LP87565CRNFTQ1 [TI]

具有集成开关的汽车类双路 8A 降压转换器 | RNF | 26 | -40 to 125;
LP87565CRNFTQ1
型号: LP87565CRNFTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成开关的汽车类双路 8A 降压转换器 | RNF | 26 | -40 to 125

开关 转换器
文件: 总96页 (文件大小:3447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
LP8756x-Q1 16-A Buck Converter With Integrated Switches  
1 Features  
3 Description  
The LP8756x-Q1 device is designed to meet the  
1
Qualified for Automotive Applications  
power-management requirements of the latest  
processors and platforms in various automotive  
power applications. The device contains four step-  
down DC/DC converter cores, which are configured  
as a 4-phase output, 3-phase and 1-phase outputs,  
2-phase and 2-phase outputs, one 2-phase and two  
1-phase outputs, or four 1-phase outputs. The device  
is controlled by an I2C-compatible serial interface and  
by enable signals.  
AEC-Q100 Qualified With the Following Results:  
Device Temperature Grade 1: –40°C to  
+125°C Ambient Operating Temperature  
Device HBM ESD Classification Level 2  
Device CDM ESD Classification Level C4B  
Input Voltage: 2.8 V to 5.5 V  
Output Voltage: 0.6 V to 3.36 V  
Four High-Efficiency Step-Down DC/DC Converter  
Cores:  
The automatic pulse-width-modulation (PWM) to  
pulsed-frequency-modulation (PFM) operation (AUTO  
mode), together with the automatic phase adding and  
phase shedding, maximizes efficiency over a wide  
output-current range. The LP8756x-Q1 supports  
remote differential-voltage sensing for multiphase  
outputs to compensate IR drop between the regulator  
output and the point-of-load (POL) improving the  
accuracy of the output voltage. The switching clock  
can be forced to PWM mode and also synchronized  
to an external clock to minimize the disturbances.  
Maximum Output Current: 16 A (4 A per  
Phase)  
Programmable Output Voltage Slew-Rate:  
0.5 mV/µs to 10 mV/µs  
Switching Frequency: 2 MHz  
Spread-Spectrum Mode and Phase Interleaving  
Configurable General Purpose I/O (GPIOs)  
I2C-Compatible Interface That Supports Standard  
(100 kHz), Fast (400 kHz), Fast+ (1 MHz), and  
High-Speed (3.4 MHz) Modes  
The LP8756x-Q1 device supports load-current  
measurement without the addition of external current-  
sense resistors. The device also supports  
programmable start-up and shutdown delays and  
sequences synchronized to enable signals. The  
sequences can include GPIO signals to control  
external regulators, load switches, and processor  
reset. During start-up and voltage change, the device  
controls the output slew rate to minimize output-  
voltage overshoot and in-rush current.  
Interrupt Function With Programmable Masking  
Programmable Power-Good Signal (PGOOD)  
Output Short-Circuit and Overload Protection  
Overtemperature Warning and Protection  
Overvoltage Protection (OVP) and Undervoltage  
Lockout (UVLO)  
Device Information(1)  
2 Applications  
PART NUMBER  
LP87561-Q1  
LP87562-Q1  
LP87563-Q1  
LP87564-Q1  
LP87565-Q1  
PACKAGE  
BODY SIZE (NOM)  
Automotive Infotainment, Cluster, Radar, and  
Camera Power Applications  
space  
VQFN-HR (26)  
4.50 mm × 4.00 mm  
Simplified Schematic  
Configurable  
multi-phase  
VIN  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
SW_B0  
SW_B1  
SW_B2  
SW_B3  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
1 - 4  
Outputs  
Efficiency vs Output Current  
100  
NRST  
SDA  
SCL  
FB_B0  
FB_B1  
FB_B2  
FB_B3  
90  
80  
nINT  
CLKIN  
70  
EN1 (GPIO1)  
EN2 (GPIO2)  
EN3 (GPIO3)  
PGOOD  
GNDs  
4PH, Vout=1.8V, Vin=3.7V  
3PH, Vout=1.8V, Vin=3.7V  
2PH, Vout=1.8V, Vin=3.7V  
1PH, Vout=1.8V, Vin=3.7V  
50  
60  
0.001  
0.01  
0.1  
Output Current (A)  
1
10 20  
D530  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Table of Contents  
8.5 Programming........................................................... 36  
8.6 Register Maps......................................................... 39  
Application and Implementation ........................ 64  
9.1 Application Information............................................ 64  
9.2 Typical Applications ................................................ 64  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 I2C Serial Bus Timing Requirements ...................... 12  
7.7 Typical Characteristics............................................ 14  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Descriptions............................................... 17  
8.4 Device Functional Modes........................................ 34  
9
10 Power Supply Recommendations ..................... 83  
11 Layout................................................................... 84  
11.1 Layout Guidelines ................................................. 84  
11.2 Layout Example .................................................... 85  
12 Device and Documentation Support ................. 86  
12.1 Device Support...................................................... 86  
12.2 Documentation Support ........................................ 86  
12.3 Related Links ........................................................ 86  
12.4 Receiving Notification of Documentation Updates 86  
12.5 Community Resources.......................................... 86  
12.6 Trademarks........................................................... 86  
12.7 Electrostatic Discharge Caution............................ 86  
12.8 Glossary................................................................ 86  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 87  
4 Revision History  
DATE  
REVISION  
NOTES  
March 2018  
*
Initial Release  
2
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
5 Device Comparison Table  
PART NUMBER  
DC/DC CONFIGURATIONS  
One 4-phase output  
LP87561-Q1  
LP87562-Q1  
LP87563-Q1  
LP87564-Q1  
LP87565-Q1  
One 3-phase and one 1-phase outputs  
One 2-phase and two 1-phase outputs  
Four 1-phase outputs  
Two 2-phase outputs  
6 Pin Configuration and Functions  
RNF Package  
26-Pin VQFN-HR With Thermal Pad  
Top View  
26  
25  
24  
23  
22  
FB_B2  
FB_B3  
1
21  
EN3  
NRST  
nINT  
2
3
4
5
6
7
20  
19  
18  
17  
16  
15  
CLKIN  
AGND  
SCL  
VANA  
AGND  
PGOOD  
EN2  
AGND  
SDA  
EN1  
FB_B0  
FB_B1  
8
14  
9
10  
11  
12  
13  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
1
FB_B2  
A
Output voltage feedback (positive) for the BUCK2 converter.  
Programmable enable signal for the buck regulators (can be also configured to select between  
two buck output-voltage levels). This pin functions alternatively as GPIO3.  
2
3
EN3  
D/I/O  
D/I  
CLKIN  
External clock input. Connect this pin to ground if the external clock is not used.  
4, 17,  
Thermal  
Pad  
AGND  
G
Ground  
5
6
SCL  
SDA  
D/I  
Serial interface clock input for I2C access. Connect this pin to a pullup resistor.  
Serial interface data input and output for I2C access. Connect this pin to a pullup resistor.  
D/I/O  
Programmable enable signal for the buck regulators (can be also configured to select between  
two buck output voltage levels). This pin functions alternatively as GPIO1.  
7
8
EN1  
D/I/O  
A
FB_B0  
Output voltage feedback (positive) for the BUCK0 converter.  
Input for the BUCK0 converter. The separate power pins, VIN_Bx, are not connected together  
internally. The VIN_Bx pins must be connected together in the application and be locally  
bypassed.  
9
VIN_B0  
SW_B0  
P
10  
11  
12  
A
G
A
BUCK0 switch node  
PGND_B01  
SW_B1  
Power ground for the BUCK0 and BUCK1 converters  
BUCK1 switch node  
Input for the BUCK1 converter. The separate power pins, VIN_Bx, are not connected together  
internally. The VIN_Bx pins must be connected together in the application and be locally  
bypassed.  
13  
14  
VIN_B1  
FB_B1  
P
A
Output voltage feedback (positive) for the BUCK1 converter. This pin functions alternatively as  
the output ground feedback (negative) for the BUCK0 converter.  
Programmable enable signal for the buck regulators (can be also configured to select between  
two buck output voltage levels). This pin functions alternatively as GPIO2.  
15  
16  
18  
EN2  
PGOOD  
VANA  
D/I/O  
D/O  
P
Power-good indication signal  
Supply voltage for the analog and digital blocks. This pin must be connected to the same node  
as VIN_Bx.  
19  
20  
nINT  
D/O  
D/I  
Open-drain interrupt output. This pin is active low.  
Reset signal for the device  
NRST  
Output voltage feedback (positive) for the BUCK3 converter. This pin functions alternatively as  
the output ground feedback (negative) for the BUCK2 converter.  
21  
FB_B3  
A
Input for the BUCK3 converter. The separate power pins, VIN_Bx, are not connected together  
internally. The VIN_Bx pins must be connected together in the application and be locally  
bypassed.  
22  
VIN_B3  
P
23  
24  
25  
SW_B3  
PGND_B23  
SW_B2  
A
G
A
BUCK3 switch node  
Power ground for the BUCK2 and BUCK3 converters  
BUCK2 switch node  
Input for the BUCK2 converter. The separate power pins, VIN_Bx, are not connected together  
internally. The VIN_Bx pins must be connected together in the application and be locally  
bypassed.  
26  
VIN_B2  
P
(1) A: Analog Pin, D: Digital Pin, G: Ground Pin, P: Power Pin, I: Input Pin, O: Output Pin  
4
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
UNIT  
Voltage on power connections  
Voltage on buck switch nodes  
VIN_Bx, VANA  
SW_Bx  
–0.3  
6
V
(VIN_Bx + 0.3  
V)  
with 6 V  
maximum  
–0.3  
V
(VANA + 0.3 V)  
with 6 V  
Voltage on buck voltage sense nodes  
Voltage on NRST input  
FB_Bx  
–0.3  
V
maximum  
NRST  
–0.3  
–0.3  
6
6
V
V
SDA, SCL, nINT, CLKIN  
(VANA + 0.3 V)  
with 6 V  
Voltage on logic pins (input or output pins)  
EN1 (GPIO1), EN2 (GPIO2), EN3  
(GPIO3), PGOOD  
–0.3  
V
maximum  
Maximum lead temperature (soldering, 10 sec.)  
Junction temperature, TJ-MAX  
260  
150  
150  
°C  
°C  
°C  
–40  
–65  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
All pins  
V(ESD) Electrostatic discharge  
V
Corner pins (1, 8,  
14, and 21)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
INPUT VOLTAGE  
Voltage on power connections  
VIN_Bx, VANA  
NRST  
2.8  
1.65  
1.65  
0
5.5  
V
V
V
V
VANA with  
5.5 V maximum  
Voltage on NRST  
Voltage on logic pins (input or output pins)  
Voltage on logic pins (input or output pins)  
nINT, CLKIN  
ENx, PGOOD  
5.5  
VANA with  
5.5 V maximum  
Voltage on I2C interface, standard (100 kHz), fast (400  
khz), fast+ (1 MHz), and high-speed (3.4 MHz) modes  
Voltage on I2C interface, standard (100 kHz), fast (400  
kHz), and fast+ (1 MHz) modes  
SCL, SDA  
SCL, SDA  
1.65  
3.1  
1.95  
V
V
VANA with  
3.6 V maximum  
TEMPERATURE  
Junction temperature, TJ  
Ambient temperature, TA  
–40  
–40  
140  
125  
°C  
°C  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
7.4 Thermal Information  
LP8756x-Q1  
THERMAL METRIC(1)  
RNF (VQFN-HR)  
UNIT  
26 PINS  
34.6  
16.5  
4.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
4.7  
RθJC(bot)  
1.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
–40°C TJ +140°C, CPOL = 22 µF/phase, specified VVANA, VVIN_Bx , VNRST, VVOUT_Bx, and IOUT range, unless otherwise noted.  
(2)  
Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V, unless otherwise noted(1)  
.
PARAMETER  
EXTERNAL COMPONENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Connected from VIN_Bx to  
PGND_Bx  
CIN  
Input filtering capacitance  
1.9  
10  
10  
µF  
COUT  
CPOL  
Output filtering capacitance per phase, local  
22  
22  
µF  
µF  
Optional point-of-load (POL) capacitance per phase  
4-phase Output voltage slew-rate 1.9  
output mV/µs  
2000  
3-phase Output voltage slew-rate 1.9  
output mV/µs  
1500  
µF  
COUT-TOTAL  
Total output capacitance(3) (local and POL)  
2-phase Output voltage slew-rate 1.9  
output mV/µs  
1000  
1-phase Output voltage slew-rate 1.9  
500  
output  
mV/µs  
ESRC  
L
ESR of the input and output capacitor  
Inductance of the inductor  
Inductor DCR  
1 MHz f 10 MHz  
2
10 mΩ  
µH  
0.47  
–30%  
30%  
DCRL  
25  
mΩ  
BUCK REGULATOR  
VVIN_Bx  
Input voltage range  
2.8  
0.6  
3.7  
5.5  
V
V
VVOUT_Bx  
Programmable output voltage range  
Output voltage step size  
3.36  
0.6 V VVOUT < 0.73 V  
0.73 V VVOUT < 1.4 V  
1.4 V VVOUT 3.36 V  
10  
5
mV  
20  
(1) All voltage values are with respect to network ground.  
(2) Minimum (Min) and Maximum (Max) limits are specified by design, test, or statistical analysis. Typical (Typ) numbers are not verified, but  
do represent the most likely norm.  
(3) The output voltage slew-rate setting may limit the maximum output capacitance.  
6
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Electrical Characteristics (continued)  
–40°C TJ +140°C, CPOL = 22 µF/phase, specified VVANA, VVIN_Bx , VNRST, VVOUT_Bx, and IOUT range, unless otherwise noted.  
Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V, unless otherwise noted(1) (2)  
.
PARAMETER  
TEST CONDITIONS  
VIN 3 V  
MIN  
TYP  
MAX UNIT  
16  
12  
12  
4-phase  
output  
2.8 V VIN < 3 V  
VIN 3 V  
3-phase  
output  
2.8 V VIN < 3 V  
VIN 3 V  
9
A
8
IOUT  
Output current(4)  
2-phase  
output  
2.8 V VIN < 3 V  
VIN 3 V  
6
4
3
1-phase  
output  
2.8 V VIN < 3 V  
Input and output voltage difference  
Minimum voltage between VIN_x and VOUT to fulfill  
the electrical characteristics  
0.5  
V
VOUT < 1 V, PWM mode  
–20  
–2%  
–20  
20 mV  
2%  
VOUT 1 V, PWM mode  
DC output voltage accuracy, includes voltage  
reference, DC load and line regulations, process, and  
temperature  
VVOUT_DC  
VOUT < 1 V, PFM mode  
40 mV  
2% +  
20 mV  
VOUT 1 V, PFM mode  
–2%  
PWM mode, ESRC < 2 mΩ, L  
= 0.47 µH  
3
4
4
5
6
7
8
4-phase  
output  
PFM mode, L = 0.47 µH  
PWM mode, ESRC < 2 mΩ, L  
= 0.47 µH  
3-phase  
output  
PFM mode, L = 0.47 µH  
Ripple voltage  
mVp-p  
PWM mode, ESRC < 2 mΩ, L  
= 0.47 µH  
2-phase  
output  
PFM mode, L = 0.47 µH  
PWM mode, ESRC < 2 mΩ, L  
= 0.47 µH  
1-phase  
output,  
PFM mode, L = 0.47 µH  
IOUT = IOUT(max)  
14  
DCLNR  
DCLDR  
DC line regulation  
0.1  
%/V  
VOUT = 1 V, 0 A IOUT  
IOUT(max)  
DC load regulation in PWM mode  
0.8%  
(4) The maximum output current can be limited by the forward current limit ILIM FWD and by the junction temperature. The power dissipation  
inside the die depends on the length of the current pulse and efficiency and the junction temperature may increase to thermal shutdown  
level if the board and ambient temperatures are high.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Electrical Characteristics (continued)  
–40°C TJ +140°C, CPOL = 22 µF/phase, specified VVANA, VVIN_Bx , VNRST, VVOUT_Bx, and IOUT range, unless otherwise noted.  
Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V, unless otherwise noted(1) (2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0 A IOUT 8 A, tr = tf = 10  
µs, PWM mode, COUT = 22  
µF/phase, L = 0.47 µH,  
CPOL = 22 µF/phase  
–3%  
3%  
4-phase  
output  
0.1 A IOUT 8 A, tr = tf = 1  
µs, PWM mode, COUT = 22  
µF/phase, L = 0.47 µH,  
CPOL = 22 µF/phase  
±40  
0 A IOUT 6 A, tr = tf = 10  
µs, PWM mode, COUT = 22  
µF/phase, L = 0.47 µH,  
CPOL = 22 µF/phase  
–3%  
–3%  
–3%  
3%  
3-phase  
output  
0.1 A IOUT 6 A, tr = tf = 1  
µs, PWM mode, COUT = 22  
µF/phase, L = 0.47 µH,  
CPOL = 22 µF/phase  
±40  
±40  
TLDSR  
Transient load step response  
mV  
3%  
0 A IOUT 4 A, tr = tf = 10  
µs, PWM mode, COUT = 22  
µF/phase, L = 0.47 µH,  
CPOL = 22 µF/phase  
2-phase  
output  
0.1 A IOUT 4 A, tr = tf = 1  
µs, PWM mode, COUT = 22  
µF/phase, L = 0.47 µH,  
CPOL = 22 µF/phase  
0 A IOUT 2 A, tr = tf = 10  
µs, PWM mode, COUT = 22  
3%  
µF, L = 0.47 µH, CPOL  
22 µF  
=
1-phase  
output  
0.1 A IOUT 2 A, tr = tf = 1  
µs, PWM mode, COUT = 22  
±40  
±5  
µF, L = 0.47 µH, CPOL  
22 µF  
=
VVIN_Bx stepping 3 V 3.5 V,  
tr = tf = 10 µs, IOUT = IOUT(max)  
TLNSR  
Transient line response  
mV  
Programmable range  
Step size  
1.5  
5
A
0.5  
Forward current limit for each phase (peak for each  
switching cycle)  
Accuracy, VVIN_Bx 3 V, ILIM  
3 A  
ILIM FWD  
–5%  
–20%  
1.6  
7.5%  
20%  
20%  
Accuracy, 2.8 V VVIN_Bx < 3  
V, ILIM 3. A  
7.5%  
2
Negative current limit per phase (peak for each  
switching cycle)  
ILIM NEG  
RDS(ON) HS  
2.4  
A
Each phase, between VIN_Bx  
and SW_Bx pins, I = 1 A  
On-resistance, high-side FET  
29  
65 mΩ  
FET  
RDS(ON) LS  
FET  
Each phase, between SW_Bx  
and PGND_Bx pins, I = 1 A  
On-resistance, low-side FET  
17  
2
35 mΩ  
fSW  
Switching frequency, PWM mode  
Current balancing for multiphase outputs  
1.8  
2.2 MHz  
Current mismatch between  
phases, IOUT > 1 A/phase  
10%  
From ENx to VOUT = 0.35 V  
(slew-rate control begins),  
COUT_TOTAL = 44 µF/phase  
Start-up time (soft start)  
200  
µs  
8
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Electrical Characteristics (continued)  
–40°C TJ +140°C, CPOL = 22 µF/phase, specified VVANA, VVIN_Bx , VNRST, VVOUT_Bx, and IOUT range, unless otherwise noted.  
Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V, unless otherwise noted(1) (2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SLEW_RATEx[2:0] = 2h,  
COUT-TOTAL 80 µF/phase  
–15%  
10  
15%  
SLEW_RATEx[2:0] = 3h,  
COUT-TOTAL 130 µF/phase  
–15%  
–15%  
–15%  
–15%  
–15%  
7.5  
3.8  
15%  
SLEW_RATEx[2:0] = 4h,  
COUT-TOTAL 250 µF/phase  
15%  
Output voltage slew-rate(5)  
mV/µs  
15%  
SLEW_RATEx[2:0] = 5h,  
COUT-TOTAL 500 µF/phase  
1.9  
SLEW_RATEx[2:0] = 6h,  
COUT-TOTAL 500 µF/phase  
0.94  
0.47  
15%  
15%  
SLEW_RATEx[2:0] = 7h,  
COUT-TOTAL 500 µF/phase  
IPFM-PWM  
IPWM-PFM  
PFM-to-PWM current threshold(6)  
PWM-to-PFM current threshold(6)  
600  
200  
1
mA  
mA  
From 1-phase to 2-phase  
From 2-phase to 3-phase  
From 3-phase to 4-phase  
From 2-phase to 1-phase  
From 3-phase to 2-phase  
From 4-phase to 3-phase  
Regulator disabled  
IADD  
Phase adding level (multiphase rails)  
2
A
A
3
0.7  
1.5  
2.4  
230  
ISHED  
Phase shedding level (multiphase rails)  
Output pulldown resistance  
160  
39  
300  
64  
Ω
Overvoltage monitoring  
(compared to DC output-  
50  
voltage level, VVOUT_DC  
)
mV  
Undervoltage monitoring  
(compared to DC output-  
–53  
4
–40  
–29  
10  
voltage level, VVOUT_DC  
)
Debounce time during  
regulator enable  
Output voltage monitoring for PGOOD pin  
µs  
PGOOD_SET_DELAY = 0h  
Debounce time during  
regulator enable  
PGOOD_SET_DELAY = 1h  
10  
11  
13  
ms  
µs  
Deglitch time during operation  
and after voltage change  
4
–20  
8
10  
–8  
20  
Rising ramp voltage, enable  
or voltage change  
–14  
14  
Power-good threshold for interrupt BUCKx_PG_INT,  
difference from final voltage  
mV  
Falling ramp voltage, voltage  
change  
During operation, status signal  
is forced to 0h during voltage  
change  
Power-good threshold for status bit  
BUCKx_PG_STAT  
–20  
–14  
–8 mV  
(5) Output capacitance, forward and negative current limits and load current may limit the maximum and minimum slew rates. The actual  
set fixed slew rate value for specific part number is listed in corresponding TRM document.  
(6) The final PFM-to-PWM and PWM-to-PFM switchover current varies slightly and is dependent on the output voltage, input voltage, and  
the inductor current level.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Electrical Characteristics (continued)  
–40°C TJ +140°C, CPOL = 22 µF/phase, specified VVANA, VVIN_Bx , VNRST, VVOUT_Bx, and IOUT range, unless otherwise noted.  
Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V, unless otherwise noted(1) (2)  
.
PARAMETER  
EXTERNAL CLOCK AND PLL  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Nominal frequency of the external input clock  
1
24 MHz  
MHz  
Nominal frequency step size of the external input  
clock  
1
Required accuracy from nominal frequency of the  
external input clock  
–30%  
10%  
Delay time for missing external clock detection  
1.8  
20  
µs  
µs  
Delay and debounce time for external clock detection  
Clock change delay (internal to external)  
delay from valid clock detection to use of external  
clock  
600  
300  
µs  
ps, p-  
p
Cycle-to-cycle PLL output clock jitter  
PROTECTION FUNCTIONS  
Temperature rising,  
TDIE_WARN_LEVEL = 0h  
115  
127  
125  
137  
135  
147  
Thermal warning  
°C  
Temperature rising,  
TDIE_WARN_LEVEL = 1h  
Thermal warning hysteresis  
Thermal shutdown  
20  
150  
20  
°C  
°C  
°C  
Temperature rising  
140  
160  
Thermal shutdown hysteresis  
Voltage rising  
Voltage falling  
5.6  
5.45  
40  
5.8  
6.1  
VANAOVP  
VANA overvoltage  
V
mV  
V
5.73  
5.96  
VANA overvoltage hysteresis  
VANA undervoltage lockout  
Voltage rising  
Voltage falling  
2.51  
2.5  
2.63  
2.6  
2.75  
2.7  
VANAUVLO  
LOAD CURRENT MEASUREMENT  
Current measurement range  
Output current for maximum  
code  
20.47  
A
Resolution  
LSB  
20  
mA  
Measurement accuracy  
IOUT > 1 A  
< 10%  
PFM mode (automatically  
changing to PWM mode for  
the measurement)  
45  
4
Measurement time  
µs  
PWM mode  
CURRENT CONSUMPTION  
From VANA and VIN_Bx pins,  
NRST = 0 V, VANA = VIN_Bx  
= 3.7 V  
Shutdown current consumption  
1.4  
6.7  
µA  
µA  
From VANA and VIN_Bx pins,  
NRST = 1.8 V, VANA =  
VIN_Bx = 3.7 V, regulators  
disabled  
Standby current consumption  
10  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Electrical Characteristics (continued)  
–40°C TJ +140°C, CPOL = 22 µF/phase, specified VVANA, VVIN_Bx , VNRST, VVOUT_Bx, and IOUT range, unless otherwise noted.  
Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1 V, unless otherwise noted(1) (2)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
4-phase enabled: From VANA  
and VIN_Bx pins, NRST = 1.8  
V, VANA = VIN_Bx = 3.7 V,  
IOUT = 0 mA, not switching,  
one regulator enabled,  
77  
internal RC oscillator, PGOOD  
monitoring enabled  
3-phase enabled: From VANA  
and VIN_Bx pins, NRST = 1.8  
V, VANA = VIN_Bx = 3.7 V,  
IOUT = 0 mA, not switching,  
one regulator enabled,  
71  
65  
57  
internal RC oscillator, PGOOD  
monitoring enabled  
Active current consumption in PFM mode  
µA  
2-phase enabled: From VANA  
and VIN_Bx pins, NRST = 1.8  
V, VANA = VIN_Bx = 3.7 V,  
IOUT = 0 mA, not switching,  
one regulator enabled,  
internal RC oscillator, PGOOD  
monitoring enabled  
1-phase enabled: From VANA  
and VIN_Bx pins, NRST = 1.8  
V, VANA = VIN_Bx = 3.7 V,  
IOUT = 0 mA, not switching,  
one regulator enabled,  
internal RC oscillator, PGOOD  
monitoring enabled  
Active current consumption during PWM operation  
PLL and clock detector current consumption  
Each phase  
17  
2
mA  
mA  
Additional current  
consumption when internal  
RC oscillator, clock detector  
and PLL are enabled  
DIGITAL INPUT SIGNALS: NRST, EN1, EN2, EN3, EN4, SCL, SDA, GPIO1, GPIO2, GPIO3, CLKIN  
VIL  
Input low level  
0.4  
V
V
VIH  
Input high level  
1.2  
10  
VHYS  
Hysteresis of Schmitt trigger inputs  
ENx pulldown resistance  
NRST pulldown resistance  
77  
500  
200 mV  
ENx_PD = 1h  
kΩ  
Always present  
650  
1150  
1700  
0.4  
kΩ  
DIGITAL OUTPUT SIGNALS: nINT  
VOL  
RP  
Output low level  
ISOURCE = 2 mA  
To VIO supply  
V
External pullup resistor  
10  
kΩ  
DIGITAL OUTPUT SIGNALS: SDA  
VOL Output low level  
DIGITAL OUTPUT SIGNALS: PGOOD, GPIO1, GPIO2, GPIO3  
ISOURCE = 10 mA  
0.4  
V
VOL  
Output low level  
ISOURCE = 2 mA  
ISINK = 2 mA  
0.4  
V
V
VVANA  
VOH  
Output high level, configured to push-pull  
VVANA  
0.4  
Supply voltage for external pull-up resistor, configured  
to open-drain  
VPU  
RPU  
VVANA  
V
External pullup resistor, configured to open-drain  
10  
kΩ  
ALL DIGITAL INPUTS  
All logic inputs over pin  
voltage range (except NRST)  
ILEAK  
Input current  
1  
1
µA  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
MAX UNIT  
7.6 I2C Serial Bus Timing Requirements  
These specifications are ensured by design. VIN_Bx = 3.7 V, unless otherwise noted.  
MIN  
Standard mode  
Fast mode  
100  
kHz  
400  
ƒSCL  
Serial clock frequency  
Fast mode+  
1
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
3.4 MHz  
1.7  
4.7  
1.3  
0.5  
160  
320  
4
Fast mode  
µs  
ns  
µs  
ns  
tLOW  
SCL low time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
0.6  
0.26  
60  
tHIGH  
SCL high time  
Data setup time  
Data hold time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
120  
250  
100  
50  
Fast mode  
tSU;DAT  
tHD;DAT  
tSU;STA  
ns  
Fast mode+  
High-speed mode  
Standard mode  
10  
10  
3450  
Fast mode  
10  
900  
ns  
ns  
Fast mode+  
10  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
70  
10  
150  
4.7  
0.6  
0.26  
160  
4
Fast mode  
µs  
ns  
µs  
ns  
µs  
Setup time for a start or a  
repeated start condition  
Fast mode+  
High-speed mode  
Standard mode  
Fast mode  
0.6  
0.26  
160  
4.7  
1.3  
0.5  
4
Hold time for a start or a repeated  
start condition  
tHD;STA  
Fast mode+  
High-speed mode  
Standard mode  
Bus free time between a stop and  
start condition  
tBUF  
Fast mode  
Fast mode+  
Standard mode  
Fast mode  
0.6  
0.26  
160  
µs  
ns  
tSU;STO  
Setup time for a stop condition  
Rise time of SDA signal  
Fast mode+  
High-speed mode  
Standard mode  
1000  
300  
120  
80  
Fast mode  
20  
trDA  
Fast mode+  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
10  
20  
160  
12  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
I2C Serial Bus Timing Requirements (continued)  
These specifications are ensured by design. VIN_Bx = 3.7 V, unless otherwise noted.  
MIN  
MAX UNIT  
Standard mode  
Fast mode  
300  
20 × (VDD  
/
300  
5.5 V)  
tfDA  
Fall time of SDA signal  
20 × (VDD  
/
ns  
Fast mode+  
120  
5.5 V)  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
80  
160  
30  
1000  
300  
Fast mode  
20  
trCL  
Rise time of SCL signal  
Fast mode+  
120  
40  
ns  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
High-speed mode, Cb = 100 pF  
10  
20  
10  
80  
Rise time of SCL signal after a  
repeated start condition and after  
an acknowledge bit  
80  
trCL1  
High-speed mode, Cb = 400 pF  
Standard mode  
20  
160  
300  
20 × (VDD  
/
Fast mode  
300  
120  
5.5 V)  
tfCL  
Fall time of a SCL signal  
20 × (VDD  
/
ns  
Fast mode+  
5.5 V)  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
10  
40  
80  
20  
Capacitive load for each bus line  
(SCL and SDA)  
Cb  
400  
50  
pF  
ns  
Pulse width of spike suppressed  
(SCL and SDA spikes that are  
less than the indicated width are  
suppressed)  
Standard mode, fast mode and fast mode+  
High-speed mode  
tSP  
10  
tBUF  
SDA  
SCL  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
Figure 1. I2C Timing  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
7.7 Typical Characteristics  
Unless otherwise specified: TA = 25°C, VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, CPOL = 22 µF / phase.  
4
3.5  
3
10  
9
8
7
6
5
4
3
2
1
0
2.5  
2
1.5  
1
0.5  
0
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
D045  
D046  
V(NRST) = 0 V  
V(NRST) = 1.8 V  
Regulators disabled  
Figure 2. Shutdown Current Consumption vs Input Voltage  
Figure 3. Standby Current Consumption vs Input Voltage  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
55  
50  
3PH  
1PH  
45  
40  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
D047  
D048  
V(NRST) = 1.8 V  
Load = 0 mA  
V(NRST) = 1.8 V  
Load = 0 mA  
Figure 4. PFM Mode Current Consumption vs Input Voltage  
(4-Phase Output)  
Figure 5. PFM Mode Current Consumption vs Input Voltage,  
One Regulator Enabled (3+1-Phase Output)  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
55  
50  
2PH  
1PH  
45  
40  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
D049  
D051  
V(NRST) = 1.8 V  
Load = 0 mA  
V(NRST) = 1.8 V  
Load = 0 mA  
Figure 6. PFM Mode Current Consumption vs Input Voltage,  
One Regulator Enabled (2+1+1-Phase Output)  
Figure 7. PFM Mode Current Consumption vs Input Voltage,  
One Regulator Enabled (1+1+1+1-Phase Output)  
14  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Typical Characteristics (continued)  
Unless otherwise specified: TA = 25°C, VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, CPOL = 22 µF / phase.  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
D050  
V(NRST) = 1.8 V  
Load = 0 mA  
Figure 8. PFM Mode Current Consumption vs Input Voltage, One Regulator Enabled (2+2-Phase Output)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The LP8756x-Q1 is a high-efficiency, high-performance power supply device with four step-down DC/DC  
converter cores for automotive applications. Table 1 lists the output characteristics of the regulators.  
Table 1. Supply Specification  
OUTPUT  
DEVICE  
SUPPLY  
IMAX MAXIMUM OUTPUT  
CURRENT  
VOUT RANGE  
RESOLUTION  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
BUCK0, BUCK1, BUCK2, BUCK3  
in one 4-phase output  
LP87561-Q1  
0.6 to 3.36 V  
16 A  
12 A  
4 A  
8 A  
4 A  
4 A  
4 A  
4 A  
4 A  
4 A  
8 A  
8 A  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
BUCK0, BUCK1, BUCK2  
in one 3-phase output  
0.6 to 3.36 V  
0.6 to 3.36 V  
0.6 to 3.36 V  
0.6 to 3.36 V  
0.6 to 3.36 V  
0.6 to 3.36 V  
0.6 to 3.36 V  
0.6 to 3.36 V  
0.6 to 3.36 V  
0.6 to 3.36 V  
0.6 to 3.36 V  
LP87562-Q1  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
BUCK3 in 1-phase output  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
BUCK0, BUCK1  
in one 2-phase output  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
LP87563-Q1  
BUCK2 in 1-phase output  
BUCK3 in 1-phase output  
BUCK0 in 1-phase output  
BUCK1 in 1-phase output  
BUCK2 in 1-phase output  
BUCK3 in 1-phase output  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
LP87564-Q1  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
BUCK0, BUCK1  
in 2-phase output  
LP87565-Q1  
10 mV (0.6 V to 0.73 V)  
5 mV (0.73 V to 1.4 V)  
20 mV (1.4 V to 3.36 V)  
BUCK2, BUCK3  
in 2-phase output  
The LP8756x-Q1 also supports switching clock synchronization to an external clock. The nominal frequency of  
the external clock can be from 1 MHz to 24 MHz with 1-MHz steps.  
Additional features include:  
Soft start  
Input voltage protection:  
Undervoltage lockout  
Overvoltage protection  
Output voltage monitoring and protection:  
Overvoltage monitoring  
Undervoltage monitoring  
Overload protection  
Thermal warning  
Thermal shutdown  
Three enable signals can be multiplexed to general purpose I/O (GPIO) signals. The direction and output type  
(open-drain or push-pull) are programmable for the GPIOs.  
16  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
8.2 Functional Block Diagram  
VANA  
Buck0  
nINT  
Interrupts  
ILIM Det  
Pwrgood Det  
Overload  
and SC Det  
Iload ADC  
Enable,  
Roof/Floor,  
Slew-Rate  
Control  
EN1 (GPIO1)  
EN2 (GPIO2)  
EN3 (GPIO3)  
Buck1  
ILIM Det  
Pwrgood Det  
Overload  
SDA  
SCL  
I2C  
and SC Det  
Iload ADC  
OTP  
EPROM  
PGOOD  
Registers  
Buck2  
ILIM Det  
Pwrgood Det  
Overload  
and SC Det  
Iload ADC  
Digital  
Logic  
UVLO  
Thermal  
Monitor  
NRST  
Buck3  
ILIM Det  
Pwrgood Det  
Overload  
and SC Det  
Iload ADC  
Ref &  
Bias  
SW  
Reset  
Oscillator  
CLKIN  
Copyright © 2017, Texas Instruments Incorporated  
8.3 Feature Descriptions  
8.3.1 Multi-Phase DC/DC Converters  
8.3.1.1 Overview  
The LP8756x-Q1 includes four step-down DC/DC converter cores which can be configured for:  
4-phase single output  
3-phase and single-phase outputs  
dual-phase and two single-phase outputs  
four single-phase outputs  
two dual-phase outputs  
The cores are designed for flexibility; most of the functions are programmable, thus allowing optimization of the  
regulator operation for each application.  
The LP8756x-Q1 has the following features:  
DVS support with programmable slew-rate  
Automatic mode control based on the loading (PFM or PWM mode)  
Forced-PWM mode operation  
Optional external clock input to minimize crosstalk  
Optional spread spectrum technique to decrease EMI  
Phase control for optimized EMI  
Synchronous rectification  
Current mode loop with PI compensator  
Soft start  
Power-Good flag with maskable interrupt  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Feature Descriptions (continued)  
Power-Good signal (PGOOD) with selectable sources  
Average output current sensing (for PFM entry, phase shedding/adding, and load current measurement)  
Current balancing between the phases of the converter  
Differential voltage sensing from point of the load for multiphase output  
Dynamic phase shedding/adding, each output being phase shifted  
The following parameters can be programmed via registers:  
Output voltage  
Forced-PWM operation  
Forced multiphase operation for multiphase outputs (forces also the PWM operation)  
Peak current limit for high-side FET  
Output voltage slew rate  
Enable and disable delays for regulators and GPIOs controlled by ENx pins  
There are two modes of operation for the converter, depending on the output current required: pulse-width  
modulation (PWM) and pulse-frequency modulation (PFM). The converter operates in PWM mode at high load  
currents of approximately 600 mA or higher. When operating in PWM mode the phases of a multiphase regulator  
are automatically added/shedded based on the load current level. Lighter output current loads cause the  
converter to automatically switch into PFM mode for decreased current consumption when forced-PWM mode is  
disabled. The forced multiphase mode can be enabled for highest transient performance.  
A multiphase synchronous buck converter offers several advantages over one power stage converter. For  
application processor power delivery, lower ripple on the input and output currents and faster transient response  
to load steps are the most significant advantages. Also, because the load current is evenly shared among  
multiple channels in multiphase output configuration, the heat generated is greatly decreased for each channel  
due to the fact that power loss is proportional to square of current. The physical size of the output inductor  
shrinks significantly due to this heat reduction. Figure 9 shows a block diagram of a single core.  
Interleaving switching action of the multiphase converters is shown in Figure 10.  
PMOS  
Current  
Sense  
Differential to Single-  
Ended  
FBP  
FBN  
+
-
VIN  
POS  
Current  
Limit  
œ
Slave  
Phase  
Control  
Ramp  
Generator  
VOUT  
œ
Gate  
Control  
Error  
Amp  
+
SW  
Loop  
Comp  
Voltage  
Setting  
Slew Rate  
Control  
NEG  
Current  
Limit  
Power  
Good  
+
-
VDAC  
Zero  
Cross  
Detect  
NMOS  
Current  
Sense  
Programmable  
Parameters  
Master  
Interface  
Control  
Block  
Slave  
Interface  
IADC  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 9. Detailed Block Diagram Showing One Core  
18  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Feature Descriptions (continued)  
IL_TOT_4PH  
IL0  
IL1  
IL2  
IL3  
0
90  
180  
270  
360  
450  
540  
630  
720  
PWM0  
PWM1  
PWM2  
PWM3  
Switching Cycle 360º  
0
90  
180  
270  
360  
450  
540  
630  
720  
Phase (Degrees)  
(1) Graph is not in scale and is for illustrative purposes only.  
Figure 10. Example of PWM Timings, Inductor Current Waveforms, and Total Output Current in 4-Phase  
Configuration.  
8.3.1.2 Multiphase Operation, Phase Adding, and Phase-Shedding  
Under heavy load conditions, the 4-phase converter switches each channel 90° apart. As a result, the 4-phase  
converter has an effective ripple frequency four times greater than the switching frequency of any one phase. In  
the same way 3-phase converter has an effective ripple frequency three times greater and 2-phase converter has  
an effective ripple frequency two times greater than the switching frequency of any one phase. However, the  
parallel operation decreases the efficiency at light load conditions. In order to overcome this operational  
inefficiency, the LP8756x-Q1 can change the number of active phases to optimize efficiency for the variations of  
the load. This is called phase adding/shedding. The concept is shown in Figure 11.  
The converter can be forced to multiphase operation by the BUCKx_FPWM_MP bit in BUCKx_CTRL1 register. If  
the regulator operates in forced multiphase mode (two phases in the dual-phase configuration, three phases in  
three-phase configuration and four phases in a four-phase configuration) the forced-PWM operation is  
automatically used. If the multiphase operation is not forced, the number of phases are added and shedded  
automatically to follow the required output current.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Feature Descriptions (continued)  
Best efficiency obtained with  
N=1  
N=2  
N=3  
N=4  
Load Current  
(1) Graph is not in scale and is for illustrative purposes only.  
Figure 11. Multiphase Buck Converter Efficiency vs Number of Phases (Converters in PWM Mode)  
8.3.1.3 Transition Between PWM and PFM Modes  
Normal PWM mode operation with phase-adding/shedding optimizes efficiency at mid-to-full load at the expense  
of light-load efficiency. The LP8756x-Q1 converter operates in PWM mode at load current of about 600 mA or  
higher. At lighter load-current levels the device automatically switches into PFM mode for decreased current  
consumption when forced-PWM mode is disabled (AUTO-mode operation). By combining the PFM and the PWM  
modes a high efficiency is achieved over a wide output-load-current range.  
8.3.1.4 Multiphase Switcher Configurations  
In single 4-phase output configuration the BUCK0 is master for the BUCK0, BUCK1, BUCK2, BUCK3 output, in  
3-phase and single-phase outputs configuration the BUCK0 is master for the multiphase output BUCK0, BUCK1,  
BUCK2, in 2-phase and two single-phase outputs configuration the BUCK0 is master for the BUCK0, BUCK1  
output and in two 2-phase outputs configuration the BUCK0 is master for BUCK0, BUCK1 output, and the  
BUCK2 is master for BUCK2, BUCK3 output.  
In the multiphase configuration the control of the multiphase regulator settings is done using the control registers  
of the master buck. The following slave registers are ignored:  
BUCKx_CTRL1 register, except EN_RDISx bit  
BUCKx_CTRL2 register, except ILIMx[2:0] bits  
BUCKx_VOUT register  
BUCKx_FLOOR_VOUT register  
BUCKx_DELAY register  
interrupt bits related to the slave buck, except BUCKx_ILIM_INT  
20  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Feature Descriptions (continued)  
8.3.1.5 Buck Converter Load-Current Measurement  
Buck load current can be monitored via I2C registers. The monitored buck converter is selected with the  
LOAD_CURRENT_BUCK_SELECT[1:0] bits in SEL_I_LOAD register. A write to this selection register starts a  
current measurement sequence. The regulator is forced to PWM mode during the measurement. The  
measurement sequence is 50 µs long, maximum. The LP8756x-Q1 device can be configured to give out an  
interrupt (I_LOAD_READY bit in INT_TOP1 register) after the load current measurement sequence is finished.  
Load current measurement interrupt can be masked with I_LOAD_READY_MASK bit (TOP_MASK1 register).  
The measurement result can be read from registers I_LOAD_1 and I_LOAD_2. Register I_LOAD_1 bits  
BUCK_LOAD_CURRENT[7:0] give out the LSB bits and register I_LOAD_2 bits BUCK_LOAD_CURRENT[9:8]  
the MSB bits. The measurement result BUCK_LOAD_CURRENT[9:0] LSB is 20 mA, and maximum value of the  
measurement corresponds to 20.46 A. If the selected buck regulator is a master phase, the measured current is  
the total value of the master and slave phases. If the selected buck regulator is single-phase or slave phase, the  
measured current is the output current of the selected phase.  
8.3.1.6 Spread-Spectrum Mode  
Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband  
frequencies (the switching frequency and its harmonics). The usual solution to decrease noise coupling is to add  
EMI filters and shields to the boards. The LP8756x-Q1 device has register-selectable spread-spectrum mode  
which minimizes the need for output filters, ferrite beads, or chokes. In spread-spectrum mode, the switching  
frequency varies around the center frequency, reducing the EMI emissions radiated by the converter and  
associated passive components and PCB traces (see Figure 12). This feature is available only when internal RC  
oscillator is used (PLL_MODE[1:0] = 00 in PLL_CTRL register), and it is enabled with the EN_SPREAD_SPEC  
bit (PIN_FUNCTION register), and it affects all the buck cores.  
Frequency  
Where a fixed-frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread-  
spectrum architecture of the LP8756x-Q1 spreads that energy over a large bandwidth.  
Figure 12. Spread-Spectrum Modulation  
8.3.2 Sync Clock Functionality  
The LP8756x-Q1 device contains a CLKIN input to synchronize the switching clock of the buck regulator with the  
external clock. The block diagram of the clocking and PLL module is shown in Figure 13. Depending on the  
PLL_MODE[1:0] bits (in PLL_CTRL register) and the external clock availability, the external clock is selected,  
and interrupt is generated, as shown in Table 2. The interrupt can be masked with SYNC_CLK_MASK bit in  
TOP_MASK1 register. The nominal frequency of the external input clock is set by EXT_CLK_FREQ[4:0] bits (in  
PLL_CTRL register), and it can be from 1 MHz to 24 MHz with 1-MHz steps. The external clock must be inside  
accuracy limits (–30%/+10%) for valid clock detection.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Feature Descriptions (continued)  
The NO_SYNC_CLK interrupt (in INT_TOP1 register) is also generated in cases when the external clock is  
expected but it is not available. These cases are start-up (read OTP-to-STANDBY transition) when  
PLL_MODE[1:0] = 01 and regulator enable (STANDBY-to-ACTIVE transition) when PLL_MODE[1:0] = 10.  
24-MHz  
RC  
Oscillator  
Internal  
24-MHz  
clock  
CLKIN  
Detector  
Divider  
“EXT_CLK_  
FREQ“  
Clock Select  
Logic  
CLKIN  
1MHz  
24MHz  
PLL  
“PLL_MODE“  
1MHz  
Divider  
24  
Copyright © 2017, Texas Instruments Incorporated  
Figure 13. Clock and PLL Module  
Table 2. PLL Operation  
DEVICE  
OPERATION MODE  
PLL AND CLOCK  
DETECTOR STATE  
INTERRUPT FOR  
EXTERNAL CLOCK  
PLL_MODE[1:0]  
CLOCK  
STANDBY  
ACTIVE  
0h  
0h  
Disabled  
Disabled  
No  
No  
Internal RC  
Internal RC  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
STANDBY  
1h  
Enabled  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
ACTIVE  
STANDBY  
ACTIVE  
1h  
2h  
2h  
Enabled  
Disabled  
Enabled  
No  
Internal RC  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
STANDBY  
ACTIVE  
3h  
3h  
Reserved  
Reserved  
8.3.3 Power-Up  
The power-up sequence for the LP8756x-Q1 is as follows:  
VANA (and VIN_Bx) reach minimum recommended level (VVANA > VANAUVLO).  
NRST is set to high level (or shorted to VANA). This initiates power-on-reset (POR), OTP reading and  
enables the system I/O interface. The I2C host must wait at least 1.2 ms before writing or reading data to the  
LP8756x-Q1.  
Device goes to the STANDBY mode.  
The host can change the default register setting by I2C if needed.  
The regulator(s) can be enabled/disabled by ENx pin(s) and by I2C interface.  
22  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
8.3.4 Regulator Control  
8.3.4.1 Enabling and Disabling Regulators  
The regulator(s) can be enabled when the device is in STANDBY or ACTIVE state. There are two ways for  
enable and disable the regulators:  
Using EN_BUCKx bit in BUCKx_CTRL1 register (EN_PIN_CTRLx register bit is 0h)  
Using EN1, EN2, EN3 control pins (EN_BUCKx bit is 1h AND EN_PIN_CTRLx register bit is 1 in  
BUCKx_CTRL1 register)  
If the EN1, EN2, EN3 control pins are used for enable and disable then the control pin is selected with  
BUCKx_EN_PIN_SELECT[1:0] bits (in BUCKx_CTRL1 register). The delay from the control signal rising edge to  
enabling of the regulator is set by BUCKx_STARTUP_DELAY[3:0] bits, and the delay from control signal falling  
edge to disabling of the regulator is set by BUCKx_SHUTDOWN_DELAY[3:0] bits in BUCKx_DELAY register.  
The delays are valid only for EN1, EN2, EN3 signal control. The control with EN_BUCKx bit is immediate without  
the delays.  
The control of the regulator (with 0-ms delays) is shown in Table 3. Multiphase regulators are controlled with  
registers of the master phase.  
NOTE  
The control of the regulator cannot be changed from one ENx pin to a different ENx pin  
because the control is ENx signal-edge sensitive. The control from ENx pin to register bit  
and back to the original ENx pin can be done during operation.  
Table 3. Regulator Control  
CONTROL  
METHOD  
BUCKx_EN_PI EN_ROOF_FLOOR  
BUCKx  
OUTPUT VOLTAGE  
EN_BUCKx EN_PIN_CTRLx  
EN1 PIN  
EN2 PIN  
EN3 PIN  
N_SELECT[1:0]  
x
Enable and  
disable control  
with EN_BUCKx  
bit  
0h  
1h  
Don't Care  
0h  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Disabled  
Don't Care  
BUCKx_VSET[7:0]  
Enable and  
disable control  
with EN1 pin  
1h  
1h  
1h  
1h  
0h  
0h  
0h  
0h  
Low  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Disabled  
High  
BUCKx_VSET[7:0]  
Enable and  
disable control  
with EN2 pin  
1h  
1h  
1h  
1h  
1h  
1h  
0h  
0h  
Don't Care  
Don't Care  
Low  
Don't Care  
Don't Care  
Disabled  
High  
BUCKx_VSET[7:0]  
Enable and  
disable control  
with EN3 pin  
1h  
1h  
1h  
1h  
2h  
2h  
0h  
0h  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Low  
Disabled  
High  
BUCKx_VSET[7:0]  
Roof and floor  
control with EN1  
pin  
1h  
1h  
1h  
1h  
0h  
0h  
1h  
1h  
Low  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
BUCKx_FLOOR_VSET[7:0]  
BUCKx_VSET[7:0]  
High  
Roof and floor  
control with EN2  
pin  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
Don't Care  
Don't Care  
Low  
Don't Care  
Don't Care  
BUCKx_FLOOR_VSET[7:0]  
BUCKx_VSET[7:0]  
High  
Roof and floor  
control with EN3  
pin  
1h  
1h  
1h  
1h  
2h  
2h  
1h  
1h  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Low  
BUCKx_FLOOR_VSET[7:0]  
BUCKx_VSET[7:0]  
High  
The regulator is enabled by the ENx pin or by I2C writing as shown in Figure 14. The soft-start circuit limits the in-  
rush current during start-up. When the output voltage rises to 0.35-V level, the output voltage becomes slew-rate  
controlled using the slew-rate defined by SLEW_RATE[2:0] bits in BUCKx_CTRL2 register. If there is a short  
circuit at the output and the output voltage does not increase above 0.35-V level in 1 ms, the regulator is  
disabled, and interrupt is set. When the output voltage reaches the Power-Good threshold level the  
BUCKx_PG_INT interrupt flag (in INT_BUCK_x register) is set. The Power-Good interrupt flag can be masked  
using BUCKx_PG_MASK bit (in BUCKx_MASK register).  
The ENx input pins have integrated pulldown resistors. The pulldown resistors are enabled by default, and the  
host can disable those with ENx_PD bits (in CONFIG register).  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Voltage decrease because of load  
No new Powergood interrupt  
Voltage  
BUCKx_VSET[7:0]  
Powergood  
Ramp  
BUCKx_CTRL2(SLEW_RATEx[2:0])  
0.6V  
0.35V  
Time  
Resistive pull-down  
(if enabled)  
Soft start  
Enable  
BUCK_x_STAT(BUCKx_STAT)  
BUCK_x_STAT(BUCKx_PG_STAT)  
INT_BUCK_x(BUCKx_PG_INT)  
nINT  
0
0
0
1
0
0
1
1
0
1
0
Powergood  
interrupt  
Host clears  
interrupt  
Figure 14. Regulator Enable and Disable  
8.3.4.2 Changing Output Voltage  
The output voltage of the regulator can be changed by the ENx pin (voltage levels defined by the BUCKx_VOUT  
and BUCKx_FLOOR_VOUT registers) or by writing to the BUCKx_VOUT and BUCKx_FLOOR_VOUT registers.  
The voltage change is always slew-rate controlled, and the slew-rate is defined by the SLEW_RATE[2:0] bits (in  
BUCKx_CTRL2 register). During voltage change the forced-PWM mode is used automatically. If the multiphase  
operation is forced by the BUCKx_FPWM_MP bit (in BUCKx_CTRL1 register), the regulator operates in  
multiphase mode (two phases in dual-phase configuration, 3 phases in 3-phase configuration, and 4 phases in 4-  
phase configuration). If the multiphase operation is not forced, the number of phases are added and shedded  
automatically to follow the required slew rate. When the programmed output voltage is achieved, the mode  
becomes the one defined by the load current and the BUCKx_FPWM and BUCKx_FPWM_MP bits in  
BUCKx_CTRL1 register.  
The Power-Good interrupt is generated when the output voltage reaches the programmed voltage level, as  
shown in Figure 15.  
24  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Voltage  
BUCKx_VSET  
Power good  
Ramp  
BUCKx_CTRL2 register  
(SLEW_RATEx[2:0] bit)  
Power good  
BUCKx_FLOOR_VSET  
Time  
ENx  
BUCKx_STAT  
(BUCKx_STAT)  
1
1
0
BUCKx_STAT  
(BUCKx_PG_STAT)  
0
1
1
0
1
1
INT_BUCKx  
(BUCKx_PG_INT)  
0
nINT  
Power-good  
interrupt  
Host clears interrupt  
Power-good  
interrupt  
Host clears interrupt  
Figure 15. Regulator Output Voltage Change With ENx pin  
8.3.5 Enable and Disable Sequences  
The LP8756x-Q1 device supports start-up and shutdown sequencing with programmable delays for different  
regulator outputs using one EN1, EN2, EN3 control signal. The regulator is selected for delayed control with:  
EN_BUCKx = 1 (in BUCKx_CTRL1 register)  
EN_PIN_CTRLx = 1 (in BUCKx_CTRL1 register)  
EN_ROOF_FLOORx = 0 (in BUCKx_CTRL1 register)  
BUCKx_VSET[7:0] = Required voltage when ENx is high (in BUCKx_VOUT register)  
The ENABLE pin for control is selected with BUCKx_EN_PIN_SELECT[1:0] (in BUCKx_CTRL1 register)  
The delay from rising edge of ENx signal to the regulator enable is set by BUCKx_STARTUP_DELAY[3:0]  
bits (in BUCKx_DELAY register) and  
The delay from falling edge of ENx signal to the regulator disable is set by BUCKx_SHUTDOWN_DELAY[3:0]  
bits (in BUCKx_DELAY register)  
There are four time steps available for start-up and shutdown sequences. The delay times are selected with  
DOUBLE_DELAY bit in CONFIG register and HALF_DELAY bit in PGOOD_CTRL2 register as shown in Table 4.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Table 4. Start-up and Shutdown Delays  
X_STARTUP_DELAY or  
X_SHUTDOWN_DELAY  
DOUBLE_DELAY = 0h  
HALF_DELAY = 1h  
DOUBLE_DELAY = 1h  
HALF_DELAY = 1h  
DOUBLE_DELAY = 0h  
HALF_DELAY = 0h  
DOUBLE_DELAY = 1h  
HALF_DELAY = 0h  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
dh  
Eh  
Fh  
0 ms  
0 ms  
0 ms  
1 ms  
0 ms  
0.32 ms  
0.64 ms  
0.96 ms  
1.28 ms  
1.6 ms  
0.64 ms  
1.28 ms  
1.92 ms  
2.56 ms  
3.2 ms  
2 ms  
2 ms  
4 ms  
3 ms  
6 ms  
4 ms  
8 ms  
5 ms  
10 ms  
12 ms  
14 ms  
16 ms  
18 ms  
20 ms  
22 ms  
24 ms  
26 ms  
28 ms  
30 ms  
1.92 ms  
2.24 ms  
2.56 ms  
2.88 ms  
3.2 ms  
3.84 ms  
4.48 ms  
5.12 ms  
5.76 ms  
6.4 ms  
6 ms  
7 ms  
8 ms  
9 ms  
10 ms  
11 ms  
12 ms  
13 ms  
14 ms  
15 ms  
3.52 ms  
3.84 ms  
4.16 ms  
4.48 ms  
4.8 ms  
7.04 ms  
7.68 ms  
8.32 ms  
8.96 ms  
9.6 ms  
An example of start-up and shutdown sequences is shown in Figure 16 and Figure 17. The start-up and  
shutdown delays for the BUCK0, BUCK1 regulators are 1 ms and 4 ms and for the BUCK2, BUCK3 regulators 3  
ms and 1 ms. The delay settings are used only for enable/disable control with EN1, EN2, EN3 signals, not for  
Roof/Floor control.  
ENx  
EN_BUCK01  
EN_BUCK23  
1 ms  
4 ms  
3 ms  
1 ms  
Figure 16. Typical Start-Up and Shutdown Sequencing  
ENx  
Start-up control  
Shutdown control  
EN_BUCK01  
0
0
0
1
0
1
2
3
4
5
6
0
0
1
0
1
2
0
1
2
3
4
5
1 ms  
4 ms  
EN_BUCK23  
3 ms  
1 ms  
Figure 17. Start-Up and Shutdown Sequencing With Short ENx Low and High Periods  
26  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
8.3.6 Device Reset Scenarios  
There are three reset methods implemented on the :  
Software reset with SW_RESET register bit (in RESET register)  
POR from rising edge of NRST signal  
Undervoltage lockout (UVLO) reset from VANA supply  
An SW reset occurs when SW_RESET bit is written 1. The bit is automatically cleared after writing. This event  
disables all the regulators immediately, resets all the register bits to the default values, and OTP bits are loaded  
(see Figure 21). I2C interface is not reset during software reset. The host must wait at least 1.2 ms after writing  
an SW reset until making a new I2C read or write to the device.  
If VANA supply voltage falls below UVLO threshold level or NRST signal is set low then all the regulators are  
disabled immediately, and all the register bits are reset to the default values. When the VANA supply voltage  
rises above UVLO threshold level AND NRST signal rises above threshold level an internal POR occurs. OTP  
bits are loaded to the registers and a start-up is initiated according to the register settings. The host must wait at  
least 1.2 ms after POR until reading or writing to I2C interface.  
8.3.7 Diagnosis and Protection Features  
The LP8756x-Q1 is capable of providing four levels of protection features:  
Information of valid regulator output voltage, which sets interrupt or PGOOD signal;  
Warnings for diagnosis, which set interrupt;  
Protection events that are disabling the regulators affected; and  
Faults that are causing the device to shut down.  
The LP8756x-Q1 sets the flag bits indicating what protection or warning conditions have occurred, and the nINT  
pin is pulled low. nINT is released again after a clear of flags is complete. The nINT signal stays low until all the  
pending interrupts are cleared.  
When a fault is detected, it is indicated by a RESET_REG interrupt flag (in INT2_TOP register) after next start-  
up.  
Table 5. Summary of Interrupt Signals  
INTERRUPT REGISTER AND  
BIT  
RECOVERY/INTERRUPT  
CLEAR  
EVENT  
RESULT  
INTERRUPT MASK  
STATUS BIT  
Write 1 to BUCKx_ILIM_INT bit  
Interrupt is not cleared if  
current limit is active.  
Current limit triggered  
(20-µs debounce)  
INT_BUCKx = 1  
BUCKx_ILIM_INT = 1  
Interrupt  
BUCKx_ILIM_MASK  
BUCKx_ILIM_STAT  
Short circuit (VVOUT  
<
0.35 V at 1 ms after  
enable) or overload  
(VVOUT decreasing  
below 0.35 V during  
operation, 1 ms  
Regulator disable and  
interrupt  
INT_BUCKx = 1  
BUCKx_SC_INT = 1  
N/A  
N/A  
Write 1 to BUCKx_SC_INT bit  
debounce)  
Write 1 to TDIE_WARN bit  
Interrupt is not cleared if  
temperature is above thermal  
warning level.  
Thermal warning  
Interrupt  
TDIE_WARN = 1  
TDIE_SD = 1  
INT_OVP  
TDIE_WARN_MASK  
N/A  
TDIE_WARN_STAT  
TDIE_SD_STAT  
Write 1 to TDIE_SD bit  
Interrupt is not cleared if  
temperature is above thermal  
shutdown level.  
All regulators disabled  
and Output GPIOx set to  
low and interrupt.  
Thermal whutdown  
VANA overvoltage  
Write 1 to INT_OVP bit  
Interrupt is not cleared if VANA  
voltage is above VANA OVP  
level.  
All regulators disabled  
and Output GPIOx set to  
low and interrupt.  
N/A  
OVP_STAT  
(VANAOVP  
)
Power Good, output  
voltage reaches the  
programmed value  
INT_BUCKx = 1  
BUCKx_PG_INT = 1  
Interrupt  
BUCKx_PG_MASK  
BUCKx_PG_STAT  
Write 1 to BUCKx_PG_INT bit  
GPIO  
Interrupt  
Interrupt  
INT_GPIO  
GPIO_MASK  
GPIO_IN register  
SYNC_CLK_STAT  
Write 1 to INT_GPIO bit  
External clock appears  
or disappears  
NO_SYNC_CLK(1)  
SYNC_CLK_MASK  
Write 1 to NO_SYNC_CLK bit  
Load current  
measurement ready  
Interrupt  
I_LOAD_READY = 1  
I_LOAD_READY_MASK  
N/A  
Write 1 to I_LOAD_READY bit  
(1) Interrupt is generated during clock detector operation, and in cases where clock is not available when clock detector is enabled.  
Submit Documentation Feedback  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
Copyright © 2018, Texas Instruments Incorporated  
27  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Table 5. Summary of Interrupt Signals (continued)  
INTERRUPT REGISTER AND  
BIT  
RECOVERY/INTERRUPT  
CLEAR  
EVENT  
RESULT  
INTERRUPT MASK  
STATUS BIT  
Device ready for  
operation; registers reset  
to default values and  
interrupt.  
Start-up (NRST rising  
edge)  
RESET_REG = 1  
RESET_REG = 1  
RESET_REG = 1  
RESET_REG_MASK  
N/A  
N/A  
N/A  
Write 1 to RESET_REG bit  
Write 1 to RESET_REG bit  
Write 1 to RESET_REG bit  
Glitch on supply voltage Immediate shutdown  
and UVLO triggered  
(VANA falling and  
rising)  
followed by power up;  
registers reset to default  
values and interrupt.  
RESET_REG_MASK  
RESET_REG_MASK  
Immediate shutdown  
followed by power up;  
registers reset to default  
values and interrupt.  
Software requested  
reset  
8.3.7.1 Power-Good Information (PGOOD Pin)  
In addition to the interrupt based indication of current limit and Power-Good level the LP8756x-Q1 device  
supports the indication with PGOOD signal. Either voltage-and-current monitoring or a voltage monitoring only  
can be selected for PGOOD indication. This selection is individual for all buck regulators (select master phase for  
multiphase regulator) and is set by PGx_SEL[1:0] bits (in PGOOD_CTRL1 register). When both voltage and  
current are monitored, PGOOD signal active indicates that regulator output is inside the Power-Good voltage  
window and that load current is below ILIM FWD. If only voltage is monitored, then the current monitoring is ignored  
for the PGOOD signal. When a regulator is disabled, the monitoring is automatically masked to prevent it forcing  
PGOOD inactive. This allows connecting PGOOD signals from various devices together when open-drain outputs  
are used. When regulator voltage is transitioning from one target voltage to another, the voltage monitoring  
PGOOD signal is set inactive. The monitoring from all the output rails are combined, and PGOOD is active only if  
all the sources shows active status. The status from all the voltage rails are summarized in Table 6.  
If the PGOOD signal is inactive or it changes the state to inactive, the source for the state can be read from  
PGOOD_FLT register. During reading all the PGx_FLT bits are cleared that are not driving the PGOOD inactive.  
When PGOOD signal goes active, the host must read the PGOOD_FLT register to clear all the bits. The PGOOD  
signal follows the status of all the monitored outputs.  
The PGOOD signal can be also configured so that it stays in the inactive state even when the monitored outputs  
are valid but there are PGx_FLT bits pending clearance in PGOOD_FLT register. This mode of operation is  
selected by setting EN_PGFLT_STAT bit to 1 (in PGOOD_CTRL2 register).  
The type of output voltage monitoring for PGOOD signal is selected by PGOOD_WINDOW bit (in  
PGOOD_CTRL2 register). If the bit is 0, only undervoltage is monitored; if the bit is 1, both undervoltage and  
overvoltage are monitored.  
The polarity and the output type (push-pull or open-drain) are selected by PGOOD_POL and PGOOD_OD bits in  
PGOOD_CTRL2 register.  
The filtering time for invalid output voltage is always typically 7 µs, and for valid output voltage the filtering time is  
selected with the PGOOD_SET_DELAY bit (in PGOOD_CTRL2 register). The Power-Good waveforms are  
shown in Figure 19.  
28  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
ILIM  
Buck0  
Buck1  
Buck2  
Buck3  
MUX  
Power Good  
PG0_SEL[1:0]  
ILIM  
MUX  
Power Good  
PG1_SEL[1:0]  
PGOOD  
ILIM  
MUX  
Power Good  
PG2_SEL[1:0]  
ILIM  
MUX  
Power Good  
PG3_SEL[1:0]  
Copyright © 2017, Texas Instruments Incorporated  
Figure 18. PGOOD Block Diagram  
Table 6. PGOOD Operation  
STATUS / USE CASE  
CONDITION  
INPUT TO PGOOD SIGNAL  
PGx_SEL = 00 (in PGOOD_CTRL1  
register)  
Buck not selected for PGOOD monitoring  
Buck disabled  
Active  
Active  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Table 6. PGOOD Operation (continued)  
STATUS / USE CASE  
BUCK SELECTED FOR PGOOD MONITORING  
Buck start-up delay  
CONDITION  
INPUT TO PGOOD SIGNAL  
Inactive  
Inactive  
Inactive  
Buck soft start  
VOUT < 0.35 V  
Buck voltage ramp-up  
0.35 V < VOUT < VSET  
Output voltage within window limits after  
start-up  
Must be inside limits longer than debounce  
time  
Active  
Output voltage inside voltage window and Current limit active longer than debounce  
Active (if only voltage monitoring selected)  
Inactive (if also current monitoring selected)  
current limit active  
time  
Output voltage spikes (overvoltage or  
undervoltage)  
If spikes are outside voltage window longer  
than debounce time  
Inactive  
Inactive  
Active  
Voltage setting change, output voltage  
ramp  
Output voltage within window limits after  
voltage change  
Must be inside limits longer than debounce  
time  
Buck shutdown delay  
Active  
Active  
Buck output voltage ramp down  
Buck disabled by thermal shutdown and  
interrupt pending  
Inactive  
Inactive  
Inactive  
Buck disabled by overvoltage and  
interrupt pending  
Buck disabled by short-circuit detection  
and interrupt pending  
Voltage  
Powergood window  
BUCKx_VSET (1)  
Powergood  
window  
BUCKx_VSET (2)  
Time  
ENx  
7us/11ms  
PGOOD_SET_DELAY  
PGOOD  
BUCKx_VSET (1)  
BUCKx_VSET (2)  
BUCKx_VSET  
Figure 19. PGOOD Waveforms (PGOOD_POL = 0)  
8.3.7.2 Warnings for Diagnosis (Interrupt)  
8.3.7.2.1 Output Power Limit  
The regulators have programmable output peak current limits. The limits are individually programmed for all  
regulators with ILIMx[2:0] bits (in BUCKx_CTRL2 register). The current limit settings of master and slave  
regulators used for the same output voltage rail must be identical. If the load current is increased so that the  
current limit is triggered, the regulator continues to regulate to the limit current level (current peak regulation,  
peak on each switching cycle). The voltage may decrease if the load current is higher than the average output  
current. If the current regulation continues for 20 µs, the LP8756x-Q1 device sets the BUCKx_ILIM_INT bit (in  
INT_BUCKx register) and pulls the nINT pin low. The host processor can read BUCKx_ILIM_STAT bits (in  
BUCKx_STAT register) to see if the regulator is still in peak-current-regulation mode.  
30  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
If the load is so high that the output voltage decreases below a 350-mV level, the LP8756x-Q1 device disables  
the regulator and sets the BUCKx_SC_INT bit (in INT_BUCKx register). In addition the BUCKx_STAT bit (in  
BUCKx_STAT register) is set to 0. The interrupt is cleared when the host processor writes 1 to BUCKx_SC_INT  
bit. The overload situation is shown in Figure 20.  
Regulator  
disabled by digital  
New start-up if  
enable is valid  
Voltage  
VOUTx  
350 mV  
Resistive  
pulldown  
1 ms  
Time  
Current  
ILIMx  
Time  
20 ms  
INT_BUCKx  
(BUCKx_ILIM_INT)  
0
0
1
1
0
INT_BUCK  
(BUCKx_SC_INT)  
1
0
0
1
BUCKx_STAT  
(BUCKx_STAT)  
nINT  
Host clearing the interrupt by writing to flags  
Figure 20. Overload Situation  
8.3.7.2.2 Thermal Warning  
The LP8756x-Q1 device includes a monitoring feature against overtemperature by setting an interrupt for host  
processor. The threshold level of the thermal warning is selected with TDIE_WARN_LEVEL bit (in CONFIG  
register).  
If the LP8756x-Q1 device temperature increases above thermal warning level the device sets TDIE_WARN bit  
(in INT_TOP1 register) and pulls nINT pin low. The status of the thermal warning can be read from  
TDIE_WARN_STAT bit (in TOP_STAT register), and the interrupt is cleared by writing 1 to TDIE_WARN bit.  
8.3.7.3 Protection (Regulator Disable)  
If the regulator is disabled because of protection or fault (short-circuit protection, overload protection, thermal  
shutdown, overvoltage protection, or UVLO), the output power FETs are set to high-impedance mode, and the  
output pulldown resistor is enabled (if enabled with EN_RDISx bits in BUCKx_CTRL1 register). The turnoff time  
of the output voltage is defined by the output capacitance, load current, and the resistance of the integrated  
pulldown resistor. The pulldown resistors are active as long as VANA voltage is above approximately a 1.2-V  
level.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
8.3.7.3.1 Short-Circuit and Overload Protection  
A short-circuit protection feature protects the LP8756x-Q1 device itself and its external components against short  
circuit at the output or against overload during start-up. The fault threshold is 350 mV, the protection is triggered,  
and the regulator is disabled if the output voltage is below the threshold level of 1 ms after the regulator is  
enabled.  
In a similar way the overload situation is protected during normal operation. If the voltage on the feedback pin of  
the regulator falls to less than 0.35 V and stays lower the threshold level for 1 ms, the regulator is disabled.  
In short-circuit and overload situations the BUCKx_SC_INT (in INT_BUCKx register) and the INT_BUCKx bits (in  
INT_TOP1 register) are set to 1, the BUCKx_STAT bit (in BUCKx_STAT register) is set to 0, and the nINT signal  
is pulled low. The host processor clears the interrupt by writing 1 to the BUCKx_SC_INT bit. After clearing the  
interrupt the regulator makes a new start-up attempt if the regulator is in enabled state.  
8.3.7.3.2 Overvoltage Protection  
The LP8756x-Q1 device monitors the input voltage from the VANA pin in standby and active operation modes. If  
the input voltage rises above VANAOVP voltage level, all the regulators are disabled, pulldown resistors discharge  
the output voltages (if EN_RDISx = 1 in BUCKx_CTRL1 register), GPIOs that are configured to outputs are set to  
logic low level, nINT signal is pulled low, INT_OVP bit (in INT_TOP1 register) is set to 1, and BUCKx_STAT bits  
(in BUCK_x_STAT register) are set to 0. The host processor clears the interrupt by writing 1 to the INT_OVP bit.  
If the input voltage is above the overvoltage detection level the interrupt is not cleared. The host can read the  
status of the overvoltage from the OVP_STAT bit (in TOP_STAT register). Regulators cannot be enabled as long  
as the input voltage is above overvoltage detection level or the overvoltage interrupt is pending.  
8.3.7.3.3 Thermal Shutdown  
The LP8756x-Q1 has an overtemperature protection function that operates to protect the device from short-term  
misuse and overload conditions. When the junction temperature exceeds around 150°C, the regulators are  
disabled, the TDIE_SD bit (in INT_TOP1 register) is set to 1, the nINT signal is pulled low, and the device goes  
to the STANDBY state. The nINT pin is cleared by writing 1h to the TDIE_SD bit. If the temperature is above  
thermal shutdown level the interrupt is not cleared. The host can read the status of the thermal shutdown from  
the TDIE_SD_STAT bit (in TOP_STAT register). Regulators cannot be enabled as long as the junction  
temperature is above thermal shutdown level or the thermal shutdown interrupt is pending.  
8.3.7.4 Fault (Power Down)  
8.3.7.4.1 Undervoltage Lockout  
When the input voltage falls below VANAUVLO at the VANA pin, the buck converters are disabled immediately,  
and the output capacitors are discharged using the pulldown resistor, and the LP8756x-Q1 device goes to the  
SHUTDOWN state. When the VANA voltage is greater than the UVLO threshold level and NRST signal is high,  
the device powers up to STANDBY state.  
If the reset interrupt is unmasked by default (RESET_REG_MASK = 0 in TOP_MASK2 register) the  
RESET_REG interrupt (in INT_TOP2 register) indicates that the device has been in SHUTDOWN. The host  
processor must clear the interrupt by writing 1 to the RESET_REG bit. If the host processor reads the  
RESET_REG flag after detecting an nINT low signal, it knows that the input supply voltage has been below  
UVLO level (or the host has requested reset), and the registers are reset to default values.  
32  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
8.3.8 GPIO Signal Operation  
The LP8756x-Q1 device supports up to 3 GPIO signals. The GPIO signals are multiplexed with enable signals.  
The selection between enable and GPIO function is set with GPIOx_SEL bits in PIN_FUNCTION register. The  
GPIOs are mapped to EN signals so that:  
EN1 is multiplexed with GPIO1  
EN2 is multiplexed with GPIO2  
EN3 is multiplexed with GPIO3  
When the pin is selected for GPIO function, additional bits defines how the GPIO operates:  
GPIOx_DIR defines the direction of the GPIO, input or output (GPIO_CONFIG register)  
GPIOx_OD defines the type of the output when the GPIO is set to output, either push-pull with VANA level or  
open-drain (GPIO_CONFIG register)  
When the GPIOx is defined as output, the logic level of the pin is set by GPIOx_OUT bit (in GPIO_OUT register).  
When the GPIOx is defined as input, the logic level of the pin can be read from GPIOx_IN bit (in GPIO_IN  
register).  
The control of the GPIOs configured to outputs can be included to start-up and shutdown sequences. The GPIO  
control for a sequence with ENx signal is selected by EN_PIN_CTRL_GPIOx and EN_PIN_SELECT_GPIOx bits  
(in  
PIN_FUNCTION  
register).  
The  
delays  
during  
start-up  
and  
shutdown  
are  
set  
by  
GPIOx_STARTUP_DELAY[3:0] and GPIOx_SHUTDOWN_DELAY[3:0] bits (in GPIOx_DELAY register) in the  
same way as control of the regulators.  
The GPIOx signals have a selectable pulldown resistor. The pulldown resistors are selected by ENx_PD bits (in  
CONFIG register).  
NOTE  
The control of the GPIOx pin cannot be changed from one ENx pin to a different ENx pin  
because the control is ENx signal edge sensitive. The control from ENx pin to register bit  
and back to the original ENx pin can be done during operation.  
8.3.9 Digital Signal Filtering  
The digital signals have a debounce filtering. The signal/supply is sampled with a clock signal and a counter.  
This results as an accuracy of one clock period for the debounce window.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Table 7. Digital Signal Filtering  
FALLING EDGE DEBOUNCE  
TIME  
EVENT  
SIGNAL/SUPPLY  
RISING EDGE DEBOUNCE TIME  
Enable and disable/voltage  
select for BUCKx  
(1)  
(1)  
(1)  
(1)  
EN1  
EN2  
EN3  
3 µs  
3 µs  
3 µs  
3 µs  
Enable and disable/voltage  
select for BUCKx  
(1)  
3 µs  
Enable and disable/voltage  
select for BUCKx  
(1)  
3 µs  
VANA UVLO  
VANA  
VANA  
20 µs (VANA voltage rising)  
Immediate (VANA voltage falling)  
VANA overvoltage  
Thermal warning  
Thermal shutdown  
Current limit  
20 µs (VANA voltage rising)  
20 µs (VANA voltage falling)  
TDIE_WARN  
TDIE_SD  
VOUTx_ILIM  
20 µs  
20 µs  
20 µs  
20 µs  
20 µs  
20 µs  
FB_B0, FB_B1, FB_B2,  
FB_F3  
Overload  
1 ms  
20 µs  
20 µs  
FB_B0, FB_B1, FB_B2,  
FB_F3  
Power-good interrupt  
20 µs  
PGOOD pin (voltage  
monitoring)  
PGOOD / FB_B0, FB_B1,  
FB_B2, FB_F3  
4-8 µs (start-up debounce time during  
start-up)  
4 to 8 µs  
20 µs  
PGOOD pin (current  
monitoring)  
PGOOD  
20 µs  
(1) No glitch filtering, only synchronization.  
8.4 Device Functional Modes  
8.4.1 Modes of Operation  
SHUTDOWN: The NRST voltage is below threshold level. All switch, reference, control, and bias circuitry of the  
LP8756x-Q1 device are turned off.  
READ OTP: The primary supply voltage VANA is above VANAUVLO level, and NRST voltage is above threshold  
level. The regulators are disabled, and the reference and bias circuitry of the LP8756x-Q1 are  
enabled. The OTP bits are loaded to registers.  
STANDBY: The primary supply voltage VANA is above VANAUVLO level, and NRST voltage is above threshold  
level. The regulators are disabled, and the reference, control,and bias circuitry of the LP8756x-Q1  
are enabled. All registers can be read or written by the host processor via the system serial  
interface. The regulators can be enabled if needed.  
ACTIVE:  
The primary supply voltage VANA is above VANAUVLO level, and NRST voltage is above threshold  
level. At least one regulated DC/DC converter is enabled. All registers can be read or written by the  
host processor via the system serial interface.  
The operating modes and transitions between the modes are shown in Figure 21.  
34  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Device Functional Modes (continued)  
SHUTDOWN  
NRST low  
OR  
VVANA < VANAUVLO  
NRST high  
AND  
VVANA > VANAUVLO  
From any state except  
SHUTDOWN  
READ  
OTP  
REGISTER  
RESET  
STANDBY  
I2C RESET  
REGULATOR  
ENABLED  
REGULATORS  
DISABLED  
ACTIVE  
Figure 21. Device Operation Modes  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
8.5 Programming  
8.5.1 I2C-Compatible Interface  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the devices  
connected to the bus. The two interface lines are the serial data line (SDA), and the serial clock line (SCL). Each  
device on the bus is assigned a unique address and acts as either a master or a slave depending on whether it  
generates or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor placed  
somewhere on the line and stays HIGH even when the bus is idle. Note: CLK pin is not used for serial bus data  
transfer. The LP8756x-Q1 supports standard mode (100 kHz), fast mode (400 kHz), fast mode+ (1 MHz), and  
high-speed mode (3.4 MHz).  
8.5.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the  
state of the data line can only be changed when clock signal is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
Figure 22. Data Validity Diagram  
8.5.1.2 Start and Stop Conditions  
The LP8756x-Q1 is controlled via an I2C-compatible interface. START and STOP conditions classify the  
beginning and end of the I2C session. A START condition is defined as SDA transitions from HIGH to LOW while  
SCL is HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The I2C  
master always generates the START and STOP conditions.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
Figure 23. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. During data  
transmission the I2C master can generate repeated START conditions. A START and a repeated START  
condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock  
signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. Figure 24 shows the  
SDA and SCL signal timing for the I2C-compatible bus.  
36  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Programming (continued)  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tLOW  
tfCL  
tSP  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
Figure 24. I2C-Compatible Timing  
8.5.1.3 Transferring Data  
Each byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LP8756x-Q1  
pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The LP8756x-Q1 generates an  
acknowledge after each byte has been received.  
There is one exception to the acknowledge after each byte rule. When the master is the receiver, it must indicate  
to the transmitter an end of data by not-acknowledging (negative acknowledge) the last byte clocked out of the  
slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master), but the  
SDA line is not pulled down.  
NOTE  
If the NRST signal is low during I2C communication the LP8756x-Q1 device does not drive  
SDA line. The ACK signal and data transfer to the master is disabled at that time.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE, and a 1  
indicates a READ. The second byte selects the register to which the data will be written. The third byte contains  
data to write to the selected register.  
ACK from slave  
ACK from slave  
ACK from slave  
START MSB Chip Address LSB  
W
ACK MSB Register Address LSB ACK  
MSB Data LSB  
ACK STOP  
SCL  
SDA  
START  
id = 0x60  
W
ACK  
address = 0x40  
ACK  
address 0x40 data  
ACK STOP  
Figure 25. Write Cycle (w = write; SDA = 0), Using Example id = Device Address = 0x60 for LP8756x-Q1  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Programming (continued)  
ACK from slave  
ACK from slave REPEATED START  
ACK from slave Data from slave NACK from master  
START MSB Chip Address LSB  
W
MSB Register Address LSB  
RS  
MSB Chip Address LSB  
R
MSB Data LSB  
STOP  
SCL  
SDA  
START  
ACK  
ACK  
ACK  
NACK  
STOP  
id = 0x60  
W
address = 0x3F  
RS  
id = 0x60  
R
address 0x3F data  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
Figure 26. Read Cycle ( r = read; SDA = 1), Using Example id = Device Address = 0x60 for LP8756x-Q1  
8.5.1.4 I2C-Compatible Chip Address  
NOTE  
The device address for the LP8756x-Q1 is defined in the Technical Reference Manual  
(TRM).  
After the START condition, the I2C master sends the 7-bit address followed by an eighth bit, read or write (R/W).  
R/W = 0 indicates a WRITE, and R/W = 1 indicates a READ. The second byte following the device address  
selects the register address to which the data will be written. The third byte contains the data for the selected  
register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
I2C Slave Address (chip address)  
A. Here device address is 1100000Bin = 60Hex.  
Figure 27. Example Device Address  
8.5.1.5 Auto-Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Each time an 8-  
bit word is sent to the device, the internal address index counter is incremented by one and the next register is  
written. Table 8 shows writing sequence to two consecutive registers. Note that auto increment feature does not  
work for read.  
Table 8. Auto-Increment Example  
DEVICE  
ADDRESS  
= 0x60  
MASTER  
ACTION  
REGISTER  
ADDRESS  
START  
WRITE  
DATA  
DATA  
STOP  
LP8756x-Q1  
ACK  
ACK  
ACK  
ACK  
38  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
8.6 Register Maps  
8.6.1 Register Descriptions  
The LP8756x-Q1 is controlled by a set of registers through the I2C-compatible interface. The device registers,  
their addresses, and their abbreviations are listed in Table 9. A more detailed description is given in the  
OTP_REV to GPIO_OUT sections.  
NOTE  
This register map describes the default values for bits that are not read from OTP  
memory. The orderable code and the default register bit values are defined in part-number  
specific Technical Reference Manuals.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Table 9. Summary of LP8756x-Q1 Control Registers  
Address  
Register  
Access  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x01  
OTP_REV  
R
OTP_ID[7:0]  
EN_ROOF_FLOO  
R0  
BUCK0_FPWM_  
MP  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
BUCK0_CTRL1  
BUCK0_CTRL2  
BUCK1_CTRL1  
BUCK1_CTRL2  
BUCK2_CTRL1  
BUCK2_CTRL2  
BUCK3_CTRL1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
EN_BUCK0  
EN_PIN_CTRL0  
BUCK0_EN_PINSELECT[1:0]  
ILIM0[2:0]  
EN_RDIS0  
BUCK0_FPWM  
SLEW_RATE0[2:0]  
BUCK1_FPWM  
Reserved  
EN_ROOF_FLOO  
R1  
EN_BUCK1  
EN_BUCK2  
EN_PIN_CTRL1  
BUCK1_EN_PINSELECT[1:0]  
ILIM1[2:0]  
EN_RDIS1  
EN_RDIS2  
EN_RDIS3  
Reserved  
Reserved  
SLEW_RATE1[2:0]  
BUCK2_FPWM  
EN_ROOF_FLOO  
R2  
BUCK2_FPWM_  
MP  
EN_PIN_CTRL2  
BUCK2_EN_PINSELECT[1:0]  
ILIM2[2:0]  
Reserved  
SLEW_RATE2[2:0]  
BUCK3_FPWM  
EN_ROOF_FLOO  
R3  
EN_BUCK3  
EN_PIN_CTRL3  
BUCK3_EN_PIN SELECT[1:0]  
ILIM3[2:0]  
Reserved  
0x09  
0x0A  
BUCK3_CTRL2  
BUCK0_VOUT  
R/W  
R/W  
Reserved  
SLEW_RATE3[2:0]  
BUCK0_VSET[7:0]  
BUCK0_FLOOR_V  
OUT  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BUCK0_FLOOR_VSET[7:0]  
BUCK1_VSET[7:0]  
BUCK1_VOUT  
BUCK1_FLOOR_V  
OUT  
BUCK1_FLOOR_VSET[7:0]  
BUCK2_VSET[7:0]  
BUCK2_VOUT  
BUCK2_FLOOR_V  
OUT  
BUCK2_FLOOR_VSET[7:0]  
BUCK3_VSET[7:0]  
BUCK3_VOUT  
BUCK3_FLOOR_V  
OUT  
BUCK3_FLOOR_VSET[7:0]  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
BUCK0_DELAY  
BUCK1_DELAY  
BUCK2_DELAY  
BUCK3_DELAY  
GPIO2_DELAY  
GPIO3_DELAY  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK1_SHUTDOWN_DELAY[3:0]  
BUCK2_SHUTDOWN_DELAY[3:0]  
BUCK3_SHUTDOWN_DELAY[3:0]  
GPIO2_SHUTDOWN_DELAY[3:0]  
GPIO3_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
BUCK2_STARTUP_DELAY[3:0]  
BUCK3_STARTUP_DELAY[3:0]  
GPIO2_STARTUP_DELAY[3:0]  
GPIO3_STARTUP_DELAY[3:0]  
Reserved  
SW_RESET  
Reserved  
TDIE_WARN_LE  
0x19  
CONFIG  
R/W  
DOUBLE_DELAY  
Reserved  
CLKIN_PD  
Reserved  
EN3_PD  
EN2_PD  
EN1_PD  
INT_OVP  
VEL  
0x1A  
0x1B  
0x1C  
0x1D  
INT_TOP1  
INT_TOP2  
R/W  
R/W  
R/W  
R/W  
INT_BUCK23  
INT_BUCK01  
NO_SYNC_CLK  
Reserved  
TDIE_SD  
TDIE_WARN  
I_LOAD_READY  
RESET_REG  
INT_BUCK_0_1  
INT_BUCK_2_3  
Reserved  
Reserved  
BUCK1_PG_INT  
BUCK3_PG_INT  
BUCK1_SC_INT BUCK1_ILIM_INT  
BUCK3_SC_INT BUCK3_ILIM_INT  
Reserved  
Reserved  
BUCK0_PG_INT  
BUCK2_PG_INT  
BUCK0_SC_INT BUCK0_ILIM_INT  
BUCK2_SC_INT BUCK2_ILIM_INT  
SYNC_CLK_STA  
T
TDIE_WARN_ST  
AT  
0x1E  
TOP_STAT  
R
Reserved  
TDIE_SD_STAT  
OVP_STAT  
Reserved  
40  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Table 9. Summary of LP8756x-Q1 Control Registers (continued)  
Address  
Register  
Access  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_PG_STA  
T
BUCK1_ILIM_ST  
AT  
BUCK0_PG_STA  
T
BUCK0_ILIM_ST  
AT  
0x1F  
BUCK_0_1_STAT  
R
BUCK1_STAT  
Reserved  
BUCK0_STAT  
Reserved  
BUCK3_PG_STA  
T
BUCK3_ILIM_ST  
AT  
BUCK2_PG_STA  
T
BUCK2_ILIM_ST  
AT  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
BUCK_2_3_STAT  
TOP_MASK1  
R
BUCK3_STAT  
Reserved  
Reserved  
BUCK2_STAT  
Reserved  
Reserved  
Reserved  
SYNC_CLK_MAS  
K
TDIE_WARN_MA  
SK  
I_LOAD_READY_  
MASK  
R/W  
R/W  
R/W  
R/W  
R/W  
Reserved  
RESET_REG_MA  
SK  
TOP_MASK2  
Reserved  
BUCK1_PG_MAS  
K
BUCK1_ILIM_MA  
SK  
BUCK0_PG_MAS  
K
BUCK0_ILIM_MA  
SK  
BUCK_0_1_MASK  
BUCK_2_3_MASK  
SEL_I_LOAD  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BUCK3_PG_MAS  
K
BUCK3_ILIM_MA  
SK  
BUCK2_PG_MAS  
K
BUCK2_ILIM_MA  
SK  
LOAD_CURRENT_BUCK_SELECT[1:  
0]  
Reserved  
Reserved  
0x26  
0x27  
0x28  
I_LOAD_2  
I_LOAD_1  
R
R
BUCK_LOAD_CURRENT[9:8]  
BUCK_LOAD_CURRENT[7:0]  
PGOOD_CTRL1  
R/W  
PG3_SEL[1:0]  
PG2_SEL[1:0]  
PG1_SEL[1:0]  
PG0_SEL[1:0]  
PGOOD_SET_D EN_PGFLT_STA  
PGOOD_WINDO  
W
0x29  
PGOOD_CTRL2  
R/W  
HALF_DELAY  
EN_PG0_NINT  
Reserved  
PG3_FLT  
PGOOD_OD  
PG1_FLT  
PGOOD_POL  
PG0_FLT  
ELAY  
T
0x2A  
0x2B  
PGOOD_FLT  
PLL_CTRL  
R
PG2_FLT  
R/W  
PLL_MODE[1:0]  
Reserved  
EXT_CLK_FREQ[4:0]  
EN_SPREAD_SP EN_PIN_CTRL_G EN_PIN_SELECT EN_PIN_CTRL_G EN_PIN_SELECT  
0x2C  
PIN_FUNCTION  
R/W  
GPIO3_SEL  
GPIO2_SEL  
GPIO1_SEL  
EC  
PIO3  
_GPIO3  
GPIO2_OD  
Reserved  
Reserved  
PIO2  
_GPIO2  
0x2D  
0x2E  
0x2F  
GPIO_CONFIG  
GPIO_IN  
R/W  
R
Reserved  
GPIO3_OD  
GPIO1_OD  
Reserved  
GPIO3_DIR  
GPIO3_IN  
GPIO2_DIR  
GPIO2_IN  
GPIO1_DIR  
GPIO1_IN  
GPIO_OUT  
R/W  
GPIO3_OUT  
GPIO2_OUT  
GPIO1_OUT  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
8.6.1.1 OTP_REV  
Address: 0x01  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTP_ID[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
OTP_ID[7:0]  
R
X
Identification code of the OTP EPROM version  
8.6.1.2 BUCK0_CTRL1  
Address: 0x02  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK0  
EN_PIN_CTRL BUCK0_EN_PIN_SELECT[1:0]  
0
EN_ROOF_FL  
OOR0  
EN_RDIS0  
BUCK0_FPWM BUCK0_FPWM  
_MP  
Bits  
Field  
Type  
Default  
Description  
7
EN_BUCK0  
R/W  
X
This bit enables the BUCK0 regulator  
0h = BUCK0 regulator is disabled  
1h = BUCK0 regulator is enabled  
6
EN_PIN_CTRL0  
R/W  
R/W  
X
X
This bit enables the EN1, EN2, EN3 pin control for the BUCK0 regulator  
0h = Only the EN_BUCK0 bit controls the BUCK0 regulator  
1h = EN_BUCK0 bit AND ENx pin control the BUCK0 regulator  
5:4 BUCK0_EN_PIN_S  
ELECT[1:0]  
This bit enables the EN1, EN2, EN3 pin control for the BUCK0 regulator  
0h = EN_BUCK0 bit AND EN1 pin control BUCK0  
1h = EN_BUCK0 bit AND EN2 pin control BUCK0  
2h = EN_BUCK0 bit AND EN3 pin control BUCK0  
3h = Reserved  
3
2
EN_ROOF_FLOO  
R0  
R/W  
R/W  
0h  
1h  
This bit enables the roof and floor control of the EN1, EN2, and EN3 pins if the  
EN_PIN_CTRL0 bit is set to 1h.  
0h = Enable and disable (1/0) control  
1h = Roof and floor (1/0) control  
EN_RDIS0  
This bit enables the output of the discharge resistor when the BUCK0 regulator is  
disabled  
0h = Discharge resistor disabled  
1h = Discharge resistor enabled  
1
0
BUCK0_FPWM  
R/W  
R/W  
X
X
This bit forces the BUCK0 regulator to operate in PWM mode  
0h = Automatic transitions between PFM and PWM modes (AUTO mode).  
1h = Forced to PWM operation  
BUCK0_FPWM_M  
P
This bit forces the BUCK0 regulator to operate always in multiphase and forced-PWM  
operation mode  
0h = Automatic phase adding and shedding  
1h = Forced to multiphase operation; two phases in the 2-phase configuration, three  
phases in the 3-phase configuration, and four phases in the 4-phase configuration.  
42  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
8.6.1.3 BUCK0_CTRL2  
Address: 0x03  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM0[2:0]  
SLEW_RATE0[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
ILIM0[2:0]  
0h  
X
5:3  
This bit sets the switch current limit of the BUCK0 regulator. Can be programmed at  
any time during operation.  
0h = 1.5 A  
1h = 2 A  
2h = 2.5 A  
3h = 3 A  
4h = 3.5 A  
5h = 4 A  
6h = 4.5 A  
7h = 5 A  
2:0 SLEW_RATE0[2:0]  
R/W  
X
This bit sets the output voltage slew rate for the BUCK0 regulator (rising and falling  
edges)  
0h = Reserved  
1h = Reserved  
2h = 10 mV/µs  
3h = 7.5 mV/µs  
4h = 3.8 mV/µs  
5h = 1.9 mV/µs  
6h = 0.94 mV/µs  
7h = 0.47 mV/µs  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
8.6.1.4 BUCK1_CTRL1  
Address: 0x04  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK1  
EN_PIN_CTRL BUCK1_EN_PIN_SELECT[1:0]  
1
EN_ROOF_FL  
OOR1  
EN_RDIS1  
BUCK1_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
EN_BUCK1  
R/W  
X
This bit enables the BUCK1 regulator  
0h = BUCK1 regulator is disabled  
1h = BUCK1 regulator is enabled  
6
EN_PIN_CTRL1  
R/W  
R/W  
X
X
This bit enables the EN1, EN2, EN3 pin control for the BUCK1 regulator  
0h = Only the EN_BUCK1 bit controls the BUCK1 regulator  
1h = EN_BUCK1 bit AND ENx pin control the BUCK1 regulator  
5:4 BUCK1_EN_PIN_S  
ELECT[1:0]  
This bit enables the EN1, EN2, EN3 pin control for BUCK1 regulator  
0h = EN_BUCK1 bit AND EN1 pin control the BUCK1 regulator  
1h = EN_BUCK1 bit AND EN2 pin control the BUCK1 regulator  
2h = EN_BUCK1 bit AND EN3 pin control the BUCK1 regulator  
3h = Reserved  
3
EN_ROOF_FLOO  
R1  
R/W  
0h  
This bit enables the roof and floor control of EN1, EN2, EN3 pin if the EN_PIN_CTRL1  
bit is set to 1h.  
0h = Enable and disable (1/0) control  
1h = Roof and floor (1/0) control  
2
1
0
EN_RDIS1  
BUCK1_FPWM  
Reserved  
R/W  
R/W  
R/W  
1h  
X
This bit enables the output discharge resistor when the BUCK1 regulator is disabled.  
0h = Discharge resistor disabled  
1h = Discharge resistor enabled  
This bit forces the BUCK1 regulator to operate in PWM mode.  
0h = Automatic transitions between PFM and PWM modes (AUTO mode).  
1h = Forced to PWM operation  
0h  
8.6.1.5 BUCK1_CTRL2  
Address: 0x05  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM1[2:0]  
SLEW_RATE1[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
ILIM1[2:0]  
0h  
X
5:3  
This bit sets the switch current limit of the BUCK1 regulator. Can be programmed at  
any time during operation.  
0h = 1.5 A  
1h = 2 A  
2h = 2.5 A  
3h = 3 A  
4h = 3.5 A  
5h = 4 A  
6h = 4.5 A  
7h = 5 A  
2:0 SLEW_RATE1[2:0]  
R/W  
X
This bit sets the output voltage slew rate for the BUCK1 regulator (rising and falling  
edges)  
0h = Reserved  
1h = Reserved  
2h = 10 mV/µs  
3h = 7.5 mV/µs  
4h = 3.8 mV/µs  
5h = 1.9 mV/µs  
6h = 0.94 mV/µs  
7h = 0.47 mV/µs  
44  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
8.6.1.6 BUCK2_CTRL1  
Address: 0x06  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK2  
EN_PIN_CTRL BUCK2_EN_PIN_SELECT[1:0]  
2
EN_ROOF_FL  
OOR2  
EN_RDIS2  
BUCK2_FPWM BUCK2_FPWM  
_MP  
Bits  
Field  
Type  
Default  
Description  
7
EN_BUCK2  
R/W  
X
This bit enables the BUCK2 regulator.  
0h = BUCK2 regulator is disabled  
1h = BUCK2 regulator is enabled  
6
EN_PIN_CTRL2  
R/W  
R/W  
X
X
This bit enables the EN1, EN2, EN3 pin control for the BUCK2 regulator.  
0h = Only the EN_BUCK2 bit controls BUCK2  
1h = EN_BUCK2 bit AND ENx pin control BUCK2  
5:4 BUCK2_EN_PIN_S  
ELECT[1:0]  
This bit enables the EN1, EN2, EN3 pin control for the BUCK2 regulator.  
0h = EN_BUCK2 bit AND EN1 pin control the BUCK2 regulator  
1h = EN_BUCK2 bit AND EN2 pin control the BUCK2 regulator  
2h = EN_BUCK2 bit AND EN3 pin control the BUCK2 regulator  
3h = Reserved  
3
EN_ROOF_FLOO  
R2  
R/W  
0h  
This bit enables the roof and floor control of EN1, EN2, EN3 pin if the EN_PIN_CTRL2  
bit is set to 1h.  
0h = Enable and disable (1/0) control  
1h = Roof and floor (1/0) control  
2
1
0
EN_RDIS2  
R/W  
R/W  
R/W  
1h  
X
Enable output discharge resistor when BUCK2 is disabled.  
0h = Discharge resistor disabled  
1h = Discharge resistor enabled  
BUCK2_FPWM  
This bit forces the BUCK2 regulator to operate in PWM mode.  
0h = Automatic transitions between PFM and PWM modes (AUTO mode)  
1h = Forced to PWM operation  
BUCK2_FPWM_M  
P
X
This bit forces the BUCK2 regulator to operate always in multiphase and forced-PWM  
operation mode.  
0h = Automatic phase adding and phase shedding  
1h = Forced to multiphase operation; two phases in the 2-phase configuration  
8.6.1.7 BUCK2_CTRL2  
Address: 0x07  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM2[2:0]  
SLEW_RATE2[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
ILIM2[2:0]  
0h  
X
5:3  
This bit sets the switch current limit of the BUCK2 regulator. Can be programmed at  
any time during operation.  
0h = 1.5 A  
1h = 2 A  
2h = 2.5 A  
3h = 3 A  
4h = 3.5 A  
5h = 4 A  
6h = 4.5 A  
7h = 5 A  
2:0 SLEW_RATE2[2:0]  
R/W  
X
This bit sets the output voltage slew rate for the BUCK2 regulator (rising and falling  
edges).  
0h = Reserved  
1h = Reserved  
2h = 10 mV/µs  
3h = 7.5 mV/µs  
4h = 3.8 mV/µs  
5h = 1.9 mV/µs  
6h = 0.94 mV/µs  
7h = 0.47 mV/µs  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
8.6.1.8 BUCK3_CTRL1  
Address: 0x08  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK3  
EN_PIN_CTRL BUCK3_EN_PIN_SELECT[1:0]  
3
EN_ROOF_FL  
OOR3  
EN_RDIS3  
BUCK3_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
EN_BUCK3  
R/W  
X
This bit enables the BUCK3 regulator.  
0h = BUCK3 regulator is disabled  
1h = BUCK3 regulator is enabled  
6
EN_PIN_CTRL3  
R/W  
R/W  
X
X
This bit enables the EN1, EN2, EN3 pin control for the BUCK3 regulator.  
0h = Only the EN_BUCK3 bit controls the BUCK3 regulator  
1h = EN_BUCK3 bit AND ENx pin control the BUCK3 regulator  
5:4 BUCK3_EN_PIN_S  
ELECT[1:0]  
This bit enables the EN1, EN2, EN3 pin control for the BUCK3 regulator.  
0h = EN_BUCK3 bit AND EN1 pin control the BUCK3 regulator  
1h = EN_BUCK3 bit AND EN2 pin control the BUCK3 regulator  
2h = EN_BUCK3 bit AND EN3 pin control the BUCK3 regulator  
3h = Reserved  
3
EN_ROOF_FLOO  
R3  
R/W  
0h  
This bit enables the roof and floor control of EN1, EN2, EN3 pin if the EN_PIN_CTRL3  
bit is set to 1h.  
0h = Enable and disable (1/0) control  
1h = Roof and floor (1/0) control  
2
1
0
EN_RDIS3  
BUCK3_FPWM  
Reserved  
R/W  
R/W  
R/W  
1h  
X
This bit enables the output discharge resistor when the BUCK3 regulator is disabled.  
0h = Discharge resistor disabled  
1h = Discharge resistor enabled  
This bit forces the BUCK3 regulator to operate in PWM mode.  
0h = Automatic transitions between PFM and PWM modes (AUTO mode)  
1h = Forced to PWM operation  
0h  
8.6.1.9 BUCK3_CTRL2  
Address: 0x09  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM3[2:0]  
SLEW_RATE3[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
ILIM3[2:0]  
0h  
X
5:3  
This bit sets the switch current limit of the BUCK3 regulator. Can be programmed at  
any time during operation.  
0h = 1.5 A  
1h = 2 A  
2h = 2.5 A  
3h = 3 A  
4h = 3.5 A  
5h = 4 A  
6h = 4.5 A  
7h = 5 A  
2:0 SLEW_RATE3[2:0]  
R/W  
X
This bit sets the output voltage slew rate for the BUCK3 regulator (rising and falling  
edges).  
0h = Reserved  
1h = Reserved  
2h = 10 mV/µs  
3h = 7.5 mV/µs  
4h = 3.8 mV/µs  
5h = 1.9 mV/µs  
6h = 0.94 mV/µs  
7h = 0.47 mV/µs  
46  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
8.6.1.10 BUCK0_VOUT  
Address: 0x0A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK0_VSET[7:0]  
R/W  
X
This bit sets the output voltage of the BUCK0 regulator.  
Reserved, do not use  
0h to 9h  
0.6 V to 0.73 V, 10-mV steps  
Ah = 0.6 V  
...  
17h = 0.73 V  
0.73 V to 1.4 V, 5-mV steps  
18h = 0.735 V  
...  
9Dh = 1.4 V  
1.4 V to 3.36 V, 20-mV steps  
9Eh = 1.42 V  
...  
FFh = 3.36 V  
8.6.1.11 BUCK0_FLOOR_VOUT  
Address: 0x0B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_FLOOR_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK0_FLOOR_V  
SET[7:0]  
R/W  
0h  
This bit sets the output voltage of the BUCK0 regulator when the floor state is used.  
Reserved, do not use  
0h to 9h  
0.6 V to 0.73 V, 10-mV steps  
Ah = 0.6 V  
...  
17h = 0.73 V  
0.73 V to 1.4 V, 5-mV steps  
18h = 0.735 V  
...  
9Dh = 1.4 V  
1.4 V to 3.36 V, 20-mV steps  
9Eh = 1.42 V  
...  
FFh = 3.36 V  
8.6.1.12 BUCK1_VOUT  
Address: 0x0C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_VSET[7:0]  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK1_VSET[7:0]  
R/W  
X
This bit sets the output voltage of the BUCK1 regulator.  
Reserved, do not use  
0h to 9h  
0.6 V - 0.73 V, 10-mV steps  
Ah = 0.6 V  
...  
17h = 0.73 V  
0.73 V - 1.4 V, 5-mV steps  
18h = 0.735 V  
...  
9Dh = 1.4 V  
1.4 V - 3.36 V, 20-mV steps  
9Eh = 1.42 V  
...  
FFh = 3.36 V  
8.6.1.13 BUCK1_FLOOR_VOUT  
Address: 0x0D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_FLOOR_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK1_FLOOR_V  
SET[7:0]  
R/W  
0h  
This bit sets the output voltage of the BUCK1 regulator when the floor state is used.  
Reserved, do not use  
0h to 9h  
0.6 V to 0.73 V, 10-mV steps  
Ah = 0.6 V  
...  
17h = 0.73 V  
0.73 V to 1.4 V, 5-mV steps  
18h = 0.735 V  
...  
9Dh = 1.4 V  
1.4 V to 3.36 V, 20-mV steps  
9Eh = 1.42 V  
...  
FFh = 3.36 V  
8.6.1.14 BUCK2_VOUT  
Address: 0x0E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK2_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK2_VSET[7:0]  
R/W  
X
This bit sets the output voltage of the BUCK2 regulator.  
Reserved, do not use  
0h to 9h  
0.6 V to 0.73 V, 10-mV steps  
Ah = 0.6V  
...  
17h = 0.73 V  
0.73 V to 1.4 V, 5-mV steps  
18h = 0.735 V  
...  
9Dh = 1.4 V  
1.4 V to 3.36 V, 20-mV steps  
9Eh = 1.42 V  
...  
FFh = 3.36 V  
48  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
8.6.1.15 BUCK2_FLOOR_VOUT  
Address: 0x0F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK2_FLOOR_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK2_FLOOR_V  
SET[7:0]  
R/W  
0h  
This bit sets the output voltage of the BUCK2 regulator when the floor state is used.  
Reserved, do not use  
0h to 9h  
0.6 V to 0.73 V, 10-mV steps  
Ah = 0.6 V  
...  
17h = 0.73 V  
0.73 V to 1.4 V, 5-mV steps  
18h = 0.735 V  
...  
9Dh = 1.4 V  
1.4 V to 3.36 V, 20-mV steps  
9Eh = 1.42 V  
...  
FFh = 3.36 V  
8.6.1.16 BUCK3_VOUT  
Address: 0x10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK3_VSET[7:0]  
R/W  
X
This bit sets the output voltage of the BUCK3 regulator.  
Reserved, do not use  
0h to 9h  
0.6 V to 0.73 V, 10-mV steps  
Ah = 0.6 V  
...  
17h = 0.73 V  
0.73 V to 1.4 V, 5-mV steps  
18h = 0.735 V  
...  
9Dh = 1.4 V  
1.4 V to 3.36 V, 20-mV steps  
9Eh = 1.42 V  
...  
FFh = 3.36 V  
8.6.1.17 BUCK3_FLOOR_VOUT  
Address: 0x11  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_FLOOR_VSET[7:0]  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK3_FLOOR_V  
SET[7:0]  
R/W  
0h  
This bit sets the output voltage of the BUCK3 regulator when the floor state is used.  
Reserved, do not use  
0h to 9h  
0.6 V to 0.73 V, 10-mV steps  
Ah = 0.6 V  
...  
17h = 0.73 V  
0.73 V to 1.4 V, 5-mV steps  
18h = 0.735 V  
...  
9Dh = 1.4 V  
1.4 V to 3.36 V, 20-mV steps  
9Eh = 1.42 V  
...  
FFh = 3.36 V  
8.6.1.18 BUCK0_DELAY  
Address: 0x12  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK0_SHUTDO  
WN_DELAY[3:0]  
R/W  
X
Shutdown delay of the BUCK0 regulator from the falling edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
3:0 BUCK0_STARTUP  
_DELAY[3:0]  
R/W  
X
Start-up delay the of the BUCK0 regulator from the rising edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
8.6.1.19 BUCK1_DELAY  
Address: 0x13  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_SHUTDOWN_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK1_SHUTDO  
WN_DELAY[3:0]  
R/W  
X
Shutdown delay of the BUCK1 regulator from the falling edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
3:0 BUCK1_STARTUP  
_DELAY[3:0]  
R/W  
X
start-up delay of the BUCK1 regulator from the rising edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
50  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
8.6.1.20 BUCK2_DELAY  
Address: 0x14  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK2_SHUTDOWN_DELAY[3:0]  
BUCK2_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK2_SHUTDO  
WN_DELAY[3:0]  
R/W  
X
Shutdown delay of the BUCK2 regulator from the falling edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
...  
Fh = 15 ms  
(Default from OTP memory)  
3:0 BUCK2_STARTUP  
_DELAY[3:0]  
R/W  
X
start-up delay of the BUCK2 regulator from the rising edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
8.6.1.21 BUCK3_DELAY  
Address: 0x15  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_SHUTDOWN_DELAY[3:0]  
BUCK3_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK3_SHUTDO  
WN_DELAY[3:0]  
R/W  
X
Shutdown delay of the BUCK3 regulator from the falling edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
3:0 BUCK3_STARTUP  
_DELAY[3:0]  
R/W  
X
Startup delay of the BUCK3 regulator from the rising edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
8.6.1.22 GPIO2_DELAY  
Address: 0x16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPIO2_SHUTDOWN_DELAY[3:0]  
GPIO2_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4 GPIO2_SHUTDOW  
N_DELAY[3:0]  
R/W  
X
Delay for the GPIO2 falling edge from the falling edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
3:0  
GPIO2_STARTUP  
_DELAY[3:0]  
R/W  
X
Delay for the GPIO2 rising edge from the rising edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
8.6.1.23 GPIO3_DELAY  
Address: 0x17  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPIO3_SHUTDOWN_DELAY[3:0]  
GPIO3_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4 GPIO3_SHUTDOW  
N_DELAY[3:0]  
R/W  
X
Delay for the GPIO3 falling edge from the falling edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
52  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
Bits  
SNVSB22 MARCH 2018  
Field  
Type  
Default  
Description  
3:0  
GPIO3_STARTUP  
_DELAY[3:0]  
R/W  
X
Delay for GPIO3 rising edge from rising edge of ENx signal (the DOUBLE_DELAY bit  
is set to 0h in the CONFIG register and the HALF_DELAY bit is set to 0h in the  
PGOOD_CTRL2 register). For other delay options, see the Start-Up and Shutdown  
Delays table.  
0h = 0 ms  
1h = 1 ms  
. Fh = 15 ms  
8.6.1.24 RESET  
Address: 0x18  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
SW_RESET  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
0h  
Description  
Reserved  
SW_RESET  
0h  
Software commanded reset. When this bit is written to 1h, the registers are reset to the  
default values, OTP memory is read, and the I2C interface is reset.  
The bit is automatically cleared.  
8.6.1.25 CONFIG  
Address: 0x19  
D7  
D6  
CLKIN_PD  
D5  
D4  
D3  
D2  
D1  
D0  
DOUBLE_DEL  
AY  
Reserved  
EN3_PD  
TDIE_WARN_  
LEVEL  
EN2_PD  
EN1_PD  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
DOUBLE_DELAY  
R/W  
X
Start-up and shutdown delays from the ENx signals  
0h = 0 ms to 15 ms with 1-ms steps  
1h = 0 ms to 30 ms with 2-ms steps  
6
CLKIN_PD  
R/W  
X
This bit selects the pulldown resistor on the CLKIN input pin.  
0h = Pulldown resistor is disabled  
1h = Pulldown resistor is enabled  
5
4
Reserved  
EN3_PD  
R/W  
R/W  
0h  
X
This bit selects the pulldown resistor on the EN3 (GPIO3) input pin.  
0h = Pulldown resistor is disabled  
1h = Pulldown resistor is enabled  
3
2
1
0
TDIE_WARN_LEV  
EL  
R/W  
R/W  
R/W  
R/W  
X
X
Thermal warning threshold level  
0h = 125°C  
1h = 137°C  
EN2_PD  
EN1_PD  
Reserved  
This bit selects the pulldown resistor on the EN2 (GPIO2) input pin.  
0h = Pulldown resistor is disabled  
1h = Pulldown resistor is enabled  
X
This bit selects the pulldown resistor on the EN1 (GPIO1) input pin.  
0h = Pulldown resistor is disabled  
1h = Pulldown resistor is enabled  
0h  
8.6.1.26 INT_TOP1  
Address: 0x1A  
D7  
D6  
INT_BUCK23  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
INT_BUCK01  
NO_SYNC_CL  
K
TDIE_SD  
TDIE_WARN  
INT_OVP  
I_LOAD_  
READY  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Bits  
7
Field  
Type  
R/W  
R
Default  
0h  
Description  
Reserved  
6
INT_BUCK23  
0h  
Interrupt indicating that the output of the BUCK3 regulator,BUCK2 regulator, or both  
regulators has a pending interrupt. The reason for the interrupt is indicated in the  
INT_BUCK_2_3 register.  
This bit is cleared automatically when the INT_BUCK_2_3 register is cleared to 0x00.  
5
INT_BUCK01  
R
0h  
Interrupt indicating that the output of the BUCK1 regulator, BUCK0 regulator, or both  
regulators has a pending interrupt. The reason for the interrupt is indicated in the  
INT_BUCK_0_1 register.  
This bit is cleared automatically when the INT_BUCK_0_1 register is cleared to 0x00.  
4
3
NO_SYNC_CLK  
TDIE_SD  
R/W1C  
R/W1C  
0h  
0h  
Latched status bit indicating that the external clock is not valid.  
Write this bit to 1h to clear the interrupt.  
Latched status bit indicating that the die junction temperature is greater than the  
thermal shutdown level. The regulators are disabled if previously enabled. The  
regulators cannot be enabled if this bit is active. The actual status of the thermal  
warning condition is indicated by the TDIE_SD_STAT bit in the TOP_STAT register.  
Write this bit to 1h to clear the interrupt.  
2
1
0
TDIE_WARN  
INT_OVP  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
Latched status bit indicating that the die junction temperature is greater than the  
thermal warning level. The actual status of the thermal warning condition is indicated  
by the TDIE_WARN_STAT bit in the TOP_STAT register.  
Write this bit to 1h to clear the interrupt.  
Latched status bit indicating that the input voltage is greater than the overvoltage-  
detection level. The actual status of the overvoltage condition is indicated by the  
OVP_STAT bit in the OP_STAT register.  
Write this bit to 1h to clear the interrupt.  
I_LOAD_READY  
Latched status bit indicating that the load-current measurement result is available in  
the I_LOAD_1 and I_LOAD_2 registers.  
Write this bit to 1h to clear the interrupt.  
8.6.1.27 INT_TOP2  
Address: 0x1B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
RESET_REG  
Bits  
7:1  
0
Field  
Type  
R/W  
Default  
0h  
Description  
Reserved  
RESET_REG  
R/W1C  
0h  
Latched status bit indicating that either start-up (NRST rising edge) is done, VANA  
supply voltage is less than the undervoltage threshold level, or the host has requested  
a reset (the SW_RESET bit in the RESET register). The regulators are disabled, the  
registers are reset to default values, and the normal start-up procedure is done.  
Write this bit to 1h to clear the interrupt.  
8.6.1.28 INT_BUCK_0_1  
Address: 0x1C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_PG  
_INT  
BUCK1_SC  
_INT  
BUCK1_ILIM  
_INT  
Reserved  
BUCK0_PG  
_INT  
BUCK0_SC  
_INT  
BUCK0_ILIM  
_INT  
Bits  
Field  
Type  
R/W  
Default  
0h  
Description  
7
6
Reserved  
BUCK1_PG_INT  
R/W1C  
0h  
Latched status bit indicating that the BUCK1 output voltage reached the power-good-  
threshold level.  
Write this bit to 1h to clear.  
5
BUCK1_SC_INT  
R/W1C  
0h  
Latched status bit indicating that the BUCK1 output voltage has fallen to less than the  
0.35-V level during operation or the BUCK1 output did not reach the 0.35-V level in 1  
ms from enable.  
Write this bit to 1h to clear.  
54  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
Bits  
SNVSB22 MARCH 2018  
Field  
Type  
Default  
Description  
4
BUCK1_ILIM_INT  
R/W1C  
0h  
Latched status bit indicating that output current limit is active.  
Write this bit to 1h to clear.  
3
2
Reserved  
R/W  
0h  
0h  
BUCK0_PG_INT  
R/W1C  
Latched status bit indicating that the BUCK0 output voltage reached power-good-  
threshold level.  
Write this bit to 1h to clear.  
1
0
BUCK0_SC_INT  
BUCK0_ILIM_INT  
R/W1C  
R/W1C  
0h  
0h  
Latched status bit indicating that the BUCK0 output voltage has fallen to less than the  
0.35-V level during operation or the BUCK0 output did not reach the 0.35-V level in 1  
ms from enable.  
Write this bit to 1h to clear.  
Latched status bit indicating that output current limit is active.  
Write this bit to 1h to clear.  
8.6.1.29 INT_BUCK_2_3  
Address: 0x1D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_PG  
_INT  
BUCK3_SC  
_INT  
BUCK3_ILIM  
_INT  
Reserved  
BUCK2_PG  
_INT  
BUCK2_SC  
_INT  
BUCK2_ILIM  
_INT  
Bits  
Field  
Type  
R/W  
Default  
0h  
Description  
7
6
Reserved  
BUCK3_PG_INT  
R/W1C  
0h  
Latched status bit indicating that the BUCK3 output voltage reached the power-good-  
threshold level.  
Write this bit to 1h to clear.  
5
BUCK3_SC_INT  
BUCK3_ILIM_INT  
R/W1C  
R/W1C  
0h  
Latched status bit indicating that the BUCK3 output voltage has fallen to less than the  
0.35-V level during operation or the BUCK3 output did not reach the 0.35-V level in 1  
ms from enable.  
Write this bit to 1h to clear.  
4
0h  
Latched status bit indicating that the output current limit is active.  
Write this bit to 1h to clear.  
3
2
Reserved  
R/W  
0h  
0h  
BUCK2_PG_INT  
R/W1C  
Latched status bit indicating that the BUCK2 output voltage reached the power-good-  
threshold level.  
Write this bit to 1h to clear.  
1
0
BUCK2_SC_INT  
BUCK2_ILIM_INT  
R/W1C  
R/W1C  
0h  
0h  
Latched status bit indicating that the BUCK2 output voltage has fallen to less than the  
0.35-V level during operation or the BUCK2 output did not reach the 0.35-V level in 1  
ms from enable.  
Write this bit to 1h to clear.  
Latched status bit indicating that the output current limit is active.  
Write this bit to 1h to clear.  
8.6.1.30 TOP_STAT  
Address: 0x1E  
D7  
D6  
Reserved  
D5  
D4  
D3  
D2  
D1  
D0  
SYNC_CLK  
_STAT  
TDIE_SD  
_STAT  
TDIE_WARN  
_STAT  
OVP_STAT  
Reserved  
Bits  
7:5  
4
Field  
Reserved  
Type  
R
Default  
0h  
Description  
SYNC_CLK_STAT  
R
0h  
Status bit indicating the status of the external clock (CLKIN).  
0h = External clock frequency is valid  
1h = External clock frequency is not valid  
3
TDIE_SD_STAT  
R
0h  
Status bit indicating the status of the thermal shutdown condition.  
0h = Die temperature is less than the thermal shutdown level  
1h = Die temperature is greater than the thermal shutdown level  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Bits  
Field  
Type  
Default  
Description  
2
TDIE_WARN_STA  
T
R
0h  
Status bit indicating the status of thermal warning condition.  
0h = Die temperature is less than the thermal warning level  
1h = Die temperature is greater than the thermal warning level  
1
0
OVP_STAT  
Reserved  
R
R
0h  
0h  
Status bit indicating the status of input overvoltage monitoring.  
0h = Input voltage is less than the overvoltage threshold level  
1h = Input voltage is greater than the overvoltage threshold level  
8.6.1.31 BUCK_0_1_STAT  
Address: 0x1F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_STAT  
BUCK1_PG  
_STAT  
Reserved  
BUCK1_ILIM  
_STAT  
BUCK0_STAT  
BUCK0_PG  
_STAT  
Reserved  
BUCK0_ILIM  
_STAT  
Bits  
Field  
Type  
Default  
Description  
7
BUCK1_STAT  
BUCK1_PG_STAT  
Reserved  
R
0
Status bit indicating the enable or disable status of the BUCK1 regulator.  
0h = BUCK1 regulator is disabled  
1h = BUCK1 regulator is enabled  
6
R
0
Status bit indicating the validity of the BUCK1 output voltage (raw status).  
0h = BUCK1 output is less than the power-good-threshold level  
1h = BUCK1 output is greater than the power-good-threshold level  
5
4
R
R
0
0
BUCK1_ILIM_STA  
T
Status bit indicating the BUCK1 current limit status (raw status).  
0h = BUCK1 output current is less than the current limit level  
1h = BUCK1 output current limit is active  
3
2
BUCK0_STAT  
BUCK0_PG_STAT  
Reserved  
R
R
0
0
Status bit indicating the enable or disable status of the BUCK0 regulator.  
0h = BUCK0 regulator is disabled  
1h = BUCK0 regulator is enabled  
Status bit indicating the validity of the BUCK0 output voltage (raw status).  
0h = BUCK0 output is less than the power-good-threshold level  
1h = BUCK0 output is greater than the power-good-threshold level  
1
0
R
R
0
0
BUCK0_ILIM_STA  
T
Status bit indicating the BUCK0 current limit status (raw status).  
0h = BUCK0 output current is less than the current limit level  
1h = BUCK0 output current limit is active  
8.6.1.32 BUCK_2_3_STAT  
Address: 0x20  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_STAT  
BUCK3_PG  
_STAT  
Reserved  
BUCK3_ILIM  
_STAT  
BUCK2_STAT  
BUCK2_PG  
_STAT  
Reserved  
BUCK2_ILIM  
_STAT  
Bits  
Field  
Type  
Default  
Description  
7
BUCK3_STAT  
BUCK3_PG_STAT  
Reserved  
R
0
Status bit indicating the enable or disable status of the BUCK3 regulator.  
0h = BUCK3 regulator is disabled  
1h = BUCK3 regulator is enabled  
6
R
0
Status bit indicating the validity of the BUCK3 output voltage (raw status).  
0h = BUCK3 output is less than the power-good-threshold level  
1h = BUCK3 output is greater than the power-good-threshold level  
5
4
R
R
0
0
BUCK3_ILIM_STA  
T
Status bit indicating the BUCK3 current limit status (raw status).  
0h = BUCK3 output current is less than the current limit level  
1h = BUCK3 output current limit is active  
3
BUCK2_STAT  
R
0
Status bit indicating the enable or disable status of the BUCK2 regulator.  
0h = BUCK2 regulator is disabled  
1h = BUCK2 regulator is enabled  
56  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
Bits  
SNVSB22 MARCH 2018  
Field  
Type  
Default  
Description  
2
BUCK2_PG_STAT  
R
0
Status bit indicating the validity of the BUCK2 output voltage (raw status)  
0h = BUCK2 output is less than the power-good-threshold level  
1h = BUCK2 output is greater than the power-good-threshold level  
1
0
Reserved  
R
R
0
0
BUCK2_ILIM_STA  
T
Status bit indicating the BUCK2 current limit status (raw status).  
0h = BUCK2 output current is less than the current limit level  
1h = BUCK2 output current limit is active  
8.6.1.33 TOP_MASK1  
Address: 0x21  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
Reserved  
SYNC_CLK  
_MASK  
Reserved  
TDIE_WARN  
_MASK  
Reserved  
I_LOAD_  
READY_MASK  
Bits  
Field  
Type  
R/W  
R/W  
R/W  
Default  
Description  
7
6:5  
4
Reserved  
Reserved  
1h  
0h  
X
SYNC_CLK_MASK  
Masking for the external clock detection interrupt (the NO_SYNC_CLK bit in the  
INT_TOP1 register)  
0h = Interrupt generated  
1h = Interrupt not generated  
3
2
Reserved  
R/W  
R/W  
0h  
X
TDIE_WARN_MAS  
K
Masking for the thermal warning interrupt (the TDIE_WARN bit in the INT_TOP1  
register)  
This bit does not affect TDIE_WARN_STAT status bit in the TOP_STAT register.  
0h = Interrupt generated  
1h = Interrupt not generated  
1
0
Reserved  
R/W  
R/W  
0
I_LOAD_READY_  
MASK  
X
Masking for the load-current measurement-ready interrupt (the I_LOAD_READY bit in  
the INT_TOP register).  
0h = Interrupt generated  
1h = Interrupt not generated  
8.6.1.34 TOP_MASK2  
Address: 0x22  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
RESET_REG  
_MASK  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
0h  
X
RESET_REG_MAS  
K
Masking for the register reset interrupt (the RESET_REG bit in the INT_TOP2 register)  
0h = Interrupt generated  
1h = Interrupt not generated  
8.6.1.35 BUCK_0_1_MASK  
Address: 0x23  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_PG  
_MASK  
Reserved  
BUCK1_ILIM  
_MASK  
Reserved  
BUCK0_PG  
_MASK  
Reserved  
BUCK0_ILIM  
_MASK  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Bits  
7
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
0h  
X
6
BUCK1_PG_MASK  
Masking for the BUCK1 power-good interrupt (the BUCK1_PG_INT bit in the  
INT_BUCK_0_1 register)  
This bit does not affect BUCK1_PG_STAT status bit in BUCK_0_1_STAT register.  
0h = Interrupt generated  
1h = Interrupt not generated  
5
4
Reserved  
R
0h  
X
BUCK1_ILIM_MAS  
K
R/W  
Masking for the BUCK1 current-limit-detection interrupt (the BUCK1_ILIM_INT bit in  
the INT_BUCK_0_1 register)  
This bit does not affect the BUCK1_ILIM_STAT status bit in the BUCK_0_1_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
3
2
Reserved  
R/W  
R/W  
0h  
X
BUCK0_PG_MASK  
Masking for the BUCK0 power-good interrupt (the BUCK0_PG_INT bit in the  
INT_BUCK_0_1 register)  
This bit does not affect the BUCK0_PG_STAT status bit in the BUCK_0_1_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
1
0
Reserved  
R
0h  
X
BUCK0_ILIM_MAS  
K
R/W  
Masking for the BUCK0 current-limit-detection interrupt (the BUCK0_ILIM_INT bit in  
the INT_BUCK_0_1 register)  
This bit does not affect the BUCK0_ILIM_STAT status bit in the BUCK_0_1_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
8.6.1.36 BUCK_2_3_MASK  
Address: 0x24  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_PG  
_MASK  
Reserved  
BUCK3_ILIM  
_MASK  
Reserved  
BUCK2_PG  
_MASK  
Reserved  
BUCK2_ILIM  
_MASK  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0h  
X
BUCK3_PG_MASK  
Masking for the BUCK3 power-good interrupt (the BUCK3_PG_INT bit in the  
INT_BUCK_2_3 register)  
This bit does not affect the BUCK3_PG_STAT status bit in the BUCK_2_3_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
5
4
Reserved  
R
0h  
X
BUCK3_ILIM_MAS  
K
R/W  
Masking for the BUCK3 current-limit-detection interrupt (the BUCK3_ILIM_INT bit in  
the INT_BUCK_2_3 register)  
This bit does not affect the BUCK3_ILIM_STAT status bit in the BUCK_2_3_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
3
2
Reserved  
R/W  
R/W  
0h  
X
BUCK2_PG_MASK  
Masking for the BUCK2 power-good interrupt (the BUCK2_PG_INT bit in the  
INT_BUCK_2_3 register)  
This bit does not affect the BUCK2_PG_STAT status bit in the BUCK_2_3_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
1
Reserved  
R
0h  
58  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
Bits  
SNVSB22 MARCH 2018  
Field  
Type  
Default  
Description  
0
BUCK2_ILIM_MAS  
K
R/W  
X
Masking for the BUCK2 current limit-detection interrupt (the BUCK2_ILIM_INT bit in  
the INT_BUCK_2_3 register)  
This bit does not affect the BUCK2_ILIM_STAT status bit in the BUCK_2_3_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
8.6.1.37 SEL_I_LOAD  
Address: 0x25  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
LOAD_CURRENT_BUCK  
_SELECT[1:0]  
Bits  
Field  
Type  
R/W  
R/W  
Default  
0h  
Description  
7:2  
Reserved  
1:0 LOAD_CURRENT_  
BUCK_SELECT[1:  
0]  
0h  
This bit starts the current measurement on the selected regulator.  
One measurement is started when the register is written.  
If the selected buck is a master, the measurement result is the sum of the current of  
both the master and slave bucks.  
If the selected buck is a slave, the measurement result is the current of the selected  
slave bucks.  
0h = BUCK0  
1h = BUCK1  
2h = BUCK2  
3h = BUCK3  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
8.6.1.38 I_LOAD_2  
Address: 0x26  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK_LOAD_CURRENT[9:8]  
Bits  
Field  
Type  
R
Default  
0h  
Description  
7:2  
Reserved  
1:0 BUCK_LOAD_CUR  
RENT[9:8]  
R
0h  
This register describes the three MSB bits of the average load current on the selected  
regulator with a resolution of 20 mA per LSB and maximum code corresponding to a  
20.47-A current.  
8.6.1.39 I_LOAD_1  
Address: 0x27  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK_LOAD_CURRENT[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK_LOAD_CUR  
RENT[7:0]  
R
0x00  
This register describes the eight LSB bits of the average load current on the selected  
regulator with a resolution of 20 mA per LSB and maximum code corresponding to a  
20.47-A current.  
8.6.1.40 PGOOD_CTRL1  
Address: 0x28  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PG3_SEL[1:0]  
PG2_SEL[1:0]  
PG1_SEL[1:0]  
PG0_SEL[1:0]  
Bits  
Field  
Type  
Default  
Description  
7:6  
PG3_SEL[1:0]  
R/W  
X
PGOOD signal source control from the BUCK3 regulator  
0h = Masked  
1h = Power-good-threshold voltage  
2h = Reserved, do not use  
3h = Power-good-threshold voltage AND current limit  
5:4  
3:2  
1:0  
PG2_SEL[1:0]  
PG1_SEL[1:0]  
PG0_SEL[1:0]  
R/W  
R/W  
R/W  
X
X
X
PGOOD signal source control from the BUCK2 regulator  
0h = Masked  
1h = Power-good-threshold voltage  
2h = Reserved, do not use  
3h = Power-good threshold voltage AND current limit  
PGOOD signal source control from the BUCK1 regulator  
0h = Masked  
1h = Power-good-threshold voltage  
2h = Reserved, do not use  
3h = Power-good-threshold voltage AND current limit  
PGOOD signal source control from the BUCK0 regulator  
0h = Masked  
1h = Power-good-threshold voltage  
2h = Reserved, do not use  
3h = Power-good-threshold voltage AND current limit  
8.6.1.41 PGOOD_CTRL2  
Address: 0x29  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
PGOOD_OD  
D0  
HALF_DELAY  
EN_PG0  
_NINT  
PGOOD_SET  
_DELAY  
EN_PGFLT  
_STAT  
Reserved  
PGOOD_  
WINDOW  
PGOOD_POL  
60  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
Bits  
SNVSB22 MARCH 2018  
Field  
Type  
Default  
Description  
7
HALF_DELAY  
R/W  
X
This bit elects the time step for the start-up and shutdown delays.  
0h = Start-up and shutdown delays have 0.5-ms or 1-ms time steps, based on the  
DOUBLE_DELAY bit in the CONFIG register.  
1h = Start-up and shutdown delays have 0.32-ms or 0.64-ms time steps, based on the  
DOUBLE_DELAY bit in the CONFIG register.  
6
5
4
EN_PG0_NINT  
R/W  
R/W  
R/W  
X
X
X
This bit combines theBUCK0 PGOOD signal with the nINT signal  
0h = BUCK0 PGOOD signal not included with the nINT signal  
1h = BUCK0 PGOOD signal included with the nINT signal. If the nINT OR the BUCK0  
PGOOD signal is low then the nINT signal is low.  
PGOOD_SET_DEL  
AY  
Debounce time of the output voltage monitoring for the PGOOD signal (only when the  
PGOOD signal goes valid)  
0h = 4-10 µs  
1h = 11 ms  
EN_PGFLT_STAT  
Operation mode for PGOOD signal  
0h = Indicates live status of monitored voltage outputs  
1h = Indicates status of the PGOOD_FLT register, inactive if at least one of the  
PGx_FLT bit is inactive  
3
2
Reserved  
R/W  
R/W  
0h  
X
PGOOD_WINDOW  
Voltage monitoring method for the PGOOD signal  
0h = Only undervoltage monitoring  
1h = Overvoltage and undervoltage monitoring  
1
0
PGOOD_OD  
PGOOD_POL  
R/W  
R/W  
X
X
PGOOD signal type  
0h = Push-pull output (VANA level)  
1h = Open-drain output  
PGOOD signal polarity  
0h = PGOOD signal high when monitored outputs are valid  
1h = PGOOD signal low when monitored outputs are valid  
8.6.1.42 PGOOD_FLT  
Address: 0x2A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
PG3_FLT  
PG2_FLT  
PG1_FLT  
PG0_FLT  
Bits  
7:4  
3
Field  
Type  
R/W  
R
Default  
0x0  
Description  
Reserved  
PG3_FLT  
0
Source for the PGOOD inactive signal  
0h = BUCK3 has not set the PGOOD signal inactive.  
1h = BUCK3 has set the PGOOD signal inactive. This bit can be cleared by reading  
this register when the BUCK3 output is valid.  
2
1
0
PG2_FLT  
PG1_FLT  
PG0_FLT  
R
R
R
0
0
0
Source for the PGOOD inactive signal  
0h = BUCK2 has not set the PGOOD signal inactive.  
1h = BUCK2 has set the PGOOD signal inactive. This bit can be cleared by reading  
this register when the BUCK2 output is valid.  
Source for the PGOOD inactive signal  
0h = BUCK1 has not set the PGOOD signal inactive.  
1h = BUCK1 has set the PGOOD signal inactive. This bit can be cleared by reading  
this register when the BUCK1 output is valid.  
Source for the PGOOD inactive signal  
0h = BUCK0 has not set the PGOOD signal inactive.  
1h = BUCK0 has set the PGOOD signal inactive. This bit can be cleared by reading  
this register when the BUCK0 output is valid.  
8.6.1.43 PLL_CTRL  
Address: 0x2B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PLL_MODE[1:0]  
Reserved  
EXT_CLK_FREQ[4:0]  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Bits  
Field  
Type  
Default  
Description  
7:6  
PLL_MODE[1:0]  
R/W  
X
This bit selects the external clock and PLL operation.  
0h = Forced to internal RC oscillator (PLL is disabled).  
1h = PLL is enabled in the STANDBY and ACTIVE states. Automatic external clock  
use when available, interrupt generated if external clock appears or disappears.  
2h = PLL is enabled only in the ACTIVE state. Automatic external clock use when  
available, interrupt generated if external clock appears or disappears.  
3h = Reserved  
5
Reserved  
R/W  
R/W  
0
4:0 EXT_CLK_FREQ[4  
:0]  
X
Frequency of the external clock (CLKIN). For the input clock frequency tolerance see  
the Electrical Characteristics table. Settings 18h through 1Fh are reserved and must  
not be used.  
0x00h = 1 MHz  
0x01h = 2 MHz  
2h = 3 MHz  
16h = 23 MHz  
17h = 24 MHz .  
8.6.1.44 PIN_FUNCTION  
Address: 0x2C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_SPREAD_ EN_PIN_CTRL EN_PIN_SELE EN_PIN_CTRL EN_PIN_SELE  
GPIO3_SEL  
GPIO2_SEL  
GPIO1_SEL  
SPEC  
_GPIO3  
CT_GPIO3  
_GPIO2  
CT_GPIO2  
Bits  
Field  
Type  
Default  
Description  
7
EN_SPREAD_SPE  
C
R/W  
X
This bit enables the spread-spectrum feature.  
0h = Disabled  
1h = Enabled  
6
EN_PIN_CTRL_GP  
IO3  
R/W  
X
This bit enables EN1 and EN2 pin control for GPIO3 (the GPIO3_SEL bit is set to 1h  
AND the GPIO3_DIR bit is set to 1h).  
0h = Only GPIO3_OUT bit controls GPIO3  
1h = GPIO3_OUT bit AND ENx pin control GPIO3  
5
4
EN_PIN_SELECT_  
GPIO3  
R/W  
R/W  
X
X
This bit enables EN1 and EN2 pin control for GPIO3.  
0h = GPIO3_SEL bit AND EN1 pin control GPIO3  
1h = GPIO3_SEL bit AND EN2 pin control GPIO3  
EN_PIN_CTRL_GP  
IO2  
This bit enables EN1 and EN3 pin control for GPIO2 (the GPIO2_SEL bit is set to 1h  
AND the GPIO2_DIR bit is set to 1h).  
0h = Only GPIO2_OUT bit controls GPIO2  
1h = GPIO2_OUT bit AND ENx pin control GPIO2  
3
2
1
0
EN_PIN_SELECT_  
GPIO2  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
This bit enables EN1 and EN3 pin control for GPIO2  
0h = GPIO2_SEL bit AND EN1 pin control GPIO2  
1h = GPIO2_SEL bit AND EN3 pin control GPIO2  
GPIO3_SEL  
GPIO2_SEL  
GPIO1_SEL  
This bit selects the EN3 pin function  
0h = EN3  
1h = GPIO3  
This bit selects the EN2 pin function  
0h = EN2  
1h = GPIO2  
This bit selects the EN1 pin function  
0h = EN1  
1h = GPIO1  
8.6.1.45 GPIO_CONFIG  
Address: 0x2D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
GPIO3_OD  
GPIO2_OD  
GPIO1_OD  
Reserved  
GPIO3_DIR  
GPIO2_DIR  
GPIO1_DIR  
62  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Bits  
7
Field  
Type  
R
Default  
Description  
Reserved  
GPIO3_OD  
0h  
X
6
R/W  
GPIO3 signal type when configured as an output  
0h = Push-pull output (VANA level)  
1h = Open-drain output  
5
4
GPIO2_OD  
GPIO1_OD  
R/W  
R/W  
X
X
GPIO2 signal type when configured as an output  
0h = Push-pull output (VANA level)  
1h = Open-drain output  
GPIO1 signal type when configured as an output  
0h = Push-pull output (VANA level)  
1h = Open-drain output  
3
2
Reserved  
R
0h  
X
GPIO3_DIR  
R/W  
GPIO3 signal direction  
0h = Input  
1h = Output  
1
0
GPIO2_DIR  
GPIO1_DIR  
R/W  
R/W  
X
X
GPIO2 signal direction  
0h = Input  
1h = Output  
GPIO1 signal direction  
0h = Input  
1h = Output  
8.6.1.46 GPIO_IN  
Address: 0x2E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
GPIO3_IN  
GPIO2_IN  
GPIO1_IN  
Bits  
7:3  
2
Field  
Type  
R
Default  
0h  
Description  
Reserved  
GPIO3_IN  
R
0h  
State of the GPIO3 signal  
0h = Logic-low level  
1h = Logic high level  
1
0
GPIO2_IN  
GPIO1_IN  
R
R
0h  
0h  
State of the GPIO2 signal  
0h = Logic-low level  
1h = Logic-high level  
State of the GPIO1 signal  
0h = Logic-low level  
1h = Logic-high level  
8.6.1.47 GPIO_OUT  
Address: 0x2F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
GPIO3_OUT  
GPIO2_OUT  
GPIO1_OUT  
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
GPIO3_OUT  
0h  
X
Control for theGPIO3 signal when configured as the GPIO output  
0h = Logic-low level  
1h = Logic-high level  
1
0
GPIO2_OUT  
GPIO1_OUT  
R/W  
R/W  
X
Control for the GPIO2 signal when configured as the GPIO output  
0h = Logic-low level  
1h = Logic-high level  
0h  
Control for theGPIO1 signal when configured as the GPIO output  
0h = Logic-low level  
1h = Logic-high level  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LP8756x-Q1 is a multiphase step-down converter with four switcher cores, which can be configured to:  
single output four-phase regulator,  
three-phase and one-phase regulators,  
two-phase and two one-phase regulators,  
four one-phase regulators or  
two 2-phase regulators  
configuration.  
9.2 Typical Applications  
R0  
R1  
R2  
R3  
VIN  
C0  
C1  
C2  
C3  
L0  
L1  
L2  
L3  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
SW_B0  
SW_B1  
SW_B2  
CIN0 CIN1 CIN2 CIN3  
VOUT0  
COUT0 COUT1 COUT2 COUT3  
LOAD  
CVANA  
NRST  
SDA  
CPOL0  
SCL  
nINT  
CLKIN  
PGOOD  
EN1 (GPIO1)  
EN2 (GPIO2)  
EN3 (GPIO3)  
SW_B3  
FB_B0  
FB_B1  
FB_B2  
FB_B3  
GNDs  
Copyright © 2017, Texas Instruments Incorporated  
Figure 28. 4-Phase Configuration (LP87561-Q1)  
64  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Typical Applications (continued)  
R0  
VIN  
C0  
L0  
L1  
L2  
VIN_B0  
CIN0 CIN1 CIN2 CIN3  
VIN_B1  
SW_B0  
SW_B1  
VOUT0  
LOAD  
R1  
R2  
VIN_B2  
VIN_B3  
VANA  
COUT0 COUT1 COUT2  
C1  
C2  
CPOL0  
CVANA  
NRST  
SDA  
SW_B2  
FB_B0  
FB_B1  
SCL  
nINT  
CLKIN  
PGOOD  
R3  
EN1 (GPIO1)  
C3  
L3  
VOUT3  
CPOL3  
SW_B3  
FB_B3  
EN2 (GPIO2)  
EN3 (GPIO3)  
LOAD  
COUT3  
FB_B2  
GNDs  
Copyright © 2017, Texas Instruments Incorporated  
Figure 29. 3-Phase and 1-Phase Configuration (LP87562-Q1)  
R0  
VIN  
C0  
L0  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
SW_B0  
SW_B1  
CIN0 CIN1 CIN2 CIN3  
VOUT0  
LOAD  
R1  
COUT0 COUT1  
C1  
L1  
CPOL0  
CVANA  
NRST  
FB_B0  
FB_B1  
SDA  
SCL  
R2  
nINT  
CLKIN  
C2  
L2  
VOUT2  
CPOL2  
SW_B2  
FB_B2  
PGOOD  
EN1 (GPIO1)  
EN2 (GPIO2)  
EN3 (GPIO3)  
LOAD  
COUT2  
R3  
C3  
L3  
VOUT3  
CPOL3  
SW_B3  
FB_B3  
LOAD  
COUT3  
GNDs  
Copyright © 2017, Texas Instruments Incorporated  
Figure 30. 2-Phase and Two 1-Phase Configuration (LP87563-Q1)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Typical Applications (continued)  
R0  
R1  
R2  
R3  
VIN  
C0  
C1  
C2  
C3  
L0  
L1  
L2  
L3  
VOUT0  
CPOL0  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
SW_B0  
LOAD  
LOAD  
LOAD  
LOAD  
CIN0 CIN1 CIN2 CIN3  
COUT0  
COUT1  
COUT2  
COUT3  
FB_B0  
VOUT1  
CPOL1  
SW_B1  
FB_B1  
CVANA  
NRST  
VOUT2  
CPOL2  
SDA  
SW_B2  
FB_B2  
SCL  
nINT  
CLKIN  
PGOOD  
EN1 (GPIO1)  
EN2 (GPIO2)  
EN3 (GPIO3)  
VOUT3  
CPOL3  
SW_B3  
FB_B3  
GNDs  
Copyright © 2017, Texas Instruments Incorporated  
Figure 31. Four 1-Phase Configuration (LP87564-Q1)  
R0  
VIN  
C0  
L0  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
SW_B0  
SW_B1  
CIN0 CIN1 CIN2 CIN3  
VOUT0  
LOAD  
R1  
COUT0 COUT1  
C1  
L1  
CPOL0  
CVANA  
NRST  
FB_B0  
FB_B1  
SDA  
SCL  
R2  
nINT  
CLKIN  
C2  
L2  
SW_B2  
SW_B3  
PGOOD  
EN1 (GPIO1)  
EN2 (GPIO2)  
EN3 (GPIO3)  
VOUT2  
LOAD  
R3  
COUT2 COUT3  
C3  
L3  
CPOL2  
FB_B2  
FB_B3  
GNDs  
Copyright © 2017, Texas Instruments Incorporated  
Figure 32. Two 2-Phase Configuration (LP87565-Q1)  
66  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Typical Applications (continued)  
9.2.1 Design Requirements  
9.2.1.1 Inductor Selection  
The inductors are L0, L1, L2, and L3 are shown in the Typical Applications. The inductance and DCR of the  
inductor affects the control loop of the buck regulator. TI recommends using inductors similar to those listed in  
Table 10. Pay attention to the saturation current and temperature rise current of the inductor. Check that the  
saturation current is higher than the peak current limit and the temperature rise current is higher than the  
maximum expected rms output current. The minimum effective inductance to make sure performance is good is  
0.22 μH at maximum peak output current over the operating temperature range. DC resistance of the inductor  
must be less than 0.05 for good efficiency at high-current condition. The inductor AC loss (resistance) also  
affects conversion efficiency. Higher Q factor at switching frequency usually gives better efficiency at light load to  
middle load. Shielded inductors are preferred as they radiate less noise.  
Table 10. Recommended Inductors  
RATED DC CURRENT,  
ISAT maximum (typical) / ITEMP  
maximum (typical) (A)  
DCR typical /  
maximum  
(m)  
DIMENSIONS  
L × W × H (mm)  
MANUFACTURER  
PART NUMBER  
VALUE  
TOKO  
Vishay  
DFE252012PD-R47M 0.47 µH (20%)  
IHLP1616AB-1A 0.47 µH (20%)  
2.5 × 2 × 1.2  
5.2 (–) / 4 (–)(1)  
– (6 ) / – (6 )(1)  
- / 27  
4.1 × 4.5 × 1.2  
19 / 21  
(1) Operating temperature range is up to 125°C including self temperature rise.  
9.2.1.2 Input Capacitor Selection  
The input capacitors CIN0, CIN1, CIN2, and CIN3 are shown in the Typical Applications. A ceramic input bypass  
capacitor of 10 μF is required for each phase of the regulator. Place the input capacitor as close as possible to  
the VIN_Bx pin and PGND_Bx pin of the device. A larger value or higher voltage rating improves the input  
voltage filtering. Use X7R type of capacitors, not Y5V or F. DC bias characteristics capacitors must be  
considered. The minimum effective input capacitance to make sure performance is good is 1.9 μF for each buck  
input at the maximum input voltage including tolerances and ambient temperature range. This value assumes  
that at least 22 μF of additional capacitance is common for all the power input pins on the system power rail. See  
Table 11.  
The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and decreases  
voltage ripple imposed on the input power source. A ceramic capacitor's low ESR provides the best noise filtering  
of the input voltage spikes due to this rapidly changing current. Select an input filter capacitor with sufficient  
ripple current rating. In addition ferrite can be used in front of the input capacitor to decrease the EMI.  
Table 11. Recommended Input Capacitors (X7R Dielectric)  
DIMENSIONS L × W × H  
(mm)  
VOLTAGE  
RATING (V)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
Murata  
GCM21BR71A106KE22  
10 µF (10%)  
0805  
2 × 1.25 × 1.25  
10 V  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
9.2.1.3 Output Capacitor Selection  
The output capacitors COUT0, COUT1, COUT2, and COUT3 are shown in Typical Applications. A ceramic local output  
capacitor of 22 μF is required per phase. Use ceramic capacitors, X7R or X7T types; do not use Y5V or F. DC  
bias voltage characteristics of ceramic capacitors must be considered. The output filter capacitor smooths out  
current flow from the inductor to the load, helps keep a steady output voltage during transient load changes and  
decreases output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently  
low ESR and ESL to do these functions. The minimum effective output capacitance to make sure performance is  
good is 10 μF for each phase including the DC voltage roll-off, tolerances, aging and temperature effects.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value used for  
selection process is at the switching frequency of the part. See Table 12.  
POL capacitors (CPOL0, CPOL1, CPOL2, CPOL3) can be used to improve load transient performance and to decrease  
the ripple voltage. A higher output capacitance improves the load step behavior and decreases the output  
voltage ripple as well as decreases the PFM switching frequency. However, output capacitance higher than 100  
µF per phase is not necessarily of any benefit. Note that the output capacitor may be the limiting factor in the  
output voltage ramp and the maximum total output capacitance listed in electrical characteristics for the specified  
slew rate must not be exceeded. At shutdown the output voltage is discharged to 0.6 V level using forced-PWM  
operation. This can increase the input voltage if the load current is small and the output capacitor is large. Below  
0.6 V level the output capacitor is discharged by the internal discharge resistor and with large capacitor more  
time is required to settle VOUT down as a consequence of the increased time constant.  
Table 12. Recommended Output Capacitors (X7R or X7T Dielectric)  
DIMENSIONS L × W × H  
(mm)  
VOLTAGE  
RATING (V)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
Murata  
GCM31CR71A226KE02  
22 µF (10%)  
1206  
3.2 × 1.6 × 1.6  
10  
9.2.1.4 Snubber Components  
If the input voltage for the regulators is above 4 V, snubber components are needed at the switching nodes to  
decrease voltage spiking in the switching node and to improve EMI. The snubber capacitors C0, C1, C2, and C3  
and the snubber resistors R0, R1, R2, and R3 are shown in Figure 31. The recommended components are shown  
in Table 13 and these component values give good performance on LP8756x-Q1 EVM. The optimal resistance  
and capacitance values finally depend on the PCB layout.  
Table 13. Recommended Snubber Components  
DIMENSIONS L × W x  
H (mm)  
VOLTAGE /  
POWER RATING  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
Vishay-Dale  
Murata  
CRCW04023R90JNED  
GCM1555C1H391JA16  
3.9 Ω (5%)  
0402  
0402  
1 × 0.5 × 0.4  
1 × 0.5 × 0.5  
62 mW  
50 V  
390 pF (5%)  
9.2.1.5 Supply Filtering Components  
The VANA input is used to supply analog and digital circuits in the device. See Table 14 for recommended  
components for VANA input supply filtering.  
Table 14. Recommended Supply Filtering Components  
DIMENSIONS L × W × VOLTAGE RATING  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
H (mm)  
(V)  
16  
16  
Murata  
Murata  
GCM155R71C104KA55  
GCM188R71C104KA37  
100 nF (10%)  
100 nF (10%)  
0402  
0603  
1 × 0.5 × 0.5  
1.6 × 0.8 × 0.8  
68  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
 
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
9.2.1.6 Current Limit vs. Maximum Output Current  
The worst case inductor current ripple can be calculated using Equation 1 and Equation 2:  
VOUT  
D =  
V
ì h  
IN(max)  
(1)  
(2)  
(VIN(max) - VOUT ) ì D  
fSW ì L  
DIL =  
Example using Equation 1 and Equation 2:  
VIN(max) = 5.5 V  
VOUT(max) = 1 V  
η(min) = 0.75  
fSW(min) = 1.8 MHz  
L(min) = 0.38 µH  
then D(max) = 0.242 and ΔIL(max) = 1.59 A  
Peak current is half of the current ripple. If ILIM_FWD_SET_OTP is 5 A, the minimum forward current limit would be  
4.75 A when taking the –5% tolerance into account. In the worst case situation difference between set peak  
current and maximum load current = 0.795 A + 0.25 A = 1.045 A.  
Inductor current =  
Forward current  
ILIM_FWD_MAX (+20%)  
ILIM_FWD_TYP (+7.5%)  
ILIM_FWD_SET_OTP (1.5...5 A, 0.5-A step)  
ILIM_FWD_MIN (-5%)  
Minimum 1A guard band  
to take current ripple,  
inductor inductance  
variation into account  
IL_AVG = IOUT  
1 / fSW  
IOUT_MAX < ILIM_FWD_SET_OTP œ 1 A  
Figure 33. Current Limit vs Maximum Output Current  
9.2.2 Detailed Design Procedure  
The performance of the LP8756x-Q1 device depends greatly on the care taken in designing the printed circuit  
board (PCB). The use of low-inductance and low serial-resistance ceramic capacitors is strongly recommended,  
while correct grounding is crucial. Attention must be given to decoupling the power supplies. Decoupling  
capacitors must be connected close to the device and between the power and ground pins to support high peak  
currents being drawn from system power rail during turnon of the switching MOSFETs. Keep input and output  
traces as short as possible, because trace inductance, resistance, and capacitance can easily become the  
performance limiting items. The separate power pins VIN_Bx are not connected together internally. Connect the  
VIN_Bx power connections together outside the package using power plane construction.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
 
 
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
9.2.3 Application Curves  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
4PH, VIN=3.3V, AUTO  
4PH, VIN=3.3V, FPWM  
4PH, VIN=5.0V, AUTO  
4PH, VIN=5.0V, FPWM  
3PH, VIN=3.3V, AUTO  
3PH, VIN=3.3V, FPWM  
3PH, VIN=5.0V, AUTO  
3PH, VIN=5.0V, FPWM  
0.001  
0.01  
0.1  
Output Current (A)  
1
10 20  
0.001  
0.01  
0.1  
Output Current (A)  
1
10 20  
D532  
D534  
VOUT = 1.8 V  
VOUT = 1.8 V  
Figure 34. Efficiency in PFM/PWM and Forced-PWM Mode  
(4-Phase Output)  
Figure 35. Efficiency in PFM/PWM and Forced-PWM Mode  
(3-Phase Output)  
100  
100  
90  
90  
80  
80  
70  
70  
60  
60  
2PH, VIN=3.3V, AUTO  
1PH, VIN=3.3V, AUTO  
2PH, VIN=3.3V, FPWM  
2PH, VIN=5.0V, AUTO  
2PH, VIN=5.0V, FPWM  
1PH, VIN=3.3V, FPWM  
1PH, VIN=5.0V, AUTO  
1PH, VIN=5.0V, FPWM  
50  
50  
40  
40  
0.001  
0.01  
0.1  
Output Current (A)  
1
10  
0.001  
0.01  
0.1  
Output Current (A)  
1
5
D536  
D538  
VOUT = 1.8 V  
VOUT = 1.8 V  
Figure 36. Efficiency in PFM/PWM and Forced-PWM Mode  
(2-Phase Output)  
Figure 37. Efficiency in PFM/PWM and Forced-PWM Mode  
(1-Phase Output)  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
4PH, Vout=1.0V, FPWM  
4PH, Vout=1.8V, FPWM  
4PH, Vout=2.5V, FPWM  
3PH, Vout=1.0V, FPWM  
3PH, Vout=1.8V, FPWM  
3PH, Vout=2.5V, FPWM  
50  
50  
40  
40  
0.001  
0.01  
0.1  
Output Current (A)  
1
10 20  
0.01  
0.1  
1
Output Current (A)  
10 20  
D015  
D004  
VIN = 3.3 V  
VIN = 3.3 V  
Figure 38. Efficiency in Forced-PWM Mode (4-Phase  
Output)  
Figure 39. Efficiency in Forced-PWM Mode (3-Phase  
Output)  
70  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
2PH, Vout=1.0V, FPWM  
2PH, Vout=1.8V, FPWM  
2PH, Vout=2.5V, FPWM  
1PH, Vout=1.0V, FPWM  
1PH, Vout=1.8V, FPWM  
1PH, Vout=2.5V, FPWM  
0.01  
0.1  
Output Current (A)  
1
10  
0.01  
0.1  
Output Current (A)  
1
5
D011  
D008  
VIN = 3.3 V  
VIN = 3.3 V  
Figure 40. Efficiency in Forced-PWM Mode (2-Phase  
Output)  
Figure 41. Efficiency in Forced-PWM Mode (1-Phase  
Output)  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
4PH, Vout=1.0V, FPWM  
4PH, Vout=1.8V, FPWM  
4PH, Vout=2.5V, FPWM  
3PH, Vout=1.0V, FPWM  
3PH, Vout=1.8V, FPWM  
3PH, Vout=2.5V, FPWM  
0.01  
0.1  
1
Output Current (A)  
10 20  
0.01  
0.1  
1
Output Current (A)  
10 20  
DE5x4c1e  
D543  
VIN = 5 V  
VIN = 5 V  
Figure 42. Efficiency in Forced-PWM Mode (4-Phase  
Output)  
Figure 43. Efficiency in Forced-PWM Mode (3-Phase  
Output)  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
2PH, Vout=1.0V, FPWM  
2PH, Vout=1.8V, FPWM  
2PH, Vout=2.5V, FPWM  
1PH, Vout=1.0V, FPWM  
1PH, Vout=1.8V, FPWM  
1PH, Vout=2.5V, FPWM  
0.01  
0.1  
Output Current (A)  
1
10  
0.01  
0.1  
Output Current (A)  
1
5
D545  
D547  
VIN = 5 V  
VIN = 5 V  
Figure 44. Efficiency in Forced-PWM Mode (2-Phase  
Output)  
Figure 45. Efficiency in Forced-PWM Mode (1-Phase  
Output)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.02  
1.01  
1
0.996  
0.992  
0.988  
0.984  
0.98  
0.99  
0.98  
4PH, Vin=3.3V, FPWM  
4PH, Vin=5.0V, FPWM  
3PH, Vin=3.3V, FPWM  
3PH, Vin=5.0V, FPWM  
0
2
4
6
Output Current (A)  
8
10  
12  
14  
16  
0
2
4
6
Output Current (A)  
8
10  
12  
D016  
D548  
Figure 46. Output Voltage vs Load Current in Forced-PWM  
Mode (4-Phase Output)  
Figure 47. Output Voltage vs Load Current in Forced-PWM  
Mode (3-Phase Output)  
1.02  
1.02  
1.016  
1.012  
1.008  
1.004  
1
2PH, Vin=3.3V, FPWM  
2PH, Vin=5.0V, FPWM  
1.01  
1
0.996  
0.992  
0.988  
0.99  
0.98  
1PH, Vin=3.3V, FPWM  
0.984  
1PH, Vin=5.0V, FPWM  
0.98  
0
2
4
Output Current (A)  
6
8
0
0.5  
1
1.5  
2
Output Current (A)  
2.5  
3
3.5  
4
D550  
D026  
Figure 48. Output Voltage vs Load Current in Forced-PWM  
Mode (2-Phase Output)  
Figure 49. Output Voltage vs Load Current in Forced-PWM  
Mode (1-Phase Output)  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.03  
1.02  
1.01  
1
0.996  
0.992  
0.988  
0.99  
4PH, Vin=3.3V, AUTO  
0.984  
4PH, Vin=5.0V, AUTO  
3PH, Vin=3.3V, AUTO  
3PH, Vin=5.0V, AUTO  
0.98  
0.98  
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D021  
D552  
Figure 50. Output Voltage vs Load Current in PFM/PWM  
Mode (4-Phase Output)  
Figure 51. Output Voltage vs Load Current in PFM/PWM  
Mode (3-Phase Output)  
72  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.02  
1.016  
1.012  
1.008  
1.004  
1
0.996  
0.992  
0.988  
0.984  
0.98  
0.996  
0.992  
0.988  
0.984  
0.98  
2PH, Vin=3.3V, AUTO  
2PH, Vin=5.0V, AUTO  
1PH, Vin=3.3V, AUTO  
1PH, Vin=5.0V, AUTO  
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
D553  
D027  
Figure 53. Output Voltage vs Load Current in PFM/PWM  
Mode (1-Phase Output)  
Figure 52. Output Voltage vs Load Current in PFM/PWM  
Mode (2-Phase Output)  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.01  
1.008  
1.006  
1.004  
1.002  
1
0.996  
0.992  
0.988  
0.984  
0.98  
0.998  
0.996  
0.994  
0.992  
0.99  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Input Voltage (V)  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Input Voltage (V)  
D032  
D554  
VOUT = 1 V  
Load = 1 A  
VOUT = 1 V  
Load = 1 A  
Figure 54. Output Voltage vs Input Voltage in PWM Mode  
(4-Phase Output)  
Figure 55. Output Voltage vs Input Voltage in PWM Mode  
(3-Phase Output)  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.02  
1.016  
1.012  
1.008  
1.004  
1
0.996  
0.992  
0.988  
0.984  
0.98  
0.996  
0.992  
0.988  
0.984  
0.98  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Input Voltage (V)  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Input Voltage (V)  
D556  
VOUT = 1 V  
Load = 1 A  
D555  
VOUT = 1 V  
Load = 1 A  
Figure 57. Output Voltage vs Input Voltage in PWM Mode  
(1-Phase Output)  
Figure 56. Output Voltage vs Input Voltage in PWM Mode  
(2-Phase Output)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.02  
1.016  
1.012  
1.008  
1.004  
1
0.996  
0.992  
0.988  
0.984  
0.98  
0.996  
0.992  
0.988  
0.984  
0.98  
4PH, PWM  
4PH, PFM  
3PH, PWM  
3PH, PFM  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D033  
D034  
Load = 4 A (PWM) and 0.1 A (PFM)  
Load = 3 A (PWM) and 0.1 A (PFM)  
Figure 58. Output Voltage vs Temperature  
(4-Phase Output)  
Figure 59. Output Voltage vs Temperature  
(3-Phase Output)  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.02  
1.016  
1.012  
1.008  
1.004  
1
0.996  
0.992  
0.988  
0.984  
0.98  
0.996  
0.992  
0.988  
0.984  
0.98  
2PH, PWM  
2PH, PFM  
1PH, PWM  
1PH, PFM  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D035  
D036  
Load = 2 A (PWM) and 0.1 A (PFM)  
Load = 1 A (PWM) and 0.1 A (PFM)  
Figure 60. Output Voltage vs Temperature  
(2-Phase Output)  
Figure 61. Output Voltage vs Temperature  
(1-Phase Output)  
5
4
3
2
1
0
5
4
3
2
1
0
ADDING  
SHEDDING  
ADDING  
SHEDDING  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
3.5  
4
D037  
D038  
Figure 62. Phase Adding and Shedding vs Load Current  
(4-Phase Output)  
Figure 63. Phase Adding and Shedding vs Load Current  
(3-Phase Output)  
74  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
3
V(EN1)(500mV/div)  
VOUT(200mV/div)  
2.5  
2
1.5  
1
0.5  
0
V(SW_B0)(2V/div)  
ADDING  
SHEDDING  
0
0.5  
1
Output Current (A)  
1.5  
2
Time (40 µs/div)  
D039  
IOUT = 0 A  
Slew-Rate = 10 mV/µs  
Figure 65. Start-Up With EN1, Forced PWM  
(4-Phase Output)  
Figure 64. Phase Adding and Shedding vs Load Current  
(2-Phase Output)  
V(EN1)(500mV/div)  
V(EN1)(500mV/div)  
VOUT(200mV/div)  
VOUT(200mV/div)  
V(SW_B0)(2V/div)  
V(SW_B0)(2V/div)  
Time (40 µs/div)  
Time (40 µs/div)  
IOUT = 0 A  
Slew-Rate = 10 mV/µs  
IOUT = 0 A  
Slew-Rate = 10 mV/µs  
Figure 66. Start-Up With EN1, Forced PWM  
(3-Phase Output)  
Figure 67. Start-Up With EN1, Forced PWM  
(2-Phase Output)  
V(EN1)(500mV/div)  
V(EN1)(500mV/div)  
VOUT(200mV/div)  
VOUT(200mV/div)  
ILOAD(1A/div)  
V(SW_B0)(2V/div)  
V(SW_B0)(2V/div)  
Time (40 µs/div)  
Time (40 µs/div)  
IOUT = 0 A  
Slew-Rate = 10 mV/µs  
RLOAD = 0.25 Ω  
Slew-Rate = 10 mV/µs  
Figure 68. Start-Up With EN1, Forced PWM (1-Phase  
Output)  
Figure 69. Start-Up With EN1, Forced PWM (4-Phase  
Output)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
VOUT(200mV/div)  
V(EN1)(1V/div)  
V(EN1)(1V/div)  
VOUT(200mV/div)  
ILOAD(2A/div)  
ILOAD(2A/div)  
V(SW_B0)(2V/div)  
V(SW)(2V/div)  
Time (100 µs/div)  
Time (40 µs/div)  
RLOAD = 0.33 Ω  
Slew-Rate = 10 mV/µs  
RLOAD = 0.5 Ω  
Slew-Rate = 10 mV/µs  
Figure 70. Start-Up With EN1, Forced PWM (3-Phase  
Output)  
Figure 71. Start-Up With EN1, Forced PWM (2-Phase  
Output)  
V(EN1)(500mV/div)  
V(EN1)(500mV/div)  
VOUT(200mV/div)  
ILOAD(1A/div)  
ILOAD(500mA/div)  
VOUT(200mV/div)  
V(SW_B0)(2V/div)  
V(SW_B0)(2V/div)  
Time (40 µs/div)  
Time (40 µs/div)  
RLOAD = 1 Ω  
Slew-Rate = 10 mV/µs  
RLOAD = 0.25 Ω  
Slew-Rate = 10 mV/µs  
Figure 72. Start-Up With EN1, Forced PWM (1-Phase  
Output)  
Figure 73. Shutdown With EN1, Forced PWM (4-Phase  
Output)  
VOUT(200mV/div)  
V(EN1)(1V/div)  
VOUT(200mV/div)  
V(EN1)(1V/div)  
ILOAD(2A/div)  
ILOAD(2A/div)  
V(SW_B0)(2V/div)  
V(SW)(2V/div)  
Time (100 µs/div)  
Time (40 µs/div)  
RLOAD = 0.33 Ω  
Slew-Rate = 10 mV/µs  
IOUT = 0.5 Ω  
Slew-Rate = 10 mV/µs  
Figure 74. Shutdown With EN1, Forced PWM (3-Phase  
Output)  
Figure 75. Shutdown With EN1, Forced PWM (2-Phase  
Output)  
76  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
V(EN1)(500mV/div)  
VOUT(200mV/div)  
VOUT(10mV/div)  
ILOAD(1A/div)  
V(SW_B0)(2V/div)  
V(SW_B0)(2V/div)  
Time (40 µs/div)  
Time (40 µs/div)  
IOUT = 10 mA  
RLOAD = 1 Ω  
Slew-Rate = 10 mV/µs  
Figure 77. Output Voltage Ripple, PFM Mode  
(4-Phase Output)  
Figure 76. Shutdown With EN1, Forced PWM (1-Phase  
Output)  
VOUT(10mV/div)  
V(SW_B0)(2V/div)  
VOUT(10mV/div)  
V(SW_B0)(2V/div)  
Time (40 µs/div)  
Time (40 µs/div)  
IOUT = 10 mA  
IOUT = 10 mA  
Figure 79. Output Voltage Ripple, PFM Mode  
(2-Phase Output)  
Figure 78. Output Voltage Ripple, PFM Mode  
(3-Phase Output)  
VOUT(10mV/div)  
VOUT(10mV/div)  
V(SW_B0)(2V/div)  
V(SW_B0)(2V/div)  
Time (40 µs/div)  
Time (200 ns/div)  
IOUT = 10 mA  
IOUT = 200 mA  
Figure 80. Output Voltage Ripple, PFM Mode  
(1-Phase Output)  
Figure 81. Output Voltage Ripple, Forced-PWM Mode  
(4-Phase Output)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
VOUT(10mV/div)  
VOUT(10mV/div)  
V(SW_B0)(2V/div)  
V(SW_B0)(2V/div)  
Time (200 ns/div)  
Time (200 ns/div)  
IOUT = 200 mA  
IOUT = 200 mA  
Figure 83. Output Voltage Ripple, Forced-PWM Mode  
(2-Phase Output)  
Figure 82. Output Voltage Ripple, Forced-PWM Mode  
(3-Phase Output)  
VOUT(10mV/div)  
VOUT(10mV/div)  
V(SW_B0)(1V/div)  
Time (2 µs/div)  
V(SW_B0)(2V/div)  
Time (200 ns/div)  
IOUT = 200 mA  
Figure 85. Transient from PFM-to-PWM Mode  
(4-Phase Output)  
Figure 84. Output Voltage Ripple, Forced-PWM Mode  
(1-Phase Output)  
VOUT(10mV/div)  
VOUT(10mV/div)  
V(SW_B0)(1V/div)  
Time (2 µs/div)  
V(SW_B0)(1V/div)  
Time (2 µs/div)  
Figure 86. Transient from PFM-to-PWM Mode  
(3-Phase Output)  
Figure 87. Transient from PFM-to-PWM Mode  
(2-Phase Output)  
78  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
VOUT(10mV/div)  
VOUT(10mV/div)  
V(SW_B0)(1V/div)  
V(SW_B0)(1V/div)  
Time (2 µs/div)  
Time (4 µs/div)  
Figure 88. Transient from PFM-to-PWM Mode  
Figure 89. Transient from PWM-to-PFM Mode  
(1-Phase Output)  
(4-Phase Output)  
VOUT(10mV/div)  
VOUT(10mV/div)  
V(SW_B0)(1V/div)  
V(SW_B0)(1V/div)  
Time (4 µs/div)  
Time (4 µs/div)  
Figure 90. Transient from PWM-to-PFM Mode  
(3-Phase Output)  
Figure 91. Transient from PWM-to-PFM Mode  
(2-Phase Output)  
VOUT(10mV/div)  
VOUT(10mV/div)  
V(SW_B1)(2V/div)  
V(SW_B0)(2V/div)  
Time (10 µs/div)  
V(SW_B0)(1V/div)  
Time (4 µs/div)  
Figure 92. Transient from PWM-to-PFM Mode  
(1-Phase Output)  
Figure 93. Transient from 1-Phase to 2-Phase Operation  
(4-Phase Output)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
VOUT(10mV/div)  
VOUT(10mV/div)  
V(SW_B1)(2V/div)  
V(SW_B1)(2V/div)  
V(SW_B0)(2V/div)  
Time (10 µs/div)  
V(SW_B0)(2V/div)  
Time (10 µs/div)  
Figure 94. Transient from 1-Phase to 2-Phase Operation  
(3-Phase Output)  
Figure 95. Transient from 1-Phase to 2-Phase Operation  
(2-Phase Output)  
VOUT(10mV/div)  
VOUT(10mV/div)  
V(SW_B1)(2V/div)  
V(SW_B1)(2V/div)  
V(SW_B0)(2V/div)  
Time (10 µs/div)  
V(SW_B0)(2V/div)  
Time (10 µs/div)  
Figure 96. Transient from 2-Phase to 1-Phase Operation  
(4-Phase Output)  
Figure 97. Transient from 2-Phase to 1-Phase Operation  
(3-Phase Output)  
VOUT(20mV/div)  
VOUT(10mV/div)  
V(SW_B1)(2V/div)  
I(LOAD(2A/div)  
V(SW_B0)(2V/div)  
Time (10 µs/div)  
Time (40 µs/div)  
IOUT = 0.1 A 8 A 0.1 A  
TR = TF = 1 µs  
Figure 98. Transient from 2-Phase to 1-Phase Operation  
(2-Phase Output)  
Figure 99. Transient Load Step Response, AUTO Mode  
(4-Phase Output)  
80  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
VOUT(20mV/div)  
VOUT(20mV/div)  
I(LOAD(1A/div)  
I(LOAD(2A/div)  
Time (40 µs/div)  
Time (40 µs/div)  
IOUT = 0.1 A 6 A 0.1 A  
IOUT = 0.1 A 4 A 0.1 A  
TR = TF = 1 µs  
TR = TF = 1 µs  
Figure 100. Transient Load Step Response, AUTO Mode  
(3-Phase Output)  
Figure 101. Transient Load Step Response, AUTO Mode  
(2-Phase Output)  
VOUT(20mV/div)  
VOUT(20mV/div)  
I(LOAD(1A/div)  
I(LOAD(2A/div)  
Time (40 µs/div)  
IOUT = 0.1 A 2 A 0.1 A  
TR = TF = 1 µs  
Time (40 µs/div)  
IOUT = 0.1 A 8 A 0.1 A  
TR = TF = 1 µs  
Figure 102. Transient Load Step Response, AUTO Mode  
(1-Phase Output)  
Figure 103. Transient Load Step Response,  
Forced-PWM Mode (4-Phase Output)  
VOUT(20mV/div)  
VOUT(20mV/div)  
I(LOAD(1A/div)  
I(LOAD(2A/div)  
Time (40 µs/div)  
IOUT = 0.1 A 6 A 0.1 A  
TR = TF = 1 µs  
Time (40 µs/div)  
IOUT = 0.1 A 4 A 0.1 A  
TR = TF = 1 µs  
Figure 104. Transient Load Step Response,  
Forced-PWM Mode (3-Phase Output)  
Figure 105. Transient Load Step Response,  
Forced-PWM Mode (2-Phase Output)  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
VOUT(200mV/div)  
VOUT(20mV/div)  
I(LOAD(1A/div)  
Time (40 µs/div)  
Time (200 µs/div)  
IOUT = 0.1 A 2 A 0.1 A  
TR = TF = 1 µs  
Figure 107. Output Voltage Transition from 0.6 V to 1.4 V  
Figure 106. Transient Load Step Response,  
With Different Slew Rate Settings  
Forced-PWM Mode (1-Phase Output)  
V(EN1)(1V/div)  
VOUT(200mV/div)  
V(nINT)(1V/div)  
VOUT(50mV/div)  
IOUT(2A/div)  
Time (200 µs/div)  
Time (200 µs/div)  
Figure 108. Output Voltage Transition from 1.4 V to 0.6 V  
Figure 109. Start-Up With Short on Output  
With Different Slew Rate Settings  
(4-Phase Output)  
V(EN1)(1V/div)  
V(EN1)(1V/div)  
V(nINT)(1V/div)  
V(nINT)(1V/div)  
VOUT(50mV/div)  
VOUT(50mV/div)  
IOUT(2A/div)  
IOUT(2A/div)  
Time (200 µs/div)  
Time (200 µs/div)  
Figure 110. Start-Up With Short on Output  
(3-Phase Output)  
Figure 111. Start-Up With Short on Output (2-Phase  
Output)  
82  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
Unless otherwise specified: VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, TA = 25°C, ƒSW = 2 MHz, L = 0.47 µH (TOKO  
DFE252012PD-R47M), COUT = 22 µF / phase, and CPOL = 22 µF / phase. Measurements are done using connections in the  
Typical Applications schematics.  
V(EN1)(1V/div)  
V(nINT)(1V/div)  
VOUT(50mV/div)  
IOUT(2A/div)  
Time (200 µs/div)  
Figure 112. Start-Up With Short on Output (1-Phase Output)  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.8 V and 5.5 V. This input supply  
must be well regulated and can withstand maximum input current and keep a stable voltage without voltage drop  
even at load transition condition. The resistance of the input supply rail must be low enough that the input current  
transient does not cause too high drop in the LP8756x-Q1 supply voltage that can cause false UVLO fault  
triggering. If the input supply is located more than a few inches from the LP8756x-Q1 additional bulk capacitance  
may be required in addition to the ceramic bypass capacitors.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
The high frequency and large switching currents of the LP8756x-Q1 make the choice of layout important. Good  
power supply results only occur when care is given to correct design and layout. Layout affects noise pickup and  
generation and can cause a good design to perform with less-than-expected results. With a range of output  
currents from milliamps to 10 A and over, good power supply layout is much more difficult than most general  
PCB design. Use the following steps as a reference to make sure the device is stable and keeps correct voltage  
and current regulation across its intended operating voltage and current range.  
Place CIN as close as possible to the VIN_Bx pin and the PGND_Bxx pin. Route the VIN trace wide and thick  
to avoid IR drops. The trace between the positive node of the input capacitor and the VIN_Bx pin(s) of  
LP8756x-Q1, as well as the trace between the negative node of the input capacitor and power PGND_Bxx  
pin(s), must be kept as short as possible. The input capacitance provides a low-impedance voltage source for  
the switching converter. The inductance of the connection is the most important parameter of a local  
decoupling capacitor — parasitic inductance on these traces must be kept as small as possible for correct  
device operation. The parasitic inductance can be decreased by using a ground plane as close as possible to  
top layer by using thin dielectric layer between top layer and ground plane.  
The output filter, consisting of COUT and L, converts the switching signal at SW_Bx to the noiseless output  
voltage. It must be placed as close as possible to the device keeping the switch node small, for best EMI  
behavior. Route the traces between the LP8756x-Q1 output capacitors and the load direct and wide to avoid  
losses due to the IR drop.  
Input for analog blocks (VANA and AGND) must be isolated from noisy signals. Connect VANA directly to a  
quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling  
capacitor as close as possible to the VANA pin.  
If the processor load supports remote voltage sensing, connect the feedback pins FB_Bx of the LP8756x-Q1  
device to the respective sense pins on the processor. The sense lines are susceptible to noise. They must be  
kept away from noisy signals such as PGND_Bxx, VIN_Bx, and SW_Bx, as well as high bandwidth signals  
such as the I2C. Avoid both capacitive and inductive coupling by keeping the sense lines short, direct, and  
close to each other. Run the lines in a quiet layer. Isolate them from noisy signals by a voltage or ground  
plane if possible. Running the signal as a differential pair is recommended for multiphase outputs. If series  
resistors are used for load current measurement, place them after connection of the voltage feedback.  
PGND_Bxx, VIN_Bx and SW_Bx must be routed on thick layers. They must not surround inner signal layers,  
which are cannot withstand interference from noisy PGND_Bxx, VIN_Bx and SW_Bx.  
If the input voltage is above 4 V, place snubber components (capacitor and resistor) between SW_Bx and  
ground on all four phases. The components can be also placed to the other side of the board if there are area  
limitations and the routing traces can be kept short.  
Due to the small package of this converter and the overall small solution size, the thermal performance of the  
PCB layout is important. Many system-dependent parameters such as thermal coupling, airflow, added heat  
sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component. Correct PCB layout, focusing on thermal performance, results in lower  
die temperatures. Wide and thick power traces can sink dissipated heat. This can be improved further on multi-  
layer PCB designs with vias to different planes. This results in decreased junction-to-ambient (RθJA) and junction-  
to-board (RθJB) thermal resistances and thereby decreases the device junction temperature, TJ. TI strongly  
recommends doing a careful system-level 2D or full 3D dynamic thermal analysis at the beginning product design  
process, by using a thermal modeling analysis software.  
84  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
11.2 Layout Example  
Via to GND plane  
Via to VIN plane  
VOUT1  
VOUT0  
L1  
L0  
COUT0  
COUT1  
C1  
C0  
R1  
R0  
CIN1  
CIN0  
GND  
VIN  
VIN  
VIN  
13 1211 10 9  
CIN4  
14  
15  
16  
17  
8
FB_B1  
EN2  
FB_B0  
EN1 7  
GND  
PGOOD  
AGND  
6
SDA  
27  
SCL 5  
AGND  
GND  
CVANA  
VIN  
18  
19  
GND  
4
3
2
1
VANA GND  
nINT  
AGND  
CLKIN  
EN3  
20 NRST  
FB_B3  
CIN5  
FB_B2  
21  
22 23 24 25 26  
VIN  
VIN  
VIN  
CIN3  
CIN2  
GND  
R2  
R3  
C3  
C2  
COUT3  
COUT2  
L3  
L2  
VOUT3  
VOUT2  
(1) The output voltage rails are shorted together based on the configuration as shown in Typical Applications.  
Figure 113. LP8756x-Q1 Board Layout  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Documentation Support  
12.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 15. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
LP87561-Q1  
LP87562-Q1  
LP87563-Q1  
LP87564-Q1  
LP87565-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.5 Community Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.6 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
86  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
PACKAGE OUTLINE  
RNF0026C  
VQFN-HR - 0.9 mm max height  
SCALE 2.800  
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.05)  
A
-
A
2
5
.
0
0
0
SECTION A-A  
TYPICAL  
C
0.9 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X  
2
0.3  
0.2  
10X  
4X (0.575)  
8X 0.5  
4X (0.35)  
4X (0.4)  
(0.2) TYP  
9
13  
4X (0.625)  
14  
8
7
1.72  
1.52  
10X  
A
A
SYMM  
27  
2X  
2.5  
0.66 0.1  
0.3  
0.2  
10X 0.5  
12X  
0.5  
21  
1
0.1  
C A B  
C
26  
22  
PIN 1 ID  
THERMAL PAD  
0.05  
SYMM  
12X  
0.3  
2.24 0.1  
4223207/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
88  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
www.ti.com  
SNVSB22 MARCH 2018  
EXAMPLE BOARD LAYOUT  
RNF0026C  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
8X (0.5)  
10X (0.25)  
22  
12X (0.6)  
26  
1
21  
10X (1.82)  
12X (0.25)  
SYMM  
(3.08)  
27  
(0.66)  
2X (3.65)  
10X (0.5)  
( 0.2) TYP  
VIA  
8
4X (0.4)  
14  
4X (0.825)  
(R0.05)  
TYP  
9
13  
4X (0.35)  
(0.87)  
(2.24)  
4X (0.775)  
2X (3.2)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAIL  
NOT TO SCALE  
4223207/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
89  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
LP87561-Q1  
LP87562-Q1, LP87563-Q1, LP87564-Q1, LP87565-Q1  
SNVSB22 MARCH 2018  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNF0026C  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.575) TYP  
10X  
EXPOSED METAL  
SYMM  
(0.5)  
TYP  
12X (0.6)  
26  
22  
1
21  
12X (0.25)  
(1.01) TYP  
(1.775)  
TYP  
(1.035) TYP  
10X (0.5)  
2X (0.98)  
27  
SYMM  
2X (0.66)  
(0.59)  
(R0.05) TYP  
EXPOSED METAL  
4X (0.3)  
20X (0.81)  
4X (0.825)  
8
14  
13  
9
4X (0.3)  
20X (0.25)  
4X (0.775)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1, 8, 14 & 21: 87% - PADS 9-13 & 22-26: 88% - THERMAL PAD 27: 87%  
SCALE:25X  
4223207/B 04/2018  
NOTES: (continued)  
6. For alternate stencil design recommendations, see IPC-7525 or board assembly site preference.  
www.ti.com  
90  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: LP87561-Q1 LP87562-Q1 LP87563-Q1 LP87564-Q1 LP87565-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
Qty  
3000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP875610RNFRQ1  
LP875610RNFTQ1  
LP87561IRNFRQ1  
LP87561IRNFTQ1  
LP875620RNFRQ1  
LP875620RNFTQ1  
LP875630RNFRQ1  
LP875630RNFTQ1  
LP875640RNFRQ1  
LP875640RNFTQ1  
LP87564TRNFRQ1  
LP875650RNFRQ1  
LP875650RNFTQ1  
LP87565CRNFRQ1  
LP87565CRNFTQ1  
LP87565URNFRQ1  
P87561IRNFRQ1  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
RoHS-Exempt  
& Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
LP8756  
10-Q1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RoHS-Exempt  
& Green  
SN  
SN  
LP8756  
10-Q1  
3000  
250  
RoHS-Exempt  
& Green  
LP8756  
1I-Q1  
RoHS-Exempt  
& Green  
SN  
LP8756  
1I-Q1  
3000  
250  
RoHS-Exempt  
& Green  
SN  
LP8756  
20-Q1  
RoHS-Exempt  
& Green  
SN  
LP8756  
20-Q1  
3000  
250  
RoHS-Exempt  
& Green  
SN  
LP8756  
30-Q1  
RoHS-Exempt  
& Green  
SN  
LP8756  
30-Q1  
3000  
250  
RoHS-Exempt  
& Green  
SN  
LP8756  
40-Q1  
RoHS-Exempt  
& Green  
SN  
LP8756  
40-Q1  
3000  
3000  
250  
RoHS-Exempt  
& Green  
SN  
LP8756  
4T-Q1  
RoHS-Exempt  
& Green  
SN  
LP8756  
50-Q1  
RoHS-Exempt  
& Green  
SN  
LP8756  
50-Q1  
3000  
250  
RoHS-Exempt  
& Green  
SN  
LP8756  
5C-Q1  
RoHS-Exempt  
& Green  
SN  
LP8756  
5C-Q1  
3000  
3000  
RoHS-Exempt  
& Green  
SN  
LP8756  
5U-Q1  
TBD  
Call TI  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Dec-2021  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP875610RNFRQ1  
LP875610RNFTQ1  
LP87561IRNFRQ1  
LP87561IRNFTQ1  
LP875620RNFRQ1  
LP875620RNFTQ1  
LP875630RNFRQ1  
LP875630RNFTQ1  
LP875640RNFRQ1  
LP875640RNFTQ1  
LP87564TRNFRQ1  
VQFN-  
HR  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.75  
4.75  
4.75  
4.75  
4.75  
4.75  
4.75  
4.75  
4.75  
4.75  
4.75  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Dec-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
HR  
LP875650RNFRQ1  
LP875650RNFTQ1  
LP87565CRNFRQ1  
LP87565CRNFTQ1  
LP87565URNFRQ1  
VQFN-  
HR  
RNF  
RNF  
RNF  
RNF  
RNF  
26  
26  
26  
26  
26  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
4.25  
4.75  
4.75  
4.75  
4.75  
4.75  
1.2  
1.2  
1.2  
1.2  
1.2  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP875610RNFRQ1  
LP875610RNFTQ1  
LP87561IRNFRQ1  
LP87561IRNFTQ1  
LP875620RNFRQ1  
LP875620RNFTQ1  
LP875630RNFRQ1  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
26  
26  
26  
26  
26  
26  
26  
3000  
250  
346.0  
200.0  
346.0  
200.0  
346.0  
200.0  
346.0  
346.0  
183.0  
346.0  
183.0  
346.0  
183.0  
346.0  
35.0  
25.0  
35.0  
25.0  
35.0  
25.0  
35.0  
3000  
250  
3000  
250  
3000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Dec-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP875630RNFTQ1  
LP875640RNFRQ1  
LP875640RNFTQ1  
LP87564TRNFRQ1  
LP875650RNFRQ1  
LP875650RNFTQ1  
LP87565CRNFRQ1  
LP87565CRNFTQ1  
LP87565URNFRQ1  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
RNF  
26  
26  
26  
26  
26  
26  
26  
26  
26  
250  
3000  
250  
200.0  
346.0  
200.0  
346.0  
346.0  
200.0  
346.0  
200.0  
346.0  
183.0  
346.0  
183.0  
346.0  
346.0  
183.0  
346.0  
183.0  
346.0  
25.0  
35.0  
25.0  
35.0  
35.0  
25.0  
35.0  
25.0  
35.0  
3000  
3000  
250  
3000  
250  
3000  
Pack Materials-Page 3  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY