LP875701-Q1 [TI]

适用于 Mobileye EyeQ4 的汽车类多相 1V、10A 降压转换器;
LP875701-Q1
型号: LP875701-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 Mobileye EyeQ4 的汽车类多相 1V、10A 降压转换器

转换器
文件: 总73页 (文件大小:3151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
具有集成开关LP875701-Q1 四相、3MHz1V10A 直流/直流降压转换器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
LP875701-Q1 器件旨在满足各种汽车电源应用中新型  
处理器和平台的电源管理要求。该器件包含 4 个降压  
直流/直流转换器内核这些内核配置为采用强PWM  
模式的四相输出。该器件I2C 兼容串行接口和使能信  
号进行控制。  
– 器件温度等140°C +125°C 环境工作  
温度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
• 输入电压2.8V 5.5V  
• 输出电压1.0V  
• 四个高效降压直流/直流转换器内核:  
LP875701-Q1 支持对多相位输出的远程差分电压感  
可补偿稳压器输出与负载点 (POL) 之间的 IR 压  
从而提高输出电压的精度。可以强制开关时钟进入  
PWM 模式并将其与外部时钟同步从而更大程度地降  
低干扰。  
– 最大输出电流10A2.5A/)  
• 开关频率3MHz  
• 扩频模式和相位交错  
LP875701-Q1 器件支持负载电流测量无需添加外部  
电流感应电阻器。LP875701-Q1 器件还支持与使能信  
号同步的可编程启动与关断延迟和序列。这些序列可能  
还包括用于控制外部稳压器、负载开关和处理器复位的  
GPIO 信号。在启动期间该器件会对输出压摆率进行  
控制从而最大限度地减小输出电压过冲和浪涌电流。  
• 可配置通I/O (GPIO)  
I2C 兼容接口支持标(100kHz)、快速  
(400kHz)、快速+ (1MHz) 和高(3.4MHz) 模式  
• 具有可编程屏蔽的中断功能  
• 可编程电源正常信(PGOOD)  
• 输出短路和过载保护  
器件信息(1)  
• 过热警告和保护  
• 过压保(OVP) 和欠压锁(UVLO)  
封装尺寸标称值)  
器件型号  
封装  
LP875701-Q1  
VQFN-HR (26)  
4.50mm × 4.00mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 汽车信息娱乐系统  
• 仪表组  
• 雷达  
• 摄像头电源应用  
VIN  
100  
90  
80  
70  
60  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
SW_B0  
SW_B1  
SW_B2  
SW_B3  
VOUT  
LOAD  
NRST  
SDA  
SCL  
FB_B0  
FB_B1  
nINT  
PGOOD  
FB_B2  
FB_B3  
CLKIN  
50  
VIN = 3.3 V  
VIN = 5.0 V  
EN1 (GPIO1)  
EN2 (GPIO2)  
EN3 (GPIO3)  
GNDs  
40  
0.01  
0.1  
1
10  
Current (A)  
Copyright © 2017, Texas Instruments Incorporated  
D140  
简化版原理图  
效率与输出电流间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSA05  
 
 
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
Table of Contents  
7.5 Programming............................................................ 31  
7.6 Register Maps...........................................................34  
8 Application and Implementation..................................56  
8.1 Application Information............................................. 56  
8.2 Typical Application.................................................... 56  
9 Power Supply Recommendations................................61  
10 Layout...........................................................................62  
10.1 Layout Guidelines................................................... 62  
10.2 Layout Example...................................................... 63  
11 Device and Documentation Support..........................64  
11.1 接收文档更新通知................................................... 64  
11.2 支持资源..................................................................64  
11.3 Trademarks............................................................. 64  
11.4 Electrostatic Discharge Caution..............................64  
11.5 术语表..................................................................... 64  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 I2C Serial Bus Timing Requirements........................ 10  
6.7 Typical Characteristics..............................................12  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Descriptions.................................................14  
7.4 Device Functional Modes..........................................30  
Information.................................................................... 64  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2019) to Revision A (August 2021)  
Page  
• 更新了整个文档中的表、图和交叉参考的编号格式.............................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
26  
25  
24  
23  
22  
FB_B2  
FB_B3  
1
21  
EN3  
NRST  
nINT  
2
20  
19  
18  
17  
16  
15  
CLKIN  
3
AGND  
VANA  
AGND  
PGOOD  
EN2  
4
AGND  
SCL  
5
SDA  
6
EN1  
7
FB_B0  
FB_B1  
8
14  
9
10  
11  
12  
13  
5-1. RNF Package 26-Pin VQFN-HR With Thermal Pad Top View  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
1
FB_B2  
A
D/I/O  
D/I  
Output voltage feedback (positive) for the BUCK2 converter.  
Programmable enable signal for the buck regulators (can be also configured to select between  
two buck output-voltage levels). This pin functions alternatively as GPIO3.  
2
3
EN3  
CLKIN  
AGND  
External clock input. Connect this pin to ground if the external clock is not used.  
Ground  
4, 17,  
Thermal Pad  
G
5
6
SCL  
SDA  
D/I  
Serial interface clock input for I2C access. Connect this pin to a pullup resistor.  
D/I/O Serial interface data input and output for I2C access. Connect this pin to a pullup resistor.  
Programmable enable signal for the buck regulators (can be also configured to select between  
two buck output voltage levels). This pin functions alternatively as GPIO1.  
7
8
EN1  
D/I/O  
FB_B0  
A
P
Output voltage feedback (positive) for the BUCK0 converter.  
Input for the BUCK0 converter. The separate power pins, VIN_Bx, are not connected together  
internally. The VIN_Bx pins must be connected together in the application and be locally  
bypassed.  
9
VIN_B0  
SW_B0  
10  
11  
12  
A
G
A
BUCK0 switch node  
PGND_B01  
SW_B1  
Power ground for the BUCK0 and BUCK1 converters  
BUCK1 switch node  
Input for the BUCK1 converter. The separate power pins, VIN_Bx, are not connected together  
internally. The VIN_Bx pins must be connected together in the application and be locally  
bypassed.  
13  
VIN_B1  
P
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
Output voltage feedback (positive) for the BUCK1 converter. This pin functions alternatively as the  
output ground feedback (negative) for the BUCK0 converter.  
14  
FB_B1  
A
Programmable enable signal for the buck regulators (can be also configured to select between  
two buck output voltage levels). This pin functions alternatively as GPIO2.  
15  
16  
18  
EN2  
PGOOD  
VANA  
D/I/O  
D/O  
P
Power-good indication signal  
Supply voltage for the analog and digital blocks. This pin must be connected to the same node as  
VIN_Bx.  
19  
20  
nINT  
D/O  
D/I  
Open-drain interrupt output. This pin is active low.  
Reset signal for the device  
NRST  
Output voltage feedback (positive) for the BUCK3 converter. This pin functions alternatively as the  
output ground feedback (negative) for the BUCK2 converter.  
21  
22  
FB_B3  
A
P
Input for the BUCK3 converter. The separate power pins, VIN_Bx, are not connected together  
internally. The VIN_Bx pins must be connected together in the application and be locally  
bypassed.  
VIN_B3  
SW_B3  
23  
24  
25  
A
G
A
BUCK3 switch node  
PGND_B23  
SW_B2  
Power ground for the BUCK2 and BUCK3 converters  
BUCK2 switch node  
Input for the BUCK2 converter. The separate power pins, VIN_Bx, are not connected together  
internally. The VIN_Bx pins must be connected together in the application and be locally  
bypassed.  
26  
VIN_B2  
P
(1) A: Analog Pin, D: Digital Pin, G: Ground Pin, P: Power Pin, I: Input Pin, O: Output Pin  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
Voltage on power connections  
Voltage on buck switch nodes  
VIN_Bx, VANA  
SW_Bx  
6
V
0.3  
(VIN_Bx + 0.3 V)  
with 6 V  
V
V
0.3  
0.3  
maximum  
(VANA + 0.3 V)  
with 6 V  
maximum  
Voltage on buck voltage sense nodes  
Voltage on NRST input  
FB_Bx  
NRST  
6
6
V
V
0.3  
0.3  
SDA, SCL, nINT, CLKIN  
(VANA + 0.3 V)  
with 6 V  
maximum  
Voltage on logic pins (input or output pins)  
EN1 (GPIO1), EN2 (GPIO2), EN3  
(GPIO3), PGOOD  
V
0.3  
Maximum lead temperature (soldering, 10 sec.)  
Junction temperature, TJ-MAX  
260  
150  
150  
°C  
°C  
°C  
40  
65  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network ground.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
All pins  
V
Corner pins (1, 8, 14, and 21)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
INPUT VOLTAGE  
Voltage on power connections  
Voltage on NRST  
VIN_Bx, VANA  
NRST  
2.8  
1.65  
1.65  
0
5.5  
V
V
V
V
VANA with  
5.5 V maximum  
Voltage on logic pins (input or output pins)  
Voltage on logic pins (input or output pins)  
nINT, CLKIN  
ENx, PGOOD  
5.5  
VANA with  
5.5 V maximum  
Voltage on I2C interface, standard (100 kHz), fast (400  
khz), fast+ (1 MHz), and high-speed (3.4 MHz) modes  
SCL, SDA  
SCL, SDA  
1.65  
3.1  
1.95  
V
V
Voltage on I2C interface, standard (100 kHz), fast (400  
kHz), and fast+ (1 MHz) modes  
VANA with  
3.6 V maximum  
TEMPERATURE  
Junction temperature, TJ  
Ambient temperature, TA  
140  
125  
°C  
°C  
40  
40  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LP875701-Q1  
 
 
 
 
 
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
6.4 Thermal Information  
LP875701-Q1  
THERMAL METRIC(1)  
RNF (VQFN-HR)  
UNIT  
26 PINS  
34.6  
16.5  
4.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJT  
4.7  
ψJB  
RθJC(bot)  
1.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
40°C TJ +140°C, CPOL = 122 µF/phase, specified VVANA, VVIN_Bx , VNRST, VVOUT_Bx, and IOUT range, unless otherwise  
noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1.0 V, unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
EXTERNAL COMPONENTS  
CIN  
Input filtering capacitance Connected from VIN_Bx to PGND_Bx  
1.9  
10  
10  
22  
µF  
µF  
Output filtering capacitance  
per phase, local  
COUT  
Point-of-load (POL)  
capacitance per phase  
CPOL  
122  
µF  
Total output capacitance(2)  
4-phase output  
COUT-TOTAL  
400  
1500 µF  
(local and POL)  
ESR of the input and  
1 MHz f 10 MHz  
output capacitor  
ESRC  
2
10  
mΩ  
0.33  
µH  
Inductor value and  
tolerance of the inductor  
L
30%  
30%  
DCRL  
Inductor DCR  
20  
mΩ  
BUCK REGULATOR  
VVIN_Bx Input voltage range  
2.8  
5.5  
10  
V
Output current(3)The  
maximum output current  
from device is 10A  
4-phase output, VIN 3 V  
IOUT  
A
V
V
7.2  
4-phase output, 2.8 V VIN < 3 V  
regardless of device phase  
configurations.  
Input and output voltage  
difference  
Minimum voltage between  
VIN_x and VOUT to fulfill  
the electrical  
0.5  
characteristics  
DC output voltage and  
accuracy, includes voltage mode, forced 4-phase operation, fSW= 3  
VIN= 3.3 V +/- 5% , 5 V +/- 5%, forced PWM  
VVOUT_DC  
reference, DC load and  
line regulations, process,  
and temperature  
MHz +/- 10% (either through internal or  
external clock), in case external clock is  
used: spread-spectrum disabled  
0.985  
1
1.015  
4-phase output, forced PWM mode, ESRC  
2 mΩ, L = 0.33 µH  
<
Ripple voltage  
3
0.1  
mVp-p  
%/V  
DCLNR  
DCLDR  
DC line regulation  
IOUT = IOUT(max)  
DC load regulation in PWM  
mode  
0.01  
%/A  
0 A IOUT IOUT(max)  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
40°C TJ +140°C, CPOL = 122 µF/phase, specified VVANA, VVIN_Bx , VNRST, VVOUT_Bx, and IOUT range, unless otherwise  
noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1.0 V, unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN = 5 V +/- 5%, fSW= 3 MHz +/- 10%  
(either through internal or external clock), in  
case external clock is used: spread-  
spectrum disabled, forced 4-phase  
operation, forced PWM mode  
±12  
1.5 A IOUT 7.5 A, tr = tf = 1 µs, COUT  
=
22 µF/phase, L = 0.33 µH, CPOL = 122 µF/  
phase  
Transient load step  
response in PWM mode  
TRLDSR  
mV  
VIN = 3.3 V +/- 5%, fSW= 3 MHz +/- 10%  
(either through internal or external clock), in  
case external clock is used: spread-  
spectrum disabled, forced 4-phase  
operation, forced PWM mode  
±15  
1.5 A IOUT 7.5 A, tr = tf = 1 µs, COUT  
=
22 µF/phase, L = 0.33 µH, CPOL = 122 µF/  
phase  
VVIN_Bx stepping 3.15 V 3.4 V, tr = tf = 10  
µs, IOUT = IOUT(max)  
TRLNSR  
Transient line response  
±2  
mV  
V
VIN_Bx 3 V  
3.3  
2.8  
1.6  
3.8  
4.2  
Forward current limit for each phase set to  
3.5A (ILIMx[2:0]=4h)  
Forward current limit for  
each phase (peak for each  
switching cycle)  
ILIM FWD  
A
2.8 V VVIN_Bx < 3 V  
Forward current limit for each phase set to  
3.5A (ILIMx[2:0]=4h)  
3.8  
2
4.2  
Negative current limit per  
phase (peak for each  
switching cycle)  
ILIM NEG  
2.4  
A
RDS(ON) HS On-resistance, high-side  
Each phase, between VIN_Bx and SW_Bx  
pins, I = 1 A  
29  
17  
3
65  
35  
mΩ  
mΩ  
FET  
FET  
RDS(ON) LS On-resistance, low-side  
Each phase, between SW_Bx and  
PGND_Bx pins, I = 1 A  
FET  
FET  
Switching frequency, PWM  
mode  
fSW  
2.7  
3.3 MHz  
10%  
Current balancing for  
multiphase outputs  
Current mismatch between phases, IOUT > 1  
A/phase  
From ENx to VOUT = 0.35 V (slew-rate  
control begins), COUT_TOTAL = 144 µF/phase  
Start-Up time (soft start)  
200  
µs  
Output voltage slew-rate(4)  
3.23  
160  
3.8  
4.4 mV/µs  
Output pulldown resistance Regulator disabled  
Overvoltage monitoring (compared to DC  
output-voltage level, VVOUT_DC  
Undervoltage monitoring (compared to DC  
output-voltage level, VVOUT_DC  
Output voltage monitoring Deglitch time during regulator enable  
230  
300  
64  
Ω
39  
53  
4
50  
40  
7
)
mV  
29  
)
10 µs  
13 ms  
10 µs  
for PGOOD pin  
PGOOD_SET_DELAY = 0h  
Deglitch time during regulator enable  
PGOOD_SET_DELAY = 1h  
10  
11  
Deglitch time during operation and after  
voltage change  
4
7
Power-good threshold for Rising ramp voltage, enable or voltage  
interrupt BUCKx_PG_INT, change  
difference from final  
Falling ramp voltage, voltage change  
voltage  
20  
14  
8  
20  
mV  
8
14  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
40°C TJ +140°C, CPOL = 122 µF/phase, specified VVANA, VVIN_Bx , VNRST, VVOUT_Bx, and IOUT range, unless otherwise  
noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1.0 V, unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
mV  
Power-good threshold for  
status bit  
BUCKx_PG_STAT  
During operation, status signal is forced to  
0h during voltage change  
20  
14  
8  
EXTERNAL CLOCK AND PLL  
Nominal frequency of the  
external input clock  
1
24 MHz  
MHz  
Nominal frequency step  
size of the external input  
clock  
1
Required accuracy from  
nominal frequency of the  
external input clock  
10%  
30%  
Delay time for missing  
external clock detection  
1.8 µs  
20 µs  
Delay and debounce time  
for external clock detection  
Clock change delay  
(internal to external)  
delay from valid clock  
detection to use of external  
clock  
600  
300  
µs  
Cycle-to-cycle PLL output  
clock jitter  
ps, p-  
p
PROTECTION FUNCTIONS  
Temperature rising, TDIE_WARN_LEVEL =  
0h  
115  
127  
125  
137  
135  
147  
Thermal warning  
°C  
°C  
Temperature rising, TDIE_WARN_LEVEL =  
1h  
Thermal warning  
hysteresis  
20  
150  
20  
Thermal shutdown  
Temperature rising  
140  
160 °C  
°C  
Thermal shutdown  
hysteresis  
Voltage rising  
Voltage falling  
5.6  
5.8  
6.1  
V
5.96  
VANAOVP  
VANA overvoltage  
5.45  
5.73  
VANA overvoltage  
hysteresis  
40  
mV  
Voltage rising  
Voltage falling  
2.51  
2.5  
2.63  
2.6  
2.75  
V
2.7  
VANA undervoltage  
lockout  
VANAUVLO  
LOAD CURRENT MEASUREMENT  
Current measurement  
range  
Output current for maximum code  
20.47  
A
Resolution  
Measurement accuracy  
Measurement time  
LSB  
20  
<10%  
4
mA  
IOUT > 1 A  
PWM mode  
µs  
CURRENT CONSUMPTION  
Shutdown current  
consumption  
From VANA and VIN_Bx pins, NRST = 0 V,  
VANA = VIN_Bx = 3.7 V  
1.4  
6.7  
µA  
µA  
From VANA and VIN_Bx pins, NRST = 1.8  
V, VANA = VIN_Bx = 3.7 V, regulators  
disabled  
Standby current  
consumption  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
40°C TJ +140°C, CPOL = 122 µF/phase, specified VVANA, VVIN_Bx , VNRST, VVOUT_Bx, and IOUT range, unless otherwise  
noted. Typical values are at TJ = 25°C, VVANA = VVIN_Bx = 3.7 V, and VOUT = 1.0 V, unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Total current for forced 4-phase operation,  
VIN = 3.3 V  
70  
Active current consumption  
during PWM operation  
mA  
Total current for forced 4-phase operation,  
VIN = 5 V  
103  
2
Additional current consumption when  
internal RC oscillator, clock detector and  
PLL are enabled  
PLL and clock detector  
current consumption  
mA  
DIGITAL INPUT SIGNALS: NRST, EN1, EN2, EN3, EN4, SCL, SDA, GPIO1, GPIO2, GPIO3, CLKIN  
VIL  
VIH  
Input low level  
Input high level  
0.4  
V
V
1.2  
10  
Hysteresis of Schmitt  
trigger inputs  
VHYS  
77  
200 mV  
ENx pulldown resistance  
ENx_PD = 1h  
500  
kΩ  
NRST pulldown resistance Always present  
DIGITAL OUTPUT SIGNALS: nINT  
650  
1150  
1700  
0.4  
kΩ  
VOL  
RP  
Output low level  
ISOURCE = 2 mA  
To VIO supply  
V
External pullup resistor  
10  
kΩ  
DIGITAL OUTPUT SIGNALS: SDA  
VOL Output low level  
ISOURCE = 10 mA  
0.4  
V
DIGITAL OUTPUT SIGNALS: PGOOD, GPIO1, GPIO2, GPIO3  
VOL  
VOH  
Output low level  
ISOURCE = 2 mA  
ISINK = 2 mA  
0.4  
V
V
Output high level,  
configured to push-pull  
VVANA  
V
VANA 0.4  
Supply voltage for external  
pull-up resistor, configured  
to open-drain  
VPU  
VVANA  
V
External pullup resistor,  
configured to open-drain  
RPU  
10  
kΩ  
ALL DIGITAL INPUTS  
ILEAK Input current  
All logic inputs over pin voltage range  
(except NRST)  
1
µA  
1  
(1) All voltage values are with respect to network ground.  
(2) The output voltage slew-rate setting limits the maximum output capacitance.  
(3) The maximum output current can be limited by the forward current limit ILIM FWD and by the junction temperature. The power dissipation  
inside the die depends on the length of the current pulse and efficiency and the junction temperature may increase to thermal  
shutdown level if the board and ambient temperatures are high.  
(4) Output capacitance, forward and negative current limits and load current may limit the maximum and minimum slew rates.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LP875701-Q1  
 
 
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
MAX UNIT  
6.6 I2C Serial Bus Timing Requirements  
These specifications are ensured by design. VIN_Bx = 3.7 V, unless otherwise noted.  
MIN  
Standard mode  
Fast mode  
100  
kHz  
400  
Serial clock frequency  
Fast mode+  
1
ƒSCL  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
3.4 MHz  
1.7  
4.7  
1.3  
0.5  
160  
320  
4
Fast mode  
µs  
ns  
µs  
ns  
tLOW  
SCL low time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
0.6  
0.26  
60  
tHIGH  
SCL high time  
Data setup time  
Data hold time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
120  
250  
100  
50  
Fast mode  
tSU;DAT  
tHD;DAT  
tSU;STA  
ns  
Fast mode+  
High-speed mode  
Standard mode  
10  
10  
3450  
Fast mode  
10  
900  
ns  
ns  
Fast mode+  
10  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
70  
10  
150  
4.7  
0.6  
0.26  
160  
4
Fast mode  
µs  
ns  
µs  
ns  
µs  
Setup time for a start or a repeated  
start condition  
Fast mode+  
High-speed mode  
Standard mode  
Fast mode  
0.6  
0.26  
160  
4.7  
1.3  
0.5  
4
Hold time for a start or a repeated  
start condition  
tHD;STA  
Fast mode+  
High-speed mode  
Standard mode  
Bus free time between a stop and  
start condition  
tBUF  
Fast mode  
Fast mode+  
Standard mode  
Fast mode  
0.6  
0.26  
160  
µs  
ns  
tSU;STO  
Setup time for a stop condition  
Fast mode+  
High-speed mode  
Standard mode  
1000  
300  
120  
80  
Fast mode  
20  
trDA  
Rise time of SDA signal  
Fast mode+  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
10  
20  
160  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
These specifications are ensured by design. VIN_Bx = 3.7 V, unless otherwise noted.  
MIN  
MAX UNIT  
Standard mode  
Fast mode  
300  
20 × (VDD  
/
300  
5.5 V)  
tfDA  
Fall time of SDA signal  
20 × (VDD  
/
ns  
Fast mode+  
120  
5.5 V)  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
80  
160  
30  
1000  
300  
Fast mode  
20  
trCL  
Rise time of SCL signal  
Fast mode+  
120  
40  
ns  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
High-speed mode, Cb = 100 pF  
10  
20  
10  
80  
Rise time of SCL signal after a  
repeated start condition and after  
an acknowledge bit  
80  
trCL1  
High-speed mode, Cb = 400 pF  
Standard mode  
20  
160  
300  
20 × (VDD  
/
Fast mode  
300  
120  
5.5 V)  
tfCL  
Fall time of a SCL signal  
20 × (VDD  
/
ns  
Fast mode+  
5.5 V)  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
10  
40  
80  
20  
Capacitive load for each bus line  
(SCL and SDA)  
Cb  
400  
50  
pF  
ns  
Pulse width of spike suppressed  
(SCL and SDA spikes that are less  
than the indicated width are  
suppressed)  
Standard mode, fast mode and fast mode+  
High-speed mode  
tSP  
10  
tBUF  
SDA  
SCL  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
6-1. I2C Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
Unless otherwise specified: TA = 25°C, VIN = 3.7 V, VOUT = 1 V, V(NRST) = 1.8 V, ƒSW = 3 MHz, L = 0.33 µH (Murata  
DFE252012PD-R33M), COUT = 22 µF / phase, CPOL = 122 µF / phase.  
4
3.5  
3
10  
9
8
7
6
5
4
3
2
1
0
2.5  
2
1.5  
1
0.5  
0
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
D045  
D046  
V(NRST) = 0 V  
V(NRST) = 1.8 V Regulators disabled  
6-2. Shutdown Current Consumption vs Input Voltage  
6-3. Standby Current Consumption vs Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
TheLP875701-Q1 is a high-efficiency, high-performance power supply device with four step-down DC/DC  
converter cores for automotive applications. 7-1 lists the output characteristics of the regulators.  
7-1. Regulator Outputs  
OUTPUT  
SUPPLY  
VOUT RANGE  
RESOLUTION  
IMAX MAXIMUM OUTPUT CURRENT  
BUCK0, BUCK1, BUCK2, BUCK3 in one 4-  
phase output  
1.0 V  
Not Applicable  
2.5 A per phase  
The LP875701-Q1 also supports switching clock synchronization to an external clock. The nominal frequency of  
the external clock can be from 1 MHz to 24 MHz with 1-MHz steps.  
Additional features include:  
Soft start  
Input voltage protection:  
Undervoltage lockout  
Overvoltage protection  
Output voltage monitoring and protection:  
Overvoltage monitoring  
Undervoltage monitoring  
Overload protection  
Thermal warning  
Thermal shutdown  
Three enable signals can be multiplexed to general purpose I/O (GPIO) signals. The direction and output type  
(open-drain or push-pull) are programmable for the GPIOs.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LP875701-Q1  
 
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.2 Functional Block Diagram  
VANA  
Buck0  
nINT  
Interrupts  
Enable,  
ILIM Det  
Pwrgood Det  
Overload and SC Det  
Iload ADC  
EN1 (GPIO1)  
EN2 (GPIO2)  
EN3 (GPIO3)  
Slew-Rate  
Control  
Buck1  
ILIM Det  
Pwrgood Det  
SDA  
SCL  
I2C  
Overload and SC Det  
Iload ADC  
OTP  
EPROM  
PGOOD  
Registers  
Buck2  
ILIM Det  
Pwrgood Det  
Digital  
Logic  
Overload and SC Det  
Iload ADC  
UVLO  
Thermal  
Monitor  
NRST  
Buck3  
ILIM Det  
Pwrgood Det  
Ref &  
Bias  
SW  
Reset  
Oscillator  
Overload and SC Det  
Iload ADC  
CLKIN  
7.3 Feature Descriptions  
7.3.1 Multi-Phase DC/DC Converters  
7.3.1.1 Overview  
The LP875701-Q1 includes four step-down DC/DC converter cores which are configured as a 4-phase single  
output.  
TheLP875701-Q1 has the following features:  
Optional external clock input to minimize crosstalk  
Optional spread spectrum technique to decrease EMI  
Phase control for optimized EMI  
Synchronous rectification  
Current mode loop with PI compensator  
Soft start  
Power Good flag with maskable interrupt  
Power Good signal (PGOOD) with selectable sources  
Average output current sensing (for load current measurement)  
Current balancing between the phases of the converter  
Differential voltage sensing from point of the load for multiphase output  
The following parameters can be programmed via registers:  
Forced multiphase operation for multiphase outputs (forces also the PWM operation)  
Enable and disable delays for regulators and GPIOs controlled by ENx pins  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
The 4 buck converters in the LP875701-Q1 operate in forced multiphase configuration as one 4-phase  
converter, which offers several advantages over one power stage converter. For application processor power  
delivery, lower ripple on the input and output currents and faster transient response to load steps are the most  
significant advantages. Also, because the load current is evenly shared among multiple channels in multiphase  
output configuration, the heat generated is greatly decreased for each channel due to the fact that power loss is  
proportional to square of current. The physical size of the output inductor shrinks significantly due to this heat  
reduction. 7-1 shows a block diagram of a single core.  
Interleaving switching action of the 4-phase converter is shown in 7-2. The 4-phase converter switches each  
channel 90° apart. As a result, the 4-phase converter has an effective ripple frequency four times greater than  
the switching frequency of a one phase converter  
PMOS  
Current  
Sense  
Differential to Single-  
Ended  
FBP  
FBN  
+
-
VIN  
POS  
Current  
Limit  
œ
Slave  
Phase  
Control  
Ramp  
Generator  
VOUT  
œ
Gate  
Control  
Error  
Amp  
+
SW  
Loop  
Comp  
Voltage  
Setting  
Slew Rate  
Control  
NEG  
Current  
Limit  
Power  
Good  
+
-
VDAC  
Zero  
Cross  
Detect  
NMOS  
Current  
Sense  
Programmable  
Parameters  
Master  
Interface  
Control  
Block  
Slave  
Interface  
IADC  
GND  
Copyright © 2017, Texas Instruments Incorporated  
7-1. Detailed Block Diagram Showing One Core  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
IL_TOT_4PH  
IL0  
IL1  
IL2  
IL3  
0
90  
180  
270  
360  
450  
540  
630  
720  
PWM0  
PWM1  
PWM2  
PWM3  
Switching Cycle 360º  
0
90  
180  
270  
360  
450  
540  
630  
720  
Phase (Degrees)  
A. Graph is not in scale and is for illustrative purposes only.  
7-2. Example of PWM Timings, Inductor Current Waveforms, and Total Output Current in 4-Phase  
Configuration.  
7.3.1.2 Multiphase Switcher Configurations  
In single 4-phase output configuration the BUCK0 is master for the BUCK0, BUCK1, BUCK2, BUCK3 output.  
In the multiphase configuration the control of the multiphase regulator settings is done using the control registers  
of the master buck. The following slave registers are ignored:  
BUCKx_CTRL1 register, except EN_RDISx bit  
BUCKx_DELAY register  
interrupt bits related to the slave buck, except BUCKx_ILIM_INT  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.3.1.3 Buck Converter Load-Current Measurement  
Buck load current can be monitored through I2C registers. The monitored buck converter is selected with the  
LOAD_CURRENT_BUCK_SELECT[1:0] bits in SEL_I_LOAD register. A write to this selection register starts a  
current measurement sequence. The measurement sequence is 50 µs long, maximum. The LP875701-Q1  
device can be configured to give out an interrupt (I_LOAD_READY bit in INT_TOP1 register) after the load  
current measurement sequence is finished. Load current measurement interrupt can be masked with  
I_LOAD_READY_MASK bit (TOP_MASK1 register). The measurement result can be read from registers  
I_LOAD_1 and I_LOAD_2. Register I_LOAD_1 bits BUCK_LOAD_CURRENT[7:0] give out the LSB bits and  
register I_LOAD_2 bits BUCK_LOAD_CURRENT[9:8] the MSB bits. The measurement result  
BUCK_LOAD_CURRENT[9:0] LSB is 20 mA, and maximum value of the measurement corresponds to 20.46 A.  
If the selected buck regulator is a master phase, the measured current is the total value of the master and slave  
phases. If the selected buck regulator is a slave phase, the measured current is the output current of the  
selected phase.  
7.3.1.4 Spread-Spectrum Mode  
Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband  
frequencies (the switching frequency and its harmonics). The usual solution to decrease noise coupling is to add  
EMI filters and shields to the boards. The LP875701-Q1 device has register selectable spread-spectrum mode  
which minimizes the need for output filters, ferrite beads, or chokes. In spread-spectrum mode, the switching  
frequency varies around the center frequency, reducing the EMI emissions radiated by the converter and  
associated passive components and PCB traces (see 7-3). This feature is available only when internal RC  
oscillator is used (PLL_MODE[1:0] = 00 in PLL_CTRL register), and it is enabled with the EN_SPREAD_SPEC  
bit (PIN_FUNCTION register), and it affects all the buck cores.  
Frequency  
Where a fixed-frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread-spectrum  
architecture of the LP875701-Q1 spreads that energy over a large bandwidth.  
7-3. Spread-Spectrum Modulation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.3.2 Sync Clock Functionality  
The LP875701-Q1 device contains a CLKIN input to synchronize switching clock of the buck regulator with the  
external clock. The block diagram of the clocking and PLL module is shown in 7-4. Depending on the  
PLL_MODE[1:0] bits (in PLL_CTRL register) and the external clock availability, the external clock is selected and  
interrupt is generated as shown in 7-2. The interrupt can be masked with SYNC_CLK_MASK bit in  
TOP_MASK1 register. The nominal frequency of the external input clock is set by EXT_CLK_FREQ[4:0] bits (in  
PLL_CTRL register) and it can be from 1 MHz to 24 MHz with 1-MHz steps. The external clock must be inside  
accuracy limits (30%/+10%) for valid clock detection.  
The NO_SYNC_CLK interrupt (in INT_TOP1 register) is also generated in cases the external clock is expected  
but it is not available. These cases are start-up (read OTP-to-STANDBY transition) when PLL_MODE[1:0] = 01  
and regulator enable (STANDBY-to-ACTIVE transition) when PLL_MODE[1:0] = 10.  
24-MHz  
RC  
Oscillator  
Internal  
24-MHz  
clock  
CLKIN  
Detector  
Divider  
“EXT_CLK_  
FREQ“  
Clock Select  
Logic  
CLKIN  
1MHz  
24MHz  
PLL  
“PLL_MODE“  
1MHz  
Divider  
24  
Copyright © 2017, Texas Instruments Incorporated  
7-4. Clock and PLL Module  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7-2. PLL Operation  
DEVICE  
OPERATION MODE  
PLL AND CLOCK  
DETECTOR STATE  
INTERRUPT FOR  
EXTERNAL CLOCK  
PLL_MODE[1:0]  
CLOCK  
STANDBY  
ACTIVE  
0h  
0h  
Disabled  
No  
No  
Internal RC  
Internal RC  
Disabled  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
STANDBY  
1h  
Enabled  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
ACTIVE  
STANDBY  
ACTIVE  
1h  
2h  
2h  
Enabled  
Disabled  
Enabled  
No  
Internal RC  
When external clock  
appears or disappears  
Automatic change to external  
clock when available  
STANDBY  
ACTIVE  
3h  
3h  
Reserved  
Reserved  
7.3.3 Power-Up  
The power-up sequence for the LP875701-Q1 is as follows:  
VANA (and VIN_Bx) reach minimum recommended level (VVANA > VANAUVLO).  
NRST is set to high level (or shorted to VANA). This initiates power-on-reset (POR), OTP reading and  
enables the system I/O interface. The I2C host must wait at least 1.2 ms before applying signals to ENx pins  
or writing or reading data to the LP875701-Q1.  
Device goes to the STANDBY-mode .  
The host can change the default register setting by I2C if needed.  
The regulator(s) can be enabled/disabled by ENx pin(s) and by I2C interface.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.3.4 Regulator Control  
7.3.4.1 Enabling and Disabling Regulators  
One or more regulators can be enabled when the device is in STANDBY or ACTIVE state. There are two ways  
for enable and disable the regulators:  
Using EN_BUCK0 bit in BUCK0_CTRL1 register (EN_PIN_CTRL0 register bit is 0h)  
Using EN1, EN2, EN3 control pins (EN_BUCK0 bit is 1h AND EN_PIN_CTRL0 register bit is 1 in  
BUCK0_CTRL1 register)  
If the EN1, EN2, EN3 control pins are used for enable and disable then the control pin is selected with  
BUCK0_EN_PIN_SELECT[1:0] bits (in BUCK0_CTRL1 register). The delay from the control signal rising edge to  
enabling of the regulator is set by BUCK0_STARTUP_DELAY[3:0] bits and the delay from control signal falling  
edge to disabling of the regulator is set by BUCK0_SHUTDOWN_DELAY[3:0] bits in BUCK0_DELAY register.  
The delays are valid only for EN1, EN2, EN3 signal control. The control with EN_BUCK0 bit is immediate without  
the delays.  
The control of the regulator (with 0-ms delays) is shown in 7-3.  
备注  
The control of the regulator cannot be changed from one ENx pin to a different ENx pin because the  
control is ENx signal edge sensitive. The control from ENx pin to register bit and back to the original  
ENx pin can be done during operation.  
7-3. Regulator Control  
CONTROL  
METHOD  
EN_PIN_CTRL BUCK0_EN_PI  
BUCKx  
OUTPUT VOLTAGE  
EN_BUCK0  
EN1 PIN  
EN2 PIN  
EN3 PIN  
0
Don't Care  
0h  
N_SELECT[1:0]  
Enable and disable  
control with  
EN_BUCK0 bit  
0h  
1h  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Disabled  
1.0 Volt  
Don't Care  
Enable and disable  
control with EN1  
pin  
1h  
1h  
1h  
1h  
0h  
0h  
Low  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Disabled  
1.0 Volt  
High  
Enable and disable  
control with EN2  
pin  
1h  
1h  
1h  
1h  
1h  
1h  
Don't Care  
Don't Care  
Low  
Don't Care  
Don't Care  
Disabled  
1.0 Volt  
High  
Enable and disable  
control with EN3  
pin  
1h  
1h  
1h  
1h  
2h  
2h  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Low  
Disabled  
1.0 Volt  
High  
The regulator is enabled by the ENx pin or by I2C writing as shown in 7-5. The soft-start circuit limits the in-  
rush current during start-up. When the output voltage rises to 0.35-V level, the output voltage becomes slew-rate  
controlled . If there is a short circuit at the output and the output voltage does not increase above 0.35-V level in  
1 ms, the regulator is disabled, and interrupt is set. When the output voltage reaches the Power-Good threshold  
level the BUCKx_PG_INT interrupt flag (in INT_BUCK_x register) is set. The Power-Good interrupt flag can be  
masked using BUCKx_PG_MASK bit (in BUCKx_MASK register).  
The ENx input pins have integrated pulldown resistors. The pulldown resistors are enabled by default, and the  
host can disable those with ENx_PD bits (in CONFIG register).  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
Voltage decrease because of load  
Voltage  
No new Powergood interrupt  
1 Volt  
Powergood  
Ramp 3.8 mV/ms  
0.6V  
0.35V  
Time  
Resistive pull-down  
(if enabled)  
Soft start  
Enable  
BUCK_x_STAT(BUCKx_STAT)  
BUCK_x_STAT(BUCKx_PG_STAT)  
INT_BUCK_x(BUCKx_PG_INT)  
nINT  
0
0
0
1
0
0
1
1
0
1
0
Powergood  
interrupt  
Host clears  
interrupt  
7-5. Regulator Enable and Disable  
7.3.5 Enable and Disable Sequences  
The LP875701-Q1 device supports start-up and shutdown sequencing with programmable delay for the  
regulator output using one EN1, EN2, or EN3 control signal. The regulator is selected for delayed control with:  
EN_BUCK0 = 1 (in BUCK0_CTRL1 register)  
EN_PIN_CTRL0 = 1 (in BUCK0_CTRL1 register)  
The ENABLE pin for control is selected with BUCK0_EN_PIN_SELECT[1:0] (in BUCK0_CTRL1 register)  
The delay from rising edge of ENx signal to the regulator enable is set by BUCK0_STARTUP_DELAY[3:0]  
bits (in BUCK0_DELAY register) and  
The delay from falling edge of ENx signal to the regulator disable is set by BUCK0_SHUTDOWN_DELAY[3:0]  
bits (in BUCK0_DELAY register)  
There are four time steps available for start-up and shutdown sequences. The delay times are selected with  
DOUBLE_DELAY bit in CONFIG register and HALF_DELAY bit in PGOOD_CTRL2 register as shown in 7-4.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7-4. Start-Up and Shutdown Delays  
0_STARTUP_DELAY or  
0_SHUTDOWN_DELAY  
DOUBLE_DELAY = 0h  
DOUBLE_DELAY = 1h  
DOUBLE_DELAY = 0h  
DOUBLE_DELAY = 1h  
HALF_DELAY = 0h  
HALF_DELAY = 1h  
HALF_DELAY = 1h  
HALF_DELAY = 0h  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
dh  
Eh  
Fh  
0 ms  
0 ms  
0 ms  
1 ms  
0 ms  
0.32 ms  
0.64 ms  
0.96 ms  
1.28 ms  
1.6 ms  
0.64 ms  
1.28 ms  
1.92 ms  
2.56 ms  
3.2 ms  
2 ms  
2 ms  
4 ms  
3 ms  
6 ms  
4 ms  
8 ms  
5 ms  
10 ms  
12 ms  
14 ms  
16 ms  
18 ms  
20 ms  
22 ms  
24 ms  
26 ms  
28 ms  
30 ms  
1.92 ms  
2.24 ms  
2.56 ms  
2.88 ms  
3.2 ms  
3.84 ms  
4.48 ms  
5.12 ms  
5.76 ms  
6.4 ms  
6 ms  
7 ms  
8 ms  
9 ms  
10 ms  
11 ms  
12 ms  
13 ms  
14 ms  
15 ms  
3.52 ms  
3.84 ms  
4.16 ms  
4.48 ms  
4.8 ms  
7.04 ms  
7.68 ms  
8.32 ms  
8.96 ms  
9.6 ms  
An example of start-up and shutdown sequences is shown in 7-6 and 7-7. The start-up and shutdown  
delays for the master buck regulator BUCK0 regulator is 1 ms and 4 ms . The delay settings are used only for  
enable/disable control with EN1, EN2, EN3 signals  
ENx  
EN_BUCK0  
1ms  
4ms  
7-6. Typical Start-Up and Shutdown Sequencing  
ENx  
Startup cntr  
Shutdown cntr  
EN_BUCK0  
0
0
0
1
0
1
2
3
4
5
6
0
2
0
1
0
1
0
1
2
3
4
5
1ms  
4ms  
7-7. Start-Up and Shutdown Sequencing With Short ENx Low and High Periods  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.3.6 Device Reset Scenarios  
There are three reset methods implemented on the LP875701-Q1:  
Software reset with SW_RESET register bit (in RESET register)  
POR from rising edge of NRST signal  
Undervoltage lockout (UVLO) reset from VANA supply  
A SW-reset occurs when SW_RESET bit is written 1. The bit is automatically cleared after writing. This event  
disables all the regulators immediately, resets all the register bits to the default values and OTP bits are loaded  
(see 7-11). I2C interface is not reset during software reset. The host must wait at least 1.2 ms after writing SW  
reset until making a new I2C read or write to the device.  
If VANA supply voltage falls below UVLO threshold level or NRST signal is set low then all the regulators are  
disabled immediately, and all the register bits are reset to the default values. When the VANA supply voltage  
rises above UVLO threshold level AND NRST signal rises above threshold level an internal power-on reset  
(POR) occurs. OTP bits are loaded to the registers and a start-up is initiated according to the register settings.  
The host must wait at least 1.2 ms after POR until reading or writing to I2C interface.  
7.3.7 Diagnosis and Protection Features  
The LP875701-Q1 is capable of providing four levels of protection features:  
Information of valid regulator output voltage which sets interrupt or PGOOD signal;  
Warnings for diagnosis which sets interrupt;  
Protection events which are disabling the regulators affected; and  
Faults which are causing the device to shutdown.  
The LP875701-Q1 sets the flag bits indicating what protection or warning conditions have occurred, and the  
nINT pin is pulled low. nINT is released again after a clear of flags is complete. The nINT signal stays low until all  
the pending interrupts are cleared.  
When a fault is detected, it is indicated by a RESET_REG interrupt flag (in INT2_TOP register) after next start-  
up.  
7-5. Summary of Interrupt Signals  
INTERRUPT REGISTER AND  
RECOVERY/INTERRUPT  
CLEAR  
EVENT  
RESULT  
INTERRUPT MASK  
STATUS BIT  
BIT  
Write 1 to BUCKx_ILIM_INT bit  
Interrupt is not cleared if  
current limit is active  
Current limit triggered  
(20-µs debounce)  
INT_BUCKx = 1  
BUCKx_ILIM_INT = 1  
Interrupt  
BUCKx_ILIM_MASK  
BUCKx_ILIM_STAT  
Short circuit (VVOUT  
0.35 V at 1 ms after  
enable) or overload  
(VVOUT decreasing  
below 0.35 V during  
operation, 1 ms  
<
Regulator disable and  
interrupt  
INT_BUCKx = 1  
BUCKx_SC_INT = 1  
N/A  
N/A  
Write 1 to BUCKx_SC_INT bit  
debounce)  
Write 1 to TDIE_WARN bit  
Interrupt is not cleared if  
temperature is above thermal  
warning level  
Thermal warning  
Interrupt  
TDIE_WARN = 1  
TDIE_WARN_MASK  
TDIE_WARN_STAT  
TDIE_SD_STAT  
Write 1 to TDIE_SD bit  
Interrupt is not cleared if  
temperature is above thermal  
shutdown level  
All regulators disabled  
and Output GPIOx set to TDIE_SD = 1  
low and interrupt  
Thermal shutdown  
VANA overvoltage  
N/A  
Write 1 to INT_OVP bit  
Interrupt is not cleared if VANA  
voltage is above VANA OVP  
level  
All regulators disabled  
and Output GPIOx set to INT_OVP  
low and interrupt  
N/A  
OVP_STAT  
(VANAOVP  
)
Power Good, output  
voltage reaches the  
programmed value  
INT_BUCKx = 1  
Interrupt  
BUCKx_PG_MASK  
BUCKx_PG_STAT  
Write 1 to BUCKx_PG_INT bit  
BUCKx_PG_INT = 1  
GPIO  
Interrupt  
Interrupt  
INT_GPIO  
GPIO_MASK  
GPIO_IN register  
SYNC_CLK_STAT  
Write 1 to INT_GPIO bit  
External clock appears  
or disappears  
NO_SYNC_CLK(1)  
SYNC_CLK_MASK  
Write 1 to NO_SYNC_CLK bit  
Load current  
measurement ready  
Interrupt  
I_LOAD_READY = 1  
I_LOAD_READY_MASK  
N/A  
Write 1 to I_LOAD_READY bit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7-5. Summary of Interrupt Signals (continued)  
INTERRUPT REGISTER AND  
RECOVERY/INTERRUPT  
CLEAR  
EVENT  
RESULT  
INTERRUPT MASK  
STATUS BIT  
BIT  
Device ready for  
operation, registers reset  
to default values and  
interrupt  
Start-Up (NRST rising  
edge)  
RESET_REG = 1  
RESET_REG = 1  
RESET_REG = 1  
RESET_REG_MASK  
N/A  
N/A  
N/A  
Write 1 to RESET_REG bit  
Write 1 to RESET_REG bit  
Write 1 to RESET_REG bit  
Immediate shutdown  
followed by power up,  
registers reset to default  
values and interrupt  
Glitch on supply voltage  
and UVLO triggered  
(VANA falling and rising)  
RESET_REG_MASK  
RESET_REG_MASK  
Immediate shutdown  
followed by power up,  
registers reset to default  
values and interrupt  
Software requested  
reset  
(1) Interrupt is generated during clock detector operation and in case clock is not available when clock detector is enabled.  
7.3.7.1 Power-Good Information (PGOOD pin)  
In addition to the interrupt based indication of current limit and Power-Good level the LP875701-Q1 device  
supports the indication with PGOOD signal. Either voltage and current monitoring or a voltage monitoring only  
can be selected for PGOOD indication. This selection is individual for all buck regulators (select master phase  
for multiphase regulator) and is set by PGx_SEL[1:0] bits (in PGOOD_CTRL1 register). When both voltage and  
current are monitored, PGOOD signal active indicates that regulator output is inside the Power-Good voltage  
window and that load current is below ILIM FWD. If only voltage is monitored, then the current monitoring is  
ignored for the PGOOD signal. When a regulator is disabled, the monitoring is automatically masked to prevent it  
forcing PGOOD inactive. This allows connecting PGOOD signals from various devices together when open-drain  
outputs are used. When regulator voltage is transitioning from one target voltage to another, the voltage  
monitoring PGOOD signal is set inactive. The monitoring from all the output rails are combined, and PGOOD is  
active only if all the sources shows active status. The status from all the voltage rails are summarized in 7-6.  
If the PGOOD signal is inactive or it changes the state to inactive, the source for the state can be read from  
PGOOD_FLT register. During reading all the PGx_FLT bit are cleared that are not driving the PGOOD inactive.  
When PGOOD signal goes active, the host must read the PGOOD_FLT register to clear all the bits. The PGOOD  
signal follows the status of all the monitored outputs.  
The PGOOD signal can be also configured so that it stays in the inactive state even when the monitored outputs  
are valid but there are PGx_FLT bits pending clearance in PGOOD_FLT register. This mode of operation is  
selected by setting EN_PGFLT_STAT bit to 1 (in PGOOD_CTRL2 register).  
The type of output voltage monitoring for PGOOD signal is selected by PGOOD_WINDOW bit (in  
PGOOD_CTRL2 register). If the bit is 0, only undervoltage is monitored; if the bit is 1, both undervoltage and  
overvoltage are monitored.  
The polarity and the output type (push-pull or open-drain) are selected by PGOOD_POL and PGOOD_OD bits in  
PGOOD_CTRL2 register.  
The filtering time for invalid output voltage is always typically 7 µs and for valid output voltage the filtering time is  
selected with PGOOD_SET_DELAY bit (in PGOOD_CTRL2 register). The Power-Good waveforms are shown in  
7-9.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
ILIM  
Buck0  
Buck1  
Buck2  
Buck3  
MUX  
Power Good  
PG0_SEL[1:0]  
ILIM  
MUX  
Power Good  
PG1_SEL[1:0]  
PGOOD  
ILIM  
MUX  
Power Good  
PG2_SEL[1:0]  
ILIM  
MUX  
Power Good  
PG3_SEL[1:0]  
Copyright © 2017, Texas Instruments Incorporated  
7-8. PGOOD Block Diagram  
7-6. PGOOD Operation  
STATUS / USE CASE  
CONDITION  
INPUT TO PGOOD SIGNAL  
PGx_SEL = 00 (in PGOOD_CTRL1  
register)  
Buck not selected for PGOOD monitoring  
Buck disabled  
Active  
Active  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7-6. PGOOD Operation (continued)  
STATUS / USE CASE  
CONDITION  
INPUT TO PGOOD SIGNAL  
BUCK SELECTED FOR PGOOD MONITORING  
Buck start-up delay  
Inactive  
Inactive  
Inactive  
Buck soft start  
VOUT < 0.35 V  
Buck voltage ramp-up  
0.35 V < VOUT < VSET  
Output voltage within window limits after  
start-up  
Must be inside limits longer than debounce  
time  
Active  
Output voltage inside voltage window and  
current limit active  
Current limit active longer than debounce  
time  
Active (if only voltage monitoring selected)  
Inactive (if also current monitoring selected)  
Output voltage spikes (overvoltage or  
undervoltage)  
If spikes are outside voltage window longer  
than debounce time  
Inactive  
Inactive  
Active  
Voltage setting change, output voltage  
ramp  
Output voltage within window limits after  
voltage change  
Must be inside limits longer than debounce  
time  
Buck shutdown delay  
Active  
Active  
Buck output voltage ramp down  
Buck disabled by thermal shutdown and  
interrupt pending  
Inactive  
Inactive  
Inactive  
Buck disabled by overvoltage and interrupt  
pending  
Buck disabled by short-circuit detection  
and interrupt pending  
Voltage  
Powergood window  
1 Volt  
Time  
ENx  
7us/11ms  
PGOOD_SET_DELAY  
PGOOD  
7-9. PGOOD Waveforms (PGOOD_POL=0)  
7.3.7.2 Warnings for Diagnosis (Interrupt)  
7.3.7.2.1 Output Power Limit  
The regulators have output peak current limits. The peak current limits are described in Electrical Characteristic  
Table. If the load current is increased so that the current limit is triggered, the regulator continues to regulate to  
the limit current level (current peak regulation, peak on each switching cycle). The voltage may decrease if the  
load current is higher than the average output current. If the current regulation continues for 20 µs, the  
LP875701-Q1 device sets the BUCKx_ILIM_INT bit (in INT_BUCKx register) and pulls the nINT pin low. The  
host processor can read BUCKx_ILIM_STAT bits (in BUCKx_STAT register) to see if the regulator is still in peak  
current regulation mode.  
If the load is so high that the output voltage decreases below a 350-mV level, the LP875701-Q1 device disables  
the regulator and sets the BUCKx_SC_INT bit (in INT_BUCKx register). In addition the BUCKx_STAT bit (in  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
BUCKx_STAT register) is set to 0. The interrupt is cleared when the host processor writes 1 to BUCKx_SC_INT  
bit. The overload situation is shown in 7-10.  
Regulator  
disabled by digital  
New start-up if  
enable is valid  
Voltage  
VOUTx  
350 mV  
Resistive  
pulldown  
1 ms  
Time  
Current  
ILIMx  
Time  
20 ms  
INT_BUCKx  
(BUCKx_ILIM_INT)  
0
0
1
1
0
INT_BUCK  
(BUCKx_SC_INT)  
1
0
0
1
BUCKx_STAT  
(BUCKx_STAT)  
nINT  
Host clearing the interrupt by writing to flags  
7-10. Overload Situation  
7.3.7.2.2 Thermal Warning  
The LP875701-Q1 device includes a monitoring feature against overtemperature by setting an interrupt for host  
processor. The threshold level of the thermal warning is selected with TDIE_WARN_LEVEL bit (in CONFIG  
register).  
If the LP875701-Q1 device temperature increases above thermal warning level the device sets TDIE_WARN bit  
(in INT_TOP1 register) and pulls nINT pin low. The status of the thermal warning can be read from  
TDIE_WARN_STAT bit (in TOP_STAT register), and the interrupt is cleared by writing 1 to TDIE_WARN bit.  
7.3.7.3 Protection (Regulator Disable)  
If the regulator is disabled because of protection or fault (short-circuit protection, overload protection, thermal  
shutdown, overvoltage protection, or UVLO), the output power FETs are set to high-impedance mode, and the  
output pulldown resistor is enabled (if enabled with EN_RDISx bits in BUCKx_CTRL1 register). The turnoff time  
of the output voltage is defined by the output capacitance, load current, and the resistance of the integrated  
pulldown resistor. The pulldown resistors are active as long as VANA voltage is above approximately a 1.2-V  
level.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.3.7.3.1 Short-Circuit and Overload Protection  
A short-circuit protection feature lets the LP875701-Q1 device protect itself and external components against  
short circuit at the output or against overload during start-up. The fault threshold is 350 mV, the protection is  
triggered, and the regulator is disabled if the output voltage is below the threshold level 1 ms after the regulator  
is enabled.  
In a similar way the overload situation is protected during normal operation. If the voltage on the feedback pin of  
the regulator falls to less than 0.35 V and stays lower the threshold level for 1 ms, the regulator is disabled.  
In the short-circuit and overload situations the BUCKx_SC_INT (in INT_BUCKx register) and the INT_BUCKx  
bits (in INT_TOP1 register) are set to 1, the BUCKx_STAT bit (in BUCKx_STAT register) is set to 0, and the nINT  
signal is pulled low. The host processor clears the interrupt by writing 1 to the BUCKx_SC_INT bit. After clearing  
the interrupt the regulator makes a new start-up attempt if the regulator is in enabled state.  
7.3.7.3.2 Overvoltage Protection  
The LP875701-Q1 device monitors the input voltage from the VANA pin in standby and active operation modes.  
If the input voltage rises above VANAOVP voltage level, all the regulators are disabled, pulldown resistors  
discharge the output voltages (if EN_RDISx = 1 in BUCKx_CTRL1 register), GPIOs that are configured to  
outputs are set to logic low level, nINT signal is pulled low, INT_OVP bit (in INT_TOP1 register) is set to 1, and  
BUCKx_STAT bits (in BUCK_x_STAT register) are set to 0. The host processor clears the interrupt by writing 1  
to the INT_OVP bit. If the input voltage is above the overvoltage detection level the interrupt is not cleared. The  
host can read the status of the overvoltage from the OVP_STAT bit (in TOP_STAT register). Regulators cannot  
be enabled as long as the input voltage is above overvoltage detection level or the overvoltage interrupt is  
pending.  
7.3.7.3.3 Thermal Shutdown  
The LP875701-Q1 has an overtemperature protection function that operates to protect the device from short-  
term misuse and overload conditions. When the junction temperature exceeds around 150°C, the regulators are  
disabled, the TDIE_SD bit (in INT_TOP1 register) is set to 1, the nINT signal is pulled low, and the device goes  
to the STANDBY state. The nINT pin is cleared by writing 1h to the TDIE_SD bit. If the temperature is above  
thermal shutdown level the interrupt is not cleared. The host can read the status of the thermal shutdown from  
the TDIE_SD_STAT bit (in TOP_STAT register). Regulators cannot be enabled as long as the junction  
temperature is above thermal shutdown level or the thermal shutdown interrupt is pending.  
7.3.7.4 Fault (Power Down)  
7.3.7.4.1 Undervoltage Lockout  
When the input voltage falls below VANAUVLO at the VANA pin, the buck converters are disabled immediately,  
and the output capacitors are discharged using the pulldown resistor, and the LP875701-Q1 device goes to the  
SHUTDOWN state. When the VANA voltage is greater than the UVLO threshold level and NRST signal is high,  
the device powers up to STANDBY state.  
If the reset interrupt is unmasked by default (RESET_REG_MASK = 0 in TOP_MASK2 register) the  
RESET_REG interrupt (in INT_TOP2 register) indicates that the device has been in SHUTDOWN. The host  
processor must clear the interrupt by writing 1 to the RESET_REG bit. If the host processor reads the  
RESET_REG flag after detecting an nINT low signal, it knows that the input supply voltage has been below  
UVLO level (or the host has requested reset), and the registers are reset to default values.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.3.8 GPIO Signal Operation  
The LP875701-Q1 device supports up to 3 GPIO signals. The GPIO signals are multiplexed with enable signals.  
The selection between enable and GPIO function is set with GPIOx_SEL bits in PIN_FUNCTION register. The  
GPIOs are mapped to EN signals so that:  
EN1 is multiplexed with GPIO1  
EN2 is multiplexed with GPIO2  
EN3 is multiplexed with GPIO3  
When the pin is selected for GPIO function, additional bits defines how the GPIO operates:  
GPIOx_DIR defines the direction of the GPIO, input or output (GPIO_CONFIG register)  
GPIOx_OD defines the type of the output when the GPIO is set to output, either push-pull with VANA level or  
open-drain (GPIO_CONFIG register)  
When the GPIOx is defined as output, the logic level of the pin is set by GPIOx_OUT bit (in GPIO_OUT register).  
When the GPIOx is defined as input, the logic level of the pin can be read from GPIOx_IN bit (in GPIO_IN  
register).  
The control of the GPIOs configured to outputs can be included to start-up and shutdown sequences. The GPIO  
control for a sequence with ENx signal is selected by EN_PIN_CTRL_GPIOx and EN_PIN_SELECT_GPIOx bits  
(in  
PIN_FUNCTION  
register).  
The  
delays  
during  
start-up  
and  
shutdown  
are  
set  
by  
GPIOx_STARTUP_DELAY[3:0] and GPIOx_SHUTDOWN_DELAY[3:0] bits (in GPIOx_DELAY register) in the  
same way as control of the regulators.  
The GPIOx signals have a selectable pulldown resistor. The pulldown resistors are selected by ENx_PD bits (in  
CONFIG register).  
备注  
The control of the GPIOx pin cannot be changed from one ENx pin to a different ENx pin because the  
control is ENx signal edge sensitive. The control from ENx pin to register bit and back to the original  
ENx pin can be done during operation.  
7.3.9 Digital Signal Filtering  
The digital signals have a debounce filtering. The signal/supply is sampled with a clock signal and a counter.  
This results as an accuracy of one clock period for the debounce window.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7-7. Digital Signal Filtering  
FALLING EDGE DEBOUNCE  
TIME  
EVENT  
SIGNAL/SUPPLY  
RISING EDGE DEBOUNCE TIME  
Enable and disable for BUCKx  
Enable and disable for BUCKx  
Enable and disable for BUCKx  
VANA UVLO  
EN1  
EN2  
3 µs (1)  
3 µs (1)  
3 µs (1)  
3 µs (1)  
3 µs (1)  
EN3  
3 µs (1)  
VANA  
20 µs (VANA voltage rising)  
Immediate (VANA voltage falling)  
VANA overvoltage  
VANA  
20 µs (VANA voltage rising)  
20 µs (VANA voltage falling)  
Thermal warning  
TDIE_WARN  
TDIE_SD  
VOUTx_ILIM  
20 µs  
20 µs  
20 µs  
20 µs  
20 µs  
20 µs  
Thermal shutdown  
Current limit  
FB_B0, FB_B1, FB_B2,  
FB_F3  
Overload  
1 ms  
20 µs  
20 µs  
FB_B0, FB_B1, FB_B2,  
FB_F3  
Power-good interrupt  
20 µs  
PGOOD pin (voltage  
monitoring)  
PGOOD / FB_B0, FB_B1,  
FB_B2, FB_F3  
4-8 µs (start-up debounce time during  
start-up)  
4 to 8 µs  
20 µs  
PGOOD pin (current  
monitoring)  
PGOOD  
20 µs  
(1) No glitch filtering, only synchronization.  
7.4 Device Functional Modes  
7.4.1 Modes of Operation  
SHUTDOWN: The NRST voltage is below threshold level. All switch, reference, control, and bias circuitry of the  
LP875701-Q1 device are turned off.  
READ OTP: The primary supply voltage VANA is above VANAUVLO level and NRST voltage is above  
threshold level. The regulators are disabled and the reference and bias circuitry of the  
LP875701-Q1 are enabled. The OTP bits are loaded to registers.  
STANDBY:  
The primary supply voltage VANA is above VANAUVLO level and NRST voltage is above  
threshold level. The regulators are disabled and the reference, control and bias circuitry of the  
LP875701-Q1 are enabled. All registers can be read or written by the host processor via the  
system serial interface. The regulators can be enabled if needed.  
ACTIVE:  
The primary supply voltage VANA is above VANAUVLO level and NRST voltage is above  
threshold level. At least one regulated DC/DC converter is enabled. All registers can be read or  
written by the host processor via the system serial interface.  
The operating modes and transitions between the modes are shown in 7-11.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
SHUTDOWN  
NRST low  
OR  
VVANA < VANAUVLO  
NRST high  
AND  
VVANA > VANAUVLO  
From any state except  
SHUTDOWN  
READ  
OTP  
REGISTER  
RESET  
STANDBY  
I2C RESET  
REGULATOR  
ENABLED  
REGULATORS  
DISABLED  
ACTIVE  
7-11. Device Operation Modes  
7.5 Programming  
7.5.1 I2C-Compatible Interface  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers  
on the device. This protocol uses a two-wire interface for bidirectional communications between the devices  
connected to the bus. The two interface lines are the serial data line (SDA), and the serial clock line (SCL). Each  
device on the bus is assigned a unique address and acts as either a master or a slave depending on whether it  
generates or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor placed  
somewhere on the line and stays HIGH even when the bus is idle. Note: CLK pin is not used for serial bus data  
transfer. The LP875701-Q1 supports standard mode (100 kHz), fast mode (400 kHz), fast mode+ (1 MHz), and  
high-speed mode (3.4 MHz).  
7.5.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the  
state of the data line can only be changed when clock signal is LOW.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LP875701-Q1  
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
7-12. Data Validity Diagram  
7.5.1.2 Start and Stop Conditions  
The LP875701-Q1 is controlled through the an I2C-compatible interface. START and STOP conditions classify  
the beginning and end of the I2C session. A START condition is defined as SDA transitions from HIGH to LOW  
while SCL is HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The  
I2C master always generates the START and STOP conditions.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
7-13. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. During data  
transmission the I2C master can generate repeated START conditions. A START and a repeated START  
condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock  
signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. 7-14 shows the SDA  
and SCL signal timing for the I2C-compatible bus.  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
7-14. I2C-Compatible Timing  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.5.1.3 Transferring Data  
Each byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LP875701-Q1  
pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The LP875701-Q1 generates an  
acknowledge after each byte has been received.  
There is one exception to the acknowledge after each byte rule. When the master is the receiver, it must indicate  
to the transmitter an end of data by not-acknowledging (negative acknowledge) the last byte clocked out of the  
slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master), but the  
SDA line is not pulled down.  
备注  
If the NRST signal is low during I2C communication the LP875701-Q1 device does not drive SDA line.  
The ACK signal and data transfer to the master is disabled at that time.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE and a 1  
indicates a READ. The second byte selects the register to which the data will be written. The third byte contains  
data to write to the selected register.  
ACK from slave  
ACK from slave  
ACK from slave  
START MSB Chip Address LSB  
W
ACK MSB Register Address LSB ACK  
MSB Data LSB  
ACK STOP  
SCL  
SDA  
START  
id = 0x60  
W
ACK  
address = 0x40  
ACK  
address 0x40 data  
ACK STOP  
7-15. Write Cycle (w = write; SDA = 0), id = Device Address = 0x60 for LP875701-Q1  
ACK from slave  
ACK from slave REPEATED START  
ACK from slave Data from slave NACK from master  
START MSB Chip Address LSB  
W
MSB Register Address LSB  
RS  
MSB Chip Address LSB  
R
MSB Data LSB  
STOP  
SCL  
SDA  
START  
ACK  
ACK  
ACK  
NACK  
STOP  
id = 0x60  
W
address = 0x3F  
RS  
id = 0x60  
R
address 0x3F data  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
7-16. Read Cycle ( r = read; SDA = 1), id = Device Address = 0x60 for LP875701-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.5.1.4 I2C-Compatible Chip Address  
备注  
The device address for the LP875701-Q1 is defined in the Technical Reference Manual (TRM).  
After the START condition, the I2C master sends the 7-bit address followed by an eighth bit, read or write (R/W).  
R/W = 0 indicates a WRITE and R/W = 1 indicates a READ. The second byte following the device address  
selects the register address to which the data will be written. The third byte contains the data for the selected  
register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
I2C Slave Address (chip address)  
A. Here device address is 1100000Bin = 60Hex.  
7-17. Example Device Address  
7.5.1.5 Auto-Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Each time an 8-  
bit word is sent to the device, the internal address index counter is incremented by one and the next register is  
written. 7-8 below shows writing sequence to two consecutive registers. Note that auto increment feature  
does not work for read.  
7-8. Auto-Increment Example  
DEVICE  
ADDRESS =  
0x60  
MASTER  
ACTION  
REGISTER  
ADDRESS  
START  
WRITE  
DATA  
DATA  
STOP  
LP875701-Q1  
ACK  
ACK  
ACK  
ACK  
7.6 Register Maps  
7.6.1 Register Descriptions  
The LP875701-Q1 is controlled by a set of registers through the I2C-compatible interface. The device registers,  
their addresses, and their abbreviations are listed in 7-9. A more detailed description is given in 7.6.1.2  
through 7.6.1.30.  
备注  
This register map describes the default values for bits which are not read from OTP memory. The  
orderable code and the default register bit values are defined in part number specific Technical  
Reference Manual.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7-9. Summary of LP875701-Q1 Control Registers  
Address  
0x00  
Register  
DEV_REV  
Access  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R
R
DEVICE_ID[1:0]  
ALL_LAYER[1:0]  
METAL_LAYER[3:0]  
0x01  
OTP_REV  
OTP_ID[7:0]  
0x02  
BUCK0_CTRL1  
R/W  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EN_BUCK0  
EN_PIN_CTRL0  
BUCK0_EN_PINSELECT[1:0]  
Reserved - do not  
use  
EN_RDIS0  
Reserved - Do not Reserved - Do not  
use use  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
Reserved - Do not  
use  
Reserved - Do not use  
Reserved - Do not  
use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not  
use  
Reserved - Do not  
use  
Reserved - Do not  
use  
Reserved - Do not  
use  
Reserved - Do not  
use  
Reserved - Do not  
use  
Reserved - Do not  
use  
Reserved - Do not  
use  
Reserved - Do not  
use  
Reserved - Do not  
use  
Reserved - Do not  
use  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7-9. Summary of LP875701-Q1 Control Registers (continued)  
Address  
0x10  
Register  
Access  
RW  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved - Do not  
use  
Reserved - Do not use  
0x11  
Reserved - Do not  
use  
RW  
Reserved - Do not use  
0x12  
0x13  
BUCK0_DELAY  
R/W  
RW  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
Reserved - Do not  
use  
Reserved - Do not use  
Reserved - Do not use  
Reserved - Do not use  
0x14  
0x15  
Reserved - Do not  
use  
RW  
RW  
Reserved - Do not  
use  
0x16  
0x17  
0x18  
0x19  
GPIO2_DELAY  
GPIO3_DELAY  
RESET  
R/W  
R/W  
R/W  
R/W  
GPIO2_SHUTDOWN_DELAY[3:0]  
GPIO3_SHUTDOWN_DELAY[3:0]  
GPIO2_STARTUP_DELAY[3:0]  
GPIO3_STARTUP_DELAY[3:0]  
Reserved  
EN3_PD  
SW_RESET  
Reserved  
CONFIG  
DOUBLE_DELAY  
Reserved  
CLKIN_PD  
Reserved  
TDIE_WARN_LE  
VEL  
EN2_PD  
EN1_PD  
INT_OVP  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
INT_TOP1  
INT_TOP2  
R/W  
R/W  
R/W  
R/W  
R
INT_BUCK23  
INT_BUCK01  
NO_SYNC_CLK  
Reserved  
TDIE_SD  
TDIE_WARN  
I_LOAD_READY  
RESET_REG  
INT_BUCK_0_1  
INT_BUCK_2_3  
TOP_STAT  
Reserved  
Reserved  
BUCK1_PG_INT BUCK1_SC_INT BUCK1_ILIM_INT  
BUCK3_PG_INT BUCK3_SC_INT BUCK3_ILIM_INT  
Reserved  
Reserved  
BUCK0_PG_INT BUCK0_SC_INT BUCK0_ILIM_INT  
BUCK2_PG_INT BUCK2_SC_INT BUCK2_ILIM_INT  
Reserved  
SYNC_CLK_STA TDIE_SD_STAT TDIE_WARN_ST  
OVP_STAT  
Reserved  
Reserved  
Reserved  
Reserved  
T
AT  
0x1F  
0x20  
0x21  
0x22  
BUCK_0_1_STAT  
BUCK_2_3_STAT  
TOP_MASK1  
R
BUCK1_STAT  
BUCK3_STAT  
Reserved  
BUCK1_PG_STA  
T
Reserved  
Reserved  
BUCK1_ILIM_ST  
AT  
BUCK0_STAT  
BUCK2_STAT  
Reserved  
BUCK0_PG_STA  
T
BUCK0_ILIM_ST  
AT  
R
BUCK3_PG_STA  
T
BUCK3_ILIM_ST  
AT  
BUCK2_PG_STA  
T
BUCK2_ILIM_ST  
AT  
R/W  
R/W  
Reserved  
SYNC_CLK_MAS  
K
TDIE_WARN_MA  
SK  
I_LOAD_READY_  
MASK  
TOP_MASK2  
Reserved  
RESET_REG_MA  
SK  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7-9. Summary of LP875701-Q1 Control Registers (continued)  
Address  
Register  
Access  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x23  
BUCK_0_1_MAS  
K
Reserved  
Reserved  
BUCK1_PG_MAS  
K
Reserved  
Reserved  
BUCK1_ILIM_MA  
SK  
Reserved  
Reserved  
BUCK0_PG_MAS  
K
Reserved  
Reserved  
BUCK0_ILIM_MA  
SK  
0x24  
0x25  
BUCK_2_3_MAS  
K
R/W  
R/W  
BUCK3_PG_MAS  
K
BUCK3_ILIM_MA  
SK  
BUCK2_PG_MAS  
K
BUCK2_ILIM_MA  
SK  
SEL_I_LOAD  
Reserved  
LOAD_CURRENT_BUCK_SELECT[1  
:0]  
0x26  
0x27  
0x28  
0x29  
I_LOAD_2  
I_LOAD_1  
R
Reserved  
BUCK_LOAD_CURRENT[7:0]  
PG2_SEL[1:0] PG1_SEL[1:0]  
BUCK_LOAD_CURRENT[9:8]  
R
PGOOD_CTRL1  
PGOOD_CTRL2  
R/W  
R/W  
PG3_SEL[1:0]  
HALF_DELAY  
PG0_SEL[1:0]  
EN_PG0_NINT PGOOD_SET_DE EN_PGFLT_STAT  
LAY  
Reserved  
PGOOD_WINDO  
W
PGOOD_OD  
PG1_FLT  
PGOOD_POL  
PG0_FLT  
0x2A  
0x2B  
0x2C  
PGOOD_FLT  
PLL_CTRL  
R
PG3_FLT  
PG2_FLT  
EXT_CLK_FREQ[4:0]  
GPIO3_SEL  
R/W  
R/W  
PLL_MODE[1:0]  
Reserved  
PIN_FUNCTION  
EN_SPREAD_SP EN_PIN_CTRL_G EN_PIN_SELECT EN_PIN_CTRL_G EN_PIN_SELECT  
GPIO2_SEL  
GPIO1_SEL  
EC  
PIO3  
_GPIO3  
GPIO2_OD  
Reserved  
Reserved  
PIO2  
_GPIO2  
0x2D  
0x2E  
0x2F  
GPIO_CONFIG  
GPIO_IN  
R/W  
R
Reserved  
GPIO3_OD  
GPIO1_OD  
Reserved  
GPIO3_DIR  
GPIO3_IN  
GPIO2_DIR  
GPIO2_IN  
GPIO1_DIR  
GPIO1_IN  
GPIO_OUT  
R/W  
GPIO3_OUT  
GPIO2_OUT  
GPIO1_OUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
Complex bit access types are encoded to fit into small table cells. 7-10 shows the codes that are used for access types in this section.  
7-10. Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
R
R
Read  
Read  
Read  
RC  
R-0  
Write Type  
W
W
Write  
W1C  
W
Write  
1C  
1 to clear  
Reset or Default Value  
-n  
Value after reset or the default value  
Value is set by OTP memory  
X
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.1 DEV_REV  
Address: 0x00  
D7  
D6  
D5  
D4  
D3  
D2  
METAL_LAYER[3:0]  
Description  
D1  
D0  
DEVICE_ID[1:0]  
ALL_LAYER[1:0]  
Bits  
7:6  
Field  
Type  
R
Default  
DEVICE_ID[1:0]  
ALL_LAYER[1:0]  
X
Device specific ID code.  
5:4  
R
1h  
Shows the all layer version of the device:  
0h = First all layer version (ES1.0 silicon)  
1h = Second all layer version (ES2.x silicon)  
2h = Third all layer version  
3h = Fourth all layer version  
3:0  
METAL_LAYER  
[3:0]  
R
2h  
Shows the metal layer version of the device:  
0h = All layer version  
1h = First metal layer spin  
Fh = 15th metal layer spin  
7.6.1.2 OTP_REV  
Address: 0x01  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTP_ID[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
OTP_ID[7:0]  
R
X
Identification code of the OTP EPROM version  
7.6.1.3 BUCK0_CTRL1  
Address: 0x02  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK0  
EN_PIN_CTRL BUCK0_EN_PIN_SELECT[1:0]  
0
Reserved  
EN_RDIS0  
Reserved  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
EN_BUCK0  
R/W  
X
This bit enables the BUCK0 regulator  
0h = BUCK0 regulator is disabled  
1h = BUCK0 regulator is enabled  
6
EN_PIN_CTRL0  
R/W  
R/W  
X
X
This bit enables the EN1, EN2, EN3 pin control for the BUCK0 regulator  
0h = Only the EN_BUCK0 bit controls the BUCK0 regulator  
1h = EN_BUCK0 bit AND ENx pin control the BUCK0 regulator  
5:4 BUCK0_EN_PIN_S  
ELECT[1:0]  
This bit enables the EN1, EN2, EN3 pin control for the BUCK0 regulator  
0h = EN_BUCK0 bit AND EN1 pin control BUCK0  
1h = EN_BUCK0 bit AND EN2 pin control BUCK0  
2h = EN_BUCK0 bit AND EN3 pin control BUCK0  
3h = Reserved  
3
2
Reserved  
R/W  
R/W  
0h  
1h  
Reserved, do not use  
EN_RDIS0  
This bit enables the output of the discharge resistor when the BUCK0 regulator is  
disabled  
0h = Discharge resistor disabled  
1h = Discharge resistor enabled  
1
0
Reserved  
Reserved  
R/W  
R/W  
X
X
Reserved, do not use  
Reserved, do not use  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.4 BUCK0_DELAY  
Address: 0x12  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4 BUCK0_SHUTDOW  
N_DELAY[3:0]  
R/W  
X
Shutdown delay of the BUCK0 regulator from the falling edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
3:0 BUCK0_STARTUP_  
DELAY[3:0]  
R/W  
X
Start-Up delay the of the BUCK0 regulator from the rising edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
7.6.1.5 GPIO2_DELAY  
Address: 0x16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPIO2_SHUTDOWN_DELAY[3:0]  
GPIO2_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4 GPIO2_SHUTDOW  
N_DELAY[3:0]  
R/W  
X
Delay for the GPIO2 falling edge from the falling edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
3:0 GPIO2_STARTUP_  
DELAY[3:0]  
R/W  
X
Delay for the GPIO2 rising edge from the rising edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.6 GPIO3_DELAY  
Address: 0x17  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPIO3_SHUTDOWN_DELAY[3:0]  
GPIO3_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4 GPIO3_SHUTDOW  
N_DELAY[3:0]  
R/W  
X
Delay for the GPIO3 falling edge from the falling edge of the ENx signal (the  
DOUBLE_DELAY bit is set to 0h in the CONFIG register and the HALF_DELAY bit is  
set to 0h in the PGOOD_CTRL2 register). For other delay options, see the Start-Up  
and Shutdown Delays table.  
0h = 0 ms  
1h = 1 ms  
Fh = 15 ms  
3:0 GPIO3_STARTUP_  
DELAY[3:0]  
R/W  
X
Delay for GPIO3 rising edge from rising edge of ENx signal (the DOUBLE_DELAY bit  
is set to 0h in the CONFIG register and the HALF_DELAY bit is set to 0h in the  
PGOOD_CTRL2 register). For other delay options, see the Start-Up and Shutdown  
Delays table.  
0h = 0 ms  
1h = 1 ms  
. Fh = 15 ms  
7.6.1.7 RESET  
Address: 0x18  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
SW_RESET  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
0h  
Description  
Reserved  
SW_RESET  
0h  
Software commanded reset. When this bit is written to 1h, the registers are reset to  
the default values, OTP memory is read, and the I2C interface is reset.  
The bit is automatically cleared.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.8 CONFIG  
Address: 0x19  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DOUBLE_DEL  
AY  
CLKIN_PD  
Reserved  
EN3_PD  
TDIE_WARN_  
LEVEL  
EN2_PD  
EN1_PD  
Reserved  
Bits  
Field  
DOUBLE_DELAY  
Type  
Default  
Description  
7
R/W  
X
Start-Up and shutdown delays from the ENx signals  
0h = 0 ms to 15 ms with 1-ms steps  
1h = 0 ms to 30 ms with 2-ms steps  
6
CLKIN_PD  
R/W  
X
This bit selects the pulldown resistor on the CLKIN input pin.  
0h = Pulldown resistor is disabled  
1h = Pulldown resistor is enabled  
5
4
Reserved  
EN3_PD  
R/W  
R/W  
0h  
X
This bit selects the pulldown resistor on the EN3 (GPIO3) input pin.  
0h = Pulldown resistor is disabled  
1h = Pulldown resistor is enabled  
3
2
1
0
TDIE_WARN_LEVE  
L
R/W  
R/W  
R/W  
R/W  
X
X
Thermal warning threshold level  
0h = 125°C  
1h = 137°C  
EN2_PD  
EN1_PD  
Reserved  
This bit selects the pulldown resistor on the EN2 (GPIO2) input pin.  
0h = Pulldown resistor is disabled  
1h = Pulldown resistor is enabled  
X
This bit selects the pulldown resistor on the EN1 (GPIO1) input pin.  
0h = Pulldown resistor is disabled  
1h = Pulldown resistor is enabled  
0h  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.9 INT_TOP1  
Address: 0x1A  
D7  
D6  
INT_BUCK23  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
INT_BUCK01 NO_SYNC_CL  
K
TDIE_SD  
TDIE_WARN  
INT_OVP  
I_LOAD_READ  
Y
Bits  
Field  
Type  
Default  
0h  
Description  
7
6
Reserved  
R/W  
R
INT_BUCK23  
0h  
Interrupt indicating that the output of the BUCK3 regulator,BUCK2 regulator, or both  
regulators has a pending interrupt. The reason for the interrupt is indicated in the  
INT_BUCK_2_3 register.  
This bit is cleared automatically when the INT_BUCK_2_3 register is cleared to 0x00.  
5
INT_BUCK01  
R
0h  
Interrupt indicating that the output of the BUCK1 regulator, BUCK0 regulator, or both  
regulators has a pending interrupt. The reason for the interrupt is indicated in the  
INT_BUCK_0_1 register.  
This bit is cleared automatically when the INT_BUCK_0_1 register is cleared to 0x00.  
4
3
NO_SYNC_CLK  
TDIE_SD  
R/W1C  
R/W1C  
0h  
0h  
Latched status bit indicating that the external clock is not valid.  
Write this bit to 1h to clear the interrupt.  
Latched status bit indicating that the die junction temperature is greater than the  
thermal shutdown level. The regulators are disabled if previously enabled. The  
regulators cannot be enabled if this bit is active. The actual status of the thermal  
warning condition is indicated by the TDIE_SD_STAT bit in the TOP_STAT register.  
Write this bit to 1h to clear the interrupt.  
2
1
0
TDIE_WARN  
INT_OVP  
R/W1C  
R/W1C  
R/W1C  
0h  
0h  
0h  
Latched status bit indicating that the die junction temperature is greater than the  
thermal warning level. The actual status of the thermal warning condition is indicated  
by the TDIE_WARN_STAT bit in the TOP_STAT register.  
Write this bit to 1h to clear the interrupt.  
Latched status bit indicating that the input voltage is greater than the overvoltage-  
detection level. The actual status of the overvoltage condition is indicated by the  
OVP_STAT bit in the OP_STAT register.  
Write this bit to 1h to clear the interrupt.  
I_LOAD_READY  
Latched status bit indicating that the load-current measurement result is available in  
the I_LOAD_1 and I_LOAD_2 registers.  
Write this bit to 1h to clear the interrupt.  
7.6.1.10 INT_TOP2  
Address: 0x1B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
RESET_REG  
Bits  
7:1  
0
Field  
Type  
R/W  
Default  
0h  
Description  
Reserved  
RESET_REG  
R/W1C  
0h  
Latched status bit indicating that either start-up (NRST rising edge) is done, VANA  
supply voltage is less than the undervoltage threshold level, or the host has  
requested a reset (the SW_RESET bit in the RESET register). The regulators are  
disabled, the registers are reset to default values, and the normal start-up procedure  
is done.  
Write this bit to 1h to clear the interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.11 INT_BUCK_0_1  
Address: 0x1C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_PG  
_INT  
BUCK1_SC  
_INT  
BUCK1_ILIM  
_INT  
Reserved  
BUCK0_PG  
_INT  
BUCK0_SC  
_INT  
BUCK0_ILIM  
_INT  
Bits  
Field  
Type  
Default  
Description  
7
6
Reserved  
R/W  
0h  
BUCK1_PG_INT  
R/W1C  
0h  
Latched status bit indicating that the BUCK1 output voltage reached the power-good-  
threshold level.  
Write this bit to 1h to clear.  
5
BUCK1_SC_INT  
BUCK1_ILIM_INT  
R/W1C  
0h  
Latched status bit indicating that the BUCK1 output voltage has fallen to less than the  
0.35-V level during operation or the BUCK1 output did not reach the 0.35-V level in 1  
ms from enable.  
Write this bit to 1h to clear.  
4
R/W1C  
0h  
Latched status bit indicating that output current limit is active.  
Write this bit to 1h to clear.  
3
2
Reserved  
R/W  
0h  
0h  
BUCK0_PG_INT  
R/W1C  
Latched status bit indicating that the BUCK0 output voltage reached power-good-  
threshold level.  
Write this bit to 1h to clear.  
1
0
BUCK0_SC_INT  
BUCK0_ILIM_INT  
R/W1C  
R/W1C  
0h  
0h  
Latched status bit indicating that the BUCK0 output voltage has fallen to less than the  
0.35-V level during operation or the BUCK0 output did not reach the 0.35-V level in 1  
ms from enable.  
Write this bit to 1h to clear.  
Latched status bit indicating that output current limit is active.  
Write this bit to 1h to clear.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.12 INT_BUCK_2_3  
Address: 0x1D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_PG  
_INT  
BUCK3_SC  
_INT  
BUCK3_ILIM  
_INT  
Reserved  
BUCK2_PG  
_INT  
BUCK2_SC  
_INT  
BUCK2_ILIM  
_INT  
Bits  
Field  
Type  
Default  
Description  
7
6
Reserved  
R/W  
0h  
BUCK3_PG_INT  
R/W1C  
0h  
Latched status bit indicating that the BUCK3 output voltage reached the power-good-  
threshold level.  
Write this bit to 1h to clear.  
5
BUCK3_SC_INT  
BUCK3_ILIM_INT  
R/W1C  
0h  
Latched status bit indicating that the BUCK3 output voltage has fallen to less than the  
0.35-V level during operation or the BUCK3 output did not reach the 0.35-V level in 1  
ms from enable.  
Write this bit to 1h to clear.  
4
R/W1C  
0h  
Latched status bit indicating that the output current limit is active.  
Write this bit to 1h to clear.  
3
2
Reserved  
R/W  
0h  
0h  
BUCK2_PG_INT  
R/W1C  
Latched status bit indicating that the BUCK2 output voltage reached the power-good-  
threshold level.  
Write this bit to 1h to clear.  
1
0
BUCK2_SC_INT  
BUCK2_ILIM_INT  
R/W1C  
R/W1C  
0h  
0h  
Latched status bit indicating that the BUCK2 output voltage has fallen to less than the  
0.35-V level during operation or the BUCK2 output did not reach the 0.35-V level in 1  
ms from enable.  
Write this bit to 1h to clear.  
Latched status bit indicating that the output current limit is active.  
Write this bit to 1h to clear.  
7.6.1.13 TOP_STAT  
Address: 0x1E  
D7  
D6  
Reserved  
D5  
D4  
D3  
D2  
D1  
D0  
SYNC_CLK  
_STAT  
TDIE_SD  
_STAT  
TDIE_WARN  
_STAT  
OVP_STAT  
Reserved  
Bits  
7:5  
4
Field  
Reserved  
Type  
R
Default  
0h  
Description  
SYNC_CLK_STAT  
TDIE_SD_STAT  
TDIE_WARN_STAT  
OVP_STAT  
R
0h  
Status bit indicating the status of the external clock (CLKIN).  
0h = External clock frequency is valid  
1h = External clock frequency is not valid  
3
2
1
0
R
R
R
R
0h  
0h  
0h  
0h  
Status bit indicating the status of the thermal shutdown condition.  
0h = Die temperature is less than the thermal shutdown level  
1h = Die temperature is greater than the thermal shutdown level  
Status bit indicating the status of thermal warning condition.  
0h = Die temperature is less than the thermal warning level  
1h = Die temperature is greater than the thermal warning level  
Status bit indicating the status of input overvoltage monitoring.  
0h = Input voltage is less than the overvoltage threshold level  
1h = Input voltage is greater than the overvoltage threshold level  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.14 BUCK_0_1_STAT  
Address: 0x1F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_STAT  
BUCK1_PG  
_STAT  
Reserved  
BUCK1_ILIM  
_STAT  
BUCK0_STAT  
BUCK0_PG  
_STAT  
Reserved  
BUCK0_ILIM  
_STAT  
Bits  
Field  
BUCK1_STAT  
Type  
Default  
Description  
7
R
0
Status bit indicating the enable or disable status of the BUCK1 regulator.  
0h = BUCK1 regulator is disabled  
1h = BUCK1 regulator is enabled  
6
BUCK1_PG_STAT  
R
0
Status bit indicating the validity of the BUCK1 output voltage (raw status).  
0h = BUCK1 output is less than the power-good-threshold level  
1h = BUCK1 output is greater than the power-good-threshold level  
5
4
Reserved  
R
R
0
0
BUCK1_ILIM_STAT  
Status bit indicating the BUCK1 current limit status (raw status).  
0h = BUCK1 output current is less than the current limit level  
1h = BUCK1 output current limit is active  
3
2
BUCK0_STAT  
R
R
0
0
Status bit indicating the enable or disable status of the BUCK0 regulator.  
0h = BUCK0 regulator is disabled  
1h = BUCK0 regulator is enabled  
BUCK0_PG_STAT  
Status bit indicating the validity of the BUCK0 output voltage (raw status).  
0h = BUCK0 output is less than the power-good-threshold level  
1h = BUCK0 output is greater than the power-good-threshold level  
1
0
Reserved  
R
R
0
0
BUCK0_ILIM_STAT  
Status bit indicating the BUCK0 current limit status (raw status).  
0h = BUCK0 output current is less than the current limit level  
1h = BUCK0 output current limit is active  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.15 BUCK_2_3_STAT  
Address: 0x20  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_STAT  
BUCK3_PG  
_STAT  
Reserved  
BUCK3_ILIM  
_STAT  
BUCK2_STAT  
BUCK2_PG  
_STAT  
Reserved  
BUCK2_ILIM  
_STAT  
Bits  
Field  
BUCK3_STAT  
Type  
Default  
Description  
7
R
0
Status bit indicating the enable or disable status of the BUCK3 regulator.  
0h = BUCK3 regulator is disabled  
1h = BUCK3 regulator is enabled  
6
BUCK3_PG_STAT  
R
0
Status bit indicating the validity of the BUCK3 output voltage (raw status).  
0h = BUCK3 output is less than the power-good-threshold level  
1h = BUCK3 output is greater than the power-good-threshold level  
5
4
Reserved  
R
R
0
0
BUCK3_ILIM_STAT  
Status bit indicating the BUCK3 current limit status (raw status).  
0h = BUCK3 output current is less than the current limit level  
1h = BUCK3 output current limit is active  
3
2
BUCK2_STAT  
R
R
0
0
Status bit indicating the enable or disable status of the BUCK2 regulator.  
0h = BUCK2 regulator is disabled  
1h = BUCK2 regulator is enabled  
BUCK2_PG_STAT  
Status bit indicating the validity of the BUCK2 output voltage (raw status)  
0h = BUCK2 output is less than the power-good-threshold level  
1h = BUCK2 output is greater than the power-good-threshold level  
1
0
Reserved  
R
R
0
0
BUCK2_ILIM_STAT  
Status bit indicating the BUCK2 current limit status (raw status).  
0h = BUCK2 output current is less than the current limit level  
1h = BUCK2 output current limit is active  
7.6.1.16 TOP_MASK1  
Address: 0x21  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
Reserved  
SYNC_CLK  
_MASK  
Reserved  
TDIE_WARN  
_MASK  
Reserved  
I_LOAD_  
READY_MASK  
Bits  
Field  
Type  
R/W  
R/W  
R/W  
Default  
Description  
7
6:5  
4
Reserved  
Reserved  
1h  
0h  
X
SYNC_CLK_MASK  
Masking for the external clock detection interrupt (the NO_SYNC_CLK bit in the  
INT_TOP1 register)  
0h = Interrupt generated  
1h = Interrupt not generated  
3
2
Reserved  
R/W  
R/W  
0h  
X
TDIE_WARN_MAS  
K
Masking for the thermal warning interrupt (the TDIE_WARN bit in the INT_TOP1  
register)  
This bit does not affect TDIE_WARN_STAT status bit in the TOP_STAT register.  
0h = Interrupt generated  
1h = Interrupt not generated  
1
0
Reserved  
R/W  
R/W  
0
I_LOAD_READY_M  
ASK  
X
Masking for the load-current measurement-ready interrupt (the I_LOAD_READY bit in  
the INT_TOP register).  
0h = Interrupt generated  
1h = Interrupt not generated  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.17 TOP_MASK2  
Address: 0x22  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
RESET_REG  
_MASK  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
0h  
X
RESET_REG_MAS  
K
Masking for the register reset interrupt (the RESET_REG bit in the INT_TOP2  
register)  
0h = Interrupt generated  
1h = Interrupt not generated  
7.6.1.18 BUCK_0_1_MASK  
Address: 0x23  
D7  
D6  
D5  
Reserved  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_PG  
_MASK  
BUCK1_ILIM  
_MASK  
Reserved  
BUCK0_PG  
_MASK  
Reserved  
BUCK0_ILIM  
_MASK  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0h  
X
BUCK1_PG_MASK  
Masking for the BUCK1 power-good interrupt (the BUCK1_PG_INT bit in the  
INT_BUCK_0_1 register)  
This bit does not affect BUCK1_PG_STAT status bit in BUCK_0_1_STAT register.  
0h = Interrupt generated  
1h = Interrupt not generated  
5
4
Reserved  
R
0h  
X
BUCK1_ILIM_MAS  
K
R/W  
Masking for the BUCK1 current-limit-detection interrupt (the BUCK1_ILIM_INT bit in  
the INT_BUCK_0_1 register)  
This bit does not affect the BUCK1_ILIM_STAT status bit in the BUCK_0_1_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
3
2
Reserved  
R/W  
R/W  
0h  
X
BUCK0_PG_MASK  
Masking for the BUCK0 power-good interrupt (the BUCK0_PG_INT bit in the  
INT_BUCK_0_1 register)  
This bit does not affect the BUCK0_PG_STAT status bit in the BUCK_0_1_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
1
0
Reserved  
R
0h  
X
BUCK0_ILIM_MAS  
K
R/W  
Masking for the BUCK0 current-limit-detection interrupt (the BUCK0_ILIM_INT bit in  
the INT_BUCK_0_1 register)  
This bit does not affect the BUCK0_ILIM_STAT status bit in the BUCK_0_1_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.19 BUCK_2_3_MASK  
Address: 0x24  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_PG  
_MASK  
Reserved  
BUCK3_ILIM  
_MASK  
Reserved  
BUCK2_PG  
_MASK  
Reserved  
BUCK2_ILIM  
_MASK  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0h  
X
BUCK3_PG_MASK  
Masking for the BUCK3 power-good interrupt (the BUCK3_PG_INT bit in the  
INT_BUCK_2_3 register)  
This bit does not affect the BUCK3_PG_STAT status bit in the BUCK_2_3_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
5
4
Reserved  
R
0h  
X
BUCK3_ILIM_MAS  
K
R/W  
Masking for the BUCK3 current-limit-detection interrupt (the BUCK3_ILIM_INT bit in  
the INT_BUCK_2_3 register)  
This bit does not affect the BUCK3_ILIM_STAT status bit in the BUCK_2_3_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
3
2
Reserved  
R/W  
R/W  
0h  
X
BUCK2_PG_MASK  
Masking for the BUCK2 power-good interrupt (the BUCK2_PG_INT bit in the  
INT_BUCK_2_3 register)  
This bit does not affect the BUCK2_PG_STAT status bit in the BUCK_2_3_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
1
0
Reserved  
R
0h  
X
BUCK2_ILIM_MAS  
K
R/W  
Masking for the BUCK2 current limit-detection interrupt (the BUCK2_ILIM_INT bit in  
the INT_BUCK_2_3 register)  
This bit does not affect the BUCK2_ILIM_STAT status bit in the BUCK_2_3_STAT  
register.  
0h = Interrupt generated  
1h = Interrupt not generated  
7.6.1.20 SEL_I_LOAD  
Address: 0x25  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
LOAD_CURRENT_BUCK  
_SELECT[1:0]  
Bits  
Field  
Type  
R/W  
R/W  
Default  
0h  
Description  
7:2  
Reserved  
1:0 LOAD_CURRENT_  
0h  
This bit starts the current measurement on the selected regulator.  
BUCK_SELECT[1:0  
]
One measurement is started when the register is written.  
If the selected buck is a master, the measurement result is the sum of the current of  
both the master and slave bucks.  
If the selected buck is a slave, the measurement result is the current of the selected  
slave bucks.  
0h = BUCK0  
1h = BUCK1  
2h = BUCK2  
3h = BUCK3  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.21 I_LOAD_2  
Address: 0x26  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK_LOAD_CURRENT[9:8]  
Bits  
Field  
Type  
R
Default  
Description  
7:2  
Reserved  
0h  
0h  
1:0 BUCK_LOAD_CUR  
RENT[9:8]  
R
This register describes the three MSB bits of the average load current on the selected  
regulator with a resolution of 20 mA per LSB and maximum code corresponding to a  
20.47-A current.  
7.6.1.22 I_LOAD_1  
Address: 0x27  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK_LOAD_CURRENT[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK_LOAD_CUR  
RENT[7:0]  
R
0x00  
This register describes the eight LSB bits of the average load current on the selected  
regulator with a resolution of 20 mA per LSB and maximum code corresponding to a  
20.47-A current.  
7.6.1.23 PGOOD_CTRL1  
Address: 0x28  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PG3_SEL[1:0]  
PG2_SEL[1:0]  
PG1_SEL[1:0]  
PG0_SEL[1:0]  
Bits  
Field  
Type  
Default  
Description  
7:6  
PG3_SEL[1:0]  
PG2_SEL[1:0]  
PG1_SEL[1:0]  
PG0_SEL[1:0]  
R/W  
X
PGOOD signal source control from the BUCK3 regulator  
0h = Masked  
1h = Power-good-threshold voltage  
2h = Reserved, do not use  
3h = Power-good-threshold voltage AND current limit  
5:4  
3:2  
1:0  
R/W  
R/W  
R/W  
X
X
X
PGOOD signal source control from the BUCK2 regulator  
0h = Masked  
1h = Power-good-threshold voltage  
2h = Reserved, do not use  
3h = Power-good threshold voltage AND current limit  
PGOOD signal source control from the BUCK1 regulator  
0h = Masked  
1h = Power-good-threshold voltage  
2h = Reserved, do not use  
3h = Power-good-threshold voltage AND current limit  
PGOOD signal source control from the BUCK0 regulator  
0h = Masked  
1h = Power-good-threshold voltage  
2h = Reserved, do not use  
3h = Power-good-threshold voltage AND current limit  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.24 PGOOD_CTRL2  
Address: 0x29  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HALF_DELAY  
EN_PG0  
_NINT  
PGOOD_SET  
_DELAY  
EN_PGFLT  
_STAT  
Reserved  
PGOOD_  
WINDOW  
PGOOD_OD  
PGOOD_POL  
Bits  
Field  
HALF_DELAY  
Type  
Default  
Description  
7
R/W  
X
This bit elects the time step for the start-up and shutdown delays.  
0h = Start-Up and shutdown delays have 0.5-ms or 1-ms time steps, based on the  
DOUBLE_DELAY bit in the CONFIG register.  
1h = Start-Up and shutdown delays have 0.32-ms or 0.64-ms time steps, based on  
the DOUBLE_DELAY bit in the CONFIG register.  
6
5
4
EN_PG0_NINT  
R/W  
R/W  
R/W  
X
X
X
This bit combines theBUCK0 PGOOD signal with the nINT signal  
0h = BUCK0 PGOOD signal not included with the nINT signal  
1h = BUCK0 PGOOD signal included with the nINT signal. If the nINT OR the BUCK0  
PGOOD signal is low then the nINT signal is low.  
PGOOD_SET_DEL  
AY  
Debounce time of the output voltage monitoring for the PGOOD signal (only when the  
PGOOD signal goes valid)  
0h = 4-10 µs  
1h = 11 ms  
EN_PGFLT_STAT  
Operation mode for PGOOD signal  
0h = Indicates live status of monitored voltage outputs  
1h = Indicates status of the PGOOD_FLT register, inactive if at least one of the  
PGx_FLT bit is inactive  
3
2
Reserved  
R/W  
R/W  
0h  
X
PGOOD_WINDOW  
Voltage monitoring method for the PGOOD signal  
0h = Only undervoltage monitoring  
1h = Overvoltage and undervoltage monitoring  
1
0
PGOOD_OD  
PGOOD_POL  
R/W  
R/W  
X
X
PGOOD signal type  
0h = Push-pull output (VANA level)  
1h = Open-drain output  
PGOOD signal polarity  
0h = PGOOD signal high when monitored outputs are valid  
1h = PGOOD signal low when monitored outputs are valid  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.25 PGOOD_FLT  
Address: 0x2A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
PG3_FLT  
PG2_FLT  
Description  
PG1_FLT  
PG0_FLT  
Bits  
7:4  
3
Field  
Type  
R/W  
R
Default  
Reserved  
PG3_FLT  
0x0  
0
Source for the PGOOD inactive signal  
0h = BUCK3 has not set the PGOOD signal inactive.  
1h = BUCK3 has set the PGOOD signal inactive. This bit can be cleared by reading  
this register when the BUCK3 output is valid.  
2
1
0
PG2_FLT  
PG1_FLT  
PG0_FLT  
R
R
R
0
0
0
Source for the PGOOD inactive signal  
0h = BUCK2 has not set the PGOOD signal inactive.  
1h = BUCK2 has set the PGOOD signal inactive. This bit can be cleared by reading  
this register when the BUCK2 output is valid.  
Source for the PGOOD inactive signal  
0h = BUCK1 has not set the PGOOD signal inactive.  
1h = BUCK1 has set the PGOOD signal inactive. This bit can be cleared by reading  
this register when the BUCK1 output is valid.  
Source for the PGOOD inactive signal  
0h = BUCK0 has not set the PGOOD signal inactive.  
1h = BUCK0 has set the PGOOD signal inactive. This bit can be cleared by reading  
this register when the BUCK0 output is valid.  
7.6.1.26 PLL_CTRL  
Address: 0x2B  
D7  
D6  
D5  
Reserved  
Default  
D4  
D3  
D2  
D1  
D0  
PLL_MODE[1:0]  
EXT_CLK_FREQ[4:0]  
Bits  
Field  
Type  
Description  
7:6  
PLL_MODE[1:0]  
R/W  
X
This bit selects the external clock and PLL operation.  
0h = Forced to internal RC oscillator (PLL is disabled).  
1h = PLL is enabled in the STANDBY and ACTIVE states. Automatic external clock  
use when available, interrupt generated if external clock appears or disappears.  
2h = PLL is enabled only in the ACTIVE state. Automatic external clock use when  
available, interrupt generated if external clock appears or disappears.  
3h = Reserved  
5
Reserved  
R/W  
R/W  
0
4:0 EXT_CLK_FREQ[4:  
0]  
X
Frequency of the external clock (CLKIN). For the input clock frequency tolerance see  
the Electrical Characteristics table. Settings 18h through 1Fh are reserved and must  
not be used.  
0x00h = 1 MHz  
0x01h = 2 MHz  
2h = 3 MHz  
16h = 23 MHz  
17h = 24 MHz .  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.27 PIN_FUNCTION  
Address: 0x2C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_SPREAD_ EN_PIN_CTRL EN_PIN_SELE EN_PIN_CTRL EN_PIN_SELE  
GPIO3_SEL  
GPIO2_SEL  
GPIO1_SEL  
SPEC  
_GPIO3  
CT_GPIO3  
_GPIO2  
CT_GPIO2  
Bits  
Field  
Type  
Default  
Description  
7
EN_SPREAD_SPE  
C
R/W  
X
This bit enables the spread-spectrum feature.  
0h = Disabled  
1h = Enabled  
6
EN_PIN_CTRL_GPI  
O3  
R/W  
X
This bit enables EN1 and EN2 pin control for GPIO3 (the GPIO3_SEL bit is set to 1h  
AND the GPIO3_DIR bit is set to 1h).  
0h = Only GPIO3_OUT bit controls GPIO3  
1h = GPIO3_OUT bit AND ENx pin control GPIO3  
5
4
EN_PIN_SELECT_  
GPIO3  
R/W  
R/W  
X
X
This bit enables EN1 and EN2 pin control for GPIO3.  
0h = GPIO3_SEL bit AND EN1 pin control GPIO3  
1h = GPIO3_SEL bit AND EN2 pin control GPIO3  
EN_PIN_CTRL_GPI  
O2  
This bit enables EN1 and EN3 pin control for GPIO2 (the GPIO2_SEL bit is set to 1h  
AND the GPIO2_DIR bit is set to 1h).  
0h = Only GPIO2_OUT bit controls GPIO2  
1h = GPIO2_OUT bit AND ENx pin control GPIO2  
3
2
1
0
EN_PIN_SELECT_  
GPIO2  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
This bit enables EN1 and EN3 pin control for GPIO2  
0h = GPIO2_SEL bit AND EN1 pin control GPIO2  
1h = GPIO2_SEL bit AND EN3 pin control GPIO2  
GPIO3_SEL  
GPIO2_SEL  
GPIO1_SEL  
This bit selects the EN3 pin function  
0h = EN3  
1h = GPIO3  
This bit selects the EN2 pin function  
0h = EN2  
1h = GPIO2  
This bit selects the EN1 pin function  
0h = EN1  
1h = GPIO1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.28 GPIO_CONFIG  
Address: 0x2D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
GPIO3_OD  
GPIO2_OD  
GPIO1_OD  
Reserved  
GPIO3_DIR  
Description  
GPIO2_DIR  
GPIO1_DIR  
Bits  
Field  
Type  
R
Default  
7
6
Reserved  
0h  
X
GPIO3_OD  
R/W  
GPIO3 signal type when configured as an output  
0h = Push-pull output (VANA level)  
1h = Open-drain output  
5
4
GPIO2_OD  
GPIO1_OD  
R/W  
R/W  
X
X
GPIO2 signal type when configured as an output  
0h = Push-pull output (VANA level)  
1h = Open-drain output  
GPIO1 signal type when configured as an output  
0h = Push-pull output (VANA level)  
1h = Open-drain output  
3
2
Reserved  
R
0h  
X
GPIO3_DIR  
R/W  
GPIO3 signal direction  
0h = Input  
1h = Output  
1
0
GPIO2_DIR  
GPIO1_DIR  
R/W  
R/W  
X
X
GPIO2 signal direction  
0h = Input  
1h = Output  
GPIO1 signal direction  
0h = Input  
1h = Output  
7.6.1.29 GPIO_IN  
Address: 0x2E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
GPIO3_IN  
Description  
GPIO2_IN  
GPIO1_IN  
Bits  
7:3  
2
Field  
Type  
R
Default  
0h  
Reserved  
GPIO3_IN  
R
0h  
State of the GPIO3 signal  
0h = Logic-low level  
1h = Logic high level  
1
0
GPIO2_IN  
GPIO1_IN  
R
R
0h  
0h  
State of the GPIO2 signal  
0h = Logic-low level  
1h = Logic-high level  
State of the GPIO1 signal  
0h = Logic-low level  
1h = Logic-high level  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
7.6.1.30 GPIO_OUT  
Address: 0x2F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
GPIO3_OUT  
Description  
GPIO2_OUT  
GPIO1_OUT  
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
Reserved  
GPIO3_OUT  
0h  
X
Control for theGPIO3 signal when configured as the GPIO output  
0h = Logic-low level  
1h = Logic-high level  
1
0
GPIO2_OUT  
GPIO1_OUT  
R/W  
R/W  
X
Control for the GPIO2 signal when configured as the GPIO output  
0h = Logic-low level  
1h = Logic-high level  
0h  
Control for theGPIO1 signal when configured as the GPIO output  
0h = Logic-low level  
1h = Logic-high level  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LP875701-Q1 is a multiphase step-down converter with four switcher cores, which is configured as a single  
output 4-phase regulator.  
8.2 Typical Application  
R0  
VIN  
C0  
C1  
C2  
C3  
L0  
L1  
L2  
L3  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
SW_B0  
SW_B1  
SW_B2  
CIN0 CIN1 CIN2 CIN3  
R1  
R2  
R3  
VOUT0  
COUT0 COUT1 COUT2 COUT3  
LOAD  
CVANA  
NRST  
SDA  
CPOL0  
SCL  
nINT  
CLKIN  
PGOOD  
EN1 (GPIO1)  
EN2 (GPIO2)  
EN3 (GPIO3)  
SW_B3  
FB_B0  
FB_B1  
FB_B2  
FB_B3  
GNDs  
Copyright © 2017, Texas Instruments Incorporated  
8-1. 4-Phase Configuration  
8.2.1 Design Requirements  
8.2.1.1 Inductor Selection  
The inductors are L0, L1, L2, and L3 are shown in 8.2. The inductance and DCR of the inductor affects the  
control loop of the buck regulator. TI recommends using inductors similar to those listed in 8-1. Pay attention  
to the saturation current and temperature rise current of the inductor. Check that the saturation current is higher  
than the peak current limit and the temperature rise current is higher than the maximum expected rms output  
current. The minimum effective inductance to make sure performance is good is 0.22 μH at maximum peak  
output current over the operating temperature range. DC resistance of the inductor must be less than 0.05 for  
good efficiency at high-current condition. The inductor AC loss (resistance) also affects conversion efficiency.  
Higher Q factor at switching frequency usually gives better efficiency at light load to middle load. Shielded  
inductors are preferred as they radiate less noise.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
 
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
8-1. Recommended Inductors  
DCR typical /  
maximum  
(m)  
RATED DC CURRENT,  
ISAT maximum (typical) / ITEMP  
maximum (typical) (A)  
DIMENSIONS  
L × W × H (mm)  
MANUFACTURER  
PART NUMBER  
VALUE  
6.0 () / 4.6 ()(1)  
Murata  
DFE252012PD-R33M 0.33 µH (20%)  
2.5 × 2 × 1.2  
- / 23  
(1) Operating temperature range is up to 125°C including self temperature rise.  
8.2.1.2 Input Capacitor Selection  
The input capacitors CIN0, CIN1, CIN2, and CIN3 are shown in 8.2. A ceramic input bypass capacitor of 10 μF  
is required for each phase of the regulator. Place the input capacitor as close as possible to the VIN_Bx pin and  
PGND_Bx pin of the device. A larger value or higher voltage rating improves the input voltage filtering. Use X7R  
type of capacitors, not Y5V or F. DC bias characteristics capacitors must be considered. The minimum effective  
input capacitance to make sure performance is good is 1.9 μF for each buck input at the maximum input voltage  
including tolerances and ambient temperature range. This value assumes that at least 22 μF of additional  
capacitance is common for all the power input pins on the system power rail. See 8-2.  
The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and decreases  
voltage ripple imposed on the input power source. A ceramic capacitor's low ESR provides the best noise  
filtering of the input voltage spikes due to this rapidly changing current. Select an input filter capacitor with  
sufficient ripple current rating. In addition ferrite can be used in front of the input capacitor to decrease the EMI.  
8-2. Recommended Input Capacitors (X7R Dielectric)  
DIMENSIONS L × W × H VOLTAGE RATING  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
(mm)  
(V)  
Murata  
GCM21BR71A106KE22  
10 µF (10%)  
0805  
2 × 1.25 × 1.25  
10 V  
8.2.1.3 Output Capacitor Selection  
The output capacitors COUT0, COUT1, COUT2, and COUT3 are shown in 8.2. A ceramic local output capacitor of  
22 μF is required per phase. Use ceramic capacitors, X7R or X7T types; do not use Y5V or F. DC bias voltage  
characteristics of ceramic capacitors must be considered. The output filter capacitor smooths out current flow  
from the inductor to the load, helps keep a steady output voltage during transient load changes and decreases  
output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently low ESR and  
ESL to do these functions. The minimum effective output capacitance to make sure performance is good is 10  
μF for each phase including the DC voltage roll-off, tolerances, aging and temperature effects.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value used for  
selection process is at the switching frequency of the part. See 8-3.  
POL capacitor (CPOL0) needs to be used to maintain output voltage stability and improve load transient  
performance and to decrease the ripple voltage. Note that the output capacitor may be the limiting factor in the  
output voltage ramp and the maximum total output capacitance listed in electrical characteristics must not be  
exceeded. At shutdown the output voltage is discharged to 0.6 V level using forced-PWM operation. This can  
increase the input voltage if the load current is small and the output capacitor is large. Below 0.6 V level the  
output capacitor is discharged by the internal discharge resistor and with large capacitor more time is required to  
settle VOUT down as a consequence of the increased time constant.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: LP875701-Q1  
 
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
8-3. Recommended Output Capacitors (X7R or X7T Dielectric)  
DIMENSIONS L × W × H VOLTAGE RATING  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
(mm)  
(V)  
Murata  
GCM31CR71A226KE02  
22 µF (10%)  
1206  
3.2 × 1.6 × 1.6  
10  
8.2.1.4 Snubber Components  
If the input voltage for the regulators is above 4 V, snubber components are needed at the switching nodes to  
decrease voltage spiking in the switching node and to improve EMI. The snubber capacitors C0, C1, C2, and C3  
and the snubber resistors R0, R1, R2, and R3 are shown in 8-1. The recommended components are shown in  
8-4 and these component values give good performance on LP875701-Q1 EVM. The optimal resistance and  
capacitance values finally depend on the PCB layout.  
8-4. Recommended Snubber Components  
DIMENSIONS L × W x H VOLTAGE / POWER  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
(mm)  
RATING  
62 mW  
50 V  
Vishay-Dale  
Murata  
CRCW04023R90JNED  
GCM1555C1H391JA16  
0402  
0402  
1 × 0.5 × 0.4  
1 × 0.5 × 0.5  
3.9 Ω(5%)  
390 pF (5%)  
8.2.1.5 Supply Filtering Components  
The VANA input is used to supply analog and digital circuits in the device. See 8-5 for recommended  
components for VANA input supply filtering.  
8-5. Recommended Supply Filtering Components  
DIMENSIONS L × W × H VOLTAGE RATING  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
(mm)  
(V)  
16  
16  
Murata  
Murata  
GCM155R71C104KA55  
GCM188R71C104KA37  
100 nF (10%)  
100 nF (10%)  
0402  
0603  
1.0 × 0.5 × 0.5  
1.6 × 0.8 × 0.8  
8.2.2 Detailed Design Procedure  
The performance of the LP875701-Q1 device depends greatly on the care taken in designing the printed circuit  
board (PCB). The use of low-inductance and low serial-resistance ceramic capacitors is strongly recommended,  
while correct grounding is crucial. Attention must be given to decoupling the power supplies. Decoupling  
capacitors must be connected close to the device and between the power and ground pins to support high peak  
currents being drawn from system power rail during turnon of the switching MOSFETs. Keep input and output  
traces as short as possible, because trace inductance, resistance, and capacitance can easily become the  
performance limiting items. The separate power pins VIN_Bx are not connected together internally. Connect the  
VIN_Bx power connections together outside the package using power plane construction.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
8.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
VIN = 3.3 V  
10  
VIN = 5.0 V  
0.01  
0.1  
1
0.01  
0.1  
1
10  
Current (A)  
Current (A)  
D142  
D144  
VOUT = 1.0 Volt  
VOUT = 1.0 Volt  
8-2. Efficiency in Forced-PWM-Four-Phase  
8-3. Efficiency in Forced-PWM-Four-Phase Mode  
mode  
1.02  
1.016  
1.012  
1.008  
1.004  
1
1.02  
1.016  
1.012  
1.008  
1.004  
1
0.996  
0.992  
0.988  
0.996  
0.992  
0.988  
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 3.3 V  
VIN = 5.0 V  
0.984  
0.98  
0.984  
0.98  
0
2
4
6
8
10  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Current (A)  
Temperature (èC)  
D146  
D148  
VOUT = 1.0 Volt  
VOUT = 1.0 Volt ILOAD = 1 A / phase  
(4 A total)  
8-4. Output Voltage vs Load Current in Forced-  
PWM-Four-Phase Mode  
8-5. Output Voltage vs Temperature  
V(EN1)(1V/div)  
V(EN1)(1V/div)  
VOUT(200mV/div)  
VOUT(200mV/div)  
ILOAD(1A/div)  
V(SW_B0)(2V/div)  
V(SW_B0)(2V/div)  
Time (100 µs/div)  
Time (100 µs/div)  
VOUT = 1.0 Volt  
Slew-Rate =3.8  
mV / µs  
ILOAD = 0 A  
VOUT = 1.0 Volt  
Slew-Rate =3.8  
mV / µs  
RLOAD = 0.25 Ω  
8-6. Start-Up With EN1, Forced-PWM-Four-  
8-7. Start-Up With EN1, Forced-PWM-Four-  
Phase Mode  
Phase Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
V(EN1)(1V/div)  
VOUT(200mV/div)  
ILOAD(1A/div)  
VOUT(1mV/div)  
V(SW_B0)(2V/div)  
V(SW_B0)(2V/div)  
Time (100 µs/div)  
Time (200 ns/div)  
VOUT = 1.0 Volt  
Slew-Rate =3.8  
mV / µs  
RLOAD = 0.25 Ω  
VOUT = 1.0 Volt, VIN  
= 3.3 V  
ILOAD= 200 mA  
Internal Clock,  
Spread-Spectrum  
Enabled  
8-8. Shutdown With EN1, Forced-PWM-Four-  
Phase Mode  
8-9. Output Voltage Ripple, Forced-PWM-Four-  
Phase Mode  
ILOAD (2A/div)  
VOUT(1mV/div)  
VOUT (10mV/div)  
V(SW_B0)(2V/div)  
Time (40 µs/div)  
Time (200 ns/div)  
VOUT = 1.0 Volt, VIN  
= 3.3 V  
tR = tF = 1 µs  
IOUT= 1.5 A 7.5  
A 1.5 A  
VOUT = 1.0 Volt, VIN  
= 5.0 V  
ILOAD= 200 mA  
Internal Clock,  
Spread-Spectrum  
Enabled  
8-11. Transient Load Step Response, Forced-  
PWM-Four-Phase Mode, TA=+25oC  
8-10. Output Voltage Ripple, Forced-PWM-Four-  
Phase Mode  
ILOAD (2A/div)  
ILOAD (2A/div)  
VOUT (10mV/div)  
Time (40 µs/div)  
VOUT (10mV/div)  
Time (40 µs/div)  
VOUT = 1.0 Volt, VIN  
= 3.3 V  
tR = tF = 1 µs  
IOUT= 1.5 A 7.5  
A 1.5 A  
VOUT = 1.0 Volt, VIN  
= 3.3 V  
tR = tF = 1 µs  
IOUT= 1.5 A 7.5  
A 1.5 A  
8-12. Transient Load Step Response, Forced-  
8-13. Transient Load Step Response, Forced-  
PWM-Four-Phase Mode, TA=-40oC  
PWM-Four-Phase Mode, TA=+125oC  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
ILOAD (2A/div)  
ILOAD (2A/div)  
VOUT (10mV/div)  
VOUT (10mV/div)  
Time (40 µs/div)  
Time (40 µs/div)  
VOUT = 1.0 Volt, VIN  
= 5.0 V  
tR = tF = 1 µs  
VOUT = 1.0 Volt, VIN  
= 5.0 V  
tR = tF = 1 µs  
IOUT= 1.5 A 7.5  
A 1.5 A  
IOUT= 1.5 A 7.5  
A 1.5 A  
8-15. Transient Load Step Response, Forced-  
8-14. Transient Load Step Response, Forced-  
PWM-Four-Phase Mode, TA=-40oC  
PWM-Four-Phase Mode, TA=+25oC  
ILOAD (2A/div)  
VOUT (10mV/div)  
Time (40 µs/div)  
VOUT = 1.0 Volt, VIN = 5.0 V  
tR = tF = 1 µs  
IOUT= 1.5 A 7.5 A 1.5 A  
8-16. Transient Load Step Response, Forced-PWM-Four-Phase Mode, TA=+125oC  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.8 V and 5.5 V. This input supply  
must be well regulated and can withstand maximum input current and keep a stable voltage without voltage drop  
even at load transition condition. The resistance of the input supply rail must be low enough that the input  
current transient does not cause too high drop in the LP875701-Q1 supply voltage that can cause false UVLO  
fault triggering. If the input supply is located more than a few inches from the LP875701-Q1 additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The high frequency and large switching currents of the LP875701-Q1 make the choice of layout important. Good  
power supply results only occur when care is given to correct design and layout. Layout affects noise pickup and  
generation and can cause a good design to perform with less-than-expected results. With a range of output  
currents from milliamps to 10 A and over, good power supply layout is much more difficult than most general  
PCB design. Use the following steps as a reference to make sure the device is stable and keeps correct voltage  
and current regulation across its intended operating voltage and current range.  
Place CIN as close as possible to the VIN_Bx pin and the PGND_Bxx pin. Route the VIN trace wide and thick  
to avoid IR drops. The trace between the positive node of the input capacitor and the VIN_Bx pin(s) of  
LP875701-Q1 , as well as the trace between the negative node of the input capacitor and power PGND_Bxx  
pin(s), must be kept as short as possible. The input capacitance provides a low-impedance voltage source for  
the switching converter. The inductance of the connection is the most important parameter of a local  
decoupling capacitor parasitic inductance on these traces must be kept as small as possible for correct  
device operation. The parasitic inductance can be decreased by using a ground plane as close as possible to  
top layer by using thin dielectric layer between top layer and ground plane.  
The output filter, consisting of COUT and L, converts the switching signal at SW_Bx to the noiseless output  
voltage. It must be placed as close as possible to the device keeping the switch node small, for best EMI  
behavior. Route the traces between the LP875701-Q1 output capacitors and the load direct and wide to avoid  
losses due to the IR drop.  
Input for analog blocks (VANA and AGND) must be isolated from noisy signals. Connect VANA directly to a  
quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling  
capacitor as close as possible to the VANA pin.  
If the processor load supports remote voltage sensing, connect the feedback pins FB_Bx of the LP875701-  
Q1 device to the respective sense pins on the processor. The sense lines are susceptible to noise. They must  
be kept away from noisy signals such as PGND_Bxx, VIN_Bx, and SW_Bx, as well as high bandwidth signals  
such as the I2C. Avoid both capacitive and inductive coupling by keeping the sense lines short, direct, and  
close to each other. Run the lines in a quiet layer. Isolate them from noisy signals by a voltage or ground  
plane if possible. Running the signal as a differential pair is recommended for multiphase outputs. If series  
resistors are used for load current measurement, place them after connection of the voltage feedback.  
Connect feedback pin FB_B0 to supply terminal of the point-of-load, and feedback pin FB_B1 to the GND of  
the point-of-load.  
PGND_Bxx, VIN_Bx and SW_Bx must be routed on thick layers. They must not surround inner signal layers,  
which are cannot withstand interference from noisy PGND_Bxx, VIN_Bx and SW_Bx.  
If the input voltage is above 4 V, place snubber components (capacitor and resistor) between SW_Bx and  
ground on all four phases. The components can be also placed to the other side of the board if there are area  
limitations and the routing traces can be kept short.  
Due to the small package of this converter and the overall small solution size, the thermal performance of the  
PCB layout is important. Many system-dependent parameters such as thermal coupling, airflow, added heat  
sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component. Correct PCB layout, focusing on thermal performance, results in lower  
die temperatures. Wide and thick power traces can sink dissipated heat. This can be improved further on multi-  
layer PCB designs with vias to different planes. This results in decreased junction-to-ambient (RθJA) and  
junction-to-board (RθJB) thermal resistances and thereby decreases the device junction temperature, TJ. TI  
strongly recommends doing a careful system-level 2D or full 3D dynamic thermal analysis at the beginning  
product design process, by using a thermal modeling analysis software.  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
10.2 Layout Example  
Below example is an illustrative example only. For an exact PCB layout example, please refer to the EVM  
Manual  
Via to GND plane  
Via to VIN plane  
Bottom side component  
VOUT1  
VOUT0  
L0  
L1  
COUT1  
COUT0  
GND  
CIN0  
CIN1  
VIN  
13 1211 10 9  
VIN  
R0  
R1  
C1  
14  
15  
16  
17  
8
FB_B1  
EN2  
FB_B0  
C0  
EN1 7  
GND  
PGOOD  
AGND  
6
SDA  
27  
SCL 5  
AGND  
CVANA  
18  
19  
GND  
4
3
2
1
VANA GND  
nINT  
AGND  
CLKIN  
EN3  
VIN  
20 NRST  
FB_B3  
C3  
FB_B2  
21  
C2  
R2  
R3  
22 23 24 25 26  
VIN  
VIN  
CIN3  
CIN2  
GND  
COUT3  
COUT2  
L3  
L2  
VOUT3  
VOUT2  
A. The output voltage rails are shorted together based on the configuration as shown in 8.2.  
10-1. Board Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: LP875701-Q1  
 
LP875701-Q1  
ZHCSJ52A DECEMBER 2019 REVISED AUGUST 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: LP875701-Q1  
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
3000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP875701ARNFRQ1  
LP875701ARNFTQ1  
ACTIVE  
VQFN-HR  
VQFN-HR  
RNF  
26  
26  
RoHS-Exempt  
& Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
LP8757  
01A-Q1  
ACTIVE  
RNF  
RoHS-Exempt  
& Green  
SN  
LP8757  
01A-Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP875701ARNFRQ1  
LP875701ARNFTQ1  
VQFN-  
HR  
RNF  
RNF  
26  
26  
3000  
250  
330.0  
12.4  
4.25  
4.75  
1.2  
8.0  
12.0  
Q1  
VQFN-  
HR  
180.0  
12.4  
4.25  
4.75  
1.2  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP875701ARNFRQ1  
LP875701ARNFTQ1  
VQFN-HR  
VQFN-HR  
RNF  
RNF  
26  
26  
3000  
250  
346.0  
200.0  
346.0  
183.0  
35.0  
25.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNF0026B  
VQFN-HR - 0.9 mm max height  
SCALE 2.800  
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
C
0.9 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X  
2
0.3  
0.2  
10X  
8X 0.5  
4X (0.35)  
4X (0.575)  
(0.2) TYP  
4X (0.4)  
9
13  
4X (0.625)  
14  
8
7
1.72  
1.52  
10X  
SYMM  
27  
2X  
2.5  
0.66 0.1  
0.3  
0.2  
10X 0.5  
12X  
0.5  
21  
1
0.1  
C A B  
C
26  
22  
PIN 1 ID  
THERMAL PAD  
0.05  
SYMM  
12X  
0.3  
2.24 0.1  
4222978/C 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNF0026B  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
8X (0.5)  
10X (0.25)  
22  
12X (0.6)  
26  
1
21  
10X (1.82)  
12X (0.25)  
SYMM  
(3.08)  
27  
(0.66)  
2X (3.65)  
10X (0.5)  
(
0.2) TYP  
VIA  
8
4X (0.4)  
14  
4X (0.825)  
(R0.05)  
TYP  
9
13  
4X (0.35)  
(0.87)  
(2.24)  
4X (0.775)  
2X (3.2)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAIL  
NOT TO SCALE  
4222978/C 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNF0026B  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.575) TYP  
(0.5)  
10X  
EXPOSED METAL  
SYMM  
TYP  
12X (0.6)  
26  
22  
1
21  
12X (0.25)  
(1.01) TYP  
(1.775)  
TYP  
(1.035) TYP  
10X (0.5)  
SYMM  
2X (0.98)  
27  
2X (0.66)  
(0.59)  
(R0.05) TYP  
EXPOSED METAL  
4X (0.3)  
20X (0.81)  
4X (0.825)  
8
14  
13  
9
4X (0.3)  
20X (0.25)  
4X (0.775)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1, 8, 14 & 21: 87% - PADS 9-13 & 22-26: 88% - THERMAL PAD 27: 87%  
SCALE:25X  
4222978/C 04/2018  
NOTES: (continued)  
6. For alternate stencil design recommendations, see IPC-7525 or board assembly site preference.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY