LP8758A2EAYFFR [TI]

四路、单相、4A 输出直流/直流降压转换器 | YFF | 35 | -40 to 105;
LP8758A2EAYFFR
型号: LP8758A2EAYFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四路、单相、4A 输出直流/直流降压转换器 | YFF | 35 | -40 to 105

转换器
文件: 总61页 (文件大小:1935K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP8758-EA  
ZHCSNW7 APRIL 2021  
LP8758-EA 4A 输出同步降压直流/直流转换器  
1 特性  
3 说明  
• 完全集成的四路降压每路降压的可编程最大输出  
电流高4A  
LP8758-EA 器件专为满足手机和网卡等应用中低功耗  
处理器的电源管理要求而设计。该器件包含四个降压  
DC-DC 转换器内核可提供四条输出电压轨。该器件  
通过兼I2C 的串行接口进行控制。  
– 自PWM-PFM 和强PWM 操作  
– 可编程输出电压转换率范围30mV/µs 至  
0.5mV/µs  
自动 PWM-PFMAUTO 模式操作可在宽输出电流  
范围内最大程度地提高效率。  
– 输入电压范围2.5 V 5.5 V  
VOUT 范围0.5V 3.36VDVS  
• 可通过使能信号编程的启动和关断定序  
I2C 兼容接口支持标(100kHz)、快速  
(400kHz)、  
快速+ (1MHz) 和高(3.4MHz) 模式  
• 具有可编程屏蔽的中断功能  
• 负载电流测量  
• 输出短路和过载保护  
• 可降EMI 的展频模式  
• 四个降压内核彼此90° 异相运行从而降低输入  
纹波电流  
• 过热警告和保护  
LP8758-EA 支持与硬件使能输入信号同步的可编程启  
动和关断排序。  
保护特性包括短路保护、电流限制、输入电源欠压闭锁  
(UVLO) 以及过热警告和关断功能。该器件还具有一些  
错误标志用于提供自身的状态信息。此外LP8758-  
EA 器件支持在不添加外部电流感测电阻器的情况下进  
行负载电流测量。在启动和电压变化过程中该器件会  
对转换率加以控制从而最大限度地减少输出电压过冲  
和浪涌电流。  
器件信息(1)  
器件型号  
默认输出电压  
800 mV  
• 欠压锁(UVLO)  
VOUT0  
VOUT1  
VOUT2  
VOUT3  
2 应用  
800 mV  
LP8758-EA  
光学模块  
无人机系统  
800 mV  
800 mV  
智能手机、电子书和平板电脑  
固态硬盘  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
100  
95  
90  
85  
80  
LP8758  
VIN  
VOUT0  
VOUT1  
VOUT2  
VOUT3  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
SW_B0  
FB_B0  
SW_B1  
FB_B1  
NRST  
SDA  
SCL  
nINT  
EN1  
EN2  
SW_B2  
FB_B2  
VIN = 3.3 V  
2.5 V  
1.8 V  
75  
70  
0.001  
SW_B3  
FB_B3  
0.01  
0.1  
Output Current (A)  
1
5
D038  
GNDs  
VOUT = 1.8V 2.5V  
效率与输出电流间的关系  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSC24  
 
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
Table of Contents  
7.5 Programming............................................................ 24  
7.6 Register Maps...........................................................27  
8 Application and Implementation..................................47  
8.1 Application Information............................................. 47  
8.2 Typical Application.................................................... 47  
9 Power Supply Recommendations................................53  
10 Layout...........................................................................55  
10.1 Layout Guidelines................................................... 55  
10.2 Layout Example...................................................... 56  
11 Device and Documentation Support..........................57  
11.1 Device Support........................................................57  
11.2 Documentation Support.......................................... 57  
11.3 接收文档更新通知................................................... 57  
11.4 支持资源..................................................................57  
11.5 Trademarks............................................................. 57  
11.6 静电放电警告...........................................................57  
11.7 术语表..................................................................... 57  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 I2C Serial Bus Timing Requirements.......................... 8  
6.7 Switching Characteristics..........................................10  
6.8 Typical Characteristics.............................................. 11  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................23  
Information.................................................................... 58  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
April 2021  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
VIN  
_B2  
SW  
_B2  
PGND  
_B23  
SW  
_B3  
VIN  
_B3  
VIN  
_B3  
SW  
_B3  
PGND  
_B23  
SW  
_B2  
VIN  
_B2  
G
F
G
F
VIN  
_B2  
SW  
_B2  
PGND  
_B23  
SW  
_B3  
VIN  
_B3  
VIN  
_B3  
SW  
_B3  
PGND  
_B23  
SW  
_B2  
VIN  
_B2  
FB  
_B2  
PGND  
_B23  
FB  
_B3  
FB  
_B3  
PGND  
_B23  
FB  
_B2  
SCL  
SDA  
EN1  
VANA  
VANA  
SCL  
SDA  
EN1  
E
D
C
B
A
E
D
C
B
A
AGN  
D
AGN  
D
nINT  
EN2  
NRST  
NRST  
EN2  
nINT  
FB  
_B1  
PGND  
_B01  
FB  
_B0  
FB  
_B0  
PGND  
_B01  
FB  
_B1  
SGND  
SGND  
VIN  
_B1  
SW  
_B1  
PGND  
_B01  
SW  
_B0  
VIN  
_B0  
VIN  
_B0  
SW  
_B0  
PGND  
_B01  
SW  
_B1  
VIN  
_B1  
VIN  
_B1  
SW  
_B1  
PGND  
_B01  
SW  
_B0  
VIN  
_B0  
VIN  
_B0  
SW  
_B0  
PGND  
_B01  
SW  
_B1  
VIN  
_B1  
1
2
3
4
5
5
4
3
2
1
5-2. YFF Package 35-Pin DSBGA Bottom View  
5-1. YFF Package 35-Pin DSBGA Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
VIN_B1  
SW_B1  
Input for Buck1. The separate power pins VIN_Bx are not connected together internally VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
A1, B1  
P
A2, B2  
A3, B3, C3  
A4, B4  
A
G
A
Buck1 switch node.  
PGND_B01  
SW_B0  
Power Ground for Buck0 and Buck1.  
Buck0 switch node.  
Input for Buck0. The separate power pins VIN_Bx are not connected together internally VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
A5, B5  
VIN_B0  
P
C1  
C2  
C4  
SGND  
FB_B1  
FB_B0  
G
A
A
Substrate Ground.  
Output voltage feedback for Buck1.  
Output voltage feedback for Buck0.  
Programmable Enable signal for Buck converter core or cores. Can be also configured to switch  
between two output voltage levels.  
C5  
EN1  
D/I  
D1  
D2  
AGND  
nINT  
G
Ground.  
D/O  
Open-drain interrupt output. Active LOW.  
Programmable Enable signal for Buck converter one or more cores. Can be also configured to  
switch between two output voltage levels.  
D3  
EN2  
D/I  
D/I  
D4  
D5  
NRST  
SDA  
Reset signal for the device. Can be also used to enable the regulator.  
D/I/O Serial interface data input and output for system access. Connect a pullup resistor.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
E1  
E2  
E4  
E5  
NAME  
VANA  
FB_B3  
FB_B2  
SCL  
P
A
Supply voltage for Analog and Digital blocks.  
Output voltage feedback for Buck3.  
A
Output voltage feedback for Buck2.  
D/I  
Serial interface clock input for system access. Connect a pullup resistor.  
Input for Buck3. The separate power pins VIN_Bx are not connected together internally VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
F1, G1  
VIN_B3  
P
F2, G2  
E3, F3, G3  
F4, G4  
SW_B3  
PGND_B23  
SW_B2  
A
G
A
Buck3 switch node.  
Power Ground for Buck2 and Buck3.  
Buck2 switch node.  
Input for Buck2. The separate power pins VIN_Bx are not connected together internally - VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
F5, G5  
VIN_B2  
P
A: Analog Pin, D: Digital Pin, G: Ground Pin, P: Power Pin, I: Input Pin, O: Output Pin  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted).(1) (2)  
MIN  
MAX  
UNIT  
INPUT VOLTAGE  
VIN_Bx, VANA  
SW_Bx  
Voltage on power connections  
Voltage on buck switch nodes  
6
V
0.3  
0.3  
(VIN_Bx + 0.3 V) with  
6 V maximum  
V
(VANA + 0.3 V) with  
6 V maximum  
FB_Bx  
Voltage on buck voltage sense nodes  
V
V
0.3  
NRST  
Voltage on NRST input  
3.6  
3.6  
0.3  
0.3  
ENx, SDA, SCL, nINT  
CURRENT  
Voltage on logic pins (input or output pins)  
VIN_Bx, SW_Bx,  
PGND_Bx  
Current on power pins (average current over 100k  
hour lifetime, TJ = 125°C)  
0.62  
A/pin  
TEMPERATURE  
TJ-MAX  
Junction temperature  
150  
260  
150  
°C  
°C  
°C  
40  
Maximum lead temperature (soldering, 10 seconds)(3)  
Tstg  
Storage temperature  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under 6.3.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground.  
(3) For detailed soldering specifications and information, please refer to DSBGA Wafer Level Chip Scale Package.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted).  
MIN  
MAX  
UNIT  
INPUT VOLTAGE  
VIN_Bx, VANA  
NRST  
Voltage on power connections  
Voltage on NRST  
2.5  
0
5.5  
V
V
VANA with 3.6 V  
maximum  
Voltage on logic pins (input or output pins)  
VANA with 3.6 V  
maximum  
ENx, nINT  
SCL, SDA  
0
0
0
V
V
V
Voltage on I2C interface, standard (100 kHz), fast (400 khz),  
fast+ (1 MHz), and high-speed (3.4 MHz) modes  
1.95  
Voltage on I2C interface, standard (100 kHz), fast (400 kHz), and  
fast+ (1 MHz) modes  
VANA with 3.6 V  
maximum  
TEMPERATURE  
TJ  
Junction temperature  
Ambient temperature  
125  
85  
°C  
°C  
40  
40  
TA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LP8758-EA  
 
 
 
 
 
 
 
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
6.4 Thermal Information  
LP8758  
THERMAL METRIC(1)  
YFF (DSBGA)  
UNIT  
35 PINS  
56.1  
0.2  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
8.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
8.4  
ψJB  
RθJCbot  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Limits apply over the junction temperature range 40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT  
range, unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V, unless  
otherwise noted.(1) (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL COMPONENTS  
CIN  
Input filtering capacitance  
Connected from VIN_Bx to PGND_Bx  
Capacitance per output voltage rail  
1.9  
10  
10  
22  
µF  
µF  
Output filtering capacitance,  
local  
COUT  
Output capacitance, total  
(local and remote)  
COUT-TOTAL  
Total output capacitance  
[1-10] MHz  
50  
10  
µF  
Input and output capacitor  
ESR  
ESRC  
2
mΩ  
0.47  
µH  
L
Inductor  
Inductance of the inductor  
30%  
30%  
DCRL  
Inductor DCR  
TDK, VLS252010HBX-R47M  
29  
mΩ  
BUCK REGULATORS  
Voltage between VIN_Bx and ground  
terminals. VANA must be connected to the  
same supply as VIN_Bx.  
VIN  
Input voltage range  
2.5  
0.5  
3.7  
5.5  
V
V
Programmable voltage range  
1
10  
5
3.36  
Step size, 0.5 V VOUT < 0.73 V  
Step size, 0.73 V VOUT < 1.4 V  
Step size, 1.4 V VOUT 3.36 V  
VOUT  
Output voltage  
mV  
20  
Output current, VIN 3 V  
ILIM FWD programmed to 5 A per phase.  
3(3)  
4(3)  
Output current, VIN > 3 V, VOUT 2 V  
ILIM FWD programmed to 5 A per phase.  
IOUT  
Output current  
A
V
Output current, VIN > 3 V, VOUT > 2 V  
ILIM FWD programmed to 5 A per phase.  
3.5(3)  
Dropout voltage  
0.7  
VIN VOUT  
min (2%,  
20 mV)  
max (2%, 20  
mV)  
DC output voltage accuracy,  
includes voltage reference,  
DC load and line  
regulations, process and  
temperature  
Force PWM mode  
max ( 2%,  
20 mV) + 20  
mV  
PFM mode, the average output voltage  
level is increased by a maximum of 20 mV.  
min (2%,  
20 mV)  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Limits apply over the junction temperature range 40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT  
range, unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V, unless  
otherwise noted.(1) (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mVp-p  
%/V  
PWM mode, L = 0.47 µH  
10  
Ripple  
PFM mode, L = 0.47 µH  
IOUT = 1 A  
20  
DCLNR  
DCLDR  
DC line regulation  
±0.05  
DC load regulation in PWM  
mode  
IOUT from 0 to IOUT(max)  
0.3%  
±55  
Transient load step  
response  
IOUT = 0 A to 2 A, TR = TF = 400 ns, PWM  
mode, COUT = 44 µF, L = 0.47 µH  
TLDSR  
TLNSR  
mV  
mV  
VIN stepping 3.3 V 3.8 V, TR = TF = 10  
µs, IOUT = IOUT(max)  
Transient line response  
±15  
Programmable range  
Step size  
2.5  
5
A
0.5  
Forward current limit (peak  
for every switching cycle),  
per phase  
Accuracy, 3 V VIN 5.5 V, ILIM FWD = 5  
A
ILIM FWD  
-5%  
7.5%  
20%  
Accuracy, 2.5 V VIN 3 V, ILIM FWD = 5  
A
-20%  
1.6  
7.5%  
2
20%  
2.4  
90  
ILIM NEG  
Negative current limit  
A
RDS(ON) HS On-resistance, high-side  
Between VIN_Bx and SW_Bx pins (I = 1 A)  
40  
mΩ  
FET  
FET  
RDS(ON) LS On-resistance, low-side  
Between SW_Bx and PGND_Bx pins  
(I = 1 A)  
33  
< 50  
600  
50  
mΩ  
mV  
mA  
FET  
FET  
Overshoot during start-up  
Slew-rate = 10 mV/µs  
PFM-to-PWM switch -  
IPFM-PWM  
current threshold(4)  
PWM-to-PFM switch -  
IPWM-PFM  
240  
250  
mA  
current threshold(4)  
Output pulldown resistance Regulator disabled  
150  
350  
Ω
Powergood threshold for  
interrupt  
Rising ramp voltage, enable or voltage  
change  
23  
17  
10  
BUCKx_INT(BUCKx_SC_I  
NT), difference from final  
voltage  
mV  
mV  
Falling ramp, voltage change  
10  
17  
23  
Powergood threshold for  
status signal  
BUCKx_STAT(BUCKx_PG_ 0 during voltage change.  
During operation, status signal is forced to  
23  
17  
10  
STAT)  
PROTECTION FEATURES  
Temperature rising,  
CONFIG(TDIE_WARN_LEVEL) = 0  
125  
105  
Thermal warning  
Temperature rising,  
CONFIG(TDIE_WARN_LEVEL) = 1  
°C  
°C  
Hysteresis  
15  
150  
15  
Temperature rising  
Hysteresis  
Thermal shutdown  
Voltage falling  
Hysteresis  
2.3  
2.4  
50  
2.5  
V
VANAUVLO VANA undervoltage lockout  
mV  
LOAD CURRENT MEASUREMENT  
Current measurement  
range  
Maximum code  
20.46  
A
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Limits apply over the junction temperature range 40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT  
range, unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V, unless  
otherwise noted.(1) (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
LSB  
OUT 1 A  
20  
mA  
Measurement accuracy  
< 10%  
I
CURRENT CONSUMPTION  
Shutdown current  
consumption  
V(NRST) = 0 V  
1
6
µA  
µA  
Standby current  
consumption, converter  
cores disabled  
V(NRST) = 1.8 V  
Active current consumption  
during PFM operation, one V(NRST) = 1.8 V, IOUT = 0 mA, not switching  
converter core enabled  
55  
µA  
Active current consumption  
during PWM operation, per V(NRST) = 1.8 V, IOUT = 0 mA, L = 0.47 µH  
converter core  
14.5  
mA  
DIGITAL INPUT SIGNALS NRST, ENx, SCL, SDA  
VIL  
VIH  
Input low level  
Input high level  
0.4  
V
V
1.2  
10  
Hysteresis of Schmitt trigger  
inputs (SCL, SDA)  
VHYS  
80  
160  
mV  
ENx pulldown resistance  
ENx_PD = 1  
350  
800  
500  
720  
kΩ  
kΩ  
NRST pulldown resistance Always present  
DIGITAL OUTPUT SIGNALS nINT, SDA  
1200  
1700  
VOL  
RP  
Output low level  
ISOURCE = 2 mA,  
To VIO supply  
0.4  
1
V
External pullup resistor for  
nINT  
10  
kΩ  
ALL DIGITAL INPUTS  
ILEAK Input current  
All logic inputs over pin voltage range  
µA  
1  
(1) All voltage values are with respect to network ground.  
(2) Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified,  
but do represent the most likely norm.  
(3) The maximum output current can be limited by the forward current limit, ILIM FWD. The maximum output current is available with 5-A  
forward current limit setting.  
(4) The final PFM-to-PWM and PWM-to-PFM switchover current varies slightly and is dependant on the output voltage, input voltage and  
the magnitude of inductor's ripple current.  
6.6 I2C Serial Bus Timing Requirements  
See table notes.(1) (2)  
MIN  
MAX  
100  
400  
1
UNIT  
kHz  
Standard mode  
Fast mode  
kHz  
Serial clock frequency  
Fast mode +  
MHz  
MHz  
MHz  
ƒSCL  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
3.4  
1.7  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
 
 
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
6.6 I2C Serial Bus Timing Requirements (continued)  
See table notes.(1) (2)  
MIN  
4.7  
1.3  
0.5  
160  
320  
4
MAX  
UNIT  
Standard mode  
Fast mode  
µs  
tLOW  
SCL low time  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
ns  
µs  
ns  
Fast mode  
0.6  
0.26  
60  
tHIGH  
SCL high time  
Data setup time  
Data hold time  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
120  
250  
100  
50  
Fast mode  
tSU;DAT  
tHD;DAT  
tSU;STA  
ns  
Fast mode +  
High-speed mode  
Standard mode  
10  
0
3.45  
0.9  
Fast mode  
0
µs  
ns  
Fast mode +  
0
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
0
70  
0
150  
4.7  
0.6  
0.26  
160  
4
Fast mode  
µs  
ns  
µs  
ns  
µs  
Setup time for a start or a  
repeated start condition  
Fast mode +  
High-speed mode  
Standard mode  
Fast mode  
0.6  
0.26  
160  
4.7  
1.3  
0.5  
4
Hold time for a start or a  
repeated start condition  
tHD;STA  
Fast mode +  
High-speed mode  
Standard mode  
Bus free time between a stop  
and start condition  
tBUF  
Fast mode  
Fast mode +  
Standard mode  
Fast mode  
0.6  
0.26  
160  
µs  
ns  
tSU;STO  
Setup time for a stop condition  
Fast mode +  
High-speed mode  
Standard mode  
1000  
300  
120  
80  
Fast mode  
trDA  
Rise time of SDA signal  
Fast mode +  
ns  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
160  
250  
250  
120  
80  
Fast mode  
tfDA  
Fall time of SDA signal  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
160  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
6.6 I2C Serial Bus Timing Requirements (continued)  
See table notes.(1) (2)  
MIN  
MAX  
UNIT  
Standard mode  
Fast mode  
1000  
300  
120  
40  
trCL  
trCL1  
tfCL  
Rise time of SCL signal  
Fast mode +  
ns  
High-speed Mode, Cb = 100 pF  
High-speed Mode, Cb = 400 pF  
Standard mode  
80  
1000  
300  
120  
80  
Fast mode  
Rise time of SCL signal after a  
repeated start condition and  
after an acknowledge bit  
Fast mode +  
ns  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
160  
300  
300  
120  
40  
Fast mode  
Fall time of a SCL signal  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
80  
Capacitive load for each bus  
line (SCL and SDA)  
Cb  
400  
50  
pF  
ns  
Pulse width of spike suppressed Fast mode, fast mode +  
in SCL and SDA lines (spikes  
that are less than the indicated  
width are suppressed)  
tSP  
High-speed mode  
10  
(1) See 6-1 for timing diagram.  
(2) Cb refers to the capacitance of one bus line. Cb is expressed in pF units.  
6.7 Switching Characteristics  
Limits apply over the junction temperature range 40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT  
range, unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V, unless  
otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
µs  
2.7  
3
3.3  
ƒSW  
VOUT 0.6 V  
Switching frequency, PWM  
mode  
VOUT < 0.6 V  
1.8  
2
2.2  
From ENx to VOUT = 0.225 V (slew-rate  
control begins), COUT-TOTAL = 44 µF, no  
load  
140  
Start-up time (soft start)  
30  
15  
15%  
15%  
15%  
15%  
15%  
15%  
15%  
15%  
SLEW_RATEx[2:0] = 000, VOUT 0.5 V  
SLEW_RATEx[2:0] = 001, VOUT 0.5 V  
SLEW_RATEx[2:0] = 010, VOUT 0.5 V  
SLEW_RATEx[2:0] = 011, VOUT 0.5 V  
SLEW_RATEx[2:0] = 100, VOUT 0.5 V  
SLEW_RATEx[2:0] = 101, VOUT 0.5 V  
SLEW_RATEx[2:0] = 110, VOUT 0.5 V  
SLEW_RATEx[2:0] = 111, VOUT 0.5 V  
15%  
15%  
15%  
15%  
15%  
15%  
15%  
15%  
10  
7.5  
Output voltage slew-rate(2)  
mV/µs  
3.8  
1.9  
0.94  
0.4 0.4  
50  
PFM mode (automatically changing to  
PWM mode for the measurement)  
Load current measurement  
time  
µs  
PWM mode  
4
(1) Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified,  
but do represent the most likely normal.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
 
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
(2) Specified by design without testing. The slew-rate can be limited by the current limit (forward or negative current limit), output  
capacitance, and load current.  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
6-1. I2C Timing  
6.8 Typical Characteristics  
Unless otherwise specified: TA = 25°C, VIN = 3.7 V, ƒSW = 3 MHz, L = 470 nH.  
2
1.8  
1.6  
1.4  
1.2  
1
8
7.6  
7.2  
6.8  
6.4  
6
0.8  
0.6  
0.4  
0.2  
0
5.6  
5.2  
4.8  
4.4  
4
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
D011  
D010  
V(NRST) = 0 V  
V(NRST) = 1.8 V  
All converter cores disabled  
6-2. Shutdown Current Consumption vs Input  
6-3. Standby Current Consumption vs Input  
Voltage  
Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LP8758-EA  
 
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
18  
17  
16  
15  
14  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
D012  
D039  
V(NRST) = 1.8 V  
Load = 0 mA  
VOUT setting = 1000 mV  
V(NRST) = 1.8 V  
Load = 0 mA  
VOUT setting = 1000 mV  
6-4. PFM Mode Current Consumption vs Input  
Voltage One Output Enabled  
6-5. PWM Mode Current Consumption vs Input  
Voltage One Output Enable  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LP8758-xx devices are a family of configurable step-down DC-DC converters with four converter cores. The  
LP8758-xx devices are ideally suited for systems powered from 2.5-V to 5.5-V supply voltage. In LP8758-EA the  
cores are configured for a four single-phase configuration. The LP8758-EA is well suited for space-constrained  
applications where high efficiency is required at low output voltages. Typical applications include network  
interface cards, modem cards, smart phones and mobile devices, solid-state drives (SSDs), systems-on-a-chip  
(SoCs), ASICs, and low power processors.  
There are two modes of operation for the converter cores, depending on the output current required: pulse-width  
modulation (PWM) and pulse-frequency modulation (PFM). The cores operate in PWM mode at high load  
currents of approximately 600 mA or higher. Lighter output current loads cause the converter cores to  
automatically switch into PFM mode for reduced current consumption and a longer battery life when forced PWM  
mode is disabled. Additional features include soft-start, undervoltage lockout, overload protection, thermal  
warning, and thermal shutdown.  
7.1.1 Buck Information  
The LP8758-EA has four integrated high-efficiency buck converter cores. The cores are designed for flexibility;  
most of the functions are programmable, thus giving a possibility to optimize the regulator operation for each  
application.  
7.1.1.1 Operating Modes  
OFF: Output is isolated from the input voltage rail in this mode. Output has an optional pulldown resistor.  
PWM: Converter operates in buck configuration with fixed switching frequency.  
PFM: Converter switches only when output voltage decreases below programmed threshold. Inductor current  
is discontinuous.  
7.1.1.2 Programmability  
The following parameters can be programmed through registers:  
Output voltage  
Forced PWM operation  
Switch current limit  
Output voltage slew rate  
Enable and disable delays  
7.1.1.3 特性  
• 支持动态电压调(DVS) 以及可编程压摆率  
• 基于负载的自动模式控制  
• 同步整流  
• 具PI 补偿器的电流模式环路  
• 可选展频技术可降EMI  
• 软启动  
• 具有可屏蔽中断的电源正常状态标志  
• 相位控制用于优EMI四个内核彼此90° 异相运行从而降低输入纹波电流  
• 平均输出电流检测PFM 进入和负载电流测量)  
• 通过负载点进行电压检测  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LP8758-EA  
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.2 Functional Block Diagram  
VANA  
BUCK0  
ILIM Detection  
nINT  
Power-Good Detection  
Interrupts  
Overload and SC Detection  
ILOAD ADC  
EN1  
EN2  
Enable,  
Roof/Floor,  
Slew-Rate  
Control  
BUCK1  
ILIM Detection  
Power-Good Detection  
SDA  
SCL  
I2C  
Overload and SC Detection  
ILOAD ADC  
BUCK2  
Registers  
OTP EPROM  
ILIM Detection  
Power-Good Detection  
Digital  
Logic  
Overload and SC Detection  
ILOAD ADC  
UVLO  
Oscillator  
NRST  
BUCK3  
ILIM Detection  
Power-Good Detection  
Reference  
and Bias  
Thermal  
Monitor  
SW  
Reset  
Overload and SC Detection  
ILOAD ADC  
7.3 Feature Description  
7.3.1 Overview  
A block diagram of a single core is shown in 7-1.  
Interleaving switching action of the converters is illustrated in 7-2. The LP8758-EA regulator switches each  
core 90° apart, reducing input ripple current.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
High-Side FET  
Current Sense  
VIN  
FB  
Positive  
Current  
Limit  
Ramp  
Generator  
VOUT  
œ
SW  
Gate  
Control  
Error  
Amp  
Loop  
Comparator  
+
+
Negative  
Current  
Limit  
Power  
good  
Voltage  
Setting Slew  
Rate Control  
VDAC  
œ
Zero  
Cross  
detect  
Low-Side FET  
Current Sense  
Programmable  
Parameters  
Master  
Interface  
Control  
Block  
GND  
Slave  
Interface  
IADC  
7-1. Detailed Block Diagram Showing One Core  
IL0  
IL1  
IL2  
IL3  
0
90  
180  
270  
360  
450  
540  
630  
720  
PWM0  
PWM1  
PWM2  
PWM3  
SWITCHING CYCLE 360º  
0
90  
180  
270  
360 450  
Phase (Degrees)  
540  
630  
720  
7-2. PWM Timings and Inductor Current Waveforms 1  
1
Graph is not in scale and is for illustrative purposes only.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LP8758-EA  
 
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.3.1.1 Transition Between PWM and PFM Modes  
The LP8758-EA converter cores operate in PWM mode at load current of about 600 mA or higher. At lighter load  
current levels the cores automatically switches into PFM mode for reduced current consumption when Forced  
PWM mode is disabled (AUTO mode operation). By combining the PFM and the PWM modes a high efficiency is  
achieved over a wide output-load current range.  
7.3.1.2 Buck Converter Load Current Measurement  
Buck load current can be monitored via I2C registers. The monitored buck converter core is selected with the  
SEL_I_LOAD.LOAD_CURRENT_BUCK_SELECT[1:0] register bits. A write to this selection register starts a  
current measurement sequence. The measurement sequence is typically 50 µs long. The LP8758-EA device  
can be configured to give out an interrupt INT_TOP.I_LOAD_READY after the load current measurement  
sequence  
is  
finished.  
Load  
current  
measurement  
interrupt  
can  
be  
masked  
with  
TOP_MASK.I_LOAD_READY_MASK bit. The measurement result can be read from registers I_LOAD_1 and  
I_LOAD_2. Register I_LOAD_1 bits BUCK_LOAD_CURRENT[7:0] give out the LSB bits and register I_LOAD_2  
bits BUCK_LOAD_CURRENT[9:8] the MSB bits. The measurement result BUCK_LOAD_CURRENT[9:0] LSB is  
20 mA, and maximum value of the measurement is 20.46 A.  
7.3.1.3 Spread-Spectrum Mode  
Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband  
frequencies (the switching frequency and its harmonics). The usual solution to reduce noise coupling is to add  
EMI-filters and shields to the boards. The register-selectable spread-spectrum mode of the device minimizes the  
need for output filters, ferrite beads, or chokes. In spread-spectrum mode, the switching frequency varies  
randomly by ±5% about the center frequency, reducing the EMI emissions radiated by the converter and  
associated passive components and PCB traces (see 7-3). This feature is enabled with the  
CONFIG.EN_SPREAD_SPEC bit, and it affects all the buck converter cores.  
Frequency  
Where a fixed frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread spectrum  
architecture of the v spreads that energy over a large bandwidth.  
7-3. Spread-Spectrum Modulation  
7.3.2 Power-Up  
The power-up sequence for the LP8758-EA is as follows:  
VANA (and VIN_Bx) reach minimum recommended levels (V(VANA) > VANAUVLO).  
NRST is set to high level. This initiates power-on-reset (POR), OTP reading and enables the system I/O  
interface. The I2C host must allow at least 1.2 ms before writing or reading data to the LP8758-EA.  
The device enters STANDBY mode.  
The host can change the default register setting by I2C if needed.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
One or more of the converter cores can be enabled or disabled by one or more of the ENx pins and by the  
I2C interface.  
7.3.3 Regulator Control  
7.3.3.1 Enabling and Disabling  
The buck converter cores can be enabled when the device is in STANDBY or ACTIVE state. There are two ways  
to enable and disable the buck converter cores:  
Using BUCKx_CTRL1.EN_BUCKx register bit (when BUCKx_CTRL1.EN_PIN_CTRLx register bit is 0).  
Using EN1/2 control pins (BUCKx_CTRL1.EN_BUCKx register bit is 1 and BUCKx_CTRL1.EN_PIN_CTRLx  
register bit is 1).  
If the EN1/2 control pins are used for enable and disable, the delay from the control signal rising edge to start-up  
is set by BUCKx_DELAY.BUCKx_STARTUP_DELAY[3:0] bits and the delay from control signal falling edge to  
shutdown is set by BUCKx_DELAY.BUCKx_SHUTDOWN_DELAY[3:0] bits. The delays are valid only for EN1/2  
signal and not for control with BUCKx_CTRL1.EN_BUCKx bit. The delay time implemented by EN1/2 has overall  
±10% timing accuracy.  
The control of the converter cores (with 0 ms delays) is shown in 7-1.  
7-1. Regulator Control  
CONTROL  
METHOD  
BUCKx_CTRL1  
EN_PIN_CTRLx  
BUCKx_CTRL1  
BUCKx_CTRL1  
BUCKx  
OUTPUT VOLTAGE  
ROW  
EN_BUCKx  
EN1 PIN  
EN2 PIN  
EN_PIN_SELECTx  
EN_ROOF_FLOORx  
Enable or  
1
0
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care Disabled  
disable control  
with EN_BUCKx  
bit  
2
1
0
Don't Care  
Don't Care  
Don't Care  
Don't Care BUCKx_VOUT.BUCKx_VSET[7:0]  
Enable or  
disable control  
with EN1 pin  
3
4
5
6
1
1
1
1
1
1
1
1
0
0
1
1
0
0
0
0
Low  
Don't Care Disabled  
High  
Don't Care BUCKx_VOUT.BUCKx_VSET[7:0]  
Enable or  
disable control  
with EN2 pin  
Don't Care  
Don't Care  
Low  
Disabled  
High  
BUCKx_VOUT.BUCKx_VSET[7:0]  
BUCKx_FLOOR_VOUT.BUCKx_FL  
OOR_VSET[7:0]  
Roof or floor  
control with EN1  
pin  
7
8
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
Low  
Don't Care  
High  
Don't Care BUCKx_VOUT.BUCKx_VSET[7:0]  
BUCKx_FLOOR_VOUT.BUCKx_FL  
OOR_VSET[7:0]  
Roof or floor  
control with EN2  
pin  
9
Don't Care  
Don't Care  
Low  
10  
High  
BUCKx_VOUT.BUCKx_VSET[7:0]  
The following buck configuration bit settings allows the device to enable or disable the corresponding buck using  
the ENx pin:  
BUCKx_CTRL1.EN_BUCKx = 1  
BUCKx_CTRL1.EN_PIN_CTRLx = 1  
BUCKx_CTRL1.EN_ROOF_FLOORx = 0  
BUCKx_VOUT.BUCKx_VSET[7:0] = Required voltage when the ENx pin is high  
The enable pin for control is selected with BUCKx_CTRL1.EN_PIN_SELECTx  
When the ENx pin is low, 7-1 row 3 (or 5) is valid, and the converter core is disabled. By setting ENx pin high,  
7-1 row 4 (or 6) is valid, and the converter core is enabled with required voltage.  
If a converter core is enabled all the time, and the ENx pin controls selection between the two voltage levels,  
then the following configuration is used:  
BUCKx_CTRL1.EN_BUCKx = 1  
BUCKx_CTRL1.EN_PIN_CTRLx = 1  
BUCKx_CTRL1.EN_ROOF_FLOORx = 1  
BUCKx_VOUT.BUCKx_VSET[7:0] = Required voltage when the ENx pin is high  
The enable pin for control is selected with BUCKx_CTRL1.EN_PIN_SELECTx  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
When the ENx pin is low, 7-1 row 7 (or 9) is valid, and the core is enabled with a voltage defined by  
BUCKx_FLOOR_VOUT.BUCKx_FLOOR_VSET[7:0] bits. Setting the ENx pin high, 7-1 row 8 (or 10) is valid,  
and the core is enabled with a voltage defined by BUCKx_VOUT.BUCKx_VSET[7:0] bits.  
If the core is controlled by I2C writings, the BUCKx_CTRL1.EN_PIN_CTRLx bit is set to 0. The enable or disable  
is controlled by the BUCKx_CTRL1.EN_BUCKx bit, and when the regulator is enabled, the output voltage is  
defined by the BUCKx_VOUT.BUCKx_VSET[7:0] bits. The 7-1 rows 1 and 2 are valid for I2C controlled  
operation (ENx pins are ignored).  
The buck converter core is enabled by the ENx pin or by I2C writing as shown in 7-4. The soft-start circuit  
limits the in-rush current during start-up. Output voltage increase rate is around 5 mV/μsec during soft-start.  
When the output voltage rises to approximately 0.3 V, the output voltage becomes slew-rate controlled. If there is  
a short circuit at the output, and the output voltage does not increase above a 0.35-V level in 1 ms, the converter  
core is disabled, and interrupt is set. When the output voltage reaches the powergood threshold level the  
INT_BUCK_x.BUCKx_PG_INT interrupt flag is set. The powergood interrupt flag can be masked using  
BUCK_x_MASK.BUCKx_PG_MASK bit.  
The ENx input pins have integrated pull-down resistors. The pull-down resistors are enabled by default and host  
can disable those with CONFIG.ENx_PD bits.  
Voltage decrease because of load  
No new Power-good interrupt  
Voltage  
BUCKx_VSET[7:0]  
Power good  
Ramp  
SLEW_RATEx[2:0] bit in  
BUCKx_CTRL2 register  
0.6 V  
0.35 V  
Time  
Resistive pulldown  
(if enabled)  
Soft start  
Enable  
BUCKx_STAT bit  
(BUCK_x_STAT register)  
0
0
0
1
0
0
BUCKx_PG_STAT bit  
(BUCK_x_STAT register)  
1
1
0
1
BUCKx_PG_INT bit  
(INT_BUCK_x register)  
0
nINT  
Power-good  
interrupt  
Host clears  
interrupt  
7-4. Converter Core Enable and Disable  
7.3.3.2 Changing Output Voltage  
The converter core's output voltage can be changed by the ENx pin (voltage levels defined by the  
BUCKx_VOUT and BUCKx_FLOOR_VOUT registers) or by writing to the BUCKx_VOUT and  
BUCKx_FLOOR_VOUT registers. The voltage change is always slew-rate controlled, and the slew-rate is  
defined by the BUCKx_CTRL2.SLEW_RATEx[2:0] bits. During voltage change the Forced PWM mode is used  
automatically. When the programmed output voltage is achieved, the mode becomes the one defined by load  
current, and the BUCKx_CTRL1.BUCKx_FPWM bit.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
Voltage  
BUCKx_VSET  
Power-good  
Ramp  
SLEW_RATEx[2:0] bit  
in BUCKx_CTRL2 register  
Power-good  
BUCKx_FLOOR_VSET  
Time  
ENx  
BUCKx_STAT bit  
(BUCKx_STAT register)  
1
1
0
BUCKx_PG_STAT bit  
(BUCKx_STAT register)  
0
1
1
0
1
1
BUCKx_PG_INT bit  
(INT_BUCKx register)  
0
nINT  
Power-good  
interrupt  
Host clears  
interrupt  
Power-good  
interrupt  
Host clears  
interrupt  
7-5. Output Voltage Change  
7.3.4 Device Reset Scenarios  
There are three reset methods implemented on the LP8758-EA:  
Software reset with RESET.SW_RESET register bit;  
Reset from low logic level of NRST signal; and  
Undervoltage lockout (UVLO) reset from VANA supply.  
A SW-reset occurs when RESET.SW_RESET bit is written 1. The bit is automatically cleared after writing. This  
event disables all the buck converter cores immediately, resets all the register bits to the default values and OTP  
bits are loaded (see 7-7). I2C interface is not reset during software reset.  
If VANA supply voltage falls below UVLO threshold level or NRST signal is set low, then all the converter cores  
are disabled immediately, and all the register bits are reset to the default values. When the VANA supply voltage  
is above UVLO threshold level and NRST signal rises above threshold level an internal power-on reset (POR)  
occurs. OTP bits are loaded to the registers, and a start-up is initiated according to the register settings.  
7.3.5 Diagnosis and Protection Features  
The LP8758-EA is capable of providing three levels of protection features:  
Warnings for diagnosis which sets interrupt;  
Protection events which are disabling one or more converter cores; and  
Faults which are causing the device to shutdown.  
When the device detects one or more warning or protection conditions, the LP8758-EA sets the flag bits  
indicating what protection or warning conditions have occurred, and the nINT pin is pulled low. nINT is released  
again after a clear of flags is complete. The nINT signal stays low until all the pending interrupts are cleared.  
When a fault is detected, it is indicated by a INT_TOP.RESET_REG interrupt flag after next start-up.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7-2. Summary of Interrupt Signals  
INTERRUPT REGISTER  
AND BIT  
RECOVERY /  
INTERRUPT CLEAR  
EVENT  
RESULT  
INTERRUPT MASK  
STATUS BIT  
Write 1 to  
Current limit  
triggered (20 µs  
debounce)  
INT_TOP.INT_BUCKx = 1  
INT_BUCKx.BUCKx_ILIM_I  
NT = 1  
INT_BUCKx.BUCKx_ILIM  
_INT bit  
Interrupt is not cleared if  
current limit is active  
BUCKx_MASK.BUCKx_ILI BUCKx_STAT.BUCKx_ILI  
No effect  
M_MASK  
M_STAT  
Short circuit (VOUT  
<
INT_TOP.INT_BUCKx = 1  
INT_BUCK_0_1.BUCKx_SC  
_INT = 1  
Write 1 to  
INT_BUCK_0_1.BUCKx_  
SC_INT or  
0.35 V at 1 ms after  
enable) or overload  
(VOUT decreasing  
below 0.35 V during  
operation, 1 ms  
Converter core  
disable  
N/A  
N/A  
or  
to  
INT_BUCK_2_3.BUCKx_SC  
_INT = 1  
INT_BUCK_2_3.BUCKx_  
SC_INTbit  
debounce)  
Write 1 to  
INT_TOP.TDIE_WARN bit  
Interrupt is not cleared if  
temperature is above  
thermal warning level  
TOP_MASK.TDIE_WARN_ TOP_STAT.TDIE_WARN  
Thermal Warning  
No effect  
INT_TOP.TDIE_WARN = 1  
MASK  
_STAT  
Write 1 to  
INT_TOP.TDIE_SD bit  
Interrupt is not cleared if  
temperature is above  
thermal shutdown level  
All converter cores  
disabled  
TOP_STAT.TDIE_SD_ST  
AT  
Thermal Shutdown  
Powergood, output  
INT_TOP.TDIE_SD = 1  
N/A  
INT_TOP.INT_BUCKx = 1  
Write 1 to  
INT_BUCK_0_1.BUCKx_PG BUCK_0_1_MASK.BUCKx BUCK_0_1_STAT.BUCKx INT_BUCK_0_1.BUCKx_  
_INT = 1  
_PG_MASK  
_PG_STAT  
PG_INT bit  
voltage reaches the No effect  
programmed value  
or  
BUCK_2_3_MASK.BUCKx BUCK_2_3_STAT.BUCKx or to  
INT_BUCK_2_3.BUCKx_PG  
_INT = 1  
_PG_MASK  
_PG_STAT  
N/A  
INT_BUCK_2_3.BUCKx_  
PG_INT bit  
Write 1 to  
INT_TOP.I_LOAD_READ  
Y bit  
Load current  
No effect  
INT_TOP.I_LOAD_READY = TOP_MASK.I_LOAD_REA  
measurement ready  
1
DY_MASK  
Device ready for  
Write 1 to  
INT_TOP.RESET_REG  
bit  
Start-up (NRST  
rising edge)  
operation, registers  
reset to default  
values  
TOP_MASK.RESET_REG_  
MASK  
INT_TOP.RESET_REG = 1  
N/A  
N/A  
N/A  
Glitch on supply  
voltage and UVLO  
triggered (VANA  
falling and rising)  
Immediate shutdown  
followed by powerup,  
registers reset to  
default values  
Write 1 to  
INT_TOP.RESET_REG  
bit  
TOP_MASK.RESET_REG_  
MASK  
INT_TOP.RESET_REG = 1  
INT_TOP.RESET_REG = 1  
Immediate shutdown  
Software requested followed by powerup,  
Write 1 to  
INT_TOP.RESET_REG  
bit  
TOP_MASK.RESET_REG_  
MASK  
reset  
registers reset to  
default values  
7.3.5.1 Warnings for Diagnosis (Interrupt)  
7.3.5.1.1 Output Current Limit  
The converter cores have programmable output peak current limits. The limits are individually programmed for  
all buck converter cores with BUCKx_CTRL2.ILIMx[2:0] bits. If the load current is increased so that the current  
limit is triggered, the regulator continues to regulate to the limit current level (current peak regulation). The  
voltage may decrease if the load current is higher than limit current. If the current regulation continues for 20 µs,  
the LP8758-EA device sets the INT_BUCKx.BUCKx_ILIM_INT bit and pulls the nINT pin low. The host processor  
can read BUCKx_STAT.BUCKx_ILIM_STAT bits to see if the converter cores is still in peak current regulation  
mode.  
For example, if the load on Buck0 output is so high that the output voltage VOUT decreases below a 350-mV  
level, the LP8758-EA device disables the converter core Buck0 and sets the INT_BUCK_0_1.BUCK0_SC_INT  
bit. In addition the BUCK_0_1_STAT.BUCK0_STAT bit is set to 0. The interrupt is cleared when the host  
processor writes 1 to INT_BUCK_0_1.BUCK0_SC_INT bit. The overload situation is shown in 7-6.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
Regulator disabled  
by digital  
New startup if  
enable is valid  
Voltage  
VOUTx  
350 mV  
Resistive  
pulldown  
1 ms  
Time  
Current  
ILIMx  
Time  
25 ms  
BUCKx_ILIM_INT bit  
(INT_BUCKx register)  
0
0
1
1
0
BUCKx_SC_INT bit  
(INT_BUCKx register)  
1
0
0
1
BUCKx_STAT bit  
(BUCKx_STAT register)  
nINT  
Host clearing the interrupt by writing to flags  
7-6. Overload Situation  
7.3.5.1.2 Thermal Warning  
The LP8758-EA device includes protection features against overtemperature by setting an interrupt for host  
processor. The threshold level of the thermal warning is selected with CONFIG.TDIE_WARN_LEVEL bit.  
If the LP8758-EA device temperature increases above the thermal warning level, the device sets  
INT_TOP.TDIE_WARN bit and pulls nINT pin low. The status of the thermal warning can be read from  
TOP_STAT.TDIE_WARN_STAT bit, and the interrupt is cleared by writing 1 to INT_TOP.TDIE_WARN bit.  
7.3.5.2 Protection (Regulator Disable)  
If the regulator is disabled because of protection or fault (short-circuit protection, overload protection, thermal  
shutdown, or undervoltage lockout), the output power FETs are set to high-impedance mode, and the output  
pulldown resistor is enabled (if enabled with the BUCKx_CTRL1.EN_RDISx bits). The turnoff time of the output  
voltage is defined by the output capacitance, load current, and the resistance of the integrated pulldown resistor.  
7.3.5.2.1 Short-Circuit and Overload Protection  
A short-circuit protection feature allows the LP8758-EA to protect itself and external components against short  
circuit at the output or against overload during start-up. The fault threshold is 350 mV, and the protection is  
triggered and the converter core is disabled if the output voltage is still below the threshold level 1 ms after the  
converter core was enabled.  
In a similar way the overload situation is protected during normal operation. If a feedback-pin voltage falls below  
0.35 V, and remains below the threshold level for 1 ms, the respective converter core is disabled.  
For example, if the Buck core 0 output is overloaded, then the INT_BUCK_0_1.BUCK0_SC_INT and the  
INT_TOP.INT_BUCK0 bits are set to 1, the BUCK_0_1_STAT.BUCK0_STAT bit is set to 0, and the nINT signal is  
pulled low. The host processor clears the interrupt by writing 1 to the INT_BUCK_0_1.BUCK0_SC_INT bit. The  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
regulator makes a new start-up attempt (upon clearing the interrupt) if the enable register bits, ENx control  
signal, or both are valid.  
7.3.5.2.2 Thermal Shutdown  
The LP8758-EA has an over-temperature protection function that operates to protect itself from short-term  
misuse and overload conditions. When the junction temperature exceeds around 150°C, the cores are disabled,  
the INT_TOP.TDIE_SD bit is set to 1, the nINT signal is pulled low, and the device enters STANDBY. The nINT is  
cleared by writing 1 to the INT_TOP.TDIE_SD bit. If the temperature is above the thermal shutdown level, then  
the interrupt is not cleared. The host can read the status of the thermal shutdown from the  
TOP_STAT.TDIE_SD_STAT bit. Converter cores cannot be enabled as long as the junction temperature is above  
the thermal shutdown level or the thermal shutdown interrupt is pending.  
7.3.5.3 Fault (Power Down)  
7.3.5.3.1 Undervoltage Lockout  
When the input voltage falls below VANAUVLO at the VANA pin, the converter cores are disabled immediately,  
and the output capacitors are discharged using the pulldown resistors and the LP8758-EA device enters  
SHUTDOWN. When VANA voltage is above the UVLO threshold level and NRST signal is high, the device  
powers up to STANDBY state.  
If the reset interrupt is unmasked by default (TOP_MASK.RESET_REG_MASK = 0) the INT_TOP.RESET_REG  
interrupt indicates that the device has been in SHUTDOWN. The host processor must clear the interrupt by  
writing 1 to the INT_TOP.RESET_REG bit. If the host processor reads the INT_TOP.RESET_REG flag after  
detecting an nINT low signal, it knows that the input supply voltage has been below UVLO level (or the host has  
requested reset), and the registers are reset to default values.  
7.3.6 Digital Signal Filtering  
The digital signals have debounce filtering. The signal or supply is sampled with a clock signal and a counter.  
This results as an accuracy of one clock period for the debounce window.  
7-3. Digital Signal Filtering  
EVENT  
SIGNAL / SUPPLY  
RISING EDGE LENGTH  
FALLING EDGE LENGTH  
Enable, disable, or voltage select for  
BUCKx  
ENx  
3 µs(1)  
3 µs(1)  
VANA undervoltage lockout  
Thermal warning  
Thermal shutdown  
Current limit  
VANA  
Immediate  
20 µs  
Immediate  
20 µs  
TDIE_WARN  
TDIE_SD  
20 µs  
20 µs  
VOUTx_ILIM  
20 µs  
20 µs  
Overload  
FB_B0, FB_B1, FB_B2, FB_F3  
FB_B0, FB_B1, FB_B2, FB_F3  
1 ms  
1 ms  
Power-good  
20 µs  
20 µs  
(1) No glitch filtering, only synchronization.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Modes of Operation  
SHUTDOWN: The V(NRST) voltage is below threshold level. All switch, reference, control and bias circuitry of  
the LP8758-EA device are turned off.  
WAIT-ON:  
The V(NRST) voltage is above threshold level. The reference and bias circuitry are enabled. The  
converter cores of the LP8758-EA device are turned off.  
READ OTP: The main supply voltage V(VANA) is above VANAUVLO level and V(NRST) voltage is above  
threshold level. The converter cores are disabled and the reference and bias circuitry of the  
LP8758-EA are enabled. The OTP bits are loaded to registers.  
STANDBY:  
The main supply voltage V(VANA) is above VANAUVLO level and V(NRST) voltage is above  
threshold level. The converter cores are disabled and the reference, control and bias circuitry of  
the LP8758-EA are enabled. All registers can be read or written by the host processor through  
the system serial interface. The converter cores can be enabled if needed.  
ACTIVE:  
The main supply voltage V(VANA) is above VANAUVLO level and V(NRST) voltage is above  
threshold level. At least one converter core is enabled. All registers can be read or written by the  
host processor through the system serial interface.  
The operating modes and transitions between the modes are shown in 7-7.  
SHUTDOWN  
NRST high  
NRST low  
From any state except  
SHUTDOWN  
WAIT-ON  
V(VANA) > VANAUVLO  
V(VANA) < VANAUVLO  
READ  
OTP  
From any state except  
SHUTDOWN  
REGISTER  
RESET  
STANDBY  
I2C RESET  
REGULATOR  
ENABLED  
REGULATORS  
DISABLED  
ACTIVE  
7-7. Device Operation Modes  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LP8758-EA  
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.5 Programming  
7.5.1 I2C-Compatible Interface  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers  
on the device. This protocol uses a two-wire interface for bidirectional communications between the devices  
connected to the bus. The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL).  
Every device on the bus is assigned a unique address and acts as either a master or a slave depending on  
whether it generates or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor  
placed somewhere on the line and remain HIGH even when the bus is idle. The LP8758-EA supports standard  
mode (100 kHz), fast mode (400 kHz), fast mode plus (1 MHz), and high-speed mode (3.4 MHz).  
7.5.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the  
state of the data line can only be changed when clock signal is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
7-8. Data Validity Diagram  
7.5.1.2 Start and Stop Conditions  
The LP8758-EA is controlled through an I2C-compatible interface. START and STOP conditions classify the  
beginning and end of the I2C session. A START condition is defined as SDA transitions from HIGH to LOW while  
SCL is HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The I2C  
master always generates the START and STOP conditions.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
7-9. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. During data  
transmission the I2C master can generate repeated START conditions. A START and a repeated START  
condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock  
signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. 7-10 shows the SDA  
and SCL signal timing for the I2C-Compatible Bus. See the 6.6 for timing values.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
7-10. I2C-Compatible Timing  
7.5.1.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LP8758-EA  
pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The LP8758-EA generates an  
acknowledge after each byte has been received.  
There is one exception to the acknowledge after every byte rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (negative acknowledge) the last byte clocked out  
of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master),  
but the SDA line is not pulled down.  
备注  
If the NRST signal is low during I2C communication the LP8758-EA device does not drive SDA line.  
The ACK signal and data transfer to the master is disabled at that time.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE, and a 1  
indicates a READ. The second byte selects the register to which the data is written. The third byte contains data  
to write to the selected register.  
ACK from slave  
ACK from slave  
ACK from slave  
START MSB Chip Address LSB  
W
ACK MSB Register Address LSB ACK  
MSB Data LSB  
ACK STOP  
SCL  
SDA  
START  
id = 0x60  
W
ACK  
address = 0x40  
ACK  
address 0x40 data  
ACK STOP  
7-11. Write Cycle (w = write; SDA = 0), id = Device Address = 60Hex for LP8758-EA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
ACK from slave  
ACK from slave REPEATED START  
ACK from slave Data from slave NACK from master  
START MSB Chip Address LSB  
W
MSB Register Address LSB  
RS  
MSB Chip Address LSB  
R
MSB Data LSB  
STOP  
SCL  
SDA  
START  
ACK  
ACK  
ACK  
NACK  
STOP  
id = 0x60  
W
address = 0x3F  
RS  
id = 0x60  
R
address 0x3F data  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
7-12. Read Cycle ( r = read; SDA = 1), id = Device Address = 60Hex for LP8758-EA  
7.5.1.4 I2C-Compatible Chip Address  
The device address for the LP8758-EA is 0x60. After the START condition, the I2C master sends the 7-bit  
address followed by an eighth bit, read or write (R/W). R/W = 0 indicates a WRITE and R/W = 1 indicates a  
READ. The second byte following the device address selects the register address to which the data will be  
written. The third byte contains the data for the selected register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
2
I C Slave Address (chip address)  
Here device address is 110 0000Bin = .  
7-13. Device Address  
7.5.1.5 Auto Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Every time an  
8-bit word is sent to the LP8758-EA, the internal address index counter is incremented by one and the next  
register is written. 7-4 below shows writing sequence to two consecutive registers. Note: the auto-increment  
feature does not work for read.  
7-4. Auto-Increment Example  
Master  
Action  
Start  
Device  
Address  
= 60H  
Write  
Register  
Address  
Data  
Data  
Stop  
LP8758-  
EA  
ACK  
ACK  
ACK  
ACK  
Action  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 Register Descriptions  
The LP8758-EA is controlled by a set of registers through the serial interface port. The device registers, their  
addresses and their abbreviations are listed in 7-5. A more detailed description is given in sections 7.6.1.1  
to 7.6.1.35.  
The asterisk (*) marking indicates register bits which are updated from OTP memory during READ OTP state.  
7-5. Summary of LP8758-EA Control Registers  
Addr  
0x01  
Register  
Read / Write D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTP_REV  
R
OTP_ID[7:0]  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
BUCK0_  
CTRL1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
EN_BUCK0  
EN_PIN_  
CTRL0  
EN_PIN_  
SELECT0  
EN_ROOF  
_FLOOR0  
EN_RDIS0  
EN_RDIS1  
EN_RDIS2  
EN_RDIS3  
Reserved  
BUCK0_  
FPWM  
Reserved  
Reserved  
Reserved  
Reserved  
BUCK0_  
CTRL2  
Reserved  
ILIM0[2:0]  
SLEW_RATE0[2:0]  
BUCK1_  
CTRL1  
EN_BUCK1  
EN_PIN_  
CTRL1  
EN_PIN_  
SELECT1  
EN_ROOF  
_FLOOR1  
Reserved  
Reserved  
Reserved  
BUCK1_  
FPWM  
BUCK1_  
CTRL2  
Reserved  
ILIM1[2:0]  
SLEW_RATE1[2:0]  
BUCK2_  
CTRL1  
EN_BUCK2  
EN_PIN_  
CTRL2  
EN_PIN_  
SELECT2  
EN_ROOF  
_FLOOR2  
BUCK2_  
FPWM  
BUCK2_  
CTRL2  
Reserved  
ILIM2[2:0]  
SLEW_RATE2[2:0]  
BUCK3_  
CTRL1  
EN_BUCK3  
EN_PIN_  
CTRL3  
EN_PIN_  
SELECT3  
EN_ROOF  
_FLOOR3  
BUCK3_  
FPWM  
BUCK3_  
CTRL2  
Reserved  
ILIM3[2:0]  
SLEW_RATE3[2:0]  
BUCK0_  
VOUT  
BUCK0_VSET[7:0]  
BUCK0_  
FLOOR_  
VOUT  
BUCK0_FLOOR_VSET[7:0]  
0x0C  
0x0D  
BUCK1_  
VOUT  
R/W  
R/W  
BUCK1_VSET[7:0]  
BUCK1_  
FLOOR_  
VOUT  
BUCK1_FLOOR_VSET[7:0]  
0x0E  
0x0F  
BUCK2_  
VOUT  
R/W  
R/W  
BUCK2_VSET[7:0]  
BUCK2_  
FLOOR_  
VOUT  
BUCK2_FLOOR_VSET[7:0]  
0x10  
0x11  
BUCK3_  
VOUT  
R/W  
R/W  
BUCK3_VSET[7:0]  
BUCK3_  
FLOOR_  
VOUT  
BUCK3_FLOOR_VSET[7:0]  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
BUCK0_  
DELAY  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK1_SHUTDOWN_DELAY[3:0]  
BUCK2_SHUTDOWN_DELAY[3:0]  
BUCK3_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
BUCK2_STARTUP_DELAY[3:0]  
BUCK3_STARTUP_DELAY[3:0]  
BUCK1_  
DELAY  
BUCK2_  
DELAY  
BUCK3_  
DELAY  
RESET  
Reserved  
SW_  
RESET  
CONFIG  
Reserved  
TDIE  
EN2_PD  
EN1_PD  
EN_  
_WARN  
_LEVEL  
SPREAD  
_SPEC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LP8758-EA  
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
D0  
7-5. Summary of LP8758-EA Control Registers (continued)  
Addr  
0x18  
Register  
Read / Write D7  
D6  
D5  
D4  
D3  
D2  
D1  
RESET_  
INT_TOP  
R/W  
INT_  
BUCK3  
INT_  
BUCK2  
INT_  
BUCK1  
INT_  
BUCK0  
TDIE_SD  
TDIE_  
WARN  
I_LOAD_  
READY  
REG  
0x19  
0x1A  
0x1B  
INT_BUCK_  
0_1  
R/W  
R/W  
R
Reserved  
Reserved  
BUCK1_  
PG_INT  
BUCK1_  
SC_INT  
BUCK1_  
ILIM_INT  
Reserved  
Reserved  
BUCK0_  
PG_INT  
BUCK0_  
SC_INT  
BUCK0_  
ILIM_INT  
INT_BUCK_  
2_3  
BUCK3_  
PG_INT  
BUCK3_  
SC_INT  
BUCK3_  
ILIM_INT  
BUCK2_  
PG_INT  
BUCK2_  
SC_INT  
BUCK2_  
ILIM_INT  
TOP_  
STAT  
Reserved  
TDIE_SD  
_STAT  
TDIE_  
WARN_  
STAT  
Reserved  
0x1C  
BUCK_0_1_  
STAT  
R
BUCK1_  
STAT  
BUCK1_  
PG_STAT  
Reserved  
BUCK1_  
ILIM_  
STAT  
BUCK0_  
STAT  
BUCK0_  
PG_STAT  
Reserved  
Reserved  
BUCK0_  
ILIM_  
STAT  
0x1D  
0x1E  
BUCK_2_3_  
STAT  
R
BUCK3_  
STAT  
BUCK3_  
PG_STAT  
Reserved  
Reserved  
BUCK3_  
ILIM_STAT  
BUCK2_  
STAT  
BUCK2_  
PG_STAT  
BUCK2_  
ILIM_STAT  
TOP_  
MASK  
R/W  
TDIE_WARN  
_MASK  
RESET_  
REG_MASK  
I_LOAD_  
READY_  
MASK  
0x1F  
0x20  
BUCK_0_1_  
MASK  
R/W  
R/W  
Reserved  
Reserved  
BUCK1_  
PG_MASK  
Reserved  
Reserved  
BUCK1_  
ILIM_  
MASK  
Reserved  
Reserved  
BUCK0_  
PG_MASK  
Reserved  
Reserved  
BUCK0_  
ILIM_  
MASK  
BUCK_2_3_  
MASK  
BUCK3_  
PG_MASK  
BUCK3_  
ILIM_  
BUCK2_  
PG_MASK  
BUCK2_  
ILIM_  
MASK  
MASK  
0x21  
0x22  
0x23  
SEL_I_  
LOAD  
R/W  
R/W  
R/W  
Reserved  
Reserved  
BUCK_LOAD_CURRENT[7:0]  
LOAD_CURRENT_  
BUCK_SELECT[1:0]  
I_LOAD_2  
BUCK_LOAD_CURRENT[  
9:8]  
I_LOAD_1  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.1 OTP_REV  
Address: 0x01  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTP_ID[7:0]  
Bits  
Field  
Type  
Default  
0xEA *  
Description  
7:0  
OTP_ID[7:0]  
R
Identification code of the OTP EPROM version.  
7.6.1.2 BUCK0_CTRL1  
Address: 0x02  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
BUCK0_FPWM  
D0  
Reserved  
EN_BUCK0  
EN_PIN_  
CTRL0  
EN_PIN_  
SELECT0  
EN_ROOF_  
FLOOR0  
EN_RDIS0  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
EN_BUCK0  
EN_PIN_CTRL0  
EN_PIN_SELECT0  
R/W  
1 *  
1 *  
0 *  
0
Enable BUCK0 converter core:  
0 - BUCK0 converter core is disabled.  
1 - BUCK0 converter core is enabled.  
R/W  
R/W  
R/W  
R/W  
Enable EN1/2 pin control for BUCK0:  
0 - only EN_BUCK0 bit controls BUCK0.  
1 - EN_BUCK0 bit AND EN1/2 pin control BUCK0.  
Select which ENx pin controls BUCK0 if EN_PIN_CTRL0 = 1:  
0 - EN1 pin.  
1 - EN2 pin.  
EN_ROOF_  
FLOOR0  
Enable Roof/Floor control of EN1/2 pin if EN_PIN_CTRL0 = 1:  
0 - Enable/Disable (1/0) control.  
1 - Roof/Floor (1/0) control.  
EN_RDIS0  
1
Enable output discharge resistor when BUCK0 is disabled:  
0 - Discharge resistor disabled.  
1 - Discharge resistor enabled.  
2
1
Reserved  
R/W  
R/W  
0
BUCK0_FPWM  
0 *  
Forces the BUCK0 converter core to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode).  
1 - Forced to PWM operation.  
0
Reserved  
R/W  
0
7.6.1.3 BUCK0_CTRL2  
Address: 0x03  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM0[2:0]  
SLEW_RATE0[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
00  
Description  
Reserved  
ILIM0[2:0]  
5:3  
0x6 *  
Sets the switch current limit of BUCK0. Can be programmed at any time during  
operation:  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - 3.5 A  
0x5 - 4.0 A  
0x6 - 4.5 A  
0x7 - 5.0 A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
2:0 SLEW_RATE0[2:0]  
R/W  
0x4 *  
Sets the output voltage slew rate for BUCK0 converter core (rising and falling edges):  
0x0 - 30 mV/µs  
0x1 - 15 mV/µs  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.4 mV/µs  
7.6.1.4 BUCK1_CTRL1  
Address: 0x04  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK1  
EN_PIN_  
CTRL1  
EN_PIN_  
SELECT1  
EN_ROOF_  
FLOOR1  
EN_RDIS1  
Reserved  
BUCK1_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
EN_BUCK1  
EN_PIN_CTRL1  
EN_PIN_SELECT1  
R/W  
1 *  
1 *  
0 *  
0
Enable BUCK1 converter core:  
0 - BUCK1 converter core is disabled.  
1 - BUCK1 converter core is enabled.  
R/W  
R/W  
R/W  
R/W  
Enable EN1/2 pin control for BUCK1:  
0 - only EN_BUCK1 bit controls BUCK1.  
1 - EN_BUCK1 bit AND EN1/2 pin control BUCK1.  
Select which ENx pin controls BUCK1 if EN_PIN_CTRL1 = 1:  
0 - EN1 pin  
1 - EN2 pin.  
EN_ROOF_  
FLOOR1  
Enable Roof/Floor control of EN1/2 pin if EN_PIN_CTRL1 = 1:  
0 - Enable/Disable (1/0) control.  
1 - Roof/Floor (1/0) control.  
EN_RDIS1  
1
Enable output discharge resistor when BUCK1 is disabled:  
0 - Discharge resistor is disabled.  
1 - Discharge resistor is enabled.  
2
1
Reserved  
R/W  
R/W  
0
BUCK1_FPWM  
0 *  
Forces the BUCK1 converter core to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode).  
1 - Forced to PWM operation.  
0
Reserved  
R/W  
0
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.5 BUCK1_CTRL2  
Address: 0x05  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
SLEW_RATE1[2:0]  
D0  
Reserved  
ILIM1[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
ILIM1[2:0]  
00  
5:3  
0x6 *  
Sets the switch current limit of BUCK1. Can be programmed at any time during  
operation:  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - 3.5 A  
0x5 - 4.0 A  
0x6 - 4.5 A  
0x7 - 5.0 A  
2:0 SLEW_RATE1[2:0]  
R/W  
0x4 *  
Sets the output voltage slew rate for BUCK1 converter core (rising and falling edges):  
0x0 - 30 mV/µs  
0x1 - 15 mV/µs  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.4 mV/µs  
7.6.1.6 BUCK2_CTRL1  
Address: 0x06  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK2  
EN_PIN_  
CTRL2  
EN_PIN_  
SELECT2  
EN_ROOF_  
FLOOR2  
EN_RDIS2  
Reserved  
BUCK2_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
EN_BUCK2  
EN_PIN_CTRL2  
EN_PIN_SELECT2  
R/W  
1 *  
1 *  
1 *  
0
Enable BUCK2 converter core:  
0 - BUCK2 converter core is disabled.  
1 - BUCK2 converter core is enabled.  
R/W  
R/W  
R/W  
R/W  
Enable EN1/2 pin control for BUCK2:  
0 - only EN_BUCK2 bit controls BUCK2.  
1 - EN_BUCK2 bit AND EN1/2 pin control BUCK2.  
Select which ENx pin controls BUCK2 if EN_PIN_CTRL2 = 1:  
0 - EN1 pin  
1 - EN2 pin.  
EN_ROOF_  
FLOOR2  
Enable Roof/Floor control of EN1/2 pin if EN_PIN_CTRL2 = 1:  
0 - Enable/Disable (1/0) control.  
1 - Roof/Floor (1/0) control.  
EN_RDIS2  
1
Enable output discharge resistor when BUCK2 is disabled:  
0 - Discharge resistor is disabled.  
1 - Discharge resistor is enabled.  
2
1
Reserved  
R/W  
R/W  
0
BUCK2_FPWM  
0 *  
Forces the BUCK2 converter core to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode).  
1 - Forced to PWM operation.  
0
Reserved  
R/W  
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.7 BUCK2_CTRL2  
Address: 0x07  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM2[2:0]  
SLEW_RATE2[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
ILIM2[2:0]  
00  
5:3  
0x6 *  
Sets the switch current limit of BUCK2. Can be programmed at any time during  
operation:  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - 3.5 A  
0x5 - 4.0 A  
0x6 - 4.5 A  
0x7 - 5.0 A  
2:0 SLEW_RATE2[2:0]  
R/W  
0x4 *  
Sets the output voltage slew rate for BUCK2 converter core (rising and falling edges):  
0x0 - 30 mV/µs  
0x1 - 15 mV/µs  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.4 mV/µs  
7.6.1.8 BUCK3_CTRL1  
Address: 0x08  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK3  
EN_PIN_  
CTRL3  
EN_PIN_  
SELECT3  
EN_ROOF_  
FLOOR3  
EN_RDIS3  
Reserved  
BUCK3_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
EN_BUCK3  
EN_PIN_CTRL3  
EN_PIN_SELECT3  
R/W  
1 *  
1 *  
1 *  
0
Enable BUCK3 converter core:  
0 - BUCK3 converter core is disabled.  
1 - BUCK3 converter core is enabled.  
R/W  
R/W  
R/W  
R/W  
Enable EN1/2 pin control for BUCK3:  
0 - only EN_BUCK3 bit controls BUCK3  
1 - EN_BUCK3 bit AND EN1/2 pin control BUCK3.  
Select which ENx pin controls BUCK3 if EN_PIN_CTRL3 = 1:  
0 - EN1 pin  
1 - EN2 pin.  
EN_ROOF_  
FLOOR3  
Enable Roof/Floor control of EN1/2 pin if EN_PIN_CTRL3 = 1:  
0 - Enable/Disable (1/0) control  
1 - Roof/Floor (1/0) control.  
EN_RDIS3  
1
Enable output discharge resistor when BUCK3 is disabled:  
0 - Discharge resistor is disabled.  
1 - Discharge resistor is enabled.  
2
1
Reserved  
R/W  
R/W  
0
BUCK3_FPWM  
0 *  
Forces the BUCK3 converter core to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode).  
1 - Forced to PWM operation.  
0
Reserved  
R/W  
0
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.9 BUCK3_CTRL2  
Address: 0x09  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
SLEW_RATE3[2:0]  
D0  
Reserved  
ILIM3[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
ILIM3[2:0]  
00  
5:3  
0x6 *  
Sets the switch current limit of BUCK3. Can be programmed at any time during  
operation:  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - 3.5 A  
0x5 - 4.0 A  
0x6 - 4.5 A  
0x7 - 5.0 A  
2:0 SLEW_RATE3[2:0]  
R/W  
0x4 *  
Sets the output voltage slew rate for BUCK3 converter core (rising and falling edges):  
0x0 - 30 mV/µs  
0x1 - 15 mV/µs  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.4 mV/µs  
7.6.1.10 BUCK0_VOUT  
Address: 0x0A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK0_VSET[7:0]  
R/W  
0x37 *  
Sets the output voltage of BUCK0 converter core (Default 900 mV)  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.11 BUCK0_FLOOR_VOUT  
Address: 0x0B  
D7  
D6  
D5  
D5  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_FLOOR_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK0_FLOOR_VSET[  
7:0]  
R/W  
0x00  
Sets the output voltage of BUCK0 converter core when Floor state is used:  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.12 BUCK1_VOUT  
Address: 0x0C  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
BUCK1_VSET[7:0]  
Bits  
Field  
BUCK1_VSET[7:0]  
Type  
R/W  
Default  
0x37 *  
Description  
7:0  
Sets the output voltage of BUCK1 converter core (Default 1200 mV):  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.13 BUCK1_FLOOR_VOUT  
Address: 0x0D  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
BUCK1_FLOOR_VSET[7:0]  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK1_FLOOR_VSET[7:0]  
R/W  
0x00  
Sets the output voltage of BUCK1 converter core when the Floor state is  
used:  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.14 BUCK2_VOUT  
Address: 0x0E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK2_VSET[7:0]  
Bits  
Field  
Type  
Default  
0x37 *  
Description  
7:0 BUCK2_VSET[7:0]  
R/W  
Sets the output voltage of BUCK2 converter core (Default 1800 mV):  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.15 BUCK2_FLOOR_VOUT  
Address: 0x0F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK2_FLOOR  
_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK2_FLOOR  
_VSET[7:0]  
R/W  
0x00  
Sets the output voltage of BUCK2 converter core when the Floor state is used:  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.16 BUCK3_VOUT  
Address: 0x10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_VSET[7:0]  
Bits  
Field  
Type  
Default  
0x37 *  
Description  
7:0 BUCK3_VSET[7:0]  
R/W  
Sets the output voltage of BUCK3 converter core (Default 2700 mV)  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.17 BUCK3_FLOOR_VOUT  
Address: 0x11  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_FLOOR  
_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK3_FLOOR  
_VSET[7:0]  
R/W  
0x00  
Sets the output voltage of BUCK3 converter core when Floor state is used:  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.18 BUCK0_DELAY  
Address: 0x12  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK0_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x0 *  
Shutdown delay of BUCK0 from falling edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
3:0  
BUCK0_  
STARTUP_  
DELAY[3:0]  
R/W  
0x0 *  
Startup delay of BUCK0 from rising edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
7.6.1.19 BUCK1_DELAY  
Address: 0x13  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_SHUTDOWN_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK1_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x0 *  
Shutdown delay of BUCK1 from falling edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
3:0  
BUCK1_  
STARTUP_  
DELAY[3:0]  
R/W  
0x0 *  
Startup delay of BUCK1 from rising edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
7.6.1.20 BUCK2_DELAY  
Address: 0x14  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK2_SHUTDOWN_DELAY[3:0]  
BUCK2_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK2_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x0 *  
Shutdown delay of BUCK2 from falling edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
3:0  
BUCK2_  
STARTUP_  
DELAY[3:0]  
R/W  
0x0 *  
Start-up delay of BUCK2 from rising edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
7.6.1.21 BUCK3_DELAY  
Address: 0x15  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_SHUTDOWN_DELAY[3:0]  
BUCK3_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK3_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x0 *  
Shutdown delay of BUCK3 from falling edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
3:0  
BUCK3_  
STARTUP_  
DELAY[3:0]  
R/W  
0x0 *  
Start-up delay of BUCK3 from rising edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
7.6.1.22 RESET  
Address: 0x16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
SW_RESET  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
0000 000  
0
Description  
Reserved  
SW_RESET  
Software commanded reset. When written to 1, the registers are reset to default  
values, OTP memory is read, and the I2C interface is reset.  
The bit is automatically cleared.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.23 CONFIG  
Address: 0x17  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
EN1_PD  
D0  
Reserved  
TDIE_WARN_  
LEVEL  
EN2_PD  
EN_SPREAD  
_SPEC  
Bits  
Field  
Type  
R/W  
R/W  
Default  
0000  
0
Description  
7:4  
3
Reserved  
TDIE_WARN_LEVEL  
Thermal warning threshold level.  
0 - 125°C  
1 - 105°C  
2
1
0
EN2_PD  
EN1_PD  
R/W  
R/W  
R/W  
1
1
0
Selects the pulldown resistor on the EN2 input pin.  
0 - Pulldown resistor is disabled.  
1 - Pulldown resistor is enabled.  
Selects the pull down resistor on the EN1 input pin.  
0 - Pulldown resistor is disabled.  
1 - Pulldown resistor is enabled.  
EN_SPREAD_SPEC  
Enable spread-spectrum feature:  
0 - Disabled  
1 - Enabled  
7.6.1.24 INT_TOP  
Address: 0x18  
D7  
D6  
INT_BUCK2  
D5  
D4  
D3  
D2  
D1  
D0  
INT_BUCK3  
INT_BUCK1  
INT_BUCK0  
TDIE_SD  
TDIE_WARN  
RESET_REG  
I_LOAD_  
READY  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
INT_BUCK3  
INT_BUCK2  
INT_BUCK1  
INT_BUCK0  
TDIE_SD  
R
0
Interrupt indicating that output BUCK3 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK3 register.  
This bit is cleared automatically when INT_BUCK3 register is cleared to 0x00.  
R
R
0
0
0
0
Interrupt indicating that output BUCK2 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK2 register.  
This bit is cleared automatically when INT_BUCK2 register is cleared to 0x00.  
Interrupt indicating that output BUCK1 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK1 register.  
This bit is cleared automatically when INT_BUCK1 register is cleared to 0x00.  
R
Interrupt indicating that output BUCK0 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK0 register.  
This bit is cleared automatically when INT_BUCK0 register is cleared to 0x00.  
R/W  
Latched status bit indicating that the die junction temperature has exceeded the  
thermal shutdown level. The converter cores have been disabled if they were  
enabled. The converter cores cannot be enabled if this bit is active. The actual status  
of the thermal warning is indicated by the TOP_STAT.TDIE_SD_STAT bit.  
Write 1 to clear interrupt.  
2
1
TDIE_WARN  
RESET_REG  
R/W  
R/W  
0
0
Latched status bit indicating that the die junction temperature has exceeded the  
thermal warning level. The actual status of the thermal warning is indicated by  
TOP_STAT.TDIE_WARN_STAT bit.  
Write 1 to clear interrupt.  
Latched status bit indicating that either startup (NRST rising edge) has done, VANA  
supply voltage has been below undervoltage threshold level or the host has  
requested a reset (RESET.SW_RESET). The converter cores have been disabled,  
and registers are reset to default values and the normal startup procedure is done.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
0
I_LOAD_READY  
R/W  
0
Latched status bit indicating that the load current measurement result is available in  
I_LOAD_1 and I_LOAD_2 registers.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.25 INT_BUCK_0_1  
Address: 0x19  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_PG  
_INT  
BUCK1_SC  
_INT  
BUCK1_ILIM  
_INT  
Reserved  
BUCK0_PG  
_INT  
BUCK0_SC  
_INT  
BUCK0_ILIM  
_INT  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
0
BUCK1_PG_INT  
Latched status bit indicating that BUCK1 output voltage has reached power-good  
threshold level.  
Write 1 to clear.  
5
4
BUCK1_SC_INT  
BUCK1_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the BUCK1 output voltage has fallen below 0.35-V  
level during operation or BUCK1 output didn't reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
3
2
Reserved  
R/W  
R/W  
0
0
BUCK0_PG_INT  
Latched status bit indicating that BUCK0 output voltage has reached powergood  
threshold level.  
Write 1 to clear.  
1
0
BUCK0_SC_INT  
BUCK0_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the BUCK0 output voltage has fallen below 0.35-V  
level during operation or BUCK0 output didn't reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
7.6.1.26 INT_BUCK_2_3  
Address: 0x1A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_PG  
_INT  
BUCK3_SC  
_INT  
BUCK3_ILIM  
_INT  
Reserved  
BUCK2_PG  
_INT  
BUCK2_SC  
_INT  
BUCK2_ILIM  
_INT  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
0
BUCK3_PG_INT  
Latched status bit indicating that BUCK3 output voltage has reached power-good  
threshold level.  
Write 1 to clear.  
5
4
BUCK3_SC_INT  
BUCK3_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the BUCK3 output voltage has fallen below 0.35-V  
level during operation or BUCK3 output didn't reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
3
2
Reserved  
R/W  
R/W  
0
0
BUCK2_PG_INT  
Latched status bit indicating that BUCK2 output voltage has reached powergood  
threshold level.  
Write 1 to clear.  
1
0
BUCK2_SC_INT  
BUCK2_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the BUCK2 output voltage has fallen below 0.35 V  
level during operation or BUCK2 output didn't reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.27 TOP_STAT  
Address: 0x1B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
TDIE_SD  
_STAT  
TDIE_WARN  
_STAT  
Reserved  
Bits  
7:4  
3
Field  
Type  
R
Default  
Description  
Reserved  
0000  
0
TDIE_SD_STAT  
R
Status bit indicating the status of thermal shutdown:  
0 - Die temperature below the thermal shutdown level.  
1 - Die temperature above the thermal shutdown level.  
2
TDIE_WARN  
_STAT  
R
R
0
Status bit indicating the status of thermal warning:  
0 - Die temperature below the thermal warning level.  
1 - Die temperature above the thermal warning level.  
1:0  
Reserved  
00  
7.6.1.28 BUCK_0_1_STAT  
Address: 0x1C  
D7  
D6  
D5  
Reserved  
D4  
D3  
D2  
D1  
D0  
BUCK1_STAT  
BUCK1_PG  
_STAT  
BUCK1_ILIM  
_STAT  
BUCK0_STAT  
BUCK0_PG  
_STAT  
Reserved  
BUCK0_ILIM  
_STAT  
Bits  
Field  
BUCK1_STAT  
Type  
Default  
Description  
7
R
0
Status bit indicating the enable or disable status of BUCK1:  
0 - BUCK1 converter core is disabled.  
1 - BUCK1 converter core is enabled.  
6
BUCK1_PG_STAT  
Reserved  
R
0
Status bit indicating BUCK1 output voltage validity (raw status):  
0 - BUCK1 output is above power-good threshold level  
1 - BUCK1 output is below power-good threshold level.  
5
4
R
R
0
0
BUCK1_ILIM  
_STAT  
Status bit indicating BUCK1 current limit status (raw status):  
0 - BUCK1 output current is below current limit level.  
1 - BUCK1 output current limit is active.  
3
2
BUCK0_STAT  
BUCK0_PG_STAT  
Reserved  
R
R
0
0
Status bit indicating the enable or disable status of BUCK0:  
0 - BUCK0 converter core is disabled.  
1 - BUCK0 converter core is enabled.  
Status bit indicating BUCK0 output voltage validity (raw status):  
0 - BUCK0 output is above the power-good threshold level.  
1 - BUCK0 output is below the power-good threshold level.  
1
0
R
R
0
0
BUCK0_ILIM  
_STAT  
Status bit indicating BUCK0 current limit status (raw status):  
0 - BUCK0 output current is below the current limit level.  
1 - BUCK0 output current limit is active.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.29 BUCK_2_3_STAT  
Address: 0x1D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Reserved  
D0  
BUCK3_STAT  
BUCK3_PG  
_STAT  
Reserved  
BUCK3_ILIM  
_STAT  
BUCK2_STAT  
BUCK2_PG  
_STAT  
BUCK2_ILIM  
_STAT  
Bits  
Field  
BUCK3_STAT  
Type  
Default  
Description  
7
R
0
Status bit indicating the enable or disable status of BUCK3:  
0 - BUCK3 converter core is disabled.  
1 - BUCK3 converter core is enabled.  
6
BUCK3_PG_STAT  
Reserved  
R
0
Status bit indicating BUCK3 output voltage validity (raw status):  
0 - BUCK3 output is above power-good threshold level.  
1 - BUCK3 output is below power-good threshold level.  
5
4
R
R
0
0
BUCK3_ILIM  
_STAT  
Status bit indicating BUCK3 current limit status (raw status):  
0 - BUCK3 output current is below current limit level.  
1 - BUCK3 output current limit is active.  
3
2
BUCK2_STAT  
BUCK2_PG_STAT  
Reserved  
R
R
0
0
Status bit indicating the enable or disable status of BUCK2:  
0 - BUCK2 converter core is disabled.  
1 - BUCK2 converter core is enabled.  
Status bit indicating BUCK2 output voltage validity (raw status):  
0 - BUCK2 output is above power-good threshold level.  
1 - BUCK2 output is below power-good threshold level.  
1
0
R
R
0
0
BUCK2_ILIM  
_STAT  
Status bit indicating BUCK2 current limit status (raw status):  
0 - BUCK2 output current is below current limit level.  
1 - BUCK2 output current limit is active.  
7.6.1.30 TOP_MASK  
Address: 0x1E  
D7  
D6  
D5  
Reserved  
D4  
D3  
D2  
D1  
D0  
TDIE_WARN  
_MASK  
RESET_REG  
_MASK  
I_LOAD_  
READY_MASK  
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
Description  
Reserved  
0000 0  
0 *  
TDIE_WARN  
_MASK  
Masking for thermal warning interrupt INT_TOP.TDIE_WARN:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect TOP_STAT.TDIE_WARN_STAT status bit.  
1
0
RESET_REG  
_MASK  
R/W  
R/W  
1 *  
1 *  
Masking for register reset interrupt INT_TOP.RESET_REG:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
I_LOAD_  
READY_MASK  
Masking for load current measurement ready interrupt INT_TOP.I_LOAD_READY:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.31 BUCK_0_1_MASK  
Address: 0x1F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_PG  
_MASK  
Reserved  
BUCK1_ILIM  
_MASK  
Reserved  
BUCK0_PG  
_MASK  
Reserved  
BUCK0_ILIM  
_MASK  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
BUCK1_PG_MASK  
1 *  
Masking for BUCK1 power-good interrupt INT_BUCK_0_1.BUCK1_PG_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_0_1_STAT.BUCK1_PG_STAT status bit.  
5
4
Reserved  
R
0
BUCK1_ILIM  
_MASK  
R/W  
1 *  
Masking for BUCK1 current limit detection interrupt  
INT_BUCK_0_1.BUCK1_ILIM_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_0_1_STAT.BUCK1_ILIM_STAT status bit.  
3
2
Reserved  
R/W  
R/W  
0
BUCK0_PG_MASK  
1 *  
Masking for BUCK0 power-good interrupt INT_BUCK_0_1.BUCK0_PG_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_0_1_STAT.BUCK1_PG_STAT status bit.  
1
0
Reserved  
R
0
BUCK0_ILIM  
_MASK  
R/W  
1 *  
Masking for BUCK0 current limit detection interrupt  
INT_BUCK_0_1.BUCK0_ILIM_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_0_1_STAT.BUCK1_ILIM_STAT status bit.  
7.6.1.32 BUCK_2_3_MASK  
Address: 0x20  
D7  
D6  
D5  
Reserved  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_PG  
_MASK  
BUCK3_ILIM  
_MASK  
Reserved  
BUCK2_PG  
_MASK  
Reserved  
BUCK2_ILIM  
_MASK  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
BUCK3_PG_MASK  
1 *  
Masking for BUCK3 power-good interrupt INT_BUCK_2_3.BUCK3_PG_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_2_3_STAT.BUCK3_PG_STAT status bit.  
5
4
Reserved  
R
0
BUCK3_ILIM  
_MASK  
R/W  
1 *  
Masking for BUCK3 current limit detection interrupt  
INT_BUCK_2_3.BUCK3_ILIM_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_2_3_STAT.BUCK3_ILIM_STAT status bit.  
3
2
Reserved  
R/W  
R/W  
0
BUCK2_PG_MASK  
1 *  
Masking for BUCK2 power-good interrupt INT_BUCK_2_3.BUCK2_PG_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_2_3_STAT.BUCK1_PG_STAT status bit.  
1
Reserved  
R
0
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
0
BUCK2_ILIM  
_MASK  
R/W  
1 *  
Masking for BUCK2 current limit detection interrupt  
INT_BUCK_2_3.BUCK2_ILIM_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_2_3_STAT.BUCK1_ILIM_STAT status bit.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
7.6.1.33 SEL_I_LOAD  
Address: 0x21  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
LOAD_CURRENT_BUCK  
_SELECT[1:0]  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7:2  
Reserved  
00 0000  
0x0  
1:0 LOAD_CURRENT_  
BUCK_SELECT  
[1:0]  
Start the current measurement on the selected converter core:  
0x0 - BUCK0  
0x1 - BUCK1  
0x2 - BUCK2  
0x3 - BUCK3  
The measurement is started when this register is written.  
7.6.1.34 I_LOAD_2  
Address: 0x22  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK_LOAD_CURRENT[9:8]  
Bits  
7:2  
Field  
Type  
R
Default  
00 0000  
0x0  
Description  
Reserved  
1:0  
BUCK_LOAD_  
CURRENT[9:8]  
R
This register describes 2 MSB bits of the average load current on the selected  
converter core with a resolution of 20 mA per LSB and a maximum 20 A current.  
7.6.1.35 I_LOAD_1  
Address: 0x23  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK_LOAD_CURRENT[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK_LOAD_  
CURRENT[7:0]  
R
0x0  
This register describes 8 LSB bits of the average load current on selected converter  
core with a resolution of 20 mA per LSB and maximum 20-A current.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LP8758-EA is designed for applications powered from a 2.5-V to 5.5-V input supply that require multiple  
power rails. The device provides four step-down converters. All the step-down converters support dynamic  
voltage scaling through I2C interface to provide optimum power savings. The power sequencing of the four  
output voltage rails is programmable.  
8.2 Typical Application  
L0  
VIN  
SW_B0  
Load  
Load  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
CIN5  
CIN4  
470 nH  
COUT0  
22 µF  
CPOL0  
22 µF  
CIN0  
CIN1  
CIN2  
CIN3  
10 µF  
10 µF  
10 µF  
10 µF  
22 µF  
22 µF  
FB_B0  
L1  
SW_B1  
470 nH  
COUT1  
22 µF  
CPOL1  
22 µF  
FB_B1  
L2  
SW_B2  
Load  
Load  
470 nH  
COUT2  
22 µF  
CPOL2  
22 µF  
VIO  
VANA  
AGND  
CVANA  
100 nF  
FB_B2  
SDA  
SCL  
nINT  
NRST  
EN1  
EN2  
L3  
SW_B3  
470 nH  
COUT3  
22 µF  
CPOL3  
22 µF  
Host  
Processor  
FB_B3  
8-1. LP8758-EA Typical Application Circuit  
8-1. Design Parameters  
8.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage  
Output voltages  
3.3 V  
1000 mV, 1200 mV, 1800 mV, and 2500 mV  
Auto mode (PWM-PFM)  
Converter operation mode  
Maximum load currents  
Inductor current limits  
1.5 A, 2.25 A, 3 A, and 3 A  
2.5 A, 3.5 A, 4.5 A, and 4.5 A  
8.2.2 Detailed Design Procedure  
The performance of the LP8758-EA device depends greatly on the care taken in designing the printed circuit  
board (PCB). The use of low-inductance and low serial-resistance ceramic capacitors is strongly recommended,  
while proper grounding is crucial. Attention must be given to decoupling the power supplies. Decoupling  
capacitors must be connected close to the device and between the power and ground pins to support high peak  
currents being drawn from system power rail during turnon of the switching MOSFETs. Keep input and output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: LP8758-EA  
 
 
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
traces as short as possible, because trace inductance, resistance, and capacitance can easily become the  
performance limiting items. The separate power pins VIN_Bx are not connected together internally. The VIN_Bx  
power connections must be connected together outside the package using power plane construction.  
8.2.2.1 Application Components  
8.2.2.1.1 Inductor Selection  
DC bias current characteristics of inductors must be considered. Different manufacturers follow different  
saturation current rating specifications, so attention must be given to details. DC bias curves should be  
requested from manufacturers as part of the inductor selection process. Minimum effective value of inductance  
to ensure good performance is 0.33 μH at maximum load current over the operating temperature range of the  
inductor. The DC resistance of the inductor must be less than 0.05 for good efficiency at high-current  
condition. The inductor AC loss (resistance) also affects conversion efficiency. Higher Q factor at switching  
frequency usually gives better efficiency at light load to middle load. See 8-2. Shielded inductors are preferred  
as they radiate less noise.  
8-2. Recommended Inductors  
MANUFACTURER  
MURATA  
TDK  
PART NUMBER  
DFE201610E-R47M=P2  
VLS252010HBX-R47M  
TFM2016GHM-0R47M  
DFE322512C R47  
VALUE (µH)  
DIMENSIONS L × W × H (mm)  
DCR (m)  
0.47  
2 × 1.6 × 1  
26 (typical), 32 (maximum)  
29 (typical), 35 (maximum)  
46 (maximum)  
0.47  
2.5 × 2 × 1  
TDK  
0.47  
2 × 1.6 × 1  
TOKO  
0.47  
3.2 × 2.5 × 1.2  
21 (typical), 31 (maximum)  
8.2.2.1.2 Input Capacitor Selection  
A ceramic input capacitor of 10 μF, 6.3 V is sufficient for most applications. Place the power input capacitor as  
close as possible to the VIN_Bx pin and PGND_Bx pin of the device. A larger value or higher voltage rating may  
be used to improve input voltage filtering. Use X7R or X5R types; do not use Y5V or F. DC bias characteristics  
of ceramic capacitors must be considered when selecting case sizes like 0402. Minimum effective input  
capacitance to ensure good performance is 1.9 μF per buck input at maximum input voltage DC bias including  
tolerances and over ambient temp range, assuming that there are at least 22 μF of additional capacitance  
common for all the power input pins on the system power rail. See 8-3.  
The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and reduces  
voltage ripple imposed on the input power source. A ceramic capacitor's low equivalent series resistance (ESR)  
provides the best noise filtering of the input voltage spikes due to this rapidly changing current. Select an input  
filter capacitor with sufficient ripple current rating.  
The VANA input is used to supply analog and digital circuits in the device. See recommended components from  
8-4 for VANA input supply filtering.  
8-3. Recommended Power Input Capacitors (X5R Dielectric)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
DIMENSIONS L × W × H (mm) VOLTAGE RATING (V)  
Murata  
GRM188R60J106ME47 10 µF (20%)  
0603  
1.6 × 0.8 × 0.8 6.3  
8-4. Recommended VANA Supply Filtering Components  
MANUFACTURER  
Samsung  
PART NUMBER  
VALUE  
CASE SIZE  
DIMENSIONS L × W × H (mm) VOLTAGE RATING (V)  
CL03A104KP3NNNC 100 nF (10%)  
GRM033R61A104KE84 100 nF (10%)  
0201  
0.6 × 0.3 × 0.3  
0.6 × 0.3 × 0.3  
10  
Murata  
0201  
6.3  
8.2.2.1.3 Output Capacitor Selection  
Use ceramic capacitors, X7R or X5R types; do not use Y5V or F. DC bias voltage characteristics of ceramic  
capacitors must be considered. DC bias characteristics vary from manufacturer to manufacturer, and DC bias  
curves should be requested from them as part of the capacitor selection process. The output filter capacitor  
smooths out current flow from the inductor to the load, helps maintain a steady output voltage during transient  
load changes and reduces output voltage ripple. These capacitors must be selected with sufficient capacitance  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
and sufficiently low ESR and ESL to perform these functions. The minimum effective output capacitance to  
ensure good performance is 10 μF per output voltage rail at the output voltage DC bias, including tolerances  
and over ambient temperature range.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value used for  
selection process is at the switching frequency of the part. See 8-5.  
A higher output capacitance improves the load step behavior and reduces the output voltage ripple as well as  
decreases the PFM switching frequency. For most applications one 22-μF 0603 capacitor for COUT per voltage  
rail is suitable. A point-of-load (POL) capacitance CPOL can be added as shown in 8-1. Although the loop  
compensation of the converter can be programmed to adapt to virtually several hundreds of microfarads COUT, it  
is preferable for COUT to be < 50 µF . Choosing higher than that is not necessarily of any benefit. Note: the  
output capacitor may be the limiting factor in the output voltage ramp, especially for very large (> 100 µF) output  
capacitors. For large output capacitors, the output voltage might be slower than the programmed ramp rate at  
voltage transitions, because of the higher energy stored on the output capacitance. Also at start-up, the time  
required to charge the output capacitor to target value might be longer. At shutdown, if the output capacitor is  
discharged by the internal discharge resistor, more time is required to settle VOUT down as a consequence of the  
increased time constant.  
8-5. Recommended Output Capacitors (X5R Dielectric)  
DIMENSIONS L × W × H  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
VOLTAGE RATING (V)  
(mm)  
Samsung  
Murata  
CL10A226MP8NUNE  
22 µF (20%)  
22 µF (20%)  
0603  
0603  
1.6 × 0.8 × 0.8  
1.6 × 0.8 × 0.8  
10  
GRM188R60J226MEA0  
6.3  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
8.2.3 Application Curves  
Measurements are done using typical application set up with connections shown in 8-1. Graphs may not  
reflect the OTP default settings. Unless otherwise specified: VIN = 3.7 V, V(NRST) = 1.8 V, TA = 25 °C, ƒSW = 3  
MHz, L = 470 nH (TDK VLS252010HBX-R47M), ILIM FWD set to maximum 5 A.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
1000 mV  
1200 mV  
1800 mV  
2500 mV  
PFM Operation  
1000 mV  
1200 mV  
1800 mV  
2500 mV  
PWM Operation  
1
10  
100  
Load Current (mA)  
1000  
5000  
2500  
3000  
3500  
4000  
Input Voltage (mV)  
4500  
5000  
5500  
D014  
D002  
VIN = 3.7 V  
Load = 100 mA  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
8-2. Efficiency vs Load Current  
8-3. Efficiency vs Input Voltage in PFM Mode  
100  
100  
1000 mV  
1200 mV  
1800 mV  
1000 mV  
1200 mV  
1800 mV  
2500 mV  
95  
90  
85  
80  
75  
70  
2500 mV  
95  
90  
85  
80  
2500  
3000  
3500  
4000  
Input Voltage (mV)  
4500  
5000  
5500  
2500  
3000  
3500  
4000  
Input Voltage (mV)  
4500  
5000  
5500  
D041  
D016  
Load = 1A  
Load = 3A  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
8-4. Efficiency vs Input Voltage in PWM Mode  
8-5. Efficiency vs Input Voltage in PWM Mode  
0
1015  
1000 mV  
1200 mV  
-0.025  
PFM Operation  
1800 mV  
2500 mV  
-0.05  
-0.075  
1010  
1005  
-0.1  
-0.125  
-0.15  
-0.175  
-0.2  
PWM Operation  
1000  
-0.225  
-0.25  
995  
0
500 1000 1500 2000 2500 3000 3500 4000  
Output Current (mA)  
1
10  
100  
Output Current (mA)  
1000  
5000  
D005  
D047  
Change in Output Voltage from Zero Load (%)  
VOUT setting = 1000 mV  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
8-7. Output Voltage vs Load Current in PWM-  
8-6. DC Load Regulation in PWM mode  
PFM Mode  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
2515  
0.06  
0.04  
0.02  
0
1000mV  
1200mV  
1800mV  
2500mV  
PFM Operation  
2510  
2505  
2500  
-0.02  
-0.04  
-0.06  
PWM Operation  
2495  
2490  
2500  
3000  
3500  
4000  
Input Voltage (mV)  
4500  
5000  
5500  
D044  
1
10  
100  
Output Current (mA)  
1000  
5000  
D046  
Change in Output Voltage from VIN = 3.7 V (%)  
Load = 1 A  
VOUT setting = 2500 mV  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
8-8. Output Voltage vs Load Current in PWM-  
8-9. DC Line Regulation in PWM Mode  
PFM Mode  
1010  
1005  
1000  
V(SW_Bx) (5 V/div)  
V(EN1) (1 V/div)  
PWM Mode  
PFM Mode  
VOUT (200 mV/div)  
995  
-50  
-25  
0
25  
50  
75  
100 125  
Time (40 ms/div)  
Temperature (èC)  
D048  
Load = 0 A  
VOUT setting = 1000 mV  
Load = 1 A (PWM Mode) and 100 mA (PFM Mode)  
8-11. Start-up with EN1  
8-10. Output Voltage vs Temperature  
V(SW_Bx) (5 V/div)  
V(EN1) (1 V/div)  
V(SW_Bx) (5 V/div)  
V(EN1) (1 V/div)  
ILOAD (500 mA/div)  
VOUT (50 mV/div)  
ILOAD (500 mA/div)  
VOUT (200 mV/div)  
Time (200 ms/div)  
Time (40 ms/div)  
Load = 1 A  
8-13. Start-up With Short on Output  
8-12. Start-up with EN1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
VOUT0 (1 V/div)  
VOUT1 (1 V/div)  
V(SW_Bx) (5 V/div)  
VOUT (200 mV/div)  
VOUT2 (1 V/div)  
VOUT3 (1 V/div)  
V(EN1) (1 V/div)  
Time (10 ms/div)  
Time (4 ms/div)  
Load = 0 A  
Load = 0 A  
Enable and disable delays = default  
VOUT settings = default  
8-15. Shutdown with EN1  
8-14. VOUT0,1,2,3: Start-up and Shutdown with  
Default Register Settings, triggered by EN1.  
VOUT (10 mV/div)  
VOUT (10 mV/div)  
V(SW_B0) (2 V/div)  
V(SW_B0) (2 V/div)  
Time (200 ns/div)  
Time (40 ms/div)  
Load = 200 mA  
Load = 10 mA  
8-17. Output Voltage Ripple, Forced PWM Mode  
8-16. Output Voltage Ripple, PFM Mode  
V(SW_Bx) (2 V/div)  
V(SW_Bx) (2 V/div)  
VOUT (10 mV/div)  
VOUT (10 mV/div)  
Time (4 ms/div)  
Time (4 ms/div)  
8-18. Transient from PFM-to-PWM Mode  
8-19. Transient from PWM-to-PFM Mode  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
VIN (500 mV/div)  
VOUT (20 mV/div)  
ILOAD (1 A/div)  
VOUT (10 mV/div)  
Time (40 ms/div)  
Time (40 ms/div)  
Load = 4 A  
VOUT = 1000 mV  
TR = TF = 400 ns  
VOUT = 1 V  
Load = 0 A 2 A 0 A  
VIN stepping 3.3 V 3.8 V, TR = TF = 10 µs  
8-21. Transient Load Step Response, AUTO  
8-20. Transient Line Response  
Mode  
VOUT (50 mV/div)  
VOUT (20 mV/div)  
ILOAD (1 A/div)  
ILOAD (1 A/div)  
Time (40 ms/div)  
Time (40 ms/div)  
TR = TF = 1 µs  
VOUT = 1 V  
TR = TF = 400 ns  
VOUT = 1 V  
Load = 1A 4 A 1A  
Load = 0 A 2 A 0 A  
8-23. Transient Load Step Response, Forced  
8-22. Transient Load Step Response, Forced  
PWM Mode  
PWM Mode  
VOUT (200 mV/div)  
VOUT (200 mV/div)  
Time (400 µs/div)  
Time (400 µs/div)  
8-24. VOUT Transition From 0.6 V to 1.4 V With  
8-25. VOUT Transition From 1.4 V to 0.6 V With  
Different Slew Rate Settings  
Different Slew Rate Settings  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input supply  
must be well-regulated and able to withstand maximum input current and maintain stable voltage without voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
drop even at load transition condition. The resistance of the input supply rail must be low enough that the input  
current transient does not cause too high drop in the LP8758-EA supply voltage that can cause false UVLO fault  
triggering. If the input supply is located more than a few inches from the LP8758-EA additional bulk capacitance  
may be required in addition to the ceramic bypass capacitors.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The high frequency and large switching currents of the LP8758-EA make the choice of layout important. Good  
power supply results only occur when care is given to proper design and layout. Layout affects noise pickup and  
generation and can cause a good design to perform with less-than-expected results. With a range of output  
currents from milliamps to 4 A per converter core, good power supply layout is much more difficult than most  
general PCB design. The following steps should be used as a reference to ensure the device is stable and  
maintains proper voltage and current regulation across its intended operating voltage and current range.  
1. Place CIN as close as possible to the VIN_Bx pin and the PGND_Bxx pin. Route the VIN trace wide and thick  
to avoid IR drops. The trace between the positive node of the input capacitor and the LP8758-EA VIN_Bx  
pin(s), as well as the trace between the input capacitor's negative node and power PGND_Bxx pin(s), must  
be kept as short as possible. The input capacitance provides a low-impedance voltage source for the  
switching converter. The inductance of the connection is the most important parameter of a local decoupling  
capacitor parasitic inductance on these traces must be kept as tiny as possible for proper device  
operation.  
2. The output filter, consisting of Lx and COUTx, converts the switching signal at SW_Bx to the noiseless output  
voltage. It must be placed as close as possible to the device keeping the switch node small, for best EMI  
behavior. Route the traces between the output capacitors of the device and the load (or input capacitors of  
the load) direct and wide to avoid losses due to the IR drop.  
3. Input for analog blocks (VANA and AGND) must be isolated from noisy signals. Connect VANA directly to a  
quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling  
capacitor as close to the VANA pin as possible. VANA must be connected to the same power node as  
VIN_Bx pins.  
4. If the load supports remote voltage sensing, connect the feedback pins FB_Bx of the device to the  
respective sense pins on the load. The sense lines are susceptible to noise. They must be kept away from  
noisy signals such as PGND_Bxx, VIN_Bx, and SW_Bx, as well as high bandwidth signals such as the I2C.  
Avoid both capacitive as well as inductive coupling by keeping the sense lines short and direct. Run the lines  
in a quiet layer. Isolate them from noisy signals by a voltage or ground plane if possible.  
5. PGND_Bxx, VIN_Bx and SW_Bx must be routed on thick layers. They must not surround inner signal layers  
which are not able to withstand interference from noisy PGND_Bxx, VIN_Bx and SW_Bx.  
Due to the small package of this converter and the overall small solution size, the thermal performance of the  
PCB layout is important. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and  
convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of  
a given component. Proper PCB layout, focusing on thermal performance, results in lower die temperatures.  
Wide power traces come with the ability to sink dissipated heat. This can be improved further on multi-layer PCB  
designs with vias to different planes. This results in reduced junction-to-ambient (RθJA) and junction-to-board  
(RθJB) thermal resistances and thereby reduces the device junction temperature, TJ. Performing a careful  
system-level 2D or full 3D dynamic thermal analysis at the beginning product design process is strongly  
recommended, using a thermal modeling analysis software.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: LP8758-EA  
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
10.2 Layout Example  
10-1. LP8758-EA Board Layout  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, DSBGA Wafer Level Chip Scale Package application report  
Texas instruments, Using the LP8758EVM Evaluation Module user's guide  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: LP8758-EA  
 
 
 
 
 
 
 
 
LP8758-EA  
ZHCSNW7 APRIL 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: LP8758-EA  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
D: Max = 2.91 mm, Min = 2.85 mm  
E: Max = 2.16 mm, Min = 2.1 mm  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY