LP87524J-Q1 [TI]

适用于 AWR 和 IWR MMIC 的多相 4MHz、4A/1.0V + 2.5A/1.8V + 1.5A/3.3V + 1.5A/1.2V 降压转换器;
LP87524J-Q1
型号: LP87524J-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 AWR 和 IWR MMIC 的多相 4MHz、4A/1.0V + 2.5A/1.8V + 1.5A/3.3V + 1.5A/1.2V 降压转换器

转换器
文件: 总79页 (文件大小:2130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
LP87524B/J/P-Q1 适用于 AWR IWR MMIC 的四 4MHz 降压转换器  
1 特性  
3 说明  
1
符合汽车应用 要求  
LP87524B/J/P-Q1 专为满足各种汽车电源应用中最新  
处理器和平台的电源管理要求而 设计。该器件包含四  
个降压直流/直流转换器内核,这些内核配置为 4 个单  
相输出。该器件由 I2C 兼容串行接口和使能信号进行控  
制。  
具有符合 AEC-Q100 标准的下列结果:  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
输入电压:2.8V 5.5V  
输出电压:0.6V 3.36V  
自动 PFM/PWMAUTO 模式)操作可在较宽输出电  
流范围内最大限度地提高效率。LP87524B/J/P-Q1 支  
持远程电压感应,可补偿稳压器输出与负载点 (POL)  
之间的 IR 压降,从而提高输出电压的精度。此外,可  
以强制开关时钟进入 PWM 模式以及将其与外部时钟  
同步,从而最大限度地降低干扰。  
四个高效降压直流/直流转换器内核:  
总输出电流高达 10A  
输出电压转换率 3.8mV/µs  
4MHz 开关频率  
扩频模式和相位交错  
可配置通用 I/O (GPIO)  
I2C 兼容接口,支持标准 (100kHz)、快速  
(400kHz)、快速+ (1MHz) 和高速 (3.4MHz) 四种模  
LP87524B/J/P-Q1 器件支持在不添加外部电流感应电  
阻器的情况下进行负载电流测量。此  
外,LP87524B/J/P-Q1 还支持与使能信号同步的可编  
程启动和关断延迟与时序。这些序列可能还包括用于控  
制外部稳压器、负载开关和处理器复位的 GPIO 信  
号。在启动和电压变化期间,器件会对输出转换率进行  
控制,从而最大限度地减小输出电压过冲和浪涌电流。  
具有可编程屏蔽的中断功能  
可编程电源正常信号 (PGOOD)  
输出短路和过载保护  
过热警告和保护  
过压保护 (OVP) 和欠压锁定 (UVLO)  
器件信息(1)  
器件型号  
LP87524B-Q1  
LP87524J-Q1  
LP87524P-Q1  
封装  
封装尺寸(标称值)  
2 应用  
汽车信息娱乐系统、仪表组、雷达和摄像头电源 应  
VQFN-HR (26)  
4.50mm × 4.00mm  
空白  
空白  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
效率与输出电流间的关系  
VOUT1  
VOUT2  
VOUT3  
VOUT4  
100  
SW_B0  
FB_B0  
VIN  
LOAD  
LOAD  
LOAD  
LOAD  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
90  
80  
70  
SW_B1  
FB_B1  
NRST  
SDA  
SCL  
60  
1PH, VOUT = 1V, AUTO  
1PH, VOUT = 1.8V, AUTO  
SW_B2  
FB_B2  
nINT  
1PH, VOUT = 2.5V, AUTO  
50  
0.001  
CLKIN  
0.01  
0.1  
1
5
Output Current (A)  
EN1 (GPIO1)  
EN2 (GPIO2)  
EN3 (GPIO3)  
D922  
SW_B3  
FB_B3  
PGOOD  
GNDs  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSAW2  
 
 
 
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 32  
7.6 Register Maps......................................................... 35  
Application and Implementation ........................ 57  
8.1 Application Information............................................ 57  
8.2 Typical Application .................................................. 57  
Power Supply Recommendations...................... 63  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 I2C Serial Bus Timing Requirements...................... 11  
6.7 Typical Characteristics............................................ 13  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Descriptions............................................... 15  
7.4 Device Functional Modes........................................ 30  
8
9
10 Layout................................................................... 64  
10.1 Layout Guidelines ................................................. 64  
10.2 Layout Example .................................................... 65  
11 器件和文档支持 ..................................................... 66  
11.1 器件支持................................................................ 66  
11.2 接收文档更新通知 ................................................. 66  
11.3 社区资源................................................................ 66  
11.4 ....................................................................... 66  
11.5 静电放电警告......................................................... 66  
11.6 术语表 ................................................................... 66  
12 机械、封装和可订购信息....................................... 67  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (December 2017) to Revision B  
Page  
已添加 在 SNVSAW2 数据表中添加了 LP87524P-Q1 GPN................................................................................................... 1  
Changes from Original (April 2017) to Revision A  
Page  
已添加 在 SNVSAW2 数据表中添加了 LP87524J-Q1 GPN ................................................................................................... 1  
2
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
5 Pin Configuration and Functions  
RNF Package  
26-Pin VQFN With Thermal Pad  
Top View  
26  
25  
24  
23  
22  
FB_B2  
FB_B3  
1
21  
EN3  
NRST  
nINT  
2
3
4
5
6
7
20  
19  
18  
17  
16  
15  
CLKIN  
AGND  
SCL  
VANA  
AGND  
PGOOD  
EN2  
AGND  
SDA  
EN1  
FB_B0  
FB_B1  
8
14  
9
10  
11  
12  
13  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
NAME  
1
FB_B2  
A
D/I/O  
D/I  
Output voltage feedback (positive) for Buck2.  
Programmable enable signal for buck regulators (can be also configured to select between two  
buck output voltage levels). Alternative function is GPIO3.  
2
3
EN3  
CLKIN  
AGND  
External clock input. Connect to ground if external clock is not used.  
4, 17,  
Thermal Pad  
G
Ground  
5
6
SCL  
SDA  
D/I  
Serial interface clock input for I2C access. Connect a pullup resistor.  
D/I/O Serial interface data input and output for I2C access. Connect a pullup resistor.  
Programmable Enable signal for buck regulators (can be also configured to select between two  
buck output voltage levels). Alternative function is GPIO1.  
7
8
9
EN1  
D/I/O  
FB_B0  
VIN_B0  
A
P
Output voltage feedback (positive) for Buck0  
Input for Buck0. The separate power pins VIN_Bx are not connected together internally - VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
10  
11  
12  
SW_B0  
PGND_B01  
SW_B1  
A
G
A
Buck0 switch node  
Power ground for Buck0 and Buck1  
Buck1 switch node  
Input for Buck1. The separate power pins VIN_Bx are not connected together internally – VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
13  
14  
15  
VIN_B1  
FB_B1  
EN2  
P
A
Output voltage feedback (positive) for Buck1.  
Programmable enable signal for Buck regulators (can be also configured to select between two  
buck output voltage levels). Alternative function is GPIO2.  
D/I/O  
16  
18  
19  
20  
21  
PGOOD  
VANA  
nINT  
D/O  
P
Power Good indication signal  
Supply voltage for analog and digital blocks. Must be connected to same node as with VIN_Bx.  
Open-drain interrupt output, active LOW  
D/O  
D/I  
A
NRST  
FB_B3  
Reset signal for the device.  
Output voltage feedback (positive) for Buck3.  
Input for Buck3. The separate power pins VIN_Bx are not connected together internally – VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
22  
VIN_B3  
P
23  
24  
25  
SW_B3  
PGND_B23  
SW_B2  
A
G
A
Buck3 switch node  
Power Ground for Buck2 and Buck3  
Buck2 switch node  
Input for Buck2. The separate power pins VIN_Bx are not connected together internally – VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
26  
VIN_B2  
P
A: Analog Pin, D: Digital Pin, G: Ground Pin, P: Power Pin, I: Input Pin, O: Output Pin  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
MIN  
MAX  
UNIT  
Voltage on power connections  
Voltage on buck switch nodes  
VIN_Bx, VANA  
SW_Bx  
–0.3  
6
V
(VIN_Bx + 0.3 V) with 6 V  
maximum  
–0.3  
V
(VANA + 0.3 V) with 6 V  
maximum  
Voltage on buck voltage sense nodes  
Voltage on NRST input  
FB_Bx  
–0.3  
–0.3  
–0.3  
V
V
V
NRST  
6
Voltage on logic pins  
(input or output pins)  
SDA, SCL, nINT, CLKIN  
6
Voltage on logic pins  
(input or output pins)  
EN1 (GPIO1), EN2 (GPIO2), EN3  
(GPIO3), PGOOD  
(VANA + 0.3 V) with 6 V  
maximum  
–0.3  
V
Junction temperature, TJ-MAX  
Storage temperature, Tstg  
40  
150  
150  
260  
°C  
°C  
°C  
–65  
Maximum lead temperature (soldering, 10 sec.)  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
All pins  
V
Corner pins (1, 8, 14 and 21)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
INPUT VOLTAGE  
Voltage on power connections  
Voltage on NRST  
VIN_Bx, VANA  
NRST  
2.8  
5.5  
V
V
V
V
1.65  
VANA with 5.5 V  
maximum  
Voltage on logic pins  
nINT, CLKIN  
ENx, PGOOD  
1.65  
0
5.5  
Voltage on logic pins  
(input or output pins)  
VANA with 5.5 V  
maximum  
Voltage on I2C interface, standard (100  
kHz), fast (400 khz), fast+ (1 MHz), and  
high-speed (3.4 MHz) modes  
1.65  
3.1  
1.95  
V
V
SCL, SDA  
Voltage on I2C interface, standard (100  
kHz), fast (400 kHz), and fast+ (1 MHz)  
modes  
VANA with 3.6 V  
maximum  
TEMPERATURE  
Junction temperature, TJ  
Ambient temperature, TA  
40  
40  
140  
125  
°C  
°C  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
6.4 Thermal Information  
LP875xx-Q1  
RNF (VQFN)  
26 PINS  
34.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
16.5  
4.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
4.7  
RθJC(bot)  
1.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Limits apply over the junction temperature range –40°C TJ +140°C, CPOL = 22 µF / phase, specified VVANA, VVIN_Bx , VNRST  
,
VVOUT_Bx and IOUT range, unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V,  
(2)  
unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
EXTERNAL COMPONENTS  
Input filtering  
capacitance  
CIN  
Connected from VIN_Bx to PGND_Bx  
Capacitance per phase  
1.9  
10  
10  
22  
22  
µF  
µF  
µF  
Output filtering  
COUT  
Capacitance, local  
Point-of-Load (POL)  
capacitance  
CPOL  
Optional POL capacitance per phase  
Total output capacitance, 1-phase output  
[1-10] MHz  
COUT-  
TOTAL  
Output capacitance,  
total (local and POL)  
100  
10  
µF  
Input and output  
capacitor ESR  
ESRC  
2
mΩ  
0.47  
µH  
L
Inductor  
Inductance of the inductor  
–30%  
30%  
DCRL  
Inductor DCR  
25  
mΩ  
BUCK REGULATOR  
VVIN_Bx  
Input voltage range  
2.8  
0.6  
3.7  
5.5  
V
Programmable voltage range, 2.8 V ≤  
3.36  
V
VIN_Bx 4 V  
Programmable voltage range, 2.8 V ≤  
VIN_Bx 5.5 V  
V
1.0  
3.36  
V
VVOUT_Bx  
Output voltage  
Step size, 0.6 V VOUT < 0.73 V  
Step size, 0.73 V VOUT < 1.4 V  
Step size, 1.4 V VOUT 3.36 V  
Buck0, Buck1  
10  
5
mV  
20  
1.5(3)  
4(3)  
Buck2: VIN 3 V  
Output current,  
LP87524B/J  
IOUT  
A
A
Buck2: 2.8 V VIN < 3 V  
Buck3  
3(3)  
2.5(3)  
3(3)  
1.5(3)  
2.5(3)  
Buck0, Buck2  
Output current,  
LP87524P  
IOUT  
Buck1  
Buck3  
(1) All voltage values are with respect to network ground.  
(2) Minimum (Min) and Maximum (Max) limits are specified by design, test, or statistical analysis. Typical (Typ) numbers are not verified, but  
do represent the most likely norm.  
(3) The maximum output current can be limited by the forward current limit ILIM FWD and by the junction temperature. The power dissipation  
inside the die depends on the length of the current pulse and efficiency and the junction temperature may increase to thermal shutdown  
level if the board and ambient temperatures are high.  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, CPOL = 22 µF / phase, specified VVANA, VVIN_Bx , VNRST  
,
VVOUT_Bx and IOUT range, unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V,  
unless otherwise noted.(1) (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input and output  
voltage difference  
Minimum voltage between VIN_x and  
VOUT to fulfill the electrical characteristics  
0.5  
V
DC output voltage  
accuracy, includes  
voltage reference, DC  
load and line  
regulations, process  
and temperature  
VOUT < 1 V, PWM mode  
–20  
–2%  
–20  
20  
2%  
40  
mV  
mV  
V
OUT 1 V, PWM mode  
VOUT < 1 V, PFM mode  
OUT 1 V, PFM mode  
VVOUT_DC  
V
–2%  
2% + 20 mV  
PWM mode, ESRC < 2 mΩ, L = 0.47 µH  
PFM mode, L = 0.47 µH  
IOUT = IOUT(max)  
4
14  
Ripple voltage  
mVp-p  
%/V  
DCLNR  
DCLDR  
DC line regulation  
0.1  
DC load regulation in  
PWM mode  
VOUT = 1 V, IOUT from 0 to IOUT(max)  
0.8%  
IOUT = 0 A to 2 A, TR = TF = 10 µs, PWM  
mode, COUT = 22 µF, L = 0.47 µH, CPOL  
22 µF  
=
–3%  
3%  
Transient load step  
response  
TLDSR  
mV  
mV  
IOUT = 0.1 A to 2 A, TR = TF = 1 µs, PWM  
mode, COUT = 22 µF, L = 0.47 µH, CPOL  
22 µF  
=
±40  
±5  
VVIN_Bx stepping 3 V 3.5 V, TR = TF = 10  
µs, IOUT = IOUT(max)  
TLNSR  
Transient line response  
Buck0, Buck1: VVIN_Bx 3 V  
Buck0, Buck1: 2.8 V VVIN_Bx < 3 V  
Buck2: VVIN_Bx 3 V  
2.3  
2.0  
4.7  
4.0  
4.2  
3.6  
3.8  
3.2  
2.3  
2.0  
4.2  
3.6  
2.7  
2.7  
5.4  
5.4  
4.8  
4.8  
4.3  
4.3  
2.7  
2.7  
4.8  
4.8  
3.0  
3.0  
6.0  
6.0  
5.4  
5.4  
4.8  
4.8  
3.0  
3.0  
5.4  
5.4  
Forward current limit  
(peak for every  
switching cycle),  
LP87524B/J  
ILIM FWD  
A
Buck2: 2.8 V VVIN_Bx < 3 V  
Buck3: VVIN_Bx 3 V  
Buck3: 2.8 V VVIN_Bx < 3 V  
Buck0, Buck2: VVIN_Bx 3 V  
Buck0, Buck2: 2.8 V VVIN_Bx < 3 V  
Buck1: VVIN_Bx 3 V  
Forward current limit  
(peak for every  
switching cycle),  
LP87524P  
ILIM FWD  
A
A
Buck1: 2.8 V VVIN_Bx < 3 V  
Buck3: VVIN_Bx 3 V  
Buck3: 2.8 V VVIN_Bx < 3 V  
Negative current limit /  
phase (peak for every  
switching cycle)  
ILIM NEG  
1.6  
2
2.4  
RDS(ON) HS On-resistance, high-  
Each phase, between VIN_Bx and SW_Bx  
pins (I = 1 A)  
29  
17  
65  
35  
mΩ  
mΩ  
side FET  
FET  
RDS(ON) LS On-resistance, low-side Each phase, between SW_Bx and  
FET  
PGND_Bx pins (I = 1 A)  
FET  
VOUT > 0.8  
3.6  
2.7  
1.8  
4
3
2
4.4  
3.3  
2.2  
Switching frequency,  
PWM mode  
fSW  
0.6 < VOUT 0.8  
VOUT = 0.6  
MHz  
µs  
From ENx to VOUT = 0.35 V (slew-rate  
control begins), COUT_TOTAL = 44 µF / phase  
Start-up time (soft start)  
200  
3.8  
Output voltage slew-  
rate(4)  
3.23  
4.4 mV/µs  
(4) Output capacitance, forward and negative current limits and load current may limit the maximum and minimum slew rates.  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, CPOL = 22 µF / phase, specified VVANA, VVIN_Bx , VNRST  
VVOUT_Bx and IOUT range, unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V,  
unless otherwise noted.(1) (2)  
,
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PFM-to-PWM - current  
threshold(5)  
IPFM-PWM  
IPWM-PFM  
600  
mA  
PWM-to-PFM - current  
threshold(5)  
200  
230  
50  
mA  
Output pulldown  
resistance  
Regulator disabled  
Overvoltage monitoring (compared to DC  
160  
39  
–53  
4
300  
64  
Ω
output voltage level, VVOUT_DC  
)
mV  
Undervoltage monitoring (compared to DC  
output voltage level, VVOUT_DC  
–40  
–29  
10  
)
Output voltage  
monitoring for PGOOD  
pin  
Debounce time during regulator enable  
PGOOD_SET_DELAY = 0  
µs  
ms  
µs  
Debounce time during regulator enable  
PGOOD_SET_DELAY = 1  
10  
4
11  
13  
Deglitch time during operation and after  
voltage change  
10  
Powergood threshold  
for interrupt  
BUCKx_PG_INT,  
difference from final  
voltage  
Rising ramp voltage, enable or voltage  
change  
–20  
–14  
14  
–8  
mV  
mV  
Falling ramp voltage, voltage change  
8
20  
–8  
Powergood threshold  
for status bit  
BUCKx_PG_STAT  
During operation, status signal is forced to  
'0' during voltage change  
–20  
–14  
1
EXTERNAL CLOCK AND PLL  
Nominal frequency  
1
24  
MHz  
External input clock  
Nominal frequency step size  
Required accuracy from nominal frequency  
Delay for missing clock detection  
Delay and debounce for clock detection  
–30%  
10%  
1.8  
20  
External clock  
detection  
µs  
µs  
Clock change delay  
(internal to external)  
Delay from valid clock detection to use of  
external clock  
600  
300  
PLL output clock jitter  
Cycle to cycle  
ps, p-p  
PROTECTION FUNCTIONS  
Temperature rising, TDIE_WARN_LEVEL =  
0
115  
127  
125  
137  
135  
147  
Thermal warning  
Temperature rising, TDIE_WARN_LEVEL =  
1
°C  
°C  
Hysteresis  
20  
150  
20  
Temperature rising  
Hysteresis  
140  
160  
Thermal shutdown  
Voltage rising  
Voltage falling  
Hysteresis  
5.6  
5.45  
40  
5.8  
6.1  
V
mV  
V
VANAOVP VANA overvoltage  
5.73  
5.96  
Voltage rising  
Voltage falling  
2.51  
2.5  
2.63  
2.6  
2.75  
2.7  
VANA undervoltage  
VANAUVLO  
lockout  
LOAD CURRENT MEASUREMENT  
(5) The final PFM-to-PWM and PWM-to-PFM switchover current varies slightly and is dependent on the output voltage, input voltage, and  
the inductor current level.  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, CPOL = 22 µF / phase, specified VVANA, VVIN_Bx , VNRST  
,
VVOUT_Bx and IOUT range, unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V,  
unless otherwise noted.(1) (2)  
PARAMETER  
TEST CONDITIONS  
Output current for maximum code  
LSB  
MIN  
TYP  
MAX UNIT  
Current measurement  
range  
20.47  
A
Resolution  
20  
mA  
Measurement accuracy IOUT > 1 A  
PFM mode (automatically changing to PWM  
<10%  
45  
4
mode for the measurement)  
Measurement time  
µs  
PWM mode  
CURRENT CONSUMPTION  
Shutdown current  
consumption  
From VANA and VIN_Bx pins: NRST = 0 V,  
VANA = VIN_Bx = 3.7 V  
1.4  
6.7  
µA  
µA  
Standby current  
consumption,  
regulators disabled  
From VANA and VIN_Bx pins: NRST = 1.8  
V, VANA = VIN_Bx = 3.7 V  
Active current  
From VANA and VIN_Bx pins: NRST = 1.8  
V, VANA = VIN_Bx = 3.7 V, IOUT = 0 mA, not  
switching  
consumption in PFM  
mode, one regulator  
enabled, internal RC  
oscillator, PGOOD  
monitoring enabled  
57  
Active current  
consumption during  
PWM operation, per  
phase  
19  
2
mA  
mA  
Additional current consumption when  
internal RC oscillator, clock detector and  
PLL are enabled  
PLL and clock detector  
current consumption  
DIGITAL INPUT SIGNALS NRST, EN1, EN2, EN3, EN4, SCL, SDA, GPIO1, GPIO2, GPIO3, CLKIN  
VIL  
VIH  
Input low level  
Input high level  
0.4  
V
1.2  
10  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
77  
500  
200  
mV  
ENx pulldown  
resistance  
ENx_PD = 1  
kΩ  
NRST pulldown  
resistance  
Always present  
650  
1150  
1700  
0.4  
DIGITAL OUTPUT SIGNALS nINT  
VOL  
RP  
Output low level  
ISOURCE = 2 mA  
V
External pullup resistor To VIO supply  
10  
kΩ  
DIGITAL OUTPUT SIGNALS SDA  
VOL Output low level  
DIGITAL OUTPUT SIGNALS PGOOD, GPIO1, GPIO2, GPIO3  
ISOURCE = 10 mA  
0.4  
V
VOL  
Output low level  
ISOURCE = 2 mA  
0.4  
V
V
Output high level,  
configured to push-pull  
VOH  
ISINK = 2 mA  
VVANA – 0.4  
VVANA  
Supply voltage for  
external pull-up  
resistor, configured to  
open-drain  
VPU  
VVANA  
V
External pullup resistor,  
configured to open-  
drain  
RPU  
10  
kΩ  
ALL DIGITAL INPUTS  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +140°C, CPOL = 22 µF / phase, specified VVANA, VVIN_Bx , VNRST  
VVOUT_Bx and IOUT range, unless otherwise noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V,  
unless otherwise noted.(1) (2)  
,
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
All logic inputs over pin voltage range  
(except NRST)  
ILEAK  
Input current  
1  
1
µA  
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
6.6 I2C Serial Bus Timing Requirements  
These specifications are ensured by design. Unless otherwise noted, VIN_Bx = 3.7 V.  
MIN  
MAX  
100  
400  
1
UNIT  
Standard mode  
Fast mode  
kHz  
ƒSCL  
Serial clock frequency  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
3.4  
1.7  
MHz  
4.7  
1.3  
0.5  
160  
320  
4
Fast mode  
µs  
ns  
µs  
ns  
tLOW  
SCL low time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
0.6  
0.26  
60  
tHIGH  
SCL high time  
Data setup time  
Data hold time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
120  
250  
100  
50  
Fast mode  
tSU;DAT  
tHD;DAT  
tSU;STA  
ns  
Fast mode+  
High-speed mode  
Standard mode  
10  
10  
3450  
900  
Fast mode  
10  
ns  
ns  
Fast mode+  
10  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
70  
10  
150  
4.7  
0.6  
0.26  
160  
4.0  
0.6  
0.26  
160  
4.7  
1.3  
0.5  
4
Fast mode  
µs  
ns  
µs  
ns  
µs  
Setup time for a start or a  
repeated start condition  
Fast mode+  
High-speed mode  
Standard mode  
Fast mode  
Hold time for a start or a  
repeated start condition  
tHD;STA  
Fast mode+  
High-speed mode  
Standard mode  
Bus free time between a stop  
and start condition  
tBUF  
Fast mode  
Fast mode+  
Standard mode  
Fast mode  
0.6  
0.26  
160  
µs  
ns  
Setup time for a stop  
condition  
tSU;STO  
Fast mode+  
High-speed mode  
Standard mode  
1000  
300  
120  
80  
Fast mode  
20  
trDA  
Rise time of SDA signal  
Fast mode+  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
10  
20  
160  
Copyright © 2017–2018, Texas Instruments Incorporated  
11  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
I2C Serial Bus Timing Requirements (continued)  
These specifications are ensured by design. Unless otherwise noted, VIN_Bx = 3.7 V.  
MIN  
MAX  
300  
UNIT  
Standard mode  
Fast mode  
20 × (VDD  
/
300  
5.5 V)  
tfDA  
Fall time of SDA signal  
20 × (VDD  
/
120  
ns  
Fast mode+  
5.5 V)  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
80  
160  
1000  
300  
120  
40  
30  
Fast mode  
20  
trCL  
Rise time of SCL signal  
Fast mode+  
ns  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
10  
20  
10  
80  
Rise time of SCL signal after High-speed mode, Cb = 100 pF  
a repeated start condition  
80  
trCL1  
High-speed mode, Cb = 400 pF  
and after an acknowledge bit  
20  
160  
300  
Standard mode  
20 × (VDD  
/
Fast mode  
300  
120  
5.5 V)  
tfCL  
Fall time of a SCL signal  
Fast mode+  
20 × (VDD  
/
ns  
5.5 V)  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
10  
40  
80  
20  
Capacitive load for each bus  
line (SCL and SDA)  
Cb  
400  
50  
pF  
ns  
Pulse width of spike  
suppressed (SCL and SDA  
spikes that are less than the  
indicated width are  
Standard mode, fast mode and fast mode+  
tSP  
High-speed mode  
10  
suppressed)  
tBUF  
SDA  
SCL  
tHD;STA  
trCL  
tfDA  
trDA  
tLOW  
tfCL  
tSP  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
1. I2C Timing  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
6.7 Typical Characteristics  
Unless otherwise specified: TA = 25°C, VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, ƒSW = 4 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, CPOL = 22 µF / phase.  
4
3.5  
3
10  
9
8
7
6
5
4
3
2
1
0
2.5  
2
1.5  
1
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D045  
D046  
V(NRST) = 0 V  
V(NRST) = 1.8 V  
Regulators disabled  
2. Shutdown Current Consumption vs Input Voltage  
3. Standby Current Consumption vs Input Voltage  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
D051  
V(NRST) = 1.8 V  
Load = 0 mA  
4. PFM Mode Current Consumption vs Input Voltage, One Regulator Enabled  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LP87524B/J/P-Q1 is a high-efficiency, high-performance power supply device with four step-down DC-DC  
converter cores for automotive applications. 1 lists the output characteristics of the regulators.  
1. Supply Specification  
OUTPUT  
SUPPLY  
VOUT RANGE (V)  
RESOLUTION (mV)  
IMAX MAXIMUM OUTPUT CURRENT (A)  
0.6 to 3.36 (VIN = 2.8 V - 4 V)  
1.0 to 3.36 (VIN = 2.8 V - 5.5 V)  
10 (0.6 V to 0.73 V)  
5 (0.73 V to 1.4 V)  
20 (1.4 V to 3.36 V)  
Buck0  
Buck1  
Buck2  
Buck3  
0.6 to 3.36 (VIN = 2.8 V - 4 V)  
1.0 to 3.36 (VIN = 2.8 V - 5.5 V)  
10 (0.6 V to 0.73 V)  
5 (0.73 V to 1.4 V)  
20 (1.4 V to 3.36 V)  
10 A total  
0.6 to 3.36 (VIN = 2.8 V - 4 V)  
1.0 to 3.36 (VIN = 2.8 V - 5.5 V)  
10 (0.6 V to 0.73 V)  
5 (0.73 V to 1.4 V)  
20 (1.4 V to 3.36 V)  
0.6 to 3.36 (VIN = 2.8 V - 4 V)  
1.0 to 3.36 (VIN = 2.8 V - 5.5 V)  
10 (0.6 V to 0.73 V)  
5 (0.73 V to 1.4 V)  
20 (1.4 V to 3.36 V)  
LP87524B-Q1 default settings:  
VOUT (V)  
3.3 V  
1.2 V  
1.8 V  
2.3 V  
VOUT (V)  
3.3 V  
1.2 V  
1 V  
IMAX MAXIMUM OUTPUT CURRENT (A)  
AWR / IWR Rail  
IO  
Buck0  
1.5 A  
Buck1  
1.5 A  
Digital  
Buck2  
4 A  
RF, with external LDO  
RF, with external LDO  
AWR / IWR Rail  
IO  
Buck3  
2.5 A  
LP87524J-Q1 default settings:  
IMAX MAXIMUM OUTPUT CURRENT (A)  
Buck0  
1.5 A  
Buck1  
1.5 A  
Digital  
Buck2  
4 A  
RF, with ferrite filter  
RF, with ferrite filter  
AWR / IWR Rail  
RF, with ferrite filter  
Digital  
Buck3  
1.8 V  
VOUT (V)  
1 V  
2.5 A  
LP87524P-Q1 default settings:  
IMAX MAXIMUM OUTPUT CURRENT (A)  
Buck0  
Buck1  
Buck2  
Buck3  
3 A  
1.5 A  
3 A  
1.2 V  
1 V  
RF, with ferrite filter  
RF, with ferrite filter  
1.8 V  
2.5 A  
The LP87524B/J/P-Q1 also supports switching clock synchronization to an external clock. The nominal frequency  
of the external clock can be from 1 MHz to 24 MHz with 1-MHz steps.  
Additional features include:  
Soft start  
Input voltage protection:  
Undervoltage lockout  
Overvoltage protection  
Output voltage monitoring and protection:  
Overvoltage monitoring  
Undervoltage monitoring  
Overload protection  
Thermal warning  
Thermal shutdown  
Three enable signals can be multiplexed to general purpose I/O (GPIO) signals. The direction and output type  
(open-drain or push-pull) are programmable for the GPIOs.  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
7.2 Functional Block Diagram  
VANA  
BUCK0  
ILIM Detection  
nINT  
Power-Good Detection  
Interrupts  
Overload and Short-Circuit  
Detection  
GPIO1 (EN1)  
GPIO2 (EN2)  
GPIO3 (EN3)  
ILOAD ADC  
Enable,  
Roof and Floor,  
or Slew-Rate  
Control  
BUCK1  
ILIM Detection  
Power-Good Detection  
SDA  
SCL  
Overload and Short-Circuit  
Detection  
I2C  
ILOAD ADC  
PGOOD  
BUCK2  
Registers  
OTP EPROM  
ILIM Detection  
Power-Good Detection  
Digital  
Logic  
Overload and Short-Circuit  
Detection  
UVLO  
Thermal  
Monitor  
ILOAD ADC  
NRST  
BUCK3  
ILIM Detection  
SW  
Reset  
Power-Good Detection  
Reference  
and Bias  
Oscillator  
Overload and Short-Circuit  
Detection  
CLKIN  
ILOAD ADC  
7.3 Feature Descriptions  
7.3.1 DC-DC Converters  
7.3.1.1 Overview  
The LP87524B/J/P-Q1 includes four step-down DC-DC converter cores configured for four single-phase outputs.  
The cores are designed for flexibility; most of the functions are programmable, thus giving a possibility to  
optimize the regulator operation for each application.  
The LP87524B/J/P-Q1 has the following features:  
DVS support  
Automatic mode control based on the loading (PFM or PWM mode)  
Forced-PWM mode operation  
Optional external clock input to minimize crosstalk  
Optional spread spectrum technique to reduce EMI  
Phase control for optimized EMI  
Synchronous rectification  
Current mode loop with PI compensator  
Soft start  
Power Good flag with maskable interrupt  
Power Good signal (PGOOD) with selectable sources  
Average output current sensing (for PFM entry and load current measurement)  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Feature Descriptions (接下页)  
The following parameters can be programmed via registers:  
Output voltage  
Forced-PWM operation  
Enable and disable delays for regulators and GPIOs controlled by ENx pins  
There are two modes of operation for the converter, depending on the output current required: pulse-width  
modulation (PWM) and pulse-frequency modulation (PFM). The converter operates in PWM mode at high load  
currents of approximately 600 mA or higher. Lighter output current loads cause the converter to automatically  
switch into PFM mode for reduced current consumption when forced-PWM mode is disabled.  
A multi-phase synchronous buck converter offers several advantages over a single power stage converter. For  
application processor power delivery, lower ripple on the input and output currents and faster transient response  
to load steps are the most significant advantages. Also, because the load current is evenly shared among  
multiple channels in multi-phase output configuration, the heat generated is greatly reduced for each channel due  
to the fact that power loss is proportional to square of current. The physical size of the output inductor shrinks  
significantly due to this heat reduction. A block diagram of a single core is shown in 5.  
PMOS  
Current  
Sense  
Differential to Single-  
Ended  
FBP  
FBN  
+
-
VIN  
POS  
Current  
Limit  
œ
Slave  
Phase  
Control  
Ramp  
Generator  
VOUT  
œ
Gate  
Error  
Control  
Amp  
SW  
+
Loop  
Comp  
Voltage  
Setting  
Slew Rate  
Control  
NEG  
Current  
Limit  
Power  
Good  
+
-
VDAC  
Zero  
Cross  
Detect  
NMOS  
Current  
Sense  
Programmable  
Parameters  
Master  
Interface  
Control  
Block  
Slave  
Interface  
IADC  
GND  
Copyright © 2017, Texas Instruments Incorporated  
5. Detailed Block Diagram Showing One Core  
7.3.1.2 Transition Between PWM and PFM Modes  
The LP87524B/J/P-Q1 converter operates in PWM mode at load current of about 600 mA or higher. At lighter  
load-current levels the device automatically switches into PFM mode for reduced current consumption when  
forced-PWM mode is disabled (AUTO-mode operation). By combining the PFM and the PWM modes a high  
efficiency is achieved over a wide output-load-current range.  
7.3.1.3 Buck Converter Load-Current Measurement  
Buck load current can be monitored via I2C registers. The monitored buck converter is selected with the  
LOAD_CURRENT_BUCK_SELECT[1:0] bits in SEL_I_LOAD register. A write to this selection register starts a  
current measurement sequence. The regulator is forced to PWM mode during the measurement. The  
measurement sequence is 50 µs long, maximum. LP87524B/J/P-Q1 can be configured to give out an interrupt  
(I_LOAD_READY bit in INT_TOP1 register) after the load current measurement sequence is finished. Load  
current measurement interrupt can be masked with I_LOAD_READY_MASK bit (TOP_MASK1 register). The  
measurement result can be read from registers I_LOAD_1 and I_LOAD_2. Register I_LOAD_1 bits  
BUCK_LOAD_CURRENT[7:0] give out the LSB bits and register I_LOAD_2 bits BUCK_LOAD_CURRENT[9:8]  
the MSB bits. The measurement result BUCK_LOAD_CURRENT[9:0] LSB is 20 mA, and maximum value of the  
measurement corresponds to 20.46 A.  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
Feature Descriptions (接下页)  
7.3.1.4 Spread-Spectrum Mode  
Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband  
frequencies (the switching frequency and its harmonics). The usual solution to reduce noise coupling is to add  
EMI filters and shields to the boards. The LP87524B/J/P-Q1 device has register selectable spread-spectrum  
mode which minimizes the need for output filters, ferrite beads, or chokes. In spread-spectrum mode, the  
switching frequency varies around the center frequency, reducing the EMI emissions radiated by the converter  
and associated passive components and PCB traces (see 6). This feature is available only when internal RC  
oscillator is used (PLL_MODE[1:0] = 00 in PLL_CTRL register), and it is enabled with the EN_SPREAD_SPEC  
bit (PIN_FUNCTION register), and it affects all the buck cores.  
Frequency  
Where a fixed-frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread-  
spectrum architecture of the LP87524B/J/P-Q1 spreads that energy over a large bandwidth.  
6. Spread-Spectrum Modulation  
7.3.2 Sync Clock Functionality  
The LP87524B/J/P-Q1 device contains a CLKIN input to synchronize switching clock of the buck regulator with  
the external clock. The block diagram of the clocking and PLL module is shown in 7. Depending on the  
PLL_MODE[1:0] bits (in PLL_CTRL register) and the external clock availability, the external clock is selected and  
interrupt is generated as shown in 2. The interrupt can be masked with SYNC_CLK_MASK bit in  
TOP_MASK1 register. The nominal frequency of the external input clock is set by EXT_CLK_FREQ[4:0] bits (in  
PLL_CTRL register) and it can be from 1 MHz to 24 MHz with 1-MHz steps. The external clock must be inside  
accuracy limits (–30%/+10%) for valid clock detection.  
The NO_SYNC_CLK interrupt (in INT_TOP1 register) is also generated in cases the external clock is expected  
but it is not available. These cases are start-up (read OTP-to-STANDBY transition) when PLL_MODE[1:0] = 01  
and regulator enable (STANDBY-to-ACTIVE transition) when PLL_MODE[1:0] = 10.  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Feature Descriptions (接下页)  
24-MHz  
RC  
Oscillator  
Internal  
24-MHz  
clock  
CLKIN  
Detector  
Divider  
“EXT_CLK_  
FREQ“  
Clock Select  
Logic  
CLKIN  
1MHz  
24MHz  
PLL  
“PLL_MODE“  
1MHz  
Divider  
24  
Copyright © 2017, Texas Instruments Incorporated  
7. Clock and PLL Module  
2. PLL Operation  
DEVICE  
OPERATION MODE  
PLL AND CLOCK  
DETECTOR STATE  
INTERRUPT FOR  
EXTERNAL CLOCK  
PLL_MODE[1:0]  
CLOCK  
STANDBY  
ACTIVE  
00  
00  
Disabled  
Disabled  
No  
No  
Internal RC  
Internal RC  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
STANDBY  
01  
Enabled  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
ACTIVE  
STANDBY  
ACTIVE  
01  
10  
10  
Enabled  
Disabled  
Enabled  
No  
Internal RC  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
STANDBY  
ACTIVE  
11  
11  
Reserved  
Reserved  
7.3.3 Power-Up  
The power-up sequence for the LP87524B/J/P-Q1 is as follows:  
VANA (and VIN_Bx) reach minimum recommended level (VVANA > VANAUVLO).  
NRST is set to high level (or shorted to VANA). This initiates power-on-reset (POR), OTP reading and  
enables the system I/O interface. The I2C host must allow at least 1.2 ms before writing or reading data to the  
LP87524B/J/P-Q1.  
Device enters STANDBY-mode.  
The host can change the default register setting by I2C if needed.  
The regulator(s) can be enabled/disabled by ENx pin(s) and by I2C interface.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
7.3.4 Regulator Control  
7.3.4.1 Enabling and Disabling Regulators  
The regulator(s) can be enabled when the device is in STANDBY or ACTIVE state. There are two ways for  
enable and disable the regulators:  
Using EN_BUCKx bit in BUCKx_CTRL1 register (EN_PIN_CTRLx register bit is 0)  
Using EN1/2/3 control pins (EN_BUCKx bit is 1 AND EN_PIN_CTRLx register bit is 1 in BUCKx_CTRL1  
register)  
If the EN1/2/3 control pins are used for enable and disable then the control pin is selected with  
BUCKx_EN_PIN_SELECT[1:0] bits (in BUCKx_CTRL1 register). The delay from the control signal rising edge to  
enabling of the regulator is set by BUCKx_STARTUP_DELAY[3:0] bits and the delay from control signal falling  
edge to disabling of the regulator is set by BUCKx_SHUTDOWN_DELAY[3:0] bits in BUCKx_DELAY register.  
The delays are valid only for EN1/2/3 signal control. The control with EN_BUCKx bit is immediate without the  
delays.  
The control of the regulator (with 0-ms delays) is shown in 3.  
The control of the regulator cannot be changed from one ENx pin to a different ENx pin  
because the control is ENx signal edge sensitive. The control from ENx pin to register bit  
and back to the original ENx pin can be done during operation.  
3. Regulator Control  
CONTROL  
METHOD  
BUCKx_EN_PI EN_ROOF_FLOOR  
BUCKx  
OUTPUT VOLTAGE  
EN_BUCKx EN_PIN_CTRLx  
EN1 PIN  
EN2 PIN  
EN3 PIN  
N_SELECT[1:0]  
x
Enable/disable  
control with  
EN_BUCKx bit  
0
1
Don't Care  
0
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Disabled  
Don't Care  
BUCKx_VSET[7:0]  
Enable/disable  
control with EN1  
pin  
1
1
1
1
00  
00  
0
0
Low  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Disabled  
High  
BUCKx_VSET[7:0]  
Enable/disable  
control with EN2  
pin  
1
1
1
1
01  
01  
0
0
Don't Care  
Don't Care  
Low  
Don't Care  
Don't Care  
Disabled  
High  
BUCKx_VSET[7:0]  
Enable/disable  
control with EN3  
pin  
1
1
1
1
10  
10  
0
0
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Low  
Disabled  
High  
BUCKx_VSET[7:0]  
Roof/floor control  
with EN1 pin  
1
1
1
1
1
1
1
1
1
1
1
1
00  
00  
01  
01  
10  
10  
1
1
1
1
1
1
Low  
Don't Care  
Don't Care  
Low  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Low  
BUCKx_FLOOR_VSET[7:0]  
BUCKx_VSET[7:0]  
High  
Roof/floor control  
with EN2 pin  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
BUCKx_FLOOR_VSET[7:0]  
BUCKx_VSET[7:0]  
High  
Roof/floor control  
with EN3 pin  
Don't Care  
Don't Care  
BUCKx_FLOOR_VSET[7:0]  
BUCKx_VSET[7:0]  
High  
The regulator is enabled by the ENx pin or by I2C writing as shown in 8. The soft-start circuit limits the in-rush  
current during start-up. When the output voltage rises to 0.35-V level, the output voltage becomes slew-rate  
controlled. If there is a short circuit at the output and the output voltage does not increase above 0.35-V level in 1  
ms, the regulator is disabled, and interrupt is set. When the output voltage reaches the Power-Good threshold  
level the BUCKx_PG_INT interrupt flag (in INT_BUCK_x register) is set. The Power-Good interrupt flag can be  
masked using BUCKx_PG_MASK bit (in BUCKx_MASK register).  
The ENx input pins have integrated pulldown resistors. The pulldown resistors are enabled by default, and the  
host can disable those with ENx_PD bits (in CONFIG register).  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Voltage decrease because of load  
No new Powergood interrupt  
BUCKx_VSET[7:0]  
Powergood  
Voltage  
Ramp 3.8 mV/ms  
0.6V  
0.35V  
Time  
Resistive pull-down  
(if enabled)  
Soft start  
Enable  
BUCK_x_STAT(BUCKx_STAT)  
BUCK_x_STAT(BUCKx_PG_STAT)  
INT_BUCK_x(BUCKx_PG_INT)  
nINT  
0
0
0
1
0
0
1
1
0
1
0
Powergood  
interrupt  
Host clears  
interrupt  
8. Regulator Enable and Disable  
7.3.4.2 Changing Output Voltage  
The output voltage of the regulator can be changed by the ENx pin (voltage levels defined by the BUCKx_VOUT  
and BUCKx_FLOOR_VOUT registers) or by writing to the BUCKx_VOUT and BUCKx_FLOOR_VOUT registers.  
The voltage change is always slew-rate controlled, 3.8 mV/µs. During voltage change the forced-PWM mode is  
used automatically. When the programmed output voltage is achieved, the mode becomes the one defined by  
the load current and the BUCKx_FPWM bit in BUCKx_CTRL1 register.  
The Power-Good interrupt is generated when the output voltage reaches the programmed voltage level, as  
shown in 9.  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
Voltage  
BUCKx_VSET  
Powergood  
Ramp 3.8 mV/ms  
Powergood  
BUCKx_FLOOR_VSET  
Time  
ENx  
1
1
0
BUCKx_STAT(BUCKx_STAT)  
BUCKx_STAT(BUCKx_PG_STAT)  
INT_BUCKx(BUCKx_PG_INT)  
nINT  
0
1
1
0
1
1
0
Powergood  
interrupt  
Host clears  
interrupt  
Powergood  
interrupt  
Host clears  
interrupt  
9. Regulator Output Voltage Change With ENx pin  
7.3.5 Enable and Disable Sequences  
The LP87524B/J/P-Q1 device supports start-up and shutdown sequencing with programmable delays for  
different regulator outputs using single EN1/2/3 control signal. The regulator is selected for delayed control with:  
EN_BUCKx = 1 (in BUCKx_CTRL1 register)  
EN_PIN_CTRLx = 1 (in BUCKx_CTRL1 register)  
EN_ROOF_FLOORx = 0 (in BUCKx_CTRL1 register)  
BUCKx_VSET[7:0] = Required voltage when ENx is high (in BUCKx_VOUT register)  
The ENABLE pin for control is selected with BUCKx_EN_PIN_SELECT[1:0] (in BUCKx_CTRL1 register)  
The delay from rising edge of ENx signal to the regulator enable is set by BUCKx_STARTUP_DELAY[3:0]  
bits (in BUCKx_DELAY register) and  
The delay from falling edge of ENx signal to the regulator disable is set by BUCKx_SHUTDOWN_DELAY[3:0]  
bits (in BUCKx_DELAY register)  
There are four time steps available for start-up and shutdown sequences. The delay times are selected with  
DOUBLE_DELAY bit in CONFIG register and HALF_DELAY bit in PGOOD_CTRL2 register as shown in 4.  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
4. Start-up and Shutdown Delays  
X_STARTUP_DELAY /  
X_SHUTDOWN_DELAY  
DOUBLE_DELAY = 0  
HALF_DELAY = 1  
DOUBLE_DELAY = 1  
HALF_DELAY = 1  
DOUBLE_DELAY = 0  
HALF_DELAY = 0  
DOUBLE_DELAY = 1  
HALF_DELAY = 0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0 ms  
0 ms  
0 ms  
1 ms  
0 ms  
0.32 ms  
0.64 ms  
0.96 ms  
1.28 ms  
1.6 ms  
0.64 ms  
1.28 ms  
1.92 ms  
2.56 ms  
3.2 ms  
2 ms  
2 ms  
4 ms  
3 ms  
6 ms  
4 ms  
8 ms  
5 ms  
10 ms  
12 ms  
14 ms  
16 ms  
18 ms  
20 ms  
22 ms  
24 ms  
26 ms  
28 ms  
30 ms  
1.92 ms  
2.24 ms  
2.56 ms  
2.88 ms  
3.2 ms  
3.84 ms  
4.48 ms  
5.12 ms  
5.76 ms  
6.4 ms  
6 ms  
7 ms  
8 ms  
9 ms  
10 ms  
11 ms  
12 ms  
13 ms  
14 ms  
15 ms  
3.52 ms  
3.84 ms  
4.16 ms  
4.48 ms  
4.8 ms  
7.04 ms  
7.68 ms  
8.32 ms  
8.96 ms  
9.6 ms  
An example of start-up and shutdown sequences is shown in 10 and 11. The start-up and shutdown delays  
for the Buck0/1 regulators are 1 ms and 4 ms and for the Buck2/3 regulators 3 ms and 1 ms. The delay settings  
are used only for enable/disable control with EN1/2/3 signals, not for Roof/Floor control.  
ENx  
EN_BUCK01  
EN_BUCK23  
1 ms  
4 ms  
3 ms  
1 ms  
10. Typical Start-Up and Shutdown Sequencing  
ENx  
Start-up control  
Shutdown control  
EN_BUCK01  
0
0
0
1
0
1
2
3
4
5
6
0
0
1
0
1
2
0
1
2
3
4
5
1 ms  
4 ms  
EN_BUCK23  
3 ms  
1 ms  
11. Start-Up and Shutdown Sequencing With Short ENx Low and High Periods  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
7.3.6 Device Reset Scenarios  
There are three reset methods implemented on the LP87524B/J/P-Q1:  
Software reset with SW_RESET register bit (in RESET register)  
POR from rising edge of NRST signal  
Undervoltage lockout (UVLO) reset from VANA supply  
A SW-reset occurs when SW_RESET bit is written 1. The bit is automatically cleared after writing. This event  
disables all the regulators immediately, resets all the register bits to the default values and OTP bits are loaded  
(see 15). I2C interface is not reset during software reset. The host must wait at least 1.2 ms after writing SW  
reset until making a new I2C read or write to the device.  
If VANA supply voltage falls below UVLO threshold level or NRST signal is set low then all the regulators are  
disabled immediately, and all the register bits are reset to the default values. When the VANA supply voltage  
rises above UVLO threshold level AND NRST signal rises above threshold level an internal power-on reset  
(POR) occurs. OTP bits are loaded to the registers and a start-up is initiated according to the register settings.  
The host must wait at least 1.2 ms after POR until reading or writing to I2C interface.  
7.3.7 Diagnosis and Protection Features  
The LP87524B/J/P-Q1 is capable of providing four levels of protection features:  
Information of valid regulator output voltage which sets interrupt or PGOOD signal;  
Warnings for diagnosis which sets interrupt;  
Protection events which are disabling the regulators affected; and  
Faults which are causing the device to shutdown.  
The LP87524B/J/P-Q1 sets the flag bits indicating what protection or warning conditions have occurred, and the  
nINT pin is pulled low. nINT is released again after a clear of flags is complete. The nINT signal stays low until all  
the pending interrupts are cleared.  
When a fault is detected, it is indicated by a RESET_REG interrupt flag (in INT2_TOP register) after next start-  
up.  
5. Summary of Interrupt Signals  
INTERRUPT REGISTER AND  
BIT  
RECOVERY/INTERRUPT  
CLEAR  
EVENT  
RESULT  
INTERRUPT MASK  
STATUS BIT  
Current limit triggered  
(20-µs debounce)  
Interrupt  
INT_BUCKx = 1  
BUCKx_ILIM_INT = 1  
BUCKx_ILIM_MASK  
BUCKx_ILIM_STAT  
Write 1 to BUCKx_ILIM_INT bit  
Interrupt is not cleared if  
current limit is active  
Short circuit (VVOUT  
<
Regulator disable and  
interrupt  
INT_BUCKx = 1  
BUCKx_SC_INT = 1  
N/A  
N/A  
Write 1 to BUCKx_SC_INT bit  
0.35 V at 1 ms after  
enable) or overload  
(VVOUT decreasing  
below 0.35 V during  
operation, 1 ms  
debounce)  
Thermal warning  
Thermal whutdown  
VANA overvoltage  
Interrupt  
TDIE_WARN = 1  
TDIE_SD = 1  
INT_OVP  
TDIE_WARN_MASK  
TDIE_WARN_STAT  
TDIE_SD_STAT  
OVP_STAT  
Write 1 to TDIE_WARN bit  
Interrupt is not cleared if  
temperature is above thermal  
warning level  
All regulators disabled  
and Output GPIOx set to  
low and interrupt  
N/A  
Write 1 to TDIE_SD bit  
Interrupt is not cleared if  
temperature is above thermal  
shutdown level  
All regulators disabled  
and Output GPIOx set to  
low and interrupt  
N/A  
Write 1 to INT_OVP bit  
Interrupt is not cleared if VANA  
voltage is above VANA OVP  
level  
(VANAOVP  
)
Power Good, output  
voltage reaches the  
programmed value  
Interrupt  
INT_BUCKx = 1  
BUCKx_PG_INT = 1  
BUCKx_PG_MASK  
BUCKx_PG_STAT  
Write 1 to BUCKx_PG_INT bit  
GPIO  
Interrupt  
Interrupt  
INT_GPIO  
GPIO_MASK  
GPIO_IN register  
SYNC_CLK_STAT  
Write 1 to INT_GPIO bit  
External clock appears  
or disappears  
NO_SYNC_CLK(1)  
SYNC_CLK_MASK  
Write 1 to NO_SYNC_CLK bit  
Load current  
Interrupt  
I_LOAD_READY = 1  
I_LOAD_READY_MASK  
N/A  
Write 1 to I_LOAD_READY bit  
measurement ready  
(1) Interrupt is generated during clock detector operation and in case clock is not available when clock detector is enabled.  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
5. Summary of Interrupt Signals (接下页)  
INTERRUPT REGISTER AND  
BIT  
RECOVERY/INTERRUPT  
CLEAR  
EVENT  
RESULT  
INTERRUPT MASK  
STATUS BIT  
Start-up (NRST rising  
edge)  
Device ready for  
operation, registers reset  
to default values and  
interrupt  
RESET_REG = 1  
RESET_REG = 1  
RESET_REG = 1  
RESET_REG_MASK  
N/A  
N/A  
N/A  
Write 1 to RESET_REG bit  
Write 1 to RESET_REG bit  
Write 1 to RESET_REG bit  
Glitch on supply voltage Immediate shutdown  
RESET_REG_MASK  
RESET_REG_MASK  
and UVLO triggered  
(VANA falling and  
rising)  
followed by power up,  
registers reset to default  
values and interrupt  
Software requested  
reset  
Immediate shutdown  
followed by power up,  
registers reset to default  
values and interrupt  
7.3.7.1 Power-Good Information (PGOOD pin)  
In addition to the interrupt based indication of current limit and Power-Good level the LP87524B/J/P-Q1 device  
supports the indication with PGOOD signal. Either voltage and current monitoring or a voltage monitoring only  
can be selected for PGOOD indication. This selection is individual for all buck regulators and is set by  
PGx_SEL[1:0] bits (in PGOOD_CTRL1 register). When both voltage and current are monitored, PGOOD signal  
active indicates that regulator output is inside the Power-Good voltage window and that load current is below ILIM  
FWD. If only voltage is monitored, then the current monitoring is ignored for the PGOOD signal. When a regulator  
is disabled, the monitoring is automatically masked to prevent it forcing PGOOD inactive. This allows connecting  
PGOOD signals from various devices together when open-drain outputs are used. When regulator voltage is  
transitioning from one target voltage to another, the voltage monitoring PGOOD signal is set inactive. The  
monitoring from all the output rails are combined, and PGOOD is active only if all the sources shows active  
status. The status from all the voltage rails are summarized in 6.  
If the PGOOD signal is inactive or it changes the state to inactive, the source for the state can be read from  
PGOOD_FLT register. During reading all the PGx_FLT bit are cleared that are not driving the PGOOD inactive.  
When PGOOD signal goes active, the host must read the PGOOD_FLT register to clear all the bits. The PGOOD  
signal follows the status of all the monitored outputs.  
The PGOOD signal can be also configured so that it maintains inactive state even when the monitored outputs  
are valid but there are PGx_FLT bits pending clearance in PGOOD_FLT register. This mode of operation is  
selected by setting EN_PGFLT_STAT bit to 1 (in PGOOD_CTRL2 register).  
The type of output voltage monitoring for PGOOD signal is selected by PGOOD_WINDOW bit (in  
PGOOD_CTRL2 register). If the bit is 0, only undervoltage is monitored; if the bit is 1, both undervoltage and  
overvoltage are monitored.  
The polarity and the output type (push-pull or open-drain) are selected by PGOOD_POL and PGOOD_OD bits in  
PGOOD_CTRL2 register.  
The filtering time for invalid output voltage is always typically 7 µs and for valid output voltage the filtering time is  
selected with PGOOD_SET_DELAY bit (in PGOOD_CTRL2 register). The Power-Good waveforms are shown in  
13.  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
ILIM  
Buck0  
Buck1  
Buck2  
Buck3  
MUX  
Power Good  
PG0_SEL[1:0]  
ILIM  
MUX  
Power Good  
PG1_SEL[1:0]  
PGOOD  
ILIM  
MUX  
Power Good  
PG2_SEL[1:0]  
ILIM  
MUX  
Power Good  
PG3_SEL[1:0]  
Copyright © 2017, Texas Instruments Incorporated  
12. PGOOD Block Diagram  
6. PGOOD Operation  
STATUS / USE CASE  
CONDITION  
INPUT TO PGOOD SIGNAL  
PGx_SEL = 00 (in PGOOD_CTRL1  
register)  
Buck not selected for PGOOD monitoring  
Active  
Active  
Buck disabled  
BUCK SELECTED FOR PGOOD MONITORING  
Buck start-up delay  
Inactive  
Inactive  
Inactive  
Buck soft start  
VOUT < 0.35 V  
Buck voltage ramp-up  
0.35 V < VOUT < VSET  
Output voltage within window limits after  
start-up  
Must be inside limits longer than debounce  
time  
Active  
Output voltage inside voltage window and Current limit active longer than debounce  
Active (if only voltage monitoring selected)  
Inactive (if also current monitoring selected)  
current limit active  
time  
Output voltage spikes (overvoltage or  
undervoltage)  
If spikes are outside voltage window longer  
than debounce time  
Inactive  
Inactive  
Active  
Voltage setting change, output voltage  
ramp  
Output voltage within window limits after  
voltage change  
Must be inside limits longer than debounce  
time  
Buck shutdown delay  
Active  
Active  
Buck output voltage ramp down  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
6. PGOOD Operation (接下页)  
STATUS / USE CASE  
CONDITION  
INPUT TO PGOOD SIGNAL  
Buck disabled by thermal shutdown and  
interrupt pending  
Inactive  
Inactive  
Inactive  
Buck disabled by overvoltage and  
interrupt pending  
Buck disabled by short-circuit detection  
and interrupt pending  
Voltage  
Powergood window  
BUCKx_VSET (1)  
Powergood  
window  
BUCKx_VSET (2)  
Time  
ENx  
7us/11ms  
PGOOD_SET_DELAY  
PGOOD  
BUCKx_VSET (1)  
BUCKx_VSET (2)  
BUCKx_VSET  
13. PGOOD Waveforms (PGOOD_POL=0)  
7.3.7.2 Warnings for Diagnosis (Interrupt)  
7.3.7.2.1 Output Power Limit  
The regulators have output peak current limits. The peak current limits are described in Specifications. If the load  
current is increased so that the current limit is triggered, the regulator continues to regulate to the limit current  
level (current peak regulation, peak on every switching cycle). The voltage may decrease if the load current is  
higher than the average output current. If the current regulation continues for 20 µs, the LP87524B/J/P-Q1 device  
sets the BUCKx_ILIM_INT bit (in INT_BUCKx register) and pulls the nINT pin low. The host processor can read  
BUCKx_ILIM_STAT bits (in BUCKx_STAT register) to see if the regulator is still in peak current regulation mode.  
If the load is so high that the output voltage decreases below a 350-mV level, the LP87524B/J/P-Q1 device  
disables the regulator and sets the BUCKx_SC_INT bit (in INT_BUCKx register). In addition the BUCKx_STAT  
bit (in BUCKx_STAT register) is set to 0. The interrupt is cleared when the host processor writes 1 to  
BUCKx_SC_INT bit. The overload situation is shown in 14.  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
Regulator  
disabled by digital  
New start-up if  
enable is valid  
Voltage  
VOUTx  
350 mV  
Resistive  
pulldown  
1 ms  
Time  
Current  
ILIMx  
Time  
20 ms  
INT_BUCKx  
(BUCKx_ILIM_INT)  
0
0
1
1
0
INT_BUCK  
(BUCKx_SC_INT)  
1
0
0
1
BUCKx_STAT  
(BUCKx_STAT)  
nINT  
Host clearing the interrupt by writing to flags  
14. Overload Situation  
7.3.7.2.2 Thermal Warning  
The LP87524B/J/P-Q1 device includes a monitoring feature against overtemperature by setting an interrupt for  
host processor. The threshold level of the thermal warning is selected with TDIE_WARN_LEVEL bit (in CONFIG  
register).  
If the LP87524B/J/P-Q1 device temperature increases above thermal warning level the device sets TDIE_WARN  
bit (in INT_TOP1 register) and pulls nINT pin low. The status of the thermal warning can be read from  
TDIE_WARN_STAT bit (in TOP_STAT register), and the interrupt is cleared by writing 1 to TDIE_WARN bit.  
7.3.7.3 Protection (Regulator Disable)  
If the regulator is disabled because of protection or fault (short-circuit protection, overload protection, thermal  
shutdown, overvoltage protection, or UVLO), the output power FETs are set to high-impedance mode, and the  
output pulldown resistor is enabled (if enabled with EN_RDISx bits in BUCKx_CTRL1 register). The turnoff time  
of the output voltage is defined by the output capacitance, load current, and the resistance of the integrated  
pulldown resistor. The pulldown resistors are active as long as VANA voltage is above approximately a 1.2-V  
level.  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.3.7.3.1 Short-Circuit and Overload Protection  
A short-circuit protection feature allows the LP87524B/J/P-Q1 to protect itself and external components against  
short circuit at the output or against overload during start-up. The fault threshold is 350 mV, the protection is  
triggered, and the regulator is disabled if the output voltage is below the threshold level 1 ms after the regulator  
is enabled.  
In a similar way the overload situation is protected during normal operation. If the voltage on the feedback pin of  
the regulator falls below 0.35 V and remains below the threshold level for 1 ms, the regulator is disabled.  
In the short-circuit and overload situations the BUCKx_SC_INT (in INT_BUCKx register) and the INT_BUCKx bits  
(in INT_TOP1 register) are set to 1, the BUCKx_STAT bit (in BUCKx_STAT register) is set to 0, and the nINT  
signal is pulled low. The host processor clears the interrupt by writing 1 to the BUCKx_SC_INT bit. Upon clearing  
the interrupt the regulator makes a new start-up attempt if the regulator is in enabled state.  
7.3.7.3.2 Overvoltage Protection  
The LP87524B/J/P-Q1 device monitors the input voltage from the VANA pin in standby and active operation  
modes. If the input voltage rises above VANAOVP voltage level, all the regulators are disabled, pulldown resistors  
discharge the output voltages (if EN_RDISx = 1 in BUCKx_CTRL1 register), GPIOs that are configured to  
outputs are set to logic low level, nINT signal is pulled low, INT_OVP bit (in INT_TOP1 register) is set to 1, and  
BUCKx_STAT bits (in BUCK_x_STAT register) are set to 0. The host processor clears the interrupt by writing 1  
to the INT_OVP bit. If the input voltage is above the overvoltage detection level the interrupt is not cleared. The  
host can read the status of the overvoltage from the OVP_STAT bit (in TOP_STAT register). Regulators cannot  
be enabled as long as the input voltage is above overvoltage detection level or the overvoltage interrupt is  
pending.  
7.3.7.3.3 Thermal Shutdown  
The LP87524B/J/P-Q1 has an overtemperature protection function that operates to protect the device from short-  
term misuse and overload conditions. When the junction temperature exceeds around 150°C, the regulators are  
disabled, the TDIE_SD bit (in INT_TOP1 register) is set to 1, the nINT signal is pulled low, and the device enters  
STANDBY. nINT is cleared by writing 1 to the TDIE_SD bit. If the temperature is above thermal shutdown level  
the interrupt is not cleared. The host can read the status of the thermal shutdown from the TDIE_SD_STAT bit  
(in TOP_STAT register). Regulators cannot be enabled as long as the junction temperature is above thermal  
shutdown level or the thermal shutdown interrupt is pending.  
7.3.7.4 Fault (Power Down)  
7.3.7.4.1 Undervoltage Lockout  
When the input voltage falls below VANAUVLO at the VANA pin, the buck converters are disabled immediately,  
and the output capacitors are discharged using the pulldown resistor, and the LP87524B/J/P-Q1 device enters  
SHUTDOWN. When VANA voltage is above UVLO threshold level and NRST signal is high, the device powers  
up to STANDBY state.  
If the reset interrupt is unmasked by default (RESET_REG_MASK = 0 in TOP_MASK2 register) the  
RESET_REG interrupt (in INT_TOP2 register) indicates that the device has been in SHUTDOWN. The host  
processor must clear the interrupt by writing 1 to the RESET_REG bit. If the host processor reads the  
RESET_REG flag after detecting an nINT low signal, it knows that the input supply voltage has been below  
UVLO level (or the host has requested reset), and the registers are reset to default values.  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
7.3.8 GPIO Signal Operation  
The LP87524B/J/P-Q1 device supports up to 3 GPIO signals. The GPIO signals are multiplexed with enable  
signals. The selection between enable and GPIO function is set with GPIOx_SEL bits in PIN_FUNCTION  
register. The GPIOs are mapped to EN signals so that:  
EN1 is multiplexed with GPIO1  
EN2 is multiplexed with GPIO2  
EN3 is multiplexed with GPIO3  
When the pin is selected for GPIO function, additional bits defines how the GPIO operates:  
GPIOx_DIR defines the direction of the GPIO, input or output (GPIO_CONFIG register)  
GPIOx_OD defines the type of the output when the GPIO is set to output, either push-pull with VANA level or  
open-drain (GPIO_CONFIG register)  
When the GPIOx is defined as output, the logic level of the pin is set by GPIOx_OUT bit (in GPIO_OUT register).  
When the GPIOx is defined as input, the logic level of the pin can be read from GPIOx_IN bit (in GPIO_IN  
register).  
The control of the GPIOs configured to outputs can be included to start-up and shutdown sequences. The GPIO  
control for a sequence with ENx signal is selected by EN_PIN_CTRL_GPIOx and EN_PIN_SELECT_GPIOx bits  
(in  
PIN_FUNCTION  
register).  
The  
delays  
during  
start-up  
and  
shutdown  
are  
set  
by  
GPIOx_STARTUP_DELAY[3:0] and GPIOx_SHUTDOWN_DELAY[3:0] bits (in GPIOx_DELAY register) in the  
same way as control of the regulators.  
The GPIOx signals have a selectable pulldown resistor. The pulldown resistors are selected by ENx_PD bits (in  
CONFIG register).  
The control of the GPIOx pin cannot be changed from one ENx pin to a different ENx pin  
because the control is ENx signal edge sensitive. The control from ENx pin to register bit  
and back to the original ENx pin can be done during operation.  
7.3.9 Digital Signal Filtering  
The digital signals have a debounce filtering. The signal/supply is sampled with a clock signal and a counter.  
This results as an accuracy of one clock period for the debounce window.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7. Digital Signal Filtering  
FALLING EDGE DEBOUNCE  
TIME  
EVENT  
SIGNAL/SUPPLY  
RISING EDGE DEBOUNCE TIME  
Enable/disable/voltage select  
for Buckx  
(1)  
(1)  
(1)  
(1)  
EN1  
EN2  
EN3  
3 µs  
3 µs  
3 µs  
3 µs  
Enable/disable/voltage select  
for Buckx  
(1)  
3 µs  
Enable/disable/voltage select  
for Buckx  
(1)  
3 µs  
VANA UVLO  
VANA  
VANA  
20 µs (VANA voltage rising)  
Immediate (VANA voltage falling)  
VANA overvoltage  
Thermal warning  
Thermal shutdown  
Current limit  
20 µs (VANA voltage rising)  
20 µs (VANA voltage falling)  
TDIE_WARN  
TDIE_SD  
VOUTx_ILIM  
20 µs  
20 µs  
20 µs  
20 µs  
20 µs  
20 µs  
FB_B0, FB_B1, FB_B2,  
FB_F3  
Overload  
1 ms  
20 µs  
20 µs  
FB_B0, FB_B1, FB_B2,  
FB_F3  
Power-Good interrupt  
20 µs  
PGOOD pin (voltage  
monitoring)  
PGOOD / FB_B0, FB_B1,  
FB_B2, FB_F3  
4-8 µs (start-up debounce time during  
start-up)  
4 to 8 µs  
20 µs  
PGOOD pin (current  
monitoring)  
PGOOD  
20 µs  
(1) No glitch filtering, only synchronization.  
7.4 Device Functional Modes  
7.4.1 Modes of Operation  
SHUTDOWN: The NRST voltage is below threshold level. All switch, reference, control, and bias circuitry of the  
LP87524B/J/P-Q1 device are turned off.  
READ OTP: The main supply voltage VANA is above VANAUVLO level and NRST voltage is above threshold  
level. The regulators are disabled and the reference and bias circuitry of the LP87524B/J/P-Q1 are  
enabled. The OTP bits are loaded to registers.  
STANDBY: The main supply voltage VANA is above VANAUVLO level and NRST voltage is above threshold  
level. The regulators are disabled and the reference, control and bias circuitry of the LP87524B/J/P-  
Q1 are enabled. All registers can be read or written by the host processor via the system serial  
interface. The regulators can be enabled if needed.  
ACTIVE:  
The main supply voltage VANA is above VANAUVLO level and NRST voltage is above threshold  
level. At least one regulated DC-DC converter is enabled. All registers can be read or written by the  
host processor via the system serial interface.  
The operating modes and transitions between the modes are shown in 15.  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
Device Functional Modes (接下页)  
SHUTDOWN  
NRST low  
OR  
VVANA < VANAUVLO  
NRST high  
AND  
VVANA > VANAUVLO  
From any state except  
SHUTDOWN  
READ  
OTP  
REGISTER  
RESET  
STANDBY  
I2C RESET  
REGULATOR  
ENABLED  
REGULATORS  
DISABLED  
ACTIVE  
15. Device Operation Modes  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.5 Programming  
7.5.1 I2C-Compatible Interface  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the devices  
connected to the bus. The two interface lines are the serial data line (SDA), and the serial clock line (SCL). Every  
device on the bus is assigned a unique address and acts as either a master or a slave depending on whether it  
generates or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor placed  
somewhere on the line and remain HIGH even when the bus is idle. Note: CLK pin is not used for serial bus data  
transfer. The LP87524B/J/P-Q1 supports standard mode (100 kHz), fast mode (400 kHz), fast mode+ (1 MHz),  
and high-speed mode (3.4 MHz).  
7.5.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the  
state of the data line can only be changed when clock signal is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
16. Data Validity Diagram  
7.5.1.2 Start and Stop Conditions  
The LP87524B/J/P-Q1 is controlled via an I2C-compatible interface. START and STOP conditions classify the  
beginning and end of the I2C session. A START condition is defined as SDA transitions from HIGH to LOW while  
SCL is HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The I2C  
master always generates the START and STOP conditions.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
17. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. During data  
transmission the I2C master can generate repeated START conditions. A START and a repeated START  
condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock  
signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. 18 shows the SDA  
and SCL signal timing for the I2C-compatible bus. See the 1 for timing values.  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
Programming (接下页)  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tLOW  
tfCL  
tSP  
SCL  
tHD;STA  
tHD;DAT  
tSU;STA  
tSU;STO  
tHIGH  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
18. I2C-Compatible Timing  
7.5.1.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The  
LP87524B/J/P-Q1 pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The  
LP87524B/J/P-Q1 generates an acknowledge after each byte has been received.  
There is one exception to the acknowledge after every byte rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (negative acknowledge) the last byte clocked out  
of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master),  
but the SDA line is not pulled down.  
If the NRST signal is low during I2C communication the LP87524B/J/P-Q1 device does not  
drive SDA line. The ACK signal and data transfer to the master is disabled at that time.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE and a 1  
indicates a READ. The second byte selects the register to which the data will be written. The third byte contains  
data to write to the selected register.  
ACK from slave  
ACK from slave  
ACK from slave  
START MSB Chip Address LSB  
W
ACK MSB Register Address LSB ACK  
MSB Data LSB  
ACK STOP  
SCL  
SDA  
START  
id = 0x60  
W
ACK  
address = 0x40  
ACK  
address 0x40 data  
ACK STOP  
19. Write Cycle (w = write; SDA = 0), id = Device Address = 0x60 for LP87524B/J/P-Q1  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Programming (接下页)  
ACK from slave  
ACK from slave REPEATED START  
ACK from slave Data from slave NACK from master  
START MSB Chip Address LSB  
W
MSB Register Address LSB  
RS  
MSB Chip Address LSB  
R
MSB Data LSB  
STOP  
SCL  
SDA  
START  
ACK  
ACK  
ACK  
NACK  
STOP  
id = 0x60  
W
address = 0x3F  
RS  
id = 0x60  
R
address 0x3F data  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
20. Read Cycle ( r = read; SDA = 1), id = Device Address = 0x60 for LP87524B/J/P-Q1  
7.5.1.4 I2C-Compatible Chip Address  
The device address for the LP87524B/J/P-Q1 is 0x60  
After the START condition, the I2C master sends the 7-bit address followed by an eighth bit, read or write (R/W).  
R/W = 0 indicates a WRITE and R/W = 1 indicates a READ. The second byte following the device address  
selects the register address to which the data will be written. The third byte contains the data for the selected  
register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
I2C Slave Address (chip address)  
A. Here device address is 1100000Bin = 60Hex.  
21. Example Device Address  
7.5.1.5 Auto-Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Every time an 8-  
bit word is sent to the device, the internal address index counter is incremented by one and the next register is  
written. 8 below shows writing sequence to two consecutive registers. Note that auto increment feature does  
not work for read.  
8. Auto-Increment Example  
DEVICE  
ADDRESS  
= 0x60  
MASTER  
ACTION  
REGISTER  
ADDRESS  
START  
WRITE  
DATA  
DATA  
STOP  
LP87524B/J/P-  
Q1  
ACK  
ACK  
ACK  
ACK  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
7.6 Register Maps  
7.6.1 Register Descriptions  
The LP87524B/J/P-Q1 is controlled by a set of registers through the I2C-compatible interface. The device  
registers, their addresses, and their abbreviations are listed in 9. A more detailed description is given in the  
OTP_REV to GPIO_OUT sections.  
The asterisk (*) marking indicates register bits which are updated from OTP memory during READ OTP state.  
This register map describes the default values read from OTP memory for a device with  
orderable code of LP87524BRNFRQ1, LP87524JRNFRQ1 and LP87524PRNFRQ1. For  
other LP8752x versions the default values read from OTP memory can be different.  
9. Summary of LP87524B/J/P-Q1 Control Registers  
Addr  
Register  
Read /  
Write  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x01  
0x02  
OTP_REV  
R
OTP_ID[7:0]  
BUCK0_  
CTRL1  
EN_PIN_  
CTRL0  
BUCK0_EN_PIN  
SELECT[1:0]  
EN_ROOF  
_FLOOR0  
BUCK0_  
FPWM  
R/W  
EN_BUCK0  
EN_BUCK1  
EN_BUCK2  
EN_BUCK3  
EN_RDIS0  
EN_RDIS1  
EN_RDIS2  
EN_RDIS3  
Reserved  
Reserved  
Reserved  
Reserved  
BUCK1_  
CTRL1  
EN_PIN_  
CTRL1  
BUCK1_EN_PIN  
SELECT[1:0]  
EN_ROOF  
_FLOOR1  
BUCK1_  
FPWM  
0x04  
0x06  
0x08  
0x0A  
R/W  
R/W  
R/W  
R/W  
BUCK2_  
CTRL1  
EN_PIN_  
CTRL2  
BUCK2_EN_PIN  
SELECT[1:0]  
EN_ROOF  
_FLOOR2  
BUCK2_  
FPWM  
BUCK3_  
CTRL1  
EN_PIN_  
CTRL3  
BUCK3_EN_PIN  
SELECT[1:0]  
EN_ROOF  
_FLOOR3  
BUCK3_  
FPWM  
BUCK0_  
VOUT  
BUCK0_VSET[7:0]  
BUCK0_  
FLOOR_  
VOUT  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BUCK0_FLOOR_VSET[7:0]  
BUCK1_VSET[7:0]  
BUCK1_  
VOUT  
BUCK1_  
FLOOR_  
VOUT  
BUCK1_FLOOR_VSET[7:0]  
BUCK2_VSET[7:0]  
BUCK2_  
VOUT  
BUCK2_  
FLOOR_  
VOUT  
BUCK2_FLOOR_VSET[7:0]  
BUCK3_VSET[7:0]  
BUCK3_  
VOUT  
BUCK3_  
FLOOR_  
VOUT  
BUCK3_FLOOR_VSET[7:0]  
BUCK0_  
DELAY  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK1_SHUTDOWN_DELAY[3:0]  
BUCK2_SHUTDOWN_DELAY[3:0]  
BUCK3_SHUTDOWN_DELAY[3:0]  
GPIO2_SHUTDOWN_DELAY[3:0]  
GPIO3_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
BUCK2_STARTUP_DELAY[3:0]  
BUCK3_STARTUP_DELAY[3:0]  
GPIO2_STARTUP_DELAY[3:0]  
GPIO3_STARTUP_DELAY[3:0]  
BUCK1_  
DELAY  
BUCK2_  
DELAY  
BUCK3_  
DELAY  
GPIO2_  
DELAY  
GPIO3_  
DELAY  
SW_  
RESET  
RESET  
Reserved  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Register Maps (接下页)  
9. Summary of LP87524B/J/P-Q1 Control Registers (接下页)  
Addr  
Register  
Read /  
Write  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TDIE  
_WARN  
_LEVEL  
DOUBLE_D  
ELAY  
0x19  
CONFIG  
R/W  
CLKIN_PD  
Reserved  
EN3_PD  
EN2_PD  
EN1_PD  
Reserved  
INT_  
BUCK23  
INT_  
BUCK01  
NO_SYNC  
_CLK  
TDIE_  
WARN  
INT_  
OVP  
I_LOAD_  
READY  
0x1A  
0x1B  
0x1C  
0x1D  
INT_TOP1  
INT_TOP2  
R/W  
R/W  
R/W  
R/W  
Reserved  
TDIE_SD  
RESET_  
REG  
Reserved  
INT_BUCK_  
0_1  
BUCK1_  
PG_INT  
BUCK1_  
SC_INT  
BUCK1_  
ILIM_INT  
BUCK0_  
PG_INT  
BUCK0_  
SC_INT  
BUCK0_  
ILIM_INT  
Reserved  
Reserved  
Reserved  
Reserved  
INT_BUCK_  
2_3  
BUCK3_  
PG_INT  
BUCK3_  
SC_INT  
BUCK3_  
ILIM_INT  
BUCK2_  
PG_INT  
BUCK2_  
SC_INT  
BUCK2_  
ILIM_INT  
TDIE_  
WARN_  
STAT  
TOP_  
STAT  
SYNC_CLK  
_STAT  
TDIE_SD  
_STAT  
OVP_  
STAT  
0x1E  
R
Reserved  
Reserved  
BUCK1_  
ILIM_  
STAT  
BUCK0_  
ILIM_  
STAT  
BUCK_0_1_  
STAT  
BUCK1_  
STAT  
BUCK1_  
PG_STAT  
BUCK0_  
STAT  
BUCK0_  
PG_STAT  
0x1F  
0x20  
0x21  
0x22  
0x23  
R
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BUCK_2_3_  
STAT  
BUCK3_  
STAT  
BUCK3_  
PG_STAT  
BUCK3_  
ILIM_STAT  
BUCK2_  
STAT  
BUCK2_  
PG_STAT  
BUCK2_  
ILIM_STAT  
R
I_LOAD_  
READY_  
MASK  
TOP_  
MASK1  
SYNC_CLK  
_MASK  
TDIE_WAR  
N_MASK  
R/W  
R/W  
R/W  
Reserved  
Reserved  
Reserved  
TOP_  
MASK2  
RESET_  
REG_MASK  
Reserved  
BUCK1_  
ILIM_  
MASK  
BUCK0_  
ILIM_  
MASK  
BUCK_0_1_  
MASK  
BUCK1_  
PG_MASK  
BUCK0_  
PG_MASK  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BUCK3_  
ILIM_  
MASK  
BUCK2_  
ILIM_  
MASK  
BUCK_2_3_  
MASK  
BUCK3_  
PG_MASK  
BUCK2_  
PG_MASK  
0x24  
0x25  
R/W  
R/W  
SEL_I_  
LOAD  
LOAD_CURRENT_  
BUCK_SELECT[1:0]  
Reserved  
Reserved  
BUCK_LOAD_CURRENT[7:0]  
PG2_SEL[1:0] PG1_SEL[1:0]  
BUCK_LOAD_CURRENT[  
9:8]  
0x26  
0x27  
0x28  
I_LOAD_2  
I_LOAD_1  
R
R
PGOOD  
_CTRL1  
R/W  
PG3_SEL[1:0]  
PG0_SEL[1:0]  
PGOOD_SE  
T_  
DELAY  
PGOOD  
_CTRL2  
HALF_DEL  
AY  
EN_PG0_  
NINT  
EN_PGFLT  
_STAT  
PGOOD_WI PGOOD_O  
PGOOD_P  
OL  
0x29  
R/W  
Reserved  
PG3_FLT  
NDOW  
D
PGOOD_FL  
T
0x2A  
0x2B  
R
PG2_FLT  
PG1_FLT  
PG0_FLT  
PLL_CTRL  
R/W  
PLL_MODE[1:0]  
Reserved  
EXT_CLK_FREQ[4:0]  
EN_  
SPREAD  
_SPEC  
EN_PIN_CT EN_PIN_SE EN_PIN_CT EN_PIN_SE  
PIN_  
FUNCTION  
0x2C  
R/W  
RL  
LECT  
RL  
LECT  
GPIO3_SEL GPIO2_SEL GPIO1_SEL  
GPIO3_DIR GPIO2_DIR GPIO1_DIR  
_GPIO3  
_GPIO3  
_GPIO2  
_GPIO2  
GPIO_  
CONFIG  
0x2D  
0x2E  
0x2F  
R/W  
R
Reserved  
GPIO3_OD GPIO2_OD GPIO1_OD  
Reserved  
GPIO_IN  
Reserved  
Reserved  
GPIO3_IN  
GPIO2_IN  
GPIO1_IN  
GPIO3_OU GPIO2_OU GPIO1_OU  
GPIO_OUT  
R/W  
T
T
T
36  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
7.6.1.1 OTP_REV  
Address: 0x01  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTP_ID[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
OTP_ID[7:0]  
R
0x71 for  
LP87524B,  
0x72 for  
LP87524J, Identification code of the OTP EPROM version  
0x3B for  
LP87524P  
*
7.6.1.2 BUCK0_CTRL1  
Address: 0x02  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK0  
EN_PIN_CTRL BUCK0_EN_PIN_SELECT[1:0]  
0
EN_ROOF_  
FLOOR0  
EN_RDIS0  
BUCK0_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
EN_BUCK0  
R/W  
1 *  
Enable Buck0 regulator:  
0 - Buck0 regulator is disabled  
1 - Buck0 regulator is enabled  
6
EN_PIN_CTRL0  
R/W  
R/W  
1 *  
Enable EN1/2/3 pin control for Buck0:  
0 - Only the EN_BUCK0 bit controls Buck0  
1 - EN_BUCK0 bit AND ENx pin control Buck0  
5:4  
BUCK0_EN_PIN  
_SELECT[1:0]  
0x0*  
Enable EN1/2/3 pin control for Buck0:  
0x0 - EN_BUCK0 bit AND EN1 pin control Buck0  
0x1 - EN_BUCK0 bit AND EN2 pin control Buck0  
0x2 - EN_BUCK0 bit AND EN3 pin control Buck0  
0x3 - Reserved  
3
2
1
EN_ROOF_  
FLOOR0  
R/W  
R/W  
R/W  
0
1
Enable Roof/Floor control of EN1/2/3 pin if EN_PIN_CTRL0 = 1:  
0 - Enable/disable (1/0) control  
1 - Roof/floor (1/0) control  
EN_RDIS0  
Enable output discharge resistor when Buck0 is disabled:  
0 - Discharge resistor disabled  
1 - Discharge resistor enabled  
BUCK0_FPWM  
0 for  
LP87524B,  
LP87524J,  
1 for  
LP87524P  
*
Forces the Buck0 regulator to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode).  
1 - Forced to PWM operation  
0
Reserved  
R/W  
0 *  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.6.1.3 BUCK1_CTRL1  
Address: 0x04  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK1  
EN_PIN_CTRL BUCK1_EN_PIN_SELECT[1:0]  
1
EN_ROOF_  
FLOOR1  
EN_RDIS1  
BUCK1_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
EN_BUCK1  
R/W  
1 *  
Enable Buck1 regulator:  
0 - Buck1 regulator is disabled  
1 - Buck1 regulator is enabled  
6
EN_PIN_CTRL1  
R/W  
R/W  
1 *  
Enable EN1/2/3 pin control for Buck1:  
0 - Only EN_BUCK1 bit controls Buck1  
1 - EN_BUCK1 bit AND ENx pin control Buck1  
5:4  
BUCK1_EN_PIN  
_SELECT[1:0]  
0x0*  
Enable EN1/2/3 pin control for Buck1:  
0x0 - EN_BUCK1 bit AND EN1 pin control Buck1  
0x1 - EN_BUCK1 bit AND EN2 pin control Buck1  
0x2 - EN_BUCK1 bit AND EN3 pin control Buck1  
0x3 - Reserved  
3
2
1
EN_ROOF_  
FLOOR1  
R/W  
R/W  
R/W  
0
1
Enable Roof/Floor control of EN1/2/3 pin if EN_PIN_CTRL1 = 1:  
0 - Enable/Disable (1/0) control  
1 - Roof/Floor (1/0) control  
EN_RDIS1  
Enable output discharge resistor when Buck1 is disabled:  
0 - Discharge resistor disabled  
1 - Discharge resistor enabled  
BUCK1_FPWM  
0 for  
LP87524B,  
LP87524J,  
1 for  
LP87524P  
*
Forces the Buck1 regulator to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode).  
1 - Forced to PWM operation  
0
Reserved  
R/W  
0
38  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
7.6.1.4 BUCK2_CTRL1  
Address: 0x06  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK2  
EN_PIN_CTRL BUCK2_EN_PIN_SELECT[1:0]  
2
EN_ROOF_  
FLOOR2  
EN_RDIS2  
BUCK2_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
EN_BUCK2  
R/W  
1 *  
Enable Buck2 regulator:  
0 - Buck2 regulator is disabled  
1 - Buck2 regulator is enabled  
6
EN_PIN_CTRL2  
R/W  
R/W  
1 *  
Enable EN1/2/3 pin control for Buck2:  
0 - Only EN_BUCK2 bit controls Buck2  
1 - EN_BUCK2 bit AND ENx pin control Buck2  
5:4  
BUCK2_EN_PIN  
_SELECT[1:0]  
0x0*  
Enable EN1/2/3 pin control for Buck2:  
0x0 - EN_BUCK2 bit AND EN1 pin control Buck2  
0x1 - EN_BUCK2 bit AND EN2 pin control Buck2  
0x2 - EN_BUCK2 bit AND EN3 pin control Buck2  
0x3 - Reserved  
3
2
1
0
EN_ROOF_  
FLOOR2  
R/W  
R/W  
R/W  
R/W  
0
Enable Roof/Floor control of EN1/2/3 pin if EN_PIN_CTRL2 = 1:  
0 - Enable/Disable (1/0) control  
1 - Roof/Floor (1/0) control  
EN_RDIS2  
BUCK2_FPWM  
Reserved  
1
Enable output discharge resistor when Buck2 is disabled:  
0 - Discharge resistor disabled  
1 - Discharge resistor enabled  
1 *  
0 *  
Forces the Buck2 regulator to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode)  
1 - Forced to PWM operation  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.6.1.5 BUCK3_CTRL1  
Address: 0x08  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK3  
EN_PIN_CTRL BUCK3_EN_PIN_SELECT[1:0]  
3
EN_ROOF_  
FLOOR3  
EN_RDIS3  
BUCK3_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
EN_BUCK3  
R/W  
1 *  
Enable Buck3 regulator:  
0 - Buck3 regulator is disabled  
1 - Buck3 regulator is enabled  
6
EN_PIN_CTRL3  
R/W  
R/W  
1 *  
Enable EN1/2/3 pin control for Buck3:  
0 - Only EN_BUCK3 bit controls Buck3  
1 - EN_BUCK3 bit AND ENx pin control Buck3  
5:4  
BUCK3_EN_PIN  
_SELECT[1:0]  
0x0*  
Enable EN1/2/3 pin control for Buck3:  
0x0 - EN_BUCK3 bit AND EN1 pin control Buck3  
0x1 - EN_BUCK3 bit AND EN2 pin control Buck3  
0x2 - EN_BUCK3 bit AND EN3 pin control Buck3  
0x3 - Reserved  
3
2
1
0
EN_ROOF_  
FLOOR3  
R/W  
R/W  
R/W  
R/W  
0
1
Enable Roof/Floor control of EN1/2/3 pin if EN_PIN_CTRL3 = 1:  
0 - Enable/Disable (1/0) control  
1 - Roof/Floor (1/0) control  
EN_RDIS3  
BUCK3_FPWM  
Reserved  
Enable output discharge resistor when Buck3 is disabled:  
0 - Discharge resistor disabled  
1 - Discharge resistor enabled  
1 *  
0
Forces the Buck3 regulator to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode)  
1 - Forced to PWM operation  
40  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
7.6.1.6 BUCK0_VOUT  
Address: 0x0A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK0_VSET[7:0]  
R/W  
0xFC for Sets the output voltage of Buck0 regulator  
LP87524B, Reserved, DO NOT USE  
LP87524J, 0x00...0x09  
0x4D for 0.6 V - 0.73 V, 10 mV steps  
LP87524P 0x0A - 0.6 V  
*
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
If the input voltage is above 4 V, do not use output voltages below 1.0 V.  
7.6.1.7 BUCK0_FLOOR_VOUT  
Address: 0x0B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_FLOOR_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK0_FLOOR  
_VSET[7:0]  
R/W  
0x00  
Sets the output voltage of Buck0 regulator when floor state is used:  
Reserved, DO NOT USE  
0x00...0x09  
0.6 V - 0.73 V, 10 mV steps  
0x0A - 0.6 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
If the input voltage is above 4 V, do not use output voltages below 1.0 V.  
7.6.1.8 BUCK1_VOUT  
Address: 0x0C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_VSET[7:0]  
版权 © 2017–2018, Texas Instruments Incorporated  
41  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
Sets the output voltage of Buck1 regulator:  
7:0 BUCK1_VSET[7:0]  
R/W  
0x75*  
Reserved, DO NOT USE  
0x00...0x09  
0.6 V - 0.73 V, 10 mV steps  
0x0A - 0.6 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
If the input voltage is above 4 V, do not use output voltages below 1.0 V.  
7.6.1.9 BUCK1_FLOOR_VOUT  
Address: 0x0D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_FLOOR_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK1_FLOOR  
_VSET[7:0]  
R/W  
0x00  
Sets the output voltage of Buck1 regulator when floor state is used:  
Reserved, DO NOT USE  
0x00...0x09  
0.6 V - 0.73 V, 10 mV steps  
0x0A - 0.6 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
If the input voltage is above 4 V, do not use output voltages below 1.0 V.  
7.6.1.10 BUCK2_VOUT  
Address: 0x0E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK2_VSET[7:0]  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
Bits  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
Field  
Type  
Default  
Description  
7:0 BUCK2_VSET[7:0]  
R/W  
0xB1 for Sets the output voltage of Buck2 regulator:  
LP87524B, Reserved, DO NOT USE  
0x4D for 0x00...0x09  
LP87524J, 0.6 V - 0.73 V, 10 mV steps  
LP87524P 0x0A - 0.6V  
*
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
If the input voltage is above 4 V, do not use output voltages below 1.0 V.  
7.6.1.11 BUCK2_FLOOR_VOUT  
Address: 0x0F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK2_FLOOR_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK2_FLOOR  
_VSET[7:0]  
R/W  
0x00  
Sets the output voltage of Buck2 regulator when floor state is used:  
Reserved, DO NOT USE  
0x00...0x09  
0.6 V - 0.73 V, 10 mV steps  
0x0A - 0.6 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
If the input voltage is above 4 V, do not use output voltages below 1.0 V.  
7.6.1.12 BUCK3_VOUT  
Address: 0x10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_VSET[7:0]  
版权 © 2017–2018, Texas Instruments Incorporated  
43  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK3_VSET[7:0]  
R/W  
0xCA for Sets the output voltage of Buck3 regulator:  
LP87524B, Reserved, DO NOT USE  
LP87524J, 0x00...0x09  
0xB1 for 0.6 V - 0.73 V, 10 mV steps  
LP87524P 0x0A - 0.6 V  
*
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
If the input voltage is above 4 V, do not use output voltages below 1.0 V.  
7.6.1.13 BUCK3_FLOOR_VOUT  
Address: 0x11  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_FLOOR_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK3_FLOOR  
_VSET[7:0]  
R/W  
0x00  
Sets the output voltage of Buck3 regulator when Floor state is used:  
Reserved, DO NOT USE  
0x00...0x09  
0.6 V - 0.73 V, 10 mV steps  
0x0A - 0.6 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
If the input voltage is above 4 V, do not use output voltages below 1.0 V.  
7.6.1.14 BUCK0_DELAY  
Address: 0x12  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK0_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x0 for  
Shutdown delay of Buck0 from falling edge of ENx signal (DOUBLE_DELAY = 0 in  
LP87524B, CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
LP87524J, delay options in 4):  
0x1 for  
0x0 - 0 ms  
LP87524P 0x1 - 1 ms  
*
...  
0xF - 15 ms  
3:0  
BUCK0_  
STARTUP_  
DELAY[3:0]  
R/W  
0x5 for  
Start-up delay of Buck0 from rising edge of ENx signal (DOUBLE_DELAY = 0 in  
LP87524B, CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
LP87524J, delay options in 4):  
0x3 for  
0x0 - 0 ms  
LP87524P 0x1 - 1 ms  
*
...  
0xF - 15 ms  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
7.6.1.15 BUCK1_DELAY  
Address: 0x13  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_SHUTDOWN_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK1_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x0 for  
Shutdown delay of Buck1 from falling edge of ENx signal (DOUBLE_DELAY = 0 in  
LP87524B, CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
LP87524J, delay options in 4):  
0x1 for  
0x0 - 0 ms  
LP87524P 0x1 - 1 ms  
*
...  
0xF - 15 ms  
3:0  
BUCK1_  
STARTUP_  
DELAY[3:0]  
R/W  
0x5 for  
start-up delay of Buck1 from rising edge of ENx signal (DOUBLE_DELAY = 0 in  
LP87524B, CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
LP87524J, delay options in 4):  
0x7 for  
0x0 - 0 ms  
LP87524P 0x1 - 1 ms  
*
...  
0xF - 15 ms  
7.6.1.16 BUCK2_DELAY  
Address: 0x14  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK2_SHUTDOWN_DELAY[3:0]  
BUCK2_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK2_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x0 for  
Shutdown delay of Buck2 from falling edge of ENx signal (DOUBLE_DELAY = 0 in  
LP87524B, CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
LP87524J, delay options in 4):  
0x1 for  
0x0 - 0 ms  
LP87524P 0x1 - 1 ms  
*
...  
0xF - 15 ms  
3:0  
BUCK2_  
STARTUP_  
DELAY[3:0]  
R/W  
0x2 for  
start-up delay of Buck2 from rising edge of ENx signal (DOUBLE_DELAY = 0 in  
LP87524B, CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
LP87524J, delay options in 4):  
0x5 for  
0x0 - 0 ms  
LP87524P 0x1 - 1 ms  
*
...  
0xF - 15 ms  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.6.1.17 BUCK3_DELAY  
Address: 0x15  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_SHUTDOWN_DELAY[3:0]  
BUCK3_start-up_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK3_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x1*  
Shutdown delay of Buck3 from falling edge of ENx signal (DOUBLE_DELAY = 0 in  
CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
delay options in 4):  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
3:0  
BUCK3_  
STARTUP_  
DELAY[3:0]  
R/W  
0x0*  
Startup delay of Buck3 from rising edge of ENx signal (DOUBLE_DELAY = 0 in  
CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
delay options in 4):  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
7.6.1.18 GPIO2_DELAY  
Address: 0x16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPIO2_SHUTDOWN_DELAY[3:0]  
GPIO2_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
GPIO2_  
R/W  
0x0 for  
Delay for GPIO2 falling edge from falling edge of ENx signal (DOUBLE_DELAY = 0 in  
SHUTDOWN_  
DELAY[3:0]  
LP87524B, CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
LP87524J, delay options in 4):  
0x1 for  
0x0 - 0 ms  
LP87524P 0x1 - 1 ms  
*
...  
0xF - 15 ms  
3:0  
GPIO2_  
R/W  
0x5 for  
Delay for GPIO2 rising edge from rising edge of ENx signal (DOUBLE_DELAY = 0 in  
STARTUP_  
DELAY[3:0]  
LP87524B, CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
LP87524J, delay options in 4):  
0x9 for  
0x0 - 0 ms  
LP87524P 0x1 - 1 ms  
*
...  
0xF - 15 ms  
7.6.1.19 GPIO3_DELAY  
Address: 0x17  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPIO3_SHUTDOWN_DELAY[3:0]  
GPIO3_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
GPIO3_  
R/W  
0x0 *  
Delay for GPIO3 falling edge from falling edge of ENx signal (DOUBLE_DELAY = 0 in  
SHUTDOWN_  
DELAY[3:0]  
CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
delay options in 4):  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
46  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
Bits  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
Field  
Type  
Default  
Description  
3:0  
GPIO3_  
R/W  
0x3 for  
Delay for GPIO3 rising edge from rising edge of ENx signal (DOUBLE_DELAY = 0 in  
STARTUP_  
DELAY[3:0]  
LP87524B, CONTROL register and HALF_DELAY = 0 in PGOOD_CTRL2 register. See other  
LP87524J, delay options in 4):  
0xD for  
0x0 - 0 ms  
LP87524P 0x1 - 1 ms  
*
...  
0xF - 15 ms  
7.6.1.20 RESET  
Address: 0x18  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
SW_RESET  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
0x00  
0
Description  
Reserved  
SW_RESET  
Software commanded reset. When written to 1, the registers are reset to default  
values, OTP memory is read, and the I2C interface is reset.  
The bit is automatically cleared.  
7.6.1.21 CONFIG  
Address: 0x19  
D7  
D6  
CLKIN_PD  
D5  
D4  
D3  
D2  
D1  
D0  
DOUBLE_DEL  
AY  
EN4_PD  
EN3_PD  
TDIE_WARN_  
LEVEL  
EN2_PD  
EN1_PD  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
DOUBLE_DELAY  
R/W  
0 *  
Start-up and shutdown delays from ENx signals:  
0 - 0 ms - 15 ms with 1-ms steps  
1 - 0 ms - 30 ms with 2-ms steps  
6
CLKIN_PD  
R/W  
1 *  
Selects the pulldown resistor on the CLKIN input pin:  
0 - Pulldown resistor is disabled.  
1 - Pulldown resistor is enabled.  
5
4
Reserved  
EN3_PD  
R/W  
R/W  
0 *  
0 *  
Selects the pulldown resistor on the EN3 (GPIO3) input pin:  
0 - Pulldown resistor is disabled.  
1 - Pulldown resistor is enabled.  
3
TDIE_WARN_  
LEVEL  
R/W  
1 for  
LP87524B,  
LP87524J,  
0 for  
Thermal warning threshold level:  
0 - 125°C  
1 - 137°C.  
LP87524P  
*
2
1
0
EN2_PD  
EN1_PD  
Reserved  
R/W  
R/W  
R/W  
0 *  
1 *  
0
Selects the pull down resistor on the EN2 (GPIO2) input pin:  
0 - Pulldown resistor is disabled.  
1 - Pull-down resistor is enabled.  
Selects the pull down resistor on the EN1 (GPIO1) input pin:  
0 - Pulldown resistor is disabled.  
1 - Pulldown resistor is enabled.  
7.6.1.22 INT_TOP1  
Address: 0x1A  
D7  
D6  
INT_BUCK23  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
INT_BUCK01  
NO_SYNC_CL  
K
TDIE_SD  
TDIE_WARN  
INT_OVP  
I_LOAD_  
READY  
版权 © 2017–2018, Texas Instruments Incorporated  
47  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Bits  
7
Field  
Type  
R/W  
R
Default  
Description  
Reserved  
0
0
6
INT_BUCK23  
Interrupt indicating that output Buck3 and/or Buck2 have a pending interrupt. The  
reason for the interrupt is indicated in INT_BUCK_2_3 register.  
This bit is cleared automatically when INT_BUCK_2_3 register is cleared to 0x00.  
5
INT_BUCK01  
R
0
Interrupt indicating that output Buck1 and/or Buck0 have a pending interrupt. The  
reason for the interrupt is indicated in INT_BUCK_0_1 register.  
This bit is cleared automatically when INT_BUCK_0_1 register is cleared to 0x00.  
4
3
NO_SYNC_CLK  
TDIE_SD  
R/W  
R/W  
0
0
Latched status bit indicating that the external clock is not valid.  
Write 1 to clear interrupt.  
Latched status bit indicating that the die junction temperature has exceeded the  
thermal shutdown level. The regulators have been disabled if they were enabled. The  
regulators cannot be enabled if this bit is active. The actual status of the thermal  
warning is indicated by TDIE_SD_STAT bit in TOP_STAT register.  
Write 1 to clear interrupt.  
2
1
0
TDIE_WARN  
INT_OVP  
R/W  
R/W  
R/W  
0
0
0
Latched status bit indicating that the die junction temperature has exceeded the  
thermal warning level. The actual status of the thermal warning is indicated by  
TDIE_WARN_STAT bit in TOP_STAT register.  
Write 1 to clear interrupt.  
Latched status bit indicating that the input voltage has exceeded the overvoltage  
detection level. The actual status of the overvoltage is indicated by OVP_STAT bit in  
TOP_STAT register.  
Write 1 to clear interrupt.  
I_LOAD_READY  
Latched status bit indicating that the load current measurement result is available in  
I_LOAD_1 and I_LOAD_2 registers.  
Write 1 to clear interrupt.  
7.6.1.23 INT_TOP2  
Address: 0x1B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
RESET_REG  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
0x00  
0
Description  
Reserved  
RESET_REG  
Latched status bit indicating that either start-up (NRST rising edge) is done, VANA  
supply voltage has been below undervoltage threshold level, or the host has requested  
a reset (SW_RESET bit in RESET register). The regulators have been disabled, and  
registers are reset to default values and the normal start-up procedure is done.  
Write 1 to clear interrupt.  
7.6.1.24 INT_BUCK_0_1  
Address: 0x1C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_PG  
_INT  
BUCK1_SC  
_INT  
BUCK1_ILIM  
_INT  
Reserved  
BUCK0_PG  
_INT  
BUCK0_SC  
_INT  
BUCK0_ILIM  
_INT  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
0
BUCK1_PG_INT  
Latched status bit indicating that Buck1 output voltage has reached Power-Good-  
threshold level.  
Write 1 to clear.  
5
BUCK1_SC_INT  
R/W  
0
Latched status bit indicating that the Buck1 output voltage has fallen below 0.35-V  
level during operation or Buck1 output did not reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
4
3
BUCK1_ILIM_INT  
Reserved  
R/W  
R/W  
0
0
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
48  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
Bits  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
Field  
Type  
Default  
Description  
2
1
0
BUCK0_PG_INT  
BUCK0_SC_INT  
BUCK0_ILIM_INT  
R/W  
0
Latched status bit indicating that Buck0 output voltage has reached Power-Good-  
threshold level.  
Write 1 to clear.  
R/W  
R/W  
0
0
Latched status bit indicating that the Buck0 output voltage has fallen below 0.35-V  
level during operation or Buck0 output did not reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
7.6.1.25 INT_BUCK_2_3  
Address: 0x1D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_PG  
_INT  
BUCK3_SC  
_INT  
BUCK3_ILIM  
_INT  
Reserved  
BUCK2_PG  
_INT  
BUCK2_SC  
_INT  
BUCK2_ILIM  
_INT  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
0
BUCK3_PG_INT  
Latched status bit indicating that Buck3 output voltage has reached Power-Good-  
threshold level.  
Write 1 to clear.  
5
4
BUCK3_SC_INT  
BUCK3_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the Buck3 output voltage has fallen below 0.35-V  
level during operation or Buck3 output did not reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
3
2
Reserved  
R/W  
R/W  
0
0
BUCK2_PG_INT  
Latched status bit indicating that Buck2 output voltage has reached Power-Good-  
threshold level.  
Write 1 to clear.  
1
0
BUCK2_SC_INT  
BUCK2_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the Buck2 output voltage has fallen below 0.35-V  
level during operation or Buck2 output did not reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
7.6.1.26 TOP_STAT  
Address: 0x1E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
SYNC_CLK  
_STAT  
TDIE_SD  
_STAT  
TDIE_WARN  
_STAT  
OVP_STAT  
Reserved  
Bits  
7:5  
4
Field  
Reserved  
Type  
R
Default  
0x0  
Description  
SYNC_CLK_STAT  
R
0
Status bit indicating the status of external clock (CLKIN):  
0 - External clock frequency is valid  
1 - External clock frequency is not valid  
3
2
1
0
TDIE_SD_STAT  
R
R
R
R
0
0
0
0
Status bit indicating the status of thermal shutdown:  
0 - Die temperature below thermal shutdown level  
1 - Die temperature above thermal shutdown level  
TDIE_WARN  
_STAT  
Status bit indicating the status of thermal warning:  
0 - Die temperature below thermal warning level  
1 - Die temperature above thermal warning level  
OVP_STAT  
Reserved  
Status bit indicating the status of input overvoltage monitoring:  
0 - Input voltage below overvoltage threshold level  
1 - Input voltage above overvoltage threshold level  
版权 © 2017–2018, Texas Instruments Incorporated  
49  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.6.1.27 BUCK_0_1_STAT  
Address: 0x1F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_STAT  
BUCK1_PG  
_STAT  
Reserved  
BUCK1_ILIM  
_STAT  
BUCK0_STAT  
BUCK0_PG  
_STAT  
Reserved  
BUCK0_ILIM  
_STAT  
Bits  
Field  
Type  
Default  
Description  
7
BUCK1_STAT  
BUCK1_PG_STAT  
Reserved  
R
0
Status bit indicating the enable/disable status of Buck1:  
0 - Buck1 regulator is disabled  
1 - Buck1 regulator is enabled  
6
R
0
Status bit indicating Buck1 output voltage validity (raw status)  
0 - Buck1 output is below Power-Good-threshold level  
1 - Buck1 output is above Power-Good-threshold level  
5
4
R
R
0
0
BUCK1_ILIM  
_STAT  
Status bit indicating Buck1 current limit status (raw status)  
0 - Buck1 output current is below current limit level  
1 - Buck1 output current limit is active  
3
2
BUCK0_STAT  
BUCK0_PG_STAT  
Reserved  
R
R
0
0
Status bit indicating the enable/disable status of Buck0:  
0 - Buck0 regulator is disabled  
1 - Buck0 regulator is enabled  
Status bit indicating Buck0 output voltage validity (raw status):  
0 - Buck0 output is below Power-Good-threshold level  
1 - Buck0 output is above Power-Good-threshold level  
1
0
R
R
0
0
BUCK0_ILIM  
_STAT  
Status bit indicating Buck0 current limit status (raw status):  
0 - Buck0 output current is below current limit level  
1 - Buck0 output current limit is active  
7.6.1.28 BUCK_2_3_STAT  
Address: 0x20  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_STAT  
BUCK3_PG  
_STAT  
Reserved  
BUCK3_ILIM  
_STAT  
BUCK2_STAT  
BUCK2_PG  
_STAT  
Reserved  
BUCK2_ILIM  
_STAT  
Bits  
Field  
Type  
Default  
Description  
7
BUCK3_STAT  
BUCK3_PG_STAT  
Reserved  
R
0
Status bit indicating the enable/disable status of Buck3:  
0 - Buck3 regulator is disabled  
1 - Buck3 regulator is enabled  
6
R
0
Status bit indicating Buck3 output voltage validity (raw status):  
0 - Buck3 output is below Power-Good-threshold level  
1 - Buck3 output is above Power-Good-threshold level  
5
4
R
R
0
0
BUCK3_ILIM  
_STAT  
Status bit indicating Buck3 current limit status (raw status):  
0 - Buck3 output current is below current limit level  
1 - Buck3 output current limit is active  
3
2
BUCK2_STAT  
BUCK2_PG_STAT  
Reserved  
R
R
0
0
Status bit indicating the enable/disable status of Buck2:  
0 - Buck2 regulator is disabled  
1 - Buck2 regulator is enabled  
Status bit indicating Buck2 output voltage validity (raw status):  
0 - Buck2 output is below Power-Good-threshold level  
1 - Buck2 output is above Power-Good-threshold level  
1
0
R
R
0
0
BUCK2_ILIM  
_STAT  
Status bit indicating Buck2 current limit status (raw status):  
0 - Buck2 output current is below current limit level  
1 - Buck2 output current limit is active  
50  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
7.6.1.29 TOP_MASK1  
Address: 0x21  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
Reserved  
SYNC_CLK  
_MASK  
Reserved  
TDIE_WARN  
_MASK  
Reserved  
I_LOAD_  
READY_MASK  
Bits  
Field  
Type  
R/W  
R/W  
R/W  
Default  
1 *  
Description  
7
6:5  
4
Reserved  
Reserved  
0x0  
SYNC_CLK  
_MASK  
0 *  
Masking for external clock detection interrupt (NO_SYNC_CLK in INT_TOP1 register):  
0 - Interrupt generated  
1 - Interrupt not generated  
3
2
Reserved  
R/W  
R/W  
0
TDIE_WARN  
_MASK  
0 *  
Masking for thermal warning interrupt (TDIE_WARN in INT_TOP1 register):  
0 - Interrupt generated  
1 - Interrupt not generated  
This bit does not affect TDIE_WARN_STAT status bit in TOP_STAT register.  
1
0
Reserved  
I_LOAD_  
R/W  
R/W  
0
1 *  
Masking for load current measurement ready interrupt (I_LOAD_READY in INT_TOP  
READY_MASK  
register).  
0 - Interrupt generated  
1 - Interrupt not generated  
7.6.1.30 TOP_MASK2  
Address: 0x22  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
RESET_REG  
_MASK  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
0x00  
1 *  
Description  
Reserved  
RESET_REG  
_MASK  
Masking for register reset interrupt (RESET_REG in INT_TOP2 register):  
0 - Interrupt generated  
1 - Interrupt not generated  
7.6.1.31 BUCK_0_1_MASK  
Address: 0x23  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_PG  
_MASK  
Reserved  
BUCK1_ILIM  
_MASK  
Reserved  
BUCK0_PG  
_MASK  
Reserved  
BUCK0_ILIM  
_MASK  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
BUCK1_PG_MASK  
1 *  
Masking for Buck1 Power-Good interrupt (BUCK1_PG_INT in INT_BUCK_0_1  
register):  
0 - Interrupt generated  
1 - Interrupt not generated  
This bit does not affect BUCK1_PG_STAT status bit in BUCK_0_1_STAT register.  
5
4
Reserved  
R
0
BUCK1_ILIM  
_MASK  
R/W  
1 *  
Masking for Buck1 current-limit-detection interrupt (BUCK1_ILIM_INT in  
INT_BUCK_0_1 register):  
0 - Interrupt generated  
1 - Interrupt not generated  
This bit does not affect BUCK1_ILIM_STAT status bit in BUCK_0_1_STAT register.  
3
Reserved  
R/W  
0
版权 © 2017–2018, Texas Instruments Incorporated  
51  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
2
BUCK0_PG_MASK  
R/W  
1 *  
Masking for Buck0 Power-Good interrupt (BUCK0_PG_INT in INT_BUCK_0_1  
register):  
0 - Interrupt generated  
1 - Interrupt not generated  
This bit does not affect BUCK0_PG_STAT status bit in BUCK_0_1_STAT register.  
1
0
Reserved  
R
0
BUCK0_ILIM  
_MASK  
R/W  
1 *  
Masking for Buck0 current-limit-detection interrupt (BUCK0_ILIM_INT in  
INT_BUCK_0_1 register):  
0 - Interrupt generated  
1 - Interrupt not generated  
This bit does not affect BUCK0_ILIM_STAT status bit in BUCK_0_1_STAT register.  
7.6.1.32 BUCK_2_3_MASK  
Address: 0x24  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_PG  
_MASK  
Reserved  
BUCK3_ILIM  
_MASK  
Reserved  
BUCK2_PG  
_MASK  
Reserved  
BUCK2_ILIM  
_MASK  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
BUCK3_PG_MASK  
1 *  
Masking for Buck3 Power-Good interrupt (BUCK3_PG_INT in INT_BUCK_2_3  
register):  
0 - Interrupt generated  
1 - Interrupt not generated  
This bit does not affect BUCK3_PG_STAT status bit in BUCK_2_3_STAT register.  
5
4
Reserved  
R
0
BUCK3_ILIM  
_MASK  
R/W  
1 *  
Masking for Buck3 current-limit-detection interrupt (BUCK3_ILIM_INT in  
INT_BUCK_2_3 register):  
0 - Interrupt generated  
1 - Interrupt not generated  
This bit does not affect BUCK3_ILIM_STAT status bit in BUCK_2_3_STAT register.  
3
2
Reserved  
R/W  
R/W  
0
BUCK2_PG_MASK  
1 *  
Masking for Buck2 Power-Good interrupt (BUCK2_PG_INT in INT_BUCK_2_3  
register):  
0 - Interrupt generated  
1 - Interrupt not generated  
This bit does not affect BUCK2_PG_STAT status bit in BUCK_2_3_STAT register.  
1
0
Reserved  
R
0
BUCK2_ILIM  
_MASK  
R/W  
1 *  
Masking for Buck2 current limit-detection interrupt (BUCK2_ILIM_INT in  
INT_BUCK_2_3 register):  
0 - Interrupt generated  
1 - Interrupt not generated  
This bit does not affect BUCK2_ILIM_STAT status bit in BUCK_2_3_STAT register.  
7.6.1.33 SEL_I_LOAD  
Address: 0x25  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
LOAD_CURRENT_BUCK  
_SELECT[1:0]  
Bits  
Field  
Type  
R/W  
R/W  
Default  
0x00  
Description  
7:2  
Reserved  
1:0 LOAD_CURRENT_  
BUCK_SELECT  
[1:0]  
0x0  
Start the current measurement on the selected regulator:  
0x0 - Buck0  
0x1 - Buck1  
0x2 - Buck2  
0x3 - Buck3  
A single measurement is started when register is written.  
52  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
7.6.1.34 I_LOAD_2  
Address: 0x26  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK_LOAD_CURRENT[9:8]  
Bits  
7:2  
Field  
Type  
R
Default  
0x00  
Description  
Reserved  
1:0  
BUCK_LOAD_  
CURRENT[9:8]  
R
0x0  
This register describes 3 MSB bits of the average load current on selected regulator  
with a resolution of 20 mA per LSB and max code corresponding to 20.47-A current.  
7.6.1.35 I_LOAD_1  
Address: 0x27  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK_LOAD_CURRENT[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK_LOAD_  
CURRENT[7:0]  
R
0x00  
This register describes 8 LSB bits of the average load current on selected regulator  
with a resolution of 20 mA per LSB and max code corresponding to a 20.47-A current.  
7.6.1.36 PGOOD_CTRL1  
Address: 0x28  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PG3_SEL[1:0]  
PG2_SEL[1:0]  
PG1_SEL[1:0]  
PG0_SEL[1:0]  
Bits  
Field  
Type  
Default  
Description  
7:6  
PG3_SEL[1:0]  
R/W  
0x1*  
PGOOD signal source control from Buck3  
0x0 - Masked  
0x1 - Power-Good-threshold voltage  
0x2 - Reserved, do not use  
0x3 - Power-Good-threshold voltage AND current limit  
5:4  
3:2  
1:0  
PG2_SEL[1:0]  
PG1_SEL[1:0]  
PG0_SEL[1:0]  
R/W  
R/W  
R/W  
0x1*  
0x1*  
0x1*  
PGOOD signal source control from Buck2  
0x0 - Masked  
0x1 - Power-Good-threshold voltage  
0x2 - Reserved, do not use  
0x3 - Power-Good threshold voltage AND current limit  
PGOOD signal source control from Buck1  
0x0 - Masked  
0x1 - Power-Good-threshold voltage  
0x2 - Reserved, do not use  
0x3 - Power-Good-threshold voltage AND current limit  
PGOOD signal source control from Buck0  
0x0 - Masked  
0x1 - Power-Good-threshold voltage  
0x2 - Reserved, do not use  
0x3 - Power-Good-threshold voltage AND current limit  
7.6.1.37 PGOOD_CTRL2  
Address: 0x29  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
PGOOD_OD  
D0  
HALF_DELAY  
EN_PG0  
_NINT  
PGOOD_SET  
_DELAY  
EN_PGFLT  
_STAT  
Reserved  
PGOOD_  
WINDOW  
PGOOD_POL  
版权 © 2017–2018, Texas Instruments Incorporated  
53  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
7
HALF_DELAY  
R/W  
0 for  
Select the time step for start-up and shutdown delays:  
LP87524B, 0 - Start-up and shutdown delays have 0.5-ms or 1-ms time steps, based on  
LP87524J, DOUBLE_DELAY bit in CONFIG register.  
1 for  
1 - Start-up and shutdown delays have 0.32-ms or 0.64-ms time steps, based on  
LP87524P DOUBLE_DELAY bit in CONFIG register.  
*
6
5
4
EN_PG0_NINT  
R/W  
R/W  
R/W  
0 *  
1 *  
0 *  
Combine Buck0 PGOOD signal to nINT signal:  
0 - Buck0 PGOOD signal not included to nINT signal  
1 - Buck0 PGOOD signal included to nINT signal. If nINT OR Buck0 PGOOD is low  
then nINT signal is low.  
PGOOD_SET_DEL  
AY  
Debounce time of output voltage monitoring for PGOOD signal (only when PGOOD  
signal goes valid):  
0 - 4-10 µs  
1 - 11 ms  
EN_PGFLT_STAT  
Operation mode for PGOOD signal:  
0 - Indicates live status of monitored voltage outputs.  
1 - Indicates status of PGOOD_FLT register, inactive if at least one of PGx_FLT bit is  
inactive.  
3
2
Reserved  
R/W  
R/W  
0
PGOOD_WINDOW  
1 *  
Voltage monitoring method for PGOOD signal:  
0 - Only undervoltage monitoring  
1 - Overvoltage and undervoltage monitoring  
1
0
PGOOD_OD  
PGOOD_POL  
R/W  
R/W  
1 *  
0 *  
PGOOD signal type:  
0 - Push-pull output (VANA level)  
1 - Open-drain output  
PGOOD signal polarity:  
0 - PGOOD signal high when monitored outputs are valid  
1 - PGOOD signal low when monitored outputs are valid  
7.6.1.38 PGOOD_FLT  
Address: 0x2A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
PG3_FLT  
PG2_FLT  
PG1_FLT  
PG0_FLT  
Bits  
7:4  
3
Field  
Type  
R/W  
R
Default  
0x0  
Description  
Reserved  
PG3_FLT  
0
Source for PGOOD inactive signal:  
0 - Buck3 has not set PGOOD signal inactive.  
1 - Buck3 has set PGOOD signal inactive. This bit can be cleared by reading this  
register when Buck3 output is valid.  
2
1
0
PG2_FLT  
PG1_FLT  
PG0_FLT  
R
R
R
0
0
0
Source for PGOOD inactive signal:  
0 - Buck2 has not set PGOOD signal inactive.  
1 - Buck2 has set PGOOD signal inactive. This bit can be cleared by reading this  
register when Buck2 output is valid.  
Source for PGOOD inactive signal:  
0 - Buck1 has not set PGOOD signal inactive.  
1 - Buck1 has set PGOOD signal inactive. This bit can be cleared by reading this  
register when Buck1 output is valid.  
Source for PGOOD inactive signal:  
0 - Buck0 has not set PGOOD signal inactive.  
1 - Buck0 has set PGOOD signal inactive. This bit can be cleared by reading this  
register when Buck0 output is valid.  
7.6.1.39 PLL_CTRL  
Address: 0x2B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PLL_MODE[1:0]  
Reserved  
EXT_CLK_FREQ[4:0]  
54  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
Bits  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
Field  
Type  
Default  
Description  
7:6  
PLL_MODE[1:0]  
R/W  
0x2*  
Selection of external clock and PLL operation:  
0x0 - Forced to internal RC oscillator — PLL disabled.  
0x1 - PLL is enabled in STANDBY and ACTIVE modes. Automatic external clock use  
when available, interrupt generated if external clock appears or disappears.  
0x2 - PLL is enabled only in ACTIVE mode. Automatic external clock use when  
available, interrupt generated if external clock appears or disappears.  
0x3 - Reserved  
5
Reserved  
R/W  
R/W  
0
4:0 EXT_CLK_FREQ[4  
:0]  
0x01*  
Frequency of the external clock (CLKIN):  
0x00 - 1 MHz  
0x01 - 2 MHz  
0x02 - 3 MHz  
...  
0x16 - 23 MHz  
0x17 - 24 MHz  
0x18...0x1F - Reserved  
See Specifications for input clock frequency tolerance.  
7.6.1.40 PIN_FUNCTION  
Address: 0x2C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_SPREAD_ EN_PIN_CTRL EN_PIN_SELE EN_PIN_CTRL EN_PIN_SELE  
GPIO3_SEL  
GPIO2_SEL  
GPIO1_SEL  
SPEC  
_GPIO3  
CT_GPIO3  
_GPIO2  
CT_GPIO2  
Bits  
Field  
Type  
Default  
Description  
7
EN_SPREAD  
_SPEC  
R/W  
0 *  
Enable spread-spectrum feature:  
0 - Disabled  
1 - Enabled  
6
5
4
3
2
1
0
EN_PIN_CTRL_GP  
IO3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1 *  
0 *  
1 *  
0 *  
1 *  
1 *  
0 *  
Enable EN1/2 pin control for GPIO3 (GPIO3_SEL=1 AND GPIO3_DIR=1):  
0 - Only GPIO3_OUT bit controls GPIO3.  
1 - GPIO3_OUT bit AND ENx pin control GPIO3  
EN_PIN_SELECT_  
GPIO3  
Enable EN1/2 pin control for GPIO3:  
0 - GPIO3_SEL bit AND EN1 pin control GPIO3  
1 - GPIO3_SEL bit AND EN2 pin control GPIO3  
EN_PIN_CTRL_GP  
IO2  
Enable EN1/3 pin control for GPIO2 (GPIO2_SEL=1 AND GPIO2_DIR=1):  
0 - Only GPIO2_OUT bit controls GPIO2.  
1 - GPIO2_OUT bit AND ENx pin control GPIO2  
EN_PIN_SELECT_  
GPIO2  
Enable EN1/3 pin control for GPIO2:  
0 - GPIO2_SEL bit AND EN1 pin control GPIO2  
1 - GPIO2_SEL bit AND EN3 pin control GPIO2  
GPIO3_SEL  
GPIO2_SEL  
GPIO1_SEL  
EN3 pin function:  
0 - EN3  
1 - GPIO3  
EN2 pin function:  
0 - EN2  
1 - GPIO2  
EN1 pin function:  
0 - EN1  
1 - GPIO1  
7.6.1.41 GPIO_CONFIG  
Address: 0x2D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
GPIO3_OD  
GPIO2_OD  
GPIO1_OD  
Reserved  
GPIO3_DIR  
GPIO2_DIR  
GPIO1_DIR  
版权 © 2017–2018, Texas Instruments Incorporated  
55  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Bits  
7
Field  
Type  
R
Default  
Description  
Reserved  
GPIO3_OD  
0
6
R/W  
1 *  
GPIO3 signal type when configured to output:  
0 - Push-pull output (VANA level)  
1 - Open-drain output  
5
4
GPIO2_OD  
GPIO1_OD  
R/W  
R/W  
1 *  
0 *  
GPIO2 signal type when configured to output:  
0 - Push-pull output (VANA level)  
1 - Open-drain output  
GPIO1 signal type when configured to output:  
0 - Push-pull output (VANA level)  
1 - Open-drain output  
3
2
Reserved  
R
0
GPIO3_DIR  
R/W  
1 *  
GPIO3 signal direction:  
0 - Input  
1 - Output  
1
0
GPIO2_DIR  
GPIO1_DIR  
R/W  
R/W  
1 *  
0 *  
GPIO2 signal direction:  
0 - Input  
1 - Output  
GPIO1 signal direction:  
0 - Input  
1 - Output  
7.6.1.42 GPIO_IN  
Address: 0x2E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
GPIO3_IN  
GPIO2_IN  
GPIO1_IN  
Bits  
7:3  
2
Field  
Type  
R
Default  
0x00  
0
Description  
Reserved  
GPIO3_IN  
R
State of GPIO3 signal:  
0 - Logic low level  
1 - Logic high level  
1
0
GPIO2_IN  
GPIO1_IN  
R
R
0
0
State of GPIO2 signal:  
0 - Logic low level  
1 - Logic high level  
State of GPIO1 signal:  
0 - Logic low level  
1 - Logic high level  
7.6.1.43 GPIO_OUT  
Address: 0x2F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
GPIO3_OUT  
GPIO2_OUT  
GPIO1_OUT  
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
0x00  
1 *  
Description  
Reserved  
GPIO3_OUT  
Control for GPIO3 signal when configured to GPIO Output:  
0 - Logic low level  
1 - Logic high level  
1
0
GPIO2_OUT  
GPIO1_OUT  
R/W  
R/W  
1 *  
0
Control for GPIO2 signal when configured to GPIO Output:  
0 - Logic low level  
1 - Logic high level  
Control for GPIO1 signal when configured to GPIO Output:  
0 - Logic low level  
1 - Logic high level  
56  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LP87524B/J/P-Q1 is a multi-phase step-down converter with four switcher cores, which are configured to  
four one-phase regulators configuration.  
8.2 Typical Application  
R0  
VIN  
C0  
C1  
C2  
C3  
L0  
L1  
L2  
L3  
VOUT0  
CPOL0  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
SW_B0  
FB_B0  
LOAD  
LOAD  
LOAD  
LOAD  
CIN0 CIN1 CIN2 CIN3  
COUT0  
COUT1  
COUT2  
COUT3  
R1  
R2  
R3  
VOUT1  
CPOL1  
SW_B1  
FB_B1  
CVANA  
NRST  
SDA  
SCL  
nINT  
VOUT2  
CPOL2  
SW_B2  
FB_B2  
CLKIN  
PGOOD  
EN1 (GPIO1)  
EN2 (GPIO2)  
EN3 (GPIO3)  
VOUT3  
CPOL3  
SW_B3  
FB_B3  
GNDs  
Copyright © 2017, Texas Instruments Incorporated  
22. Four 1-Phase Configuration  
8.2.1 Design Requirements  
8.2.1.1 Inductor Selection  
The inductors are L0, L1, L2, and L3 are shown in the Typical Application. The inductance and DCR of the  
inductor affects the control loop of the buck regulator. TI recommends using inductors similar to those listed in 表  
10. Pay attention to the saturation current and temperature rise current of the inductor. Check that the saturation  
current is higher than the peak current limit and the temperature rise current is higher than the maximum  
expected rms output current. Minimum effective inductance to ensure good performance is 0.22 μH at maximum  
peak output current over the operating temperature range. DC resistance of the inductor must be less than 0.05  
for good efficiency at high-current condition. The inductor AC loss (resistance) also affects conversion  
efficiency. Higher Q factor at switching frequency usually gives better efficiency at light load to middle load.  
Shielded inductors are preferred as they radiate less noise.  
版权 © 2017–2018, Texas Instruments Incorporated  
57  
 
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
10. Recommended Inductors  
RATED DC CURRENT,  
ISAT maximum (typical) / ITEMP  
maximum (typical) (A)  
DCR typical /  
maximum  
(m)  
DIMENSIONS  
L × W × H (mm)  
MANUFACTURER  
PART NUMBER  
VALUE  
TOKO  
Vishay  
DFE252012PD-R47M 0.47 µH (20%)  
IHLP1616AB-1A 0.47 µH (20%)  
2.5 × 2 × 1.2  
5.2 (–) / 4 (–)(1)  
– (6 ) / – (6 )(1)  
- / 27  
4.1 × 4.5 × 1.2  
19 / 21  
(1) Operating temperature range is up to 125°C including self temperature rise.  
8.2.1.2 Input Capacitor Selection  
The input capacitors CIN0, CIN1, CIN2, and CIN3 are shown in the Typical Application. A ceramic input bypass  
capacitor of 10 μF is required for each phase of the regulator. Place the input capacitor as close as possible to  
the VIN_Bx pin and PGND_Bx pin of the device. A larger value or higher voltage rating improves the input  
voltage filtering. Use X7R type of capacitors, not Y5V or F. DC bias characteristics capacitors must be  
considered, minimum effective input capacitance to ensure good performance is 1.9 μF per buck input at  
maximum input voltage including tolerances and ambient temperature range, assuming that there are at least 22  
μF of additional capacitance common for all the power input pins on the system power rail. See 11.  
The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and reduces  
voltage ripple imposed on the input power source. A ceramic capacitor's low ESR provides the best noise filtering  
of the input voltage spikes due to this rapidly changing current. Select an input filter capacitor with sufficient  
ripple current rating. In addition ferrite can be used in front of the input capacitor to reduce the EMI.  
11. Recommended Input Capacitors (X7R Dielectric)  
DIMENSIONS L × W × H  
(mm)  
VOLTAGE  
RATING (V)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
Murata  
GCM21BR71A106KE22  
10 µF (10%)  
0805  
2 × 1.25 × 1.25  
10 V  
8.2.1.3 Output Capacitor Selection  
The output capacitors COUT0, COUT1, COUT2, and COUT3 are shown in Typical Application. A ceramic local output  
capacitor of 22 μF is required per phase. Use ceramic capacitors, X7R or X7T types; do not use Y5V or F. DC  
bias voltage characteristics of ceramic capacitors must be considered. The output filter capacitor smooths out  
current flow from the inductor to the load, helps maintain a steady output voltage during transient load changes  
and reduces output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently  
low ESR and ESL to perform these functions. Minimum effective output capacitance to ensure good performance  
is 10 μF per phase including the DC voltage roll-off, tolerances, aging and temperature effects.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value used for  
selection process is at the switching frequency of the part. See 12.  
POL capacitors (CPOL0, CPOL1, CPOL2, CPOL3) can be used to improve load transient performance and to decrease  
the ripple voltage. A higher output capacitance improves the load step behavior and reduces the output voltage  
ripple as well as decreases the PFM switching frequency. However, output capacitance higher than 100 µF per  
phase is not necessarily of any benefit. Note that the output capacitor may be the limiting factor in the output  
voltage ramp and the maximum total output capacitance listed in electrical characteristics must not be exceeded.  
At shutdown the output voltage is discharged to 0.6 V level using forced-PWM operation. This can increase the  
input voltage if the load current is small and the output capacitor is large. Below 0.6 V level the output capacitor  
is discharged by the internal discharge resistor and with large capacitor more time is required to settle VOUT down  
as a consequence of the increased time constant.  
58  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
12. Recommended Output Capacitors (X7R or X7T Dielectric)  
DIMENSIONS L × W × H  
(mm)  
VOLTAGE  
RATING (V)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
Murata  
GCM31CR71A226KE02  
22 µF (10%)  
1206  
3.2 × 1.6 × 1.6  
10  
8.2.1.4 Snubber Components  
If the input voltage for the regulators is above 4 V, snubber components are needed at the switching nodes to  
decrease voltage spiking in the switching node and to improve EMI. The snubber capacitors C0, C1, C2, and C3  
and the snubber resistors R0, R1, R2, and R3 are shown in 22. The recommended components are shown in  
13 and these component values give good performance on LP87524B/J/P-Q1 EVM. The optimal resistance  
and capacitance values finally depend on the PCB layout.  
13. Recommended Snubber Components  
DIMENSIONS L × W x  
H (mm)  
VOLTAGE /  
POWER RATING  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
Vishay-Dale  
Murata  
CRCW04023R90JNED  
GCM1555C1H391JA16  
3.9 Ω (5%)  
0402  
0402  
1 × 0.5 × 0.4  
1 × 0.5 × 0.5  
62 mW  
50 V  
390 pF (5%)  
8.2.1.5 Supply Filtering Components  
The VANA input is used to supply analog and digital circuits in the device. See 14 for recommended  
components for VANA input supply filtering.  
14. Recommended Supply Filtering Components  
DIMENSIONS L × W × VOLTAGE RATING  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
H (mm)  
(V)  
16  
16  
Murata  
Murata  
GCM155R71C104KA55  
GCM188R71C104KA37  
100 nF (10%)  
100 nF (10%)  
0402  
0603  
1.0 × 0.5 × 0.5  
1.6 × 0.8 × 0.8  
8.2.2 Detailed Design Procedure  
The performance of the LP87524B/J/P-Q1 device depends greatly on the care taken in designing the printed  
circuit board (PCB). The use of low-inductance and low serial-resistance ceramic capacitors is strongly  
recommended, while proper grounding is crucial. Attention must be given to decoupling the power supplies.  
Decoupling capacitors must be connected close to the device and between the power and ground pins to support  
high peak currents being drawn from system power rail during turnon of the switching MOSFETs. Keep input and  
output traces as short as possible, because trace inductance, resistance, and capacitance can easily become the  
performance limiting items. The separate power pins VIN_Bx are not connected together internally. Connect the  
VIN_Bx power connections together outside the package using power plane construction.  
版权 © 2017–2018, Texas Instruments Incorporated  
59  
 
 
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
8.2.3 Application Curves  
Measurements are done using typical application set up with connections shown in 22 (snubber components  
included when VIN > 4 V). Graphs may not reflect the OTP default settings. Unless otherwise specified: VIN = 3.7  
V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 4 MHz, L = 0.47 µH (TOKO DFE252012PD-R47M), COUT = 22  
µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the Typical Application.  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
1PH, VIN=3.3V, AUTO  
1PH, VIN=3.3V, FPWM  
1PH, VIN=5.0V, AUTO  
1PH, VIN=5.0V, FPWM  
1PH, VOUT=1.0V, FPWM  
1PH, VOUT=1.8V, FPWM  
1PH, VOUT=2.5V, FPWM  
0.001  
0.01  
0.1  
Output Current (A)  
1
5
0.01  
0.1  
Output Current (A)  
1
5
D923  
D924  
VOUT = 1.8 V  
VIN = 3.3 V  
24. Efficiency in Forced-PWM Mode  
23. Efficiency in PFM/PWM Mode  
100  
90  
80  
70  
60  
50  
40  
1.02  
1.016  
1.012  
1.008  
1.004  
1
0.996  
0.992  
0.988  
0.984  
0.98  
1PH, VOUT=1.0V, FPWM  
1PH, VOUT=1.8V, FPWM  
1PH, VOUT=2.5V, FPWM  
1PH, Vin=3.3V, FPWM  
1PH, Vin=5.0V, FPWM  
0.01  
0.1  
1
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Output Current (A)  
D925  
Output Current (A)  
D026  
VIN = 5 V  
25. Efficiency in Forced-PWM Mode  
26. Output Voltage vs Load Current in Forced-PWM  
Mode  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.02  
1.016  
1.012  
1.008  
1.004  
1
0.996  
0.996  
0.992  
0.988  
0.984  
0.98  
0.992  
1PH, BUCK0  
1PH, BUCK1  
1PH, BUCK2  
0.988  
0.984  
1PH, Vin=3.3V, AUTO  
1PH, Vin=5.0V, AUTO  
1PH, BUCK3  
3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6  
0.98  
2.8  
3
0
0.2  
0.4  
0.6  
0.8  
1
Input Voltage (V)  
D028  
Output Current (A)  
D027  
VOUT = 1 V  
Load = 1 A  
27. Output Voltage vs Load Current in PFM/PWM Mode  
28. Output Voltage vs Input Voltage in PWM Mode  
版权 © 2017–2018, Texas Instruments Incorporated  
60  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
1.02  
1.016  
1.012  
1.008  
1.004  
1
VOUT(200mV/div)  
V(EN1)(500mV/div)  
0.996  
0.992  
0.988  
0.984  
1PH, PWM  
1PH, PFM  
V(SW)(2V/div)  
0.98  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
D036  
Time (100 µs/div)  
Load = 1 A (PWM) and 0.1 A (PFM)  
29. Output Voltage vs Temperature  
IOUT = 0 A  
30. Start-Up With EN1, Forced PWM  
VOUT(200mV/div)  
V(EN1)(500mV/div)  
VOUT(200mV/div)  
V(EN1)(500m/div)  
ILOAD(500mA/div)  
ILOAD(500mA/div)  
V(SW)(2V/div)  
V(SW)(2V/div)  
Time (100 µs/div)  
Time (100 µs/div)  
RLOAD = 1 Ω  
RLOAD = 1 Ω  
31. Start-Up With EN1, Forced PWM  
32. Shutdown With EN1, Forced PWM  
(1-Phase Output)  
(1-Phase Output)  
VOUT(10mV/div)  
VOUT(10mV/div)  
V(SW_B0)(1V/div)  
V(SW_B0)(2V/div)  
Time (40 µs/div)  
Time (100 ns/div)  
IOUT = 10 mA  
IOUT = 200 mA  
33. Output Voltage Ripple, PFM Mode  
34. Output Voltage Ripple, Forced-PWM Mode  
(1-Phase Output)  
(1-Phase Output)  
版权 © 2017–2018, Texas Instruments Incorporated  
61  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
10000  
1000  
100  
VOUT(10mV/div)  
10  
VIN = 3.3V 4MHz  
VIN = 5V 4MHz  
1
0.1  
V(SW_B0)(1V/div)  
Time (2 µs/div)  
1
10  
Frequency (MHz)  
D300  
VOUT = 1 V  
No load RBW/VBW = 10 Hz  
35. Output Voltage Ripple Spectrum, Forced-PWM  
Mode. COUT = 22 µF, ferrite BLM18KG121TH1D, CPOL = 10  
µF + 0.22 µF.  
36. Transient from PFM-to-PWM Mode  
(1-Phase Output)  
VOUT(10mV/div)  
VOUT(20mV/div)  
I(LOAD(1A/div)  
V(SW_B0)(1V/div)  
Time (2 µs/div)  
Time (40 µs/div)  
IOUT = 0.1 A 2 A 0.1 A  
TR = TF = 1 µs  
37. Transient from PWM-to-PFM Mode  
38. Transient Load Step Response, AUTO Mode  
(1-Phase Output)  
(1-Phase Output)  
VOUT(20mV/div)  
VOUT(200mV/div)  
I(LOAD(1A/div)  
Time (20 µs/div)  
Time (40 µs/div)  
IOUT = 0.1 A 2 A 0.1  
TR = TF = 1 µs  
A
40. VOUT Transition from 0.6 V to 1.4 V  
39. Transient Load Step Response, Forced-PWM Mode  
(1-Phase Output)  
62  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
V(EN1)(1V/div)  
VOUT(200mV/div)  
V(nINT)(1V/div)  
VOUT(50mV/div)  
IOUT(2A/div)  
Time (20 µs/div)  
Time (200 µs/div)  
41. VOUT Transition from 1.4 V to 0.6 V  
42. Start-up With Short on Output (1-Phase Output)  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.8 V and 5.5 V. This input supply  
must be well regulated and able to withstand maximum input current and maintain stable voltage without voltage  
drop even at load transition condition. The resistance of the input supply rail must be low enough that the input  
current transient does not cause too high drop in the LP87524B/J/P-Q1 supply voltage that can cause false  
UVLO fault triggering. If the input supply is located more than a few inches from the LP87524B/J/P-Q1 additional  
bulk capacitance may be required in addition to the ceramic bypass capacitors.  
版权 © 2017–2018, Texas Instruments Incorporated  
63  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The high frequency and large switching currents of the LP87524B/J/P-Q1 make the choice of layout important.  
Good power supply results only occur when care is given to proper design and layout. Layout affects noise  
pickup and generation and can cause a good design to perform with less-than-expected results. With a range of  
output currents from milliamps to 10 A, good power supply layout is much more difficult than most general PCB  
design. Use the following steps as a reference to ensure the device is stable and maintains proper voltage and  
current regulation across its intended operating voltage and current range.  
1. Place CIN as close as possible to the VIN_Bx pin and the PGND_Bxx pin. Route the VIN trace wide and thick  
to avoid IR drops. The trace between the positive node of the input capacitor and the VIN_Bx pin(s) of  
LP87524B/J/P-Q1, as well as the trace between the negative node of the input capacitor and power  
PGND_Bxx pin(s), must be kept as short as possible. The input capacitance provides a low-impedance  
voltage source for the switching converter. The inductance of the connection is the most important parameter  
of a local decoupling capacitor — parasitic inductance on these traces must be kept as small as possible for  
proper device operation. The parasitic inductance can be reduced by using a ground plane as close as  
possible to top layer by using thin dielectric layer between top layer and ground plane.  
2. The output filter, consisting of COUT and L, converts the switching signal at SW_Bx to the noiseless output  
voltage. It must be placed as close as possible to the device keeping the switch node small, for best EMI  
behavior. Route the traces between the LP87524B/J/P-Q1 output capacitors and the load direct and wide to  
avoid losses due to the IR drop.  
3. Input for analog blocks (VANA and AGND) must be isolated from noisy signals. Connect VANA directly to a  
quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling  
capacitor as close as possible to the VANA pin.  
4. If the processor load supports remote voltage sensing, connect the feedback pins FB_Bx of the  
LP87524B/J/P-Q1 device to the respective sense pins on the processor. The sense lines are susceptible to  
noise. They must be kept away from noisy signals such as PGND_Bxx, VIN_Bx, and SW_Bx, as well as high  
bandwidth signals such as the I2C. Avoid both capacitive and inductive coupling by keeping the sense lines  
short, direct, and close to each other. Run the lines in a quiet layer. Isolate them from noisy signals by a  
voltage or ground plane if possible. If series resistors are used for load current measurement, place them  
after connection of the voltage feedback.  
5. PGND_Bxx, VIN_Bx and SW_Bx must be routed on thick layers. They must not surround inner signal layers,  
which are not able to withstand interference from noisy PGND_Bxx, VIN_Bx and SW_Bx.  
6. If the input voltage is above 4 V, place snubber components (capacitor and resistor) between SW_Bx and  
ground on all four phases. The components can be also placed to the other side of the board if there are  
area limitations and the routing traces can be kept short.  
Due to the small package of this converter and the overall small solution size, the thermal performance of the  
PCB layout is important. Many system-dependent parameters such as thermal coupling, airflow, added heat  
sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component. Proper PCB layout, focusing on thermal performance, results in lower die  
temperatures. Wide and thick power traces come with the ability to sink dissipated heat. This can be improved  
further on multi-layer PCB designs with vias to different planes. This results in reduced junction-to-ambient (RθJA  
)
and junction-to-board (RθJB) thermal resistances and thereby reduces the device junction temperature, TJ. TI  
strongly recommends to perform of a careful system-level 2D or full 3D dynamic thermal analysis at the  
beginning product design process, by using a thermal modeling analysis software.  
64  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
10.2 Layout Example  
Via to GND plane  
Via to VIN plane  
VOUT1  
VOUT0  
L1  
L0  
COUT0  
COUT1  
CIN1  
CIN0  
GND  
VIN  
VIN  
VIN  
13 12 11 10  
9
CIN4  
14  
15  
8
7
6
FB_B1  
EN2  
FB_B0  
EN1  
GND  
16  
17  
PGOOD  
AGND  
SDA  
SCL  
5
4
AGND  
GND  
GND  
CVANA  
VIN  
18  
19  
GND  
VANA  
nINT  
AGND  
CLKIN  
3
2
1
20 NRST  
FB_B3  
EN3  
CIN5  
FB_B2  
21  
22 23 24 25 26  
VIN  
VIN  
VIN  
CIN3  
CIN2  
GND  
COUT3  
COUT2  
L3  
L2  
VOUT3  
VOUT2  
43. LP87524B/J/P-Q1 Board Layout  
The output voltage rails are shorted together based on the configuration as shown in Typical Application.  
版权 © 2017–2018, Texas Instruments Incorporated  
65  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
66  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
67  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
PACKAGE OUTLINE  
RNF0026C  
VQFN-HR - 0.9 mm max height  
SCALE 2.800  
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.05)  
A
-
A
2
5
.
0
0
0
SECTION A-A  
TYPICAL  
C
0.9 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X  
2
0.3  
10X  
8X 0.5  
0.2  
4X (0.35)  
4X (0.4)  
4X (0.575)  
(0.2) TYP  
9
13  
4X (0.625)  
8
14  
1.72  
1.52  
10X  
7
A
A
SYMM  
27  
2X  
0.66 0.1  
2.5  
0.3  
0.2  
10X 0.5  
12X  
0.5  
21  
1
0.1  
C A B  
C
26  
22  
PIN 1 ID  
THERMAL PAD  
0.05  
SYMM  
12X  
0.3  
2.24 0.1  
4223207/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
68  
版权 © 2017–2018, Texas Instruments Incorporated  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
www.ti.com.cn  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
EXAMPLE BOARD LAYOUT  
RNF0026C  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
8X (0.5)  
10X (0.25)  
22  
12X (0.6)  
26  
1
21  
10X (1.82)  
12X (0.25)  
SYMM  
(3.08)  
27  
(0.66)  
2X (3.65)  
10X (0.5)  
( 0.2) TYP  
VIA  
8
4X (0.4)  
14  
4X (0.825)  
(R0.05)  
TYP  
9
13  
4X (0.35)  
(0.87)  
(2.24)  
4X (0.775)  
2X (3.2)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAIL  
NOT TO SCALE  
4223207/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
版权 © 2017–2018, Texas Instruments Incorporated  
69  
LP87524B-Q1, LP87524J-Q1, LP87524P-Q1  
ZHCSH29B APRIL 2017REVISED DECEMBER 2018  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RNF0026C  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.575) TYP  
10X  
EXPOSED METAL  
SYMM  
(0.5)  
TYP  
12X (0.6)  
26  
22  
1
21  
12X (0.25)  
(1.01) TYP  
(1.775)  
TYP  
(1.035) TYP  
10X (0.5)  
SYMM  
2X (0.98)  
27  
2X (0.66)  
(0.59)  
(R0.05) TYP  
EXPOSED METAL  
4X (0.3)  
20X (0.81)  
4X (0.825)  
8
14  
13  
9
4X (0.3)  
20X (0.25)  
4X (0.775)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1, 8, 14 & 21: 87% - PADS 9-13 & 22-26: 88% - THERMAL PAD 27: 87%  
SCALE:25X  
4223207/B 04/2018  
NOTES: (continued)  
6. For alternate stencil design recommendations, see IPC-7525 or board assembly site preference.  
www.ti.com  
70  
版权 © 2017–2018, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
3000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP87524BRNFRQ1  
LP87524BRNFTQ1  
LP87524JRNFRQ1  
LP87524JRNFTQ1  
LP87524PRNFRQ1  
LP87524PRNFTQ1  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNF  
26  
26  
26  
26  
26  
26  
RoHS-Exempt  
& Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
LP8752  
4B-Q1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RNF  
RoHS-Exempt  
& Green  
SN  
SN  
SN  
SN  
SN  
LP8752  
4B-Q1  
RNF  
3000  
250  
RoHS-Exempt  
& Green  
LP8752  
4J-Q1  
RNF  
RoHS-Exempt  
& Green  
LP8752  
4J-Q1  
RNF  
3000  
250  
RoHS-Exempt  
& Green  
LP8752  
4P-Q1  
RNF  
RoHS-Exempt  
& Green  
LP8752  
4P-Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP87524BRNFRQ1  
LP87524BRNFTQ1  
LP87524JRNFRQ1  
LP87524JRNFTQ1  
LP87524PRNFRQ1  
LP87524PRNFTQ1  
VQFN-  
HR  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
26  
26  
26  
26  
26  
26  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.75  
4.75  
4.75  
4.75  
4.75  
4.75  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP87524BRNFRQ1  
LP87524BRNFTQ1  
LP87524JRNFRQ1  
LP87524JRNFTQ1  
LP87524PRNFRQ1  
LP87524PRNFTQ1  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
26  
26  
26  
26  
26  
26  
3000  
250  
346.0  
200.0  
346.0  
200.0  
346.0  
200.0  
346.0  
183.0  
346.0  
183.0  
346.0  
183.0  
35.0  
25.0  
35.0  
25.0  
35.0  
25.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNF0026B  
VQFN-HR - 0.9 mm max height  
SCALE 2.800  
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
C
0.9 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X  
2
0.3  
0.2  
10X  
8X 0.5  
4X (0.35)  
4X (0.575)  
(0.2) TYP  
4X (0.4)  
9
13  
4X (0.625)  
14  
8
7
1.72  
1.52  
10X  
SYMM  
27  
2X  
2.5  
0.66 0.1  
0.3  
0.2  
10X 0.5  
12X  
0.5  
21  
1
0.1  
C A B  
C
26  
22  
PIN 1 ID  
THERMAL PAD  
0.05  
SYMM  
12X  
0.3  
2.24 0.1  
4222978/C 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNF0026B  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
8X (0.5)  
10X (0.25)  
22  
12X (0.6)  
26  
1
21  
10X (1.82)  
12X (0.25)  
SYMM  
(3.08)  
27  
(0.66)  
2X (3.65)  
10X (0.5)  
(
0.2) TYP  
VIA  
8
4X (0.4)  
14  
4X (0.825)  
(R0.05)  
TYP  
9
13  
4X (0.35)  
(0.87)  
(2.24)  
4X (0.775)  
2X (3.2)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAIL  
NOT TO SCALE  
4222978/C 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNF0026B  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.575) TYP  
(0.5)  
10X  
EXPOSED METAL  
SYMM  
TYP  
12X (0.6)  
26  
22  
1
21  
12X (0.25)  
(1.01) TYP  
(1.775)  
TYP  
(1.035) TYP  
10X (0.5)  
SYMM  
2X (0.98)  
27  
2X (0.66)  
(0.59)  
(R0.05) TYP  
EXPOSED METAL  
4X (0.3)  
20X (0.81)  
4X (0.825)  
8
14  
13  
9
4X (0.3)  
20X (0.25)  
4X (0.775)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1, 8, 14 & 21: 87% - PADS 9-13 & 22-26: 88% - THERMAL PAD 27: 87%  
SCALE:25X  
4222978/C 04/2018  
NOTES: (continued)  
6. For alternate stencil design recommendations, see IPC-7525 or board assembly site preference.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY