Internal RC  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
STANDBY  
ACTIVE  
1
1
Enabled  
Enabled  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
7.3.3 Low-Dropout Linear Regulators (LDOs)  
The LP8732xx-Q1 device includes two identical linear regulators, LDO0 and LDO1, targeting analog loads with  
low noise requirements. The LDO regulators deliver 0.8-V to 3.3-V regulated voltage rails from a 2.5-V to 5.5-V  
input voltage. Both regulators have dedicated inputs which can be higher or lower than the device system voltage  
V(VANA) to minimize the power dissipation.  
7.3.4 Power-Up  
The power-up sequence for the LP8732xx-Q1 is as follows:  
VANA (and VIN_Bx) reach minimum recommended levels (VVANA > VANAUVLO). This initiates power-on-reset  
(POR), OTP reading, and enables the system I/O interface. The I2C host should allow at least 1.2 ms before  
writing or reading data to the LP8732xx-Q1.  
Device enters standby mode.  
The host can change the default register setting by I2C if needed.  
The regulators can be enabled/disabled and the GPO signals can be controlled by EN pin and by I2C  
interface.  
Transitions between the operating modes are shown in Modes of Operation.  
7.3.5 Regulator Control  
7.3.5.1 Enabling and Disabling Regulators  
The regulators can be enabled when the device is in STANDBY or ACTIVE state. There are two ways for enable  
and disable the buck regulators:  
Using BUCKx_EN bit in BUCKx_CTRL_1 register (BUCKx_EN_PIN_CTRL bit is 0 in BUCKx_CTRL_1  
register)  
Using EN control pin (BUCKx_EN bit is 1 AND BUCKx_EN_PIN_CTRL bit is 1)  
22  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Similarly there are two ways to enable and disable the LDO regulators:  
Using LDOx_EN bit in LDOx_CTRL register (LDOx_EN_PIN_CTRL bit is 0 in LDOx_CTRL register)  
Using EN control pin (LDOx_EN bit is 1 AND LDOx_EN_PIN_CTRL bit is 1)  
If the EN control pin is used for enable and disable then the delay from the control signal rising edge to start-up  
is set by BUCKx_STARTUP_DELAY[3:0] bits in BUCKx_DELAY register and LDOx_STARTUP_DELAY[3:0] bits  
in LDOx_DELAY register and the delay from control signal falling edge to shutdown is set by  
BUCKx_SHUTDOWN_DELAY[3:0] bits in BUCKx_DELAY register and LDOx_SHUTDOWN_DELAY[3:0] bits in  
LDOx_DELAY register. The delays are valid only for EN signal transitions and not for control with I2C writings to  
BUCKx_EN and LDOx_EN bits.  
The control of the regulator (with 0-ms delays) is shown in Table 3. Dual-phase regulator is controlled with  
registers of the master phase.  
Table 3. Regulator Control  
BUCKx_EN /  
LDOx_EN  
BUCKx_EN_PIN_CTRL /  
LDOx_EN_PIN_CTRL  
BUCKx OUTPUT VOLTAGE /  
LDOx OUTPUT VOLTAGE  
EN PIN  
Enable/disable control with  
BUCKx_EN/LDOx_EN bit  
0
1
1
1
Don't Care  
Don't Care  
Don't Care  
Low  
Disabled  
0
1
1
BUCKx_VSET[7:0] / LDOx_VSET[4:0]  
Disabled  
Enable/disable control with  
EN pin  
High  
BUCKx_VSET[7:0] / LDOx_VSET[4:0]  
The buck regulator is enabled by the EN pin or by I2C writing as shown in Figure 13. The soft-start circuit limits  
the in-rush current during start-up. When the output voltage rises to a 0.35-V level, the output voltage becomes  
slew-rate controlled. If there is a short circuit at the output, and the output voltage does not increase above the  
0.35-V level in 1 ms or the output voltage drops below 0.35-V level during operation (for minimum of 1 ms), the  
regulator is disabled, and BUCKx_SC_INT interrupt in INT_BUCK register is set. When the output voltage  
reaches the Power-Good threshold level the BUCKx_PG_INT interrupt flag in INT_BUCK register is set. The  
Power-Good interrupt flag when reaching valid output voltage can be masked using BUCKx_PGR_MASK bit in  
BUCK_MASK register. The Power-Good interrupt flag can be also generated when the output voltage becomes  
invalid. The interrupt mask for invalid output voltage detection is set by BUCKx_PGF_MASK bit in BUCK_MASK  
register. A BUCKx_PG_STAT bit in BUCK_STAT register shows always the validity of the output voltage: 1  
means valid and 0 means invalid output voltage. A PGOOD_WINDOW_BUCK bit in PGOOD_CTRL_1 register  
sets the detection method for the valid buck output voltage, either undervoltage detection or undervoltage and  
overvoltage detection.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
 
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Voltage decrease because of load  
Voltage  
BUCKx_VSET[7:0]  
Powergood  
Ramp  
BUCKx_CTRL_2(BUCKx_SLEW_RATE[2:0])  
0.6V  
0.35V  
Time  
Resistive pull-down  
(if enabled)  
Soft start  
Enable  
0
0
0
1
0
0
1
BUCK_STAT(BUCKx_STAT)  
BUCK_STAT(BUCKx_PG_STAT)  
INT_BUCK(BUCKx_PG_INT)  
nINT  
1
1
0
1
1
0
0 1  
0
0
Powergood  
interrupts  
Host clears  
interrupts  
BUCK_MASK(BUCKx_PGF_MASK) = 0  
BUCK_MASK(BUCKx_PGR_MASK) = 0  
Figure 13. Buck Regulator Enable and Disable  
The LDO regulator is enabled by the EN pin or by I2C writing as shown in Figure 14. The soft-start circuit limits  
the in-rush current during start-up. Output voltage increase rate is less than 100 mV/μsec during soft-start. If  
there is a short circuit at the output, and the output voltage does not increase above the 0.3-V level in 1 ms or  
the output voltage drops below 0.3-V level during operation (for minimum of 1 ms), the regulator is disabled, and  
LDOx_SC_INT interrupt in INT_LDO register is set. When the output voltage reaches the Power-Good threshold  
level the LDOx_PG_INT interrupt flag in INT_LDO register is set. The Power-Good interrupt flag when reaching  
valid output voltage can be masked using LDOx_PGR_MASK bit in LDO_MASK register. The Power-Good  
interrupt flag can be also generated when the output voltage becomes invalid. The interrupt mask for invalid  
output voltage detection is set by LDOx_PGF_MASK bit in LDO_MASK register. A LDOx_PG_STAT bit in  
LDO_STAT register shows always the validity of the output voltage; 1 means valid, and 0 means invalid output  
voltage. A PGOOD_WINDOW_LDO bit in PGOOD_CTRL_1 register sets the detection method for the valid LDO  
output voltage, either undervoltage detection or undervoltage and overvoltage detection.  
24  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Voltage decrease because of load  
Voltage  
LDOx_VSET[4:0]  
Powergood  
Resistive pull-down  
(if enabled)  
Time  
Enable  
0
0
0
1
0
0
1
LDO_STAT(LDOx_STAT)  
LDO_STAT(LDOx_PG_STAT)  
INT_LDO(LDOx_PG_INT)  
nINT  
1
0
1
1
1
0
0 1  
0
0
Powergood  
interrupts  
Host clears  
interrupts  
LDO_MASK(LDOx_PGF_MASK) = 0  
LDO_MASK(LDOx_PGR_MASK) = 0  
Figure 14. LDO Regulator Enable and Disable  
The EN input pin have an integrated pulldown resistor. The pulldown resistor is controlled with EN_PD bit in  
CONFIG register.  
7.3.5.2 Changing Output Voltage  
The output voltage of the regulator can be changed by writing to the BUCKx_VOUT / LDOx_VOUT register. The  
voltage change for buck regulator is always slew-rate controlled, and the slew-rate is defined by the  
BUCKx_SLEW_RATE[2:0] bits in BUCKx_CTRL_2 register. During voltage change the forced PWM mode is  
used automatically. If the dual-phase operation is forced by the BUCK0_FPWM_MP bit in BUCK0_CTRL_1  
register, the regulator operates in dual-phase mode. If the dual-phase operation is not forced, the number of  
phases are added and shedded automatically to follow the required slew rate. When the programmed output  
voltage is achieved, the mode becomes the one defined by load current, and the BUCKx_FPWM bit in  
BUCKx_CTRL_1 register and by BUCK0_FPWM_MP bit.  
The voltage change and Power-Good interrupts are shown in Figure 15.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Ramp for Buck  
BUCKx_CTRL2(SLEW_RATEx[2:0])  
Voltage  
BUCKx_VSET /  
LDOx_VSET  
Powergood  
Powergood  
Time  
BUCK_STAT(BUCKx_STAT) /  
LDO_STAT(LDOx_STAT)  
1
1
0
BUCK_STAT(BUCKx_PG_STAT) /  
LDO_STAT(LDOx_PG_STAT)  
0
1
1
0
1
1
INT_BUCK(BUCKx_PG_INT) /  
INT_LDO(LDOx_PG_INT)  
0
0
nINT  
Powergood  
interrupt  
Host clears  
interrupt  
Powergood  
interrupt  
Host clears  
interrupt  
BUCK_MASK(BUCKx_PGF_MASK)=0  
BUCK_MASK(BUCKx_PGR_MASK)=0  
LDO_MASK(LDOx_PGF_MASK)=0  
LDO_MASK(LDOx_PGR_MASK)=0  
Figure 15. Regulator Output Voltage Change  
During an LDO voltage change the internal reference for the Power-Good detection is also changed. For this  
reason the Power Good may toggle during the LDO voltage change can indicate valid output even when the  
output voltage is changing. This period takes less than 100 µs and after that time the Power Good gives correct  
value.  
7.3.6 Enable and Disable Sequences  
The LP8732xx-Q1 device supports start-up and shutdown sequencing with programmable delays for different  
regulator outputs using single EN control signal. The Buck regulator is selected for delayed control with:  
BUCKx_EN = 1 in BUCKx_CTRL_1 register  
BUCKx_EN_PIN_CTRL = 1 in BUCKx_CTRL_1 register  
BUCKx_VSET[7:0] bits in BUCKx_VOUT register defines the voltage when EN pin is high  
The delay from rising edge of EN pin to the regulator enable is set by BUCKx_STARTUP_DELAY[3:0] bits in  
BUCKx_DELAY register and  
The delay from falling edge of EN pin to the regulator disable is set by BUCKx_SHUTDOWN_DELAY[3:0] bits  
in BUCKx_DELAY register.  
26  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
 
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
In the same way the LDO regulator is selected for delayed control with:  
LDOx_EN = 1 in LDOx_CTRL register  
LDOx_EN_PIN_CTRL = 1 in LDOx_CTRL register  
LDOx_VSET[4:0] bits in LDOx_VOUT register defines the voltage when EN pin is high  
The delay from rising edge of EN pin to the regulator enable is set by LDOx_STARTUP_DELAY[3:0] bits in  
LDOx_DELAY register and  
The delay from falling edge of EN pin to the regulator disable is set by LDOx_SHUTDOWN_DELAY[3:0] bits  
in LDOx_DELAY register.  
The GPO (and GPO2) digital output signals can be also controlled as a part of start-up and shutdown  
sequencing with the following settings:  
GPOx_EN = 1 in GPO_CTRL register  
GPOx_EN_PIN_CTRL = 1 in GPO_CTRL register  
The delay from rising edge of EN pin to the rising edge of GPO/GPO2 signal is set by  
GPOx_STARTUP_DELAY[3:0] bits in GPOx_DELAY register and  
The delay from falling edge of EN pin to the falling edge of GPO/GPO2 signal is set by  
GPOx_SHUTDOWN_DELAY[3:0] bits in GPOx_DELAY register.  
An example of the start-up and shutdown sequences for the buck regulators are shown in Figure 16. The start-up  
and shutdown delays for the Buck0 regulator are 1 ms and 4 ms; for the Buck1 regulator start-up and shutdown  
delays are 3 ms and 1 ms. The delay settings are used only for enable/disable control with EN signal.  
Typical sequence  
EN  
EN_BUCK0  
EN_BUCK1  
1ms  
4ms  
3ms  
1ms  
Sequence with short EN low and high periods  
EN  
Startup cntr  
0
0
0
1
0
1
2
3
4
5
6
0
Shutdown cntr  
EN_BUCK0  
EN_BUCK1  
0
1
0
1
2 0  
1
2
3
4
5
1ms  
4ms  
3ms  
1ms  
Figure 16. Start-Up and Shutdown Sequencing  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
 
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
7.3.7 Device Reset Scenarios  
There are three reset methods implemented on the LP8732xx-Q1:  
Software reset with SW_RESET bit in RESET register  
Undervoltage lockout (UVLO) reset from VANA supply  
An SW reset occurs when SW_RESET bit is written 1. The bit is automatically cleared after writing. This event  
disables all the regulators immediately, drives GPO and GPO2 signals low, resets all the register bits to the  
default values and OTP bits are loaded (see Figure 22). I2C interface is not reset during software reset.  
If VANA supply voltage falls below the UVLO threshold level then all the regulators are disabled immediately,  
GPO and GPO2 signals are driven low, and all the register bits are reset to the default values. When the VANA  
supply voltage transition above UVLO threshold level an internal POR occurs. OTP bits are loaded to the  
registers and a startup is initiated according to the register settings.  
7.3.8 Diagnosis and Protection Features  
The LP8732xx-Q1 is capable of providing four levels of protection features:  
Information of valid regulator output voltage which sets interrupt or PGOOD signal;  
Warnings for diagnosis which sets interrupt;  
Protection events which are disabling the regulators; and  
Faults which are causing the device to shutdown.  
The LP8732xx-Q1 sets the flag bits indicating what protection or warning conditions have occurred, and the nINT  
pin is pulled low. nINT is released again after a clear of flags is complete. The nINT signal stays low until all the  
pending interrupts are cleared.  
When a fault is detected or software requested reset, it is indicated by a RESET_REG_INT interrupt flag in  
INT_TOP_2 register after next start-up. If the RESET_REG_MASK is set to masked in the OTP, the interrupt is  
not generated. The mask bit change with I2C does not affect, because the RESET_REG_MASK bit is loaded  
from OTP during reset sequence.  
28  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Table 4. Summary of Interrupt Signals  
RECOVERY/INTERRUPT  
CLEAR  
EVENT  
OUTCOME  
INTERRUPT BIT  
INTERRUPT MASK BIT  
STATUS BIT  
Write 1 to BUCKx_ILIM_INT bit  
Interrupt is not cleared if current  
limit is active  
BUCK_INT  
BUCKx_ILIM_INT  
Buck current limit triggered  
LDO current limit triggered  
No effect  
BUCKx_ILIM_MASK  
BUCKx_ILIM_STAT  
Write 1 to LDOx_ILIM_INT bit  
Interrupt is not cleared if current  
limit is active  
LDO_INT  
LDOx_ILIM_INT  
No effect  
LDOx_ILIM_MASK  
N/A  
LDOx_ILIM_STAT  
N/A  
Buck short circuit (VVOUT < 0.35  
V at 1 ms after enable) or  
overload (VVOUT decreasing  
below 0.35 V during operation,  
1-ms debounce)  
BUCK_INT  
BUCKx_SC_INT  
Regulator disable  
Write 1 to BUCKx_SC_INT bit  
Write 1 to LDOx_SC_INT bit  
LDO short circuit (VVOUT < 0.3  
V at 1 ms after enable) or  
overload (VVOUT decreasing  
below 0.3 V during operation,  
1-ms debounce)  
LDO_INT  
LDOx_SC_INT  
Regulator disable  
No effect  
N/A  
N/A  
Write 1 to TDIE_WARN_INT bit  
Interrupt is not cleared if  
temperature is above thermal  
warning level  
Thermal warning  
TDIE_WARN_INT  
TDIE_WARN_MASK  
TDIE_WARN_STAT  
Write 1 to TDIE_SD_INT bit  
Interrupt is not cleared if  
temperature is above thermal  
shutdown level  
All regulators disabled  
immediately and GPO  
and GPO2 are set to low  
Thermal shutdown  
TDIE_SD_INT  
OVP_INT  
N/A  
N/A  
TDIE_SD_STAT  
OVP_STAT  
All regulators disabled  
immediately and GPO  
and GPO2 are set to low  
Write 1 to OVP_INT bit  
Interrupt is not cleared if VANA  
voltage is above VANAOVP level  
VANA overvoltage (VANAOVP  
)
Buck power good, output  
voltage becomes valid  
BUCK_INT  
BUCKx_PG_INT  
No effect  
BUCKx_PGR_MASK  
BUCKx_PGF_MASK  
LDOx_PGR_MASK  
LDOx_PGF_MASK  
PGOOD_MASK  
BUCKx_PG_STAT  
BUCKx_PG_STAT  
LDOx_PG_STAT  
LDOx_PG_STAT  
PGOOD_STAT  
SYNC_CLK_STAT  
N/A  
Write 1 to BUCKx_PG_INT bit  
Write 1 to BUCKx_PG_INT bit  
Write 1 to LDOx_PG_INT bit  
Write 1 to LDOx_PG_INT bit  
Write 1 to PGOOD_INT bit  
Write 1 to SYNC_CLK_INT bit  
Write 1 to I_MEAS_INT bit  
Buck power good, output  
voltage becomes invalid  
BUCK_INT  
BUCKx_PG_INT  
No effect  
LDO Power Good, output  
voltage becomes valid  
LDO_INT  
LDOx_PG_INT  
No effect  
LDO power good, output  
voltage becomes invalid  
LDO_INT  
LDOx_PG_INT  
No effect  
PGOOD pin changing from  
active to inactive state(1)  
No effect  
PGOOD_INT  
External clock appears or  
disappears  
No effect to regulators  
No effect  
SYNC_CLK_INT(2)  
I_MEAS_INT  
SYNC_CLK_MASK  
I_MEAS_MASK  
Load current measurement  
ready  
Immediate shutdown,  
registers reset to default  
values  
Supply voltage VANAUVLO  
triggered (VANA falling)  
N/A  
N/A  
N/A  
N/A  
N/A  
Startup, registers reset to  
default values and OTP  
bits loaded  
Supply voltage VANAUVLO  
triggered (VANA rising)  
RESET_REG_INT  
RESET_REG_MASK  
Write 1 to RESET_REG_INT bit  
Immediate shutdown  
followed by power up,  
registers reset to default  
values  
Software requested reset  
RESET_REG_INT  
RESET_REG_MASK  
N/A  
Write 1 to RESET_REG_INT bit  
(1) PGOOD_STAT bit is 1 when the PGOOD pin shows valid voltages. PGOOD_POL bit in PGOOD_CTRL_1 register affects only PGOOD  
pin polarity, not Power Good and PGOOD_INT interrupt polarity.  
(2) Interrupt is generated during clock-detector operation and if clock is not available when clock detector is enabled.  
7.3.8.1 Power-Good Information (PGOOD pin)  
In addition to the interrupt-based indication of the current limit and the Power-Good level the LP8732xx-Q1  
device supports monitoring with PGOOD signal:  
Regulator output voltage,  
Input supply overvoltage,  
Thermal warning and  
Thermal shutdown.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Regulator output voltage monitoring (not current limit monitoring) can be selected for PGOOD indication. This  
selection is individual for both buck regulators (only master buck in dual-phase configuration) and both LDO  
regulators and is set by EN_PGOOD_BUCKx bits in PGOOD_CTRL_1 register and EN_PGOOD_LDOx bits in  
PGOOD_CTRL_1 register. When a regulator is disabled, the monitoring is automatically masked to prevent it  
forcing PGOOD inactive.  
A
thermal warning can be also selected for PGOOD indication with  
EN_PGOOD_TWARN bit in PGOOD_CTRL_2 register. The monitoring from all the output rails, thermal warning  
(TDIE_WARN_STAT), input overvoltage interrupt (OVP_INT), and thermal shutdown interrupt (TDIE_SD_INT)  
are combined, and PGOOD pin is active only if all the selected sources shows a valid status.  
The type of output voltage monitoring for PGOOD signal is selected by PGOOD_WINDOW_x bits in  
PGOOD_CTRL_1 register. If the bit is 0, only undervoltage is monitored; if the bit is 1, both undervoltage and  
overvoltage are monitored.  
The polarity and the output type (push-pull or open-drain) are selected by the PGOOD_POL and PGOOD_OD  
bits in the PGOOD_CTRL_1 register.  
PGOOD is only active or asserted when all enabled power resource output voltages are within specified  
tolerance for each requested/programmed output voltage.  
PGOOD is inactive or de-asserted if any enabled power resource output voltages is outside specified tolerance  
for each requested/programmed output voltage.  
The device OTP setting selects either gated (that is, unusual) or continuous (that is, invalid) mode of operation.  
7.3.8.1.1 PGOOD Pin Gated mode  
The gated (or unusual) mode of operation is selected by setting PGOOD_MODE bit to 0 in PGOOD_CTRL_2  
register.  
For the gated mode of operation, PGOOD behaves as follows:  
PGOOD is set to active or asserted state upon exiting OTP configuration as an initial default state.  
PGOOD status is suspended or unchanged during an 800-µs gated time period, thereby gating-off the status  
indication.  
During normal power-up sequencing and requested voltage changes, PGOOD state is not changed during an  
800-µs gated time period. It typically remains active or asserted for normal conditions.  
During an abnormal power-up sequencing and requested voltage changes, PGOOD status could change to  
inactive or de-asserted after an 800-µs gated time period if any output voltage is outside of regulation range.  
Using the gated mode of operation could allow the PGOOD signal to initiate an immediate power shutdown  
sequence if the PGOOD signal is wired-OR with signal connected to EN input. This type of circuit  
configuration provides a smart PORz function for processor that eliminates the need for additional  
components to generate PORz upon start-up and to monitor voltage levels of key voltage domains.  
The fault sets corresponding fault bit 1 in PG_FAULT register. The detected fault must be cleared to continue the  
PGOOD monitoring. The overvoltage and thermal shutdown are cleared by writing 1 to the OVP_INT and  
TDIE_SD_INT interrupt bits in INT_TOP_1 register. The regulator fault is cleared by writing 1 to the  
corresponding register bit in PG_FAULT register. The interrupts can be also cleared with VANA UVLO by  
toggling the input supply. An example of PGOOD pin operation in gated mode is shown in Figure 17.  
30  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
V(VANA)  
VANA_UVLO  
State  
Shut  
down  
Read  
OTP  
Standby  
Active  
PGOOD pin  
Clear fault  
EN pin  
4ms  
Buck internal enable  
VOUT (Buck1)  
800us Timer  
Buck1 internal powergood  
LDO0 internal enable  
2ms  
800us Timer  
VOUT (LDO0)  
LDO0 internal powergood  
Figure 17. PGOOD Pin Operation in Gated Mode  
7.3.8.1.2 PGOOD Pin Continuous Mode  
The continuous (or unvalid) mode of operation is selected by setting PGOOD_MODE bit to 1 in  
PGOOD_CTRL_2 register.  
For the continuous mode of operation, PGOOD behaves as follows:  
PGOOD is set to active or asserted state upon exiting OTP configuration.  
PGOOD is set to inactive or de-asserted as soon as regulator is enabled.  
PGOOD status begins indicating output voltage regulation status immediately and continuously.  
During power-up sequencing and requested voltage changes, PGOOD will toggle between inactive or de-  
asserted while output voltages are outside of regulation ranges and active or asserted when inside of  
regulation ranges.  
The PG_FAULT register bits are latched and maintain the fault information until host clears the fault bit by writing  
1 to the bit. The PGOOD signal indicates also a thermal shutdown and input overvoltage interrupts, which are  
cleared by clearing the interrupt bits.  
When regulator voltage is transitioning from one target voltage to another, the PGOOD signal is set inactive.  
When the PGOOD signal becomes inactive, the source for the fault can be read from PG_FAULT register. If the  
invalid output voltage becomes valid again the PGOOD signal becomes active. Thus the PGOOD signal shows  
all the time if the monitored output voltages are valid. The block diagram for this operation is shown in Figure 18  
and an example of operation is shown in Figure 19.  
The PGOOD signal can be also configured so that it maintains inactive state even when the monitored outputs  
are valid but there are PG_FAULT_x bits in PG_FAULT register pending clearance. This type of operation is  
selected by setting PGFAULT_GATES_PGOOD bit to 1 in PGOOD_CTRL_2 register.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
EN_PGOOD  
_BUCK0  
Power Good  
Buck0  
Buck1  
LDO0  
LDO1  
EN_PGOOD  
_BUCK1  
Power Good  
Power Good  
EN_PGOOD  
_LDO0  
PGOOD  
Active high  
EN_PGOOD  
_LDO1  
Power Good  
EN_PGOOD  
_TWARN  
TDIE_WARN_STAT  
TDIE_SD_INT  
OVP_INT  
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. PGOOD Block Diagram (Continuous Mode)  
32  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
V(VANA)  
VANA_UVLO  
State  
Shut  
down  
Read  
OTP  
Standby  
Active  
PGOOD pin  
EN pin  
4ms  
Buck1 internal enable  
VOUT (Buck1)  
Buck1 internal powergood  
LDO0 internal enable  
2ms  
VOUT (LDO0)  
LDO0 internal powergood  
Figure 19. PGOOD Pin Operation in Continuous Mode  
7.3.8.2 Warnings for Diagnosis (Interrupt)  
7.3.8.2.1 Output Power Limit  
The Buck regulators have programmable output peak current limits. The limits are individually programmed for  
both regulators with BUCKx_ILIM[2:0] bits in BUCKx_CTRL_2 register. The current limit settings of master and  
slave regulators used for the same output voltage rail must be identical. If the load current is increased so that  
the current limit is triggered, the regulator continues to regulate to the limit current level (peak current regulation).  
The voltage may decrease if the load current is higher than limit current. If the current regulation continues for 20  
µs, the LP8732xx-Q1 device sets the BUCKx_ILIM_INT bit in INT_BUCK register and pulls the nINT pin low. The  
host processor can read BUCKx_ILIM_STAT bits in BUCK_STAT register to see if the regulator is still in peak  
current regulation mode and the interrupt is cleared by writing 1 to BUCKx_ILIM_INT bit. The current limit  
interrupt can be masked by setting BUCKx_ILIM_MASK bit in BUCK_MASK register to 1. The Buck overload  
situation is shown in Figure 20.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Regulator disabled  
by digital  
New startup if  
enable is valid  
Voltage  
VOUTx  
350mV  
Resistive  
pull-down  
1ms  
Time  
Time  
Current  
ILIMx  
20ms  
0
0
1
1
0
INT_BUCK(BUCKx_ILIM_INT)  
INT_BUCK(BUCKx_SC_INT)  
BUCK_STAT(BUCKx_STAT)  
nINT  
1
0
0
1
Host clearing the interrupt by writing to flags  
Figure 20. Buck Regulator Overload Situation  
The LDO regulators include also current limit circuitry. If the load current is increased so that the current limit is  
triggered, the regulator limits the output current to the threshold level. The voltage may decrease if the load  
current is higher than the current limit. If the current regulation continues for 20 µs, the LP8732xx-Q1 device sets  
the LDOx_ILIM_INT bit in INT_LDO register and pulls the nINT pin low. The host processor can read  
LDOx_ILIM_STAT bits in LDO_STAT register to see if the regulator is still in current regulation mode and the  
interrupt is cleared by writing 1 to LDOx_ILIM_INT bit. The current limit interrupt can be masked by setting  
LDOx_ILIM_MASK bit in LDO_MASK register to 1. The LDO overload situation is shown in Figure 21.  
34  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Regulator disabled  
by digital  
New startup if  
enable is valid  
Voltage  
VOUTx  
300 mV  
Resistive  
pull-down  
1ms  
Time  
Time  
Current  
ILIMx  
20ms  
0
0
1
1
0
INT_LDO(LDOx_ILIM_INT)  
INT_LDO(LDOx_SC_INT)  
LDO_STAT(LDOx_STAT)  
nINT  
1
0
0
1
Host clearing the interrupt by writing to flags  
Figure 21. LDO Regulator Overload Situation  
7.3.8.2.2 Thermal Warning  
The LP8732xx-Q1 device includes a protection feature against overtemperature by setting an interrupt for host  
processor. The threshold level of the thermal warning is selected with TDIE_WARN_LEVEL bit in CONFIG  
register.  
If the LP8732xx-Q1 device temperature increases above thermal warning level the device sets TDIE_WARN_INT  
bit in INT_TOP_1 register and pulls the nINT pin low. The status of the thermal warning can be read from  
TDIE_WARN_STAT bit in TOP_STAT register, and the interrupt is cleared by writing 1 to TDIE_WARN_INT bit.  
The thermal warning interrupt can be masked by setting TDIE_WARN_MASK bit in TOP_MASK_1 register to 1.  
7.3.8.3 Protection (Regulator Disable)  
If the regulator is disabled because of protection or fault (short-circuit protection, overload protection, thermal  
shutdown, input overvoltage protection, or UVLO), the output power FETs are set to high-impedance mode, and  
the output pulldown resistor is enabled (if enabled with BUCKx_RDIS_EN bit in BUCKx_CTRL_1 register and  
LDOx_RDIS_EN bit in LDOx_CTRL register). The turnoff time of the output voltage is defined by the output  
capacitance, load current, and the resistance of the integrated pull-down resistor. The pulldown resistors are  
active as long as VANA voltage is above approximately a 1.2-V level.  
7.3.8.3.1 Short-Circuit and Overload Protection  
A short-circuit protection feature allows the LP8732xx-Q1 to protect itself and external components against short  
circuit at the output or against overload during start-up. For buck and LDO regulators the fault thresholds are  
about 350 mV (buck) and 300 mV (LDO), and the protection is triggered and the regulator is disabled if the  
output voltage is below the threshold level 1 ms after the regulator is enabled.  
In a similar way the overload situation is protected during normal operation. If the output voltage falls below 0.35  
V and 0.3 V and remains below the threshold level for 1 ms the regulator is disabled.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
In buck regulator short-circuit and overload situations the BUCKx_SC_INT bit in INT_BUCK register and the  
INT_BUCKx bit in INT_TOP_1 register are set to 1, the BUCKx_STAT bit in BUCK_STAT register is set to 0, and  
the nINT signal is pulled low. In LDO regulator short-circuit and overload situations the LDOx_SC_INT bit in  
INT_LDO register and the INT_LDOx bit in INT_TOP_1 register are set to 1, the LDOx_STAT bit in LDO_STAT  
register is set to 0, and the nINT signal is pulled low. The host processor clears the interrupt by writing 1 to the  
BUCKx_SC_INT or to the LDOx_SC_INT bit. Upon clearing the interrupt the regulator makes a new start-up  
attempt if the regulator is in an enabled state.  
7.3.8.3.2 Overvoltage Protection  
The LP8732xx-Q1 device monitors the input voltage from the VANA pin in standby and active operation modes.  
If the input voltage rises above VANAOVP voltage level, all the regulators are disabled immediately (without  
switching ramp, no shutdown delays), pulldown resistors discharge the output voltages if they are enabled  
(BUCKx_RDIS_EN = 1 in BUCKx_CTRL_1 register and LDOx_RDIS_EN = 1 in LDOx_CTRL register), GPOs are  
set to logic low level, nINT signal is pulled low, OVP_INT bit in INT_TOP_1 register is set to 1, and  
BUCKx_STAT bit in BUCK_STAT register and LDOx_STAT bit in LDO_STAT register are set to 0. The host  
processor clears the interrupt by writing 1 to the OVP_INT bit. If the input voltage is above overvoltage detection  
level the interrupt is not cleared. The host can read the status of the overvoltage from the OVP_STAT bit in  
TOP_STAT register. Regulators cannot be enabled as long as the input voltage is above overvoltage detection  
level or the overvoltage interrupt is pending.  
7.3.8.3.3 Thermal Shutdown  
The LP8732xx-Q1 has an overtemperature protection function that operates to protect itself from short-term  
misuse and overload conditions. When the junction temperature exceeds around 150°C, the regulators are  
disabled immediately (without switching ramp, no shutdown delays), the TDIE_SD_INT bit in INT_TOP_1 register  
is set to 1, the nINT signal is pulled low, and the device enters STANDBY. nINT is cleared by writing 1 to the  
TDIE_SD_INT bit. If the temperature is above thermal shutdown level the interrupt is not cleared. The host can  
read the status of the thermal shutdown from the TDIE_SD_STAT bit in TOP_STAT register. Regulators cannot  
be enabled as long as the junction temperature is above thermal shutdown level or the thermal shutdown  
interrupt is pending.  
7.3.8.4 Fault (Power Down)  
7.3.8.4.1 Undervoltage Lockout  
When the input voltage falls below VANAUVLO at the VANA pin, the buck and LDO regulators are disabled  
immediately (without switching ramp, no shutdown delays), and the output capacitor is discharged using the  
pulldown resistor, and the LP8732xx-Q1 device enters SHUTDOWN. When V(VANA) voltage is above VANAUVLO  
threshold level, the device powers up to STANDBY state.  
If the reset interrupt is unmasked by default (OTP bit for RESET_REG_MASK is 0 in TOP_MASK_2 register) the  
RESET_REG_INT interrupt bit in INT_TOP_2 register indicates that the device has been in SHUTDOWN. The  
host processor must clear the interrupt by writing 1 to the RESET_REG_INT bit. If the host processor reads the  
RESET_REG_INT interrupt bit after detecting an nINT low signal, it knows that the input supply voltage has been  
below VANAUVLO level (or the host has requested reset with SW_RESET bit in RESET register), and the  
registers are reset to default values.  
7.3.9 Operation of the GPO Signals  
The LP8732xx-Q1 device supports up to 2 general purpose output signals, GPO and GPO2. The GPO2 signal is  
multiplexed with CLKIN signal. The selection between CLKIN and GPO2 pin function is set with CLKIN_PIN_SEL  
bit in CONFIG register.  
The GPO pins are configured with the following bits:  
GPOx_OD bit in GPO_CTRL register defines the type of the output, either push-pull with V(VANA) level or open  
drain  
The logic level of the GPOx pin is set by EN_GPOx bit in GPO_CTRL register.  
The control of the GPOs can be included to start-up and shutdown sequences. The GPO control for a sequence  
with EN pin is selected by GPOx_EN_PIN_CTRL bit in GPO_CTRL register. For start-up and shutdown  
sequence control see Enable and Disable Sequences.  
36  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
7.3.10 Digital Signal Filtering  
The digital signals have a debounce filtering. The signal or supply is sampled with a clock signal and a counter.  
This results as an accuracy of one clock period for the debounce window.  
Table 5. Digital Signal Filtering  
RISING EDGE  
LENGTH  
FALLING EDGE  
LENGTH  
EVENT  
SIGNAL/SUPPLY  
Enable/disable for BUCKx,  
LDOx or GPOx  
EN  
3 µs(1)  
3 µs(1)  
VANA UVLO  
VANA  
VANA  
3 µs(1) (VANA voltage rising)  
Immediate (VANA voltage falling)  
VANA overvoltage  
Thermal warning  
Thermal shutdown  
Current limit  
1 µs (VANA voltage rising)  
20 µs (VANA voltage falling)  
TDIE_WARN_INT  
TDIE_SD_INT  
VOUTx_ILIM  
20 µs  
20 µs  
20 µs  
20 µs  
20 µs  
20 µs  
FB_B0, FB_B1,  
VOUT_LDO0, VOUT_LDO1  
Overload  
1 ms  
6 µs  
N/V  
PGOOD pin and power-good  
interrupt  
PGOOD / FB_B0, FB_B1,  
VOUT_LDO0, VOUT_LDO1  
6 µs  
(1) No glitch filtering, only synchronization.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Modes of Operation  
SHUTDOWN: The V(VANA) voltage is below VANAUVLO threshold level. All switch, reference, control, and bias  
circuitry of the LP8732xx-Q1 device are turned off.  
READ OTP: The main supply voltage V(VANA) is above VANAUVLO level. The regulators are disabled, and the  
reference and bias circuitry of the LP8732xx-Q1 are enabled. The OTP bits are loaded to registers.  
STANDBY: The main supply voltage V(VANA) is above VANAUVLO level. The regulators are disabled, and the  
reference, control and bias circuitry of the LP8732xx-Q1 are enabled. All registers can be read or  
written by the host processor via the system serial interface. The regulators can be enabled if  
needed.  
ACTIVE:  
The main supply voltage V(VANA) is above VANAUVLO level. At least one regulator is enabled. All  
registers can be read or written by the host processor via the system serial interface.  
The operating modes and transitions between the modes are shown in Figure 22.  
SHUTDOWN  
V(  
< VANAUVLO  
VANA)  
V(  
> VANAUVLO  
FROM ANY STATE  
VANA)  
EXCEPT SHUTDOWN  
READ  
OTP  
REG  
RESET  
STANDBY  
2
I C RESET  
REGULATOR  
ENABLED  
REGULATOR(S)  
DISABLED  
ACTIVE  
Figure 22. Device Operation Modes  
38  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
 
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
7.5 Programming  
7.5.1 I2C-Compatible Interface  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the IC's connected  
to the bus. The two interface lines are the serial data line (SDA), and the serial clock line (SCL). Every device on  
the bus is assigned a unique address and acts as either a master or a slave depending on whether it generates  
or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor placed on the line and  
remain HIGH even when the bus is idle. The LP8732xx-Q1 supports standard mode (100 kHz), fast mode (400  
kHz), fast mode plus (1 MHz), and high-speed mode (3.4 MHz).  
7.5.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the  
state of the data line can only be changed when clock signal is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
Figure 23. Data Validity Diagram  
7.5.1.2 Start and Stop Conditions  
The LP8732xx-Q1 is controlled via an I2C-compatible interface. START and STOP conditions classify the  
beginning and end of the I2C session. A START condition is defined as SDA transitions from HIGH to LOW while  
SCL is HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The I2C  
master always generates the START and STOP conditions.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
Figure 24. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. During data  
transmission the I2C master can generate repeated START conditions. A START and a repeated START  
condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock  
signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. Figure 25 shows the  
SDA and SCL signal timing for the I2C-compatible bus. See the Figure 1 for timing values.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Programming (continued)  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
Figure 25. I2C-Compatible Timing  
7.5.1.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LP8732xx-Q1  
pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The LP8732xx-Q1 generates an  
acknowledge after each byte has been received.  
There is one exception to the acknowledge after every byte rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (negative acknowledge) the last byte clocked out  
of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master),  
but the SDA line is not pulled down.  
NOTE  
If the V(VANA) voltage is below VANAUVLO threshold level during I2C communication the  
LP8732xx-Q1 device does not drive SDA line. The ACK signal and data transfer to the  
master is disabled at that time.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE, and a 1  
indicates a READ. The second byte selects the register to which the data will be written. The third byte contains  
data to write to the selected register.  
ACK from slave  
ACK from slave  
ACK from slave  
START MSB Chip Address LSB  
W
ACK MSB Register Address LSB ACK  
MSB Data LSB  
ACK STOP  
SCL  
SDA  
START  
id = 0x60  
W
ACK  
address = 0x40  
ACK  
address 0x40 data  
ACK STOP  
Figure 26. Write Cycle (w = write; SDA = 0). Example Device Address = 0x60  
40  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Programming (continued)  
ACK from slave  
ACK from slave REPEATED START  
ACK from slave Data from slave NACK from master  
START MSB Chip Address LSB  
W
MSB Register Address LSB  
RS  
MSB Chip Address LSB  
R
MSB Data LSB  
STOP  
SCL  
SDA  
START  
ACK  
ACK  
ACK  
NACK  
STOP  
id = 0x60  
W
address = 0x3F  
RS  
id = 0x60  
R
address 0x3F data  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
Figure 27. Read Cycle (r = read; SDA = 1). Example Device Address = 0x60  
7.5.1.4 I2C-Compatible Chip Address  
After the START condition, the I2C master sends the 7-bit address followed by an eighth bit, read or write (R/W).  
R/W = 0 indicates a WRITE and R/W = 1 indicates a READ. The second byte following the device address  
selects the register address to which the data is written. The third byte contains the data for the selected register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
I2C Slave Address (chip address)  
Here in an example with device address of 1100000Bin = 60Hex.  
Figure 28. Device Address Example  
7.5.1.5 Auto-Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Every time an 8-  
bit word is sent to the LP8732xx-Q1, the internal address index counter is incremented by one and the next  
register is written. Table 6 shows writing sequence to two consecutive registers. Note that auto-increment feature  
does not work for read.  
Table 6. Auto-Increment Example  
DEVICE  
ADDRES WRITE  
S = X  
MASTER  
ACTION  
REGISTER  
ADDRESS  
START  
DATA  
DATA  
STOP  
LP8732x  
x-Q1  
ACK  
ACK  
ACK  
ACK  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
 
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
7.6 Register Maps  
7.6.1 Register Descriptions  
The LP8732xx-Q1 is controlled by a set of registers through the I2C-compatible interface. The device registers,  
their addresses and their abbreviations are listed in Table 7. A more detailed description is given in the  
DEV_REV to I_LOAD_1 sections.  
NOTE  
This register map describes the default values for bits that are not read from OTP  
memory. The orderable code and the default register bit values are defined in part-number  
specific Technical Reference Manuals.  
Table 7. Summary of LP8732xx-Q1 Control Registers  
Read /  
Write  
Addr  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x00  
0x01  
DEV_REV  
OTP_REV  
R
DEVICE_ID[1:0]  
Reserved  
R
OTP_ID[7:0]  
BUCK0_  
EN_PIN_CT BUCK0_EN  
RL  
BUCK0_  
CTRL_1  
BUCK0_FP BUCK0_FP BUCK0_RDI  
0x02  
0x03  
0x04  
R/W  
R/W  
R/W  
Reserved  
WM_MP  
WM  
S_EN  
BUCK0_  
CTRL_2  
Reserved  
BUCK0_ILIM[2:0]  
BUCK0_SLEW_RATE[2:0]  
BUCK1_  
EN_PIN_CT BUCK1_EN  
RL  
BUCK1_  
CTRL_1  
BUCK1_FP BUCK1_RDI  
Reserved  
WM  
S_EN  
BUCK1_  
CTRL_2  
0x05  
0x06  
0x07  
R/W  
R/W  
R/W  
Reserved  
BUCK1_ILIM[2:0]  
BUCK1_SLEW_RATE[2:0]  
BUCK0_  
VOUT  
BUCK0_VSET[7:0]  
BUCK1_VSET[7:0]  
BUCK1_  
VOUT  
LDO0_  
EN_PIN_CT  
RL  
LDO0_  
CTRL  
LDO0_RDIS  
_EN  
0x08  
0x09  
R/W  
R/W  
Reserved  
Reserved  
LDO0_EN  
LDO1_EN  
LDO1_  
EN_PIN_CT  
RL  
LDO1_  
CTRL  
LDO1_RDIS  
_EN  
LDO0_  
VOUT  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reserved  
Reserved  
LDO0_VSET[4:0]  
LDO1_VSET[4:0]  
LDO1_  
VOUT  
BUCK0_  
DELAY  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK1_SHUTDOWN_DELAY[3:0]  
LDO0_SHUTDOWN_DELAY[3:0]  
LDO1_SHUTDOWN_DELAY[3:0]  
GPO_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
LDO0_STARTUP_DELAY[3:0]  
LDO1_STARTUP_DELAY[3:0]  
GPO_STARTUP_DELAY[3:0]  
BUCK1_  
DELAY  
LDO0_  
DELAY  
LDO1_  
DELAY  
GPO_  
DELAY  
GPO2_  
DELAY  
GPO2_SHUTDOWN_DELAY[3:0]  
GPO2_  
GPO2_STARTUP_DELAY[3:0]  
GPO_  
GPO_  
CTRL  
0x12  
R/W  
Reserved  
GPO2_OD EN_PIN_CT GPO2_EN  
RL  
Reserved  
GPO_OD  
EN_PIN_CT  
RL  
GPO_EN  
STARTUP_ SHUTDOW  
CLKIN_PIN  
TDIE  
_WARN  
_LEVEL  
EN_  
SPREAD  
_SPEC  
0x13  
0x14  
CONFIG  
R/W  
R/W  
Reserved  
Reserved  
DELAY_SE N_DELAY_  
_SEL  
CLKIN_PD  
EN_PD  
L
SEL  
PLL_CTRL  
EN_PLL  
Reserved  
EXT_CLK_FREQ[4:0]  
42  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
 
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Register Maps (continued)  
Table 7. Summary of LP8732xx-Q1 Control Registers (continued)  
Read /  
Write  
Addr  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PGOOD_WI PGOOD_WI  
PGOOD_CT  
RL_1  
PGOOD_P  
OL  
PGOOD_O  
D
EN_PGOOD EN_PGOOD EN_PGOOD EN_PGOOD  
0x15  
R/W  
R/W  
NDOW_LD  
O
NDOW_BU  
CK  
_LDO1  
_LDO0  
_BUCK1  
_BUCK0  
PG_FAULT  
_GATES_P  
GOOD  
PGOOD_CT  
RL_2  
EN_PGOOD  
_TWARN  
PGOOD_M  
ODE  
0x16  
Reserved  
PG_FAULT PG_FAULT PG_FAULT PG_FAULT  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
PG_FAULT  
RESET  
R
Reserved  
_LDO1  
_LDO0  
_BUCK1  
_BUCK0  
SW_  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
Reserved  
PGOOD_  
INT  
INT_  
LDO  
INT_  
SYNC_  
CLK_INT  
TDIE_SD_I  
NT  
TDIE_  
WARN_INT  
I_MEAS_  
INT  
INT_TOP_1  
INT_TOP_2  
INT_BUCK  
INT_LDO  
OVP_INT  
BUCK  
RESET_  
REG_INT  
Reserved  
BUCK1_  
PG_INT  
BUCK1_  
SC_INT  
BUCK1_  
ILIM_INT  
BUCK0_  
PG_INT  
BUCK0_  
SC_INT  
BUCK0_  
ILIM_INT  
Reserved  
Reserved  
Reserved  
Reserved  
LDO1_  
LDO1_  
LDO1_  
ILIM_INT  
LDO0_  
PG_INT  
LDO0_  
SC_INT  
LDO0_  
ILIM_INT  
PG_INT  
SC_INT  
TDIE_  
WARN_  
STAT  
TOP_  
STAT  
PGOOD_ST  
AT  
SYNC_CLK  
_STAT  
TDIE_SD  
_STAT  
OVP_  
STAT  
0x1D  
R
Reserved  
Reserved  
BUCK_STA  
T
BUCK1_  
STAT  
BUCK1_  
PG_STAT  
BUCK1_  
ILIM_STAT  
BUCK0_  
STAT  
BUCK0_  
PG_STAT  
BUCK0_  
ILIM_STAT  
0x1E  
0x1F  
0x20  
0x21  
R
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LDO1_  
STAT  
LDO1_  
PG_STAT  
LDO1_  
ILIM_STAT  
LDO0_  
STAT  
LDO0_  
PG_STAT  
LDO0_  
ILIM_STAT  
LDO_STAT  
R
TOP_  
MASK_1  
PGOOD_  
INT_MASK  
SYNC_CLK  
_MASK  
TDIE_WAR  
N_MASK  
I_MEAS_  
MASK  
R/W  
R/W  
Reserved  
Reserved  
TOP_  
MASK_2  
RESET_  
REG_MASK  
Reserved  
BUCK1_  
ILIM_  
MASK  
BUCK0_  
ILIM_  
MASK  
BUCK_MAS  
K
BUCK1_PG BUCK1_PG  
F_MASK R_MASK  
BUCK0_PG BUCK0_PG  
F_MASK R_MASK  
0x22  
0x23  
R/W  
R/W  
Reserved  
Reserved  
Reserved  
Reserved  
LDO1_  
ILIM_  
MASK  
LDO0_  
ILIM_  
MASK  
LDO1_PGF LDO1_PGR  
_MASK _MASK  
LDO0_PGF LDO0_PGR  
_MASK _MASK  
LDO_MASK  
LOAD_CUR  
RENT_  
BUCK_SEL  
ECT  
SEL_I_  
LOAD  
0x24  
R/W  
Reserved  
Reserved  
BUCK_LOA  
D_CURREN  
T[8]  
0x25  
0x26  
I_LOAD_2  
I_LOAD_1  
R
R
BUCK_LOAD_CURRENT[7:0]  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
7.6.1.1 DEV_REV  
Address: 0x00  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEVICE_ID[1:0]  
Reserved  
Bits  
7:6  
Field  
Type  
R
Default  
X
Description  
DEVICE_ID[1:0]  
Reserved  
Device specific ID code.  
5:0  
R
00 0010  
7.6.1.2 OTP_REV  
Address: 0x01  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTP_ID[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
OTP_ID[7:0]  
R
X
Identification Code of the OTP EPROM Version.  
7.6.1.3 BUCK0_CTRL_1  
Address: 0x02  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK0_FPWM BUCK0_FPWM BUCK0_RDIS_ BUCK0_EN_PI  
BUCK0_EN  
_MP  
EN  
N_CTRL  
Bits  
7:5  
4
Field  
Reserved  
Type  
R/W  
R/W  
Default  
000  
Description  
BUCK0_FPWM  
_MP  
X
Forces the Buck0 regulator to operate always in multi-phase and forced PWM  
operation mode:  
0 - Automatic phase adding and shedding.  
1 - Forced to multi-phase operation, 2 phases in the 2-phase configuration.  
3
2
1
0
BUCK0_FPWM  
R/W  
R/W  
R/W  
R/W  
X
1
Buck0 mode selection:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode)  
1 - Forced to PWM operation.  
BUCK0_RDIS_EN  
Enable output discharge resistor (RDIS_Bx) when Buck0 is disabled:  
0 - Discharge resistor disabled  
1 - Discharge resistor enabled.  
BUCK0_EN_PIN  
_CTRL  
X
X
Enable control for Buck0:  
0 - only BUCK0_EN bit controls Buck0  
1 - BUCK0_EN bit AND EN pin control Buck0.  
BUCK0_EN  
Enable Buck0 regulator:  
0 - Buck0 regulator is disabled  
1 - Buck0 regulator is enabled.  
7.6.1.4 BUCK0_CTRL_2  
Address: 0x03  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK0_ILIM[2:0]  
BUCK0_SLEW_RATE[2:0]  
44  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7:6  
Reserved  
00  
X
5:3  
BUCK0_ILIM[2:0]  
Sets the switch current limit of Buck0. Can be programmed at any time during  
operation:  
0x0 - 1.5 A  
0x1 - 2.0 A  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - Reserved  
0x5 - Reserved  
0x6 - Reserved  
0x7 - Reserved  
2:0 BUCK0_SLEW_RA  
TE[2:0]  
R/W  
X
Sets the output voltage slew rate for Buck0 regulator (rising and falling edges):  
0x0 - Reserved  
0x1 - Reserved  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.47 mV/µs  
7.6.1.5 BUCK1_CTRL_1  
Address: 0x04  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_FPWM BUCK1_RDIS_ BUCK1_EN_PI  
BUCK1_EN  
EN  
N_CTRL  
Bits  
7:4  
3
Field  
Type  
R/W  
R/W  
Default  
0000  
X
Description  
Reserved  
BUCK1_FPWM  
Buck1 mode selection:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode)  
1 - Forced to PWM operation.  
2
1
0
BUCK1_RDIS_EN  
R/W  
R/W  
R/W  
1
X
X
Enable output discharge resistor (RDIS_Bx) when Buck1 is disabled:  
0 - Discharge resistor disabled  
1 - Discharge resistor enabled.  
BUCK1_EN_PIN  
_CTRL  
Enable control for Buck1:  
0 - only BUCK1_EN bit controls Buck1  
1 - BUCK1_EN bit AND EN pin control Buck1.  
BUCK1_EN  
Enable Buck1 regulator:  
0 - Buck1 regulator is disabled  
1 - Buck1 regulator is enabled.  
7.6.1.6 BUCK1_CTRL_2  
Address: 0x05  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_ILIM[2:0]  
BUCK1_SLEW_RATE[2:0]  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
00  
X
5:3  
BUCK1_ILIM[2:0]  
Sets the switch current limit of Buck1. Can be programmed at any time during  
operation:  
0x0 - 1.5 A  
0x1 - 2.0 A  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - Reserved  
0x5 - Reserved  
0x6 - Reserved  
0x7 - Reserved  
2:0 BUCK1_SLEW_RA  
TE[2:0]  
R/W  
X
Sets the output voltage slew rate for Buck1 regulator (rising and falling edges):  
0x0 - Reserved  
0x1 - Reserved  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.47 mV/µs  
7.6.1.7 BUCK0_VOUT  
Address: 0x06  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK0_VSET[7:0]  
R/W  
X
Sets the output voltage of Buck0 regulator  
Reserved, DO NOT USE  
0x00 ... 0x13  
0.7 V - 0.73 V, 10 mV steps  
0x14 - 0.7V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.8 BUCK1_VOUT  
Address: 0x07  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_VSET[7:0]  
46  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
Bits  
SNVSB63 SEPTEMBER 2018  
Field  
Type  
Default  
Description  
Sets the output voltage of Buck0 regulator  
7:0 BUCK1_VSET[7:0]  
R/W  
X
Reserved, DO NOT USE  
0x00 ... 0x13  
0.7 V - 0.73 V, 10 mV steps  
0x14 - 0.7V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.9 LDO0_CTRL  
Address: 0x08  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
LDO0_RDIS_E LDO0_EN_PIN  
LDO0_EN  
N
_CTRL  
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
0 0000  
1
Description  
Reserved  
LDO0_RDIS_EN  
Enable output discharge resistor (RDIS_LDOx) when LDO0 is disabled:  
0 - Discharge resistor disabled  
1 - Discharge resistor enabled.  
1
0
LDO0_EN_PIN  
_CTRL  
R/W  
R/W  
X
X
Enable control for LDO0:  
0 - only LDO0_EN bit controls LDO0  
1 - LDO0_EN bit AND EN pin control LDO0.  
LDO0_EN  
Enable LDO0 regulator:  
0 - LDO0 regulator is disabled  
1 - LDO0 regulator is enabled.  
7.6.1.10 LDO1_CTRL  
Address: 0x09  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
LDO1_RDIS_E LDO1_EN_PIN  
LDO1_EN  
N
_CTRL  
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
0 0000  
1
Description  
Reserved  
LDO1_RDIS_EN  
Enable output discharge resistor (RDIS_LDOx) when LDO1 is disabled:  
0 - Discharge resistor disabled  
1 - Discharge resistor enabled.  
1
0
LDO1_EN_PIN  
_CTRL  
R/W  
R/W  
X
X
Enable control for LDO1:  
0 - only LDO1_EN bit controls LDO1  
1 - LDO1_EN bit AND EN pin control LDO1.  
LDO1_EN  
Enable LDO1 regulator:  
0 - LDO1 regulator is disabled  
1 - LDO1 regulator is enabled.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
7.6.1.11 LDO0_VOUT  
Address: 0x0A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
D1  
D0  
Reserved  
LDO0_VSET[4:0]  
Bits  
7:5  
Field  
Reserved  
LDO0_VSET[4:0]  
Type  
R/W  
R/W  
Default  
000  
Description  
4:0  
X
Sets the output voltage of LDO0 regulator  
0.8 V - 3.3 V, 100 mV steps  
0x00 - 0.8V  
...  
0x19 - 3.3 V  
Reserved, DO NOT USE  
0x1A ... 0x1F  
7.6.1.12 LDO1_VOUT  
Address: 0x0B  
D7  
D6  
D5  
D4  
D3  
D2  
D0  
Reserved  
LDO1_VSET[4:0]  
Bits  
7:5  
Field  
Reserved  
LDO1_VSET[4:0]  
Type  
R/W  
R/W  
Default  
000  
Description  
4:0  
X
Sets the output voltage of LDO1 regulator  
0.8 V - 3.3 V, 100 mV steps  
0x00 - 0.8V  
...  
0x19 - 3.3 V  
Reserved, DO NOT USE  
0x1A ... 0x1F  
7.6.1.13 BUCK0_DELAY  
Address: 0x0C  
D7  
D6  
D5  
D4  
D3  
D2  
D0  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK0_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
X
Shutdown delay of Buck0 from falling edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
3:0  
BUCK0_  
STARTUP_  
DELAY[3:0]  
R/W  
X
Startup delay of Buck0 from rising edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
7.6.1.14 BUCK1_DELAY  
Address: 0x0D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_SHUTDOWN_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
48  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK1_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
X
Shutdown delay of Buck1 from falling edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
3:0  
BUCK1_  
STARTUP_  
DELAY[3:0]  
R/W  
X
Startup delay of Buck1 from rising edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
7.6.1.15 LDO0_DELAY  
Address: 0x0E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
LDO0_SHUTDOWN_DELAY[3:0]  
LDO0_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
LDO0_  
R/W  
X
Shutdown delay of LDO0 from falling edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
SHUTDOWN_  
DELAY[3:0]  
...  
0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
3:0  
LDO0_  
STARTUP_  
DELAY[3:0]  
R/W  
X
Startup delay of LDO0 from rising edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
7.6.1.16 LDO1_DELAY  
Address: 0x0F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LDO1_SHUTDOWN_DELAY[3:0]  
LDO1_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
LDO1_  
R/W  
X
Shutdown delay of LDO1 from falling edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
SHUTDOWN_  
DELAY[3:0]  
...  
0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
3:0  
LDO1_  
STARTUP_  
DELAY[3:0]  
R/W  
X
Startup delay of LDO1 from rising edge of EN signal:  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
7.6.1.17 GPO_DELAY  
Address: 0x10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
GPO_SHUTDOWN_DELAY[3:0]  
GPO_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
GPO_  
R/W  
X
Delay for GPO falling edge from falling edge of EN signal:  
SHUTDOWN_  
DELAY[3:0]  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Bits  
Field  
Type  
Default  
Description  
3:0  
GPO_  
R/W  
X
Delay for GPO rising edge from rising edge of EN signal:  
STARTUP_  
DELAY[3:0]  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
7.6.1.18 GPO2_DELAY  
Address: 0x11  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPO2_SHUTDOWN_DELAY[3:0]  
GPO2_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
GPO2_  
R/W  
X
Delay for GPO2 falling edge from falling edge of EN signal:  
SHUTDOWN_  
DELAY[3:0]  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)  
3:0  
GPO2_  
R/W  
X
Delay for GPO2 rising edge from rising edge of EN signal:  
STARTUP_  
DELAY[3:0]  
0x0 - 0 ms  
0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
...  
0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)  
7.6.1.19 GPO_CTRL  
Address: 0x12  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
GPO2_OD  
GPO2_EN_PIN  
_CTRL  
GPO2_EN  
Reserved  
GPO_OD  
GPO_EN_PIN_  
CTRL  
GPO_EN  
Bits  
Field  
Type  
Default  
Description  
7
6
Reserved  
GP02_OD  
R
0
R/W  
X
GPO2 signal type when configured as General Purpose Output (CLKIN pin):  
0 - Push-pull output (VANA level)  
1 - Open-drain output  
5
4
GPO2_EN_PIN_C  
TRL  
R/W  
R/W  
X
X
Control for GPO2:  
0 - Only GPO2_EN bit controls GPO2  
1 - GPO2_EN bit AND EN pin control GPO2.  
GPO2_EN  
Output level of GPO2 signal (when configured as General Purpose Output):  
0 - Logic low level  
1 - Logic high level  
3
2
Reserved  
GPO_OD  
R
0
R/W  
X
GPO signal type:  
0 - Push-pull output (VANA level)  
1 - Open-drain output  
1
0
GPO_EN_PIN_CT  
RL  
R/W  
R/W  
X
X
Control for GPO:  
0 - Only GPO_EN bit controls GPO  
1 - GPO_EN bit AND EN pin control GPO.  
GPO_EN  
Output level of GPO signal:  
0 - Logic low level  
1 - Logic high level  
50  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
7.6.1.20 CONFIG  
Address: 0x13  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
STARTUP_DE SHUTDOWN_ CLKIN_PIN_SE  
CLKIN_PD  
EN2_PD  
TDIE_WARN_  
LEVEL  
EN_SPREAD  
_SPEC  
LAY_SEL  
DELAY_SEL  
L
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
STARTUP_DELAY  
_SEL  
X
Startup delay range from EN signals.  
0 - 0 ms - 7.5 ms with 0.5 ms steps  
1 - 0 ms - 15 ms with 1 ms steps  
5
4
3
SHUTDOWN_DEL  
AY_SEL  
R/W  
R/W  
R/W  
X
X
X
Shutdown delay range from EN signals.  
0 - 0 ms - 7.5 ms with 0.5 ms steps  
1 - 0 ms - 15 ms with 1 ms steps  
CLKIN_PIN_SEL  
CLKIN_PD  
CLKIN pin function:  
0 - GPO2  
1 - CLKIN  
Selects the pull down resistor on the CLKIN input pin. (valid also when selected as  
GPO2)  
0 - Pull-down resistor is disabled.  
1 - Pull-down resistor is enabled.  
2
1
0
EN_PD  
R/W  
R/W  
R/W  
X
X
X
Selects the pull down resistor on the EN input pin.  
0 - Pull-down resistor is disabled.  
1 - Pull-down resistor is enabled.  
TDIE_WARN_  
LEVEL  
Thermal warning threshold level.  
0 - 125°C  
1 - 137°C.  
EN_SPREAD  
_SPEC  
Enable spread spectrum feature:  
0 - Disabled  
1 - Enabled  
7.6.1.21 PLL_CTRL  
Address: 0x14  
D7  
D6  
EN_PLL  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
Reserved  
EXT_CLK_FREQ[4:0]  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
EN_PLL  
0
X
Selection of external clock and PLL operation:  
0 - Forced to internal RC oscillator. PLL disabled.  
1 - PLL is enabled in STANDBY and ACTIVE modes. Automatic external clock use  
when available, interrupt generated if external clock appears or disappears.  
5
Reserved  
R/W  
R/W  
0
This bit must be set to '0'.  
4:0 EXT_CLK_FREQ[4  
:0]  
X
Frequency of the external clock (CLKIN):  
0x00 - 1 MHz  
0x01 - 2 MHz  
0x02 - 3 MHz  
...  
0x16 - 23 MHz  
0x17 - 24 MHz  
0x18...0x1F - Reserved  
See electrical specification for input clock frequency tolerance.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
7.6.1.22 PGOOD_CTRL_1  
Address: 0x15  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PGOOD_POL  
PGOOD_OD  
PGOOD_  
PGOOD_  
EN_PGOOD_L EN_PGOOD_L EN_PGOOD_B EN_PGOOD_B  
WINDOW_LDO WINDOW_BUC  
K
DO1  
DO0  
UCK1  
UCK0  
Bits  
Field  
PGOOD_POL  
Type  
Default  
Description  
7
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X
PGOOD signal polarity.  
0 - PGOOD signal high when monitored outputs are valid  
1 - PGOOD signal low when monitored outputs are valid  
6
5
4
3
2
1
0
PGOOD_OD  
X
X
X
X
X
X
X
PGOOD signal type:  
0 - Push-pull output (VANA level)  
1 - Open-drain output  
PGOOD_  
WINDOW_LDO  
LDO Output voltage monitoring method for PGOOD signal:  
0 - Only undervoltage monitoring  
1 - Overvoltage and undervoltage monitoring.  
PGOOD_  
WINDOW_BUCK  
Buck Output voltage monitoring method for PGOOD signal:  
0 - Only undervoltage monitoring  
1 - Overvoltage and undervoltage monitoring.  
EN_PGOOD_LDO  
1
PGOOD signal source control from LDO1  
0 - LDO1 is not monitored  
1 - LDO1 Power-Good threshold voltage monitored  
EN_PGOOD_LDO  
0
PGOOD signal source control from LDO0  
0 - LDO0 is not monitored  
1 - LDO0 Power-Good threshold voltage monitored  
EN_PGOOD_BUC  
K1  
PGOOD signal source control from Buck1  
0 - Buck1 is not monitored  
1 - Buck1 Power-Good threshold voltage monitored  
EN_PGOOD_BUC  
K0  
PGOOD signal source control from Buck0  
0 - Buck0 is not monitored  
1 - Buck0 Power-Good threshold voltage monitored  
7.6.1.23 PGOOD_CTRL_2  
Address: 0x16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
EN_PGOOD_T PG_FAULT_G PGOOD_MOD  
WARN  
ATES_PGOOD  
E
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
0 0000  
X
Description  
Reserved  
EN_PGOOD_TWA  
RN  
Thermal warning control for PGOOD signal:  
0 - Thermal warning not monitored  
1 - PGOOD inactive if thermal warning flag is active.  
1
0
PG_FAULT_GATE  
S_PGOOD  
R/W  
R/W  
X
X
Type of operation for PGOOD signal:  
0 - Indicates live status of monitored voltage outputs.  
1 - Indicates status of PG_FAULT register, inactive when at least one PG_FAULT_x  
bit is inactive.  
PGOOD_MODE  
Operating mode for PGOOD signal:  
0 - Gated mode  
1 - Continuous mode  
7.6.1.24 PG_FAULT  
Address: 0x17  
D7  
D6  
D5  
D4  
D3  
PG_FAULT_LD PG_FAULT_LD PG_FAULT_BU PG_FAULT_BU  
O1 O0 CK1 CK0  
D2  
D1  
D0  
Reserved  
52  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Bits  
Field  
Type  
R/W  
R/W  
Default  
0000  
0
Description  
7:4  
Reserved  
3
2
1
0
PG_FAULT_LDO1  
Source for PGOOD inactive signal:  
0 - LDO1 has not set PGOOD signal inactive.  
1 - LDO1 is selected for PGOOD signal and it has set PGOOD signal inactive. This bit  
can be cleared by writing '1' to this bit when LDO1 output is valid.  
PG_FAULT_LDO0  
R/W  
R/W  
R/W  
0
0
0
Source for PGOOD inactive signal:  
0 - LDO0 has not set PGOOD signal inactive.  
1 - LDO0 is selected for PGOOD signal and it has set PGOOD signal inactive. This bit  
can be cleared by writing '1' to this bit when LDO0 output is valid.  
PG_FAULT_BUCK  
1
Source for PGOOD inactive signal:  
0 - Buck1 has not set PGOOD signal inactive.  
1 - Buck1 is selected for PGOOD signal and it has set PGOOD signal inactive. This bit  
can be cleared by writing '1' to this bit when Buck1 output is valid.  
PG_FAULT_BUCK  
0
Source for PGOOD inactive signal:  
0 - Buck0 has not set PGOOD signal inactive.  
1 - Buck0 is selected for PGOOD signal and it has set PGOOD signal inactive. This bit  
can be cleared by writing '1' to this bit when Buck0 output is valid.  
7.6.1.25 RESET  
Address: 0x18  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
SW_RESET  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
000 0000  
0
Description  
Reserved  
SW_RESET  
Software commanded reset. When written to 1, the registers will be reset to default  
values, OTP memory is read, and the I2C interface is reset.  
The bit is automatically cleared.  
7.6.1.26 INT_TOP_1  
Address: 0x19  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PGOOD_INT  
LDO_INT  
BUCK_INT  
SYNC_CLK_IN TDIE_SD_INT TDIE_WARN_I  
OVP_INT  
I_MEAS_INT  
T
NT  
Bits  
Field  
Type  
Default  
Description  
7
PGOOD_INT  
R/W  
0
Latched status bit indicating that the PGOOD pin has changed from active to inactive.  
Write 1 to clear interrupt.  
6
LDO_INT  
R
R
0
0
Interrupt indicating that LDO1 and/or LDO0 have a pending interrupt. The reason for  
the interrupt is indicated in INT_LDO register.  
This bit is cleared automatically when INT_LDO register is cleared to 0x00.  
5
BUCK_INT  
Interrupt indicating that Buck1 and/or Buck0 have a pending interrupt. The reason for  
the interrupt is indicated in INT_BUCK register.  
This bit is cleared automatically when INT_BUCK register is cleared to 0x00.  
4
3
SYNC_CLK_INT  
TDIE_SD_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the external clock has appeared or disappeared.  
Write 1 to clear interrupt.  
Latched status bit indicating that the die junction temperature has exceeded the  
thermal shutdown level. The regulators have been disabled if they were enabled and  
GPO and GPO2 signals are driven low. The regulators cannot be enabled if this bit is  
active. The actual status of the thermal shutdown is indicated by TDIE_SD_STAT bit in  
TOP_STAT register.  
Write 1 to clear interrupt.  
2
TDIE_WARN_INT  
R/W  
0
Latched status bit indicating that the die junction temperature has exceeded the  
thermal warning level. The actual status of the thermal warning is indicated by  
TDIE_WARN_STAT bit in TOP_STAT register.  
Write 1 to clear interrupt.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Bits  
Field  
Type  
Default  
Description  
1
OVP_INT  
R/W  
0
Latched status bit indicating that the input voltage has exceeded the over-voltage  
detection level. The regulators have been disabled if they were enabled and GPO and  
GPO2 signals are driven low. The actual status of the over-voltage is indicated by  
OVP_STAT bit in TOP_STAT register.  
Write 1 to clear interrupt.  
0
I_MEAS_INT  
R/W  
0
Latched status bit indicating that the load current measurement result is available in  
I_LOAD_1 and I_LOAD_2 registers.  
Write 1 to clear interrupt.  
7.6.1.27 INT_TOP_2  
Address: 0x1A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
RESET_REG_I  
NT  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
000 0000  
0
Description  
Reserved  
RESET_REG_INT  
Latched status bit indicating that either VANA supply voltage has been below  
undervoltage threshold level or the host has requested a reset using SW_RESET bit in  
RESET register. The regulators have been disabled, and registers are reset to default  
values and the normal startup procedure is done.  
Write 1 to clear interrupt.  
7.6.1.28 INT_BUCK  
Address: 0x1B  
D7  
D6  
BUCK1_PG  
_INT  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_SC  
_INT  
BUCK1_ILIM  
_INT  
Reserved  
BUCK0_PG  
_INT  
BUCK0_SC  
_INT  
BUCK0_ILIM  
_INT  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
0
BUCK1_PG_INT  
Latched status bit indicating that Buck1 Power-Good event has been detected.  
Write 1 to clear.  
5
4
BUCK1_SC_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the Buck1 output voltage has been over 1 ms below  
short-circuit threshold level.  
Write 1 to clear.  
BUCK1_ILIM_INT  
Latched status bit indicating that the Buck1 output current limit has been active.  
Write 1 to clear.  
3
2
Reserved  
R/W  
R/W  
0
0
BUCK0_PG_INT  
Latched status bit indicating that Buck0 Power-Good event has been detected.  
Write 1 to clear.  
1
0
BUCK0_SC_INT  
BUCK0_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the Buck0 output voltage has been over 1 ms below  
short-circuit threshold level.  
Write 1 to clear.  
Latched status bit indicating that the Buck0 output current limit has been active.  
Write 1 to clear.  
7.6.1.29 INT_LDO  
Address: 0x1C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
LDO1_PG  
_INT  
LDO1_SC  
_INT  
LDO1_ILIM  
_INT  
Reserved  
LDO0_PG  
_INT  
LDO0_SC  
_INT  
LDO0_ILIM  
_INT  
54  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
Reserved  
0
0
6
LDO1_PG_INT  
Latched status bit indicating that LDO1 Power-Good event has been detected.  
Write 1 to clear.  
5
LDO1_SC_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the LDO1 output voltage has been over 1 ms below  
short-circuit threshold level.  
Write 1 to clear.  
4
LDO1_ILIM_INT  
Latched status bit indicating that the LDO1 output current limit has been active.  
Write 1 to clear.  
3
2
Reserved  
R/W  
R/W  
0
0
LDO0_PG_INT  
Latched status bit indicating that LDO0 Power-Good event has been detected.  
Write 1 to clear.  
1
0
LDO0_SC_INT  
LDO0_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the LDO0 output voltage has been over 1 ms below  
short-circuit threshold level.  
Write 1 to clear.  
Latched status bit indicating that the LDO0 output current limit has been active.  
Write 1 to clear.  
7.6.1.30 TOP_STAT  
Address: 0x1D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PGOOD_STAT  
Reserved  
SYNC_CLK  
_STAT  
TDIE_SD  
_STAT  
TDIE_WARN  
_STAT  
OVP_STAT  
Reserved  
Bits  
Field  
PGOOD_STAT  
Type  
Default  
Description  
7
R
0
Status bit indicating the status of PGOOD pin:  
0 - PGOOD pin is inactive  
1 - PGOOD pin is active  
6:5  
4
Reserved  
R
R
00  
0
SYNC_CLK_STAT  
Status bit indicating the status of external clock (CLKIN):  
0 - External clock frequency is valid  
1 - External clock frequency is not valid.  
3
2
1
0
TDIE_SD_STAT  
R
R
R
R
0
0
0
0
Status bit indicating the status of thermal shutdown:  
0 - Die temperature below thermal shutdown level  
1 - Die temperature above thermal shutdown level.  
TDIE_WARN  
_STAT  
Status bit indicating the status of thermal warning:  
0 - Die temperature below thermal warning level  
1 - Die temperature above thermal warning level.  
OVP_STAT  
Reserved  
Status bit indicating the status of input overvoltage monitoring:  
0 - Input voltage below overvoltage threshold level  
1 - Input voltage above overvoltage threshold level.  
7.6.1.31 BUCK_STAT  
Address: 0x1E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_STAT  
BUCK1_PG  
_STAT  
Reserved  
BUCK1_ILIM  
_STAT  
BUCK0_STAT  
BUCK0_PG  
_STAT  
Reserved  
BUCK0_ILIM  
_STAT  
Bits  
Field  
Type  
Default  
Description  
7
BUCK1_STAT  
R
0
Status bit indicating the enable/disable status of Buck1:  
0 - Buck1 regulator is disabled  
1 - Buck1 regulator is enabled.  
6
BUCK1_PG_STAT  
R
0
Status bit indicating Buck1 output voltage validity (raw status)  
0 - Buck1 output voltage is valid.  
1 - Buck1 output voltage is invalid.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Bits  
5
Field  
Type  
R
Default  
Description  
Reserved  
0
0
4
BUCK1_ILIM  
_STAT  
R
Status bit indicating Buck1 current limit status (raw status)  
0 - Buck1 output current is below current limit level  
1 - Buck1 output current limit is active.  
3
2
BUCK0_STAT  
BUCK0_PG_STAT  
Reserved  
R
R
0
0
Status bit indicating the enable/disable status of Buck0:  
0 - Buck0 regulator is disabled  
1 - Buck0 regulator is enabled.  
Status bit indicating Buck0 output voltage validity (raw status)  
0 - Buck0 output voltage is valid.  
1 - Buck0 output voltage is invalid.  
1
0
R
R
0
0
BUCK0_ILIM  
_STAT  
Status bit indicating Buck0 current limit status (raw status)  
0 - Buck0 output current is below current limit level  
1 - Buck0 output current limit is active.  
7.6.1.32 LDO_STAT  
Address: 0x1F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LDO1_STAT  
LDO1_PG  
_STAT  
Reserved  
LDO1_ILIM  
_STAT  
LDO0_STAT  
LDO0_PG  
_STAT  
Reserved  
LDO0_ILIM  
_STAT  
Bits  
Field  
Type  
Default  
Description  
7
LDO1_STAT  
LDO1_PG_STAT  
Reserved  
R
0
Status bit indicating the enable/disable status of LDO1:  
0 - LDO1 regulator is disabled  
1 - LDO1 regulator is enabled.  
6
R
0
Status bit indicating LDO1 output voltage validity (raw status)  
0 - LDO1 output voltage is valid.  
1 - LDO1 output voltage is invalid.  
5
4
R
R
0
0
LDO1_ILIM  
_STAT  
Status bit indicating LDO1 current limit status (raw status)  
0 - LDO1 output current is below current limit level  
1 - LDO1 output current limit is active.  
3
2
LDO0_STAT  
LDO0_PG_STAT  
Reserved  
R
R
0
0
Status bit indicating the enable/disable status of LDO0:  
0 - LDO0 regulator is disabled  
1 - LDO0 regulator is enabled.  
Status bit indicating LDO0 output voltage validity (raw status)  
0 - LDO0 output voltage is valid.  
1 - LDO0 output voltage is invalid.  
1
0
R
R
0
0
LDO0_ILIM  
_STAT  
Status bit indicating LDO0 current limit status (raw status)  
0 - LDO0 output current is below current limit level  
1 - LDO0 output current limit is active.  
7.6.1.33 TOP_MASK_1  
Address: 0x20  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PGOOD_INT_  
MASK  
Reserved  
SYNC_CLK  
_MASK  
Reserved  
TDIE_WARN  
_MASK  
Reserved  
I_LOAD_  
READY_MASK  
Bits  
Field  
Type  
Default  
Description  
7
PGOOD_INT  
_MASK  
R/W  
X
Masking for Power-Good interrupt (PGOOD_INT in INT_TOP_1 register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect PGOOD_STAT status bit in TOP_STAT register.  
6:5  
Reserved  
R/W  
00  
56  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Bits  
Field  
Type  
Default  
Description  
4
SYNC_CLK  
_MASK  
R/W  
X
Masking for external clock detection interrupt (SYNC_CLK_INT in INT_TOP_1  
register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect SYNC_CLK_STAT status bit in TOP_STAT register.  
3
2
Reserved  
R/W  
R/W  
0
TDIE_WARN  
_MASK  
X
Masking for thermal warning interrupt (TDIE_WARN_INT in INT_TOP_1 register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect TDIE_WARN_STAT status bit in TOP_STAT register.  
1
0
Reserved  
R/W  
R/W  
0
I_MEAS  
_MASK  
X
Masking for load current measurement ready interrupt (MEAS_INT in INT_TOP_1  
register).  
0 - Interrupt generated  
1 - Interrupt not generated.  
7.6.1.34 TOP_MASK_2  
Address: 0x21  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
RESET_REG  
_MASK  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
000 0000  
X
Description  
Reserved  
RESET_REG  
_MASK  
Masking for register reset interrupt (RESET_REG_INT in INT_TOP_2 register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This change of this bit by I2C writing has no effect because it will be read from OTP  
memory during reset.  
7.6.1.35 BUCK_MASK  
Address: 0x22  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_PGF  
_MASK  
BUCK1_PGR  
_MASK  
Reserved  
BUCK1_ILIM  
_MASK  
BUCK0_PGF  
_MASK  
BUCK0_PGR  
_MASK  
Reserved  
BUCK0_ILIM  
_MASK  
Bits  
Field  
Type  
Default  
Description  
7
BUCK1_PGF_MAS  
K
R/W  
X
Masking of Power Good invalid detection for Buck1 power good interrupt  
(BUCK1_PG_INT in INT_BUCK register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK1_PG_STAT status bit in BUCK_STAT register.  
6
BUCK1_PGR_MAS  
K
R/W  
X
Masking of Power Good valid detection for Buck1 Power Good interrupt  
(BUCK1_PG_INT in INT_BUCK register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK1_PG_STAT status bit in BUCK_STAT register.  
5
4
Reserved  
R
0
BUCK1_ILIM  
_MASK  
R/W  
X
Masking for Buck1 current limit detection interrupt (BUCK1_ILIM_INT in INT_BUCK  
register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK1_ILIM_STAT status bit in BUCK_STAT register.  
3
BUCK0_PGF_MAS  
K
R/W  
X
Masking of Power Good invalid detection for Buck0 power good interrupt  
(BUCK0_PG_INT in INT_BUCK register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK0_PG_STAT status bit in BUCK_STAT register.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Bits  
Field  
Type  
Default  
Description  
2
BUCK0_PGR_MAS  
K
R/W  
X
Masking of Power Good valid detection for Buck0 power good interrupt  
(BUCK0_PG_INT in INT_BUCK register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK0_PG_STAT status bit in BUCK_STAT register.  
1
0
Reserved  
R
0
BUCK0_ILIM  
_MASK  
R/W  
X
Masking for Buck0 current limit detection interrupt (BUCK0_ILIM_INT in INT_BUCK  
register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect BUCK0_ILIM_STAT status bit in BUCK_STAT register.  
7.6.1.36 LDO_MASK  
Address: 0x23  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LDO1_PGF  
_MASK  
LDO1_PGR  
_MASK  
Reserved  
LDO1_ILIM  
_MASK  
LDO0_PGF  
_MASK  
LDO0_PGR  
_MASK  
Reserved  
LDO0_ILIM  
_MASK  
Bits  
Field  
Type  
Default  
Description  
7
LDO1_PGF_MASK  
LDO1_PGR_MASK  
Reserved  
R/W  
X
Masking of Power Good invalid detection for LDO1 power good interrupt  
(LDO1_PG_INT in INT_LDO register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect LDO1_PG_STAT status bit in LDO_STAT register.  
6
R/W  
X
Masking of Power Good valid detection for LDO1 power good interrupt  
(LDO1_PG_INT in INT_LDO register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect LDO1_PG_STAT status bit in LDO_STAT register.  
5
4
R
0
LDO1_ILIM  
_MASK  
R/W  
X
Masking for LDO1 current limit detection interrupt (LDO1_ILIM_INT in INT_LDO  
register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect LDO1_ILIM_STAT status bit in LDO_STAT register.  
3
2
LDO0_PGF_MASK  
LDO0_PGR_MASK  
Reserved  
R/W  
R/W  
X
X
Masking of Power Good invalid detection for LDO0 power good interrupt  
(LDO0_PG_INT in INT_LDO register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect LDO0_PG_STAT status bit in LDO_STAT register.  
Masking of Power Good valid detection for LDO0 power good interrupt  
(LDO0_PG_INT in INT_LDO register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect LDO0_PG_STAT status bit in LDO_STAT register.  
1
0
R
0
LDO0_ILIM  
_MASK  
R/W  
X
Masking for LDO0 current limit detection interrupt (LDO0_ILIM_INT in INT_LDO  
register):  
0 - Interrupt generated  
1 - Interrupt not generated.  
This bit does not affect LDO0_ILIM_STAT status bit in LDO_STAT register.  
7.6.1.37 SEL_I_LOAD  
Address: 0x24  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
LOAD_CURRE  
NT_BUCK  
_SELECT  
58  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Bits  
Field  
Type  
R/W  
R/W  
Default  
000 0000  
0
Description  
7:1  
Reserved  
0
LOAD_CURRENT_  
BUCK_SELECT  
Start the current measurement on the selected regulator:  
0 - Buck0  
1 - Buck1  
The measurement is started when register is written.  
If the selected buck is master, the measurement result is a sum current of master and  
slave buck.  
If the selected buck is slave, the measurement result is a current of the selected slave  
buck.  
7.6.1.38 I_LOAD_2  
Address: 0x25  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK_LOAD_  
CURRENT[8]  
Bits  
7:1  
0
Field  
Type  
R
Default  
000 0000  
0
Description  
Reserved  
BUCK_LOAD_  
CURRENT[8]  
R
This register describes the MSB bit of the average load current on selected regulator  
with a resolution of 20 mA per LSB and maximum 10.22-A current.  
7.6.1.39 I_LOAD_1  
Address: 0x26  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK_LOAD_CURRENT[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK_LOAD_  
CURRENT[7:0]  
R
0000 0000 This register describes 8 LSB bits of the average load current on selected regulator  
with a resolution of 20 mA per LSB and maximum 10.22-A current.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LP8732xx-Q1 is a power management unit including two step-down regulators, two linear regulators, and  
two general-purpose digital output signals.  
8.2 Typical Applications  
L0  
VOUT_B0  
VIN  
VIN_B0  
VIN_B1  
SW_B0  
FB_B0  
CIN_BUCK0  
CIN_BUCK1  
COUT_BUCK0  
LOAD  
CPOL_BUCK0  
VIN_LDO0  
VIN_LDO1  
L1  
CIN_LDO0  
CIN_LDO1  
VOUT_B1  
SW_B1  
FB_B1  
VANA  
CANA  
SDA  
SCL  
nINT  
EN  
COUT_BUCK1  
LOAD  
CPOL_BUCK1  
VOUT_LDO0  
VOUT_LDO0  
VOUT_LDO1  
CLKIN (GPO2)  
GPO  
VOUT_LDO1  
PGOOD  
GNDs  
COUT_LDO0 COUT_LDO1  
Copyright © 2017, Texas Instruments Incorporated  
Figure 29. Two Single-phase Buck Outputs Configuration  
60  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
 
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Typical Applications (continued)  
L0  
VOUT_B0  
VIN  
VIN_B0  
SW_B0  
FB_B0  
VIN_B1  
CIN_BUCK0  
CIN_BUCK1  
COUT_BUCK0  
VIN_LDO0  
L1  
VIN_LDO1  
CIN_LDO0  
CIN_LDO1  
LOAD  
CPOL_BUCK  
SW_B1  
FB_B1  
VANA  
CANA  
COUT_BUCK1  
SDA  
SCL  
nINT  
EN  
VOUT_LDO0  
VOUT_LDO0  
VOUT_LDO1  
CLKIN (GPO2)  
GPO  
VOUT_LDO1  
PGOOD  
GNDs  
COUT_LDO0 COUT_LDO1  
Copyright © 2017, Texas Instruments Incorporated  
Figure 30. Single Dual-phase Buck Output Configuration  
8.2.1 Design Requirements  
8.2.1.1 Inductor Selection  
The inductors L0 and L1 are shown in the Typical Applications. The inductance and DCR of the inductor affects  
the control loop of the buck regulator. TI recommends using inductors similar to those listed in Table 8. Pay  
attention to the saturation current and temperature rise current of the inductor. Check that the saturation current  
is higher than the peak current limit and the temperature rise current is higher than the maximum expected rms  
output current. Minimum effective inductance to ensure good performance is 0.22 μH at maximum peak output  
current over the operating temperature range. DC resistance of the inductor must be less than 0.05 Ω for good  
efficiency at high-current condition. The inductor AC loss also affects conversion efficiency. Higher Q factor at  
switching frequency usually gives better efficiency at light load to middle load. Shielded inductors are preferred  
as they radiate less noise.  
Table 8. Recommended Inductors  
RATED DC CURRENT  
ISAT maximum (typical) /  
ITEMP maximum (typical) (A)  
DCR  
MANUFACTURER  
TOKO  
PART NUMBER  
VALUE  
DIMENSIONS L × W × H (mm)  
2.5 × 2 × 1.2  
typical / maximum (m)  
DFE252012PD-  
R47M  
0.47 µH (20%)  
5.2 (–) / 4 (–)(1)  
— / 27  
Tayo Yuden  
MDMK2020TR47M 0.47 µH (20%)  
MV  
2 × 2 ×1.2  
4.2 (4.8) / 2.3 (2.45)  
40 / 46  
(1) Operating temperature range is up to 125°C including self temperature rise.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
 
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
8.2.1.2 Buck Input Capacitor Selection  
The input capacitors CIN_BUCK0 and CIN_BUCK1 are shown in the Typical Applications. A ceramic input bypass  
capacitor of 10 μF is required for each phase of the regulator. Place the input capacitor as close as possible to  
the VIN_Bx pin and PGND_Bx pin of the device. A larger value or higher voltage rating improves the input  
voltage filtering. Use X7R type of capacitors, not Y5V or F. Also the DC bias characteristics capacitors must be  
considered. Minimum effective input capacitance to ensure good performance is 1.9 μF per buck input at  
maximum input voltage including tolerances, ambient temperature range and aging. This is assuming that there  
are at least 22 μF of additional capacitance common for all the power input pins on the system power rail. See  
Table 9.  
The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and reduces  
voltage ripple imposed on the input power source. A ceramic capacitor's low ESR provides the best noise filtering  
of the input voltage spikes due to this rapidly changing current. Select an input filter capacitor with sufficient  
ripple current rating. In addition ferrite can be used in front of the input capacitor to reduce the EMI.  
Table 9. Recommended Buck Input Capacitor (X7R Dielectric)  
DIMENSIONS L × W × H  
(mm)  
VOLTAGE  
RATING  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
Murata  
GCM21BR71A106KE22  
10 µF (10%)  
0805  
2 × 1.25 × 1.25  
10 V  
8.2.1.3 Buck Output Capacitor Selection  
The output capacitor COUT_BUCK0 and COUT_BUCK1 are shown in Typical Applications. A ceramic local output  
capacitor of 22 μF is required per phase. Use ceramic capacitors, X7R type; do not use Y5V or F. DC bias  
voltage characteristics of ceramic capacitors must be considered. The output filter capacitor smooths out current  
flow from the inductor to the load, helps maintain a steady output voltage during transient load changes and  
reduces output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently low  
ESR and ESL to perform these functions. Minimum effective output capacitance to ensure good performance is  
10 μF per phase including the DC voltage rolloff, tolerances, aging, and temperature effects.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value used for  
selection process is at the switching frequency of the part. See Table 10.  
POL capacitors CPOL_BUCKx can be used to improve load transient performance and to decrease the ripple  
voltage. A higher output capacitance improves the load step behavior and reduces the output voltage ripple as  
well as decreases the PFM switching frequency. However, output capacitance higher than 150 μF per phase is  
not necessarily of any benefit. Note that the output capacitor may be the limiting factor in the output voltage  
ramp, see Specifications for maximum output capacitance for different slew-rate settings. For large output  
capacitors, the output voltage might be slower than the programmed ramp rate at voltage transitions, because of  
the higher energy stored on the output capacitance. Also at start-up, the time required to charge the output  
capacitor to target value might be longer. At shutdown the output voltage is discharged to 0.6 V level using  
forced-PWM operation. This can increase the input voltage if the load current is small and the output capacitor is  
large compared to input capacitor. Below 0.6 V level the output capacitor is discharged by the internal discharge  
resistor and with large capacitor more time is required to settle VOUT down as a consequence of the increased  
time constant.  
Table 10. Recommended Buck Output Capacitors (X7R Dielectric)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
DIMENSIONS L × W × H  
(mm)  
VOLTAGE RATING  
Murata  
GCM31CR71A226KE02  
22 µF (10%)  
1206  
3.2 × 1.6 × 1.6  
10 V  
8.2.1.4 LDO Input Capacitor Selection  
The input capacitors CIN_LDO0 and CIN_LDO1 are shown in the . A ceramic input capacitor of 2.2 μF, 6.3 V is  
sufficient for most applications. Place the input capacitor as close as possible to the VIN_LDOx pin and AGND  
pin of the device. A larger value or higher voltage rating improves the input voltage filtering. Use X7R type of  
capacitors, not Y5V or F. DC bias characteristics of capacitors must be considered, minimum effective input  
capacitance to ensure good performance is 0.6 μF per LDO input at maximum input voltage including tolerances,  
ambient temperature range and aging. See Table 11.  
62  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
 
 
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Table 11. Recommended LDO Input Capacitors (X7R Dielectric)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
DIMENSIONS L × W × H  
VOLTAGE RATING  
(mm)  
Murata  
Murata  
GCM188R70J225KE22  
GCM21BR71C475KA73  
2.2 µF (10%)  
4.7 µF (10%)  
0603  
0805  
1.6 × 0.8 × 0.8  
2 × 1.25 × 1.25  
6.3 V  
16 V  
8.2.1.5 LDO Output Capacitor Selection  
The output capacitors COUT_LDO0 and COUT_LDO1 are shown in the Typical Applications. A ceramic output  
capacitor of minimum 1.0 μF is required. Place the output capacitor as close to the VOUT_LDOx pin and AGND  
pin of the device as possible. Use X7R type of capacitors, not Y5V or F. DC bias characteristics of capacitors  
must be considered, minimum effective output capacitance to ensure good performance is 0.4 μF per LDO input  
at maximum input voltage including tolerances, ambient temperature range and aging. See Table 12.  
The output capacitance must be smaller than the input capacitance in order to ensure the stability of the LDO.  
With a 1-μF output capacitor it is recommended to use at least 2.2-μF input capacitor; with a 2.2-μF output  
capacitor at least 4.7-μF input capacitance.  
The VANA input is used to supply analog and digital circuits in the device. See Table 13 for recommended  
components from for VANA input supply filtering.  
Table 12. Recommended LDO Output Capacitors (X7R Dielectric)  
MANUFACTURER  
Murata  
PART NUMBER  
VALUE  
CASE SIZE  
0603  
DIMENSIONS L × W × H (mm)  
1.6 × 0.8 × 0.8  
VOLTAGE RATING  
GCM188R71C105KA64  
GCM188R70J225KE22  
1 µF (10%)  
2.2 µF (10%)  
16 V  
Murata  
0603  
1.6 × 0.8 × 0.8  
6.3 V  
Table 13. Recommended Supply Filtering Components  
MANUFACTURER  
Murata  
PART NUMBER  
VALUE  
CASE SIZE  
0402  
DIMENSIONS L × W × H (mm)  
1 × 0.5 × 0.5  
VOLTAGE RATING  
GCM155R71C104KA55  
GCM188R71C104KA37  
100 nF (10%)  
100 nF (10%)  
16 V  
16 V  
Murata  
0603  
1.6 × 0.8 × 0.8  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
 
 
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
8.2.1.6 Current Limit vs. Maximum Output Current  
The inductor current ripple can be calculated using Equation 1 and Equation 2:  
VOUT  
D =  
V
ì h  
IN(max)  
(1)  
(2)  
(VIN(max) - VOUT ) ì D  
fSW ì L  
DIL =  
Example using Equation 1 and Equation 2:  
VIN(max) = 5.5 V  
VOUT = 1 V  
η = 0.75  
fSW = 1.8 MHz  
L = 0.38 µH  
then D = 0.242 and ΔIL = 1.59 A  
Peak current is half of the current ripple. If ILIM_FWD_SET_OTP is 3 A, the minimum forward current limit would be  
2.85 A when taking the –5% tolerance into account. In this case the difference between set peak current and  
maximum load current = 0.795 A + 0.15 A = 0.945 A.  
Inductor current =  
Forward current  
ILIM_FWD_MAX (+20%)  
ILIM_FWD_TYP (+7.5%)  
ILIM_FWD_SET_OTP (1.5...3 A, 0.5-A step)  
ILIM_FWD_MIN (-5%)  
Minimum 1A guard band  
to take current ripple,  
inductor inductance  
variation into account  
IL_AVG = IOUT  
1 / fSW  
IOUT_MAX < ILIM_FWD_SET_OTP œ 1 A  
Figure 31. Current Limit vs Maximum Output Current  
8.2.2 Detailed Design Procedure  
The performance of the LP8732xx-Q1 device depends greatly on the care taken in designing the printed circuit  
board (PCB). The use of low-inductance and low serial-resistance ceramic capacitors is strongly recommended,  
while proper grounding is crucial. Attention must be given to decoupling the power supplies. Decoupling  
capacitors must be connected close to the device and between the power and ground pins to support high peak  
currents being drawn from system power rail during turnon of the switching MOSFETs. Keep input and output  
traces as short as possible, because trace inductance, resistance, and capacitance can easily become the  
performance limiting items. The separate buck regulator power pins VIN_Bx are not connected together  
internally. Connect the VIN_Bx power connections together outside the package using power plane construction.  
64  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
 
 
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
8.2.3 Application Curves  
Measurements are done using typical application set up with connections shown in Typical Applications. Graphs  
may not reflect the OTP default settings. Unless otherwise specified: V(VIN_Bx) = V(VIN_LDOx) = V(VANA) = 3.7 V,  
VOUT_Bx = 1 V, VOUT_LDOx = 1 V, TA = 25°C, L = 0.47 µH (TOKO DFE252012PD-R47M), COUT_BUCK = 22 µF /  
phase, and CPOL_BUCK = 22 µF, COUT_LDO = 1 µF.  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
Vin=5V, AUTO  
Vin=3.3V, AUTO  
Vin=5V, FPWM  
Vin=3.3V, FPWM  
Vin=5V, AUTO  
Vin=3.3V, AUTO  
Vin=5V, FPWM  
Vin=3.3V, FPWM  
0.001  
0.01  
0.1  
1
2
Output Current (A)  
D004  
0.001  
0.01  
0.1  
1
4
VOUT = 1.8 V  
Output Current (A)  
D006  
VOUT = 1.8 V  
Figure 32. Buck Efficiency in PFM/PWM and Forced PWM  
Mode (Single-Phase Output)  
Figure 33. Buck Efficiency in PFM/PWM and Forced PWM  
Mode (Dual-Phase Output)  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
Vout=1V  
Vout=1.8V  
Vout=2.5V  
50  
Vout=1V  
Vout=1.8V  
Vout=2.5V  
50  
40  
0.001  
0.01  
0.1  
1
2
40  
0.001  
Output Current (A)  
D008  
0.01  
0.1  
1
4
VIN = 3.3 V  
Output Current (A)  
D010  
VIN = 3.3 V  
Figure 34. Buck Efficiency in Forced PWM Mode (Single-  
Phase Output)  
Figure 35. Buck Efficiency in Forced PWM Mode (Dual-  
Phase Output)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
Vout=1V  
Vout=1.8V  
Vout=2.5V  
Vout=1V  
Vout=1.8V  
Vout=2.5V  
0.001  
0.01  
0.1  
1
2
Output Current (A)  
D012  
0.001  
0.01  
0.1  
1
4
VIN = 5 V  
Output Current (A)  
D014  
VIN = 5 V  
Figure 36. Buck Efficiency in Forced PWM Mode (Single-  
Phase Output)  
Figure 37. Buck Efficiency in Forced PWM Mode (Dual-  
Phase Output)  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.02  
1.016  
1.012  
1.008  
1.004  
1
0.996  
0.992  
0.988  
0.996  
0.992  
0.988  
0.984  
0.98  
Vin=3.3V, FPWM  
0.984  
Vin=5.0V, FPWM  
Vin=3.3V, FPWM  
Vin=5.0V, FPWM  
0.98  
0
0.5  
1
1.5  
2
Output Current (A)  
D016  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
VOUT = 1 V  
Output Current (A)  
D018  
VOUT = 1 V  
Figure 38. Buck Output Voltage vs Load Current in Forced  
PWM Mode (Single-Phase Output)  
Figure 39. Buck Output Voltage vs Load Current in Forced  
PWM Mode (Dual-Phase Output)  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.02  
1.015  
1.01  
1.005  
1
0.996  
0.992  
0.988  
0.995  
0.99  
0.985  
0.98  
Vin=3.3V, AUTO  
Vin=5.0V, AUTO  
Vin=3.3V, AUTO  
0.984  
Vin=5.0V, AUTO  
0.98  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.2  
0.4  
0.6  
0.8  
1
Output Current (A)  
D019  
D020  
VOUT = 1 V  
VOUT = 1 V  
Figure 40. Buck Output Voltage vs Load Current in  
PFM/PWM Mode (Single-Phase Output)  
Figure 41. Buck Output Voltage vs Load Current in  
PFM/PWM Mode (Dual-Phase Output)  
66  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
1.02  
SNVSB63 SEPTEMBER 2018  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.016  
1.012  
1.008  
1.004  
1
0.996  
0.992  
0.988  
0.984  
0.98  
0.996  
0.992  
0.988  
0.984  
0.98  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D021  
D022  
VOUT = 1 V  
Load = 1 A  
VOUT = 1 V  
Load = 1 A  
Figure 42. Buck Output Voltage vs Input Voltage in PWM  
Mode (Single-Phase Output)  
Figure 43. Buck Output Voltage vs Input Voltage in PWM  
Mode (Dual-Phase Output)  
3
2
1
1.02  
1.015  
1.01  
1.005  
1
0.995  
0.99  
ADDING  
SHEDDING  
0.985  
0.98  
PFM  
PWM  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Output Current (A)  
Temperature (èC)  
D025  
D023  
VIN = 3.7 V  
Load = 1 A (PWM) and 0.1 A (PFM)  
Figure 44. Buck Output Voltage vs Temperature  
Figure 45. Buck Phase Adding and Shedding vs Load  
Current (Dual-Phase Output)  
Slew-rate = 10 mV/µs  
ILOAD = 0 A  
VOUT = 1 V  
Slew-rate = 10 mV/µs  
ILOAD = 0 A  
VOUT = 1 V  
Figure 47. Buck Start-Up With EN1, Forced PWM Mode  
(Dual-Phase Output)  
Figure 46. Buck Start-Up With EN1, Forced PWM Mode  
(Single-Phase Output)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Slew-rate = 10 mV/µs  
RLOAD = 1 Ω  
VOUT = 1 V  
Slew-rate = 10 mV/µs  
RLOAD = 0.5 Ω  
VOUT = 1 V  
Figure 48. Buck Start-Up with EN1, Forced PWM Mode  
(Single-Phase Output)  
Figure 49. Buck Start-Up with EN1, Forced PWM Mode  
(Dual-Phase Output)  
Slew-rate = 10 mV/µs  
RLOAD = 1 Ω  
VOUT = 1 V  
Slew-rate = 10 mV/µs  
RLOAD = 0.5 Ω  
VOUT = 1 V  
Figure 50. Buck Shutdown With EN1, Forced PWM Mode  
(Single-Phase Output)  
Figure 51. Buck Shutdown With EN1, Forced PWM Mode  
(Dual-Phase Output)  
IOUT = 10 mA  
IOUT = 10 mA  
Figure 52. Buck Output Voltage Ripple, PFM Mode (Single-  
Phase Output)  
Figure 53. Buck Output Voltage Ripple, PFM Mode (Dual-  
Phase Output)  
68  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
IOUT = 200 mA  
IOUT = 200 mA  
Figure 55. Buck Output Voltage Ripple,  
Figure 54. Buck Output Voltage Ripple,  
Forced PWM Mode (Single-Phase Output)  
Forced PWM Mode (Dual-Phase Output)  
Figure 56. Buck Transient From PFM-to-PWM Mode  
(Single-Phase Output)  
Figure 57. Buck Transient From PFM-to-PWM Mode (Dual-  
Phase Output)  
Figure 58. Buck Transient From PWM-to-PFM Mode  
(Single-Phase Output)  
Figure 59. Buck Transient From PWM-to-PFM Mode (Dual-  
Phase Output)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Figure 60. Buck Transient From 1-Phase to 2-Phase  
Figure 61. Buck Transient From 2-Phase to 1-Phase  
Operation (Dual-Phase Output)  
Operation (Dual-Phase Output)  
IOUT = 0.1 A 2 A  
0.1 A  
TR = TF = 400 ns  
IOUT = 0.1 A 4 A  
0.1 A  
TR = TF = 400 ns  
Figure 62. Buck Transient Load Step Response, AUTO  
Mode (Single-Phase Output)  
Figure 63. Buck Transient Load Step Response, AUTO  
Mode (Dual-Phase Output)  
IOUT = 0.1 A 2 A  
0.1 A  
TR = TF = 400 ns  
IOUT = 0.1 A 4 A  
0.1 A  
TR = TF = 400 ns  
Figure 64. Buck Transient Load Step Response, Forced  
PWM Mode (Single-Phase Output)  
Figure 65. Buck Transient Load Step Response, Forced  
PWM Mode (Dual-Phase Output)  
70  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
VOUT(200mV/div)  
VOUT(200mV/div)  
Time (400 µs/div)  
Time (400 µs/div)  
Figure 66. Buck VOUT Transition from 0.6 V to 1.4 V With  
Different Slew Rate Settings  
Figure 67. Buck VOUT Transition from 1.4 V to 0.6 V With  
Different Slew Rate Settings  
Figure 68. Buck Start-up With Short on Output (Single-  
Phase Output)  
Figure 69. Buck Start-up With Short on Output (Dual-  
Phase Output)  
1.02  
1.015  
1.01  
1.005  
1
1.02  
1.015  
1.01  
1.005  
1
0.995  
0.99  
0.995  
0.99  
0.985  
0.98  
0.985  
0.98  
Vin=3.3V  
Vin=5V  
0
50  
100  
150  
200  
250  
300  
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Current (mA)  
Input Voltage (V)  
D050  
D051  
VOUT = 1 V  
Figure 70. LDO Output Voltage vs Load Current  
VOUT = 1 V  
Load = 200 mA  
Figure 71. LDO Output Voltage vs Input Voltage  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
1.02  
1.015  
1.01  
1.005  
1
0.995  
0.99  
0.985  
0.98  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D052  
ILOAD = 0 A  
VOUT = 1 V  
VOUT = 1 V  
Load = 200 mA  
Figure 73. LDO Start-Up  
Figure 72. LDO Output Voltage vs Temperature  
RLOAD = 3.3 Ω  
VOUT = 1 V  
ILOAD = 0 A  
VOUT = 1 V  
Figure 74. LDO Start-Up  
Figure 75. LDO Shutdown  
IOUT = 0 A 0.3 A 0 A  
TR = TF = 1 µs  
Figure 76. LDO Transient Load Step Response  
Figure 77. LDO VOUT Transition from 1.8 V to 1.2 V  
72  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
Start-up  
delay is 500  
µs  
Figure 78. LDO VOUT Transition from 1.2 V to 1.8 V  
Figure 79. LDO Start-Up With Short on Output  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.8 V and 5.5 V. The VANA input  
and VIN_Bx buck inputs must be connected together, and they must use the same input supply. This input  
supply must be well regulated and able to withstand maximum input current and maintain stable voltage without  
voltage drop even at load transition condition. The resistance of the input supply rail must be low enough that the  
input current transient does not cause too high a drop in the LP8732xx-Q1 supply voltage that can cause false  
UVLO fault triggering. If the input supply is located more than a few inches from the LP8732xx-Q1 additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. The VIN_LDOx LDO input supply  
voltage range is 2.5 V to 5.5 V and can be higher or lower than VANA supply voltage.  
10 Layout  
10.1 Layout Guidelines  
The high frequency and large switching currents of the LP8732xx-Q1 make the choice of layout important. Good  
power supply results only occur when care is given to proper design and layout. Layout affects noise pickup and  
generation and can cause a good design to perform with less-than-expected results. With a range of output  
currents from milliamps to several amps, good power supply layout is much more difficult than most general PCB  
design. Use the following steps as a reference to ensure the device is stable and maintains proper voltage and  
current regulation across its intended operating voltage and current range.  
1. Place CIN as close as possible to the VIN_Bx pin and the PGND_Bx pin. Route the VIN trace wide and thick  
to avoid IR drops. The trace between the positive node of the input capacitor and the VIN_Bx pin(s) of  
LP8732xx-Q1, as well as the trace between the negative node of the input capacitor and power PGND_Bx  
pin(s), must be kept as short as possible. The input capacitance provides a low-impedance voltage source  
for the switching converter. The inductance of the connection is the most important parameter of a local  
decoupling capacitor — parasitic inductance on these traces must be kept as small as possible for proper  
device operation. The parasitic inductance can be reduced by using a ground plane as close as possible to  
top layer by using thin dielectric layer between top layer and ground plane.  
2. The output filter, consisting of L and COUT, converts the switching signal at SW_Bx to the noiseless output  
voltage. It must be placed as close as possible to the device keeping the switch node small, for best EMI  
behavior. Route the traces between the output capacitors of the LP8732xx-Q1 and the input capacitors of the  
load direct and wide to avoid losses due to the IR drop.  
3. Input for analog blocks (VANA and AGND) must be isolated from noisy signals. Connect VANA directly to a  
quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling  
capacitor as close as possible to the VANA pin.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
Layout Guidelines (continued)  
4. If remote voltage sensing can be used for the load, connect the LP8732xx-Q1 feedback pins FB_Bx to the  
respective sense pins on the load capacitor. The sense lines are susceptible to noise. They must be kept  
away from noisy signals such as PGND_Bx, VIN_Bx, and SW_Bx, as well as high bandwidth signals such as  
the I2C. Avoid both capacitive and inductive coupling by keeping the sense lines short and direct, and close  
to each other. Run the lines in a quiet layer. Isolate them from noisy signals by a voltage or ground plane if  
possible. If series resistors are used for load current measurement, place them after connection of the  
voltage feedback.  
5. PGND_Bx, VIN_Bx and SW_Bx must be routed on thick layers. They must not surround inner signal layers  
which are not able to withstand interference from noisy PGND_Bx, VIN_Bx and SW_Bx.  
6. LDO performance (PSRR, noise and transient response) depend on the layout of the PCB. Best performance  
is achieved by placing CIN and COUT as close to the LP8732xx-Q1 device as practical. The ground  
connections for CIN and COUT must be back to the LP8732xx-Q1 AGND with as wide and as short of a  
copper trace as is practical and with multiple vias if routing is done on other layer. Avoid connections using  
long trace lengths, narrow trace widths, or connection through small via. These add parasitic inductances  
and resistance that results in inferior performance especially during transient conditions.  
Due to the small package of this converter and the overall small solution size, the thermal performance of the  
PCB layout is important. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and  
convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of  
a given component. Proper PCB layout, focusing on thermal performance, results in lower die temperatures.  
Wide power traces come with the ability to sink dissipated heat. This can be improved further on multi-layer PCB  
designs with vias to different planes. This results in reduced junction-to-ambient (RθJA) and junction-to-board  
(RθJB) thermal resistances, thereby reducing the device junction temperature, TJ. TI strongly recommends  
performance of a careful system-level 2D or full 3D dynamic thermal analysis at the beginning product design  
process by using a thermal modeling analysis software.  
74  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
LP8732-Q1  
www.ti.com  
SNVSB63 SEPTEMBER 2018  
10.2 Layout Example  
VOUT0  
VOUT1  
COUT0  
COUT1  
GND  
L1  
L0  
21 20 19  
17  
16  
18  
15  
14  
SW_B0  
SW_B1  
SW_B1  
VIN_B1  
22  
23  
13  
12  
SW_B0  
VIN_B0  
VIN_B0  
CIN0  
CIN1  
29  
AGND  
24  
VIN  
25  
VIN  
GND  
GND  
11  
VIN_B1  
CLKIN  
nINT  
10  
9
GPO  
26  
27  
PGOOD  
CIN2  
CIN3  
8
VIN_LDO0  
28  
VIN_LDO1  
VIN  
AGND  
VIN  
AGND  
1
2
3
4
5
6
COUT3  
AGND  
COUT2  
VIN  
CANA  
AGND  
VOUT2  
VOUT3  
Figure 80. LP8732xx-Q1 Board Layout  
In dual-phase buck configuration short VOUT0 and VOUT1 together.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
LP8732-Q1  
SNVSB63 SEPTEMBER 2018  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
76  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Apr-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP873200RHDRQ1  
LP873200RHDTQ1  
LP873244RHDRQ1  
LP873244RHDTQ1  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RHD  
28  
28  
28  
28  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
LP8732  
00-Q1  
ACTIVE  
ACTIVE  
ACTIVE  
RHD  
SN  
SN  
SN  
LP8732  
00-Q1  
RHD  
LP8732  
44-Q1  
RHD  
LP8732  
44-Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Apr-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Apr-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP873200RHDRQ1  
LP873200RHDTQ1  
LP873244RHDRQ1  
LP873244RHDTQ1  
VQFN  
VQFN  
VQFN  
VQFN  
RHD  
RHD  
RHD  
RHD  
28  
28  
28  
28  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Apr-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP873200RHDRQ1  
LP873200RHDTQ1  
LP873244RHDRQ1  
LP873244RHDTQ1  
VQFN  
VQFN  
VQFN  
VQFN  
RHD  
RHD  
RHD  
RHD  
28  
28  
28  
28  
3000  
250  
367.0  
213.0  
367.0  
213.0  
367.0  
191.0  
367.0  
191.0  
38.0  
35.0  
38.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RHD0028W  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
0.1 MIN  
(0.05)  
A
-
A
2
5
.
0
0
0
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
3.4 0.1  
(0.2) TYP  
8
14  
EXPOSED  
THERMAL PAD  
24X 0.5  
7
15  
A
SYMM  
A
4X  
3
1
21  
0.3  
28X  
0.2  
0.1  
C A B  
28  
22  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.65  
0.45  
28X  
4222120/B 02/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHD0028W  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.4)  
SYMM  
22  
28  
28X (0.75)  
1
21  
28X (0.25)  
(1.45)  
SYMM  
(4.65)  
(0.5) TYP  
15  
7
(R0.05) TYP  
(
0.2) TYP  
VIA  
8
14  
(1.45)  
(4.65)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222120/B 02/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHD0028W  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.84) TYP  
28  
22  
METAL  
TYP  
28X (0.75)  
1
21  
28X (0.25)  
(0.84)  
TYP  
SYMM  
(4.65)  
24X (0.5)  
7
15  
(R0.05) TYP  
8
14  
4X ( 1.47)  
(4.65)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4222120/B 02/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

LP8732-Q1_V02

LP8732xx-Q1 Dual High-Current Buck Converter and Dual Linear Regulator
TI

LP873200RHDRQ1

汽车类双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI

LP873200RHDTQ1

汽车类双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI

LP873220

用于 AM570x 的工业双路 2A 降压转换器和双路线性稳压器
TI

LP873220-Q1

用于 J6 入门处理器的汽车类双路 2A 降压转换器和双路线性稳压器
TI

LP873220RHDR

用于 AM570x 的工业双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI

LP873220RHDRQ1

用于 J6 入门处理器的汽车类双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI

LP873220RHDT

用于 AM570x 的工业双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI

LP873220RHDTQ1

用于 J6 入门处理器的汽车类双路 2A 降压转换器和双路线性稳压器 | RHD | 28 | -40 to 125
TI

LP873222-Q1

汽车类 2A/3.36V + 2A/1.54V 降压转换器和 300mA/3.3V + 300mA/1.0V 线性稳压器
TI

LP873222RHDRQ1

汽车类 2A/3.36V + 2A/1.54V 降压转换器和 300mA/3.3V + 300mA/1.0V 线性稳压器 | RHD | 28 | -40 to 125
TI

LP873222RHDTQ1

汽车类 2A/3.36V + 2A/1.54V 降压转换器和 300mA/3.3V + 300mA/1.0V 线性稳压器 | RHD | 28 | -40 to 125
TI