LP8764-Q1 [TI]

4 个适用于汽车 SoC 的 5A/20A 多相降压转换器 PMIC;
LP8764-Q1
型号: LP8764-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4 个适用于汽车 SoC 的 5A/20A 多相降压转换器 PMIC

集成电源管理电路 转换器
文件: 总312页 (文件大小:11338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP8764-Q1  
ZHCSQ47 MARCH 2022  
LP8764-Q1 具有集成开关的四20A 降压转换器  
1 特性  
2 应用  
• 具有符AEC-Q100 标准的下列特性  
高级驾驶辅助系(ADAS)  
前置摄像头  
环视系ECU  
远距离雷达  
传感器融合  
– 输入电压2.8 V 5.5V  
– 器件温度等140°C +125°C 环境工作  
温度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
• 符合功能安全标准  
域控制器  
3 说明  
– 专为功能安全应用开发  
– 有助于使ISO 26262 系统设计符ASIL-D 要求  
的文档  
– 有助于使IEC 61508 系统设计符SIL-3 要求  
的文档  
– 系统可满ASIL D 级要求  
– 硬件完整性高ASIL-D 级  
– 窗口式电压和过流监控器  
– 具有可选触发/Q&A 模式的看门狗  
– 电平PWM 错误信号监(ESM)  
– 具有高温警告和热关断功能的温度监测  
– 对配置寄存器和非易失性存储器的位完整性  
(CRC) 错误检测  
LP8764-Q1 器件旨在满足各种安全相关的汽车和工业  
应用中新型处理器和平台的电源管理要求。该器件具有  
4 个降压直流/直流转换器内核可配置为从 1 个四相  
输出到 4 个单相输出的五种不同相位配置。该器件设  
置可通过兼容 I2C 的串行接口或 SPI 串行接口进行更  
改。  
自动 PFM/PWMAUTO 模式操作与自动相位增加  
和相位减少相结合可在较宽输出电流范围内最大限度  
地提高效率。LP8764-Q1 器件支持对多相位输出的远  
程差分电压检测可补偿稳压器输出与负载点 (POL)  
之间的 IR 压降从而提高输出电压的精度。开关时钟  
可以强制进PWM 模式并且相位会交错。可以将开  
关与外部时钟同步并启用展频模式以最大限度地降低  
干扰。  
4 个高效降压直流/直流转换器:  
– 输出电压0.3V 3.34V多相位输出的电压  
0.3V 1.9V)  
器件信息(1)  
– 最大输出电流每相5A四相配置最高可达  
封装尺寸标称值)  
器件型号  
LP8764-Q1  
封装  
20A  
VQFN-HR (32)  
5.50 mm × 5.00 mm  
– 可编程输出电压压摆率0.5 mV/µs 33  
mV/µs  
– 开关频率2.2 MHz 4.4 MHz  
10 个可配置通I/O (GPIO)  
SPMI 接口支持多PMIC 同步  
• 输入过压监(OVP) 和欠压锁(UVLO)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
95  
90  
85  
80  
75  
.
.
Configurable  
multi-phase  
70  
VIN  
2.2 MHz, 0.8 V  
4.4 MHz, 0.8 V  
2.2 MHz, 1.2 V  
4.4 MHz, 1.2 V  
2.2 MHz, 1.8 V  
4.4 MHz, 1.8 V  
PVIN_B1  
PVIN_B2  
PVIN_B3  
PVIN_B4  
VCCA  
SW_B1  
SW_B2  
SW_B3  
SW_B4  
65  
1 - 4  
Outputs  
60  
55  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
FB_B1  
FB_B2  
FB_B3  
FB_B4  
Output current (A)  
VIO  
VIO  
nINT  
效率与输出电流间的关系单相)  
VOUT_LDO  
SCL_I2C1/SCK_SPI  
SDA_I2C1/SDI_SPI  
GPIO1...10  
GNDs  
Copyright © 2019, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSAZ9  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device State Machine...............................................39  
8.5 Power Resources......................................................62  
8.6 Residual Voltage Checking.......................................71  
8.7 Output Voltage Monitor and PGOOD Generation.....72  
8.8 General-Purpose I/Os (GPIO Pins)...........................79  
8.9 Thermal Monitoring...................................................80  
8.10 Interrupts.................................................................82  
8.11 Control Interfaces....................................................88  
8.12 Multi-PMIC Synchronization....................................96  
8.13 NVM Configurable Registers................................ 102  
8.14 Watchdog (WD).....................................................105  
8.15 Error Signal Monitor (ESM)...................................125  
8.16 Register Map.........................................................141  
9 Application and Implementation................................282  
9.1 Application Information........................................... 282  
9.2 Typical Applications................................................ 282  
10 Power Supply Recommendations............................300  
11 Layout.........................................................................301  
11.1 Layout Guidelines................................................. 301  
11.2 Layout Example.................................................... 302  
12 Device and Documentation Support........................303  
12.1 接收文档更新通知................................................. 303  
12.2 支持资源................................................................303  
12.3 Trademarks...........................................................303  
12.4 Electrostatic Discharge Caution............................303  
12.5 术语表................................................................... 303  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
5.1 Digital Signal Descriptions.......................................... 8  
6 Specifications................................................................ 14  
6.1 Absolute Maximum Ratings...................................... 14  
6.2 ESD Ratings............................................................. 14  
6.3 Recommended Operating Conditions.......................15  
6.4 Thermal Information..................................................15  
6.5 Internal Low Drop-Out Regulators (LDOVINT)......... 16  
6.6 BUCK1, BUCK2, BUCK3, and BUCK4 Regulators...16  
6.7 Reference Generator (REFOUT)..............................23  
6.8 Monitoring Functions ................................................23  
6.9 Clocks, Oscillators, and DPLL.................................. 26  
6.10 Thermal Monitoring and Shutdown.........................27  
6.11 System Control Thresholds.....................................27  
6.12 Current Consumption..............................................28  
6.13 Digital Input Signal Parameters.............................. 29  
6.14 Digital Output Signal Parameters............................29  
6.15 I/O Pullup and Pulldown Resistance.......................30  
6.16 I2C Interface............................................................30  
6.17 Serial Peripheral Interface (SPI)............................. 31  
7 Typical Characteristics................................................. 34  
8 Detailed Description......................................................36  
8.1 Overview...................................................................36  
8.2 Functional Block Diagram.........................................37  
8.3 Input Voltage Monitor................................................38  
Information.................................................................. 303  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
March 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
32  
31  
30  
28  
27  
26  
GPIO1  
GPIO8  
1
25  
GPIO2  
GPIO3  
VIO  
2
3
4
5
6
7
8
24  
FB_B3  
23  
SCL_I2C1/SCK_SPI  
SDA_I2C1/SDI_SPI  
FB_B2  
FB_B4  
22  
AGND2  
21  
VOUT_LDO  
20  
FB_B1  
AGND1  
19  
GPIO4  
VCCA  
18  
nINT  
GPIO7  
9
17  
10  
11  
12  
13  
14  
15  
16  
5-1. RQK Package 32-Pin VQFN-HR Top View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
5-1. Pin Functions  
PIN  
CONNECTION IF  
NOT USED  
I/O  
TYPE  
DESCRIPTION  
NO.  
NAME  
Primary function: General Purpose Input/Output signal. When configured as  
an output pin, it can be included as part of the power sequencer output signal  
to enable an external regulator.  
Input: Ground,  
Output: Floating  
I/O  
Digital  
Alternative programmable function: EN_DRV - Enable Drive output pin to  
indicate the device entering safe state (set low when ENABLE_DRV bit is '0').  
O
O
O
I
Digital  
Digital  
Digital  
Digital  
Digital  
Floating  
Floating  
Floating  
Ground  
Ground  
Alternative programmable function: nRSTOUT_SOC - System reset or power  
on reset output (low = reset).  
1
GPIO1  
Alternative programmable function: PGOOD - Programmable Power Good  
indication pin.  
Alternative programmable function: nSLEEP1 or nSLEEP2, which are the  
sleep request signals for the device to go to lower power states (Active Low).  
Alternative programmable function: WKUP1 or WKUP2, which are the wake-  
up request signals for the device to go to higher power states.  
I
Primary function: General Purpose Input/Output signal. When configured as  
an output pin, it can be included as part of the power sequencer output signal  
to enable an external regulator.  
Input: Ground,  
Output: Floating  
I/O  
Digital  
Alternative programmable function: SCL_I2C2 - Serial interface clock input for  
I2C access.  
I
I
I
I
I
Digital  
Digital  
Digital  
Digital  
Digital  
Ground  
Ground  
Ground  
Ground  
Ground  
Alternative programmable function: CS_SPI - Serial interface Chip Select  
signal for SPI access.  
2
GPIO2  
Alternative programmable function: TRIG_WDOG - Trigger signal for trigger  
mode watchdog.  
Alternative programmable function: nSLEEP1 or nSLEEP2, which are the  
sleep request signals for the device to go to lower power states (Active Low).  
Alternative programmable function: WKUP1 or WKUP2, which are the wake-  
up request signals for the device to go to higher power states.  
Primary function: General Purpose Input/Output signal. When configured as  
an output pin, it can be included as part of the power sequencer output signal  
to enable an external regulator.  
Input: Ground,  
Output: Floating  
I/O  
Digital  
Alternative programmable function: SDA_I2C2 - Serial interface data input and  
output for I2C access.  
I/O  
Digital  
Digital  
Digital  
Digital  
Ground  
Floating  
Ground  
Ground  
3
GPIO3  
Alternative programmable function: SDO_SPI - Serial interface data output  
signal for SPI access.  
O
I
Alternative programmable function: nSLEEP1 or nSLEEP2, which are the  
sleep request signals for the device to go to lower power states (Active Low).  
Alternative programmable function: WKUP1 or WKUP2, which are the wake-  
up request signals for the device to go to higher power states.  
I
I
I
Digital  
Digital  
If SPI is not used: SCL_I2C1 - Serial interface clock input for I2C access.  
If SPI is used: SCK_SPI - Serial interface clock input for SPI access.  
Ground  
Ground  
SCL_I2C1/  
SCK_SPI  
4
5
If SPI is not used: SDA_I2C1 - Serial interface data input and output for I2C  
access.  
I/O  
I
Digital  
Digital  
Analog  
Ground  
Ground  
Ground  
Ground  
SDA_I2C1/  
SDI_SPI  
If SPI is used: SDI_SPI - Serial interface data input signal for SPI access.  
Output voltage feedback (positive) for BUCK2. Alternatively ground feedback  
for BUCK1 in multiphase configuration.  
6
7
FB_B2  
FB_B1  
Analog Output voltage feedback (positive) for BUCK1.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
CONNECTION IF  
NOT USED  
I/O  
TYPE  
DESCRIPTION  
NO.  
NAME  
Primary function: General Purpose Input/Output signal. When configured as  
an output pin, it can be included as part of the power sequencer output signal  
to enable an external regulator.  
Input: Ground,  
Output: Floating  
I/O  
Digital  
I
I
Digital  
Digital  
Alternative programmable function: ENABLE - External power-on control.  
Ground  
Ground  
Alternative programmable function: TRIG_WDOG - Trigger signal for trigger  
mode watchdog.  
8
GPIO4  
Alternative programmable function: BUCK1_VMON - Voltage monitoring input  
for BUCK1 regulator.  
Analog  
Digital  
Ground  
Ground  
Alternative programmable function: nSLEEP1 or nSLEEP2, which are the  
sleep request signals for the device to go to lower power states (Active Low).  
I
Alternative programmable function: WKUP1 or WKUP2, which are the wake-  
up request signals for the device to go to higher power states.  
I
Digital  
Digital  
Ground  
Floating  
9
nINT  
O
Open-drain interrupt output, active LOW.  
Primary function: General Purpose Input/Output signal. When configured as  
an output pin, it can be included as part of the power sequencer output signal  
to enable an external regulator.  
Input: Ground,  
Output: Floating  
I/O  
Digital  
Alternative programmable function: SYNCCLKIN - External switching clock  
input for Buck regulators.  
I
Digital  
Digital  
Digital  
Digital  
Digital  
Ground  
Floating  
Floating  
Ground  
Alternative programmable function: SYNCCLKOUT - Switching clock output for  
external regulators.  
O
O
I
10  
GPIO5  
Alternative programmable function: nRSTOUT_SOC - System reset or power  
on reset output (low = reset).  
Alternative programmable function: nSLEEP1 or nSLEEP2, which are the  
sleep request signals for the device to go to lower power states (Active Low).  
Alternative programmable function: WKUP1 or WKUP2, which are the wake-  
up request signals for the device to go to higher power states.  
I
Ground  
Floating  
11  
12  
13  
14  
15  
SW_B1  
PVIN_B1  
PGND  
Analog BUCK1 switch node.  
Power input for BUCK1. The separate power pins PVIN_Bx are not connected  
together internally PVIN_Bx and VCCA pins must be connected together in  
the application and be locally bypassed.  
Power  
System supply  
Ground  
Ground Power ground for Buck regulators.  
Power input for BUCK2. The separate power pins PVIN_Bx are not connected  
together internally PVIN_Bx and VCCA pins must be connected together in  
the application and be locally bypassed.  
PVIN_B2  
SW_B2  
Power  
System supply  
Floating  
Analog BUCK2 switch node.  
Primary function: General Purpose Input/Output signal. When configured as  
Input: Ground,  
Output: Floating  
I/O  
Digital  
an output pin, it can be included as part of the power sequencer output signal  
to enable an external regulator.  
Alternative programmable function: nERR_MCU - System error count down  
input signal from the MCU.  
I
O
O
I
Digital  
Digital  
Digital  
Digital  
Digital  
Floating  
Floating  
Floating  
Ground  
Ground  
Alternative programmable function: SYNCCLKOUT - Switching clock output for  
external regulators.  
16  
GPIO6  
Alternative programmable function: PGOOD - Programmable Power Good  
indication pin.  
Alternative programmable function: nSLEEP1 or nSLEEP2, which are the  
sleep request signals for the device to go to lower power states (Active Low).  
Alternative programmable function: WKUP1 or WKUP2, which are the wake-  
up request signals for the device to go to higher power states.  
I
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
CONNECTION IF  
NOT USED  
I/O  
TYPE  
DESCRIPTION  
NO.  
NAME  
Primary function: General Purpose Input/Output signal. When configured as  
an output pin, it can be included as part of the power sequencer output signal  
to enable an external regulator.  
Input: Ground,  
Output: Floating  
I/O  
Digital  
Digital  
Alternative programmable function: nERR_MCU - System error count down  
input signal from the MCU.  
I
O
I
Floating  
Floating  
Ground  
Analog Alternative programmable function: REFOUT - Buffered bandgap output.  
17  
GPIO7  
Alternative programmable function: VMON1 - External voltage monitoring  
Analog  
input.  
Alternative programmable function: nSLEEP1 or nSLEEP2, which are the  
Digital  
I
I
Ground  
Ground  
sleep request signals for the device to go to lower power states (Active Low).  
Alternative programmable function: WKUP1 or WKUP2, which are the wake-  
Digital  
up request signals for the device to go to higher power states.  
Supply voltage for internal LDO. VCCA and PVIN_Bx pins must be connected  
together in the application and be locally bypassed.  
18  
VCCA  
Power  
System supply  
Ground  
19  
20  
21  
AGND1  
VOUT_LDO  
AGND2  
Ground Ground  
Power  
Ground Ground  
Output voltage feedback (positive) for BUCK4. Alternatively ground feedback  
for BUCK3 in dualphase configuration.  
Analog Output voltage feedback (positive) for BUCK3.  
LDO regulator filter node. LDO is used for internal purposes.  
Ground  
22  
FB_B4  
Analog  
Ground  
23  
24  
FB_B3  
VIO  
Ground  
Ground  
Power  
Supply voltage for selected digital outputs.  
Primary function: General Purpose Input/Output signal. When configured as  
an output pin, it can be included as part of the power sequencer output signal  
to enable an external regulator.  
Input: Ground,  
Output: Floating  
I/O  
I/O  
Digital  
Alternative programmable function: SCLK_SPMI - Multi-PMIC SPMI serial  
interface clock signal. This pin is an output pin for the master SPMI device,  
and an input pin for the slave SPMI device.  
Digital  
Ground  
25  
GPIO8  
Alternative programmable function: VMON2 - External voltage monitoring  
input.  
I
I
I
Analog  
Digital  
Digital  
Ground  
Ground  
Ground  
Alternative programmable function: nSLEEP1 or nSLEEP2, which are the  
sleep request signals for the device to go to lower power states (Active Low).  
Alternative programmable function: WKUP1 or WKUP2, which are the wake-  
up request signals for the device to go to higher power states.  
Primary function: General Purpose Input/Output signal. When configured as  
an output pin, it can be included as part of the power sequencer output signal  
to enable an external regulator.  
Input: Ground,  
Output: Floating  
I/O  
Digital  
Alternative programmable function: SDATA_SPMI - Multi-PMIC SPMI serial  
interface bidirectional data signal  
I/O  
Digital  
Digital  
Digital  
Digital  
Digital  
Floating  
Floating  
Ground  
Ground  
Alternative programmable function: PGOOD - Programmable Power Good  
indication pin.  
O
I
26  
GPIO9  
Alternative programmable function: SYNCCLKIN - External switching clock  
input for Buck regulators.  
Alternative programmable function: nSLEEP1 or nSLEEP2, which are the  
sleep request signals for the device to go to lower power states (Active Low).  
I
Alternative programmable function: WKUP1 or WKUP2, which are the wake-  
up request signals for the device to go to higher power states.  
I
Ground  
Floating  
27  
28  
SW_B3  
Analog BUCK3 switch node.  
Power input for BUCK3. The separate power pins PVIN_Bx are not connected  
together internally PVIN_Bx and VCCA pins must be connected together in  
PVIN_B3  
Power  
System supply  
the application and be locally bypassed.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
CONNECTION IF  
NOT USED  
I/O  
TYPE  
DESCRIPTION  
NO.  
NAME  
Power input for BUCK4. The separate power pins PVIN_Bx are not connected  
together internally PVIN_Bx and VCCA pins must be connected together in  
the application and be locally bypassed.  
30  
PVIN_B4  
SW_B4  
Power  
System supply  
Floating  
31  
Analog BUCK4 switch node.  
Primary function: General Purpose Input/Output signal. When configured as  
an output pin, it can be included as part of the power sequencer output signal  
to enable an external regulator.  
Input: Ground,  
Output: Floating  
I/O  
Digital  
Alternative programmable function: nRSTOUT - System reset or power on  
reset output (low = reset).  
O
O
I
Digital  
Digital  
Digital  
Digital  
Floating  
Floating  
Ground  
Ground  
32  
GPIO10  
Alternative programmable function: nRSTOUT_SOC - System reset or power  
on reset output (low = reset).  
Alternative programmable function: nSLEEP1 or nSLEEP2, which are the  
sleep request signals for the device to go to lower power states (Active Low).  
Alternative programmable function: WKUP1 or WKUP2, which are the wake-  
up request signals for the device to go to higher power states.  
I
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
5.1 Digital Signal Descriptions  
5-2. Signal Descriptions  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
RECOMMEND  
ED EXTERNAL  
PU/PD(3)  
SIGNAL NAME  
I/O  
Threshold Level  
Internal PU/PD(2)  
Control Registers  
Power  
DEGLITCH  
TIME(5)  
Power  
Push-pull/  
Domain  
Domain  
Open-drain(4)  
GPIO4_SEL  
ENABLE  
GPIO4_DEGLITCH_EN  
GPIO4_PU_PD_EN  
GPIO4_PU_SEL  
(Selectable  
function of GPIO4  
pin)(1)  
400 kΩSPU to VINT, or  
400 kΩSPD to GND  
Input  
VIL, VIH  
VINT  
8 µs  
None  
None  
ENABLE_POL  
EN_DRV  
GPIO1_SEL  
FORCE_EN_DRV_LOW  
ENABLE_DRV  
(Selectable  
function of GPIO1  
pin)(1)  
VCCA/  
PVIN_B4  
PP with 10kΩ  
PU to VCCA  
Output  
Input  
VOL_20 mA  
10 kΩPU to VCCA  
SCL_I2C1  
(Selectable  
function of  
High-speed  
mode:  
10 ns  
All other modes:  
50 ns  
NVM-configuration(6)  
I2C1_HS  
VIL, VIH  
VINT  
VINT  
VINT  
VINT  
VINT  
VINT  
None  
PU to VIO  
SCL_I2C1/  
SCK_SPI pin)(1)  
SDA_I2C1  
(Selectable  
function of  
High-speed  
mode:  
10 ns  
All other modes:  
50 ns  
Input/  
output  
VIL, VIH  
VOL_20 mA  
NVM-configuration(6)  
I2C1_HS  
VIO  
OD  
None  
None  
None  
None  
None  
PU to VIO  
PU to VIO  
PU to VIO  
None  
SDA_I2C1/  
SDI_SPI pin)(1)  
High-speed  
mode:  
10 ns  
All other modes:  
50 ns  
SCL_I2C2  
(Selectable  
function of GPIO2  
pin)(1)  
NVM-configuration(6)  
GPIO2_SEL  
I2C2_HS  
Input  
VIL, VIH  
High-speed  
mode:  
10 ns  
All other modes:  
50 ns  
SDA_I2C2  
(Selectable  
function of GPIO3  
pin)(1)  
NVM-configuration(6)  
GPIO3_SEL  
I2C2_HS  
Input/  
output  
VIL, VIH  
VOL_20 mA  
VIO  
OD  
SCK_SPI  
(Selectable  
function of  
Input  
Input  
VIL, VIH  
None  
None  
NVM-configuration(6)  
NVM-configuration(6)  
SCL_I2C1/  
SCK_SPI pin)(1)  
SDI_SPI  
(Selectable  
function of  
SDA_I2C1/  
SDI_SPI pin)(1)  
VIL, VIH  
None  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
SIGNAL NAME  
5-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
RECOMMEND  
ED EXTERNAL  
PU/PD(3)  
I/O  
Threshold Level  
Internal PU/PD(2)  
Control Registers  
Power  
Domain  
DEGLITCH  
TIME(5)  
Power  
Domain  
Push-pull/  
Open-drain(4)  
CS_SPI  
(Selectable  
function of GPIO2  
pin)(1)  
NVM-configuration(6)  
GPIO2_SEL  
Input  
VIL, VIH  
VINT  
None  
None  
None  
None  
SDO_SPI  
(Selectable  
function of GPIO3  
pin)(1)  
VOL_20 mA  
VOH(VIO)  
,
NVM-configuration(6)  
GPIO3_SEL  
Output  
VIO  
VINT  
VINT  
PP / HiZ  
None  
Input in  
Slave  
Mode  
SCLK_SPMI  
(Configurable  
VIL, VIH  
VOL_20 mA  
VOH(VINT)  
GPIO8_SEL  
VINT  
VINT  
None  
None  
PP  
None  
GPIO8_PU_PD_EN  
400 kΩSPD to GND  
function of GPIO8 Output in  
NVM-configuration(6)  
pin)(1)  
Master  
Mode  
SDATA_SPMI  
(Configurable  
function of GPIO9  
pin)(1)  
VIL, VIH  
VOL_20 mA  
VOH(IO)  
GPIO9_SEL  
Input/  
output  
PP / HiZ  
OD  
None  
GPIO9_PU_PD_EN  
400 kΩSPD to GND  
NVM-configuration(6)  
nINT  
Output  
Output  
VOL_20 mA  
VOL_20 mA  
VIO  
VIO  
None  
PU to VIO  
nRSTOUT(Config  
urable function of  
GPIO10 pin)(1)  
PU to VIO or  
VCCA if Open-  
drain  
PP with 10 kΩ  
PU to VIO or  
OD  
GPIO10_SEL  
GPIO10_OD  
10kΩPU to VIO if  
configured as PP  
GPIO1_SEL  
GPIO1_OD  
GPIO5_SEL  
GPIO5_OD  
GPIO10_SEL  
GPIO10_OD  
nRSTOUT_SOC  
(Configurable  
function of  
PPU to VIO or  
VCCA if Open-  
drain  
PP with 10kΩ  
PU to VIO or  
OD  
10kΩPU to VIO if  
configured as PP  
Output  
Output  
VOL_20 mA  
VIO  
GPIO1, GPIO5,  
GPIO10 pins)(1)  
GPIO1_SEL  
GPIO1_OD  
GPIO6_SEL  
GPIO6_OD  
GPIO9_SEL  
GPIO9_OD  
PGOOD_POL  
PGOOD_WINDOW  
PGOOD_SEL_x  
GPIO1: VOL_20  
mA, VOH(VIO)  
GPIO6: VOL_3 mA  
VOH(VIO)  
GPIO9: VOL_20  
mA, VOH(VINT)  
PGOOD  
(Configurable  
function of  
,
PU to VIO if  
Open-drain  
VIO / VINT  
PP or OD  
None  
GPIO1, GPIO6,  
GPIO9 pins)(1)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
5-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
RECOMMEND  
ED EXTERNAL  
PU/PD(3)  
SIGNAL NAME  
I/O  
Threshold Level  
Internal PU/PD(2)  
Control Registers  
Power  
DEGLITCH  
TIME(5)  
Power  
Push-pull/  
Domain  
Domain  
Open-drain(4)  
nERR_MCU  
(Configurable  
function of  
GPIO6_SEL  
GPIO7_SEL  
Input  
VIL, VIH  
VINT  
VINT  
8 µs  
None  
None  
400 kΩPD to GND  
GPIO6, GPIO7  
pins)(1)  
TRIG_WDOG  
(Configurable  
function of  
GPIO2_SEL  
GPIO2_PU_PD_EN  
GPIO4_SEL  
Input  
VIL, VIH  
30 µs  
400 kΩSPD to GND  
GPIO2, GPIO4  
GPIO4_PU_PD_EN  
pins)(1)  
GPIO4, 7, 8 or 9:  
400 kΩSPU to VINT  
GPIO1, 2, 3, 5, 6, or 10:  
400 kΩSPU to VIO  
nSLEEP1  
(Configurable  
function of all  
GPIO pins)(1)  
GPIOx_SEL  
GPIOx_PU_PD_EN  
Input  
Input  
VIL, VIH  
VINT  
VINT  
8 µs  
8 µs  
None  
None  
GPIO4, 7, 8 or 9:  
400 kΩSPU to VINT  
GPIO1, 2, 3, 5, 6, or 10:  
400 kΩSPU to VIO  
nSLEEP2  
(Configurable  
function of all  
GPIO pins)(1)  
GPIOx_SEL  
GPIOx_PU_PD_EN  
VIL, VIH  
GPIO4, 7, 8 or 9:  
400 kΩSPU to VINT  
400 kΩSPD to GND  
GPIO1, 2, 3, 5, 6, or 10:  
400 kΩSPU to VIO  
400 kΩSPD to GND  
WKUP1  
GPIOx_SEL  
(Configurable  
function of all  
GPIO pins)(1)  
GPIOx_DEGLITCH_EN  
GPIOx_PU_PD_EN  
GPIOx_PU_SEL  
Input  
Input  
VIL, VIH  
VINT  
8 µs  
None  
None  
GPIO4, 7, 8 or 9:  
400 kΩSPU to VINT  
400 kΩSPD to GND  
GPIO1, 2, 3, 5, 6, or 10:  
400 kΩSPU to VIO  
400 kΩSPD to GND  
WKUP2  
GPIOx_SEL  
(Configurable  
function of all  
GPIO pins)(1)  
GPIOx_DEGLITCH_EN  
GPIOx_PU_PD_EN  
GPIOx_PU_SEL  
VIL, VIH  
VINT  
VINT  
8 µs  
8 µs  
GPIO1_SEL  
GPIO1  
GPIO1_DEGLITCH_EN  
GPIO1_PU_PD_EN  
GPIO1_PU_SEL  
GPIO1_OD  
VIL, VIH  
VOL_20 mA  
VOH(VIO)  
PU to VIO or  
VCCA  
if Open-drain  
(Configurable  
function of GPIO1  
pin)(1)  
Input/  
output  
400 kΩSPU to VIO  
400 kΩSPD to GND  
VIO  
PP or OD  
GPIO1_DIR  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
SIGNAL NAME  
5-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
RECOMMEND  
ED EXTERNAL  
PU/PD(3)  
I/O  
Threshold Level  
Internal PU/PD(2)  
Control Registers  
Power  
Domain  
DEGLITCH  
TIME(5)  
Power  
Domain  
Push-pull/  
Open-drain(4)  
GPIO2_SEL  
GPIO2  
GPIO2_DEGLITCH_EN  
GPIO2_PU_PD_EN  
GPIO2_PU_SEL  
GPIO2_OD  
VIL, VIH  
VOL_3 mA  
VOH(VIO)  
PU to VIO or  
VCCA  
if Open-drain  
(Configurable  
function of GPIO2  
pin)(1)  
Input/  
output  
400 kΩSPU to VIO  
400 kΩSPD to GND  
VINT  
VINT  
VINT  
VINT  
VINT  
VINT  
VINT  
8 µs  
8 µs  
8 µs  
8 µs  
8 µs  
8 µs  
8 µs  
VIO  
VIO  
PP or OD  
PP or OD  
PP or OD  
PP or OD  
PP or OD  
PP or OD  
PP or OD  
GPIO2_DIR  
GPIO3_SEL  
GPIO3  
GPIO3_DEGLITCH_EN  
GPIO3_PU_PD_EN  
GPIO3_PU_SEL  
GPIO3_OD  
VIL, VIH  
VOL_20 mA  
VOH(VIO)  
PU to VIO or  
VCCA  
if Open-drain  
(Configurable  
function of GPIO3  
pin)(1)  
Input/  
output  
400 kΩSPU to VIO  
400 kΩSPD to GND  
GPIO3_DIR  
GPIO4_SEL  
GPIO4_DEGLITCH_EN  
GPIO4_PU_PD_EN  
GPIO4  
VIL, VIH  
VOL_3 mA  
VOH(VINT)  
(Configurable  
function of GPIO4  
pin)(1)  
Input/  
output  
400 kΩSPU to VINT  
400 kΩSPD to GND  
PU to VIO  
VINT  
VIO  
if Open-drain GPIO4_PU_SEL  
GPIO4_OD  
GPIO4_DIR  
GPIO5_SEL  
GPIO5_DEGLITCH_EN  
GPIO5_PU_PD_EN  
GPIO5_PU_SEL  
GPIO5_OD  
GPIO5  
VIL, VIH  
VOL_20 mA  
VOH(VIO)  
PU to VIO or  
VCCA  
if Open-drain  
(Configurable  
function of GPIO5  
pin)(1)  
Input/  
output  
400 kΩSPU to VIO  
400 kΩSPD to GND  
GPIO5_DIR  
GPIO6_SEL  
GPIO6  
GPIO6_DEGLITCH_EN  
GPIO6_PU_PD_EN  
GPIO6_PU_SEL  
GPIO6_OD  
VIL, VIH  
VOL_3 mA  
VOH(VIO)  
PU to VIO or  
VCCA  
if Open-drain  
(Configurable  
function of GPIO6  
pin)(1)  
Input/  
output  
400 kΩSPU to VIO  
400 kΩSPD to GND  
VIO  
GPIO6_DIR  
GPIO7_SEL  
GPIO7_DEGLITCH_EN  
GPIO7_PU_PD_EN  
GPIO7  
VIL, VIH  
VOL_3 mA  
VOH(VINT)  
(Configurable  
function of GPIO7  
pin)(1)  
Input/  
output  
400 kΩSPU to VINT  
400 kΩSPD to GND  
PU to VIO  
VINT  
VINT  
if Open-drain GPIO7_PU_SEL  
GPIO7_OD  
GPIO7_DIR  
GPIO8_SEL  
GPIO8_DEGLITCH_EN  
GPIO8_PU_PD_EN  
GPIO8  
VIL, VIH  
VOL_20 mA  
VOH(VINT)  
(Configurable  
function of GPIO8  
pin)(1)  
Input/  
output  
400 kΩSPU to VINT  
400 kΩSPD to GND  
PU to VIO  
if Open-drain GPIO8_PU_SEL  
GPIO8_OD  
GPIO8_DIR  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
5-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
RECOMMEND  
ED EXTERNAL  
PU/PD(3)  
SIGNAL NAME  
I/O  
Threshold Level  
Internal PU/PD(2)  
Control Registers  
Power  
DEGLITCH  
TIME(5)  
Power  
Push-pull/  
Domain  
Domain  
Open-drain(4)  
GPIO9_SEL  
GPIO9  
GPIO9_DEGLITCH_EN  
GPIO9_PU_PD_EN  
if Open-drain GPIO9_PU_SEL  
GPIO9_OD  
VIL, VIH  
VOL_20 mA  
VOH(VINT)  
(Configurable  
function of GPIO9  
pin)(1)  
Input/  
output  
400 kΩSPU to VINT  
400 kΩSPD to GND  
PU to VIO  
VINT  
8 µs  
VINT  
VIO  
PP or OD  
PP or OD  
GPIO9_DIR  
GPIO10_SEL  
GPIO10_DEGLITCH_EN  
GPIO10_PU_PD_EN  
GPIO10_PU_SEL  
GPIO10_OD  
GPIO10  
VIL, VIH  
VOL_20 mA  
VOH(VIO)  
PU to VIO or  
VCCA  
if Open-drain  
(Configurable  
function of  
Input/  
output  
400 kΩSPU to VIO  
400 kΩSPD to GND  
VINT  
VINT  
8 µs  
GPIO10 pin)(1)  
GPIO10_DIR  
SYNCCLKIN  
(Configurable  
function of  
GPIO5_SEL  
GPIO5_PU_PD_EN  
GPIO9_SEL  
Input  
VIL, VIH  
None  
None  
None  
400 kΩSPD to GND  
GPIO5, GPIO9  
GPIO9_PU_PD_EN  
pins)(1)  
SYNCCLKOUT  
(Configurable  
function of  
GPIO5: VOL_20  
mA, VOH(VIO)  
GPIO6: VOL_3 mA  
VOH(VIO)  
GPIO5_SEL  
GPIO6_SEL  
Output  
VIO  
PP  
None  
,
GPIO5, GPIO6  
pins)(1)  
VMON1  
GPIO7_SEL  
VMON1_EN  
VMON1_RANGE_SEL  
(Configurable  
function of GPIO7  
pin)(1)  
Input  
Input  
Analog  
Analog  
Analog  
Analog  
None  
None  
None  
None  
None  
None  
VMON2  
GPIO8_SEL  
VMON2_EN  
VMON2_RANGE_SEL  
(Configurable  
function of GPIO8  
pin)(1)  
BUCK1_VMON  
(Configurable  
function of GPIO4  
pin)(1)  
GPIO4_SEL  
BUCK1_ VMON_EN  
Input  
REFOUT  
(Configurable  
function of GPIO7  
pin)(1)  
GPIO7_SEL  
REFOUT_EN  
400 kΩPD to GND  
when REFOUT_EN = 0  
Output  
(1) Configurable function through NVM register setting.  
(2) PU = Pullup, PD = Pulldown, SPU = Software-configurable pullup, SPD = Software-configurable pulldown.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
(3) The internal pull-up and pull-down resistors are automatically disabled when the device is configured as a push-pull output pin unless otherwise noted.  
(4) PP = Push-pull, OD = Open-drain.  
(5) Deglitch time is only applicable when option is enabled.  
(6) NVM-configuration for I2C/SPI and SPMI cannot be overwritten during operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LP8764-Q1  
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
(1)  
POS  
M1.1  
MIN  
MAX UNIT  
Voltage on supply input pin  
VCCA  
6
6
V
V
0.3  
Voltage on all buck supply voltage input  
pins  
M1.2  
M1.3  
M1.4a  
PVIN_Bx  
0.3  
0.5  
-0.3  
Voltage difference between supply input  
pins  
Between VCCA and each PVIN_Bx  
SW_Bx pins  
0.5  
V
V
VPVIN_Bx + 0.3 V,  
up to 6 V  
Voltage on all buck switch nodes  
M1.4b  
M1.5  
Voltage on all buck switch nodes  
Voltage on all buck voltage sense nodes  
Voltage on all buck power ground pins  
Voltage on internal LDO output pin  
Voltage on I/O supply pin  
SW_Bx pins, 10-ns transient  
FB_Bx  
10  
4
V
V
V
V
V
V
2  
0.3  
0.3  
0.3  
0.3  
0.3  
M1.6  
PGND  
0.3  
2
M1.7  
VOUT_LDO  
M1.8  
VIO  
6
M1.9  
Voltage on logic pins (input or output)  
I2C and SPI pins, nINT pin, and all GPIO pins  
VCCA, PVIN_Bx (voltage below 2.7 V)  
VIO (only when VCCA < 2 V)  
All pins other than power resources  
6
M1.13a  
M1.13b  
M1.10a  
60  
60  
20  
Voltage rise slew-rate on input supply pins  
Peak output current  
mV/µs  
mA  
A
Buck regulators: PVIN_Bx, SW_Bx, and PGNDx per  
phase  
M1.10b  
M1.10c  
M1.10d  
7
3
8
GPIOx pins, source current  
GPIO1/3/5/8/9/10, SDA_I2C1/SDI_SPI and nINT  
pins, sink current  
mA  
Average output current, 100 k hour, TJ =  
125℃  
M1.10e  
M1.10f  
M1.11  
M1.12  
GPIO2/4/6/7 pins, sink current  
Buck regulators  
3
3.5  
A
Junction temperature, TJ  
Storage temperature, Tstg  
160  
150  
°C  
°C  
45  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, they do not imply functional operation of the device at conditions beyond those indicated under Recommended Operating  
Conditions. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
POS  
VALUE  
UNIT  
Electrostatic  
discharge  
M1.13  
V(ESD)  
V(ESD)  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
±2000  
V
Electrostatic  
discharge  
M1.14  
±500  
V
(1) AEC Q100-002 indicates that HBM stressing must be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
MIN  
2.8  
2.8  
0.2  
0
NOM  
MAX UNIT  
R1.1  
Voltage on supply input pin  
VCCA  
3.3  
5.5  
V
V
V
V
V
V
V
R1.2  
R1.3  
R1.4  
R1.5  
R1.6  
R1.7  
R1.8a  
Voltage on all buck supply input pins  
Voltage difference between supply input pins  
Voltage on all buck switch nodes  
PVIN_Bx  
3.3  
5.5  
Between VCCA and each PVIN_Bx  
SW_Bx pins  
0.2  
5.5  
Voltage on all buck voltage sense nodes  
Voltage on all buck power ground pins  
Voltage on internal LDO output pin  
FB_Bx  
0
VOUT(BUCKx)max  
Between PGND and AGNDx  
VOUT_LDO  
0
1.65  
1.7  
1.95  
1.9  
VVIO = 1.8 V  
1.8  
3.3  
Voltage on I/O supply pin  
V
VVCCA, up to  
3.465V  
R1.8b  
R1.9  
VVIO = 3.3 V  
3.135  
Voltage on logic pins (input) (2)  
0
0
5.5  
Voltage on logic pins (output, push-pull) in VIO  
domain (2)  
R1.10a  
VVIO  
V
V
Voltage on logic pins (output, push-pull) in  
LDOVINT domain (2)  
R1.10b  
0
VVOUT_LDO  
R1.10c  
R1.11  
R1.12  
R1.13  
R1.14  
Voltage on logic pins (output, open-drain) (2)  
0
0
5.5  
Voltage on logic pins (output) in VCCA domain EN_DRV  
VVCCA  
V
V
Voltage on AGND ground pins  
Operating free-air temperature(1)  
Junction temperature, TJ  
AGND1 and AGND2  
0
25  
25  
125  
150  
°C  
°C  
40  
40  
Operational  
(1) Additional cooling strategies may be necessary to keep junction temperature at recommended limits.  
(2) Internal pull-up resistor is disabled if pin voltage is above VVOUT_LDO (LDOVINT domain pins) or VVIO (VIO domain pins)  
6.4 Thermal Information  
LP876x-Q1  
THERMAL METRIC(1)  
RQK (VQFN-HR)  
UNIT  
32 PINS  
30.5  
9.0  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
6.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
5.8  
ψJB  
RθJC(bot)  
7.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and ICPackage Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LP8764-Q1  
 
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.5 Internal Low Drop-Out Regulators (LDOVINT)  
Over operating free-air temperature range, VVCCA = 3.3 V (unless otherwise noted). Voltage level refers to the AGNDx  
ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
2.1  
2.3  
2.7  
COUT(LDOVINT) Output filtering capacitance(1)  
VOUT(LDOVINT) LDOVINT output voltage  
Connected from VOUT_LDO to AGNDx  
1
2.2  
1.8  
3
4
µF  
V
IQon(LDOVINT)  
RDIS(LDOVINT)  
Quiescent current, on mode  
LDOVINT under valid operating condition, ILOAD = 0 mA  
Off mode, pulldown enabled and LDO disabled  
10  
µA  
Pulldown discharge resistance  
at LDOVINT output  
2.8  
60  
125  
190  
Ω
(1) When DC voltage is applied to a ceramic capacitor, the effective capacitance is reduced due to DC bias effect. The table above  
therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance requirement, the nominal value of the  
capacitor may have to be scaled accordingly to take the drop of capacitance into account for a given dc voltage at the outputs of  
regulators.  
6.6 BUCK1, BUCK2, BUCK3, and BUCK4 Regulators  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics - Output Voltage  
3.1a  
3.1b  
20  
5
0.3 V VVOUT_Bx < 0.6 V  
0.6 V VVOUT_Bx < 1.1 V  
1.1 V VVOUT_Bx < 1.66 V  
1.66 V VVOUT_Bx 3.34 V  
VVOUT_Bx_Ste Output voltage programmable  
mV  
V
step size  
p
3.1c  
3.1d  
10  
20  
Minimum voltage between PVIN_Bx and  
VOUT_Bx to fulfill the electrical  
characteristics  
Input and output voltage  
difference  
3.3  
0.7  
3.4a  
3.4b  
3.4c  
3.4d  
3.4e  
3.4f  
BUCKn_SLEW_RATE[2:0] = 000b  
BUCKn_SLEW_RATE[2:0] = 001b  
BUCKn_SLEW_RATE[2:0] = 010b  
BUCKn_SLEW_RATE[2:0] = 011b  
BUCKn_SLEW_RATE[2:0] = 100b  
BUCKn_SLEW_RATE[2:0] = 101b  
BUCKn_SLEW_RATE[2:0] = 110b  
BUCKn_SLEW_RATE[2:0] = 111b  
26.6  
17  
33.3  
20  
36.6  
22  
9
10  
11  
4.5  
2.25  
1.12  
5
5.5  
VVOUT_Bx_Sle Output voltage slew-rate  
mV/µs  
2.75  
programmable range(5) (7) (9)  
w_Rate  
2.5  
1.25  
1.38  
0.69  
3.4g  
3.4h  
0.56 0.625  
0.281 0.3125 0.344  
Electrical Characteristics - Output Current, Limits and Thresholds  
3.6a  
3.6b  
3.6c  
3.6d  
1-phase  
2-phase  
3-phase  
4-phase  
5
10  
15  
20  
IOUT_Bx  
Output current(3) (4)  
A
Mismatch between phase current and  
average phase current, IOUT_Bx > 1 A /  
phase  
Current balancing for multi-phase  
output  
3.7  
20%  
Forward current limit (peak  
during each switching cycle)  
Programmable range  
ILIM FWD  
3.8  
3.9  
2.5  
7.5  
A
A
PEAK Range  
ILIM FWD  
Forward current limit step Size  
1
PEAK Step  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.6 BUCK1, BUCK2, BUCK3, and BUCK4 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ILIM = 2.5 A, 3.5 A, 4.5 A, 3.0 V ≤  
3.10a  
-0.55  
0.55  
10%  
10%  
2.6  
A
V
PVIN_Bx 5.5 V  
ILIM = 5.5 A, 6.5 A or 7.5 A 4.5 V ≤  
PVIN_Bx 5.5 V  
ILIM = 5.5 A, 6.5 A or 7.5 A 3.0 V ≤  
PVIN_Bx 4.5 V  
ILIM FWD  
3.10b  
3.10c  
3.11  
Forward current limit accuracy  
10%  
V
PEAK Accuracy  
15%  
V
Negative current limit (peak  
during each switching cycle)  
ILIM NEG  
1.5  
2
A
A
3.15a  
3.15b  
3.15c  
3.16a  
3.16b  
3.16c  
3.16d  
3.16e  
3.16f  
From 1-phase to 2-phase  
2.0  
3.6  
5.5  
1.4  
2.5  
3.3  
0.6  
1.4  
2.5  
Phase adding level (multi-phase  
rails)  
IADD  
From 2-phase to 3-phase  
From 3-phase to 4-phase  
From 2-phase to 1-phase  
Phase shedding level (multi-  
phase rails)  
ISHED  
From 3-phase to 2-phase  
A
A
From 4-phase to 3-phase  
Hysteresis from 2-phase to 1-phase  
Hysteresis from 3-phase to 2-phase  
Hysteresis from 4-phase to 3-phase  
Phase shedding hysteresis  
(multi-phase rails)  
ISHED_Hyst  
Electrical Characteristics - Current Consumption, On Resistance, and Output Pulldown Resistance  
Shutdown current, BUCKx  
disabled  
3.17  
Ioff  
1
µA  
µA  
IOUT_Bn = 0 mA, not switching, first single  
phase or primary phase in multi-phase  
configuration, TJ = 25°C  
3.18a  
90  
IOUT_Bn = 0 mA, not switching, additional  
single phase or primary phase in multi-  
phase  
3.18b  
3.18c  
IQ_AUTO  
Auto mode quiescent current  
60  
30  
configuration, TJ = 25°C  
IOUT_Bn = 0 mA, not switching, secondary/  
tertiary/quaternary phase in multi-phase  
configuration, TJ = 25°C  
RDS(ON) HS  
3.19  
3.20  
On-resistance, high-side FET  
On-resistance, low-side FET  
IOUT_Bx = 1 A  
IOUT_Bx = 1 A  
26  
16  
65  
35  
mΩ  
mΩ  
FET  
RDS(ON) LS  
FET  
Regulator disabled, per phase,  
BUCKx_PLDN = 1, between SW_Bx and  
PGND pins  
Output pulldown discharge  
resistance  
3.21  
RDIS_Bx  
50  
100  
150  
Ω
Threshold voltage for Short  
Circuit and Residual Voltage  
Detection  
VTH_SC_RV_B  
3.21b  
3.22  
140  
3
150  
5
160 mV  
x
Resistance threshold for Short  
circuit detection at the SW pin  
RSW_SC  
25  
Ω
Electrical Characteristics - 4.4MHz Single-Phase and Multi-Phase Configuration  
3.23  
3.24  
3.25  
3.26a  
VPVIN_Bx  
VVOUT_Bx  
CIN_Bx  
Input voltage range  
3.0  
0.3  
3
3.3  
5.5  
1.9  
V
V
Output voltage programmable  
range  
Input filtering capacitance(1) (2)  
22  
22  
µF  
µF  
COUT-  
Output capacitance, local(2)  
Per phase  
Per phase  
10  
Local(Buckx)  
COUT-  
Output capacitance, total (local  
and POL)(2)  
3.27b  
50  
250  
µF  
TOTAL_Bx  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.6 BUCK1, BUCK2, BUCK3, and BUCK4 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
220  
10  
MAX UNIT  
3.28a  
Inductance  
DCR  
154  
286  
nH  
mΩ  
mA  
LBx  
Power inductor  
3.28b  
3.29  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bx = 0 mA  
20  
3.160a  
3.160b  
3.160c  
VVOUT_Bx < 1 V, PWM mode  
10 mV  
1%  
10  
1%  
20  
DC output voltage accuracy,  
includes voltage reference, DC  
load and line regulations and  
temperature  
V
VOUT_Bx 1 V, PWM mode  
VOUT_DC_Bx  
VVOUT_Bx < 1 V, PFM mode  
25 mV  
-1% -  
10 mV  
1% +  
15 mV  
3.160d  
3.31a  
3.31b  
3.31c  
3.32  
V
VOUT_Bx 1 V, PFM mode  
0.3 V VVOUT_Bx < 0.6 V, IOUT_Bx = 1 mA  
to 400 mA / phase, tr = tf = 1 µs, PWM  
mode  
15  
15  
mV  
mV  
0.6 V VVOUT_Bx < 1.5 V, IOUT_Bx = 1 mA  
to 2 A / phase, tr = tf = 1 µs, PWM mode  
TLDSR_MP  
Transient load step response(8)  
Transient line response  
1.5 V VVOUT_Bx 1.9 V, IOUT_Bx = 1  
mA to 2 A / phase, tr = tf = 1 µs, PWM  
mode  
1.5%  
±5  
VPVIN_Bx stepping from 3 V to 3.5 V, tr = tf  
= 10 µs, IOUT_Bx = IOUT(max)  
TLNSR  
-20  
20 mV  
3.33a  
3.33b  
PWM mode, 1-phase  
PFM mode  
3
mVPP  
VOUT_Ripple Ripple voltage(8)  
15  
25 mVPP  
PFM to PWM switch current  
3.120  
3.121  
3.122  
IPFM-PWM  
IPWM-PFM  
Auto mode  
Auto mode  
Auto mode  
600  
300  
200  
mA  
mA  
mA  
threshold(6)  
PWM to PFM switch current  
threshold(6)  
IPWM-  
PWM to PFM switch current  
hysteresis  
PFM_HYST  
Electrical Characteristics - 2.2MHz Single-Phase Configuration for DDR Termination  
3.34  
3.35  
VPVIN_Bx  
IOUT_Bx_SINK Current sink  
Output voltage programmable  
Input voltage range  
2.8  
1
3.3  
5.5  
0.7  
V
A
3.36  
3.37  
3.38a  
VVOUT_Bx  
0.5  
3
V
range  
CIN_Bx  
Input filtering capacitance(1) (2)  
22  
22  
µF  
µF  
COUT-  
Output capacitance, local(2)  
10  
Local(Buckx)  
COUT-  
Output capacitance, total (local  
and POL)(2)  
3.38b  
25  
50  
µF  
TOTAL_Bx  
3.39a  
3.39b  
3.40  
Inductance  
329  
470  
10  
611  
nH  
mΩ  
mA  
LBx  
Power inductor  
DCR  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bx = 0 mA  
VVOUT_Bx < 1 V, PWM mode  
13  
DC output voltage accuracy,  
includes voltage reference, DC  
load and line regulations and  
temperature  
3.161a  
10 mV  
10  
VOUT_DC_Bx  
3.161b  
3.42  
1%  
V
VOUT_Bx 1 V, PWM mode  
1%  
0.5 V VVOUT_Bx 0.7 V, IOUT_Bx = -1  
mA to -1000 mA, tr = tf = 1 µs, PWM  
mode  
TLDSR  
Transient load step response(8)  
15  
mV  
VPVIN_Bx stepping from 3 V to 3.5 V, tr = tf  
= 10 µs, IOUT_Bx = IOUT_Bx(max)  
3.43  
3.44  
TLNSR  
Transient line response  
-20  
±5  
3
20 mV  
VOUT_Ripple Ripple voltage(8)  
PWM mode  
6 mVPP  
Electrical Characteristics - 4.4MHz Single-Phase Configuration Low Output Voltage  
Copyright © 2022 Texas Instruments Incorporated  
18 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.6 BUCK1, BUCK2, BUCK3, and BUCK4 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
3.45  
VPVIN_Bx  
VVOUT_Bx  
CIN_Bx  
Input voltage range  
3.0  
3.3  
5.5  
1.9  
V
V
Output voltage programmable  
range  
3.46  
3.47  
3.48a  
0.3  
3
Input filtering capacitance(1) (2)  
22  
22  
µF  
µF  
COUT-  
Output capacitance, local(2)  
10  
Local(Buckx)  
COUT-  
Output capacitance, total (local  
and POL)(2)  
3.48b  
25  
100  
286  
µF  
TOTAL_Bx  
3.49a  
3.49b  
3.50  
Inductance  
DCR  
154  
220  
10  
nH  
mΩ  
mA  
LBx  
Power inductor  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bx = 0 mA  
19  
3.162a  
3.162b  
3.162c  
VVOUT_Bx < 1 V, PWM mode  
10 mV  
1%  
10  
1%  
20  
DC output voltage accuracy,  
includes voltage reference, DC  
load and line regulations and  
temperature  
V
VOUT_Bx 1 V, PWM mode  
VOUT_DC_Bx  
VVOUT_Bx < 1 V, PFM mode  
35 mV  
-1% -  
10 mV  
1% +  
25 mV  
3.162d  
3.52a  
3.52b  
3.52c  
3.53  
V
VOUT_Bx 1 V, PFM mode  
0.3 V VVOUT_Bx < 0.6 V, IOUT_Bx = 1 mA  
to 200 mA, tr = tf = 1 µs, PWM mode  
15  
15  
mV  
mV  
0.6 V VVOUT_Bx < 1.5 V, IOUT_Bx = 1 mA  
to 1 A, tr = tf = 1 µs, PWM mode  
TLDSR  
Transient load step response(8)  
Transient line response  
1.5 V VVOUT_Bx 1.9 V, IOUT_Bx = 1  
mA to 1 A, tr = tf = 1 µs, PWM mode  
1.5%  
±5  
VPVIN_Bxx stepping from 3 V to 3.5 V, tr = tf  
= 10 µs, IOUT_Bx= IOUT_Bx(max)  
TLNSR  
-20  
20 mV  
mVPP  
3.54a  
3.54b  
PWM mode  
PFM mode  
5
8
VOUT_Ripple Ripple voltage(8)  
15  
50 mVPP  
mA  
PFM to PWM switch current  
Auto mode, VPVIN_Bx = 3.3 V, VVOUT_Bx  
1.0 V  
=
=
=
3.123  
3.124  
3.125  
IPFM-PWM  
IPWM-PFM  
600  
300  
200  
threshold(6)  
PWM to PFM switch current  
threshold(6)  
Auto mode, VPVIN_Bx = 3.3 V, VVOUT_Bx  
1.0 V  
mA  
mA  
IPWM-  
PWM to PFM switch current  
hysteresis  
Auto mode, VPVIN_Bx = 3.3 V, VVOUT_Bx  
1.0 V  
PFM_HYST  
Electrical Characteristics - 4.4MHz Single-Phase Configuration High Output Voltage  
3.55  
3.56  
VPVIN_Bx  
Input voltage range  
Output current  
4.5  
1.7  
5
5.5  
2.5  
V
A
IOUT_Bx_4.4_H  
VOUT  
Output voltage programmable  
range  
3.57  
VVOUT_Bx  
CIN_Bx  
3.34  
V
3.58  
Input filtering capacitance(1) (2)  
3
22  
22  
µF  
µF  
3.59a  
COUT-Local_Bx Output capacitance, local(2)  
10  
COUT-  
Output capacitance, total (local  
and POL)(2)  
3.59b  
50  
150  
611  
µF  
TOTAL_Bx  
3.60a  
3.60b  
3.61  
Inductance  
DCR  
329  
470  
10  
nH  
mΩ  
mA  
LBx  
Power inductor  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bx = 0 mA  
29  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.6 BUCK1, BUCK2, BUCK3, and BUCK4 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
10  
1%  
20  
TYP  
MAX UNIT  
10 mV  
1%  
3.163a  
VVOUT_Bx < 1 V, PWM mode  
DC output voltage accuracy,  
includes voltage reference, DC  
load and line regulations and  
temperature  
3.163b  
3.163c  
V
VOUT_Bx 1 V, PWM mode  
VOUT_DC_Bx  
VVOUT_Bx < 1 V, PFM mode  
25 mV  
-1% -  
10 mV  
1% +  
15 mV  
3.163d  
3.63  
V
VOUT_Bx 1 V, PFM mode  
1.7 V VVOUT_Bx 3.34 V, IOUT_Bx = 1  
mA to 1 A, tr = tf = 1 µs, PWM mode  
TLDSR_SP  
TLNSR  
Transient load step response(8)  
Transient line response  
1.5%  
±5  
VPVIN_Bxx stepping from 4.7 V to 5.2 V, tr =  
tf = 10 µs, IOUT_Bx = IOUT_Bx(max)  
3.64  
-20  
20 mV  
3.65a  
3.65b  
PWM mode  
PFM mode  
3
7 mVPP  
VOUT_Ripple Ripple voltage(8)  
15  
25 mVPP  
mA  
PFM to PWM switch current  
Auto mode, VPVIN_Bx = 5 V, VVOUT_Bx  
1.8 V  
=
=
=
3.126  
3.127  
3.128  
IPFM-PWM  
IPWM-PFM  
400  
260  
140  
threshold(6)  
PWM to PFM switch current  
threshold(6)  
Auto mode, VPVIN_Bx = 5 V, VVOUT_Bx  
1.8 V  
mA  
mA  
IPWM-  
PWM to PFM switch current  
hysteresis  
Auto mode, VPVIN_Bx = 5 V, VVOUT_Bx  
1.8 V  
PFM_HYST  
Electrical Characteristics - 2.2MHz Single-Phase Configuration with 5.0V VIN  
3.66  
3.67  
VPVIN_Bx  
VVOUT_Bx  
CIN_Bx  
Input voltage range  
4.5  
0.3  
5
5.5  
V
V
Output voltage programmable  
range  
3.34  
3.68  
Input filtering capacitance(1) (2)  
3
22  
22  
µF  
µF  
3.69a  
COUT-Local_Bx Output capacitance, local(2)  
10  
COUT-  
Output capacitance, total (local  
and POL)(2)  
3.69b  
100  
700  
1000  
1300  
µF  
TOTAL_Bx  
3.70a  
3.70b  
3.71  
Inductance  
1000  
10  
nH  
mΩ  
mA  
LBx  
Power inductor  
DCR  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bx = 0 mA  
VVOUT_Bx < 1 V, PWM mode  
14  
3.164a  
3.164b  
3.164c  
10 mV  
1%  
10  
1%  
20  
DC output voltage accuracy,  
includes voltage reference, DC  
load and line regulations and  
temperature  
V
VOUT_Bx 1 V, PWM mode  
VOUT_DC_Bx  
VVOUT_Bx < 1 V, PFM mode  
25 mV  
-1% -  
10 mV  
1% +  
15 mV  
3.164d  
3.73a  
3.73b  
3.73c  
3.74  
V
VOUT_Bx 1 V, PFM mode  
0.3 V VVOUT_Bx < 0.6 V, IOUT_Bx = 1 mA  
to 400 mA, tr = tf = 1 µs, PWM mode  
15  
15  
mV  
mV  
0.6 V VVOUT_Bx < 1.5 V, IOUT_Bx = 1 mA  
to 2 A, tr = tf = 1 µs, PWM mode  
TLDSR_SP  
Transient load step response(8)  
Transient line response  
1.5 V VVOUT_Bx 3.34 V, IOUT_Bx = 1  
mA to 2 A, tr = tf = 1 µs, PWM mode  
1.5%  
±5  
VPVIN_Bx stepping from 4.7 V to 5.2 V, tr =  
tf = 10 µs, IOUT_Bx= IOUT_Bx(max)  
TLNSR  
-20  
20 mV  
3.75a  
3.75b  
PWM mode  
PFM mode  
3
7.5 mVPP  
25 mVPP  
VOUT_Ripple Ripple voltage(8)  
15  
PFM to PWM switch current  
Auto mode, VPVIN_Bx = 5 V, VVOUT_Bx  
1.0V  
=
=
=
3.129  
3.130  
3.131  
IPFM-PWM  
IPWM-PFM  
400  
200  
200  
mA  
mA  
mA  
threshold(6)  
PWM to PFM switch current  
threshold(6)  
Auto mode, VPVIN_Bx = 5 V, VVOUT_Bx  
1.0V  
IPWM-  
PWM to PFM switch current  
hysteresis  
Auto mode, VPVIN_Bx = 5 V, VVOUT_Bx  
1.0V  
PFM_HYST  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.6 BUCK1, BUCK2, BUCK3, and BUCK4 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics - 2.2MHz Single-Phase and Multi-Phase Configuration  
3.76  
3.77  
VPVIN_Bx  
VVOUT_Bx  
CIN_Bx  
Input voltage range  
3.0  
0.3  
3.3  
5.5  
1.9  
V
V
Output voltage programmable  
range  
3.78  
Input filtering capacitance(1) (2)  
3
22  
22  
µF  
µF  
3.79a  
COUT-Local_Bx Output capacitance, local(2)  
Per phase  
Per phase  
10  
COUT-  
Output capacitance, total (local  
and POL)(2)  
3.79b  
100  
329  
1000  
611  
µF  
TOTAL_Bx  
3.80a  
3.80b  
3.81  
Inductance  
470  
10  
nH  
mΩ  
mA  
LBx  
Power inductor  
DCR  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bx = 0 mA  
VVOUT_Bx < 1 V, PWM mode  
13  
3.165a  
3.165b  
3.165c  
10 mV  
1%  
10  
1%  
20  
DC output voltage accuracy,  
includes voltage reference, DC  
load and line regulations and  
temperature  
V
VOUT_Bx 1 V, PWM mode  
VOUT_DC_Bx  
VVOUT_Bx < 1 V, PFM mode  
25 mV  
-1% -  
10 mV  
1% +  
15 mV  
3.165d  
3.83a  
3.83b  
3.83c  
3.84  
V
VOUT_Bx 1 V, PFM mode  
0.3 V VVOUT_Bx < 0.6 V, IOUT_Bx = 1 mA  
to 400 mA / phase, tr = tf = 1 µs, PWM  
mode  
5
15  
mV  
mV  
0.6 V VVOUT_Bx < 1.5 V, IOUT_Bx = 1 mA  
to 2 A / phase, tr = tf = 1 µs, PWM mode  
TLDSR_MP  
Transient load step response(8)  
Transient line response  
1.5 V VVOUT_Bx 1.9 V, IOUT_Bx = 1  
mA to 2 A / phase, tr = tf = 1 µs, PWM  
mode  
1%  
±5  
VPVIN_Bx stepping from 3 V to 3.5 V, tr = tf  
= 10 µs, IOUT_Bx = IOUT_Bx(max)  
TLNSR  
-20  
20 mV  
mVPP  
3.85a  
3.85b  
PWM mode, 1-phase  
PFM mode  
3
5
VOUT_Ripple Ripple voltage(8)  
15  
25 mVPP  
mA  
PFM to PWM switch current  
Auto mode, VPVIN_Bx = 3.3 V, VVOUT_Bx  
1.0V  
=
=
=
3.132  
3.133  
3.134  
IPFM-PWM  
IPWM-PFM  
500  
440  
60  
threshold(6)  
PWM to PFM switch current  
threshold(6)  
Auto mode, VPVIN_Bx = 3.3 V, VVOUT_Bx  
1.0V  
mA  
mA  
IPWM-  
PWM to PFM switch current  
hysteresis  
Auto mode, VPVIN_Bx = 3.3 V, VVOUT_Bx  
1.0V  
PFM_HYST  
Electrical Characteristics - 2.2MHz Single-Phase Generic Configuration  
3.86  
3.87  
VPVIN_Bx  
VVOUT_Bx  
CIN_Bx  
Input voltage range  
2.8  
0.3  
3.3  
5.5  
V
V
Output voltage programmable  
range  
3.34  
3.88  
Input filtering capacitance(1) (2)  
3
22  
22  
µF  
µF  
3.89a  
COUT-Local_Bx Output capacitance, local(2)  
10  
COUT-  
Output capacitance, total (local  
and POL)(2)  
3.89b  
100  
700  
500  
µF  
TOTAL_Bx  
3.90a  
3.90b  
3.91  
Inductance  
DCR  
1000  
10  
1300  
nH  
mΩ  
mA  
LBx  
Power inductor  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bx = 0 mA  
13  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.6 BUCK1, BUCK2, BUCK3, and BUCK4 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
10  
1%  
20  
TYP  
MAX UNIT  
10 mV  
1%  
3.166a  
VVOUT_Bx < 1 V, PWM mode  
DC output voltage accuracy,  
includes voltage reference, DC  
load and line regulations and  
temperature  
3.166b  
3.166c  
V
VOUT_Bx 1 V, PWM mode  
VOUT_DC_Bx  
VVOUT_Bx < 1 V, PFM mode  
25 mV  
-1% -  
10 mV  
1% +  
15 mV  
3.166d  
3.93a  
3.93b  
3.93c  
3.94  
V
VOUT_Bx 1 V, PFM mode  
0.3 V VVOUT_Bx < 0.6 V, IOUT_Bx = 1 mA  
to 400 mA, tr = tf = 1 µs, PWM mode  
35  
17  
mV  
mV  
0.6 V VVOUT_Bx < 1.0 V, IOUT_Bx = 1 mA  
to 2 A, tr = tf = 1 µs, PWM mode  
TLDSR_SP  
Transient load step response(8)  
Transient line response  
1.0 V VVOUT_Bx 3.34 V, IOUT_Bx = 1  
mA to 2 A, tr = tf = 1 µs, PWM mode  
3.5%  
±5  
VPVIN_Bx stepping from 3 V to 3.5 V, tr = tf  
= 10 µs, IOUT_Bx = IOUT_Bx(max)  
TLNSR  
-20  
20 mV  
3.95a  
3.95b  
PWM mode  
PFM mode  
3
7.5 mVPP  
25 mVPP  
VOUT_Ripple Ripple voltage(8)  
15  
PFM to PWM switch current  
Auto mode, VPVIN_Bx = 3.3 V, VVOUT_Bx  
1.0V  
=
=
=
3.135  
3.136  
3.137  
IPFM-PWM  
IPWM-PFM  
300  
150  
150  
mA  
mA  
mA  
threshold(6)  
PWM to PFM switch current  
threshold(6)  
Auto mode, VPVIN_Bx = 3.3 V, VVOUT_Bx  
1.0V  
IPWM-  
PWM to PFM switch current  
hysteresis  
Auto mode, VPVIN_Bx = 3.3 V, VVOUT_Bx  
1.0V  
PFM_HYST  
Timing Requirements  
From end of voltage ramp to VOUT within  
15 mV from VOUT_DC_Bx  
3.108  
3.109  
Settling time after voltage scaling  
Start-up delay  
105  
200  
7
µs  
µs  
µs  
(10)  
From enable to start of output voltage rise  
100  
19  
150  
Peak current limit triggering during every  
switching cycle  
3.110  
3.111  
3.112  
tdelay_OC  
Over-current detection delay  
Digital deglitch time for detected signal.  
Time duration to filter out short positive  
and negative pulses  
Over-current detection signal  
deglitch time  
tdeglitch_OC  
23  
30  
µs  
µs  
Over-current signal latency time Total delay from over-current detection to  
tlatency_OC  
from detection  
interrupt or PFSM trigger  
Switching Characteristics  
3.106a  
3.106b  
2.2 MHz setting, internal clock  
4.4 MHz setting, internal clock  
2
4
2.2  
4.4  
2.4  
4.8  
2.2 MHz setting, internal clock, spread  
spectrum enabled  
3.106d  
1.8  
3.5  
1.8  
3.5  
2.2  
4.4  
2.2  
4.4  
2.2  
2.6  
5.3  
2.6  
5.3  
Switching frequency, PWM mode  
NVM programmable  
4.4 MHz setting, internal clock, spread  
spectrum enabled  
fSW  
MHz  
MHz  
3.106e  
3.106g  
3.106h  
3.107b  
2.2 MHz setting, synchronized to external  
clock  
4.4 MHz setting, synchronized to external  
clock  
Automatic maximum switching  
frequency scaling in PWM mode  
fSW_max  
0.3 V VVOUT_Bx < 0.6 V  
(1) Input capacitors must be placed as close as possible to the device pins.  
(2) When DC voltage is applied to a ceramic capacitor, the effective capacitance is reduced due to DC bias effect. The table above  
therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance requirement, the nominal value of the  
capacitor may have to be scaled accordingly to take the drop of capacitance into account for a given dc voltage at the outputs of  
regulators.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
(3) The maximum output current can be limited by the forward current limit ILIM FWD. The maximum output current is also limited by the  
junction temperature and maximum average current over lifetime. The power dissipation inside the die increases the junction  
temperature and limits the maximum current depending of the length of the current pulse, efficiency, board and ambient temperature.  
(4) Advance thermal design is required to avoid thermal shutdown.  
(5) SLEW_RATEx[2:0] register default comes from NVM memory, and can be re-programed by software. Output capacitance, forward and  
negative current limits and load current may limit the maximum and minimum slew rates.  
(6) The PFM-to-PWM and PWM-to-PFM switchover current can be affected by the input and the output voltage, temperature, the inductor  
and the capacitor values.  
(7) A high slew-rate setting can generate over and undershoot during voltage change. See Application Section for more information.  
(8) Please refer to the applications section of the datasheet regarding the power delivery network (PDN) used for the transient load step  
and output ripple test conditions. All ripple specs are defined across POL capacitor in the described PDN.  
(9) Slew-rate is measured from 10% to 90% of the voltage ramp with voltage step 500 mV.  
(10) Voltage ramp is calculated using slew-rate from minimum column.  
6.7 Reference Generator (REFOUT)  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
4.1  
Max capacitance for REFOUT signal Capacitance between REFOUT signal and ground  
100  
pF  
V
4.2  
Output voltage  
Start-up time  
Measured at the REFOUT signal  
1.17  
1.2  
30  
1.23  
Timing Requirements  
From REFOUT_EN=1 to the time REFOUT voltage  
settles  
4.4  
tSU_REF  
µs  
6.8 Monitoring Functions  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
Electrical Characteristics: BUCK REGULATORS OUTPUT, VMONx INPUT  
BUCKn_OV_THR / VMONn_OV_THR = 0x0,  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
5.1a  
5.1b  
5.1c  
5.1d  
5.1e  
5.1f  
2%  
3%  
4%  
VMONn_RANGE_SEL = 0  
BUCKn_OV_THR / VMONn_OV_THR = 0x1,  
VMONn_RANGE_SEL = 0  
2.5% 3.5% 4.5%  
BUCKn_OV_THR / VMONn_OV_THR = 0x2,  
VMONn_RANGE_SEL = 0  
3%  
4%  
5%  
6%  
7%  
4%  
5%  
6%  
7%  
8%  
5%  
6%  
Overvoltage monitoring for  
buck output and VMONx pin  
input, programable threshold  
BUCKn_OV_THR / VMONn_OV_THR = 0x3,  
VMONn_RANGE_SEL = 0  
VBUCK_OV_TH  
VVMON_OV_TH  
,
BUCKn_OV_THR / VMONn_OV_THR = 0x4,  
VMONn_RANGE_SEL = 0  
accuracy, VOUT_Bx / VVMONx  
>
7%  
1 V(1)  
BUCKn_OV_THR / VMONn_OV_THR = 0x5,  
VMONn_RANGE_SEL = 0  
8%  
BUCKn_OV_THR / VMONn_OV_THR = 0x6,  
VMONn_RANGE_SEL = 0  
5.1g  
5.1h  
9%  
BUCKn_OV_THR / VMONn_OV_THR = 0x7,  
VMONn_RANGE_SEL = 0  
9% 10%  
11%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LP8764-Q1  
 
 
 
 
 
 
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.8 Monitoring Functions (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
BUCKn_OV_THR / VMONn_OV_THR = 0x0,  
VMONn_RANGE_SEL = 0  
5.2a  
20  
30  
35  
40  
45  
BUCKn_OV_THR / VMONn_OV_THR = 0x1,  
VMONn_RANGE_SEL = 0  
5.2b  
5.2c  
5.2d  
5.2e  
5.2f  
25  
30  
40  
50  
60  
70  
90  
BUCKn_OV_THR / VMONn_OV_THR = 0x2,  
VMONn_RANGE_SEL = 0  
40  
50  
Overvoltage monitoring for  
buck output and VMONx pin  
input, programable threshold  
BUCKn_OV_THR / VMONn_OV_THR = 0x3,  
VMONn_RANGE_SEL = 0  
VBUCK_OV_TH_  
50  
60  
,
mv  
mV  
VVMON_OV_TH_  
BUCKn_OV_THR / VMONn_OV_THR = 0x4,  
VMONn_RANGE_SEL = 0  
accuracy, VOUT_Bx  
VMONx 1 V(1)  
/
60  
70  
mv  
V
BUCKn_OV_THR / VMONn_OV_THR = 0x5,  
VMONn_RANGE_SEL = 0  
70  
80  
BUCKn_OV_THR / VMONn_OV_THR = 0x6,  
VMONn_RANGE_SEL = 0  
5.2g  
5.2h  
5.3a  
5.3b  
5.3c  
5.3d  
5.3e  
5.3f  
80  
90  
BUCKn_OV_THR / VMONn_OV_THR = 0x7,  
VMONn_RANGE_SEL = 0  
100  
110  
BUCKn_UV_THR / VMONn_UV_THR = 0x0,  
VMONn_RANGE_SEL = 0  
4% 3% 2%  
BUCKn_UV_THR / VMONn_UV_THR = 0x1,  
VMONn_RANGE_SEL = 0  
4.5% 3.5% 2.5%  
BUCKn_UV_THR / VMONn_UV_THR = 0x2,  
VMONn_RANGE_SEL = 0  
5% 4% 3%  
Undervoltage monitoring for  
buck output and VMONx pin  
input, programable threshold  
BUCKn_UV_THR / VMONn_UV_THR = 0x3,  
VMONn_RANGE_SEL = 0  
6% 5% 4%  
7% 6% 5%  
8% 7% 6%  
VBUCK_UV_TH  
VVMON_UV_TH  
,
BUCKn_UV_THR / VMONn_UV_THR = 0x4,  
VMONn_RANGE_SEL = 0  
accuracy, VOUT_Bx / VVMONx  
>
1 V(1)  
BUCKn_UV_THR / VMONn_UV_THR = 0x5,  
VMONn_RANGE_SEL = 0  
BUCKn_UV_THR / VMONn_UV_THR = 0x6,  
VMONn_RANGE_SEL = 0  
5.3g  
5.3h  
5.4a  
5.4b  
5.4c  
5.4d  
5.4e  
5.4f  
9% 8% 7%  
BUCKn_UV_THR / VMONn_UV_THR = 0x7,  
VMONn_RANGE_SEL = 0  
10%  
11%  
9%  
BUCKn_UV_THR / VMONn_UV_THR = 0x0,  
VMONn_RANGE_SEL = 0  
40 30 20  
45 35 25  
50 40 30  
60 50 40  
70 60 50  
80 70 60  
90 80 70  
110 100 90  
BUCKn_UV_THR / VMONn_UV_THR = 0x1,  
VMONn_RANGE_SEL = 0  
BUCKn_UV_THR / VMONn_UV_THR = 0x2,  
VMONn_RANGE_SEL = 0  
Undervoltage monitoring for  
buck output and VMONx pin  
input, programable threshold  
BUCKn_UV_THR / VMONn_UV_THR = 0x3,  
VMONn_RANGE_SEL = 0  
VBUCK_UV_TH_  
,
mv  
mV  
VVMON_UV_TH_  
BUCKn_UV_THR / VMONn_UV_THR = 0x4,  
VMONn_RANGE_SEL = 0  
accuracy, VOUT_Bx  
VMONx 1 V(1)  
/
mv  
V
BUCKn_UV_THR / VMONn_UV_THR = 0x5,  
VMONn_RANGE_SEL = 0  
BUCKn_UV_THR / VMONn_UV_THR = 0x6,  
VMONn_RANGE_SEL = 0  
5.4g  
5.4h  
BUCKn_UV_THR / VMONn_UV_THR = 0x7,  
VMONn_RANGE_SEL = 0  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.8 Monitoring Functions (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
5.5a  
5.5b  
5.5c  
5.5d  
5.5e  
5.5f  
PARAMETER  
TEST CONDITIONS  
MIN  
100  
125  
150  
200  
250  
300  
350  
450  
TYP MAX UNIT  
VMONn_OV_THR = 0x0, VMONn_RANGE_SEL = 1  
VMONn_OV_THR = 0x1, VMONn_RANGE_SEL = 1  
VMONn_OV_THR = 0x2, VMONn_RANGE_SEL = 1  
VMONn_OV_THR = 0x3, VMONn_RANGE_SEL = 1  
VMONn_OV_THR = 0x4, VMONn_RANGE_SEL = 1  
VMONn_OV_THR = 0x5, VMONn_RANGE_SEL = 1  
VMONn_OV_THR = 0x6, VMONn_RANGE_SEL = 1  
VMONn_OV_THR = 0x7, VMONn_RANGE_SEL = 1  
VMONn_UV_THR = 0x0, VMONn_RANGE_SEL = 1  
VMONn_UV_THR = 0x1, VMONn_RANGE_SEL = 1  
VMONn_UV_THR = 0x2, VMONn_RANGE_SEL = 1  
VMONn_UV_THR = 0x3, VMONn_RANGE_SEL = 1  
VMONn_UV_THR = 0x4, VMONn_RANGE_SEL = 1  
VMONn_UV_THR = 0x5, VMONn_RANGE_SEL = 1  
VMONn_UV_THR = 0x6, VMONn_RANGE_SEL = 1  
VMONn_UV_THR = 0x7, VMONn_RANGE_SEL = 1  
150  
175  
200  
250  
300  
350  
400  
500  
200  
225  
250  
300  
350  
400  
450  
550  
Overvoltage monitoring for  
VVMON_OV_TH2 VMONx pin input with  
extended range(1)  
mV  
5.5g  
5.5h  
5.6a  
5.6b  
5.6c  
5.6d  
5.6e  
5.6f  
-200 -150 -100  
-225 -175 -125  
-250 -200 -150  
-300 -250 -200  
-350 -300 -250  
-400 -350 -300  
-450 -400 -350  
-550 -500 -450  
Undervoltage monitoring for  
VVMON_UV_TH2 VMONx pin input with  
extended range(1)  
mV  
5.6g  
5.6h  
Threshold voltage for  
VTH_RV(VMON) Residual Voltage Detection at  
VMONx pins  
5.6i  
140  
150  
160 mV  
Electrical Characteristics: VCCA INPUT  
5.7a  
5.7b  
5.7c  
VCCA_OV_THR = 0x0  
VCCA_OV_THR = 0x1  
VCCA_OV_THR = 0x2  
VCCA_OV_THR = 0x3  
VCCA_OV_THR = 0x4  
VCCA_OV_THR = 0x5  
VCCA_OV_THR = 0x6  
VCCA_OV_THR = 0x7  
VCCA_UV_THR = 0x0  
VCCA_UV_THR = 0x1  
VCCA_UV_THR = 0x2  
VCCA_UV_THR = 0x3  
VCCA_UV_THR = 0x4  
VCCA_UV_THR = 0x5  
VCCA_UV_THR = 0x6  
VCCA_UV_THR = 0x7  
2%  
3%  
4%  
2.5% 3.5% 4.5%  
3%  
4%  
5%  
6%  
7%  
4%  
5%  
6%  
7%  
8%  
5%  
6%  
Overvoltage monitoring for  
5.7d  
5.7e  
5.7f  
VCCAOV_TH  
VCCA input, programable  
threshold accuracy(2)  
7%  
8%  
5.7g  
5.7h  
5.8a  
5.8b  
5.8c  
5.8d  
5.8e  
5.8f  
9%  
9% 10%  
-4% -3%  
11%  
-2%  
-4.5% -3.5% -2.5%  
-5%  
-6%  
-7%  
-8%  
-9%  
-4%  
-5%  
-6%  
-7%  
-8%  
-3%  
-4%  
-5%  
-6%  
-7%  
-9%  
Undervoltage monitoring for  
VCCA input, programable  
threshold accuracy(2)  
VCCAUV_TH  
5.8g  
5.8h  
-11% -10%  
Timing Requirements  
BUCK and VMON OV/UV  
detection delay  
Detection delay with 5mV (Vin 1 V) or 0.5% (Vin  
1 V) over/underdrive  
>
5.9a  
5.9b  
tdelay_OV_UV  
8
8
µs  
µs  
tdelay_VCCA_OV  
VCCA OV/UV detection delay Detection delay with 30mV over/underdrive  
_UV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.8 Monitoring Functions (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
VMON_DEGLITCH_SEL is 0.5 µs: Digital deglitch  
time for detected signal  
5.10a tdeglitch0_OV_UV  
0.5  
3.8  
20  
1
VCCA, BUCK and VMON  
OV/UV signal deglitch time  
VMON_DEGLITCH_SEL is 4 µs: Digital deglitch time  
for detected signal  
5.10b tdeglitch1_OV_UV  
5.10c tdeglitch2_OV_UV  
3.4  
18  
4.2 µs  
22  
VMON_DEGLITCH_SEL is 20 µs: Digital deglitch  
time for detected signal  
VMON_DEGLITCH_SEL is 0.5 µs: Total delay  
from 5mV (Vin 1 V) or 0.5% (Vin > 1 V) over/  
underdrive to interrupt or PFSM trigger  
5.11a tlatency0_OV_UV  
5.11b tlatency1_OV_UV  
5.11c tlatency2_OV_UV  
9
VMON_DEGLITCH_SEL is 4 µs: Total delay  
from 5mV (Vin 1 V) or 0.5% (Vin > 1 V) over/  
underdrive to interrupt or PFSM trigger  
BUCK and VMON OV/UV  
signal latency time  
13 µs  
VMON_DEGLITCH_SEL is 20 µs: Total delay  
from 5mV (Vin 1 V) or 0.5% (Vin > 1 V) over/  
underdrive to interrupt or PFSM trigger  
30  
tlatency0_VCCA_  
VMON_DEGLITCH_SEL is 0.5 µs: Total delay from  
30mV over/underdrive to interrupt or PFSM trigger  
5.11d  
9
OV_UV  
tlatency1_VCCA_ VCCA OV/UV signal latency VMON_DEGLITCH_SEL is 4 µs: Total delay from  
5.11e  
5.11f  
13 µs  
30  
time  
30mV over/underdrive to interrupt or PFSM trigger  
OV_UV  
tlatency2_VCCA_  
VMON_DEGLITCH_SEL is 20 µs: Total delay from  
30mV over/underdrive to interrupt or PFSM trigger  
OV_UV  
tdeglitch_PGOOD  
5.12a  
5.12b  
Input signal transition from invalid to valid  
Input signal transition from valid to invalid  
9.5  
10.5  
_rise  
PGOOD signal additional  
deglitch time  
µs  
tdeglitch_PGOOD  
0
_fall  
(1) The default values of BUCKn_OV_THR, BUCKn_UV_THR, VMONn_OV_THR and VMONn_UV_THR registers come from the NVM  
memory, and can be re-programmed by software.  
(2) The default values of VCCA_OV_THR and VCCA_UV_THR registers come from the NVM memory, and can be re-programmed by  
software.  
6.9 Clocks, Oscillators, and DPLL  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Switching Characteristics: 20-MHz and 128-kHz RC OSCILLATOR CLOCK  
20 MHz RC Oscillator output  
frequency  
6.2  
19  
20  
21 MHz  
135 kHz  
128 kHz RC Oscillator output  
frequency  
6.4  
121  
128  
Switching Characteristics: DPLL, SYNCCLKIN, and SYNCCLKOUT  
6.6a  
6.6b  
6.6c  
6.6d  
6.7a  
6.7b  
6.7c  
EXT_CLK_FREQ = 0x0  
EXT_CLK_FREQ = 0x1  
EXT_CLK_FREQ = 0x2  
EXT_CLK_FREQ = 0x3  
SS_DEPTH = 0x0 (Spread-spectrum disabled)  
SS_DEPTH = 0x1  
1.1  
2.2  
4.4  
8.8  
External input clock nominal  
frequency  
MHz  
18%  
10%  
8%  
18%  
10%  
8%  
External input clock required  
accuracy from nominal  
frequency  
SS_DEPTH = 0x2  
Logic low time for SYNCCLKIN  
clock  
6.8a  
6.8b  
6.9a  
40  
40  
ns  
ns  
Logic high time for  
SYNCCLKIN clock  
External clock detection delay  
for missing clock detection  
1.8  
µs  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.9 Clocks, Oscillators, and DPLL (continued)  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Clock change delay (internal to  
external)  
6.10  
Delay from valid clock detection to use of external clock  
600  
µs  
6.11a  
6.11b  
6.11c  
6.12  
SYNCCLKOUT_FREQ_SEL = 0x1  
SYNCCLKOUT_FREQ_SEL = 0x2  
SYNCCLKOUT_FREQ_SEL = 0x3  
Cycle-to-cycle  
1.1  
2.2  
SYNCCLKOUT clock nominal  
frequency  
MHz  
4.4  
SYNCCLKOUT duty-cycle  
40%  
5
50%  
60%  
SYNCCLKOUT output buffer  
external load  
6.13  
TJ = 25°C  
35  
50  
pF  
6.15a  
6.15b  
SS_DEPTH = 0x1  
SS_DEPTH = 0x2  
±6.3%  
±8.4%  
Spread spectrum variation  
from nominal frequency  
Timing Requirements: Clock Monitors  
6.17a  
Failure on 20 MHz system clock  
10  
40  
µs  
µs  
Clock Monitor Failure signal  
latency from detection  
tlatency_CLKfail  
6.17b  
6.18  
6.19  
6.20  
Failure on 128 kHz monitoring clock  
Clock Monitor Drift signal  
latency from detection  
tlatency_CLKdrift  
fsysclk  
115  
µs  
Internal system clock  
19  
20  
21 MHz  
20%  
Threshold for internal system  
clock frequency drift detection  
CLKdrift_TH  
-20%  
Threshold for internal system  
clock stuck at high or stuck at  
low detection  
6.21  
CLKfail_TH  
10 MHz  
6.10 Thermal Monitoring and Shutdown  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
7.1a  
7.1b  
7.2a  
7.2b  
7.2c  
7.2d  
TWARN_0  
TWARN_LEVEL = 0  
120  
130  
130  
135  
130  
140  
140  
145  
10  
140  
°C  
Thermal warning threshold (no  
hysteresis)  
TWARN_1  
TWARN_LEVEL = 1  
150  
TSD_orderly_0  
TSD_orderly_1  
TSD_ORD_LEVEL = 0  
TSD_ORD_LEVEL = 1  
TSD_ORD_LEVEL = 0  
TSD_ORD_LEVEL = 1  
150  
°C  
155  
Thermal orderly shutdown  
rising threshold  
Thermal orderly shutdown  
hysteresis  
°C  
5
Thermal immediate shutdown  
rising threshold  
7.3a  
7.3b  
TSD_imm  
140  
150  
5
160  
425  
°C  
°C  
Thermal immediate shutdown  
hysteresis  
Timing Requirements  
TSD signal latency from  
detection  
7.4  
tlatency_TSD  
µs  
6.11 System Control Thresholds  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
VCCA UVLO/POR falling  
threshold  
8.1a  
8.1b  
VPOR_Falling  
VPOR_Rising  
Measured on VCCA pin, trimmed  
2.7  
2.7  
2.75  
2.8  
3
V
V
VCCA UVLO/POR rising  
threshold  
Measured on VCCA pin, untrimmed  
Measured on VCCA pin, trimmed  
8.1c  
8.2a  
8.2b  
VPOR_Hyst  
VOVP_Rising  
VOVP_Hyst  
VCCA UVLO/POR hysteresis  
VCCA OVP rising threshold  
VCCA OVP hysteresis  
100  
5.7  
50  
mV  
V
5.6  
5.8  
mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.11 System Control Thresholds (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level refers to the AGNDx ground of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Timing Requirements  
tlatency_VCCAOV VCCA_OVP signal latency  
8.3  
8.6  
8.8  
15  
10  
12  
µs  
µs  
µs  
from detection  
P
tlatency_VCCAUVL VCCA_UVLO signal latency  
from detection  
O
LDOVINT OVP and UVLO  
tlatency_VINT  
With 25-mV over/underdrive  
signal latency from detection  
Device initialization time to  
tINIT_REF_CLK_L  
8.12a  
start up references, LDOVINT From NO SUPPLY state  
and EEPROM LDO  
2.2  
ms  
ms  
DO  
Device initialization time to  
8.12b tINIT_LDO  
start up references and  
EEPROM LDO  
From LP_STANDBY state  
0.95  
Device initialization time to  
tINIT_NVM_ANAL load default values for NVM  
8.13  
0.6  
ms  
programmable registers and  
OG  
use trimmed values  
8.11  
8.10  
tLBISTrun  
tABISTrun  
Run time for LBIST  
Run time for ABIST  
FAST_BIST=0  
1.4  
ms  
ms  
Stand-alone device(1)  
0.25  
(1) SPMI BIST is part of ABIST and can increase the time for devices in multi-PMIC platforms.  
6.12 Current Consumption  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
From VCCA and PVIN_Bx pins. VCCA OV/UV  
monitoring disabled. VCCA = PVIN_Bx = 3.3 V. VIO =  
0V. TJ = 25℃  
9.2a  
9.2b  
ISTANDBY_3V3  
34  
36  
Standby current consumption  
µA  
From VCCA and PVIN_Bx pins. VCCA OV/UV  
monitoring disabled. VCCA = PVIN_Bx = 5.0 V. VIO =  
0V. TJ = 25℃  
ISTANDBY_5V0  
From VCCA and PVIN_Bx pins. One buck regulator  
enabled in PFM/PWM mode. Buck and VCCA OV/UV  
monitoring enabled. VCCA = PVIN_Bx = VIO = 3.3 V.  
TJ = 25℃  
9.3a  
9.3b  
9.4a  
9.4b  
ISLEEP_3V3  
310  
315  
82  
Sleep current consumption  
µA  
From VCCA and PVIN_Bx pins. One buck regulator  
enabled in PFM/PWM mode. Buck and VCCA OV/UV  
monitoring enabled. VCCA = PVIN_Bx = 5.0 V. VIO =  
3.3V. TJ = 25℃  
ISLEEP_5V0  
From VCCA and PVIN_Bx pins. VCCA = PVIN_Bx =  
VIO = 3.3 V. Fsw = 4.4 MHz. All buck regulators are  
enabled in forced PWM mode with no load. All buck and  
VCCA OV/UV monitoring enabled. TJ = 25℃  
IACTIVE_3V3_4M4  
Active current consumption  
during PWM operation  
mA  
From VCCA and PVIN_Bx pins. VCCA = PVIN_Bx =  
5.0 V. VIO = 3.3V. Fsw = 4.4 MHz. All buck regulators  
are enabled in forced PWM mode with no load. All buck  
and VCCA OV/UV monitoring enabled. TJ = 25℃  
IACTIVE_5V0_4M4  
110  
From VCCA and PVIN_Bx pins. VCCA = PVIN_Bx =  
VIO = 3.3 V. Fsw = 2.2 MHz. 4-phase configuration.  
Buck regulator is enabled in forced PWM mode with no  
load. Buck and VCCA OV/UV monitoring enabled. TJ =  
25℃  
9.4c  
9.4d  
IACTIVE_3V3_2M2  
15  
19  
Active current consumption  
during PWM operation  
mA  
From VCCA and PVIN_Bx pins. VCCA = PVIN_Bx =  
5.0 V. VIO = 3.3 V. Fsw = 2.2 MHz. 4-phase  
configuration. Buck regulator is enabled in forced PWM  
mode with no load. Buck and VCCA OV/UV monitoring  
enabled. TJ = 25℃  
IACTIVE_5V0_2M2  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.13 Digital Input Signal Parameters  
Over operating free-air temperature range, VIO refers to the VIO pin, VCCA refers to the VCCA pin (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics: All Digital Input Signals in GPIOx, SCL_I2C1, SDA_I2C1, SCK_SPI, SDI_SPI  
10.1  
10.2  
10.3  
VIL  
VIH  
Low-level input voltage  
High-level input voltage  
Hysteresis  
0.54  
V
V
1.26  
150  
mV  
Timing Requirements: ENABLE  
10.4  
10.5  
tdegl_ENABLE  
tdegl_nSLEEPx  
ENABLE signal deglitch time  
nSLEEPx signal deglitch time  
GPIOx_DEGLITCH_EN = 1  
6
6
8
8
10  
10  
µs  
µs  
Timing Requirements: GPIOx  
10.6  
10.7  
tdegl_ESMx  
tWD_pulse  
nERR signal deglitch time  
13  
24  
15  
30  
17  
36  
µs  
µs  
TRIG_WDOG input signal  
deglitch time  
GPIx, WKUPx signal deglitch  
time  
10.8  
10.9  
tdegl_GPIx  
GPIOx_DEGLITCH_EN = 1  
GPIOx_DEGLITCH_EN = 0  
6
8
10  
µs  
ns  
Minimum pulse width for GPIx,  
WKUPx  
tno_degl_PW  
200  
6.14 Digital Output Signal Parameters  
Over operating free-air temperature range, VIO refers to the VIO pin, VLDO refers to the LDO_VOUT pin, VCCA refers to the  
VCCA pin (unless otherwise noted).  
POS  
Electrical Characteristics: nINT, SDA_I2Cx  
11.1 VOL_20mA Low-level output voltage  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IOL = 20 mA  
0
0.4  
V
Electrical Characteristics: EN_DRV(GPIO1), PGOOD(GPIO1), nRSTOUT_SOC(GPIO1), SDO_SPI, nRSTOUT_SOC(GPIO5), SYNCCLKOUT(GPIO5),  
nRSTOUT(GPIO10) and GPIO Output Signals through GPIO1, GPIO3, GPIO5 and GPIO10 pins  
Low-level output voltage, push-  
pull and open-drain  
11.2  
11.3  
VOL_20mA  
VOH(VIO)  
IOL = 20 mA  
IOH = 3 mA  
0
0.4  
V
V
High-level output voltage,  
push-pull  
VIO  
VIO 0.4  
Electrical Characteristics: PGOOD(GPIO6), SYNCCLKOUT(GPIO6) and GPIO Output Signals through GPIO2, GPIO6 pins  
Low-level output voltage, push-  
pull and open-drain  
11.4  
11.5  
VOL_3mA  
VOH(VIO)  
IOL = 3 mA  
IOH = 3 mA  
0
0.4  
V
V
High-level output voltage,  
push-pull  
VIO  
VIO 0.4  
Electrical Characteristics: SCLK_SPMI(GPIO8), SDATA_SPMI(GPIO9), PGOOD(GPIO9) and GPIO Output Signals through GPIO8 and GPIO9 pins  
Low-level output voltage, push-  
pull and open-drain  
11.6  
11.7  
VOL_20mA  
VOH(VINT)  
IOL = 20 mA  
IOH = 3 mA  
0
0.4  
V
V
High-level output voltage,  
push-pull  
1.4  
VLDO  
Electrical Characteristics: GPIO Output Signals through GPIO4 and GPIO7 pins  
Low-level output voltage, push-  
pull  
11.8  
11.9  
VOL_3mA  
IOL = 3 mA  
IOH = 3 mA  
0
0.4  
VLDO  
VCCA  
V
V
V
High-level output voltage,  
push-pull  
VOH(VINT)  
1.4  
High-level output voltage,  
push-pull  
VCCA -  
0.4  
EN_DRV pin, 10 kinternal pull-up, 3.135 V < VVIO  
VVCCA no load  
11.9b VOH(VCCA)  
Timing Requirements  
11.10 tgate_readback  
Gating time for readback  
monitor  
Signal level change or GPIO selection (GPIOn_SEL)  
8.3  
10.3  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.15 I/O Pullup and Pulldown Resistance  
Over operating free-air temperature range, VIO refers to the VIO_IN pin, VCCA refers to the VCCA pin (unless otherwise  
noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
GPIO4, GPIO7, GPIO8 and GPIO9 pins with internal  
pullup to VOUT_LDO  
12.2  
RPU_GPIO  
IO signals pullup resistance  
IO signals pullup resistance  
280  
400  
520  
kΩ  
GPIO1, GPIO2, GPIO3, GPIO5, GPIO6 and GPIO10  
pins with internal pullup to VIO  
12.3  
12.4  
12.5  
RPU_GPIO  
RPD_GPIO  
280  
280  
8
400  
400  
10  
520  
520  
12  
kΩ  
kΩ  
kΩ  
IO signals pulldown resistance GPIO1 - 10 pins with internal pulldown to ground  
Internal pullup to VIO supply when output driven high in  
push-pull configuration  
RPU_NRSTOUT nRSTOUT pullup resistance  
RPU_NRSTOUT_ nRSTOUT_SOC pullup  
Internal pullup to VIO supply when output driven high in  
push-pull configuration  
12.6  
12.7  
8
8
10  
10  
12  
12  
kΩ  
kΩ  
resistance  
SOC  
RPU_EN_DRV  
EN_DRV pullup resistance  
Internal pullup to VCCA supply when output driven high  
6.16 I2C Interface  
Over operating free-air temperature range (unless otherwise noted). Device supports standard mode (100 kHz), fast mode  
(400 kHz), and fast mode+ (1 MHz) when VIO is 3.3 V or 1.8 V, and high-speed mode (3.4 MHz) only when VIO is 1.8 V.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Electrical Characteristics  
Capacitive load for SDA  
and SCL  
13.1  
CB  
400  
pF  
Timing Requirements  
13.2a  
13.2b  
Standard mode  
100  
400  
1
kHz  
Fast mode  
13.2c  
13.2d  
13.2e  
13.3a  
13.3b  
Serial clock frequency  
Fast mode+  
ƒSCL  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
3.4  
1.7  
MHz  
4.7  
1.3  
0.5  
160  
320  
4
Fast mode  
µs  
ns  
µs  
ns  
13.3c tLOW  
13.3d  
SCL low time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
13.3e  
13.4a  
13.4b  
Fast mode  
0.6  
0.26  
60  
13.4c tHIGH  
13.4d  
SCL high time  
Data setup time  
Data hold time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
13.4e  
120  
250  
100  
50  
13.5a  
13.5b  
Fast mode  
tSU;DAT  
ns  
13.5c  
Fast mode+  
13.5d  
High-speed mode  
Standard mode  
10  
13.6a  
10  
3450  
900  
13.6b  
Fast mode  
10  
ns  
ns  
13.6c tHD;DAT  
13.6d  
Fast mode+  
10  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
70  
13.6e  
10  
150  
13.7a  
4.7  
0.6  
0.26  
160  
Setup time for a start or  
a REPEATED START  
condition  
13.7b  
tSU;STA  
13.7c  
Fast mode  
µs  
ns  
Fast mode+  
13.7d  
High-speed mode  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
6.16 I2C Interface (continued)  
Over operating free-air temperature range (unless otherwise noted). Device supports standard mode (100 kHz), fast mode  
(400 kHz), and fast mode+ (1 MHz) when VIO is 3.3 V or 1.8 V, and high-speed mode (3.4 MHz) only when VIO is 1.8 V.  
POS  
13.8a  
13.8b  
13.8c  
13.8d  
13.9a  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Standard mode  
4
Hold time for a start or a  
REPEATED START  
condition  
Fast mode  
0.6  
0.26  
160  
4.7  
1.3  
0.5  
4
µs  
tHD;STA  
Fast mode+  
High-speed mode  
Standard mode  
Fast mode  
ns  
Bus free time between a  
STOP and START  
condition  
13.9b tBUF  
13.9c  
µs  
Fast mode+  
13.10a  
Standard mode  
Fast mode  
13.10b  
0.6  
0.26  
160  
µs  
ns  
Setup time for a STOP  
condition  
tSU;STO  
13.10c  
Fast mode+  
13.10d  
High-speed mode  
Standard mode  
Fast mode  
13.11a  
1000  
300  
120  
80  
13.11b  
20  
13.11c trDA  
13.11d  
Rise time of SDA signal Fast mode+  
High-speed mode, Cb = 100 pF  
ns  
ns  
10  
20  
13.11e  
High-speed mode, Cb = 400 pF  
Standard mode  
160  
300  
300  
120  
80  
13.12a  
13.12b  
Fast mode  
6.5  
6.5  
10  
13.12c tfDA  
13.12d  
Fall time of SDA signal Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
13.12e  
13  
160  
1000  
300  
120  
40  
13.13a  
13.13b  
Fast mode  
20  
13.13c trCL  
13.13d  
Rise time of SCL signal Fast mode+  
ns  
ns  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
10  
20  
10  
13.13e  
80  
13.14a  
Rise time of SCL signal High-speed mode, Cb = 100 pF  
after a repeated start  
condition and after an  
acknowledge bit  
Standard mode  
Fast mode  
80  
trCL1  
13.14b  
High-speed mode, Cb = 400 pF  
20  
160  
13.15a  
300  
300  
120  
40  
13.15b  
6.5  
6.5  
10  
13.15c tfCL  
13.15d  
Fall time of SCL signal  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
13.15e  
20  
80  
Pulse width of spike  
suppressed (SCL and  
SDA spikes that are less  
than the indicated width  
are suppressed)  
Standard mode, fast mode, and fast  
mode+  
13.16a  
50  
10  
tSP  
ns  
13.16b  
High-speed mode, Cb = 400 pf  
6.17 Serial Peripheral Interface (SPI)  
These specifications are ensured by design, VVIO = 1.8 V or 3.3 V(unless otherwise noted).  
POS  
PARAMETERS  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Electrical Characteristics  
15.1  
Capacitive load on pin SDO  
30  
pF  
Timing Requirements  
15.2  
15.3  
15.4  
1
2
3
Cycle time  
200  
150  
150  
ns  
ns  
ns  
Enable lead time  
Enable lag time  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
These specifications are ensured by design, VVIO = 1.8 V or 3.3 V(unless otherwise noted).  
POS  
15.5  
15.6  
15.7  
15.8  
15.9  
PARAMETERS  
TEST CONDITIONS  
MIN  
60  
60  
15  
15  
4
NOM  
MAX UNIT  
4
5
6
7
8
Clock low time  
ns  
ns  
ns  
ns  
ns  
Clock high time  
Data setup time  
Data hold time  
Output data valid after SCLK falling  
15.1  
0a  
VVIO = 1.8 V  
VVIO = 3.3 V  
60  
ns  
60  
9
New output data valid after SCLK falling  
15.1  
0b  
15.1  
1
10  
11  
Disable time  
30  
ns  
ns  
15.1  
2
CS inactive time  
100  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
7-1. I2C Timing  
11  
CS  
2
1
5
3
SCLK  
4
6
7
MOSI  
8
9
10  
MISO Hi-Z  
Hi-Z  
7-2. SPI Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
7 Typical Characteristics  
Unless otherwise specified: TA = 25°C, VIN = 3.3 V, VOUT = 1 V.  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
4
3
2
1
0
2.2MHz, Shedding  
2.2MHz, Adding  
4.4MHz, Shedding  
4.4MHz, Adding  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
0
1
2
3
4
5
6
7
VCCA (V)  
IOUT (A)  
7-1. Quiescent Current Consumption vs Input Voltage  
7-2. Buck Phase Adding and Shedding  
EN (1V/div)  
EN (1V/div)  
V
OUT 200 mV/div  
V
OUT 200 mV/div  
Time (100 µs/div)  
Time (100 µs/div)  
ILOAD = 4A  
7-3. Buck Startup, 4-Phase 2.2 MHz Mode  
ILOAD = 4A  
7-4. Buck Shutdown, 4-Phase 2.2 MHz Mode  
1.6  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
33 mV/µs  
20 mV/µs  
10 mV/µs  
5 mV/µs  
2.5 mV/µs  
1.25 mV/µs  
0.625 mV/µs  
0.3125 mV/µs  
33 mV/µs  
20 mV/µs  
10 mV/µs  
5 mV/µs  
2.5 mV/µs  
1.25 mV/µs  
0.625 mV/µs  
0.3125 mV/µs  
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Time (ms)  
Time (ms)  
No load  
No load  
7-5. Buck Ramp-up Slew Rate  
7-6. Buck Ramp-down Slew Rate  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
7 Typical Characteristics (continued)  
Unless otherwise specified: TA = 25°C, VIN = 3.3 V, VOUT = 1 V.  
1.6  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
no load  
0.6ohm  
0.8  
0.8  
0.6  
0.4  
0.6  
no load  
0.6ohm  
0.4  
0
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2  
Time (ms)  
0
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2  
Time (ms)  
Slew Rate 33mV/µs  
7-7. Buck Ramp-up Slew Rate  
Slew Rate 33mV/µs  
7-8. Buck Ramp-down Slew Rate  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LP8764-Q1 device is a power-management integrated circuit (PMIC), available in a 32-pin, 0.5-mm pitch,  
5.5-mm × 5-mm QFN HotRod package. The device is designed for powering embedded systems or system on  
chip (SoC) in Automotive or Industrial applications. The device provides four configurable buck converter rails,  
with ability to combine outputs in multi-phase mode. All converters can support up to 5-A per phase resulting up  
to 20-A in four-phase configuration, 15-A in 3-phase configuration, and 10-A in dual-phase configuration. All  
buck converters have the capability to sink up to 1 A, and support dynamic voltage scaling. Double buffered  
voltage scaling registers enable each BUCK to transition to a different voltages during operation by SPI, I2C or  
state transition. A DPLL enables the BUCK converters to synchronizing to an external clock input, with phase  
delays between the output rails.  
Two I2C interface channels or one SPI channel can be used to configure the power rails and the power state of  
the LP8764-Q1 device. I2C channel 1 (I2C1) is the main channel with access to the registers that control the  
configurable power sequencer, the states and the outputs of power rails, and the device operating states. I2C  
channel 2 (I2C2), which is available through GPIO2 and GPIO3 pins, is dedicated for accessing the Q&A  
Watchdog communication registers. When the SPI is configured instead of the two I2C interfaces, the SPI can  
access all of the registers, including the Q&A Watchdog registers. An NVM option is available to enable I2C1 to  
access all of the registers as well, including the Q&A Watchdog registers.  
The LP8764-Q1 device includes an internal RC oscillator to sequence all resources during power up and power  
down. An internal LDO (LDOVINT) generates the supply for the entire digital circuitry of the device as soon as  
the external input supply is available through the VCCA input.  
LP8764-Q1 device has ten GPIOs each with multiple functions and configurable features. All of the GPIOs, when  
configured as a general purpose output pin, can be included in the power-up and power-down sequence and  
used as enable signals for external resources. In addition, each GPIO can be configured as a wake-up input or a  
sleep mode trigger. The default configuration of the GPIO port comes from the NVM memory, and can be re-  
configured by software if the external connection permits.  
The LP8764-Q1 device includes a Q&A watchdog to monitor software lockup, and a system error monitoring  
input (nERR_MCU) with fault injection option to monitor the lock-step signal of the attached MCU. The device  
includes protection and diagnostic mechanisms such as short-circuit protection, thermal monitoring and  
shutdown. The PMIC can notify the processor of these events through the interrupt signal, allowing the  
processor to take action in response.  
An SPMI interface is included in the LP8764-Q1 device to distribute power state information to at most five  
satellite PMICs, thus enabling synchronous power state transition across multiple PMICs in the application  
system. This feature allows the consolidation of IO control signals from up to six PMICs powering the system into  
one primary LP8764-Q1 PMIC.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
VCCA  
VIO  
ENABLE  
Control  
EN_DRV  
Interface  
Voltage monitoring  
Windowed  
Power-Good  
Monitor  
PGOOD  
LDOVINT  
SCL_I2C1/SCK_SPI  
SDA_I2C1/SDI_SPI  
SCL_I2C2, CS_SPI  
VINT  
CC internal  
supply  
I2C CNTRL,  
or SPI  
SYNCCLKOUT  
V
Single or  
Multi-Phase  
SDA_I2C2, SDO_SPI  
PVIN_B1  
SW_B1  
FB_B1  
PGND  
VCCA  
VCCA  
VCCA  
VCCA  
Internal  
Interrupt  
events  
EN  
nINT  
BUCK1  
(AVS)  
VSEL  
RAMP  
CLK1  
RC  
Oscillator  
DPLL  
(Phase  
synchronization  
and dither)  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
SYNCCLKIN  
PVIN_B2  
SW_B2  
FB_B2  
PGND  
EN  
VSEL  
RAMP  
CLK2  
BUCK2  
(AVS)  
DFT  
NVM Controller  
NVM Memory  
Registers  
VCCA  
VCCA_UVLO  
VCCA  
Pre-Configurable  
Power Sequencer  
Controller  
PVIN_B3  
SW_B3  
FB_B3  
PGND  
EN  
VSEL  
RAMP  
CLK3  
BUCK3  
(AVS)  
VCCA_OVP  
ECO  
PWM  
DVS  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
WKUPn  
nSLEEPn  
Default NVM Settings  
PVIN_B4  
SW_B4  
FB_B4  
PGND  
EN  
VSEL  
RAMP  
CLK4  
BUCK4  
(AVS)  
Thermal  
Monitoring and  
Shutdown  
Hot die detection  
I2C2  
SPI  
Q&A WDT  
nERR_MCU  
Error Monitor  
AGND1  
AGND2  
Internal supply  
Reference  
and Bias  
REFOUT  
Quiet Ground  
Pins are shared with BUCK converters  
8-1. LP8764-Q1 Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.3 Input Voltage Monitor  
The comparator module that monitors the voltage on the VCCA pins controls the power state machine of the  
LP8764-Q1 device. The 8-2 shows a block diagram of the VCCA input voltage monitoring. VCCA voltage  
detection outputs determine the power states of the device as following:  
VCCA_UVLO When the voltage on the VCCA pin rises above VCCA_UVLO during initial power up, the  
LP8764-Q1 device transitions from the NO SUPPLY state to the INIT state.  
When the supply at the VCCA pin falls below the VCCA_UVLO threshold, the device returns to  
the NO SUPPLY state and is completely shut down.  
VCCA_OVP While the LP8764-Q1 device is in operation, if the voltage on VCCA pin rises above the  
VCCA_OVP threshold, the device clears the ENABLE_DRV bit and start the immediate  
shutdown sequence using pull-down resistors at the buck regulator outputs to protect itself from  
over-voltage input condition.  
When VCCA is expected to be 5 V or 3.3 V, a separate voltage comparator can be enabled to monitor whether  
or not the VCCA voltage is within the expected range. Please refer to for additional detail on the operation of the  
VCCA OV/UV monitor function.  
VCCA  
VSYS  
Preregulator  
External Protection  
Safety  
Band Gap  
+
VCCA_UVLO  
VCCA_OVP  
œ
œ
+
VCCA OVP and UVLO  
Monitor  
8-2. VCCA Monitor  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.4 Device State Machine  
The LP8764-Q1 device integrates a finite state machine (FSM) engine that manages the state of the device  
during operating state transitions. The device supports NVM-configurable mission states with configurable input  
triggers for transitions between states. Any resources, including the 4 BUCK regulators, the VMONx voltage  
monitors and all of the digital IO pins including the 10 GPIO pins on the device can be controlled during power  
sequencing. When a resource is not controlled or configured through a power sequence, the resource is left in  
the default state as pre-configured by the NVM.  
Each resource can be pre-configured through the NVM configuration, or re-configured through register bits.  
Therefore, the user can statically control the resource through the control interfaces (I2C or SPI), or the FSM can  
automatically control the resource during state sequences.  
The FSM is powered by an internal LDO that is automatically enabled when VCCA supply is available to the  
device. Ensuring that the VCCA supply is the first supply available to the device is important to ensure proper  
operation of all the power resources as well as the control interface and device IOs.  
There are 3 parts of the FSM that control the operational modes of the LP8764-Q1 device:  
Fixed Device Power Finite State Machine (FFSM)  
Pre-configurable Finite State Machine (PFSM) for Mission States (ACTIVE, MCU_ONLY, S2R,  
DEEP_SLEEP)  
Error Handling Operations  
The PFSM provides configurable rail and voltage monitoring sequencing utilizing instructions in configuration  
memory. This flexibility enables customers to alter power-up sequences on a platform basis. The FFSM handles  
the majority of fixed functionality that is internally mandated and common to all platforms.  
8.4.1 Fixed Device Power FSM  
The Fixed Device Power portion of the FSM engine manages the power up of the device before the power rails  
are fully enabled and ready to power external loadings, and the power down of the device when in the event of  
insufficient power supply or device or system error conditions. While the device is in one of the Hardware Device  
Powers states, the ENABLE_DRV bit remains low.  
The definitions and transition triggers of the Device Power States are fixed and cannot be reconfigured.  
Following are the definitions of the Device Power states:  
NO SUPPLY  
The device is not powered by a valid energy source on the system power rail. The device is  
completely powered off.  
LP_STANDBY The device can enter this state from a mission state after receiving a valid OFF request by  
ENABLE pin or I2C trigger and the LP_STANDBY_SEL = 1. The internal LDO (LDOVINT) is  
enabled and VCCA monitoring is disabled to minimize power dissipation. As the accurate  
VCCA monitoring is disabled, the VCCA voltage must be above 1.7 V during LP_STANDBY  
state, or stay below 1.7 V for minimum 20 ms to ensure that the digital is reset correctly. If this  
requirement for VCCA cannot be met, STANDBY state must be used instead of  
LP_STANDBY. The wake-up from LP_STANDBY state can be initiated by active edge on  
ENABLE signal or by WKUPx pins.  
INIT  
The device is powered by a valid supply on the system power rail (VCCA VCCA_UV). If the  
device was previously in LP_STANDBY state, it has received an external wake-up signal at  
the WKUP1/2 pins, or an On Request from the ENABLE pin. Device digital and monitor  
circuits are powered up. The PMIC reads its internal NVM memory in this state and configures  
default values to registers, IO configuration and FSM accordingly.  
BOOT BIST  
The device is running the built-in self-test routine that includes both the LBIST and the ABIST/  
CRC. An option is available to shorten the device power up time from the NO_SUPPLY state  
by setting the NVM bit FAST_BOOT_BIST = '1' to skip the LBIST. Software can also set the  
FAST_BIST = '1' to skip LBIST after the device wakes up from the LP STANDBY state. When  
the device arrives at this state from the SAFE_RECOVERY state, LBIST is automatically  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
skipped if it has not previously failed. If LBIST failed, but passed after multiple re-tries before  
exceeding the recovery counter limit, the device powers up normally. The following NVM bits  
are additional options that can be set to disable parts of the ABIST/CRC tests if further  
sequence time reduction is required:  
REG_CRC_EN = '0': disables the register map and SRAM CRC check  
VMON_ABIST_EN = '0': disables the ABIST for the VMON OV/UV function  
备注  
Note: the BIST tests are executed as parallel processes, and the longest process  
determines the total BIST duration  
RUNTIME BIST A request was received from the MCU to exercise a run-time built-in self-test  
(RUNTIME_BIST) on the device. No rails are modified and all external signals, including all  
I2C or SPI interface communications, are ignored during BIST. If the device passed BIST, it  
resumes the previous operation. If the device failed BIST, it shuts down all of the regulator  
outputs and proceed to the SAFE RECOVERY state. In order to avoid a register CRC error, all  
register writes must be avoided after the request for the BIST operation until the device pulls  
the nINT pin low to indicate the completion of BIST. The results of the BIST are indicated by  
the BIST_PASS_INT or the BIST_FAIL_INT bits.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
SAFE  
RECOVERY  
The device meets the qualified error condition for immediate or ordered shutdown request. If  
the error is recovered within the recovery time interval or meets the restart condition, the  
device increments the recovery counter, and returns to INIT state if the recovery counter value  
does not exceed the threshold value. Until a supply power cycle occurs, the device stays in  
the SAFE RECOVERY state if one of the following conditions occur:  
the recovery counter exceeds the threshold value  
the die temperature cannot be reduced to less than TWARN level  
VCCA stays above OVP threshold  
When multiple system conditions occur simultaneously that demand power state arbitration, the device goes to  
the higher priority state according to the following priority order:  
1. NO SUPPLY  
2. SAFE_RECOVERY  
3. LP_STANDBY  
4. MISSION STATES  
8-3 shows the power transition states of the FSM engine.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
NO  
VCCA < VCCA_UVLO  
SUPPLY  
or LDOVINT UVLO Condi on  
All States  
VCCA > VCCA_UV  
LP STANDBY  
LP_STANDBY_SEL = 1 and  
Valid WAKE request1  
no valid WAKE request1  
INIT  
INIT done and  
no error detected  
Error recovered or  
meets restart condi on  
O
request and  
All States  
Recovery  
counter exceeded  
LP_STANDBY_SEL = 1  
Thermal Shutdown or  
VCCA OVP  
Error Condi ons  
(recovery cnt +1)  
SAFE  
RECOVERY  
BOOT  
BIST  
BOOT BIST error  
(recovery cnt +1)  
Orderly shutdown  
Condi on  
(recovery cnt +1)  
BOOT BIST success  
Severe or Moderate  
PFSM Errors  
(recovery cnt +1)  
Mission States  
RUNTIME BIST request  
RUNTIME BIST complete  
RUNTIME  
BIST  
1 A valid WAKE request consist of:  
ꢀꢁENABLE high level if the device arrived the LP_STANDBY state through a low level at the  
ENABLE pin, or  
ꢀꢁLWKUP1 or WKUP2 detec on if the device arrived the LP_STANDBY state through wri ng to a  
TRIGGER_I2C_0 bit, or  
ꢀꢁSPMI wake-up event  
8-3. State Diagram for Device Power States  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.4.1.1 Register Resets and EEPROM read at INIT state  
When the device transitions from LP_STANDBY to INIT state, the registers are reset and EEPROM is read  
based on FIRST_STARTUP_DONE and SKIP_LP_STANDBY_EE_READ bits. At the transition from SAFE  
RECOVERY to INIT, the SKIP_LP_STANDBY_EE_READ bit is ignored as shown in the table.  
8-1. Register resets and EEPROM read at INIT state  
SKIP_LP_STANDBY_EE  
State transition  
FIRST_STARTUP_DONE  
conf_registers  
No changes  
No changes  
other registers  
_READ  
Don't care  
1
1
0
No changes  
LP_STANDBY INIT  
LP_STANDBY INIT  
Reset and defaults  
read from EEPROM  
0
1
0
0
Reset and defaults read  
from EEPROM  
Reset and defaults  
read from EEPROM  
LP_STANDBY INIT  
SAFE RECOVERY INIT  
SAFE RECOVERY INIT  
Don't care  
Don't care  
Reset and defaults  
read from EEPROM  
No changes  
Reset and defaults read  
from EEPROM  
Reset and defaults  
read from EEPROM  
The conf_registers are:  
ENABLE_POL bit in the ENABLE_CONF register  
FSD_MASK, ENABLE_MASK bits in the MASK_STARTUP register  
FIRST_STARTUP_DONE, STARTUP_DEST, FAST_BIST, LP_STANDBY_SEL, and  
SKIP_LP_STANDBY_EE_READ bits in the STARTUP_CTRL register  
SCRATCH_PAD_x bits in the SCRATCH_PAD_REG_x registers  
PFSM_DELAYx bits in the PFSM_DELAY_REG_x registers  
8.4.2 Pre-Configurable Mission States  
When the device arrives at a mission state, all rail sequencing is controlled by the pre-configurable FSM engine  
(PFSM) through the configuration memory. The configuration memory allows configurations of the triggers and  
the operation states that together form the configurable sub state machine within the scope of mission states.  
This sub state machine can be used to control and sequence the different voltage outputs as well as any GPIO  
outputs that can be used as enable for external rails. When the device is in a mission state, it has the capacity to  
supply the processor and other platform modules depending on the power rail configuration. The definitions and  
transition triggers of the mission states are configurable through the NVM configuration. Unlike the user  
registers, the PFSM definition stored in the NVM cannot be modified during normal operation. When the PMIC  
determines that a transition to another operation state is necessary, it reads the configuration memory to  
determine what sequencing is needed for the state transition.  
8-5 shows how the trigger signals for each state transition can come from a variety of interface or GPIO  
inputs, or potential error sources. 8-4 shows how the device processes all of the possible error sources inside  
the PFSM engine, a hierarchical mask system is applied to filter out the common errors that can be handled by  
interrupt only, and categorize the other error sources as Severe Global Error, Moderate Global Error, and so  
forth. The filtered and categorized triggers are sent into the PFSM engine, that then determines the entry and  
exit condition for each configured mission state.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
All Potential Error (Interrupt) Sources  
INTERRUPT  
is given  
First level mask to filter out non-error interrupts vs. interrupts which require error handling  
VCCA BUCK1 BUCK2 BUCK3 BUCK4 VMON1 VMON2  
Recovery Counter Limit to FSM  
OR  
function  
WD error to FSM  
Severe Global  
Error  
MCU Rail Group  
SoC Rail Group  
Other Rail Group  
MCU Error Monitor to FSM  
Mask  
Moderate Global  
Error  
IMMEDIATE  
SHUTDOWN trigger  
input to FSM  
Immediate Shutdown Trigger Mask  
ORDERLY  
SHUTDOWN trigger  
input to FSM  
Orderly Shutdown Trigger Mask  
MCU Power Error Trigger Mask  
SoC Power Error Trigger Mask  
MCU Power  
Error Signal  
SoC Power  
Error Signal  
8-4. Error Source Hierarchical Mask System  
8-6 shows an example of how the PFSM engine utilizes instructions to execute the configured device state  
and sequence transitions of the mission state-machine. 8-2 provides the instruction set and usage description  
of each instruction in the following sections. 8.4.2.2 describes how the instructions are stored in the NVM  
memory.  
8-2. Configurable FSM Instruction set  
Command Opcode  
"0000"  
Command  
REG_WRITE_MASK_PAGE0_IMM  
REG_WRITE_IMM  
Command Description  
Write the specified data, except the masked bits, to the specified  
page 0 register address.  
"0001"  
Write the specified data to the specified register address.  
Write the specified data, except the masked bits, to the specified  
register address.  
"0010"  
REG_WRITE_MASK_IMM  
Write the target voltage of a specified regulator after a specified  
delay.  
"0011"  
"0100"  
"0101"  
"0110"  
REG_WRITE_VOUT_IMM  
REG_WRITE_VCTRL_IMM  
REG_WRITE_MASK_SREG  
SREG_READ_REG  
Write the operation mode of a specified regulator after a specified  
delay.  
Write the data from a scratch register, except the masked bits, to  
the specified register address.  
Write scratch register (REG0-3) with data from a specified  
address.  
Execution is paused until the specified type of the condition is met  
or timed out.  
"0111"  
"1000"  
"1001"  
WAIT  
DELAY_IMM  
DELAY_SREG  
Delay the execution by a specified time.  
Delay the execution by a time value stored in the specified scratch  
register.  
Set a trigger destination address for a given input signal or  
condition.  
"1010"  
TRIG_SET  
"1011"  
"1100"  
TRIG_MASK  
END  
Sets a trigger mask that determines which triggers are active.  
Mark the final instruction in a sequential task.  
Write the specified data to the BIT_SEL location of the specified  
page 0 register address.  
"1101"  
REG_WRITE_BIT_PAGE0_IMM  
Write the specified data to the SHIFT location of the specified  
page 0 register address.  
"1110"  
"1111"  
REG_WRITE_WIN_PAGE0_IMM  
SREG_WRITE_IMM  
Write the specified data to the scratch register (REG0-3).  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.4.2.1 PFSM Commands  
Following section describes each PFSM command in detail and provides example usage codes. More  
information on example NVM configuration, available device options and documentations can be found at Fully  
Customizable Integrated Power.  
8.4.2.1.1 REG_WRITE_IMM Command  
Description: Write the specified data to the specified register address  
Assembly command: REG_WRITE_IMM [ADDR=]<Address> [DATA=]<Data>  
Address and Data can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=' and 'DATA=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_IMM 0x1D 0x55 Write value 0x55 to address 0x1D  
REG_WRITE_IMM ADDR=0x10 DATA=0xFF Write value 0xFF to address 0x10  
REG_WRITE_IMM DATA=0xFF ADDR=0x10 Write value 0xFF to address 0x10  
8.4.2.1.2 REG_WRITE_MASK_IMM Command  
Description: Write the specified data, except the masked bits, to the specified register address  
Assembly command: REG_WRITE_MASK_IMM [ADDR=]<Address> [DATA=]<Data> [MASK=]<Mask>  
Address, Data, and Mask can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=', 'DATA=', and 'MASK=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_MASK_IMM 0x1D 0x80 0xF0 Write 0b1000 to the upper 4 bits of the register at address  
0x1D  
REG_WRITE_MASK_IMM ADDR=0x10 DATA=0x0F MASK=0xF0 Write 0b1111 to the lower 4 bits of the  
register at address 0x10  
REG_WRITE_MASK_IMM DATA=0x0F MASK=0xF0 ADDR=0x10 Write 0b1111 to the lower 4 bits of the  
register at address 0x10  
8.4.2.1.3 REG_WRITE_MASK_PAGE0_IMM Command  
Description: Write the specified data, except the masked bits, to the specified page 0 register address  
Assembly  
command:  
REG_WRITE_MASK_PAGE0_IMM  
[ADDR=]<Address>  
[DATA=]<Data>  
[MASK=]<Mask>  
Address, Data, and Mask can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=', 'DATA=', and 'MASK=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_MASK_PAGE0_IMM 0x1D 0x80 0xF0 Write 0b1000 to the upper 4 bits of the register at  
address 0x1D  
REG_WRITE_MASK_PAGE0_IMM ADDR=0x10 DATA=0x0F MASK=0xF0 Write 0b1111 to the lower 4  
bits of the register at address 0x10  
REG_WRITE_MASK_PAGE0_IMM DATA=0x0F MASK=0xF0 ADDR=0x10 Write 0b1111 to the lower 4  
bits of the register at address 0x10  
8.4.2.1.4 REG_WRITE_BIT_PAGE0_IMM Command  
Description: Write the specified data to the BIT_SEL location of the specified page 0 register address  
Assembly command: REG_WRITE_BIT_PAGE0_IMM [ADDR=]<Address> [BIT=]<Bit> [DATA=]<Data>  
Address, Bit, and Data can be in any literal integer format (decimal, hex, and so forth).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
'ADDR=', 'BIT=', and 'DATA=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_BIT_PAGE0_IMM 0x1D 7 0 Write '0' to bit 7 of the register at address 0x1D  
REG_WRITE_BIT_PAGE0_IMM ADDR=0x10 BIT=3 DATA=1 Write 0b1 to bit 3 of the register at address  
0x10  
8.4.2.1.5 REG_WRITE_WIN_PAGE0_IMM Command  
Description: Write the specified data to the SHIFT location of the specified page 0 register address  
Assembly command: REG_WRITE_WIN_PAGE0_IMM [ADDR=]<Address> [DATA=]<Data> [MASK=]<Mask>  
[SHIFT=]<Shift>  
Address, Data, Mask, and Shift can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=', 'DATA=', 'MASK=', and 'SHIFT=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_WIN_PAGE0_IMM ADDR=0x1D DATA=0x8 MASK=0x13 SHIFT=2 Write bits 5:4 to 0b10  
to the register at address 0x1D. Data and mask give 5-bit value 0bx10xx. These two bits are then left shifted  
2 bit-positions to give full byte value of 0bxx10xxxx, hence sets bits 5:4 to 0b10.  
8.4.2.1.6 REG_WRITE_VOUT_IMM Command  
Description: Write the target voltage of a specified regulator after a specified delay. This command is a spin-off of  
the REG_WRITE_IMM command with the intention to save instruction bits.  
Assembly  
command:  
REG_WRITE_VOUT_IMM  
[REGULATOR=]<Regulator  
ID>  
[SEL=]<VSEL>  
[VOUT=]<Vout> [DELAY=]<Delay>  
'REGULATOR=', ''SEL=', 'VOUT=', and 'DELAY=' are options. When included, the parameters can be in any  
order.  
Regulator ID = BUCK1, BUCK2, BUCK3, BUCK4.  
VSEL selects the BUCKn_VSET1 or BUCKn_VSET2 bits which the command writes to if Regulator ID is  
BUCK1-4. VSEL is defined as: '0': BUCKn_VSET1, '1': BUCKn_VSET2, '2': Currently Active BUCKn_VSET, '3':  
Currently Inactive BUCKn_VSET.  
VOUT = output voltage in mV or V. Unit must be listed.  
DELAY = delay time in ns, µs, ms, or s. If no unit is entered, this field must be an integer value between 0-63,  
which becomes the threshold count for the counter running a step size specified in the register  
PFSM_DELAY_STEP. The delay value is rounded to the nearest achievable delay time based on the current  
step size. Current step size is based on the default NVM setting or a SET_DELAY value from a previous  
command in the same sequence. Assembler reports an error if the step size is too large or too small to meet the  
delay.  
Examples:  
REG_WRITE_VOUT_IMM BUCK3 2 1.05 V 100 µs Sets BUCK3 to 1.05 V by updating the active  
BUCK3_VSET register after 100 µs  
8.4.2.1.7 REG_WRITE_VCTRL_IMM Command  
Description: Write the operation mode of a specified regulator after a specified delay. This command is a spin-off  
of the REG_WRITE_IMM command with the intention to save instruction bits.  
Assembly command: REG_WRITE_VCTRL_IMM [REGULATOR=]<Regulator ID> [VCTRL=]<VCTRL>  
[MASK=]<Mask> [DELAY=]<Delay> [DELAY_MODE=]<Delay Mode>  
'REGULATOR=', 'VCTRL=', 'MASK=', and 'DELAY=' are options. When included, the parameters can be in any  
order.  
Regulator ID = BUCK1, BUCK2, BUCK3, BUCK4.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
VCTRL = 0-15, in hex, decimal, or binary format. Data to write to the following regulator control fields:  
BUCKs: BUCKn_PLDN, BUCKn_VMON_EN, BUCKn_VSEL, BUCKn_FPWM_MP, BUCKn_FPWM, and  
BUCKn_EN  
DELAY = delay time in ns, µs, ms, or s. If no unit is entered, this field must be an integer value between 0-63,  
which becomes the threshold count for the counter running a step size specified in the register  
PFSM_DELAY_STEP. Delay value is be rounded to the nearest achievable delay time based on the current step  
size. Current step size is based on the default NVM setting or a SET_DELAY value from a previous command in  
the same sequence. Assembler reports an error if the step size is too large or too small to meet the delay.  
Delay Mode must be one of the below options: MATCH_EN = 0 (Delay if VCTRL enable bit mismatches)  
MATCH_ALL = 1 (Delay if any VCTRL bits mismatch) ALWAYS = 2 (Delay always)  
Examples:  
REG_WRITE_VCTRL_IMM BUCK3 0x00 0xE0 100 µs Sets BUCK3 to OFF (VCTRL bits = 0b00000)  
after 100 µs  
8.4.2.1.8 REG_WRITE_MASK_SREG Command  
Description: Write the data from a scratch register, except the masked bits, to the specified register address  
Assembly command: REG_WRITE_MASK_SREG [REG=]<Scratch Register> [ADDR=]<Address>  
[MASK=]<Mask>  
'REG=', 'ADDR=', and 'MASK=' are options. When included, the parameters can be in any order.  
Scratch Register can be R0, R1, R2, or R3.  
Address and Mask can be in any literal integer format (decimal, hex, and so forth).  
Examples:  
REG_WRITE_MASK_SREG R2 0x22 0x00 Write the content of scratch register 2 to address 0x22  
REG_WRITE_MASK_SREG REG=R0 ADDR=0x054 MASK=0xF0 Write the lower 4 bits of scratch  
register 0 to address 0x54  
8.4.2.1.9 SREG_READ_REG Command  
Description: Write scratch register (REG0-3) with data from a specified address  
Assembly command: SREG_READ_REG [REG=]<Scratch Register> [ADDR=]<Address>  
'REG=' and 'ADDR=' are options. When included, the parameters can be in any order.  
Scratch Register can be R0, R1, R2, or R3.  
Address can be in any literal integer format (decimal, hex, and so forth).  
Examples:  
SREG_READ_REG R2 0x15 Read the content of address 0x15 and write the data to scratch register 2  
SREG_READ_REG ADDR=0x077 REG=R3 Read the content of address 0x77 and write the data to  
scratch register 3  
8.4.2.1.10 SREG_WRITE_IMM Command  
Description: Write the specified data to the scratch register (REG0-3)  
Assembly command: SREG_WRITE_IMM [REG=]<Register> [DATA=]<Data>  
Data can be in any literal integer format (decimal, hex, and so forth).  
Register can be R0, R1, R2, or R3.  
'REG=' and 'DATA=' are options. When included, the parameters can be in any order.  
Examples:  
SREG_WRITE_IMM R2 0x15 Write 0x15 to scratch register 2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
SREG_WRITE_IMM ADDR=0x077 REG=R3 Read 0x77 to scratch register 3  
8.4.2.1.11 WAIT Command  
Description: Wait upon a condition of a given type. Execution is paused until the specified type of the condition is  
met or timed out  
Assembly  
command:  
WAIT  
[COND=]<Condition>  
[TYPE=]<Type>  
[TIMEOUT=]<Timeout>  
[DEST=]<Destination>  
Alternative assembly command: JUMP [DEST=]<Destination>  
'COND=', 'TYPE=', 'TIMEOUT=', and 'DEST=' are options. When included, the parameters can be in any order.  
Condition are listed in 8-3. Examples: GPIO1, BUCK1_PG, I2C_1  
Type = LOW, HIGH, RISE, or FALL  
Timeout = timeout value in ns, µs, ms, or s. If no unit is entered, this field must be an integer value between  
0-63. Timeout value is be rounded to the nearest achievable time based on the current step size. Current step  
size is based on the default NVM setting or a SET_DELAY value from a previous command in the same  
sequence. Assembler reports an error if the step size is too large or too small to meet the delay.  
Destination = Label to jump to if when timeout occurs. Destination must be after the WAIT statement in memory.  
Memory space can be either '0' or '1'. '0' indicates the destination address is in the PFSM memory space. '1'  
indicates the destination address is external and represents a FSM state ID.  
When using the jump command, the PFSM performs an unconditional jump. The command is be compiled as  
"WAIT COND=63 TYPE=LOW TIMEOUT=0 DEST=<Destination>". Condition 63 is a hardcoded 1, so the  
condition is never satisfied and hence always times out. Therefore this command always jumps to the  
destination.  
Examples:  
WAIT GPIO4 RISE 1 s <Destination> 0 Wait to execute the command at the specified SRAM address  
when a rise edge is detected at GPIO4, or after 1 second  
WAIT COND=BUCK1_PG TYPE=HIGH TIMEOUT=500 µs DEST=<mcu2act_seq> Wait to execute the  
commands at <mcu2act_seq> address as soon as BUCK1 output is within power-good range, or after 500 µs  
8-3. WAIT Command Conditions  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
0
1
GPIO1  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
N/A  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
I2C_0  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
LP_STANDBY_SEL  
GPIO2  
N/A  
I2C_1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
2
GPIO3  
N/A  
I2C_2  
3
GPIO4  
N/A  
I2C_3  
4
GPIO5  
PGOOD  
I2C_4  
5
GPIO6  
TWARN_EVENT  
I2C_5  
6
GPIO7  
INTERRUPT_PIN  
I2C_6  
7
GPIO8  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
I2C_7  
8
GPIO9  
SREG0_0  
SREG0_1  
SREG0_2  
SREG0_3  
SREG0_4  
SREG0_5  
SREG0_6  
SREG0_7  
9
GPIO10  
N/A  
10  
11  
12  
13  
14  
15  
BUCK1_PG  
BUCK2_PG  
BUCK3_PG  
BUCK4_PG  
N/A  
1
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.4.2.1.12 DELAY_IMM Command  
Description: Delay the execution by a specified time  
Assembly command: DELAY_IMM <Delay>  
Delay = delay time in ns, µs, ms, or s. If no unit is entered, this field must be an integer value between 0-63.  
Delay value is be rounded to the nearest achievable time based on the current step size. Current step size is  
based on the default NVM setting or a SET_DELAY value from a previous command in the same sequence.  
Assembler reports an error if the step size is too large or too small to meet the delay.  
Examples:  
DELAY_IMM 100 µs Delay execution by 100 µs  
DELAY_IMM 10 ms Delay execution by 10 ms  
DELAY_IMM 8 Delay execution by 8 ticks of the current PFSM time step  
8.4.2.1.13 DELAY_SREG Command  
Description: Delay the execution by a time value stored in the specified scratch register.  
Assembly command: DELAY_SREG <Register>  
Register can be R0, R1, R2, or R3.  
Examples:  
DELAY_SREG R0 Delay execution by the time value stored in scratch register0  
8.4.2.1.14 TRIG_SET Command  
Description: Set a trigger destination address for a given input signal or condition. These commands must be  
defined at the beginning of PFSM configuration memory.  
Assembly  
command:  
TRIG_SET  
[DEST=]<Destination>  
[ID=]<Trig_ID>  
[SEL=]<Trig_sel>  
[TYPE=]<Trig_type> [IMM=]<IMM> [EXT=]<Memory space>  
'DEST=', 'ID=', 'SEL='. 'TYPE=', 'IMM=', and 'EXT=' are options. When included, the parameters can be in any  
order.  
Destination is the label where this trigger starts executing.  
Trig_ID is the ID of the hardware trigger module to be configured (value range 0-27). They must be defined in  
numeric order based on the priority of the trigger.  
Trig_Sel is the 'Trigger Name' from the 8-5. This 'Trigger Name' is the trigger signal to be associated with the  
specified TRIG_ID.  
Trig_type = LOW, HIGH, RISE, or FALL.  
IMM can be either '0' or '1'. = '0' if the trigger is not activated until the END command of a given task; '1' if the  
trigger is activated immediately and can abort a sequence.  
REENTRANT can be either '0' or '1'. '1' permits a trigger to return to the current state, that allows a self-  
branching trigger to execute the current sequence again.  
Memory space can be either '0' or '1'. '0' indicates the destination address is in the PFSM memory space. '1'  
indicates the destination address is external and represents a FSM state ID.  
Examples:  
TRIG_SET seq1 20 GPIO_1 LOW 0 0 Set trigger 20 to be GPIO_1=Low, not immediate. When triggered,  
start executing at seq1label.  
TRIG_SET DEST=seq2 ID=15 SEL=WD_ERROR TYPE=RISE IMM=0 EXT=0 Set trigger 15 to be rising  
WD_ERROR trigger, not immediate. When triggered, start executing at seq2label.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.4.2.1.15 TRIG_MASK Command  
Description: Sets a trigger mask that determines which triggers are active. Setting a 0enables the trigger,  
setting a 1disables (masks) the trigger.  
Assembly command: TRIG_MASK <Mask value>  
Mask Value = 28-bit mask in any literal integer format (decimal, hex, and so forth).  
Examples:  
TRIG_MASK 0x5FF82F0 Set the trigger mask to 0x5FF82F0  
8.4.2.1.16 END Command  
8-4 shows the format of the END commands.  
8-4. END Command Format  
Bit[3:0]  
CMD  
4 bits  
Description: Marks the final instruction in a sequential task  
Fields:  
CMD: Command opcode (0xC)  
Assembly command: END  
8.4.2.2 Configuration Memory Organization and Sequence Execution  
The configuration memory is loaded from NVM into an SRAM. 8-5 shows an example configuration memory  
with only two configured sequences.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
pfsm_start:  
TRIG_SET DEST=sequence_name1 ID=0 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name2 ID=1 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name3 ID=2 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name4 ID=4 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name5 ID=4 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
……  
TRIG_MASK 0xFFFFFF0  
END  
sequence_name1  
These TRIG_SET instructions are used to  
define the trigger types which initiates each  
power state sequence. There are a total of  
28 TRIG_SET available for each PMIC. TYPE  
parameter defines the type of trigger as:  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
DELAY_IMM delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
TRIG_MASK 0xFC00EDF  
END  
……  
sequence_name4  
High: active high (level sensitive)  
Low: active low (level sensitive)  
Rise: active high (edge sensitive)  
Fall: active low (edge sensitive)  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
DELAY_IMM delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
DELAY_IMM delay_time  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
TRIG_MASK 0xFEF6EDC  
END  
8-5. Configuration Memory Script Example  
As soon as the PMIC state reaches the mission states, it starts reading from the configuration memory until it  
hits the first END command. Setting up the triggers (1-28) must be the first section of the configuration memory,  
as well as the first set of trigger configurations. The trigger configurations are read and mapped to an internal  
lookup table that contains the starting address associated with each trigger in the configuration memory. If the  
trigger destination is an FFSM state then the address contains the fixed state value. After the trigger  
configurations are read and mapped into the SRAM, these triggers control the execution flow of the state  
transitions. The signal source of each trigger is listed under 8-5.  
When a trigger or multiple triggers are activated, the PFSM execution engine looks up the starting address  
associated with the highest priority unmasked trigger, and starts executing commands until it hits an END  
command. The last commands before END statement is generally the TRIG_MASK command, which directs the  
PFSM to a new set of unmasked trigger configurations, and the trigger with the highest priority in the new set is  
serviced next. Trigger priority is determined by the Trigger ID associated with each trigger. The priority of the  
trigger decreases as the associated trigger ID increases. As a result, the critical error triggers are usually located  
at the lowest trigger IDs.  
The TRIG_SET commands specify if a trigger is immediate or non-immediate. Immediate triggers are serviced  
immediately, which involves branching from the current sequence of commands to reach a new target  
destination. The non-immediate triggers are accumulated and serviced in the order of priority through the  
execution of each given sequence until the END command in reached. Therefore, the trigger ID assignment for  
each trigger can be arranged to produce the desired PFSM behavior.  
The TRIG_MASK command determines which triggers are active at the end of each sequence, and is usually  
placed just before the END instruction. The TRIG_MASK takes a 28 bit input to allow any combination of triggers  
to be enabled with a single command. Through the definition of the active triggers after each sequence  
execution the TRIG_MASK command can be conceptualized as establishing a power state.  
The above sequence of waiting for triggers and executing the sequence associated with an activated trigger is  
the normal operating condition of the PFSM execution engine when the PMIC is in the MISSION state. The  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
FFSM state machine takes over control from the execution engine each time an event occurs that requires a  
transition from the MISSION state of the PMIC to a fixed device state.  
8-5. PFSM Trigger Selections  
Trigger Name  
Trigger Source  
An error event causes one of the triggers defined in the FSM_TRIG_SEL_1/2 register to activate, and  
the intended action for the activated trigger is to immediate shutdown the device  
IMMEDIATE_SHUTDOWN  
MCU_POWER_ERROR  
ORDERLY_SHUTDOWN  
Output failure detection from a regulator which is assigned to the MCU rail group (x_GRP_SEL = '01')  
An event which causes MODERATE_ERR_INT = '1'  
nPWRON long-press event when NPOWRON_SEL = '01', or ENABLE = '0' when NPOWERON_SEL =  
'00'  
FORCE_STANDBY  
SPMI_WD_BIST_DONE  
ESM_MCU_ERROR  
WD_ERROR  
Completion of SPMI WatchDog BIST  
An event that causes ESM_MCU_RST_INT  
An event that causes WD_RST_INT  
SOC_POWER_ERROR  
Output failure detection from a regulator which is assigned to the SOC rail group (x_GRP_SEL = '10')  
NSLEEP2 and NSLEEP1 = '11'. More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under 8.4.2.4.2.1  
A
WKUP1  
A rising or falling edge detection on a GPIO pin that is configured as WKUP1  
A valid On-Request detection when STARTUP_DEST = '11'  
SU_ACTIVE  
NSLEEP2 and NSLEEP1 = '10'. More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under 8.4.2.4.2.1  
B
WKUP2  
A rising or falling edge detection on a GPIO pin that is configured as WKUP2  
A valid On-Request detection when STARTUP_DEST = '10'  
SU_MCU_ONLY  
NSLEEP2 and NSLEEP1 = '01', More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under 8.4.2.4.2.1  
C
D
NSLEEP2 and NSLEEP1 = '00'. More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under 8.4.2.4.2.1  
SU_STANDBY  
SU_X  
A valid On-Request detection when STARTUP_DEST = '00'  
A valid On-Request detection when STARTUP_DEST = '01'  
PFSM WAIT command condition timed out. More information regarding the WAIT command can be  
found under 8.4.2.1.11  
WAIT_TIMEOUT  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
I2C_0  
Input detection at GPIO1 pin  
Input detection at GPIO2 pin  
Input detection at GPIO3 pin  
Input detection at GPIO4 pin  
Input detection at GPIO5 pin  
Input detection at GPIO6 pin  
Input detection at GPIO7 pin  
Input detection at GPIO8 pin  
Input detection at GPIO9 pin  
Input detection at GPIO10 pin  
Input detection of TRIGGER_I2C_0 bit  
Input detection of TRIGGER_I2C_1 bit  
Input detection of TRIGGER_I2C_2 bit  
Input detection of TRIGGER_I2C_3 bit  
Input detection of TRIGGER_I2C_4 bit  
Input detection of TRIGGER_I2C_5 bit  
Input detection of TRIGGER_I2C_6 bit  
Input detection of TRIGGER_I2C_7 bit  
Input detection of SCRATCH_PAD_REG_0 bit 0  
I2C_1  
I2C_2  
I2C_3  
I2C_4  
I2C_5  
I2C_6  
I2C_7  
SREG0_0  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-5. PFSM Trigger Selections (continued)  
Trigger Source  
Trigger Name  
SREG0_1  
SREG0_2  
SREG0_3  
SREG0_4  
SREG0_5  
SREG0_6  
SREG0_7  
0
Input detection of SCRATCH_PAD_REG_0 bit 1  
Input detection of SCRATCH_PAD_REG_0 bit 2  
Input detection of SCRATCH_PAD_REG_0 bit 3  
Input detection of SCRATCH_PAD_REG_0 bit 4  
Input detection of SCRATCH_PAD_REG_0 bit 5  
Input detection of SCRATCH_PAD_REG_0 bit 6  
Input detection of SCRATCH_PAD_REG_0 bit 7  
Always '0'  
1
Always '1'  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.4.2.3 Mission State Configuration  
The Mission States portion of the FSM engine manages the sequencing of power rails and external outputs in  
the user defined states. The rest of Device State Machine the 8-6 is used as an example state machine that is  
defined through the configuration memory using the configuration FSM instructions.  
To LP_STANDBY  
To Safe Recovery  
State  
State  
Severe or  
Moderate PFSM  
Errors  
From any  
Operation States  
LP_STAND  
=1  
BY_SEL  
Immediate or Orderly  
Shutdown Condition  
Detected  
Valid On Request and  
STANDBY  
STARTUP_DEST[1:0] = 0x00  
Valid On Request and  
OFF request  
STARTUP_DEST[1:0] = 0x03  
Warm Reset triggered by  
ESM or WDOG error  
Valid On Request and  
STARTUP_DEST[1:0] = 0x02  
OFF request  
ACTIVE  
OFF request  
WKUP1 0W1 or  
NSLEEP1  
NSLEEP2&NSLEEP1  
11W10  
0W1  
NSLEEP2  
1:0  
WKUP1 0W 1 or  
NSLEEP2&NSLEEP1  
00W11  
MCU ONLY  
WKUP2 0W 1 or  
NSLEEP2&NSLEEP1  
00W10  
NSLEEP2  
1:0  
Warm Reset triggered by  
ESM or WDOG error  
DEEP SLEEP  
/S2R  
8-6. Example of a Mission State-Machine  
Each power state (light blue bubbles in 8-6) defines the ON or OFF state and the sequencing timing of the  
external regulators and GPIO outputs. This example defines 4 power states: STANDBY, ACTIVE, MCU ONLY,  
and DEEP_SLEEP/S2R states. The priority order of these states is as follows:  
1. ACTIVE  
2. MCU ONLY  
3. DEEP SLEEP/S2R  
4. STANDBY  
The transitions between each power state is determined by the trigger signals source pre-selected from 8-5.  
These triggers are then placed in the order of priority through the trigger ID assignment of each trigger source.  
The critical error triggers are placed first, some specified as immediate triggers that can interrupt an on-going  
sequence. The non-error triggers, which are used to enable state transitions during normal device operation, are  
then placed according to the priority order of the state the device is transitioning to. 8-6 list the trigger signal  
sources, in the order of priority, used to define the power states and transitions of the example mission state  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
machine shown in 8-6. This table also helps to determine which triggers must be masked by the TRIG_MASK  
command upon arriving a pre-defined power state to produce the desired PFSM behavior.  
8-6. List of Trigger Used in Example Mission State Machine  
Trigger ID  
Trigger Masked In Each User Defined Power State  
Trigger Signal  
State Transitions  
DEEP  
SLEEP / S2R  
STANDBY  
ACTIVE  
MCU ONLY  
0
1
2
3
IMMEDIATE_SHUTDOWN (1)  
MCU_POWER_ERROR (1)  
ORDERLY_SHUTDOWN (1)  
TRIGGER_FORCE_STANDBY  
From any state to SAFE  
RECOVERY  
From any state to SAFE  
RECOVERY  
From any state to SAFE  
RECOVERY  
From any state to  
STANDBY or  
Masked  
Masked  
Masked  
Masked  
Masked  
LP_STANDBY  
4
5
7
8
WD_ERROR  
Perform warm reset of all  
power rails and return to  
ACTIVE  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
ESM_MCU_ERROR  
WD_ERROR  
Perform warm reset of all  
power rails and return to  
ACTIVE  
Perform warm reset of all  
power rails and return to  
MCU ONLY  
Masked  
Masked  
ESM_MCU_ERROR  
Perform warm reset of all  
power rails and return to  
MCU ONLY  
9
SOC_POWER_ERROR  
ACTIVE to MCU ONLY  
Start RUNTIME_BIST  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
10  
11  
TRIGGER _I2C_1 (self-cleared)  
TRIGGER_I2C_2 (self-cleared)  
Enable I2C CRC  
Function  
Masked  
Masked  
Masked  
12  
13  
14  
TRIGGER_SU_ACTIVE  
TRIGGER_WKUP1  
STANDBY to ACTIVE  
Any State to ACTIVE  
TRIGGER_A (NSLEEP2&NSLEEP1 MCU ONLY or DEEP  
= '11')  
Masked  
SLEEP/S2R to ACTIVE  
15  
16  
TRIGGER_SU_MCU_ONLY  
TRIGGER_WKUP2  
STANDBY to MCU ONLY  
Masked  
Masked  
Masked  
STANDBY or DEEP  
SLEEP/S2R to MCU  
ONLY  
17  
18  
TRIGGER_B (NSLEEP2&NSLEEP1 ACTIVE or DEEP  
= '10')  
SLEEP/S2R to MCU  
ONLY  
Masked  
TRIGGER_D or TRIGGER_C  
(NSLEEP2 = '0' )  
ACTIVE or MCU ONLY  
to DEEP SLEEP/S2R  
Masked  
Masked  
Mask  
Masked  
Masked  
Masked  
19  
20  
TRIGGER_I2C_0 (self-cleared)  
Always '1' (2)  
Any state to STANDBY  
STANDBY to SAFE  
RECOVERY  
Masked  
Masked  
21  
22  
23  
24  
25  
26  
27  
Not Used  
Mask  
Mask  
Mask  
Mask  
Mask  
Mask  
Mask  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-6. List of Trigger Used in Example Mission State Machine (continued)  
Trigger ID  
Trigger Masked In Each User Defined Power State  
Trigger Signal  
State Transitions  
DEEP  
SLEEP / S2R  
STANDBY  
ACTIVE  
MCU ONLY  
28-bit TRIG_MASK Value in Hex format: 0xFFE4FF8 0xFF181C0  
0xFF01270  
0xFFC9FF0  
(1) This is an immediate trigger.  
(2) When an error occurs, which requires the device to enter directly to the SAFE RECOVERY state, the mask for this trigger must be  
removed while all other non-immediate triggers are masked. The device exits the mission states and the FFSM state machine takes  
over control of the device power states once this trigger is executed.  
8.4.2.4 Pre-Configured Hardware Transitions  
There are some pre-defined trigger sources, such as on-requests and off-requests, that are constructed with the  
combination of hardware input signals and register bits settings. This section provides more detail to these pre-  
defined trigger sources and shows how they can be utilized in the PFSM configuration to initiate state to state  
transitions.  
8.4.2.4.1 ON Requests  
ON requests are used to switch on the device, which then transitions the device from the STANDBY or the  
LP_STANDBY to the state specified by STARTUP_DEST[1:0].  
After the device arrives at the corresponding STARTUP_DEST[1:0] operation state, the MCU must setup the  
NSLEEP1 and NSLEEP2 signals accordingly before clearing the STARTUP_INT interrupt. Once the interrupt is  
cleared, the device stays or moves to the next state corresponding to the NSLEEP signals state assignment as  
specified in 8-10.  
8-7 lists the available ON requests.  
8-7. ON Requests  
EVENT  
MASKABLE  
COMMENT  
DEBOUNCE  
ENABLE (pin)  
Yes  
Level sensitive  
8 µs  
VCCA > VCCA_UV and FSD  
unmasked  
First Supply Detection (FSD)  
WKUP1 or WKUP2 Detection  
Yes  
Yes  
N/A  
Edge sensitive  
8 µs  
Recover from system errors  
which caused immediate or  
orderly shutdown of the  
device  
Recovery from Immediate and  
Orderly Shutdown  
No  
N/A  
If one of the events listed in 8-7 occurs, then the event powers on the device unless one of the gating  
conditions listed in 8-8 is present.  
8-8. ON Requests Gating Conditions  
EVENT  
MASKABLE  
COMMENT  
VCCA VCCA_OVPDevice stays in SAFE RECOVERY until VCCA  
VCCA_OVP (event)  
No  
< VCCA_OVP  
VCCA_UVLO (event)  
VINT_OVP (event)  
VINT_UVLO (event)  
No  
No  
No  
VCCA < VCCA_UVLO  
LDOVINT > 1.98 V  
LDOVINT < 1.62 V  
Device stays in SAFE RECOVERY until temperature decreases  
below TWARN level  
TSD (event)  
No  
8.4.2.4.2 OFF Requests  
An OFF request is used to orderly switch off the device. OFF requests initiate transition from any other mission  
state to the STANDBY state or the LP_STANDBY state depending on the setting of the LP_STANDBY_SEL bit.  
8-9 lists the conditions to generate the OFF requests and the corresponding destination state.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-9. OFF Requests  
LP_STANDBY_SEL BIT  
EVENT  
DEBOUNCE  
DESTINATION STATE  
SETTING  
LP_STANDBY_SEL = 0  
LP_STANDBY_SEL = 1  
LP_STANDBY_SEL = 0  
LP_STANDBY_SEL = 1  
STANDBY  
LP_STANDBY  
STANDBY  
ENABLE (pin)  
8 µs  
I2C_TRIGGER_0  
NA  
LP_STANDBY  
Using the I2C_TRIGGER_0 bit as the OFF request enables the device to wake up from the STANDBY or the  
LP_STANDBY states through the detection of WKUPn pins. To enable this feature the device must set the  
I2C_TRIGGER_0 bit to '1' while the NSLEEPn signals are masked, and the ON request initialized by the  
ENABLE pin remains active (if the ENABLE pin is used). Also the interrupt bits ENABLE_INT, FSD_INT and the  
GPIOx_INT bits (for the GPIOx pins assigned as WKUP1 or WKUP2) must be cleared before setting the  
I2C_TRIGGER_0 bit to '1'.  
8.4.2.4.2.1 NSLEEP1 and NSLEEP2 Functions  
The SLEEP requests are activated through the assertion of nSLEEP1 or nSLEEP2 pins that are the secondary  
functions of the 10 GPIO pins. These pins can be selected through GPIO configuration using the GPIOx_SEL  
register bits. If the nSLEEP1 or nSLEEP2 pins are not available, the NSLEEP1B and NSLEEP2B register bits  
can be configured in place for their functions. The input of nSLEEP1 pin and the state of the NSLEEP1B register  
bit are combined to create the NSLEEP1 signal through an OR function. Similarly for the input of the nSLEEP2  
pin and the NSLEEP2B register bit as they are combined to create the NSLEEP2 signal.  
A 1 0 logic level transition of the NSLEEP signal generates a sleep request, while a 0 1 logic level  
transition reverses the sleep request in the example PFSM from 8-6. When a NSLEEPn signal transitions  
from 1 0, it generates a sleep request to go from a higher power state to a lower power state. When the signal  
transitions from 0 1, it reverses the sleep request and returns the device to the higher power state.  
The NSLEEP1 signal is designed to control the SoC supply rails. The NSLEEP2 signal is designed to control the  
MCU supply rails. When NSLEEP1 signal changes from 1 0, depending on the state of NSLEEP2, the  
LP8764-Q1 device exits ACTIVE state and enters either the MCU ONLY or the S2R states. When NSLEEP2  
signal changes from 1 0, the device enters the S2R state regardless the state of NSLEEP1.  
When the NSLEEP2 input signal changes from 0 1, the MCU supply rails are enabled and the device exits  
S2R state. Depending on the state of NSLEEP1 signal, the device enters either the MCU ONLY or the ACTIVE  
state. In order for the system to function correctly, the MCU rails must be enabled when the NSLEEP1 input  
signal changes from 0 1, which enables the SOC supply rails. NSLEEP1 0 1 transition is ignored if  
NSLEEP2 is 0.  
The NSLEEPn_MASK bit can be used to mask the sleep request associated with the corresponding NSLEEPn  
signal. When the NSLEEPn_MASK = 1, the corresponding NSLEEPn signal is ignored. 8-10 shows how the  
combination of the NSLEEPn signals and NSLEEPn_MASK bits creates triggers A/B/C/D to the FSM to control  
the power state of the device.  
The states of the resources during ACTIVE, SLEEP, and DEEP SLEEP/S2R states are defined in the  
BUCKn_CTRL registers. For each resource, a transition to the MCU ONLY or the DEEP SLEEP/S2R states is  
controlled by the FSM when the resource is associated to the SLEEP or DEEP SLEEP/S2R states.  
8-10 shows the corresponding state assignment based on the state of the NSLEEPn and their corresponding  
mask signals using the example PFSM from 8-6.  
8-10. NSLEEPn Transitions and Mission State Assignments  
Current State  
NSLEEP1  
NSLEEP2  
NSLEEP1 MASK NSLEEP2 MASK  
Trigger to FSM  
TRIGGER B  
TRIGGER A  
TRIGGER A  
Next State  
MCU ONLY  
ACTIVE  
DEEP SLEEP/S2R  
DEEP SLEEP/S2R  
DEEP SLEEP/S2R  
0
0
0
1
0
0
0
0 1  
0 1  
0 1  
Don't care  
ACTIVE  
0 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-10. NSLEEPn Transitions and Mission State Assignments (continued)  
Current State  
NSLEEP1  
NSLEEP2  
NSLEEP1 MASK NSLEEP2 MASK  
Trigger to FSM  
TRIGGER A  
TRIGGER A  
TRIGGER D  
Next State  
ACTIVE  
DEEP SLEEP/S2R  
or MCU ONLY  
Don't care  
0
1
0 1  
MCU ONLY  
MCU ONLY  
1
0
0
0
0
ACTIVE  
0 1  
0
DEEP SLEEP  
or S2R  
1 0  
MCU ONLY  
Don't care  
1
0
DEEP SLEEP  
or S2R  
1 0  
TRIGGER D  
TRIGGER B  
TRIGGER D  
ACTIVE  
ACTIVE  
1
0
0
0
0
MCU ONLY  
1 0  
1 0  
DEEP SLEEP  
or S2R  
1 0  
ACTIVE  
ACTIVE  
Don't care  
1
0
0
1
DEEP SLEEP  
or S2R  
1 0  
TRIGGER D  
TRIGGER B  
Don't care  
MCU ONLY  
1 0  
8.4.2.4.2.2 WKUP1 and WKUP2 Functions  
The WKUP1 and WKUP2 functions are activated through the edge detection on all GPIO pins. Any one of these  
GPIO pins when configured as an input pin can be configured to wake up the device by setting GPIOn_SEL bit  
to select the WKUP1 or WKUP2 functions. In the example PFSM depicted in 8-6, when a GPIO pin is  
configured as a WKUP1 pin, a rising or falling edge detected at the input of this pin (configurable by the  
GPIOn_FALL_MASK and the GPIOn_RISE_MASK bits) wakes up the device to the ACTIVE state. Likewise if a  
GPIO pin is configured as a WKUP2 pin, a detected edge wakes up the device to the MCU ONLY state. If  
multiple edge detections of WKUP signals occur simultaneous, the device goes to the state in the following  
priority order:  
1. ACTIVE  
2. MCU ONLY  
When a valid edge is detected at a WKUP pin, the nINT pin generates an interrupt to signal the MCU of the  
wake-up event, and the GPIOx_INT interrupt bit is set. The wake request remains active until the GPIOx_INT bit  
is cleared by the MCU. While the wake request is executing, the device does not react to sleep requests to enter  
a lower power state until the corresponding GPIOx_INT interrupt bit is cleared to cancel the wake request. After  
the wake request is canceled, the device returns to the state indicated by the NSLEEP1 and NSLEEP2 signals  
as shown in 8-10.  
The WKUP1 and WKUP2 functions can be used in all Mission States and also in LP_STANDBY state.  
8.4.3 Error Handling Operations  
The FSM engine of the LP8764-Q1 device is designed to handle the following types of errors throughout the  
operation:  
Power Rail Output Error  
Boot BIST Error  
Runtime BIST Error  
Catastrophic Error  
Watchdog Error  
Error Signal Monitor (ESM) Error  
Warnings  
8.4.3.1 Power Rail Output Error  
A power rail output error occurs when an error condition is detected from the output rails of the device that are  
used to power the attached MCU or SoC. These errors include the following:  
Rails not reaching or maintaining within the power good voltage level threshold.  
A short condition that is detected at a regulator output.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
The load current that exceeds the forward current limit.  
The BUCKn_GRP_SEL, VMONn_GRP_SEL and VCCA_GRP_SEL registers are used to configure the rail group  
for all of the Bucks and the voltage monitors that are available for external rails. The selectable rail groups are  
MCU rail group, SoC rail group, or other rail group. The LP8764-Q1 device is designed to react differently when  
an error is detected from a power resource assigned to the different rail groups.  
8-4 shows how the SOC_RAIL_TRIG[1:0], MCU_RAIL_TRIG[1:0], and OTHER_RAIL_TRIG[1:0] registers are  
used as the Immediate Shutdown Trigger Mask, Orderly Shutdown Trigger Mask, MCU Power Error Trigger  
Mask, or the SoC Power Error Trigger Mask. The settings of these register bits determine the error handling  
sequence that the assigned groups of rails perform in case of an output error. The PFSM engine can be  
configured to execute the appropriate error handling sequence for the following error handling sequence options:  
immediate shutdown, orderly shutdown, MCU power error, or SOC power error. For example, if an immediate  
shutdown sequence is assigned to the MCU rail group through the MCU_RAIL_TRIG[1:0], any failure detected in  
this group of rails causes the IMMEDIATE_SHUTDOWN trigger to be executed. This trigger is expected to start  
the immediate shutdown sequence and cause the device to enter the SAFE RECOVERY state. The device  
immediately resets the attached MCU and SoC by driving the nRSTOUT and nRSTOUT_SoC pins low. All of the  
power resources assigned to the MCU and SOC shut down immediately without a sequencing order. The nINT  
pin signals that an MCU_PWR_ERR_INT interrupt event has occurred and the EN_DRV pin is forced low. If the  
error is recoverable within the recovery time interval, the device increments the recovery count, returns to INIT  
state, and reattempts the power up sequence (if the recovery count has not exceeded the counter threshold). If  
the recovery count has already exceeded the threshold, the device stays in the SAFE RECOVERY state until  
VCCA voltage is below the VCCA_UVLO threshold and the device is power cycled.  
The power resources assigned to the SoC rail group are typically assigned to the SOC power error handling  
sequence. In this PFSM example depicted in 8-6, when a power resource in this group is detected, the PFSM  
typically causes the device to execute the shutdown of all the resources assigned to the SoC rail group, and the  
device enters the MCU ONLY state. The device immediately resets the attached SoC by toggling the  
nRSTOUT_SoC pin. The reset output to the MCU and the resources assigned to the MCU rail group remain  
unchanged. The EN_DRV pin also remains unchanged, and the nINT pin signals that an SOC_PWR_ERR_INT  
interrupt event has occurred. To recover from the MCU_ONLY state after a SOC power error, the MCU software  
must set NSLEEP1 signal to '0' while NSLEEP2 signal remains '1'. This action signals LP8764-Q1 that MCU has  
acknowledged the SOC power error, and is ready to return to normal operation. MCU can then set the NSLEEP1  
signal back to '1' for the device to return to ACTIVE state and reattempt the SoC power up. Refer to 节  
8.4.2.4.2.1 for information regarding the setting of the NSLEEP1 and NSLEEP2 signals.  
8.4.3.2 Boot BIST Error  
Boot BIST error occurs when the device is not able to pass the BOOT BIST during device power up. Every  
failure of the BOOT BIST attempt causes the recovery count to increment as the device enters the SAFE  
RECOVERY state. If the count value is smaller than the counter threshold, the device attempts to enter the INIT  
state again and reattempts the BOOT BIST until the recovery count reaches the maximum threshold. When this  
occurs, the device stays in the SAFE RECOVERY state until VCCA voltage is below the VCCA_UVLO threshold  
and the device is power cycled.  
8.4.3.3 Runtime BIST Error  
Runtime BIST error occurs when the device is not able to pass the Runtime BIST while the device is in an  
operation state. This error creates an immediate shutdown condition, that causes the device to execute the  
immediate shutdown sequence and enter the SAFE RECOVERY state. The device immediately resets the  
attached MCU and SoC by driving the nRSTOUT and nRSTOUT_SoC pins low. All of the power resources  
assigned to the MCU and SOC are immediately shut down. The EN_DRV pin is forced low, and the nINT pin is  
driven low to signal an interrupt event has occurred.  
8.4.3.4 Catastrophic Error  
Catastrophic errors are errors that affect multiple power resources such as errors detected in supply voltage,  
LDOVINT supply for control logic, errors on internal clock signals, and device temperature passing the thermal  
shutdown threshold, error detected on the SPMI bus, or an error detected in the PFSM sequence.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Following errors are grouped as severe errors:  
VCCA OVP threshold  
Junction temperature immediate shutdown level  
Error in PFSM Sequence  
For these above listed errors, depending on the setting of bits SEVERE_ERR_TRIG[1:0], an immediate or  
orderly shutdown condition is created. The PFSM executes the corresponding sequence for the  
IMMEDIATE_SHUTDOWN trigger or the ORDERLY_SHUTDOWN trigger and enters the SAFE RECOVERY  
state.  
Following errors are grouped as moderate errors:  
Junction temperature orderly shutdown level  
BIST failure  
CRC error in register map  
Recovery counter exceeding the threshold value  
Error on SPMI bus  
Readback error on nRSTOUT pin or nINT pin  
For these above listed errors, depending on the setting of bits MODERATE_ERR_TRIG[1:0], an immediate or  
orderly shutdown condition is created. The PFSM executes the corresponding sequence for the  
IMMEDIATE_SHUTDOWN trigger or the ORDERLY_SHUTDOWN trigger and enters the SAFE RECOVERY  
state.  
For following errors, the device performs an immediate shutdown and resets all internal logic circuits:  
VCCA < UVLO threshold  
Error on LDOVINT supply  
Errors on internal clock signals  
Unrecoverable CRC error in the SRAM memory of the PFSM  
For all of the above listed errors, the device resets the attached MCU and SoC by driving the GPIO pins used as  
nRSTOUT and nRSTOUT_SoC pins low. All of the power resources assigned to the MCU and SOC are shut  
down. The nINT pin is driven low to signal an interrupt event has occurred, and the GPIO pins used as EN_DRV  
pin is forced low.  
8.4.3.5 Watchdog (WDOG) Error  
Watchdog (WD) describes details about the Watchdog (WDOG) errors detection mechanisms.  
8.4.3.6 Error Signal Monitor (ESM) Error  
There is one Error Signal Monitor (ESM) available for the LP8764-Q1 device, designed to detect and handle the  
error signal received from the attached MCU. The error detection mechanisms for the monitor is described in  
detail under 8.15.  
8.4.3.7 Warnings  
Warning are non-catastrophic errors. When such an error occurs while the device is in the operating states, the  
device detects the error and handles the error through the interrupt handler. These are errors such as thermal  
warnings, I2C, or SPI communication errors, or power resource current limit detection while the output voltage  
still maintains within the power good threshold. When these errors occur, the nINT pin is driven low to signal an  
interrupt event has occurred. The device remains in the operation state and the state of the EN_DRV pin, the  
power resources, and the reset outputs remain unchanged.  
The power resource current limit detection can, by setting bit EN_ILIM_FSM_CTRL=1, be configured such that it  
is handled as a Power Rail Output Error as described in 8.4.3.1.  
8.4.4 Device Start-up Timing  
8-7 shows the timing diagram of the LP8764-Q1 after the first supply detection.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-7. Device Start-up Timing Diagram  
tINIT_REF_CLK_LDO is the start-up time for the reference block, LDOVINT and internal oscillator. tINIT_NVM_ANALOG is  
the time for the device to load the default values of the NVM configurable registers from the NVM memory, and  
the start-up time for the analog circuits in the device. Both tINIT_REF_CLK_LDO and tINIT_NVM_ANALOG are defined in  
the electrical characterization table.  
tBOOT_BIST is the sum of tABISTrun and tLBISTrun, which are defined in the electrical characterization tables.  
The Power Sequence time is the total time for the device to complete the power up sequence. Please refer to 节  
8.4.5 for more details.  
The reset delay time is a configurable wait time for the nRSTOUT and the nRSTOUT_SoC release after the  
power up sequence is completed.  
8.4.5 Power Sequences  
A power sequence is an automatic preconfigured sequence the LP8764-Q1 device applies to its resources,  
which include the states of the BUCKs and the GPIO output signals. For a detailed description of the GPIOs  
signals, please refer to General-Purpose I/Os (GPIO Pins).  
8-8 shows an example of a power up transition followed by a power down transition. The power up sequence  
is triggered through a valid on request, and the power down sequence is trigger by a valid off request. The  
resources controlled (for this example) are: BUCK3, BUCK2, REGEN1, SYNCCLKOUT, and nRSTOUT. The  
time between each resource enable and disable (TinstX) is also part of the preconfigured sequence definition.  
When a resource is not assigned to any power sequence, it remains in off mode. The MCU can enable and  
configure this resource independently when the power sequence completes.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Power Up Sequence  
Power Down Sequence  
Valid On  
X
Request  
X
Valid Off  
Request  
X
X
BUCK3  
BUCK2  
t(inst10)  
t(inst1)  
t(inst9)  
t(inst2)  
REGEN1  
t(inst8)  
t(inst3)  
BUCK1  
t(inst4)  
t(inst5)  
t(inst7)  
t(inst6)  
SYNCCLKOUT  
nRSTOUT  
8-8. Power Sequence Example  
As the power sequences of the LP8764-Q1 device are defined according to the processor requirements, the  
total time for the completion of the power sequence varies across various system definitions.  
8.4.6 First Supply Detection  
The LP8764-Q1 device can be configured to automatically start up from a first supply-detection (FSD) event  
detection. This feature is enabled by setting the FSD_MASK register bit to '0', and driving ENABLE pin active if  
ENABLE pin function is selected for GPIO. When the device is powered up from the NO SUPPLY state, the FSD  
detection is validated after the NVM default for this feature is loaded into the device memory.  
When the FSD feature is enabled, the PMIC immediately powers up from the NO SUPPLY state to an operation  
state, configured by the STARTUP_DEST[1:0] bits when VCCA > VCCA_UV, while VCCA_UV gating is  
performed, and only when VCCA voltage monitoring is enabled (VCCA_VMON_EN = 1). After the device arrives  
the corresponding STARTUP_DEST[1:0] operation state, the MCU must setup the NSLEEP1 and NSLEEP2  
signals accordingly before clearing the FSD_INT interrupt. Once the interrupt is cleared, the device either stays  
in the current state or moves to the destination state according to the state of the NSLEEP1/2 signals as  
specified in 8-10.  
8.5 Power Resources  
The power resources provided by the LP8764-Q1 device include 4 inductor-based buck regulators. These  
supply resources provide the required power to the external processor cores, external components, and to  
modules embedded in the LP8764-Q1 device. The supply of the bucks, the PVIN_Bx pins, must connect to the  
VCCA pin externally.  
8.5.1 Buck Regulators  
8.5.1.1 BUCK Regulator Overview  
The LP8764-Q1 includes four synchronous buck converters, that can be combined in a multi-phase  
configuration. All of the buck converters support the following features:  
Automatic mode control based on the loading (PFM or PWM mode) or Forced-PWM mode operation  
External clock synchronization option to minimize crosstalk  
Optional spread spectrum technique to reduce EMI  
Soft start  
AVS support with configurable slew-rate  
Windowed undervoltage and overvoltage monitors with configurable threshold  
Windowed voltage monitor for external supply when the buck converter is disabled  
Output Current Limit  
Short-to-Ground Detection on SW_Bx pins at start-up of the buck regulator  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
When the outputs of these buck converters are combined in multi-phase configuration, it also supports the  
following features:  
Current balancing between the phases of the converter  
Differential voltage sensing from point of the load  
Phase shifted outputs for EMI reduction  
Optional dynamic phase shedding or adding  
There are two modes of operation for the buck converter, depending on the required output current: pulse-width  
modulation (PWM) and pulse-frequency modulation (PFM). The converter operates in PWM mode at high load  
currents of approximately 600 mA or higher. Lighter output current loads cause the converter to automatically  
switch into PFM mode for reduced current consumption. The device avoids pulse skipping and allows easy  
filtering of the switch noise by external filter components when forced-PWM mode is selected (BUCKn_FPWM =  
1). The forced-PWM mode is the recommended mode of operation for the buck converter to achieve better ripple  
and transient performance. The drawback of this forced-PWM mode is the higher quiescent current at low output  
current levels.  
When operating in PWM mode the phases of a multi-phase regulator are automatically added or shed based on  
the load current level. The forced multi-phase mode can be enabled for lower ripple at the output.  
A multi-phase synchronous BUCK converter offers several advantages over a single power stage converter.  
Lower ripple on the input and output currents and faster transient response to load steps are the most significant  
advantages for application processor power delivery. The heat generated is greatly reduced for each channel  
due to the fact that power loss is proportional to the square of current with the even distribution of the load  
current in a multi-phase output configuration. The physical size of the output inductor shrinks significantly due to  
this heat reduction.  
8-9 shows a block diagram of a single core.  
8-10 shows the interleaving switching action of the multi-phase converters.  
PVIN  
High-Side  
Current Limit  
Loop  
Comparator  
FBP  
Feedback Network  
FBN  
PDN  
Gate  
Driver  
PWM  
Generator  
œ
Low-Side  
Current Limit  
DAC  
+
Error  
Amplifier  
CLK  
8-9. BUCK Core Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
IL_TOT_4PH  
IL1  
IL2  
IL4  
IL3  
0
90  
180  
270  
360  
450  
540  
630  
720  
PWM1  
PWM2  
PWM4  
PWM3  
Switching Cycle 360º  
0
90  
180  
270  
360  
450  
540  
630  
720  
Phase (Degrees)  
8-10. Example of PWM Timings, Inductor Current Waveforms, and Total Output Current in 4-Phase  
Configuration. 1  
8.5.1.2 Multi-Phase Operation and Phase-Adding or Shedding  
The 4-phase converters (BUCK1, BUCK2, BUCK3, and BUCK4) switches each channel 90° apart under heavy  
load conditions. As a result, the 4-phase converter has an effective ripple frequency four times greater than the  
switching frequency of any one phase. In the same way, 3-phase converter has an effective ripple frequency  
three times greater and 2-phase converter has an effective ripple frequency two times greater than the switching  
frequency of any one phase; the parallel operation, however, decreases the efficiency at light load conditions.  
The LP8764-Q1 can change the number of active phases to optimize efficiency for the variations of the load in  
order to overcome this operational inefficiency. The process in which the multi-phase buck regulator in case of  
increasing load current automatically increases the number of active phases is called phase adding. The process  
in which the multi-phase buck regulator in case of decreasing load current automatically decreases the number  
of active phases is called phase shedding. The concept is shown in 8-11.  
The converter can be forced to multi-phase operation by the BUCKn_FPWM_MP bit in BUCKn_CTRL1 register.  
If the regulator operates in forced multi-phase mode , each phase automatically operates in the forced-PWM  
mode. If the multi-phase operation is not forced, the number of phases are added and shed automatically to  
follow the required output current.  
1
Graph is not in scale and is for illustrative purposes only.  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Best efficiency obtained with  
N=1  
N=2  
N=3  
N=4  
Load Current  
8-11. Multiphase BUCK Converter Efficiency vs Number of Phases (Converters in PWM Mode) 2  
8.5.1.3 Transition Between PWM and PFM Modes  
The forced-PWM mode operation with phase-adding or shedding optimizes efficiency at mid-to-full load.  
TheLP8764-Q1 converter operates in PWM mode at load current of about 600 mA or higher. The device  
automatically switches into PFM mode for reduced current consumption when forced-PWM mode is disabled  
(BUCKn_FPWM = 0) at lighter load-current levels. A high efficiency is achieved over a wide output-load-current  
range by combining the PFM and the PWM modes.  
8.5.1.4 Spread-Spectrum Mode  
The LP8764-Q1 device supports spread-spectrum modulation of the switching clock signal used by the BUCK  
regulators. Three factory-selectable modulation modes are available: the first mode is modulation from external  
input clock at the SYNCCLKIN pin; the second mode is modulating the input clock at the SYNCCLKIN pin using  
the DPLL; the third mode is modulating the internal 20-MHz RC-Oscillator clock using the DPLL.  
The spread-spectrum modulation mode is pre-configured in NVM. Changing this modulation mode during  
operation is not supported.  
The modulation frequency range is limited by the DPLL bandwidth. The max frequency spread for the input clock  
to the DPLL is ±18% to secure parametric compliance of the BUCK output performance.  
The internal modulation is disabled by default and can be enabled and configured after power up. Internal  
modulation is activated by setting the SS_EN control bit. The internal modulation must be disabled (SS_EN = 0)  
when changing the following parameter:  
SS_DEPTH[1:0] Spread Spectrum modulation depth  
When internal modulation is enabled and configured, it can be disabled by the system MCU during operation.  
The device transition to different mission states does not impact internal modulation when it is enabled and  
configured.  
2
Graph is not in scale and is for illustrative purposes only.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.5.1.5 Adaptive Voltage Scaling (AVS) and Dynamic Voltage Scaling (DVS) Support  
An AVS or a DVS voltage value can be configured by the attached MCU after the BUCK regulator is powered up  
to the default output voltage selected in register BUCKn_VSET1, that loads its default value from NVM. The  
purpose of the AVS/DVS voltage is to set the BUCK output voltage to enable optimal efficiency and performance  
of the attached SoC.  
All of BUCK regulators in the LP8764-Q1 device support AVS and DVS voltage scaling changes. Once the  
AVS/DVS voltage value is written into the BUCKn_VSET1 or BUCKn_VSET2 register, and the MCU sets the  
BUCKn_VSEL register to select the AVS/DVS voltage, the output of the BUCK regulator remains at the  
AVS/DVS voltage level instead of the default voltage from NVM until one of the following events occur:  
Error that causes the device to re-initialize itself through a power cycle after reaching the SAFE RECOVERY  
state  
Error that causes the device to execute warm reset  
MCU configures the device to enter the LP STANDBY state if SKIP_LP_STANDBY_EE_READ = 0  
8-12 shows the arbitration scheme for loading the output level of the BUCK regulator from the AVS register  
using the BUCKn_VSET control registers.  
I2C/SPI  
BUCK ENABLE *)  
I2C/SPI  
BUCK VOLTAGE SELECT *)  
BUCKn_EN  
BUCKn_VSEL  
I2C/SPI  
I2C/SPI  
BUCKn_VSET1  
BUCKn_VSET2  
DCDC  
Regulator  
MUX  
*) BUCK ENABLE and BUCK VOLTAGE SELECT bits  
are located in BUCKx_CTRL register  
8-12. AVS/DVS Configuration Register Arbitration Diagram  
The digital control block automatically updates the OV and UV threshold of the BUCK output voltage monitor  
during the AVS or DVS voltage change. When the output voltage is increased, the OV threshold is updated at  
the same time the BUCKn_VSETx is updated to the AVS voltage level, while the UV threshold is updated after a  
delay calculated by 方程1.  
When the output voltage is decreased, the UV threshold is updated at the same time the BUCKn_VSETx is  
updated to the AVS voltage level, while the OV threshold is updated after a delay calculated by 方程1.  
tPG_OV_UV_DELAY = (dV / BUCKn_SLEW_RATE) + tsettle_Bx  
(1)  
In order to prevent erroneous voltage monitoring, the digital block also temporarily masks the results of the OV  
and UV monitor from the regulator output when the BUCK regulator is enabled and the voltage is rising to the  
BUCKn_VSETx level. The duration of the mask starts from the time the BUCK regulator is enabled. The BUCK  
OV monitor output is masked for a fixed delay time of tPG_OV_GATE, that is approximately 115 µs 128 µs. The  
UV monitor output is masked for the time duration calculated by 方程式 2. The 370-µs additional delay time in  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
the formula includes the start-up delay of the BUCK regulator, the fixed delay after the ramp, and the time for the  
BIST operation of the OV and UV monitors.  
tPG_UV_GATE = (BUCKn_VSET / BUCKn_SLEW_RATE) + 370 µs  
(2)  
备注  
Because output capacitance, forward and negative current limits and load current of the BUCK  
regulator may affect the slew rate of the BUCK regulator output voltage, the delay time of tPG_UV_GATE  
may not be sufficient long for the slower slew rate setting when the target BUCK regulator output  
voltage is higher. Please refer to the PMIC User's Guide for detail information about the supported  
voltage level and slew rate setting combinations of a particular orderable part number.  
8-13 and 8-14 are timing diagrams illustrating the voltage change for AVS and DVS enabled BUCK  
regulators and the corresponding OV and UV monitor threshold changes.  
Ini al voltage  
AVS_VNOM  
OV limit  
OV limit  
UV limit  
ABIST  
UV limit  
ABIST  
Default from NVM  
BUCKn VOUT  
I2C/SPI write  
State control (or I2C/SPI write)  
State control (or I2C/SPI write)  
State control (or I2C/SPI write)  
0x00  
0x00  
0
0x5F  
0x5F  
0x5A  
BUCKn_VSET1  
BUCKn_VSET2  
BUCKn_EN  
Automa c control  
by digital  
1
0
1
0 us  
BUCKn_OV_SET  
(internal register, not  
Register bits  
0x00  
0x00  
0
0x5F  
0x5F  
0x5A  
accessible by user)  
tPG_OV_UV_DELAY  
BUCKn_UV_SET  
(internal register, not  
0x5A  
accessible by user)  
BUCKn_VSEL  
0
1
0
1
BUCKn_VMON_EN  
Automa c control  
by digital  
Automa c control  
by digital  
0 us  
Automa c control  
by digital  
BUCKn_OV Monitor Output  
BUCKn_OV Ga ng  
ABIST  
ABIST  
50s  
tPG_OV_GATE  
tPG_OV_GATE  
50s  
Automa c control  
by digital  
0 us  
BUCKn_UV Monitor Output  
BUCKn_UV Ga ng  
tPG_UV_GATE  
tPG_UV_GATE  
8-13. AVS Voltage and OV UV Threshold Level Change Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
OPP_OD  
(or OPP_TURBO)  
OPP_OD  
(or OPP_TURBO)  
OPP_NOM  
OV limit  
OV limit  
UV limit  
ABIST  
UV limit  
BUCKn VOUT  
I2C/SPI write (DVFS control)  
State control (or I2C/SPI write)  
State control (or I2C/SPI write)  
0x5F  
0x5F  
1
0x73  
BUCKn_VSET1  
BUCKn_VSET2  
BUCKn_EN  
Automa c control  
by digital  
0
1
0 us  
BUCKn_OV_SET  
(internal register, not  
0x5F  
0x5F  
0
0x73  
Register bits  
accessible by user)  
tPG_OV_UV_DELAY  
BUCKn_UV_SET  
(internal register, not  
0x73  
accessible by user)  
BUCKn_VSEL  
1
0
1
BUCKn_VMON_EN  
Automa c control  
by digital  
0 us  
Automa c control  
by digital  
BUCKn_OV Monitor Output  
BUCKn_OV Ga ng  
ABIST  
tPG_OV_GATE  
50s  
0 us  
BUCKn_UV Monitor Output  
BUCKn_UV Ga ng  
tPG_UV_GATE  
8-14. DVS Voltage and OV UV Threshold Level Change Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.5.1.6 BUCK Output Voltage Setting  
8-11 shows the coding used to select the BUCK regulator output voltage.  
8-11. Output Voltage Selection for BUCK Regulators  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
10 mV steps  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
20 mV steps  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0.3  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0.6  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0.85  
0.855  
0.86  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
1.1  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
0xBC  
0xBD  
0xBE  
0xBF  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
1.66  
1.68  
1.7  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
0xEF  
0xF0  
0xF1  
2.52  
2.54  
2.56  
2.58  
2.6  
0.32  
0.34  
0.36  
0.38  
0.4  
0.605  
0.61  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.2  
0.615  
0.62  
0.865  
0.87  
1.72  
1.74  
1.76  
1.78  
1.8  
0.625  
0.63  
0.875  
0.88  
2.62  
2.64  
2.66  
2.68  
2.7  
0.42  
0.44  
0.46  
0.48  
0.5  
0.635  
0.64  
0.885  
0.89  
1.82  
1.84  
1.86  
1.88  
1.9  
0.645  
0.65  
0.895  
0.9  
2.72  
2.74  
2.76  
2.78  
2.8  
0.52  
0.54  
0.56  
0.58  
0.655  
0.66  
0.905  
0.91  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.3  
0.665  
0.67  
0.915  
0.92  
1.92  
1.94  
1.96  
1.98  
2
0.675  
0.68  
0.925  
0.93  
2.82  
2.84  
2.86  
2.88  
2.9  
0.685  
0.69  
0.935  
0.94  
2.02  
2.04  
2.06  
2.08  
2.1  
0.695  
0.7  
0.945  
0.95  
2.92  
2.94  
2.96  
2.98  
3.0  
0.705  
0.71  
0.955  
0.96  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
0.715  
0.72  
0.965  
0.97  
2.12  
2.14  
2.16  
2.18  
2.2  
0.725  
0.73  
0.975  
0.98  
3.02  
3.04  
3.06  
0.735  
0.985  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-11. Output Voltage Selection for BUCK Regulators (continued)  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
10 mV steps  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
20 mV steps  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0.74  
0.745  
0.75  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0.99  
0.995  
1.0  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
1.38  
1.39  
1.4  
0xC7  
0xC8  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0xD5  
2.22  
2.24  
2.26  
2.28  
2.3  
0xF2  
0xF3  
0xF4  
0xF5  
0xF6  
0xF7  
0xF8  
0xF9  
0xFA  
0xFB  
0xFC  
0xFD  
0xFE  
0xFF  
3.08  
3.1  
3.12  
3.14  
3.16  
3.18  
3.2  
0.755  
0.76  
1.005  
1.01  
1.41  
1.42  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.5  
0.765  
0.77  
1.015  
1.02  
2.32  
2.34  
2.36  
2.38  
2.4  
0.775  
0.78  
1.025  
1.03  
3.22  
3.24  
3.26  
3.28  
3.3  
0.785  
0.79  
1.035  
1.04  
2.42  
2.44  
2.46  
2.48  
2.5  
0.795  
0.8  
1.045  
1.05  
3.32  
3.34  
0.805  
0.81  
1.055  
1.06  
1.51  
1.52  
1.53  
1.54  
1.55  
1.56  
1.57  
1.58  
1.59  
1.6  
0.815  
0.82  
1.065  
1.07  
0.825  
0.83  
1.075  
1.08  
0.835  
0.84  
1.085  
1.09  
0.845  
1.095  
1.61  
1.62  
1.63  
1.64  
1.65  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.5.2 Sync Clock Functionality  
The LP8764-Q1 device contains a SYNCCLKIN input to synchronize switching clock of the buck regulator with  
the external clock. The block diagram of the clocking and DPLL module is shown in 8-15. The external clock  
is selected when the external clock is available, and SEL_EXT_CLK = '1'. The nominal frequency of the external  
input clock is set by EXT_CLK_FREQ[1:0] bits in the NVM and it can be 1.1 MHz, 2.2 MHz, 4.4 MHz, or 8.8  
MHz.  
The EXT_CLK_INT interrupt is also generated in cases the external clock is expected, but it is not available.  
The LP8764-Q1 device can also generate clock SYNCCLKOUT for external device use. The  
SYNCCLKOUT_FREQ_SEL[1:0] selects the frequency of the SYNCCLKOUT. Please note that  
SYNCCLKOUT_FREQ_SEL[1:0] must stay static while SYNCCLKOUT is used, as changing the output  
frequency selection may cause glitches on the clock output.  
20 MHz  
RC  
Oscillator  
Main CLK  
Detector  
RESET  
Main Digital Clock  
Buck1  
Buck2  
20 MHz  
RC  
Oscillator  
÷ 18  
Phase and  
freq control  
DPLL  
/N  
52.8MHz +/- 20%  
SYNCCLKIN  
Detector  
Divider  
SYNCCLKOUT  
_FREQ_SEL  
SYNCCLKOUT  
Divider  
“EXT_CLK_  
FREQ“  
Clock Select  
Logic  
Spread-spec  
Control  
SYNCCLKIN  
SEL_EXT_CLK  
8-15. Sync Clock and DPLL Module  
8.5.3 Internal Low Dropout Regulator (LDOVINT)  
The LDOVINT voltage regulator is dedicated to supply the digital and analog functions of the LP8764-Q1 device.  
The LDOVINT regulator is controlled by VCCA supply, when VCCA is available the LDOVINT is enabled.  
8.6 Residual Voltage Checking  
The residual voltage (RV) checking feature ensures the voltage level at the buck regulators or VMONx inputs is  
below VTH_SC_RV before it can be ramped up the target output voltage. If BUCKn/VMONn_RV_SEL=1 by default,  
residual voltage is also checked before the device enters BOOT_BIST state. If the residual voltage is greater  
than VTH_SC_RV , the device waits until voltage goes below VTH_SC_RV before starting BOOT_BIST.  
This feature is enabled by the BUCKn_VMON_EN and BUCKn_RV_SEL bits for each buck regulators, and by  
the VMONn_EN and VMONn_RV_SEL bits for VMON inputs. When this feature is enabled, the voltage monitor  
of the corresponding regulator or monitoring input remains on after the monitoring is disabled, and remain on for  
the RV Timeout period. After the RV Timeout period elapses the monitored voltage is compared to the short  
circuit (SC) threshold of VTH_SC_RV, and assert the corresponding BUCKn_SC_INT or VMONn_RV_INT interrupt  
bits if the residual voltage is still higher than the threshold voltage. The RV timeout period for the BUCK  
regulators and VMON inputs is automatically calculated by the digital controller inside the device by 方程式 3  
and 方程式 4. If external voltage is monitored with buck feedback pin, buck is disabled all the time (BUCKn_EN  
= 0).  
tBUCK_RV_TIMEOUT = BUCKn_VSET / BUCKn_SLEW_RATE + 100 µs  
tVMON_RV_TIMEOUT = VMONn_PG_VSET / VMONn_SLEW_RATE + 100 µs  
(3)  
(4)  
8-16 shows the timing diagram of the residual voltage checking operation that results in pass or fail results.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: LP8764-Q1  
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-16. Residual Voltage Check Timing Diagram  
备注  
Unless mentioned otherwise in the User's Guide for the orderable part number, the residual voltage  
monitoring is enabled .once, immediately after a power-up event on the VCCA input supply pin. Before  
the LP8764-Q1 executes the start-up sequence of the BUCK regulators, the LP8764-Q1 disables all  
residual voltage monitors. TI has made this implementation to prevent false-positive residual-voltage  
detection caused by charge accumulation in the output capacitors of the BUCK regulators or at the  
output voltage rails monitored through VMON_1 (at GPIO7 pin) or VMON_2 (at GPIO8 pin).  
8.7 Output Voltage Monitor and PGOOD Generation  
The LP8764-Q1 device monitors the undervoltage (UV) and overvoltage (OV) conditions on the output voltages  
of the BUCK regulators, the UV and OV conditions on the VMONn voltage monitoring input pins , and VCCA  
(when it is expected to be 5 V or 3.3 V), and has the option to indicate the result with a PGOOD signal. Thermal  
warning can also be included in the result of the PGOOD monitor if it is not masked. Either voltage and current  
monitoring or only voltage monitoring can be selected for PGOOD indication. This selection is set by the  
PGOOD_SEL_BUCKn register bits for each BUCK regulator (select primary phase for multi-phase regulator).  
When voltage and current are monitored, an active PGOOD signal active indicates that the regulator output is  
inside the Power-Good voltage window and that load current is below the current limit. If only voltage is  
monitored, then the current monitoring is ignored for the PGOOD signal.  
The PGOOD signal represents the momentary status of the included indications without latching. If the PGOOD  
signal goes low due to an indicated warning or error condition, the PGOOD signal goes high immediately when  
the previous indicated warning or error condition is no longer present.  
The BUCKn_VMON_EN bit enables the overvoltage (OV) , undervoltage (UV) and short-circuit (SC)  
comparators. The current limit (ILIM) comparator of each BUCK regulator is activated as soon as the  
corresponding BUCK regulator is enabled. In order to add the current limit indication of a BUCK regulator to the  
PGOOD signal, the BUCKn_VMON_EN bit of the corresponding BUCK regulator must be set. When a BUCK is  
not needed as a regulated output, it can be used as a voltage monitor for an external rail. For BUCK converters,  
if the BUCKn_VMON_EN bit remains '1' while the BUCKn_EN bit is '0', it can be used as a voltage monitor for  
an external rail that is connected to the FB_Bn pin of the BUCK regulator.  
When the voltage monitor for a BUCK regulator is disabled, the output of the corresponding monitor is  
automatically masked to prevent it from forcing PGOOD inactive. The masking allows PGOOD to be connected  
to other open-drain power good signals in the system.  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
The VCCA input voltage monitoring is enabled with VCCA_VMON_EN bit. The monitoring can be enabled by an  
NVM default setting, that starts the monitoring of the VCCA voltage after the voltage monitor passes ABIST  
during the BOOT BIST state. The reference voltage for the VCCA monitor can be set by the VCCA_PG_SET bit  
to either 3.3 V or 5 V. The PGOOD_SEL_VCCA register bit selects whether or not the result of the VCCA  
monitor is included in the PGOOD monitor output signal.  
An NVM option is available to gate the PGOOD output with the nRSTOUT and the nRSTOUT_SoC signals, the  
intended reset signals for the safety MCU and the SoC respectively. When PGOOD_SEL_NRSTOUT = '1', the  
PGOOD pin is gated by the nRSTOUT signal. When PGOOD_SEL_NRSTOUT_SOC = '1', the PGOOD pin is  
gated by the nRSTOUT_SoC signal. This option allows the PGOOD output to be used as an enable signal for  
external peripherals.  
The outputs of the voltage monitors from all the output rails are combined, and PGOOD is active only if all the  
sources shows active status.  
The type of output voltage monitoring for PGOOD signal is selected by PGOOD_WINDOW bit. If the bit is 0, only  
undervoltage is monitored; if the bit is 1, then undervoltage and overvoltage are monitored.  
The polarity and the output type (push-pull or open-drain) are selected by PGOOD_POL and GPIO9_OD bits.  
8-17 shows the Power-Good generation block diagram, and 8-18 shows the Power-Good waveforms.  
Die  
Temperature  
Monitor  
TJ < TWARN  
TWARN_LEVEL  
PGOOD_SEL_TDIE_WARN  
BUCKn  
Monitor  
PGOOD_BUCKn  
PGOOD_WINDOW  
BUCKn_ILIM  
BUCKn_VSET  
BUCKn_VMON_EN  
PGOOD_SEL_BUCKn  
VMONn  
PGOOD_VMONn  
PGOOD_WINDOW  
Monitor  
PGOOD  
VMONn_PG_SET  
VMONn_UV_THR  
VMONn_OV_THR  
VMONn_EN  
PGOOD_SEL_VMONn  
PGOOD_POL  
PGOOD_VCCA  
VCCA  
Monitor  
PGOOD_WINDOW  
VCCA_PG_SET  
VCCA_UV_THR  
VCCA_OV_THR  
VCCA_VMON_EN  
PGOOD_SEL_VCCA  
nRSTOUT  
PGOOD_SEL_NRSTOUT  
nRSTOUT_SOC  
PGOOD_SEL_NRSTOUT_SOC  
8-17. PGOOD Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Voltage  
Powergood window  
BUCKx_VSET (1)  
Power-good  
window  
BUCKx_VSET (2)  
Time  
On Request  
VIO  
BUCKn_VMON_EN  
nRSTOUT  
tMON_STARTUP_latency  
10 µs  
10 µs  
PGOOD  
(PGOOD_SEL_NRSTOUT =1)  
tMON_STARTUP_latency  
PGOOD  
(PGOOD_SEL_NRSTOUT = 0)  
BUCKx_VSET (1)  
BUCKx_VSET (2)  
Regulator VSET  
8-18. PGOOD Waveforms  
The OV and UV threshold of the voltage monitors of the BUCK regulators and VMON input voltage monitor are  
updated automatically by the digital control block when the voltage setting changes. When the output voltage of  
the regulator is increased, the OV threshold is updated at the same time the _VSET of the regulator or the  
PG_LEVEL of the VMON is changed. The UV threshold is updated after a delay calculated by the delta voltage  
change and the slew rate setting. When the output voltage is decreased, the UV threshold is updated at the  
same time the _VSET of the regulator or PG_SET of the VMON is changed. The OV threshold is updated after a  
delay calculated by the delta voltage change and the slew rate setting. The OV and UV threshold of the BUCK  
output voltage monitors and VMON input voltage monitors are calculated based on the target output voltage set  
by the corresponding BUCKn_VSET1, BUCKn_VSET2 , or VMONn_PG_SET registers, and the deviation from  
the target output voltage set (the voltage window) by the corresponding BUCKn_UV_THR, BUCKn_OV_THR,  
VMONn_UV_THR, and the VMONn_OV_THR registers. For the OV and UV threshold of BUCK output monitors  
to update with the correct timing, the following operating procedures must be followed when updating the _VSET  
values of the regulators to avoid detection of OV/UV fault:  
BUCK regulators must be enabled at the same time as or earlier than as their VMON, such that the voltage  
reaches its target value before OV/UV self-test (BIST) is done  
New voltage level must not be set before the start-up has finished and OV/UV self-test (BIST) is completed  
New voltage level must not be set before the previous voltage change (ramp plus settling time) has  
completed  
It is important to note: when a regulator is enabled, a voltage monitor self-test is performed to ensure proper  
operation. The monitoring function is disabled and gated during this time. 8-19 shows the timing diagram of  
the BUCK regulator UV/OV self-test. 8-20 shows the timing diagram of the VMON UV/OV self-test. The  
monitoring function is activated after the gating period.  
The self-test for VCCA, BUCK and VMON voltage monitors is done every time when the monitoring function is  
enabled and VMON_ABIST_EN=1. The self-test checks that OV and UV comparators are changing their output  
when the input thresholds are swapped. The self-test assumes that the input voltage is inside OV/UV threshold  
limits. If the voltage is outside the limits, the self-test fails and BIST_FAIL_INT interrupt is set. In addition, a failed  
self-test for over-voltage comparator sets the over-voltage interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
OV/UV test 1 & 2:  
25µs + 25µs  
OV limit  
UV limit  
Settling time  
BUCKx VOUT  
Ramp time  
Vout/SR  
Start-up delay  
BUCKx_VMON_EN  
BUCKx_EN  
buckx_ov_gating  
buckx_uv_gating  
50µs  
tPG_OV_GATE  
Total time: tPG_UV_GATE  
8-19. Timing of BUCK Regulator UV/OV Self-Test  
The voltage monitors of unused BUCK regulators can be used for external supply rails monitoring. In three-  
phase configuration, the Voltage Monitor of BUCK3 (on FB_B3 pin) becomes a free available resource for  
monitoring an external supply voltage. In four-phase configuration, the Voltage Monitor of both BUCK3 (on  
FB_B3 pin) and BUCK4 (on FB_B4 pin) become free available resources for monitoring two external supply  
voltages.. The target output voltage is set by the corresponding BUCKn_VSET1, BUCKn_VSET2 registers, and  
the deviation from the target output voltage set (the voltage window) by the corresponding BUCKn_UV_THR,  
BUCKn_OV_THR registers. Following aspects need to be taken into account if Voltage Monitors of unused  
BUCK regulators are used for monitoring external supply rails:  
For voltage monitors of unused BUCK : the maximum nominal supply voltage of the monitored supply rail is  
3.3V  
For voltage monitors of unused BUCK regulators and for voltage monitors of BUCK3 and/or BUCK4  
regulators if used in a three-phase or four-phase configuration: the configured values for the BUCKn_VSET  
and the BUCKn_SLEW_RATE determine the delay-time for the voltage monitoring to become active after the  
corresponding BUCKn_VMON_EN bit is set. See equation (2) in 8.5.1.5. If BUCK3 and/or BUCK4  
regulators are used in a three-phase or four-phase configuration: even though the values for the  
BUCK1_VSET and BUCK1_SLEW_RATE bits determine the output voltage and slew-rate of the three-phase  
or four-phase output rail, the values for BUCK3_VSET respectively BUCK4_VSET and BUCK3_SLEW_RATE  
respectively BUCK4_SLEW_RATE bits determine the power-good level and the voltage monitoring delay  
time for the BUCK3 respectively BUCK4 Voltage Monitors.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
OV/UV test 1 & 2:  
25µs + 25µs  
OV limit  
UV limit  
Settling time  
VMONx input  
Ramp time  
PG_SET/SR  
Start-up delay  
VMONx_EN  
vmonx_ov_gang  
vmonx_uv_gang  
50µs  
tPG_OV_GATE  
Total time: tPG_UV_GATE  
8-20. Timing of VMON Input UV/OV Self-Test  
The voltage monitoring threshold for the VMONx input pins are shown in 8-12.  
备注  
For Voltage Monitors that are used to monitor external supply voltages, in order to not have a failing  
self-test or a false-positive UV/OV detection after completion of the self-test, the actual voltage level of  
the external supply (VOUT_actual) must satisfy following conditions:  
For VOUT > 1V: VOUT_actual = VOUT_typical +/- (75% * Typical UV/OV Threshold 1%)  
For VOUT 1V: VOUT_actual = VOUT_typical +/- (Typical UV/OV Threshold 15mV)  
VOUT_typical is the configured power-good voltage level for the used Voltage Monitor in registers  
BUCKn_VOUT1/2 and VMONn_PG_LEVEL. This requirement also applies to the voltage on the  
VCCA pin in case the VCCA UV/OV Monitor is used.  
8-12. Monitoring Voltage Selection for VMONx External Voltage Pins  
Output  
Output  
Output  
Output  
Output  
Output  
Voltage [V]  
Voltage [V]  
Voltage [V]  
Voltage [V]  
Voltage [V]  
Voltage [V]  
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
VMO  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMONx  
_RANG  
E = 1  
VMON  
Nx_R  
x_RAN  
ANG  
Nx_R  
ANG  
E = 0  
GE = 1  
E = 0  
E = 0  
1
E = 0  
1
E = 0  
1
E = 0  
1
Reserve  
d
Reserv  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x00  
0.3  
0x0F  
0.6  
ed  
0x41 0.85  
4.25 0x73  
1.1  
0xAB 1.66  
0xAC 1.68  
0xAD 1.7  
0xAE 1.72  
0xAF 1.74  
0xB0 1.76  
0xD6 2.52  
0xD7 2.54  
0xD8 2.56  
0xD9 2.58  
0xDA 2.6  
0xDB 2.62  
Reserve  
d
Reserv  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x01 0.32  
0x02 0.34  
0x03 0.36  
0x04 0.38  
0x10 0.605  
0x42 0.855 4.275 0x74  
1.11  
ed  
Reserve  
d
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x11  
0.61  
0x43 0.86  
4.3 0x75 1.12  
Reserve  
d
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x12 0.615  
0x13 0.62  
0x14 0.625  
0x44 0.865 4.325 0x76 1.13  
Reserve  
d
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x45 0.87  
4.35 0x77 1.14  
Reserve  
d
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x05  
0.4  
0x46 0.875 4.375 0x78 1.15  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-12. Monitoring Voltage Selection for VMONx External Voltage Pins (continued)  
Output  
Voltage [V]  
Output  
Output  
Output  
Output  
Output  
Voltage [V]  
Voltage [V]  
Voltage [V]  
Voltage [V]  
Voltage [V]  
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
VMO  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMONx  
_RANG  
E = 1  
VMON  
Nx_R  
x_RAN  
ANG  
Nx_R  
ANG  
E = 0  
GE = 1  
E = 0  
E = 0  
1
E = 0  
1
E = 0  
1
E = 0  
1
Reserve  
d
Reserv  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x06 0.42  
0x07 0.44  
0x08 0.46  
0x09 0.48  
0x15 0.63  
0x16 0.635  
0x17 0.64  
0x18 0.645  
0x19 0.65  
0x1A 0.655  
0x1B 0.66  
0x1C 0.665  
0x1D 0.67  
0x47 0.88  
4.4 0x79 1.16  
0xB1 1.78  
0xDC 2.64  
0xDD 2.66  
0xDE 2.68  
ed  
Reserve  
d
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x48 0.885 4.425 0x7A 1.17  
0xB2  
1.8  
Reserve  
d
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x49 0.89  
4.45 0x7B 1.18  
0xB3 1.82  
0xB4 1.84  
0xB5 1.86  
0xB6 1.88  
Reserve  
d
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x4A 0.895 4.475 0x7C 1.19  
0xDF  
2.7  
Reserve  
d
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x0A  
0.5  
0x4B  
0.9  
4.5 0x7D  
1.2  
0xE0 2.72  
0xE1 2.74  
0xE2 2.76  
0xE3 2.78  
Reserve  
d
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x0B 0.52  
0x0C 0.54  
0x0D 0.56  
0x0E 0.58  
0x4C 0.905 4.525 0x7E 1.21  
Reserve  
d
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x4D 0.91  
4.55 0x7F 1.22  
0xB7  
1.9  
Reserve  
d
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x4E 0.915 4.575 0x80 1.23  
0xB8 1.92  
0xB9 1.94  
0xBA 1.96  
0xBB 1.98  
Reserve  
d
Reserv  
ed  
Reser  
ved  
Reser  
ved  
3.35 0x4F 0.92  
4.6 0x81 1.24  
0xE4  
2.8  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x1E 0.675 3.375 0x50 0.925 4.625 0x82 1.25  
0xE5 2.82  
0xE6 2.84  
0xE7 2.86  
0xE8 2.88  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x1F 0.68  
3.4  
0x51 0.93  
4.65 0x83 1.26  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x20 0.685 3.425 0x52 0.935 4.675 0x84 1.27  
0xBC  
2
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x21 0.69  
3.45 0x53 0.94  
4.7 0x85 1.28  
0xBD 2.02  
0xBE 2.04  
0xBF 2.06  
0xC0 2.08  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x22 0.695 3.475 0x54 0.945 4.725 0x86 1.29  
0xE9  
2.9  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x23  
0.7  
3.5  
0x55 0.95  
4.75 0x87  
1.3  
0xEA 2.92  
0xEB 2.94  
0xEC 2.96  
0xED 2.98  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x24 0.705 3.525 0x56 0.955 4.775 0x88 1.31  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x25 0.71  
3.55 0x57 0.96  
4.8 0x89 1.32  
0xC1  
2.1  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x26 0.715 3.575 0x58 0.965 4.825 0x8A 1.33  
0xC2 2.12  
0xC3 2.14  
0xC4 2.16  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x27 0.72  
3.6  
0x59 0.97  
4.85 0x8B 1.34  
0xEE  
3.0  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x28 0.725 3.625 0x5A 0.975 4.875 0x8C 1.35  
0xEF 3.02  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-12. Monitoring Voltage Selection for VMONx External Voltage Pins (continued)  
Output  
Output  
Output  
Output  
Output  
Output  
Voltage [V]  
Voltage [V]  
Voltage [V]  
Voltage [V]  
Voltage [V]  
Voltage [V]  
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
VMO  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMONx  
_RANG  
E = 1  
VMON  
Nx_R  
x_RAN  
ANG  
Nx_R  
ANG  
E = 0  
GE = 1  
E = 0  
E = 0  
1
E = 0  
1
E = 0  
1
E = 0  
1
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x29 0.73  
3.65 0x5B 0.98  
4.9 0x8D 1.36  
0xC5 2.18  
0xF0 3.04  
0xF1 3.06  
0xF2 3.08  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x2A 0.735 3.675 0x5C 0.985 4.925 0x8E 1.37  
0xC6  
2.2  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x2B 0.74  
3.7  
0x5D 0.99  
4.95 0x8F 1.38  
0xC7 2.22  
0xC8 2.24  
0xC9 2.26  
0xCA 2.28  
0xCB 2.3  
0xCC 2.32  
0xCD 2.34  
0xCE 2.36  
0xCF 2.38  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x2C 0.745 3.725 0x5E 0.995 4.975 0x90 1.39  
0xF3  
3.1  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x2D 0.75  
3.75 0x5F  
1.0  
5.0 0x91  
1.4  
0xF4 3.12  
0xF5 3.14  
0xF6 3.16  
0xF7 3.18  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x2E 0.755 3.775 0x60 1.005  
0x92 1.41  
0x93 1.42  
0x94 1.43  
0x95 1.44  
0x96 1.45  
0x97 1.46  
0x98 1.47  
0x99 1.48  
0x9A 1.49  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x2F 0.76  
3.8  
0x61 1.01  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x30 0.765 3.825 0x62 1.015  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x31 0.77  
3.85 0x63 1.02  
0xF8  
3.2  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x32 0.775 3.875 0x64 1.025  
0xF9 3.22  
0xFA 3.24  
0xFB 3.26  
0xFC 3.28  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x33 0.78  
3.9  
0x65 1.03  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x34 0.785 3.925 0x66 1.035  
0xD0  
2.4  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x35 0.79  
3.95 0x67 1.04  
0xD1 2.42  
0xD2 2.44  
0xD3 2.46  
0xD4 2.48  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x36 0.795 3.975 0x68 1.045  
0xFD  
3.3  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x37  
0.8  
4.0  
0x69 1.05  
0x9B  
1.5  
0xFE 3.32  
0xFF 3.34  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
Reser  
ved  
0x38 0.805 4.025 0x6A 1.055  
0x9C 1.51  
0x9D 1.52  
0x9E 1.53  
0x9F 1.54  
0xA0 1.55  
Reserv  
ed  
Reserv  
ed  
Reser  
ved  
0x39 0.81  
4.05 0x6B 1.06  
0xD5  
2.5  
Reserv  
ed  
Reserv  
ed  
0x3A 0.815 4.075 0x6C 1.065  
Reserv  
ed  
Reserv  
ed  
0x3B 0.82  
4.1  
0x6D 1.07  
Reserv  
ed  
Reserv  
ed  
0x3C 0.825 4.125 0x6E 1.075  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-12. Monitoring Voltage Selection for VMONx External Voltage Pins (continued)  
Output  
Voltage [V]  
Output  
Output  
Output  
Output  
Output  
Voltage [V]  
Voltage [V]  
Voltage [V]  
Voltage [V]  
Voltage [V]  
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
Nx_P  
G_SE  
T
VMO  
VMO  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMO VMON  
Nx_R x_RA  
ANG NGE =  
VMONx  
_RANG  
E = 1  
VMON  
Nx_R  
x_RAN  
ANG  
Nx_R  
ANG  
E = 0  
GE = 1  
E = 0  
E = 0  
1
E = 0  
1
E = 0  
1
E = 0  
1
Reserv  
ed  
Reserv  
ed  
0x3D 0.83  
4.15 0x6F 1.08  
0xA1 1.56  
0xA2 1.57  
0xA3 1.58  
0xA4 1.59  
Reserv  
ed  
Reserv  
ed  
0x3E 0.835 4.175 0x70 1.085  
Reserv  
ed  
Reserv  
ed  
0x3F 0.84  
4.2  
0x71 1.09  
Reserv  
ed  
Reserv  
ed  
0x40 0.845 4.225 0x72 1.095  
Reserv  
ed  
0xA5  
1.6  
Reserv  
ed  
0xA6 1.61  
0xA7 1.62  
0xA8 1.63  
0xA9 1.64  
0xAA 1.65  
Reserv  
ed  
Reserv  
ed  
Reserv  
ed  
Reserv  
ed  
8.8 General-Purpose I/Os (GPIO Pins)  
The LP8764-Q1 device integrates ten configurable general-purpose I/Os that are multiplexed with alternative  
features as listed in Pin Configuration and Functions.  
For GPIOs characteristics, refer to Electrical Characteristics tables for Digital Input Signal Parameters and Digital  
Output Signal Parameters.  
When configured as primary functions, all GPIOs are controlled through the following set of registers bits under  
the individual GPIOn_CONF register.  
GPIOn_DEGLITCH_EN: Enables the 8 µs deglitch time for each GPIO pin (input)  
GPIOn_PU_PD_EN: Enables the internal pull up or pull down resistor connected to each GPIO pin  
GPIOn_PU_SEL: Selects the pull up or the pull down resistor to be connected when GPIOn_PU_PD_EN =  
'1'. '1' = pull-up resistor selected, '0' = pull-down resistor selected  
GPIOn_OD: Configures the GPIO pin (output) as: '1' = open drain, '0' = push-pull  
GPIOn_DIR: Configures the input or output direction of each GPIO pin  
Each GPIO event can generate an interrupt on a rising edge, falling edge, or both, configured through the  
GPIOn_FALL_MASK and the GPIOn_RISE_MASK register bits. A GPIO-interrupt applies when the primary  
function (general-purpose I/O) has been selected and also for the following alternative functions:  
ENABLE  
EN_DRV  
nRSTOUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
nRSTOUT_SOC  
PGOOD  
nERR_MCU  
TRIG_WDOG  
NSLEEP1, NSLEEP2  
WKUP1, WKUP2  
The GPIOn_SEL[2:0] register bits under the GPIOn_CONF registers control the selection between a primary and  
an alternative function. When a pre-defined function is selected, some predetermined IO characteristics (such as  
pullup, pulldown, push-pull or open drain) for the pin are enforced regardless of the settings of the associated  
GPIO configuration register. Please note that if the GPIOn_SEL[2:0] is changed during device operation, a signal  
glitch may occur, which may cause digital malfunction, especially if it involves a clock signal such as SCL_I2C2,  
SCL_SPMI, SYNCCLKIN, or SYNCCLKOUT. Please refer to Digital Signal Descriptions for more detail on the  
predetermined IO characteristics for each pre-defined digital interface function.  
All GPIOs can be configured as a wake-up input when it is configured as a WKUP1 or a WKUP2 signal. All  
GPIOs can also be configured as a NSLEEP1 or a NSLEEP2 input. For more information regarding the usage of  
the NSLEEPx pins and the WKUPx pins, please refer to 8.4.2.4.2.1 and 8.4.2.4.2.2.  
Any of the GPIO pin can also be configured as part of the power-up sequence to enable external devices such  
as external BUCKs when it is configured as a general-purpose output port.  
The nINT pin and the GPIO pins assigned as EN_DRV , nRSTOUT and nRSTOUT_SOC have readback  
monitoring to detect errors on the signals. The monitoring of the GPIO pin assigned as EN_DRV checks for  
mismatch in both low and high levels. For the nINT pin and the GPIO pins assigned as nRSTOUT and  
nRSTOUT_SOC, the readback monitoring only checks for mismatches in the low level, therefore it is allowed to  
combine these signals with other external pull-down sources. The readback mismatch is continuously monitored  
without deglitch circuitry during operation, and the monitoring is gated for tgate_readback period when the signal  
state is changed or when a new function is selected for the GPIO pin with the GPIOn_SEL bits.  
NINT_READBACK_INT,  
EN_DRV_READBACK_INT,  
NRSTOUT_READBACK_INT,  
and  
NRSTOUT_SOC_READBACK_INT are the interrupt bits that are set in an event of a readback mismatch for  
these pins, respectively.  
备注  
All GPIO pin are set to generic input pins with resistive pull-down before NVM memory is loaded  
during device power up. Therefore, if any GPIOs has external pull-up resistors connecting to a voltage  
domain that is energized before the NVM memory is loaded, the GPIO pin is pulled high before the  
configuration for the pin is loaded from the NVM.  
备注  
For GPIO pins with internal pull down enabled, additional leakage current flows into the GPIO pin if  
this pin is pulled-up to a voltage higher than the voltage level of its output power domain. If the internal  
pull down must be enabled, please use a resistor divider to divide down the input voltage, or use a  
series resistor to connect to the input source and ensure the voltage level at the GPIO pin is below the  
voltage level of its output power domain.  
8.9 Thermal Monitoring  
The LP8764-Q1 device includes several thermal monitoring functions for internal thermal protection of the PMIC.  
The LP8764-Q1 device integrates thermal detection modules to monitor the temperature of the die. These  
modules are placed on opposite sides of the device and close to the BUCK modules. An over-temperature  
condition at either module first generates a warning to the system, and if the temperature continues to rise, then  
a switch-off of the PMIC device can occur before damage to the die.  
Three thermal protection levels are available. One of these protections is a thermal warning function described in  
8.9.1, that sends an interrupt to software. Software is expected to close any noncritical running tasks to  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
reduce power. The second and third protections are the thermal shutdown (TS) function described in 8.9.2,  
that begins device shutdown orderly or immediately.  
Thermal monitoring is automatically enabled when one of the BUCK outputs is enabled within the mission states.  
The thermal monitoring is disabled in the LP_STANDBY state, when only the internal regulator is enabled, to  
minimize the device power consumption. Indication of a thermal warning event is written to the TWARN_INT  
register.  
The current consumption of the thermal monitoring can be decreased in the mission states when the low power  
dissipation is important. If LPM_EN bit is set and the temperature is below thermal warning level in all thermal  
detection modules, only one thermal detection module is monitored. If the temperature rises in this module,  
monitoring in all thermal detection modules is started.  
If the die temperature of the LP8764-Q1 device continues to rise while the device is in mission state, an  
TSD_ORD_INT or TSD_IMM_INT interrupt is generated, causing a SEVERE or MODERATE error trigger  
(respectively) in the state machine. While the sequencing and error handling is NVM memory dependent, TI  
recommends a sequenced shutdown for MODERATE errors, and an immediate shutdown, using resistive  
discharging, for SEVERE errors to prevent damage to the device. The system cannot restart until the  
temperature falls below the thermal warning threshold.  
8.9.1 Thermal Warning Function  
The thermal monitor provides a warning to the host processor through the interrupt system when the  
temperature reaches within a cautionary range. The threshold value must be set to less than the thermal  
shutdown threshold.  
The integrated thermal warning function provides the MCU an early warning of over-temperature condition. This  
monitoring system is connected to the interrupt controller and can send an TWARN_INT interrupt when the  
temperature is higher than the preset threshold. The LP8764-Q1 device uses the TWARN_LEVEL register bit to  
set the thermal warning threshold temperature at 130°C or 140°C. There is no hysteresis for the thermal warning  
level.  
When the power-management software triggers an interrupt, immediate action must be taken to reduce the  
amount of power drawn from the PMIC device (for example, noncritical applications must be closed).  
8.9.2 Thermal Shutdown  
The thermal shutdown detector monitors the temperature on the die. If the junction reaches a temperature at  
which damage can occur, a switch-off transition is initiated and a thermal shutdown event is written into a status  
register. There are two levels of thermal shutdown threshold. When the die temperature reaches the TSD_orderly  
level, the LP8764-Q1 device performs an orderly shutdown of all output power rails. If the die temperature raises  
rapidly and reaches the TSD_imm level before the orderly shutdown process completes, the LP8764-Q1 device  
performs an immediate shutdown with activated pull-down on all output power rails, in order to turn off all of the  
output power rails as rapidly as possible. After the thermal shutdown takes place, the system cannot restart until  
the die temperature is below the thermal warning threshold.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.10 Interrupts  
The interrupt registers in the device are organized in hierarchical fashion. The interrupts are grouped into the  
following categories:  
BUCK ERROR  
These interrupts indicate over-voltage (OV), under-voltage (UV), short-circuit (SC),  
residual voltage (also indicated as SC interrupt) and over-current (ILIM) error  
conditions found on the BUCK regulators .  
VMON ERROR  
These interrupts indicate OV and UV or residual voltage error conditions found on the  
VMON1 and VMON2 inputs and on the VCCA supply.  
SEVERE ERROR  
These errors indicate severe device error conditions, such as thermal shutdown,  
PFSM sequencing and execution error and VCCA over-voltage, that causes the  
device to trigger the PFSM to execute immediate shutdown of all digital outputs,  
external voltage rails and monitors, and proceed to the Safe Recovery State.  
MODERATE ERROR  
These interrupts provide warnings to the system to indicate multiple restart attempts  
from SAFE RECOVERY state exceeding the allowed recovery count, multiple warm-  
reset executions exceeding the allowed recovery count, SPMI communication error,  
register CRC error, BIST failure, read-back error on nRSTOUT or nINT pins, or  
junction temperature reaching orderly shutdown level. These warning causes the  
device to trigger the PFSM to execute orderly shutdown of all digital outputs, external  
voltage rails and monitors, and proceed to the SAFE RECOVERY state.3  
MISCELLANEOUS  
WARNING  
These interrupts provide information to the system to indicate detection of WDOG or  
ESM errors, die temperature crossing thermal warning threshold, device passing  
BIST test, or external sync clock availability.  
START-UP SOURCE  
GPIO DETECTION  
These interrupts provide information to the system on the mechanism that caused the  
device to start up, which includes FSD, the activation of the ENABLE pin  
These interrupts indicate the High/Rising-Edge or the Low/Falling-Edge detection at  
the GPIO1 through GPIO10 pins.  
FSM ERROR  
INTERRUPT  
These interrupts indicate the detection of an error that causes the device mission  
state changes.  
All interrupts are logically combined on a single output pin, nINT (active low). The host processor can read the  
INT_TOP register to find the interrupt registers to find out the source of the interrupt, and write '1' to the  
corresponding interrupt register bit to clear the interrupt. This mechanism ensures when a new interrupt occurs  
while the nINT pin is still active, all of the corresponding interrupt register bits retain the interrupt source  
information until it is cleared by the host.  
Some of the interrupts and EN_DRV status are also sent to host during SPI communication. See 8.11.3 for  
more information on SPI status signals.  
Hierarchical Structure of Interrupt Registers shows the hierarchical structure of the interrupt registers according  
to the categories described above. The purpose of this register structure is to reduce the number of interrupt  
register read cycles the host has to perform in order to identify the source of the interrupt. Summary of Interrupt  
Signals summarizes the trigger and the clearing mechanism for all of the interrupt signals. This table also shows  
which interrupt sources can be masked by setting the corresponding mask register to '1'. When an interrupt is  
masked, the interrupt bit is not updated when the associated event occurs, the nINT line is not affected, and the  
event is not recorded. If an interrupt is masked after the event occurred, the interrupt register bit reflects the  
event until the bit is cleared. While the event is masked, the interrupt register bit is not over-written when a new  
event occurs.  
More detail descriptions of each interrupt register can be found in 8.16.  
3
The SEVERE ERROR and the MODERATE ERROR are handled in NVM memory but TI requires that the NVM pre-configurable finite  
state machine (PFSM) settings always follow this described error handling to meet device specifications.  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
INT_FSM_ERR[7:0]  
READBACK  
_ERR_INT  
SOC_PWR  
_ERR_INT  
MCU_PWR  
_ERR_INT  
ORD_  
SHUTDOWN_INT  
IMM_  
SHUTDOWN_INT  
WD_INT  
ESM_INT  
COMM_ERR_INT  
INT_COMM_ERR[7:0]  
I2C2_ADR  
_ERR_INT  
I2C2_CRC  
_ERR_INT  
COMM_ADR  
_ERR_INT  
COMM_CRC  
_ERR_INT  
COMM_FRM  
_ERR_INT  
INT_READBACK_ERR[7:0]  
NRSTOUT_SOC  
_READBACK_INT  
EN_DRV  
_READBACK_INT  
INT_ESM[7:0]  
ESM_MCU  
_RST_INT  
ESM_MCU  
_FAIL_INT  
ESM_MCU  
_PIN_INT  
INT_SEVERE_ERR[7:0]  
PFSM_ERR_INT  
VCCA_OVP_INT  
BIST_FAIL_INT  
EXT_CLK_INT  
ENABLE_INT  
TSD_IMM_INT  
TSD_ORD_INT  
BIST_PASS_INT  
INT_MODERATE_ERR[7:0]  
NRSTOUT  
_READBACK_INT  
NINT  
_READBACK_INT  
SPMI_ERR_INT  
RECOV_CNT_INT  
REG_CRC_ERR_INT  
INT_MISC[7:0]  
INT_STARTUP[7:0]  
INT_GPIO[7:0]  
TWARN_INT  
SOFT_REBOOT_INT  
FSD_INT  
GPIO1_8_INT  
GPIO4_INT  
GPIO10_INT  
GPIO2_INT  
GPIO9_INT  
GPIO1_INT  
INT_GPIO1_8[7:0]  
GPIO8_INT  
GPIO7_INT  
GPIO6_INT  
GPIO5_INT  
GPIO3_INT  
INT_VMON[7:0]  
VMON2_RV_INT  
VMON2_UV_INT  
VMON2_OV_INT  
VMON1_RV_INT  
VMON1_UV_INT  
VMON1_OV_INT  
VCCA_UV_INT  
VCCA_OV_INT  
INT_BUCK[7:0]  
BUCK3_4_INT  
BUCK3_UV_INT  
BUCK1_UV_INT  
BUCK1_2_INT  
BUCK3_OV_INT  
BUCK1_OV_INT  
INT_BUCK3_4[7:0]  
BUCK4_ILIM_INT  
BUCK4_SC_INT  
BUCK2_SC_INT  
BUCK4_UV_INT  
BUCK2_UV_INT  
BUCK4_OV_INT  
BUCK2_OV_INT  
BUCK3_ILIM_INT  
BUCK1_ILIM_INT  
BUCK3_SC_INT  
BUCK1_SC_INT  
INT_BUCK1_2[7:0]  
BUCK2_ILIM_INT  
8-21. Hierarchical Structure of Interrupt Registers  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-13. Summary of Interrupt Signals  
MASK FOR  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
INTERRUPT  
EN_ILIM_FSM_CTR  
L=1:  
According to  
BUCKn_GRP_SEL  
and x_RAIL_TRIG  
bits  
EN_ILIM_FSM_CTR  
L=0:  
N/A  
EN_ILIM_FSM_CT  
RL=1:  
Transition according Depends on PFSM  
to FSM trigger and configuration, see  
interrupt  
EN_ILIM_FSM_CT diagram  
RL=0:  
Write 1 to  
BUCKn_ILIM_INT  
bit  
BUCK regulator  
forward current limit  
triggered  
BUCKn_ILIM_INT =  
1
BUCKn_ILIM_MASK  
BUCKn_ILIM_STAT Interrupt is not  
cleared if current  
PFSM transition  
limit violation is  
active  
Interrupt only  
Write 1 to  
BUCKn_SC_INT bit  
Interrupt is not  
cleared if the  
According to  
BUCK output or switch BUCKn_GRP_SEL  
Regulator disable  
and transition  
according to FSM  
Depends on PFSM  
configuration, see  
PFSM transition  
BUCKn is enabled  
and the BUCKn  
output voltage is  
below the short-  
circuit threshold  
after elapse of  
expected ramp-up  
time interval  
BUCKn_SC_INT = 1 N/A  
N/A  
short circuit detected  
and x_RAIL_TRIG  
bits  
trigger and interrupt diagram  
Write 1 to  
BUCKn_SC_INT bit  
If BUCKn_SC_INT  
was set due to a  
detected residual  
voltage, this bit can  
only be read by the  
MCU if the residual  
voltage condition is  
no longer present  
and the device has  
performed a  
BUCKn_RV_SEL =  
1
According to  
BUCKn_GRP_SEL  
and x_RAIL_TRIG  
bits  
BUCKn_RV_SEL =  
0
BUCKn_RV_SEL =  
1
Regulator disable  
and transition  
according to FSM  
trigger and interrupt  
BUCKn_RV_SEL =  
0
Depends on PFSM  
BUCK output residual  
voltage violation  
configuration, see  
PFSM transition  
diagram  
BUCKn_SC_INT = 1 N/A  
N/A  
N/A  
N/A  
succesfull power-up  
sequence  
Write 1 to  
BUCKn_OV_INT bit  
Interrupt is not  
According to  
BUCKn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
Transition according  
to FSM trigger and  
interrupt  
BUCK regulator  
overvoltage  
BUCKn_OV_INT = 1 BUCKn_OV_MASK  
BUCKn_UV_INT = 1 BUCKn_UV_MASK  
VCCA_OV_INT = 1 VCCA_OV_MASK  
VCCA_UV_INT = 1 VCCA_UV_MASK  
BUCKn_OV_STAT cleared if the  
associated fault  
condition is still  
present  
Write 1 to  
BUCKn_UV_INT bit  
Interrupt is not  
According to  
BUCKn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
Transition according  
to FSM trigger and  
interrupt  
BUCK regulator  
undervoltage  
BUCKn_UV_STAT cleared if the  
associated fault  
condition is still  
present  
Write 1 to  
VCCA_OV_INT bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
According to  
VCCA_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
VCCA input  
overvoltage  
monitoring  
Transition according  
to FSM trigger and  
interrupt  
VCCA_OV_STAT  
VCCA_UV_STAT  
Write 1 to  
VCCA_UV_INT bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
According to  
VCCA_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
VCCA input  
undervoltage  
monitoring  
Transition according  
to FSM trigger and  
interrupt  
Write 1 to  
VMONx_OV_INT bit  
Interrupt is not  
VMONx_OV_STAT cleared if the  
associated fault  
According to  
VMONx_GRP_SEL  
and X_RAIL_TRIG  
bits  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
VMONx input  
overvoltage  
monitoring  
Transition according  
to FSM trigger and  
interrupt  
VMONx_OV_INT =  
VMONx_OV_MASK  
1
condition is still  
present  
Write 1 to  
VMONx_UV_INT bit  
Interrupt is not  
According to  
VMONx_GRP_SEL  
and X_RAIL_TRIG  
bits  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
VMONx input  
undervoltage  
monitoring  
Transition according  
to FSM trigger and  
interrupt  
VMONx_UV_INT =  
VMONx_UV_MASK  
1
VMONx_UV_STAT cleared if the  
associated fault  
condition is still  
present  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-13. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
INTERRUPT  
VMONx_RV_SEL =  
1
According to  
VMONn_GRP_SEL  
and x_RAIL_TRIG  
bits  
VMONx_RV_SEL =  
0
VMONx_RV_SEL =  
1
Transition according Depends on PFSM  
to FSM trigger and configuration, see  
interrupt  
VMONx_RV_SEL = diagram  
VMONx residual  
voltage violation  
VMONx_RV_INT =  
1
Write 1 to  
VMONx_RV_INT bit  
N/A  
N/A  
PFSM transition  
0
N/A  
N/A  
Write 1 to  
TWARN_INT bit  
Interrupt is not  
cleared if  
Thermal warning  
N/A  
Interrupt only  
Not valid  
TWARN_INT = 1  
TWARN_MASK  
TWARN_STAT  
temperature is  
above thermal  
warning level  
Write 1 to  
TSD_ORD_INT bit  
This interrupt bit can  
only be read by the  
MCU after the  
device has  
recovered from a  
previously occurred  
over-temperature  
event.  
All regulators  
disabled and Output STARTUP_DEST[1:0]  
GPIOx set to low in state after  
Automatic start-up to  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
Thermal shutdown,  
orderly sequenced  
TSD_ORD_INT = 1 N/A  
TSD_ORD_STAT  
a sequence and  
temperature is below  
TWARN level  
interrupt(1)  
Write 1 to  
TSD_IMM_INT bit  
This interrupt bit can  
only be read by the  
MCU after the  
device has  
recovered from a  
previously occurred  
over-temperature  
event.  
All regulators  
Automatic start-up to  
STARTUP_DEST[1:0]  
state after  
temperature is below  
TWARN level  
disabled with pull-  
down resistors and  
Output GPIOx set to  
low immediately  
and interrupt(1)  
IMMEDIATE_SHUTD  
OWN  
(SEVERE_ERR_INT)  
Thermal shutdown,  
immediate  
TSD_IMM_INT = 1  
N/A  
TSD_IMM_STAT  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
Write 1 to  
BIST_FAIL_INT bit  
BIST error  
STARTUP_DEST[1:0] BIST_FAIL_INT = 1 BIST_FAIL_MASK  
state  
N/A  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
Write 1 to  
REG_CRC_ERR_IN  
T bit  
REG_CRC_ERR_IN  
T = 1  
Register CRC error  
STARTUP_DEST[1:0]  
state  
REG_CRC_ERR_MASK N/A  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
SPMI communication WN  
Write 1 to  
SPMI_ERR_INT bit  
STARTUP_DEST[1:0] SPMI_ERR_INT = 1 SPMI_ERR_MASK  
state  
N/A  
error  
(MODERATE_ERR_I  
NT)  
Write 1 to  
COMM_FRM_ERR_  
INT bit  
COMM_FRM_ERR_ COMM_FRM_ERR_MA  
Not valid  
SPI frame error  
N/A  
Interrupt only  
Interrupt only  
Interrupt only  
Interrupt only  
Interrupt only  
N/A  
N/A  
N/A  
INT = 1  
SK  
Write 1 to  
COMM_CRC_ERR_  
INT bit  
COMM_CRC_ERR_ COMM_CRC_ERR_MA  
INT = 1 SK  
I2C1 or SPI CRC error N/A  
Not valid  
Not valid  
Not valid  
Not valid  
Write 1 to  
COMM_ADR_ERR_  
INT bit  
I2C1 or SPI address  
COMM_ADR_ERR_ COMM_ADR_ERR_MA  
N/A  
error(4)  
INT = 1  
SK  
Write 1 to  
I2C2_CRC_ERR_IN  
T bit  
I2C2_CRC_ERR_IN  
T = 1  
I2C2 CRC error  
N/A  
N/A  
I2C2_CRC_ERR_MASK N/A  
I2C2_ADR_ERR_MASK N/A  
Write 1 to  
I2C2_ADR_ERR_IN  
T bit  
I2C2_ADR_ERR_IN  
T = 1  
I2C2 address error(4)  
Automatic start-up to  
STARTUP_DEST[1:0]  
state. If previous  
PFSM_ERR_INT is  
pending, VCCA power  
cycle needed for  
recovery.  
All regulators  
disabled with pull-  
down resistors and  
Output GPIOx set to  
low immediately  
and interrupt(1)  
IMMEDIATE_SHUTD  
OWN  
(SEVERE_ERR_INT)  
PFSM_ERR_INT =  
1
Write 1 to  
PFSM_ERR_INT bit  
PFSM error  
N/A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-13. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
INTERRUPT  
Write 1 to  
EN_DRV_READBA  
CK_INT bit  
EN_DRV pin readback  
error (monitoring high N/A  
and low states)  
EN_DRV_READBA EN_DRV_READBACK_ EN_DRV_READBA Interrupt is not  
Interrupt only  
Not valid  
CK_INT = 1  
MASK  
CK_STAT  
cleared if the  
associated fault  
condition is still  
present  
Write 1 to  
NINT_READBACK_I  
NT bit  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
NINT pin readback  
error (monitoring low  
state)  
NINT_READBACK_I NINT_READBACK_MA NINT_READBACK Interrupt is not  
STARTUP_DEST[1:0]  
state  
NT = 1  
SK  
_STAT  
cleared if the  
associated fault  
condition is still  
present  
Write 1 to  
NRSTOUT_READB  
ACK_INT bit  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
NRSTOUT pin  
readback error  
(monitoring low state)  
NRSTOUT_READB NRSTOUT_READBACK NRSTOUT_READB Interrupt is not  
STARTUP_DEST[1:0]  
state  
ACK_INT = 1  
_MASK  
ACK_STAT  
cleared if the  
associated fault  
condition is still  
present  
Write 1 to  
NRSTOUT_SOC_R  
EADBACK_INT bit  
NRSTOUT_SOC pin  
readback error  
(monitoring low state)  
NRSTOUT_SOC_R NRSTOUT_SOC_READ NRSTOUT_SOC_R Interrupt is not  
N/A  
N/A  
N/A  
Interrupt only  
Not valid  
Not valid  
Not valid  
EADBACK_INT = 1 BACK_MASK  
EADBACK_STAT  
cleared if the  
associated fault  
condition is still  
present  
Write 1 to  
ESM_MCU_PIN_IN  
T bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
Fault detected by  
MCU ESM (level  
mode: low level  
detected, PWM mode:  
PWM signal timing  
violation  
ESM_MCU_PIN_IN  
T = 1  
Interrupt only  
ESM_MCU_PIN_MASK N/A  
Fault detected by  
MCU ESM (level  
mode: low level longer  
than DELAY1 time,  
PWM mode: ESM  
error counter >  
Write 1 to  
ESM_MCU_FAIL_IN  
T bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
Interrupt and  
EN_DRV = 0  
(configurable)  
ESM_MCU_FAIL_IN  
T = 1  
ESM_MCU_FAIL_MASK N/A  
FAIL_THR longer than  
DELAY1 time)  
Write 1 to  
ESM_MCU_RST_IN  
T bit  
Fault detected by  
MCU ESM (level  
mode: low level longer  
than  
DELAY1+DELAY2  
time, PWM mode:  
ESM error counter >  
FAIL_THR longer than  
DELAY1+DELAY2  
time)  
Interrupt and Warm Automatically returns  
Reset (EN_DRV = 0 to the current  
and NRSTOUT and operating state after  
This bit can only be  
read by the MCU  
after the LP8764-Q1  
has executed a  
warm-reset and the  
recovery counter  
does not exceed the  
recovery threshold  
ESM_MCU_RST_IN  
T = 1  
ESM_MCU_RST  
ESM_MCU_RST_MASK N/A  
NRSTOUT_SOC  
the completion of  
warm reset  
toggle)(1)  
Write 1 to  
External clock is  
expected, but it is not  
available or the  
frequency is not in the  
valid range  
EXT_CLK_INT bit  
Interrupt is not  
cleared if the  
associated fault  
condition is still  
present  
N/A  
Interrupt only  
Interrupt only  
Not valid  
Not valid  
EXT_CLK_INT = 1(2) EXT_CLK_MASK  
EXT_CLK_STAT  
BIST completed  
successfully  
BIST_PASS_INT =  
BIST_PASS_MASK  
1
Write 1 to  
BIST_PASS_INT bit  
N/A  
N/A  
N/A  
N/A  
Clear interrupt and  
WD_FAIL_CNT <  
WD_FAIL_TH  
Watchdog fail counter  
above fail threshold  
Interrupt and  
EN_DRV = 0  
Write 1 to  
WD_FAIL_INT bit  
WD_FAIL_INT = 1  
N/A  
Write 1 to  
WD_RST_INT bit  
This bit can only be  
read by the MCU  
after the LP8764-Q1  
has executed a  
warm-reset and the  
recovery counter  
does not exceed the  
recovery threshold  
Interrupt and Warm  
Reset if  
Automatically returns  
to the current  
operating state after  
the completion of  
warm reset  
WD_RST_EN = 1  
(EN_DRV = 0 and  
NRSTOUT and  
NRSTOUT_SOC  
toggle)(1)  
Watchdog fail counter WD_RST (if  
above reset threshold WD_RST_EN = 1)  
WD_RST_INT = 1  
N/A  
N/A  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-13. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
INTERRUPT  
Write 1 to  
WD_LONGWIN_TI  
MEOUT_INT bit  
Interrupt and Warm Automatically returns  
Reset (EN_DRV = 0 to the current  
and NRSTOUT and operating state after  
This bit can only be  
read by the MCU  
after the LP8764-Q1  
has executed a  
warm-reset and the  
recovery counter  
does not exceed the  
recovery threshold  
Watchdog long  
window timeout  
WD_LONGWIN_TI  
MEOUT_INT = 1  
WD_RST  
N/A  
N/A  
NRSTOUT_SOC  
the completion of  
warm reset  
toggle)(1)  
Transition to  
TRIGGER_FORCE_ STANDBY or  
Low state in ENABLE STANDBY/ LP_STANDBY  
TRIGGER_FORCE_ depending on the  
ENABLE pin rise  
Not valid  
N/A  
N/A  
N/A  
N/A  
pin  
LP_STANDBY  
LP_STANDBY_SEL  
bit setting(1)  
(1)  
Write 1 to  
ENABLE_INT bit  
ENABLE pin rise  
TRIGGER_SU_x  
ENABLE_INT = 1  
ENABLE_MASK  
ENABLE_STAT  
N/A  
All regulators  
disabled and Output Automatic start-up to  
GPIOx set to low in STARTUP_DEST[1:0]  
Write 1 to  
ORD_SHUTDOWN_  
INT  
Fault causing orderly  
shutdown  
ORDERLY_SHUTDO  
WN  
ORD_SHUTDOWN_ ORD_SHUTDOWN_MA  
INT SK  
a sequence and  
state  
interrupt(1)  
All regulators  
disabled (depending  
on NVM  
configuration with or Automatic start-up to  
Write 1 to  
IMM_SHUTDOWN_I  
NT  
Fault causing  
immediate shutdown  
IMMEDIATE_SHUTD  
OWN  
IMM_SHUTDOWN_I IMM_SHUTDOWN_MA  
NT SK  
without pull-down  
resistors) and  
STARTUP_DEST[1:0]  
state  
N/A  
Output GPIOx set to  
low immediately  
and interrupt(1)  
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
Transition according  
to FSM trigger and  
interrupt  
Write 1 to  
MCU_PWR_ERR_I  
NT  
Power supply error for MCU_POWER_ERR  
MCU OR  
MCU_PWR_ERR_I MCU_PWR_ERR_MAS  
NT  
N/A  
N/A  
K
Depends on PFSM  
configuration, see  
PFSM transition  
diagram  
Transition according  
to FSM trigger and  
interrupt  
Write 1 to  
SOC_PWR_ERR_I  
NT  
Power supply error for SOC_POWER_ERR  
SOC_PWR_ERR_I SOC_PWR_ERR_MAS  
SOC  
OR  
NT  
K
Write 1 to  
VCCA_OVP _INT bit  
This bit can only be  
read by the MCU if  
VCCA < VCCAOVP  
level. As long as  
VCCA VCCAOVP  
level, device stays in  
SAFE RECOVEY  
state, and hence  
this interrupt cannot  
be not cleared.  
All regulators  
Automatic start-up to  
STARTUP_DEST[1:0]  
state after VCCA  
voltage is below  
VCCAOVP  
disabled with pull-  
down resistors and  
Output GPIOx set to  
low immediately  
and interrupt(1)  
IMMEDIATE_SHUTD  
OWN  
(SEVERE_ERR_INT)  
VCCA over-voltage  
VCCA_OVP_INT =  
1
N/A  
VCCA_OVP_STAT  
(VCCAOVP  
)
According to  
GPIOx_FSM_MASK Transition according  
GPIOx_RISE_MASK  
GPIOx_FALL_MASK  
Write 1 to  
GPIOx_INT bit  
GPIO interrupt  
and  
to FSM trigger and Not valid  
GPIOx_INT = 1  
GPIOx_IN  
GPIOx_FSM_MASK_ interrupt  
POL bits  
Transition to  
GPIOx_RISE_MASK  
GPIOx_FALL_MASK  
Write 1 to  
GPIOx_INT bit  
WKUP1 signals  
WKUP2 signals  
WKUP1  
WKUP2  
ACTIVE state and  
Not valid  
Not valid  
N/A  
N/A  
N/A  
N/A  
GPIOx_IN  
GPIOx_IN  
GPIOx_IN  
GPIOx_IN  
interrupt(1)  
Transition to MCU  
ONLY state and  
interrupt(1)  
GPIOx_RISE_MASK  
GPIOx_FALL_MASK  
Write 1 to  
GPIOx_INT bit  
According to  
NSLEEP1 and  
NSLEEP2  
State transition  
based on NSLEEP1 Not valid  
and NSLEEP2  
NSLEEP1 signal,  
NSLEEP1B bit  
NSLEEP1_MASK  
NSLEEP2_MASK  
N/A  
N/A  
According to  
NSLEEP1 and  
NSLEEP2  
State transition  
based on NSLEEP1 Not valid  
and NSLEEP2  
NSLEEP2 signal,  
NSLEEP2B bit  
All regulators  
disabled with pull-  
LDOVINT over- or  
undervoltage  
Reset condition for  
all logic circuits  
Valid LDOVINT  
voltage  
down resistors and  
Output GPIOx set to  
low immediately(1)  
N/A  
N/A  
N/A  
N/A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-13. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
INTERRUPT  
All regulators  
disabled with pull-  
Main clock outside  
valid frequency  
Reset condition for  
all logic circuits  
down resistors and VCCA power cycle  
Output GPIOx set to  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
low immediately(1)  
All regulators  
Recovery counter limit ORDERLY_SHUTDO disabled and Output  
VCCA power cycle  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
exceeded(3)  
WN  
GPIOx set to low in  
a sequence(1)  
All regulators  
disabled with pull-  
VCCA supply falling  
below VCCAUVLO  
Reset condition for  
all logic circuits  
down resistors and VCCA voltage rising  
Output GPIOx set to  
N/A  
low immediately(1)  
Start-up to  
STARTUP_DEST[1:  
First supply detection,  
VCCA supply rising  
above VCCAUVLO  
Write 1 to FSD_INT  
bit  
TRIGGER_SU_x  
Not valid  
FSD_INT = 1  
FSD_MASK  
0] state and  
interrupt(1)  
(1) The results shown in this column are selected to meet functional safety assumptions and device specifications. The actual results can  
be configured differently in NVM memory. TI recommends reviewing of the system and device functional safety goal and  
documentation before deviating from these recommendations.  
(2) Interrupt is generated during clock detector operation and in case clock is not available when clock detector is enabled.  
(3) This event does not occur if RECOV_CNT_THR = 0, even though RECOV_CNT continues to accumulate and increase, and eventually  
saturates when it reaches the maximum count of 15.  
(4) I2C1, I2C2, or SPI address error only occur in safety applications if the interface CRC feature is enabled, when both  
I2C1_SPI_CRC_EN and I2C2_CRC_EN are set to '1'.  
8.11 Control Interfaces  
The device has two, exclusive selectable (from factory settings) interfaces. Please refer to the User's Guide of  
the orderable part number which option has been selected. The first selection is up to two high-speed I2C  
interfaces. The second selection is one SPI interface. The SPI and I2C1 interfaces are used to fully control and  
configure the device, and have access to all of the configuration registers and Watchdog registers. During  
normal operating mode, when the I2C configuration is selected, and the GPIO2 and GPIO3 pins are configured  
as the SCL_I2C2 and SDA_I2C2 pins, the I2C2 interface becomes the dedicated interface for the Q&A  
Watchdog communication channel, while I2C1 interface no longer has access to the Watchdog registers. .  
8.11.1 CRC Calculation for I2C and SPI Interface Protocols  
For safety applications, the LP8764-Q1 supports read and write protocols with embedded CRC data fields. The  
LP8764-Q1 uses a standard CRC-8 polynomial to calculate the checksum value: X8 + X2 + X + 1. The CRC  
algorithm details are as follows:  
Initial value for the remainder is all 1s  
Big-endian bit stream order  
Result inversion is enabled  
For I2C Interface, the LP8764-Q1 uses the above mentioned CRC-8 polynomial to calculate the checksum value  
on every bit except the ACK and NACK bits it receives from the MCU during a write protocol. The LP8764-Q1  
compares this calculated checksum with the R_CRC checksum value that it receives from the MCU. The  
LP8764-Q1 also uses the above mentioned CRC-8 polynomial to calculate the T_CRC checksum value during a  
read protocol. This T_CRC checksum value is based on every bit that the LP8764-Q1 receives, except the ACK  
and NACK bits and except the repeated I2C_ID bits, and the data that the LP8764-Q1 transmits to the MCU  
during a read protocol. The MCU must use this same CRC-8 polynomial to calculate the checksum value based  
on the bits that the MCU receives from the LP8764-Q1. The MCU must compare this calculated checksum with  
the T_CRC checksum value that it receives from the LP8764-Q1.  
For the SPI interface, the LP8764-Q1 uses the above mentioned CRC-8 polynomial to calculate the checksum  
value on every bit it receives from the MCU during a write protocol. The LP8764-Q1 compares this calculated  
checksum with the R_CRC checksum value, that it receives from the MCU. During a read protocol, the device  
also uses the above mentioned CRC-8 polynomial to calculate the T_CRC checksum value based on the first 16  
bits sent by the MCU, and the next 8 bits the LP8764-Q1 transmits to the MCU. The MCU must use this same  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
CRC-8 polynomial to calculate the checksum value based on the bits which the MCU sends to and receives from  
the LP8764-Q1, and compare it with the T_CRC checksum value that it receives from the LP8764-Q1.  
8-22 and 8-23 are examples for the 8-bit R_CRC and the T_CRC calculation from 16-bit databus.  
24  
24-bit bus ordering value for I2C:  
RW ADDR[7:0]  
0
0
I2C_ID[7:1]  
ADDR[7:0]  
WDATA[7..0]  
WDATA[7..0]  
24  
24-bit bus ordering value for SPI:  
PAGE[2:0]  
0
RESERVED[3:0]  
Flip-Flop the Preload Value  
(Seed Value)  
1
1
1
1
1
1
1
1
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
R_CRC[7]  
R_CRC[6]  
R_CRC[5]  
R_CRC[4]  
R_CRC[3]  
R_CRC[2]  
R_CRC[1]  
R_CRC[0]  
8-22. Calculation of 8-Bit CRC on Received Data (R_CRC)  
32  
24  
32-bit bus ordering value for I2C:  
0
0
I2C_ID[7:1]  
RW  
ADDR[7:0]  
I2C_ID[7:1]  
RW  
WDATA[7..0]  
WDATA[7..0]  
24-bit bus ordering value for SPI:  
ADDR[7:0]  
PAGE[2:0]  
0
RESERVED[3:0]  
Flip-Flop the Preload Value  
(Seed Value)  
1
1
1
1
1
1
1
1
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
T_CRC[7]  
T_CRC[6]  
T_CRC[5]  
T_CRC[4]  
T_CRC[3]  
T_CRC[2]  
T_CRC[1]  
T_CRC[0]  
8-23. Calculation of 8-Bit CRC on Transmitted Data (T_CRC)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.11.2 I2C-Compatible Interface  
The default I2C1 7-bit device address of the LP8764-Q1 device is set to a binary value that is described in the  
User's Guide of the orderable part number of the LP8764-Q1 PMIC, while the two least-significant bits can be  
changed for alternative page selection listed under 8.13.1. The default 7-bit device address for the I2C2  
interface, for accessing the watchdog configuration registers and for operating the watchdog in Q&A mode, is  
described in the User's Guide of the orderable part number of the LP8764-Q1 PMIC.  
The I2C-compatible synchronous serial interface provides access to the configurable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the devices  
connected to the bus. The two interface lines are the serial data line (SDA), and the serial clock line (SCL).  
Every device on the bus is assigned a unique address and acts as either a master or a slave depending on  
whether it generates or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor  
placed somewhere on the line and remain HIGH even when the bus is idle. The device supports standard mode  
(100 kHz), fast mode (400 kHz), and fast mode plus (1 MHz) when VIO is 3.3 V or 1.8 V, and high-speed mode  
(3.4 MHz) only when VIO is 1.8 V.  
8.11.2.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the  
state of the data line can only be changed when clock signal is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
8-24. Data Validity Diagram  
8.11.2.2 Start and Stop Conditions  
The device is controlled through an I2C-compatible interface. START and STOP conditions classify the beginning  
and end of the I2C session. A START condition is defined as the SDA signal going from HIGH to LOW while the  
SCL signal is HIGH. A STOP condition is defined as the SDA signal going from LOW to HIGH while the SCL  
signal is HIGH. The I2C master device always generates the START and STOP conditions.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
8-25. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. The I2C master can  
generate repeated START conditions during data transmission. A START and a repeated START condition are  
equivalent function-wise. 8-26 shows the SDA and SCL signal timing for the I2C-compatible bus. For timing  
values, see the Specification section.  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
8-26. I2C-Compatible Timing  
8.11.2.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls  
down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge  
after each byte has been received.  
There is one exception to the acknowledge after every byte rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (negative acknowledge) the last byte clocked out  
of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master),  
but the SDA line is not pulled down.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE and a 1  
indicates a READ. The second byte selects the register to which the data is written. The third byte contains data  
to write to the selected register. 8-27 shows an example bit format of device address 110000-Bin = 60Hex.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
I2C Address (chip address)  
8-27. Example Device Address  
For safety applications, the device supports read and write protocols with embedded CRC data fields. In a write  
cycle, the I2C master device (i.e. the MCU) must provide the 8-bit CRC value after sending the write data bits  
and receiving the ACK from the slave. The CRC value must be calculated from every bit included in the write  
protocol except the ACK bits from the slave. See CRC Calculation for I2C and SPI Interface Protocols. In a read  
cycle, the I2C slave must provide the 8-bit CRC value after sending the read data bits and the ACK bit, and  
expect to receive the NACK from the master at the end of the protocol. The CRC value must be calculated from  
every bit included in the read protocol except the ACK and NACK bits. See CRC Calculation for I2C and SPI  
Interface Protocols.  
备注  
If I2C CRC is enabled in the device and an I2C write without R_CRC bits is done, the device does not  
process the write request. The device does not set any interrupt bit and does not pull the nINT pin low.  
The embedded CRC field can be enabled or disabled from the protocol by setting the I2C1_SPI_CRC_EN (for  
I2C1) or I2C2_CRC_EN (for I2C2) register bit to '1' - enabled, '0' - disabled. The default of this bit is configurable  
through the NVM.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
In case the calculated CRC-value does not match the received CRC-check-sum, an I2C-CRC-error is detected,  
the COMM_CRC_ERR_INT (for I2C1) or I2C2_CRC_ERR_INT (for I2C2) bit is set, unless it is masked by the  
COMM_CRC_ERR_MASK or I2C2_CRC_ERR_MASK bit. The MCU must clear this bit by writing a 1to the  
COMM_CRC_ERR_INT (for I2C1) or I2C2_CRC_ERR_INT (for I2C2) bit.  
When the CRC field is enabled, in the case when MCU attempts to write to a read-only register or a register-  
address that does not exist, the device sets the COMM_ADR_ERR_INT (for I2C1) or I2C2_ADR_ERR_INT (for  
I2C2) bit, unless the COMM_ADR_ERR_MASK or I2C2_ADR_ERR_MASK bit is set. The MCU must clear this  
bit by writing a 1to the COMM_ADR_ERR_INT (for I2C1) or I2C2_ADR_ERR_INT (for I2C2) bit.  
START  
ACK  
ACK  
ACK STOP  
I2C_ID[7:1]  
0
ADDR[7:0]  
WDATA[7:0]  
STOP  
SCL  
SDA  
0x60  
0x36  
0x16  
8-28. I2C Write Cycle without CRC  
START  
ACK  
ACK  
ACK STOP  
STOP  
R_CRC[7:0]  
I2C_ID[7:1]  
0
ADDR[7:0]  
WDATA[7:0]  
SCL  
SDA  
0x43  
0x60  
0x36  
0x16  
The I2C master device (i.e. the MCU) provides R_CRC[7:0], which is calculated from the I2C_ID, R/W, ADDR, and the WDATA bits (24  
bits). See CRC Calculation for I2C and SPI Interface Protocols.  
8-29. I2C Write Cycle with CRC  
REPEATED  
STOP  
START  
START  
ACK  
ACK  
ACK  
NCK  
I2C_ID[7:1]  
0
ADDR[7:0]  
I2C_ID[7:1]  
1
RDATA[7:0]  
STOP  
SCL  
SDA  
0x60  
0x36  
0x60  
0x16  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
8-30. I2C Read Cycle without CRC  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
REPEATED  
START  
STOP  
NCK  
START  
ACK  
ACK  
ACK  
ACK  
I2C_ID[7:1]  
0
ADDR[7:0]  
I2C_ID[7:1]  
1
RDATA[7:0]  
T_CRC[7:0]  
STOP  
SCL  
SDA  
0x60  
0x36  
0x60  
0x16  
0x7D  
The I2C slave device (i.e. the LP8764-Q1) provides T_CRC[7:0], which is calculated from the I2C_ID, R/W, ADDR, I2C_ID, R/W, and  
the RDATA bits (32 bits). See CRC Calculation for I2C and SPI Interface Protocols.  
8-31. I2C READ Cycle with CRC  
8.11.2.4 Auto-Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Every time an  
8-bit word is sent to the device, the internal address index counter is incremented by one and the next register is  
written. 8-14 lists the writing sequence to two consecutive registers. Note that auto increment feature does not  
support CRC protocol.  
8-14. Auto-Increment Example  
DEVICE  
ADDRESS =  
0x60  
MASTER  
ACTION  
REGISTER  
ADDRESS  
START  
WRITE  
DATA  
DATA  
STOP  
PMIC device  
ACK  
ACK  
ACK  
ACK  
8.11.3 Serial Peripheral Interface (SPI)  
The device supports SPI serial-bus interface and it operates as a peripheral device. The MCU in the system acts  
as the controller device. A single read and write transmission consists of 24-bit write and read cycles (32-bit if  
CRC is enabled) in the following order:  
Bits 1-8: ADDR[7:0], Register address  
Bits 9-11: PAGE[2:0], Page address for register  
Bit 12: Read/Write definition, 0 = WRITE, 1 = READ.  
Bits 13-16: RESERVED[4:0], Reserved, use all zeros.  
For Write: Bits 17-24: WDATA[7:0], write data  
For Write with CRC enabled: Bits 25-32: R_CRC[7:0], CRC error code calculated from bits 1-24 sent by the  
controller device (i.e. the MCU). See 8.11.1.  
For Read: Bits 17-24: RDATA[7:0], read data  
For Read with CRC enabled: Bits 25-32: T_CRC[7:0], CRC error code calculated from bits 1-16 sent by the  
controller device (i.e. the MCU), and bits 17-24, sent by the peripheral device (i.e. the LP8764-Q1). See 节  
8.11.1.  
In parallel with ADDR[7:0], PAGE[2:0], Read/Write definition and RESERVED[3:0] bits the device sends 16-bit  
interrupt status using SDO_SPI pin in the following order:  
Bit 1: always 0  
Bits 2-8: status of several interrupts and EN_DRV pin  
Bit 9: always 1  
Bits 10-16: status of several interrupts and EN_DRV pin, with opposite polarity  
The status signals are in INT_SPI_STATUS register:  
Bit 8: always 0  
Bit 7: COMM_ADR_ERR_SWINT  
Bit 6: COMM_CRC_ERR_SWINT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Bit 5: COMM_FRM_ERR_SWINT  
Bit 4: ESM_MCU_PIN_SWINT  
Bit 3: TWARN_SWINT  
Bit 2: WD_SWINT  
Bit 1: EN_DRV_STAT  
Please refer to the bit descriptions of the INT_SPI_STATUS register in 8.16.1 for the needed conditions in  
order to have an error-indication through these status bits.  
EN_DRV_STAT bit is showing the live state of the EN_DRV pin, whereas all other status bits are latched in the  
same way as interrupts indicated with nINT pin. The latched status bits in INT_SPI_STATUS register are cleared  
by writing 1 to the latched bit. Bits 10-16 are sent for redundancy for bits 2-8 with opposite polarity. Bits 10-16  
are always correlating with bits 2-8 and do not change during communication even when the status signal  
changes.  
The embedded CRC filed can be enabled or disabled from the protocol by setting the I2C1_SPI_CRC_EN  
register bit to '1' - enabled, '0' - disabled. The default of this bit is configurable through the NVM.  
The SDO_SPI output is in a high-impedance state when the CS_SPI pin is high. When the CS_SPI pin is low,  
the SDO_SPI output is always driven low except when the RDATA or SCRC bits are sent. When the RDATA or  
SCRC bits are sent, the SDO_SPI output is driven accordingly.  
The address, page, data, and CRC are transmitted MSB first. The chip-select signal (CS_SPI) must be low  
during the cycle transmission. The CS_SPI signal resets the interface when it is high, and must be taken high  
between successive cycles. Data is clocked in on the rising edge of the SCK_SPI clock signal and it is clocked  
out on the falling edge of SCK_SPI clock signal.  
The SPI Timing diagram shows the timing information for these signals.  
CS_SPI  
SCLK_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
0
WDATA[7:0]  
SDI_SPI  
ADDR[7:0]  
SDO_SPI Hi-Z  
Hi-Z  
0
SPI_STATUS[6:0]  
1 SPI_STATUS[6:0]  
8-32. SPI Write Cycle  
CS_SPI  
SCLK_SPI  
SDI_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
0
WDATA[7:0]  
R_CRC[7:0]  
ADDR[7:0]  
SDO_SPI Hi-Z  
Hi-Z  
0
SPI_STATUS[6:0]  
1
SPI_STATUS[6:0]  
8-33. SPI Write Cycle with CRC  
Copyright © 2022 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
CS_SPI  
SCLK_SPI  
SDI_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
1
ADDR[7:0]  
Hi-Z  
0
SPI_STATUS[6:0]  
1
SPI_STATUS[6:0]  
RDATA[7:0]  
Hi-Z  
SDO_SPI  
8-34. SPI Read Cycle  
CS_SPI  
SCLK_SPI  
SDI_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
ADDR[7:0]  
1
SDO_SPI  
Hi-Z  
0
SPI_STATUS[6:0]  
1
SPI_STATUS[6:0]  
RDATA[7:0]  
T_CRC[7:0]  
Hi-Z  
8-35. SPI Read Cycle with CRC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.12 Multi-PMIC Synchronization  
A multi-PMIC synchronization scheme is implemented in the LP8764-Q1 device to synchronize the power state  
changes with other PMIC devices. This feature consolidates and simplifies the IO control signals required  
between the application processor or the microcontroller and multiple PMICs in the system. The control interface  
consists of an SPMI protocol that communicates the next power state information from the primary PMIC to up to  
5 secondary PMICs, and receives feedback signal from the secondary PMICs to indicate any error condition or  
power state information. 8-36 is the block diagram of the power state synchronization scheme. The primary  
PMIC in this block diagram is responsible for broadcasting the synchronous system power state data, and  
processing the error feedback signals from the secondary PMICs. The primary PMIC is the controller device on  
the SPMI bus, and the secondary PMICs are the target devices on the SPMI bus.  
Synchronous-System Power-State Data  
Error Feedback  
Primary PMIC  
Secondary PMIC  
Secondary PMIC  
Sequencing and Power  
State Configurations in  
Nonvolatile Memory  
Sequencing and Power  
State Configurations in  
Nonvolatile Memory  
Sequencing and Power  
State Configurations in  
Nonvolatile Memory  
Power-State  
Sequencer  
Controller  
Power-State  
Sequencer  
Controller  
Power-State  
Sequencer Controller  
Power supply  
configuration  
STATE  
1
Exit Condition 1  
Signal list  
Internal condition list  
Error Conditions  
Timeout on PGOOD  
Thermal  
Power supply  
configuration  
Power supply  
configuration  
Current  
Voltage  
STATE  
1
Exit Condition  
Signal list  
Internal condition list  
1
STATE  
1
Exit Condition 1  
Signal list  
Internal condition list  
STATE_1  
Error Conditions  
Timeout on PGOOD  
Thermal  
Error Conditions  
Timeout on PGOOD  
Thermal  
...  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
1
2
Current  
Voltage  
Current  
Voltage  
STATE_1  
STATE_1  
Effective  
...  
...  
Effective  
power  
state  
Effective  
power  
state  
OFF  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
1
2
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
1
2
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
STATE_2  
OFF  
OFF  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
STATE_2  
STATE_2  
power  
state  
ERROR  
(SAFE STATE)  
ERROR  
(SAFE STATE)  
ERROR  
(SAFE STATE)  
STATE_3  
Controller for  
Output Power  
Supply Rails  
STATE_3  
STATE_3  
Controller for  
Output Power  
Supply Rails  
Controller for  
Output Power  
Supply Rails  
STATE_N  
STATE_N  
STATE_N  
Power  
supply  
error  
Power  
supply  
error  
Power  
supply  
error  
Signal Arbitration  
Logic  
ENABLE or WAKE  
signals from  
external hardware  
Power-State Control  
Signals such as:  
ACTIVE, SLEEP, RESET,  
ERROR, TRACKING  
Scalable Microprocessor and System on Chip  
8-36. Multi-PMIC Power State Synchronization Block Diagram  
In this scheme, each primary and secondary PMIC runs on its own system clock, and maintains its own register  
map. Each PMIC monitors its own activities and pulls down the open-drain output of nINT or PGOOD pin when  
errors are detected. The microprocessor must read the status bits from each PMIC device through the I2C or  
SPI interface to find out the source of the error that is reported.  
8-37 illustrates the pin connections between the primary, the secondary, and the application processor or the  
System-on-Chip.  
Copyright © 2022 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
VIO  
Secondary PMIC  
I2C_SCL  
I2C_SDA  
SDATA  
SCLK  
Interrupt  
Handler  
Power  
nINT  
Sequencer  
Power Good  
Monitor  
PGOOD  
Secondary PMIC  
I2C_SCL  
I2C_SDA  
SDATA  
SCLK  
Power  
Sequencer  
nINT  
µProcessor  
&
PGOOD  
System  
on  
Primary PMIC  
Chip  
I2C1_SCL  
I2C1_SDA  
ENABLE  
nINT  
nERR_MCU  
nSLEEPx  
Power  
Sequencer  
GPIO  
nRSTOUTx  
WAKEn  
PGOOD  
SCLK  
SDATA  
I2C2_SCL  
I2C2_SDA  
Q&A  
WDOG  
8-37. multi-PMIC Pin Connections  
The power sequencer of the multiple PMICs are synchronized at the beginning of each power up and power  
down sequence; a variation in the sequence timing, however, is still possible due to the ±5% clock accuracy of  
the independent system clocks on the primary and secondary PMICs. The worst-case sequence timing variation  
from different PMIC rails is up to ±10% of the target delay time. 8-38 illustrates the creation of this timing  
variation between PMICs.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Primary PMIC  
System clock  
(+/-5% accuracy)  
...  
...  
Primary PMIC  
Rail X  
Sequence delay between rails in Primary PMIC  
Primary PMIC  
Rail Y  
Secondary PMIC  
System clock  
(+/-5% accuracy)  
...  
...  
Sequence delay between rails in secondary PMIC  
Secondary PMIC  
Rail Z  
Sequencing timing variation between PMIC rails  
8-38. Multi-PMIC Rail Sequencing Timing Variation  
8.12.1 SPMI Interface System Setup  
An SPMI interface in the LP8764-Q1 device is utilized to communicate the power state transition across multiple  
PMICs in the system. The SPMI interface contains a controller block and a target block. There is only one PMIC,  
which is the primary PMIC, that acts as SPMI controller in any given system. As the SPMI controller it initiates  
SPMI interface BIST and executes periodic checking of the SPMI bus health.  
The primary PMIC has a controller-ID (CID)= 1. The target block of SPMI interface in the primary PMIC device is  
activated as well, in order to receive SPMI communication messages from the secondary PMICs. The primary  
PMIC has a target-ID (TID) = 0101.  
Each secondary PMIC on the SPMI network only has the target block of its SPMI interface enabled. There  
cannot be more than five secondary PMICs in the system. The target-IDs (TIDs) for the five secondary PMICs  
are:  
1st target device: 0011  
2nd target device: 1100  
3rd target device: 1001  
4th target device: 0110  
5th target device: 1010  
All devices in the SPMI network listen to the group target-ID (GTID): 1111. This address is used to communicate  
all power state transition information in broadcast mode to all connected devices on the SPMI bus.  
8.12.2 Transmission Protocol and CRC  
The communication between the devices on the network utilizes Extended Register Write command to GTID  
address 1111 with byte length of 2. Sequence format complies with MIPI SPMI 2.0 specification. First data frame  
carries the data payload of 5 bits and 3 filler bits.  
Communication over the SPMI interface may contain information regarding the power state transition or the  
unique TID of one or more target devices. In the case of power state information, the data payload contains 5  
bits of Trigger ID information and 3 trigger state bits. In the case of TID information, all 8 bits contain the TID of  
the target device.  
Second data frame carries 8 bits of CRC information. CRC polynomial used is X8 + X2 + X + 1. CRC is  
calculated over the SPMI command frame, the address frame, and the first data frame (which contains the  
payload and excludes the parity bits in these three frames).  
Copyright © 2022 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-39 shows the data format of the SPMI Extended Register Write Command.  
SCLK  
SDATA  
SA3  
SA2  
SA1  
SA0  
0
0
0
0
BC3  
BC2  
BC1  
BC0  
P
Extended register-write command frame  
SSC  
SCLK  
SDATA  
P
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
P
Register address (data frame) for first register  
SCLK  
SDATA  
P
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
First data frame  
... Intermediate Data Frames ...  
SCLK  
SDATA  
P
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
0
Last data frame  
Bus park ACK or Bus park  
NAK  
Signal driven by BOM or request-capable peripheral device  
(SCLK always driven by BOM only)  
Signal not driven; pulldown only.  
Response by peripheral devices  
For reference only  
8-39. SPMI Extended Register Write Command  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.12.2.1 Operation with Transmission Errors  
If the receiving device detects a parity or CRC error in the incoming sequence it responds with negative ACK/  
NACK per SPMI standard.  
If the transmitting device sees NACK response, it tries to resend the message as many times as indicated by  
SPMI_RETRY_LIMIT register bits. After that it considers the SPMI bus inoperable, sets SPMI_ERR_INT  
interrupt and goes to the safe recovery state and executes an orderly shutdown. Bus arbitration requests do not  
count as failed attempts if a target device loses bus arbitration. SPMI_RETRY_LIMIT counter is reset after each  
successful transmission by the device.  
If a target device has determined that SPMI does not work reliably it does not respond to any SPMI commands  
anymore until power-on-reset event has occurred. This "no-response" behavior is to prevent continued operation  
in a situation where SPMI is unreliable. If a target device does no longer respond to any SPMI command, the  
controller device on the SPMI bus detects a missing target device on the network during the periodic testing of  
SPMI bus. The target device then internally handles the SPMI error condition per error handling rules set for the  
device (in general executing an orderly shutdown). SPMI block signals to the device that SPMI bus error has  
occurred after the retry limit has been exceeded.  
8.12.2.2 Transmitted Information  
The SPMI bus is used to carry two types of information:  
PFSM Trigger ID between the SPMI controller and target devices  
TID from SPMI target devices to SPMI controller device  
The SPMI controller device reads the TID of the target devices periodically to check the health of the interface.  
Exchanging Trigger IDs for the power state transition is sufficient to keep the PFSMs of all the devices on the  
SPMI network in synchronization. Device interrupts explain reason for the power state transitions.  
8.12.3 SPMI Target Device Communication to SPMI Controller Device  
An SPMI target device communicates to the SPMI controller device and any other SPMI target devices, only if  
there is an internal error that is not SPMI related. The target device initiates the error communication using  
Arbitration Request with A-bit as defined in the SPMI 2.0 specification. SPMI 2.0 protocol manages the situation  
with multiple target devices requesting error communication at the same time, by using the target arbitration  
process as described in SPMI 2.0 specification. Once the SPMI target device wins the arbitration using the A-bit  
protocol, it performs an Extended Register Write command to Group Target ID (GTID) address 1111 by using the  
protocol described in 8.12.2 for communicating PFSM trigger ID.  
8.12.3.1 Incomplete Communication from SPMI Target Device to SPMI Controller Device  
In case the SPMI controller device detects an arbitration request on the SPMI interface, but the received  
sequence has an error or is incomplete, the SPMI controller device immediately performs the SPMI Built-In Self-  
Test (SPMI-BIST). If this SPMI-BIST fails, the SPMI controller device executes the error handling for the SPMI  
error. If the SPMI-BIST passes successfully, the SPMI controller device resumes normal operation.  
8.12.4 SPMI-BIST Overview  
The SPMI-BIST is performed during BIST state and regularly during runtime operation. 8-40 below illustrates  
how the SPMI-BIST operates during device power-up.  
Copyright © 2022 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
PMIC internal sequencing  
PWRON/ENABLE causes transition  
to active mode  
ñ
ñ
ñ
read NVM  
initialization  
Etc.  
Power sequence  
FTTI >> SPMI BIST interval  
VIN  
PWRON/ENABLE  
PMIC State  
BOOT BIST  
STANDBY  
ACTIVE/MISSION  
SPMI  
SPMI BIST patterns  
SPMI BIST pattern as part of BOOT  
BIST sequence  
SPMI messaging to secondary PMIC  
to go to ACTIVE state  
8-40. SPMI-BIST Operation  
After the input power is detected and verified to be at the correct level, the LP8764-Q1 initializes itself by reading  
the NVM and performs all actions that are needed to prepare for operation . After this initialization, the LP8764-  
Q1 enters the BOOT BIST state, in which the internal logic performs a series of tests to verify that the LP8764-  
Q1 device is OK. As part of this test, the SPMI- BIST is performed. After it is completed successfully, the  
LP8764-Q1 device goes to the standby state and waits for further signals from the system to initiate the power-  
up sequence of the processor.  
A valid on request initiates the processor power-up sequence. The controller device communicates this event  
through the SPMI bus to all of the target devices. After that, the power-up sequence is executed and LP8764-Q1  
enters the configured mission state.  
8.12.4.1 SPMI Bus during Boot BIST and RUNTIME BIST  
During Boot BIST and RUNTIME BIST, both the Logic BIST (LBIST) on the SPMI logic and the SPMI-BIST are  
performed to check correct operation of the SPMI bus. The LBIST is performed first before the SPMI-BIST  
during BOOT BIST and RUNTIME BIST. The SPMI-BIST is implemented by reading TID from each target device  
on the SPMI bus into the controller device, and ensuring they are unique and match the expected amount of  
target devices. This process of checking the TID of each target device ensures that:  
All SPMI target devices are present in the system as expected  
The SPMI logic blocks are working on the SPMI controller device and all of the SPMI target devices  
The pins and wires on the ICs and PCB are in working order  
The SPMI-BIST is initiated by the SPMI controller block in the primary PMIC by writing a request to all SPMI  
target device(s) (using GTID) to send their TIDs to the SPMI controller block of the primary PMIC. Upon  
receiving this command from the SPMI controller device, the SPMI target devices request SPMI bus arbitration  
using the SR-bit protocol. Upon winning the bus arbitration the SPMI target devices transmit their TID into the  
SPMI target block of the primary PMIC.  
The SPMI controller block of the primary PMIC contains a list of all SPMI target device(s) on the SPMI bus and  
their TIDs in the register set. The SPMI controller block of the primary PMIC reads the TID from each SPMI  
target device and compares the result with the stored TID for the corresponding SPMI target device. The SPMI  
controller device has to ensure that every non-zero TID on its list is returned, in order to support use cases in  
which there are two or more identical SPMI target devices, with same TID, in the system. In these cases, it is  
mandatory that the expected number of the same TIDs is returned. If no identical PMICs are to be used, then a  
return of the same TID multiple times is an error due to incorrect assembly of identical PMICs onto the PCB. An  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
all-zero TID stored in the list of the primary PMIC indicates that there are no SPMI target device(s) present on  
the SPMI Bus.  
8.12.4.2 Periodic Checking of the SPMI  
The SPMI controller block in the primary PMIC executes the SPMI-BIST periodically while device is operating.  
The time-period after the SPMI-BIST is repeated according factory-configured settings during the device boot  
time, and after the device reaches mission states. The factory-configured settings of this SPMI-BIST time period  
must be the same for all PMICs on the same SPMI network. The SPMI target devices on the SPMI bus expect a  
request for sending its TID from the SPMI controller device within 1.5x the factory-configured period . This factor  
1.5x provides enough margin for clock uncertainty between the SPMI controller device and the SPMI target  
device.  
During mission state operation, the SPMI controller device expects the SPMI target devices to respond to the  
TID request within the factory-configured polling time-out period . In other words, from the polling start command  
each SPMI target device must respond within this factory-configured time interval.  
During boot time or when the device enters Safe Recovery state, to prevent the SPMI controller device from  
polling the SPMI target devices too often while one or more of these recovering from a system error such as a  
thermal shutdown event, the device sets a longer timeout period that allows the SPMI target devices to respond  
to the SPMI controller device before he SPMI controller device reports an error.  
If one or more devices on the SPMI bus cause a violating of the polling time-out period either during start-up or  
during normal operation, the SPMI controller block in the affected PMIC(s) sets a SPMI error trigger signal to the  
PFSM of the affected PMIC(s), causing a complete shutdown of the affected PMIC(s). As a result, the affected  
PMIC(s) no longer respond on the SPMI bus, which in turn is detected by the SPMI controller block off the non-  
affected PMICs on the SPMI bus. The SPMI controller block in these PMICs sets an SPMI error to the PFSM in  
these PMICs, causing a complete shutdown of these PMICs. Therefore, all PMICs are finally shutdown if one or  
more devices on the SPMI bus cause a violating of the polling time-out period .  
8.12.4.3 SPMI Message Priorities  
The SPMI Bus uses the protocol priority levels listed in 8-15 for each type of communication message.  
8-15. SPMI Message Types and Priorities  
SPMI protocol priority level  
Name of priority level in SPMI standard  
Message types  
State transition messages from  
target device(s) to controller  
device  
Highest  
A-bit arbitration  
State transition messages from  
controller device to target  
device(s)  
priority arbitration  
target device TID to controller  
device  
SR-bit arbitration  
Controller device request of TIDs  
from target device(s)  
Lowest  
secondary arbitration  
8.13 NVM Configurable Registers  
8.13.1 Register Page Partitioning  
The registers in the LP8764-Q1 device are organized into five internal pages. Each page represents a different  
type of register. The below list shows the pages with their register types:  
Page 0: User Registers  
Page 1: NVM Control, Configuration, and Test Registers  
Page 2: Trim Registers  
Page 3: SRAM for PFSM Registers  
Page 4: Watchdog Registers  
Copyright © 2022 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
备注  
When I2C Interfaces are used, each of the above listed register pages has its own 6-bit I2C device  
address. In order to address Page 0 to 3, the two LSBs if the pre-configured I2C1_ID are replaced  
with 00 for Page 0, 01 for Page 1, 10 for Page 2 and 11 for Page 3. As an example, if I2C1_ID=0x26  
(0100110b) , Page 0 to 3 have following addresses:  
Page 0: 0100100  
Page 1: 0100101  
Page 2: 0100110  
Page 3: 0100111  
For Page 4 the I2C device address is according register bits I2C2_ID. Therefore, in case both I2C1  
and I2C2 Interfaces are used, each LP8764-Q1 device occupies four I2C device addresses (for Page  
0, Page 1, Page 2 and Page 3) on the I2C1 bus and one I2C device address (for Page 4) on the I2C2  
bus. And in case only I2C1 Interfaces is used, each LP8764-Q1 device occupies five I2C device  
addresses (for Page 0, Page 1, Page 2, Page 3 and Page 4) on the I2C1 bus. In case multiple devices  
are used on a common I2C bus, care must be taken to avoid overlapping I2C device addresses.  
备注  
When SPI Interface is used, the above listed register pages are addresses with the PAGE[2:0] bits:  
0x0 addresses Page 0, 0x1 addresses Page 1, 0x2 addresses Page 2, 0x3 addresses Page 3  
8.13.2 CRC Protection for Configuration, Control, and Test Registers  
The LP8764-Q1 device includes a static CRC-16 engine to protect all the static registers of the device. Static  
registers are registers in Page 1, 2, and 3, with values that do not change once loaded from NVM. The CRC-16  
engine continuously checks the control registers on the device. The expected CRC-16 value is stored in the  
NVM. When the CRC-16 engine detects a mismatch between the calculated and expected CRC-16 values, the  
interrupt bit REG_CRC_ERR_INT is set and the device forces an orderly shutdown sequence to return to the  
SAFE RECOVERY state. The device NVM control, configuration, and test registers in page 1 are protected  
against read or write access when the device is in normal functional mode. .  
The CRC-16 engine uses a standard CRC-16 polynomial to calculate the internal known-good checksum-value,  
which is X16 + X14 + X13 + X12 + X10 + X8 + X6 + X4 + X3 + X + 1.  
The initial value for the remainder of the polynomial is all 1s and is in big-endian bit-stream order. The inversion  
of the calculated result is enabled.  
备注  
The CRC-16 engine assumes a default value of '0' for all undefined or reserved bits in all control  
registers. Therefore, the software MUST NOT write the value of '1' to any of these undefined or  
reserved bits. If the value of '1 is written to any undefined or reserved bit of a writable register, the  
CRC-16 engine detects a mismatch between the calculated and expected CRC-16 values, and hence  
the interrupt bit REG_CRC_ERR_INT is set and the device forces an orderly shutdown sequence to  
return to the SAFE RECOVERY state.  
8.13.3 CRC Protection for User Registers  
A dynamic CRC-8 engine exists to protect registers that have values that can change during operation. These  
are registers in Page 1 and 4. When writes occur to these pages, the dynamic CRC-8 is checked, computed,  
and updated. Continuously during operation the CRC-8 are evaluated and verified in a round-robin fashion.  
The CRC-8 engine utilizes the Polynomial(0xA6) = X8 + X6 + X3 + X2 + 1, which provides a H4 hamming  
distance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
备注  
If a RESERVED bit in a R/W configuration register gets set to 1h through a I2C/SPI write, the LP8764-  
Q1 detects a CRC error in the register map. Therefore, it is important that system software involved in  
the I2C/SPI write-access to the LP8764-Q1 keeps all RESERVED bits (i.e. all bits with the word  
RESERVED in the Register Field Description tables in the Register Map section LP8764x_map  
Registers at 0h.  
8.13.4 Register Write Protection  
For safety application, in order to prevent unintentional writes to the control registers, the LP8764-Q1 device  
implements locking and unlocking mechanisms to many of its configuration/control registers described in the  
following subsections.  
8.13.4.1 ESM and WDOG Configuration Registers  
The configuration registers for the watchdog and the ESM are locked when their monitoring functions are in  
operation. The locking mechanism and the list of the locked watchdog register is described under 8.14.2. The  
locking mechanism and the list of the locked ESM registers is described under 8.15  
8.13.4.2 User Registers  
User registers in page 0, except the ESM and the WDOG configuration registers described in 8.13.4.1, and  
the interrupt registers (x_INT) at address 0x5a through 0x6c in page 0, can be write protected by a dedicated  
lock. User must write '0x9B' to the REGISTER_LOCK register to unlock the register. Writing any value other than  
'0x9B' activates the lock again. To check the register lock status, user must read the  
REGISTER_LOCK_STATUS bit. When this bit is '0', it indicates the user registers are unlocked. When this bit is  
'1', the user registers are locked. During start-up sequence such as powering up for the first time, waking up from  
LP_STANDBY, or recovering from SAFE_RECOVERY, the user registers are unlocked automatically.  
As an extra measure of protection to prevent the accidental change of the buck frequency while the buck is in  
operation, the BUCKn_FREQ_SEL register bits are locked by the pre-configured NVM settings, unless  
mentioned otherwise in the User's Guide of the orderable part number. .  
Copyright © 2022 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.14 Watchdog (WD)  
The watchdog monitors the correct operation of the MCU. This watchdog requires specific messages from the  
MCU in specific time intervals to detect correct operation of the MCU. The MCU can control the logic-level of the  
EN_DRV pin when the watchdog detects correct operation of the MCU. When the watchdog detects an incorrect  
operation of the MCU, the LP8764-Q1 device pulls the EN_DRV pin low . This EN_DRV pin can be used in the  
application as a control-signal to deactivate the power output stages, for example a motor driver, in case of  
incorrect operation of the MCU.  
The watchdog has two different modes that are defined as follows:  
Trigger mode In trigger mode, the MCU applies a pulse signal with a minimum pulse width of tWD_pulse on the  
pre-assigned GPIO input pin to send the required watchdog trigger. To select this mode, the  
MCU must clear bit WD_MODE_SELECT. 8.14.6 provides more details.  
Q&A  
In Q&A mode, the MCU sends watchdog answers through the I2C1 bus , I2C2 bust or SPI bus.  
(question and (Which of these communication busses is to be used depends on the NVM configuration.  
answer) mode Please refer to the User's Guide of the orderable part number for further details). To select this  
mode, the MCU must set bit WD_MODE_SELECT. 8.14.8 provides more details.  
8.14.1 Watchdog Fail Counter and Status  
The watchdog includes a watchdog fail counter WD_FAIL_CNT[3:0] that increments because of bad events or  
decrements because of good events. Furthermore, the watchdog includes two configurable thresholds:  
1. Fail-threshold (configurable through bits WD_FAIL_TH[2:0])  
2. Reset-threshold (configurable through bits WD_RST_TH[2:0])  
When the WD_FAIL_CNT[3:0] counter value is less than or equal to the configured Watchdog-Fail threshold  
(WD_FAIL_TH[2:0]) and bit WD_FIRST_OK=1, the MCU can set the ENABLE_DRV bit when no other error-  
flags are set.  
When the WD_FAIL_CNT[3:0] counter value is greater than the configured Watchdog-Fail threshold  
(WD_FAIL_CNT[3:0] > WD_FAIL_TH[2:0]), the device clears the ENABLE_DRV bit, sets the error-flag  
WD_FAIL_INT, and pulls the nINT pin low.  
When the WD_FAIL_CNT[3:0] counter value is greater than the configured Watchdog-Fail plus Watchdog-Reset  
threshold (WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] + WD_RST_TH[2:0])) and the watchdog-reset function is  
enabled (configuration bit WD_RST_EN=1), the device generates a WD_ERROR trigger in the state machine  
(see 8-5) and sets the error-flag WD_RST_INT, and pulls the nINT pin low. Unless described otherwise in the  
User's Guide of the orderable part number, this WD_ERROR trigger in the state machine causes the LP8764-Q1  
to execute a warm-reset, during which the GPIO pins assigned as nRSTOUT and nRSTOUT_SoC are pulled  
low, and released after a pre-configured delay time.  
The device clears the WD_FAIL_CNT[3:0] each time the watchdog enters the Long Window. The status bits  
WD_FAIL_INT and WD_RST_INT are latched until the MCU writes a 1to these bits.  
Overview of Watchdog Fail Counter Value Ranges and Corresponding Device Status gives an overview of the  
Watchdog Fail Counter value ranges and the corresponding device status.  
8-16. Overview of Watchdog Fail Counter Value Ranges and Corresponding Device Status  
Watchdog Fail Counter value  
Device Status  
WD_FAIL_CNT[3:0]  
MCU can set the ENABLE_DRV bit if WD_FIRST_OK=1 and no  
other error-flags are set  
WD_FAIL_CNT[3:0] WD_FAIL_TH[2:0]  
The device clears the ENABLE_DRV bit, sets error-flag  
WD_FAIL_INT and pulls the nINT pin low  
WD_FAIL_TH[2:0] < WD_FAIL_CNT[3:0] (WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0])  
If configuration bit WD_RST_EN=1, device generates WD_ERROR  
trigger in the state machine and reacts as defined in the PFSM, sets  
the error-flag WD_RST_INT, and pulls the nINT pin low. See  
Summary of Interrupt Signals for the interrupt handling of WD_RTS.  
WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] + WD_RST_TH[2:0])  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
The WD_FAIL_CNT[3:0] counter responds as follows:  
When the Watchdog is in the Long-Window, the WD_FAIL_CNT[3:0] is cleared to 4b0000  
A good event decrements the WD_FAIL_CNT[3:0] by one before the start of the next Window-1  
A bad event increments the WD_FAIL_CNT[3:0] by one before the start of the next Window-1  
Refer to Watchdog Trigger Mode and Watchdog Q&A Related Definitions respectively for definitions of good  
events and bad events.  
8.14.2 Watchdog Start-Up and Configuration  
When the device releases the nRSTOUT pin, the watchdog starts with the Long Window. This Long Window has  
a time interval (tLONG_WINDOW) with a default value set in bits WD_LONGWIN[7:0].  
As long as the watchdog is in the Long Window, the MCU can configure the watchdog through the following  
register bits:  
WD_EN to enable or disable the watchdog  
WD_LONGWIN[7:0] to increase the duration of the Long-Window time-interval  
WD_MODE_SELECT to select the Watchdog mode (Trigger mode or Q&A Mode)  
WD_PWRHOLD to activate the Watchdog Disable function (more detail in 8.14.4)  
WD_RETURN_LONGWIN to configure whether to return to Long-Window or continue to the next sequence  
after the completion of the current watchdog sequence (more detail in 8.14.4)  
WD_WIN1[6:0] to configure the duration of the Window-1 time-interval  
WD_WIN2[6:0] to configure the duration of the Window-2 time-interval  
WD_RST_EN to enable or disable the watchdog-reset function  
WD_FAIL_TH[2:0] to configure the Watchdog-Fail threshold  
WD_RST_TH[2:0] to configure the Watchdog-Reset threshold  
WD_QA_FDBK[1:0] to configure the settings for the reference answer-generation  
WD_QA_LFSR[1:0] to configure the settings for the question-generation  
WD_QUESTION_SEED[3:0] to configure the starting-point for the 1st question-generation  
The device keeps the above register bit values configured by the MCU as long as the device is powered.  
The MCU can configure the time interval of the Long Window (tLONG_WINDOW) with the WD_LONGWIN[7:0] bits.  
The WD_LONGWIN[7:0] bits are defined as:  
0x00: 80 ms  
0x01 - 0x40: 125 ms to 8 sec, in 125-ms steps  
0x41 - 0xFF: 12 sec to 772 sec, in 4-sec steps  
Use 方程式 5 and 方程式 6 to calculate the minimum and maximum values for the Long Window (tLONG_WINDOW  
)
time interval when WD_LONGWIN[7:0] > 0x00:  
tLONG_WINDOW_MIN = WD_LONGWIN[7:0] × 0.95  
tLONG_WINDOW_MAX = WD_LONGWIN[7:0] × 1.05  
(5)  
(6)  
When the MCU clears bit WD_EN, the watchdog goes out of the Long Window and disables the watchdog.  
When the watchdog is disabled in this way, the MCU can set bit WD_EN back to 1to enable the watchdog  
again, and the MCU can control the ENABLE_DRV bit when no other error-flags are set. The MCU must clear bit  
WD_PWRHOLD before setting bit WD_EN back to 1to start the watchdog in Long Window.  
The watchdog locks the following configuration register bits when it goes out of the Long Window and starts the  
first watchdog sequence:  
WD_WIN1[6:0]  
WD_WIN2[6:0]  
WD_LONGWIN[7:0]  
WD_MODE_SELECT  
WD_QA_FDBK[1:0], WD_QA_LFSR[1:0] and WD_QUESTION_SEED[3:0]  
Copyright © 2022 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
WD_RST_EN, WD_EN, WD_FAIL_TH[2:0] and WD_RST_TH[2:0]  
8.14.3 MCU to Watchdog Synchronization  
In order to go out of the Long Window and start the first watchdog sequence, the MCU must do the following  
before elapse of the Long Window time interval:  
Clear bits WD_PWRHOLD (more detail in 8.14.4)  
Apply a pulse signal with a minimum pulse-width tWD_pulse on the pre-assigned GPIO pin in the case the  
watchdog is configured for Trigger mode, or  
Write four times to WD_ANSWER[7:0] in the case the watchdog is configured for Q&A mode  
When the MCU fails to get the watchdog out of the Long Window before the configured Long Window time  
interval (tLONG_WINDOW  
)
elapses, the device goes through  
a
warm reset, and sets the  
WD_LONGWIN_TIMEOUT_INT. This bit latched until the MCU writes a 1to clear it.  
8.14.4 Watchdog Disable Function  
In case the MCU needs to be reprogrammed while the watchdog monitors the correct operation of the MCU, the  
MCU can set bit WD_RETURN_LONGWIN to put the watchdog back in the Long Window. When the MCU set  
this bit, the watchdog returns to the Long Window after the current Watchdog Sequence completes. In order to  
make the watchdog stay in the Long Window as long as needed the MCU can either re-configure the Long  
Window (tLONG_WINDOW) time interval, or set the WD_PWRHOLD bit. Once the MCU starts the first watchdog  
sequence (as described in 8.14.3), the MCU must clear bit WD_RETURN_LONGWIN before the end of the  
first watchdog sequence in order to continue the watchdog sequence operation.  
8.14.5 Watchdog Sequence  
Once the watchdog is out of the Long Window, each watchdog sequence starts with a Window-1 followed by a  
Window-2. The watchdog ends the current sequence and after one 20-MHz system clock cycle starts a next  
sequence when one of the events below occurs:  
The configured Window-2 time period elapses  
The watchdog detects a pulse signal with a minimum pulse-width tWD_pulse on the pre-assigned GPIO pin if  
the watchdog is used in Trigger mode  
The watchdog detects four times a write access to WD_ANSWER[7:0] in case the watchdog is used in Q&A  
mode  
The MCU can configure the time periods of the Window-1 (tWINDOW1) and Window-2 (tWINDOW2) with the bits  
WD_WIN1[6:0] and WD_WIN2[6:0] respectively, before starting the sequence.  
Use 方程7 and 方程8 to calculate the minimum and maximum values for the tWINDOW1 time interval.  
tWINDOW1_MIN = (WD_WIN1[6:0] + 1) × 0.55 × 0.95 ms  
tWINDOW1_MAX = (WD_WIN1[6:0] + 1) × 0.55 × 1.05 ms  
(7)  
(8)  
Use 方程9 and 方程10 to calculate the minimum and maximum values for the tWINDOW-2 time interval.  
tWINDOW2_MIN = (WD_WIN2[6:0] + 1) × 0.55 × 0.95 ms  
tWINDOW2_MAX = (WD_WIN2[6:0] + 1) × 0.55 × 1.05 ms  
(9)  
(10)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: LP8764-Q1  
 
 
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.14.6 Watchdog Trigger Mode  
When the LP8764-Q1 device is configured to use the Watchdog Trigger Mode, the watchdog receives the  
watchdog-triggers from the MCU on the pre-assigned GPIO pin. A rising edge on this GPIO pin, followed by a  
stable logic-high level on that pin for more than the maximum pulse time, tWD_pulse(max), is a watchdog-trigger.  
The watchdog uses a deglitch filter with a tWD_pulse filter time and the internal 20-MHz system clock to create the  
internally-generated trigger pulse from the watchdog-trigger on the pre-assigned GPIO pin.  
The watchdog detects a good event when the watchdog-trigger comes in Window-2. The rising edge of the  
watchdog-trigger on the pre-assigned GPIO pin must occur for at least the tWD_pulse time before the end of  
Window-2 to generate such a good event.  
The watchdog detects a bad event when one of the following events occurs:  
The watchdog-trigger comes in Window-1. The rising edge of the watchdog-trigger on the pre-assigned GPIO  
pin must occur for at least the tWD_pulse time before the end of Window-1 to generate such a bad event. In  
case of this bad event, the device sets bits WD_TRIG_EARLY and WD_BAD_EVENT.  
No watchdog-trigger comes in Window-2. In case of this bad event (also referred to as time-out event), the  
device sets bits WD_TIMEOUT and WD_BAD_EVENT.  
Please consider that the minimum WD-pulse duration needs to meet the maximum deglitch time tWD_pulse (max)  
.
The status bit WD_BAD_EVENT is read-only. The watchdog clears the WD_BAD_EVENT status bit at the end of  
the watchdog-sequence.  
8.14.7 shows the flow-chart of the watchdog in Trigger mode.  
Copyright © 2022 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.14.7 WatchDog Flow Chart and Timing Diagrams in Trigger Mode  
NO SUPPLY  
Device sets WD_RST_EN=1 per default  
Device sets WD_EN=1 per default.  
Wake-up  
request?  
NO  
YES  
RESTART  
from all  
states except  
NO SUPPLY  
Reset-Extension  
me-interval  
elapsed?  
NO  
YES  
WATCHDOG LONG WINDOW  
- MCU reset inac ve  
- Device forces ENABLE_DRV= 0  
- MCU clears error- ags  
WD_RETURN_  
LONGWIN=1?  
YES  
- Device releases nINT pin if no other error- ags are set  
- Device unlocks Watchdog-Con gura on registers  
- Device sets WD_FAIL_CNT[3:0]=4'b0000 and sets WD_FIRST_OK=0  
MCU either clears WD_EN, or:  
NO  
WINDOW-1  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not change  
ENABLE_DRV bit  
1) MCU con gures watchdog in Trigger mode  
2) MCU con gures Window-1 and Window-2 me-intervals  
3) MCU con gures WD_FAIL_TH, WD_RST_TH and WD_RST_EN  
4) MCU sends trigger pulse  
- Device waits un l WINDOW-1 me elapses  
NO  
- Device sets  
WD_TRG_EARLY  
error- ag  
- Device sets  
WD_BAD_EVENT  
error- ag  
Device has  
Received trigger-  
NO  
WD_PWRHOLD=0?  
YES  
WINDOW-1  
NO  
YES  
me-interval  
elapsed?  
pulse  
?
YES  
WD_EN=0?  
YES  
NO  
WINDOW-2  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
YES  
- MCU sends trigger-pulse  
NO  
NORMAL – NO Watchdog  
- MCU reset inac ve  
- MCU can set  
ENABLE_DRV=1 if no other  
error- ags are set  
NO  
WD_EN=0?  
Device sets  
WD_TIMEOUT error-  
ag  
Device has  
Received trigger-  
WINDOW-2  
me-interval  
elapsed?  
YES  
NO  
Device clears  
WD_BAD_EVENT  
error- ag  
- Device sets  
WD_BAD_EVENT  
error- ag  
pulse  
?
- Interrupt inac ve if no  
other error- ag set  
YES  
- Device decrements WD_FAIL_CNT  
- Device sets WD_FIRST_OK=1  
- MCU can set ENABLE_DRV=1 if no other error- ags are set  
Device has  
received trigger  
pulse?  
Device locks all Watchdog  
con gura on register bits, except  
WD_RETURN_LONGWIN bit  
YES  
NO  
Device Increments  
WD_FAIL_CNT[3:0]  
LONG-WINDOW  
me-interval  
elapsed?  
NO  
YES  
WD_FAIL_CNT[3:0] >  
WD_FAIL_TH  
[2:0]  
NO  
Device sets  
WD_LONGWIN_TIMEOUT  
error- ag  
YES  
WATCHDOG-RESET  
- Device pulls MCU & SoC reset  
pins low (trigger to FSM)  
- Device forces ENABLE_DRV=0  
- Device clears WD_FIRST_OK bit  
- Device forces ENABLE_DRV=0  
- Device sets WD_FAIL_INT  
error- ag  
- Interrupt ac ve  
Reset-Extension  
me-interval  
YES  
NO  
elapsed?  
WD_FAIL_CNT[3:0] >  
(WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0])  
&
- Device sets WD_RST_INT  
error- ag  
- Interrupt ac ve  
- Device clears  
WD_BAD_EVENT error- ag  
YES  
NO  
WD_RST_EN=1  
8-41. Flow Chart for WatchDog Monitor in Trigger Mode  
8-42, 8-43, 8-44, 8-45, and 8-46 give examples of watchdog is trigger mode with good and bad  
events after device start-up. In these figures, the red bended arrows indicate a delay of one 20-MHz system  
clock cycle.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
RESET Extension Time  
nRSTOUT  
(Reset to MCU, controlled by  
internal RSTOUT-control signal  
t > tWD_pulse  
t > tWD_pulse  
t > tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt <  
tWINDOW-2  
tt < tLONG_WINDOW  
t
tt = tWINDOW-1  
t
tt < tWINDOW-2  
t
tt = tWINDOW-1  
t
t
Window-1  
Watchdog Windows  
WD_FAIL_CNT[3:0]  
LongWindow  
Window-1  
Window-2  
Window-1  
Window-2  
xxxx  
0000  
0000  
0000  
0
1
x
WD_FIRST_OK  
MCU clears watchdog error-flags  
WD_FAIL_INT  
WD_RST_INT  
0
0
0
x
x
x
WD_LONGWIN_TIMEOUT  
_INT  
WD_TRIG_EARLY  
WD_TIMEOUT  
0
0
x
x
MCU sets ENABLE_DRV (only possible when  
FIRST_WD_OK=1)  
1
x
0
ENABLE_DRV  
Device State  
ACTIVE or MCU_ONLY  
x
000  
RECOV_CNT[2:0]  
8-42. Watchdog in Trigger Mode Normal MCU Start-up with Correct Watchdog-Triggers  
Copyright © 2022 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
RESET Extension Time  
RESET Extension Time  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
Watchdog-Triggeron  
GPIOpin  
InternallyGenerated  
TriggerPulse  
tt = tLONG_WINDOW  
t
tt = tLONG_WINDOW  
t
Watchdog Windows  
WD_FAIL_CNT[3:0]  
LongWindow  
LongWindow  
LongWindow  
0000  
xxxx  
x
0000  
0
0000  
0
0
WD_FIRST_OK  
MCU clears watchdog error-flags  
0
0
x
WD_FAIL_INT  
WD_RST_INT  
x
x
WD_LONGWIN_  
TIMEOUT_INT  
0
1
1
1
WD_TRG_EARLY  
WD_TIMEOUT  
0
0
x
x
0
0
0
x
ENABLE_DRV  
0
ACTIVE or MCU_ONLY  
(same state as previously)  
ACTIVE or MCU_ONLY  
(same state as previously)  
Warm Reset  
Warm Reset  
ACTIVE or MCU_ONLY  
x
Warm Reset  
SHUTDOWN  
Device State  
RECOV_CNT[2:0]  
000  
001  
010  
110  
111  
000  
8-43. Watchdog in Trigger Mode MCU Does Not Send Watchdog-Triggers After Start-up  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
RESET Extension  
Time  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
t > tWD_pulse  
t > tWD_pulse  
t > tWD_pulse  
t > tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt < tLONG_WINDOW  
t
tt < tWINDOW-1  
Window-1  
t
tt = tWINDOW-1  
Window-1  
t
tt < tWINDOW-2  
Window-2  
t
tt < tWINDOW-1  
Window-1  
t
Watchdog  
Windows  
Long  
Window  
LongWindow  
WD_FAIL_CNT[3:0]  
xxxx  
0000  
0000  
0001  
0010  
WD_FAIL_CNT >  
0000  
WD_FAIL_TH[2:0]=000  
WD_RST_TH[2:0]=001  
WD_FAIL_CNT  
> WD_FAIL_TH  
WD_FAIL_TH + WD_RST_TH  
0
1
x
0
WD_FIRST_OK  
WD_FAIL_INT  
WD_RST_INT  
MCU clears watchdog error-flags  
1
x
x
0
0
1
WD_LONGWIN  
_TIMEOUT_INT  
x
0
x
x
1
1
WD_TRG_EARLY  
WD_TIMEOUT  
0
0
MCU sets ENABLE_DRV (only possible when  
FIRST_WD_OK=1)  
x
1
0
ENABLE_DRV  
Device State  
0
ACTIVE or MCU_ONLY (same  
state as previously)  
x
ACTIVE or MCU_ONLY  
Warm Reset  
001  
RECOV_CNT[2:0]  
000  
8-44. Watchdog in Trigger Mode Bad Event (Watchdog-Triggers in Window-1) After Start-up  
Copyright © 2022 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
RESET  
Extension Time  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
t > tWD_pulse  
t > tWD_pulse  
t < tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt < tLONG_WINDOW  
t
tt = tWINDOW-1  
Window-1  
t
tt < tWINDOW-2  
Window-2  
t
tt = tWINDOW-1  
t
tt = tWINDOW-2  
Window-2  
t
tt = tWINDOW-1  
Window-1  
t
tt = tWINDOW-2  
Window-2  
t
LongWindow  
Window-1  
Watchdog Windows  
WD_FAIL_CNT[3:0]  
LongWindow  
xxxx  
0000  
0001  
0000  
0000  
0010  
WD_FAIL_TH[2:0]=000  
WD_RST_TH[2:0]=001  
WD_FAIL_CNT >  
WD_FAIL_CNT > WD_FAIL_TH  
WD_FAIL_TH + WD_RST_TH  
0
1
x
0
FIRST_WD_OK  
MCU clears watchdog error-flags  
WD_FAIL_INT  
WD_RST_INT  
1
x
x
0
0
1
WD_LONGWIN_  
TIMEOUT_INT  
x
0
x
x
WD_TRIG_EARLY  
WD_TIMEOUT  
0
0
1
MCU sets ENABLE_DRV (only possible when FIRST_WD_OK=1)  
x
x
1
0
ENABLE_DRV  
Device State  
0
Warm  
Reset  
ACTIVE or MCU_ONLY  
(same state as previously)  
ACTIVE or MCU_ONLY  
001  
RECOV_CNT[2:0]  
000  
8-45. Watchdog in Trigger Mode Bad Events (Too Short or no Trigger in Window-2) After Start-up  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
t > tWD_pulse  
t > tWD_pulse  
t < tWD_pulse  
t > tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt <  
tLONG_WINDOW  
t
tt <  
tWINDOW-2  
tt <  
tWINDOW-2  
tt <  
tWINDOW-2t  
tt = tWINDOW-1  
t
tt = tWINDOW-1  
Window-1  
t
tt = tWINDOW-2  
Window-2  
t
tt = tWINDOW-1  
Window-1  
t
tt = tWINDOW-1  
Window-1  
t
t
t
LongWindow  
Window-1  
Window-1  
Window-2  
Window-2  
Window-2  
Watchdog Windows  
WD_FAIL_CNT[3:0]  
WD_FAIL_TH[2:0]=000  
WD_RST_TH[2:0]=001  
00  
00  
xxxx  
0000  
0000  
0001  
0000  
WD_FAIL_CNT > WD_FAIL_TH  
0
1
x
FIRST_WD_OK  
MCU clears WD_FAIL_TH error-flag (only  
possible when WD_FAIL_CNT =< WD_FAIL_TH)  
MCU clears watchdog error-flags  
WD_FAIL_INT  
WD_RST_INT  
x
x
1
0
0
0
WD_LONGWIN_  
TIMEOUT_INT  
x
0
x
x
WD_TRIG_EARLY  
WD_TIMEOUT  
0
0
1
MCU sets ENABLE_DRV (only possible when  
FIRST_WD_OK=1)  
MCU sets ENABLE_DRV (only  
possible when FIRST_WD_OK=1)  
x
1
1
ENABLE_DRV  
0
0
ACTIVE or MCU_ONLY  
x
Device State  
000  
RECOV_CNT[2:0]  
8-46. Watchdog in Trigger Mode Good Events (Correct Watchdog-Triggers) After Start-up, Followed by a Bad-Event (No Watchdog-Trigger  
in Window-2) and After That Followed by a Good Event.  
Copyright © 2022 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.14.8 Watchdog Question-Answer Mode  
When the LP8764-Q1 device is configured to use the Watchdog Question Answer mode, the watchdog requires  
specific messages from the MCU in specific time intervals to detect correct operation of the MCU.  
The device provides a question for the MCU in WD_QUESTION[3:0] during operation. The MCU performs a  
fixed series of arithmetic operations on this question to calculate the required 32-bit answer. This answer is split  
into four answer bytes: Answer-3, Answer-2, Answer-1, and Answer-0. The MCU writes these answer bytes one  
byte at a time into WD_ANSWER[7:0] from the SPI or the dedicated I2C2 interface, mapped to GPIO2 and  
GPIO3 pins.  
A good event occurs when the MCU sends the correct answer-bytes calculated for the current question in the  
correct watchdog window and in the correct sequence.  
A bad event occurs when one of the events that follows occur:  
The MCU sends the correct answer-bytes, but not in the correct watchdog window.  
The MCU sends incorrect answer-bytes.  
The MCU returns correct answer-bytes, but in the incorrect sequence.  
If the MCU stops providing answer-bytes for the duration of the watchdog time-period, the watchdog detects a  
time-out event. This time-out event sets the WD_TIMEOUT status bit, increments the WD_FAIL_CNT[3:0]  
counter, and starts a new watchdog sequence.  
8.14.8.1 Watchdog Q&A Related Definitions  
A question and answer are defined as follows:  
Question  
A question is a 4-bit word (see 8.14.8.2).  
The watchdog provides the question to the MCU when the MCU reads the WD_QUESTION[3:0] bits.  
The MCU can request each new question at the start of the watchdog sequence, but this is not  
required to calculate the answer. The MCU can also have a software implementation that generates  
the question according the circuit shown in 8-49. Nevertheless, the answer and therefore the  
answer-bytes are always based on the question generated inside the watchdog of the device. So, if  
the MCU generates an incorrect question and gives answer-bytes calculated from this incorrect  
question, the watchdog detects a bad event  
Answer An answer is a 32-bit word that is split into four answer bytes: Answer-3, Answer-2, Answer-1, and  
Answer-0.  
The watchdog receives an answer-byte when the MCU writes to the WD_ANSWER[7:0] bits. For  
each question, the watchdog requires four correct answer-bytes from the MCU in the correct timing  
and order (Answer-3, Answer-2, and Answer-1 in Window 1 in the correct sequence, and Answer-0  
in Window 2) to detect a good event.  
The watchdog sequence in Q&A mode ends after the MCU writes the fourth answer byte (Answer-0), or after a  
time-out event when the Window-2 time-interval elapses.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Window-1  
t = tWINDOW-1  
Window-2  
t = tWINDOW-2  
Three correct answer-bytes must be provided in Window-1 and  
in the correct order:  
The fourth answer-byte, Answer-0, must be provided  
in Window-2.  
ñ
ñ
ñ
Answer-3  
Answer-2  
Answer-1  
After the MCU writes the fourth Answer-0 to  
WD_ANSWER[7:0], the Watchdog generates the  
next question within 1 Internal System Clock Cycle,  
after which the next Watchdog Sequence  
(Q&A [n + 1]) begins  
After the Window-1 time elapses, Window 2 begins.  
The MCU needs to write the answer-bytes to the WD_ANSWER[7:0] bits.  
Question  
Answer  
MCU reads question(1)  
MCU provides answer(2)  
Write to  
Write to  
Write to  
WD_ANSWER[7:0]  
-> Answer-1  
Read bits WD_  
QUESTION[3:0]  
Write to  
WD_ANSWER[7:0]  
-> Answer-0  
WD_ANSWER[7:0] WD_ANSWER[7:0]  
-> Answer-3  
I2C2/SPI  
Commands  
-> Answer-2  
NCS Pin (for  
SPI only)  
1 Internal System Clock Cycle  
to Generate a new question for the next watchdog  
sequence Q&A [n + 1]  
Q&A [n]  
Q&A [n + 1]  
Watchdog Sequence  
(1) The MCU is not required to read the question. The MCU can give correct answer-bytes Answer-3, Answer-2, Answer-1 as soon as  
Window-1 starts. The next watchdog sequence always starts in 1 system clock cycle after the watchdog receives the final Answer-0.  
(2) The MCU can put other I2C or SPI commands in-between the write-commands to WD_ANSWER[7:0] (even re-requesting the  
question). The insertion of other commands in-betwween the write-commands to WD_ANSWER[7:0] has no influence on the detection  
of a good event, as long as the three correct answer-bytes in Window-1 are in the correct sequence, and the fourth correct answer-byte  
is provided before the configured Window-2 time-interval elapses.  
8-47. Watchdog Sequence in Q&A Mode  
8.14.8.2 Question Generation  
The watchdog uses a 4-bit question counter (QST_CNT[3:0] bits in 8-48), and a 4-bit Markov chain to  
generate a 4-bit question. The MCU can read this question in the WD_QUESTION[3:0] bits. The watchdog  
generates a new question when the question counter increments, which only occurs when the watchdog detects  
a good event. The watchdog does not generate a new question when it detects a bad event or a time-out event.  
The question-counter provides a clock pulse to the Markov chain when it transitions from 4b1111 to 4b0000.  
The question counter and the Markov chain are set to the default value of 4b0000 when the watchdog goes  
out of the Long Window.  
8-48 shows the logic combination for the WD_QUESTION[3:0] generation.  
8-49 shows how the logic combination of the question-counter with the WD_ANSW_CNT[1:0] status bits  
generates the reference answer-bytes.  
Copyright © 2022 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
4-Bit LFSR Polynomial Equation(1)  
WD_QA_LFSR[1:0] = 0x00:  
y = x4 + x3 + 1 (Default Value)  
y = x4 + x2 + 1  
y = x3 + x2 + 1  
WD_QA_LFSR[1:0] = 0x01:  
WD_QA_LFSR[1:0] = 0x10:  
WD_QA_LFSR[1:0] = 0x11:  
y = x4 + x3 + x2 +1  
x3  
x1  
x2  
x4  
Bit 0  
Bit 3  
Bit 1  
Bit 2  
4-bit SEED Value Loaded when the device goes to the RESET state  
(Configurable Through WD_QUESTION_SEED[3:0])  
(Default Value 4'b1010)  
x1  
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
x2  
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
x3  
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
x4  
0
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
x2  
x1  
x4  
x3  
00  
01  
10  
11  
WD_QUESTION[0]  
SEED  
1
QST_CNT[1]  
QST_CNT[0]  
QST_CNT[3]  
QST_CNT[2]  
00  
01  
10  
11  
2
3
4
x4  
x3  
x2  
x1  
00  
01  
10  
11  
5
WD_QUESTION[1]  
6
7
QST_CNT[3]  
QST_CNT[2]  
QST_CNT[1]  
QST_CNT[0]  
00  
01  
10  
11  
8
9
10  
11  
12  
13  
14  
15  
00  
01  
10  
11  
x1  
x4  
x3  
x2  
WD_QUESTION[2]  
00  
01  
10  
11  
QST_CNT[0]  
QST_CNT[3]  
QST_CNT[2]  
QST_CNT[1]  
The default question-sequence order with the default  
WD_QUESTION_SEED[3:0] and WD_QA_LFSR[1:0] values  
x3  
x2  
x1  
x4  
00  
01  
10  
11  
WD_QUESTION[3]  
”Question‘ Counter  
CNT [0]  
QST_CNT[0]  
QST_CNT[1]  
QST_CNT[2]  
QST_CNT[3]  
QST_CNT[2]  
QST_CNT[1]  
QST_CNT[0]  
QST_CNT[3]  
00  
01  
10  
11  
CNT [1]  
—good event“  
INCR + 1  
trigger  
CNT [2]  
CNT [3]  
Feedback settings are controllable through the bits  
WD_QA_FDBK[1:0]  
(Default value is 2'b00; the selected signals are in red)  
(1) If the current value for bits (x1, x2, x3, x4) is 4'b0000, the next value for these bits (x1, x2, x3, x4) is 4'b0001, and all further question  
generation begins from this value.  
8-48. Watchdog Question Generation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[0]  
X = 3, 2,1, 0  
WD_ANSW_CNT[1]  
WD_QUESTION[3]  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
00  
01  
10  
11  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[1]  
X = 3, 2,1, 0  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
WD_QUESTION[3]  
00  
01  
10  
11  
WD_QUESTION[1]  
WD_ANSW_CNT[1]  
WD_QUESTION[0]  
WD_QUESTION[3]  
WD_QUESTION[1]  
WD_QUESTION[1]  
00  
01  
10  
11  
Reference-Answer-X[2]  
X = 3, 2,1, 0  
WD_QUESTION[3]  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
00  
01  
10  
11  
WD_QUESTION[1]  
WD_ANSW_CNT[1]  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[3]  
X = 3, 2,1, 0  
WD_QUESTION[0]  
WD_QUESTION[3]  
WD_QUESTION[2]  
WD_QUESTION[1]  
00  
01  
10  
11  
WD_QUESTION[3]  
WD_ANSW_CNT[1]  
WD_QUESTION[1]  
WD_QUESTION[0]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[4]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
WD_QUESTION[3]  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
00  
01  
10  
11  
Reference-Answer-X[5]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
WD_QUESTION[0]  
WD_QUESTION[3]  
WD_QUESTION[2]  
WD_QUESTION[1]  
00  
01  
10  
11  
Reference-Answer-X[6]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
WD_QUESTION[2]  
WD_QUESTION[1]  
WD_QUESTION[0]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[7]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
Feedback settings are controllable through the bits WD_QA_FDBK[1:0]  
(Default value is 2'b00; the selected signals are in red)  
Calculated Reference-Answer-X byte  
8-49. Watchdog Reference Answer Calculation  
Copyright © 2022 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.14.8.3 Answer Comparison  
The 2-bit, watchdog-answer counter, WD_ANSW_CNT[1:0], counts the number of received answer-bytes and  
controls the generation of the reference answer-byte as shown in 8-49. At the start of each watchdog  
sequence, the default value of the WD_ANSW_CNT[1:0] counter is 2b11 to indicate that the watchdog expects  
the MCU to write the correct Answer-3 in WD_ANSWER[7:0].  
The device sets the WD_ANSW_ERR status bit as soon as one answer byte is not correct. The device clears  
this status bit only if the MCU writes a 1to this bit.  
8.14.8.3.1 Sequence of the 2-bit Watchdog Answer Counter  
The sequence of the 2-bit, watchdog answer-counter is as follows for each counter value:  
WD_ANSW_CNT[1:0] = 2b11:  
1. The watchdog calculates the reference Answer-3.  
2. A write access occurs. The MCU writes the Answer-3 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-3 with the Answer-3 byte in WD_ANSWER[7:0].  
4. The watchdog decrements the WD_ANSW_CNT[1:0] bits to 2b10 and sets the WD_ANSW_ERR  
status bit to 1 if the Answer-3 byte was incorrect.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
WD_ANSW_CNT[1:0] = 2b10:  
1. The watchdog calculates the reference Answer-2.  
2. A write access occurs. The MCU writes the Answer-2 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-2 with the Answer-2 byte in WD_ANSWER[7:0]..  
4. The watchdog decrements the WD_ANSW_CNT[1:0] bits to 2b01 and sets the WD_ANSW_ERR  
status bit to 1 if the Answer-2 byte was incorrect.  
WD_ANSW_CNT[1:0] = 2b01:  
1. The watchdog calculates the reference Answer-1.  
2. A write access occurs. The MCU writes the Answer-1 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-1 with the Answer-1 byte in WD_ANSWER[7:0]..  
4. The watchdog decrements the WD_ANSW_CNT[1:0] bits to 2b00 and sets the WD_ANSW_ERR  
status bit to 1 if the Answer-1 byte was incorrect.  
WD_ANSW_CNT[1:0] = 2b00:  
1. The watchdog calculates the reference Answer-0.  
2. A write access occurs. The MCU writes the Answer-0 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-0 with the Answer-0 byte in WD_ANSWER[7:0].  
4. The watchdog sets the WD_ANSW_ERR status bit to 1 if the Answer-0 byte was incorrect.  
5. The watchdog starts a new watchdog sequence and sets the WD_ANSW_CNT[1:0] to 2b11.  
The MCU needs to clear the bit by writing a '1' to the WD_ANSW_ERR bit.  
8-17. Set of Questions and Corresponding Answer-Bytes Using the Default Setting of WD_QA_CFG  
Register  
ANSWER-BYTES (EACH BYTE TO BE WRITTEN INTO WD_ANSWER[7:0])  
WD QUESTION  
ANSWER-3  
ANSWER-2  
ANSWER-1  
ANSWER-0  
WD_ANSW_CNT [1:0] =  
WD_ANSW_CNT [1:0] =  
WD_ANSW_CNT [1:0] =  
WD_ANSW_CNT [1:0] =  
WD_QUESTION[3:0]  
2b11  
2b10  
2b01  
2b00  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
FF  
B0  
E9  
A6  
75  
3A  
63  
2C  
D2  
9D  
C4  
8B  
58  
17  
4E  
01  
0F  
40  
19  
56  
85  
CA  
93  
DC  
22  
6D  
34  
7B  
A8  
E7  
BE  
F1  
F0  
BF  
E6  
A9  
7A  
35  
6C  
23  
DD  
92  
CB  
84  
57  
18  
41  
0E  
00  
4F  
16  
59  
8A  
C5  
9C  
D3  
2D  
62  
3B  
74  
A7  
E8  
B1  
FE  
8.14.8.3.2 Watchdog Sequence Events and Status Updates  
The watchdog sequence events are as follows for the different scenarios listed:  
A good event occurs when all answer bytes are correct in value and timing. After such a good event,  
following events occur:  
1. The WD_FAIL_CNT[2:0] counter decrements by one at the end of the watchdog-sequence.  
2. The question-counter increments by one and the watchdog generates a new question.  
Copyright © 2022 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
A bad event occurs when all answer-bytes are correct in value but not in correct timing. After such a bad  
event, following events occur:  
1. The WD_SEQ_ERR and WD_BAD_EVENT status bits are set if Window-1 time-interval elapses before  
watchdog has received Answer-3, Answer-2 and Answer-1.  
2. The WD_ANSW_EARLY and WD_BAD_EVENT status bits are set if watchdog receives all four answers  
in Window-1.  
3. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
4. The question-counter does not change, and hence the watchdog does not generate a new question.  
A bad event occurs when one or more of the answer-bytes are not correct in value but in correct timing. After  
such a bad event, following events occur:  
1. The WD_ANSW_ERR and WD_BAD_EVENT status bits are set as soon as the watchdog detects an  
incorrect answer-byte.  
2. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
3. The question-counter does not change, and hence the watchdog does not generate a new question.  
A bad event occurs when one or more of the answer-bytes are not correct in value and not in correct timing.  
After such a bad event, following events occur:  
1. The WD_ANSW_ERR and WD_BAD_EVENT status bits are set as soon as the watchdog detects an  
incorrect answer-byte.  
2. The WD_SEQ_ERR and WD_BAD_EVENT status bits are set if Window-1 time-interval elapses before  
watchdog has received Answer-3, Answer-2 and Answer-1.  
3. The WD_ANSW_EARLY and WD_BAD_EVENT status bits are set if watchdog receives all four answer-  
bytes in Window-1.  
4. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
5. The question-counter does not change, and hence the watchdog does not generate a new question.  
A time-out event occurs when the device receives less than 4 answer-bytes before Window-2 time-interval  
elapses. After a time-out event occurs, following events occur:  
1. WD_SEQ_ERR and WD_BAD_EVENT status bits are set if Window-1 time-interval elapses before  
watchdog has received Answer-3, Answer-2 and Answer-1.  
2. The WD_TIMEOUT and WD_BAD_EVENT status bits are set at the end of the watchdog-sequence.  
3. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
4. The question-counter does not change, and hence the watchdog does not generate a new question.  
The status bit WD_BAD_EVENT is read-only. The watchdog clears the WD_BAD_EVENT status bit at the end of  
the watchdog-sequence.  
The status bits WD_SEQ_ERR, WD_ANSW_EARLY, and WD_TIMEOUT are latched until the MCU writes a  
1to these bits. If one or more of these status bits are set, the watchdog can still detect a good event in the  
next watchdog-sequence. These status bits are read-only. The watchdog clears the WD_BAD_EVENT status bit  
at the end of the watchdog-sequence.  
8-50 shows the flow-chart of the watchdog in Q&A mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
WD_RETURN_  
LONGWIN=1?  
YES  
NO  
NO SUPPLY  
ANSWER-3  
Device sets WD_RST_EN=1 per default  
Device sets WD_EN=1 per default.  
Wake-up  
- Device sets WD_ANSW_CNT[2:0]=2'b11  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
NO  
request?  
NO  
NO  
- MCU sends ANSWER-3  
- Device sets  
WD_SEQ_ERR  
error- ag  
YES  
Device has  
received  
ANSWER-3 ?  
- Device sets  
WD_BAD  
_EVENT  
WINDOW-2  
me-interval  
elapsed?  
WINDOW-1  
me-interval  
elapsed?  
YES  
NO  
error- ag  
RESTART  
from all  
states except  
NO SUPPLY  
YES  
Reset-Extension  
me-interval  
elapsed?  
NO  
YES  
- Device sets  
WD_ANSW_ERR error- ag  
- Device sets  
ANSWER-3  
correct?  
NO  
YES  
WD_BAD_EVENT error- ag  
YES  
WATCHDOG LONG WINDOW  
- Device releases MCU reset pin  
- Device forces ENABLE_DRV= 0  
- MCU clears error- ags  
- Device releases nINT pin if no other error- ags are set  
- Device unlocks Watchdog-Con gura on registers  
- Device sets WD_ANSW_CNT[2:0]=2'b11  
- Device sets WD_FAIL_CNT[3:0]=4'b0000 and sets WD_FIRST_OK=0  
MCU either clears WD_EN, or:  
1) MCU con gures watchdog in Q&A mode  
2) MCU con gures Window-1 and Window-2 me-intervals  
3) MCU con gures WD_FAIL_TH, WD_RST_TH and WD_RST_EN  
4) MCU sends 4 answers  
ANSWER-2  
- Device sets WD_ANSW_CNT[2:0]=2'b10  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
NO  
NO  
- MCU sends ANSWER-2  
- Device sets  
WD_SEQ_ERR  
error- ag  
- Device sets  
WD_BAD  
_EVENT  
Device has  
received  
ANSWER-2?  
YES  
WINDOW-2  
me-interval  
elapsed?  
WINDOW-1  
me-interval  
elapsed?  
NO  
YES  
error- ag  
YES  
- Device sets  
ANSWER-2  
correct?  
WD_ANSW_ERR error- ag  
- Device sets  
WD_BAD_EVENT error- ag  
NO  
NO  
WD_PWRHOLD=0?  
YES  
YES  
ANSWER-1  
- Device sets WD_ANSW_CNT[2:0]=2'b01  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
WD_EN=0?  
YES  
NO  
NO  
NO  
- MCU sends ANSWER-1  
- Device sets  
WD_SEQ_ERR  
error- ag  
- Device sets  
WD_BAD  
_EVENT  
YES  
Device has  
WINDOW-2  
me-interval  
elapsed?  
WINDOW-1  
me-interval  
elapsed?  
NORMAL – NO Watchdog  
- MCU reset inac ve  
- MCU can set  
ENABLE_DRV=1 if no other  
error- ags are set  
YES  
NO  
received  
NO  
WD_EN=0?  
ANSWER-1?  
error- ag  
YES  
- Device released nINT pin if  
no other error- ag set  
YES  
- Device sets  
WD_ANSW_ERR error- ag  
- -Device sets  
NO  
ANSWER-1  
correct?  
WD_BAD_EVENT error- ag  
YES  
Device generates 1st  
QUESTION  
Device has  
received 4  
answers ?  
YES  
ANSWER-0  
- Device locks all Watchdog  
con gura on register bits,  
except  
- Device sets WD_ANSW_CNT[2:0]=2'b00  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
WD_RETURN_LONGWIN bit  
NO  
NO  
- MCU sends ANSWER-0  
Device sets  
WD_TIMEOUT  
error- ag  
- Device sets  
WD_BAD_EVENT  
error- ag  
LONG-WINDOW  
me-interval  
elapsed?  
Device has  
received  
ANSWER-0?  
NO  
WINDOW-2  
me-interval  
elapsed?  
YES  
NO  
Device  
Increments  
WD_FAIL_CNT  
[3:0]  
YES  
YES  
Device sets  
WD_LONGWIN_TIMEOUT  
error- ag  
Device sets  
WD_ANSW_EARLY error- ag  
- Device sets  
WINDOW-1  
me-interval  
not elapsed?  
YES  
WD_FAIL_CNT[3:0] >  
WD_FAIL_TH  
[2:0]  
NO  
WD_BAD_EVENT error- ag  
WATCHDOG-RESET  
- Device pulls MCU & SoC reset  
pins low (trigger to FSM)  
NO  
YES  
- Device forces ENABLE_DRV=0  
- Device clears WD_FIRST_OK bit  
- Device sets  
WD_ANSW_ERR error- ag  
- Device sets  
Device clears  
WD_BAD_EVENT  
error- ag  
NO  
ANSWER-0  
correct?  
- Device forces ENABLE_DRV=0  
- Device sets WD_FAIL_INT  
error- ag  
WD_BAD_EVENT error- ag  
YES  
- Interrupt ac ve  
Reset-Extension  
me-interval  
YES  
NO  
elapsed?  
- Device sets WD_RST_INT  
error- ag  
YES  
WD_BAD_EVENT  
=1?  
- Interrupt ac ve  
- Device clears  
WD_BAD_EVENT error- ag  
NO  
WD_FAIL_CNT[3:0] >  
(WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0])  
&
- Device decrements WD_FAIL_CNT  
- Device generates next QUESTION  
- Device sets WD_FIRST_OK=1  
YES  
NO  
- MCU can set ENABLE_DRV=1 if no other error- ags are set  
WD_RST_EN=1  
8-50. Flow Chart for WatchDog in Q&A Mode  
Copyright © 2022 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.14.8.3.3 Watchdog Q&A Sequence Scenarios  
8-18. Correct and Incorrect WD Q&A Sequence Run Scenarios  
NUMBER OF WD ANSWERS  
WD STATUS BITS IN WDT_STATUS REGISTER  
ACTION  
COMMENTS  
RESPONSE  
WINDOW 1  
RESPONSE  
WINDOW 2  
ANSW_ERR ANSW_EARLY  
SEQ_ERR  
TIME_OUT  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
0 answers  
0 answers  
0 answers  
0b  
1b  
0b  
0b  
0b  
0b  
1b  
1b  
0b  
0b  
No answers  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
4 INCORRECT  
answers  
1b  
1b  
WD_ANSW_CNT[1:0] = 3  
WD_ANSW_CNT[1:0] = 3  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
4 CORRECT  
answers  
0 answers  
0 answers  
1 CORRECT answer  
Less than 3 CORRECT  
ANSWER in RESPONSE  
WINDOW 1 and 1 CORRECT  
ANSWER in RESPONSE  
WINDOW 2  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 CORRECT answer 1 CORRECT answer  
0b  
1b  
0b  
0b  
1b  
1b  
1b  
1b  
2 CORRECT answer 1 CORRECT answer  
(WD_ANSW_CNT[1:0] < 3)  
1 INCORRECT  
0 answers  
answer  
Less than 3 CORRECT  
ANSWER in RESPONSE  
WINDOW 1 and 1 INCORRECT  
ANSWER in RESPONSE  
WINDOW 2  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
1 CORRECT answer  
answer  
2 CORRECT  
answers  
1 INCORRECT  
answer  
(WD_ANSW_CNT[1:0] < 3)  
4 CORRECT  
answers  
0 answers  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
Less than 3 CORRECT  
ANSWER in WIN1 and more  
than 1 CORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
3 CORRECT  
answers  
1 CORRECT answer  
0b  
1b  
0b  
0b  
1b  
1b  
0b  
0b  
2 CORRECT  
answers  
2 CORRECT  
answers  
4 INCORRECT  
answers  
0 answers  
Less than 3 CORRECT  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
ANSWER in RESPONSE  
WINDOW 1 and more than 1  
INCORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
3 INCORRECT  
answers  
1 CORRECT answer  
2 CORRECT  
answers  
2 INCORRECT  
answers  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
3 CORRECT  
answers  
0 answers  
0b  
1b  
0b  
0b  
1b  
1b  
1b  
1b  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than 1  
CORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] < 3)  
1 INCORRECT  
answer  
2 CORRECT  
answers  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
2 INCORRECT  
answers  
1 CORRECT answer  
3 INCORRECT  
answers  
0 answers  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than 1  
INCORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] < 3)  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
answer  
2 INCORRECT  
answer  
1b  
0b  
1b  
1b  
2 INCORRECT  
answer  
1 INCORRECT  
answer  
4 CORRECT  
answers  
0 answers  
0b  
1b  
0b  
0b  
1b  
1b  
0b  
0b  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than 1  
CORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
answer  
3 CORRECT  
answers  
2 INCORRECT  
answers  
2 CORRECT  
answers  
4 INCORRECT  
answers  
0 answers  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than 1  
INCORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
answer  
3 INCORRECT  
answers  
1b  
0b  
1b  
0b  
2 INCORRECT  
answers  
2 INCORRECT  
answers  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-18. Correct and Incorrect WD Q&A Sequence Run Scenarios (continued)  
NUMBER OF WD ANSWERS  
WD STATUS BITS IN WDT_STATUS REGISTER  
ACTION  
COMMENTS  
RESPONSE  
WINDOW 1  
RESPONSE  
WINDOW 2  
ANSW_ERR ANSW_EARLY  
SEQ_ERR  
TIME_OUT  
3 CORRECT  
answers  
0 answers  
0 answers  
0 answers  
0b  
0b  
0b  
0b  
0b  
1b  
1b  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD Question  
Less than 4 CORRECT ANSW in  
RESPONSE WINDOW 1 and  
more than 0 ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] < 3)  
2 CORRECT  
answers  
1b  
0b  
1 CORRECT  
answers  
-New WD cycle starts after the  
4th WD answer  
3 CORRECT  
answers  
1 CORRECT answer -Decrement WD failure counter  
-New WD cycle starts with a new  
WD question  
0b  
1b  
1b  
1b  
1b  
0b  
0b  
0b  
0b  
0b  
0b  
1b  
0b  
0b  
1b  
0b  
0b  
0b  
CORRECT SEQUENCE  
WD_ANSW_CNT[1:0] = 3  
WD_ANSW_CNT[1:0] < 3  
WD_ANSW_CNT[1:0] = 3  
WD_ANSW_CNT[1:0] = 3  
-New WD cycle starts after the  
4th WD answer  
3 CORRECT  
answers  
1 INCORRECT  
-Increment WD failure counter  
answers  
0b  
0b  
0b  
0b  
0b  
-New WD cycle starts with the  
same WD question  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
3 INCORRECT  
answers  
0 answers  
-New WD cycle starts after the  
4th WD answer  
3 INCORRECT  
answers  
1 CORRECT answer -Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
-New WD cycle starts after the  
4th WD answer  
3 INCORRECT  
answers  
1 INCORRECT  
-Increment WD failure counter  
answer  
-New WD cycle starts with the  
same WD question  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
4 CORRECT  
answers  
Not applicable  
3 CORRECT  
answers + 1  
INCORRECT answer  
Not applicable  
Not applicable  
Not applicable  
4 CORRECT or INCORRECT  
ANSWER in RESPONSE  
WINDOW 1  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
2 CORRECT  
answers + 2  
INCORRECT  
answers  
1b  
1b  
0b  
0b  
1 CORRECT answer  
+ 3 INCORRECT  
answers  
Copyright © 2022 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.15 Error Signal Monitor (ESM)  
The LP8764-Q1 device has an error signal monitor (ESM), referred to as ESM_MCU throughout this document.  
This ESM_MCU monitors the MCU error output signal at the nERR_MCU input pin .  
At device start-up, the ESM_MCU can be enabled or disabled through configuration bit ESM_MCU_EN. The  
value for this configuration bit is stored in the NVM memory of the device. To start the enabled ESM_MCU, the  
MCU sets the start bit ESM_MCU_START through software after the system is powered up and the initial  
software configuration is completed. If the MCU clears this start bit, the ESM_MCU stops monitoring its input pin.  
The MCU can set the ENABLE_DRV bit only when the MCU has either started or disabled the ESM_MCU.  
When the ESM_MCU is started, the following configuration registers are write protected and can only be read:  
Configuration registers write-protected by the ESM_MCU_START register bit:  
ESM_MCU_DELAY1_REG  
ESM_MCU_DELAY2_REG  
ESM_MCU_MODE_CFG  
ESM_MCU_HMAX_REG  
ESM_MCU_HMIN_REG  
ESM_MCU_LMAX_REG  
ESM_MCU_LMIN_REG  
The ESM_MCU uses a deglitch-filter with deglitch-time tdegl_ESMx to monitor its related input pin.  
The MCU can configure the ESM_MCU in two different modes that are defined as follows:  
Level the ESM_MCU detects an ESM-error when the input pin remains low for a time equal to or longer than  
Mode the deglitch-time tdegl_ESMx  
.
To select this mode for the ESM_MCU, the MCU must clear bit ESM_MCU_MODE. See 8.15.2 for  
further detail  
.
PWM the ESM_MCU monitors a PWM signal at its input pin. The ESM_MCU detects a bad-event when the  
Mode frequency or duty cycle of the PWM input signal deviates from the expected signal. The ESM_MCU  
detects a good-event when the frequency and duty cycle of the PWM signal match with the expected  
signal for one signal period.  
The ESM_MCU has an error-counter (ESM_MCU_ERR_CNT[4:0] ), which increments with +2 after  
each bad-event, and decrements with -1 after each good-event. The ESM_MCU detects an ESM-error  
when the error-counter value is more than its related threshold value.  
To select this mode for the ESM_MCU, the MCU must set bit ESM_MCU_MODE. See 8.15.3 for  
further details.  
The MCU can configure the ESM_MCU as long as its related start bit is cleared to 0 (bit ESM_MCU_START ).  
As soon as the MCU sets the start bit, the device sets a write-protection on the configuration registers of the  
ESM_MCU except the start bit ESM_MCU_START.  
8.15.1 ESM Error-Handling Procedure  
The ESM_MCU has two of its own configurable delay-timers that are reset when the device clears the  
ESM_MCU_START bit. Below steps describe the procedure through which the ESM_MCU goes in case it  
detects an ESM-error:  
1. If the respective mask bit ESM_MCU_PIN_MASK=0, the device sets interrupt bit ESM_MCU_PIN_INT , and  
pulls the nINT pin low.  
2. The ESM starts the delay-1 timer (configurable through related ESM_MCU_DELAY1[7:0] bits).  
3. If the ESM-error is no longer present and MCU has cleared the interrupt bit ESM_MCU_PIN_INT before the  
delay-1 timer elapses, the device releases the nINTpin, the ESM resets the delay-1 and delay-2 timers and  
continues to monitor its input pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
4. If the ESM-error is still present, or if MCU has not cleared the interrupt bit ESM_MCU_PIN_INT , and the  
delay-1 timer elapses, then the ESM clears the ENABLE_DRV bit if bit ESM_MCU_ENDRV=1.  
5. If the delay-2 timer (configurable through related ESM_MCU_DELAY2[7:0] bits) is set to 0, then the ESM  
skips steps 6 of this list, and performs step 7.  
6. If the delay-2 timer is not set to 0, then:  
a. ESM starts the delay-2 timer,  
b. If ESM_MCU_FAIL_MASK = 0, the device sets interrupt bit ESM_MCU_FAIL_INT and pulls the nINT pin  
low and starts the delay-2 timer.  
7. If the ESM-error is no longer present and the MCU has cleared the related interrupt bits listed below before  
the delay-2 timer elapses, the device releases the nINTpin, the ESM resets the delay-1 and delay-2 timers  
and continues to monitor its input pin:  
ESM_MCU_PIN_INT (and ESM_MCU_FAIL_INT if set in step 6)  
8. If the ESM-error is still present, or if MCU has not cleared the interrupt bits ESM_MCU_PIN_INT and  
ESM_MCU_FAIL_INT , and the delay-2 timer elapses, then the device:  
a. clears the ESM_MCU_START BIT  
b. sets interrupt bit and ESM_MCU_RST_INT, which the device handles as an ESM_MCU_RST trigger for  
FSM, described in 8-13  
c. After this trigger handling completes, the device re-initializes the ESM_MCU  
ESM_MCU_DELAY1[7:0] set the delay-1 time-interval (tDELAY-1) for the ESM_MCU . Use 方程式 11 and 方程式  
12 to calculate the worst-case values for the tDELAY-1  
:
Min. tDELAY-1 = (ESM_MCU_DELAY1[7:0] × 2.048 ms) × 0.95  
Max. tDELAY-1 = (ESM _MCU_DELAY1[7:0] × 2.048 ms) × 1.05  
(11)  
(12)  
ESM_MCU_DELAY2[7:0] bits set the delay-2 time-interval (tDELAY-2) for the ESM_MCU . Use 方程13 and 方程  
14 to calculate the worst-case values for the tDELAY-2  
:
Min. tDELAY-2 = (ESM_MCU_DELAY2[7:0] × 2.048 ms) × 0.95  
Max. tDELAY-2 = (ESM_MCU_DELAY2[7:0] × 2.048 ms) × 1.05  
8.15.2 Level Mode  
(13)  
(14)  
In Level Mode, after MCU has set the start bit (bit ESM_MCU_START ), the ESM_MCU monitors its nERR_MCU  
input pin. The ESM _MCU detects an ESM-error when the voltage level on its input pin remains low for a time  
equal or longer than the deglitch-time tdegl_ESMx. When the ESM_MCU detects an ESM-error, it starts the ESM  
Error-Handling procedure as described in 8.15.1. The Error-Handling Procedure is stopped if, before elapse  
of the delay-1 or delay-2 interval, the voltage level on the input pin remains high for a time equal or longer than  
the deglitch-time tdegl_ESMx and the MCU clears all corresponding interrupt bits. If the ESM-error persists such  
that the configured delay-1 and delay-2 times elapse, the ESM_MCU sends a ESM_MCU_RST trigger to the  
PFSM and the device clear the ESM_MCU_START bit. After the PFSM completes the handling of the  
ESM_MCU_RST trigger, the device re-initializes the ESM_MCU.  
For a complete overview on how the ESM_MCU works in Level Mode, please refer to the flow-chart in 8-51.  
In this flow-chart, the _x stands for _MCU. 8-52, 8-53, 8-54, and 8-55 show example wave forms for  
several error-cases for the ESM_MCU in Level Mode.  
Copyright © 2022 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Global Reset Conditions:  
START  
ESM_x Level Mode  
Procedure  
- Warm-Reset from Watchdog or ESM_x  
- Immediate or Orderly Shutdown  
ESM_x in Level-Mode  
- Device releases MCU/SoC reset pin  
- MCU can set ENABLE_DRV bit  
- Device releases nINT pin  
- Device Power-On-Reset  
NO  
ESM_x_EN=1  
?
- no ESM_x interrupt bit set  
YES  
ESM_x pin  
level  
= 0?  
- Device clears ESM_x_START=0  
- Device resets the ESM_x_DELAY1  
and ESM_x_DELAY2 mers  
YES  
ESM_x-INTERRUPT  
- If ESM_x_PIN_MASK=0, device sets  
ESM_x_PIN_INT interrupt bit And pulls nINT  
pin low  
- Device starts ESM_x_DELAY1 mer, or  
con nues to run this mer if already started  
- Device does not change ENABLE_DRV bit  
- Device does not change the level of the  
MCU/SoC reset pins  
Note: the procedures “Check  
ESM_x_START=1" and “ESM_x Level  
Mode Procedure“ run in parallel.  
If ESM_x_START=0, the device stops  
the “ESM_x Level Mode  
- Device releases  
nINT pin if all  
interrupt bits are  
cleared  
- ESM resets  
ESM_x_DELAY1 and  
ESM_x_DELAY2  
mers  
Reset-Extension  
me-interval  
elapsed?  
NO  
Procedure“  
Check ESM_x_START=1  
YES  
- Device stops ESM_x  
Level Mode Procedure  
- Device resets the  
ESM_x_DELAY1 and  
ESM_x_DELAY2 mers  
ESM_x pin  
level =1 &  
ESM_x_PIN_INT=0  
?
NO  
YES  
ESM_x_START  
=1?  
YES  
NO  
ESM_x-CONFIGURE  
- Device releases MCU/SoC reset pin  
- Device forces ENABLE_DRV = 0  
- MCU clears all interrupt bits  
- Device releases nINT pin if no other interrupt bits are set  
ESM_x_DELAY1  
NO  
me-interval  
elapsed?  
-
ESM_x con gura on registers unlocked  
YES  
- MCU either clears ESM_x_EN, or  
1) MCU con gures ESM_x in Level-Mode (bit ESM_x_MODE)  
2) MCU con gures ESM_x_DELAY1, ESM_x_DELAY2 and ESM_x_ENDRV  
3) MCU sets ESM_x_START  
Con gura on bit  
ESM_x_ENDRV =1?  
Device forces  
ENABLE_DRV= 0  
YES  
Device locks all  
ESM_x  
con gura on  
registers  
NO  
ESM_x_START  
=1?  
YES  
NO  
ESM_x_DELAY2  
set to 0?  
YES  
NO  
ESM_x_EN  
=0?  
NO  
- If ESM_x_FAIL_MASK=0, device sets  
ESM_x_FAIL_INT interrupt bit And pulls  
nINT pin low  
YES  
- Device starts ESM_x_DELAY2 mer, or  
con nues to run this mer if already started  
NO ESM_x  
- MCU/SoC reset inac ve  
- MCU can set ENABLE_DRV bit (if  
no other interrupt bits are set)  
- nINT pin released  
(if no other interrupt bits are set)  
- no ESM_x interrupt bit set  
YES  
ESM_x pin level =1  
& ESM_x_PIN_INT=0 &  
ESM_x_FAIL_INT=0  
?
ESM_x Level-Mode  
Error-Handling  
Procedure  
NO  
NO  
ESM_x_EN  
=0?  
YES  
ESM_x_DELAY2  
me-interval  
elapsed?  
NO  
YES  
ESM_x-RESET  
If ESM_x_RST_MASK=0:  
- ESM_x_RST trigger send to to FSM  
- device sets ESM_x_RST_INT  
interrupt bit and pulls nINT pin low  
8-51. Flow Chart for Error Detection in Level Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
MCU Reset-Extension Time  
MCU sets  
nRSTOUT Pin  
ESM_MCU_START  
ESM_MCU_START  
x
0
1
tdegl_ESMx 15 s  
tLOW_ERROR <  
ESM_MCU_DELAY1  
ESM_MCU Input  
Pin  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Deglitched ESM_MCU  
Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 timer reset after  
MCU clears ESM_MCU_PIN_INT  
ESM_MCU_DELAY1  
MCU clears  
ESM_MCU_PIN_INT  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN_MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT  
nINT Pin  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
x
0
1
ENABLE_DRV  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Device State  
x
ACTIVE or MCU_ONLY  
t
0
Case Number 1:  
MCU initiated a fault-injection, and MCU clears the ESM_MCU_PIN_INT interrupt bit before elapse of ESM_MCU_DELAY1 time-interval  
8-52. Example Waveform for ESM_MCU in Level Mode - Case Number 1: ESM_MCU Signal Recovers Before Elapse of Delay-1 time-interval  
Copyright © 2022 Texas Instruments Incorporated  
128  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
MCU Reset-Extension Time  
MCU sets  
nRSTOUT Pin  
ESM_MCU_START  
x
0
1
ESM_MCU_START  
ESM_MCU Input Pin  
tESM_DEGLITCH 15 s  
tLOW_ERROR < (ESM_MCU_DELAY1 +  
ESM_MCU_DELAY2)  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Deglitched ESM_MCU  
Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 and  
ESM_MCU_DELAY2 timers reset after  
MCU clears ESM_MCU_PIN_INT and  
ESM_MCU_FAIL_INT  
ESM_MCU_DELAY1  
ESM_MCU_DELAY2  
MCU clears  
ESM_MCU_PIN_INT  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN_MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_FAIL_INT  
&
nINT Pin  
MCU clears  
ESM_MCU_FAIL_INT  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
1
0
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
0
x
0
1
1
ENABLE_DRV  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV  
x
ACTIVE or MCU_ONLY  
Device State  
t
0
Case Number 2: ESM_MCU_DELAY2 > 0  
An error event occurred in the MCU, but the MCU recovers and clears the interrupt bits before elapse of the ESM_MCU_DELAY2 time-interval  
8-53. Example Waveform for ESM_MCU in Level Mode Case Number 2: Delay-2 Not Set To 0 and ESM_MCU_ENDRV=1, ESM_MCU Signal  
Recovers Before Elapse of Delay-2 Time-Interval  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
129  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
MCU Reset-Extension Time  
MCU sets  
MCU Reset-Extension Time  
nRSTOUT Pin  
MCU sets  
ESM_MCU_START after all  
interrupt bits are cleared  
ESM_MCU_START  
ESM_MCU_START  
0
x
0
1
1
tdegl_ESMx 15 s  
tLOW_ERROR  
ESM_MCU Input  
Pin  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Deglitched ESM_MCU  
Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 timer  
reset when ESM resets the  
MCU  
ESM_MCU_DELAY1  
MCU clears  
ESM_MCU_PIN_INT  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN_MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_RST_INT  
nINT Pin  
&
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
MCU clears  
ESM_MCU_RST_INT  
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
1
0
x
0
1
1
ENABLE_DRV  
Device State  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Warm  
Reset  
x
ACTIVE or MCU_ONLY  
ACTIVE or MCU_ONLY (same as previous)  
t
0
Case Number 3a: ESM_MCU_DELAY2 = 0  
An error event occurred in the MCU, and the MCU is unable to correct the error before elapse of the ESM_MCU_DELAY1 time-interval. Hence the PMIC resets the MCU  
8-54. Example Waveform for ESM_MCU in Level Mode Case Number 3a: Delay-2 Set To 0 and ESM_MCU_ENDRV=1, ESM_MCU Input  
Signal Recovers Too Late and MCU-Reset Occurs  
Copyright © 2022 Texas Instruments Incorporated  
130  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
MCU Reset-Extension Time  
MCU sets  
MCU Reset-Extension Time  
nRSTOUT Pin  
MCU sets ESM_MCU_START  
after all interrupt bits are cleared  
ESM_MCU_START  
ESM_MCU_START  
ESM_MCU Input Pin  
0
x
0
1
1
tdegl_ESMx 15 s  
tLOW_ERROR  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Internally Deglitched  
ESM_MCU Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 and  
ESM_MCU_DELAY2  
timers reset when ESM  
resets the MCU  
MCU clears  
ESM_MCU_PIN_INT  
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_DELAY1  
ESM_MCU_DELAY2  
&
ESM_MCU_PIN_INT  
(ESM_MCU_PIN__MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_FAIL_INT  
and ESM_MCU_RST_INT  
&
nINT Pin  
MCU clears  
ESM_MCU_FAIL_INT  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
1
0
MCU clears  
ESM_MCU_RST_INT  
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
1
0
0
x
0
1
1
ENABLE_DRV  
Device State  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Warm  
Reset  
x
ACTIVE or MCU_ONLY  
ACTIVE or MCU_ONLY (same as previous)  
t
0
Case Number 3b: ESM_MCU_DELAY2 > 0  
An error event occurred in the MCU, and the MCU is unable to correct the error before elapse of the ESM_MCU_DELAY1 and ESM_MCU_DELAY2 time-intervals. Hence the PMIC resets the MCU  
8-55. Example Waveform for ESM_MCU in Level Mode Case Number 3b: Delay-2 Not Set to 0 and ESM_MCU_ENDRV=1, ESM_MCU Input  
Signal Recovers Too Late and MCU-Reset Occurs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
131  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
MCU Reset-Extension Time  
MCU Reset-Extension Time  
nRSTOUT Pin  
MCU sets  
ESM_MCU_START  
MCU sets ESM_MCU_START  
after all interrupt bits are cleared  
ESM_MCU_START  
ESM_MCU Input Pin  
0
x
0
1
1
tdegl_ESMx 15  
s
tLOW_ERROR  
tdegl_ESMx 15  
s
tdegl_ESMx 15  
s
Internally Deglitched  
ESM_MCU Input Signal  
tdegl_ESMx 15  
s
ESM_MCU_DELAY1 and  
ESM_MCU_DELAY2  
timers reset when ESM  
resets the MCU  
MCU clears  
ESM_MCU_PIN_INT  
ESM_MCU_DELAY1  
ESM_MCU_DELAY2  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN__MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_FAIL_INT  
and ESM_MCU_RST_INT  
&
nINT Pin  
MCU clears  
ESM_MCU_FAIL_INT  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
0
1
1
0
MCU clears  
ESM_MCU_RST_INT  
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
1
0
0
x
0
1
ENABLE_DRV  
Device State  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Warm  
Reset  
x
ACTIVE or MCU_ONLY  
ACTIVE or MCU_ONLY (same as previous)  
t
0
Case Number 3c: ESM_MCU_DELAY2 > 0  
An error event occurred in the MCU, the MCU recovers and clears ESM_MCU_FAIL_INT, but fails to clear ESM_MCU_PIN_INT before elapse of the ESM_MCU_DELAY2 time-interval.  
Hence the PMIC resets the MCU and sets ESM_RST_INT (if ESM_MCU_RST_MASK=0).  
8-56. Example Waveform for ESM_MCU in Level Mode Case Number 3c: Delay-2 Not Set to 0 and ESM_MCU_ENDRV=1, MCU Fails to  
Clear ESM_MCU_PIN_INT Before Elapse of the ESM_MCU_DELAY2  
Copyright © 2022 Texas Instruments Incorporated  
132  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.15.3 PWM Mode  
8.15.3.1 Good-Events and Bad-Events  
In PWM mode, the ESM_MCU monitors the high-pulse and low-pulse duration times its PWM input signal as  
follows:  
After a falling edge, the ESM_MCU starts monitoring the low-pulse time-duration. If the input signal remains  
low after exceeding the maximum low-pulse time-threshold (tLOW_MAX_TH), the ESM_MCU detects a bad  
event and the low-pulse duration counter reinitializes. Each time the signal further exceeds the maximum  
threshold, the ESM_MCU detects a bad event. On the next rising edge on the input signal, the ESM starts the  
high-pulse time-duration monitoring  
After a rising edge, the ESM_MCU starts monitoring the high-pulse time-duration. If the input signal remains  
high after exceeding the maximum high-pulse time-threshold (tHIGH_MAX_TH), the ESM_MCU detects a bad  
event and the high-pulse duration counter reinitializes. Each time the signal further exceeds the maximum  
threshold, the ESM_MCU detects a bad event. On the next falling edge on the input signal, the ESM_MCU  
starts the low-pulse time-duration monitoring.  
In addition, the ESM_MCU detects a bad-event in PWM mode if one of the events that follow occurs on the  
deglitched signal of the input pin nERR_MCU:  
A high-pulse time-duration that is longer than the maximum high-pulse time-threshold (tHIGH_MAX_TH) that is  
configured in register bits ESM_MCU_HMAX[7:0].  
A high-pulse time-duration that is shorter than the minimum high-pulse time-threshold (tHIGH_MIN_TH) that is  
configured in register bits ESM_MCU_HMIN[7:0].  
A low-pulse time-duration that is longer than the maximum low-pulse time-threshold (tLOW_MAX_TH) that is  
configured in register bits ESM_MCU_LMAX[7:0].  
A low-pulse time-duration that is less than the minimum low-pulse time-threshold (tLOW_MIN_TH) that is  
configured in register bits ESM_MCU_LMIN[7:0].  
The ESM_MCU detects a good-event in PWM mode if one of the events that follow occurs on the deglitched  
signal of the input pin nERR_MCU:  
A low-pulse time-duration within the minimum and maximum low-pulse time-thresholds is followed by a high-  
pulse time-duration within the minimum and maximum high-pulse time-thresholds, or  
A high-pulse duration within the minimum and maximum high-pulse time-thresholds is followed by a low-  
pulse duration within the minimum and maximum low-pulse time-thresholds  
Register bits ESM_MCU_HMAX[7:0] set the maximum high-pulse time-threshold (tHIGH_MAX_TH) for the  
ESM_MCU. Use 方程15 and 方程16 to calculate the worst-case values for the tHIGH_MAX_TH  
:
Min. tHIGH_MAX_TH = (15 µs +ESM_MCU_HMAX[7:0] × 15 µs) × 0.95  
Max. tHIGH_MAX_TH = (15 µs +ESM_MCU_HMAX[7:0] × 15 µs) × 1.05  
(15)  
(16)  
ESM_MCU_HMIN[7:0] set the minimum high-pulse time-threshold (tHIGH_MIN_TH) for the ESM. Use 方程式 17  
and 方程18 to calculate the worst-case values for the tHIGH_MIN_TH  
:
Min. tHIGH_MIN_TH = (15 µs +ESM_MCU_HMIN[7:0] × 15 µs) × 0.95  
Max. tHIGH_MIN_TH = (15 µs +ESM_MCU_HMIN[7:0] × 15 µs) × 1.05  
(17)  
(18)  
ESM_MCU_LMAX[7:0] set the maximum low-pulse time-threshold (tLOW_MAX_TH) for the ESM_MCU. Use 方程式  
19 and 方程20 to calculate the worst-case values for the tLOW_MAX_TH  
:
Min. tLOW_MAX_TH = (15 µs +ESM_MCU_LMAX[7:0] × 15 µs) × 0.95  
Max. tLOW_MAX_TH = (15 µs +ESM_MCU_LMAX[7:0] × 15 µs) × 1.05  
(19)  
(20)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: LP8764-Q1  
 
 
 
 
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
ESM_MCU_LMIN[7:0] set the minimum low-pulse time-threshold (tLOW_MIN_TH) for the ESM. Use 方程式 21 and  
方程22 to calculate the worst-case values for the tLOW_MIN_TH  
:
Min. tLOW_MIN_TH = (15 µs +ESM_MCU_LMIN[7:0] × 15 µs) × 0.95  
Max. tLOW_MIN_TH = (15 µs +ESM_MCU_LMIN[7:0] × 15 µs) × 1.05  
(21)  
(22)  
Please note that when setting up the minimum and the maximum low/high-pulse time-thresholds need to be  
configured such that clock tolerances from the LP8764-Q1 and from the processor are incorporated. 方程式 23,  
方程24, 方程25, and 方程26 are a guideline on how to incorporate these clock-tolerances:  
ESM_MCU_HMIN[7:0] < 0.5 × (ESM_MCU_HMAX[7:0] + ESM_MCU_HMIN[7:0]) × 0.95 × (1 - MCUclock tolerance) (23)  
ESM_MCU_HMAX[7:0] > 0.5 × (ESM_MCU_HMAX[7:0] + ESM_MCU_HMIN[7:0]) × 1.05 × (1 + MCU clock tolerance) (24)  
ESM_MCU_LMIN[7:0] < 0.5 × (ESM_MCU_LMAX[7:0] + ESM_MCU_LMIN[7:0]) × 0.95 × (1 - MCUclock tolerance) (25)  
ESM_MCU_LMAX[7:0] > 0.5 × (ESM_MCU_LMAX[7:0] + ESM_MCU_LMIN[7:0]) × 1.05 × (1 + MCU clock tolerance) (26)  
8.15.3.2 ESM Error-Counter  
If the ESM_MCU detects a bad-event, it increments its error-counter (bits ESM_MCU_ERR_CNT[4:0] ) by 2. If  
the ESM_MCU detects a good-event, it decrements its error-counter (bits ESM_MCU_ERR_CNT[4:0] ) by 1.  
The device clears the ESM_MCU error counter when ESM_MCU_START=0.  
The ESM_MCU error-counter has a threshold (bits ESM_MCU_ERR_CNT_TH[3:0] ) that the MCU can configure  
if the ESM_MCU_START bit is 0. If the ESM_MCU error-counter value is above its configured threshold, the  
ESM_MCU has detected a so-called ESM-error and starts the Error-Handling Procedure as described in 节  
8.15.1. If the ESM_MCU error-counter reached a value equal or less its configured threshold before the elapse  
of the configured delay-1 or delay-2 intervals and the MCU software clears all ESM_MCU related interrupt bits,  
the ESM-error is no longer present and the ESM_MCU stops the Error-Handling Procedure as described in 节  
8.15.1. If the ESM-error persists such that the configured delay-1 and delay-2 times elapse, the ESM_MCU  
sends a ESM_MCU_RST trigger to the PFSM and the device clears the ESM_MCU_START bit. After the PFSM  
completes the handling of the ESM_MCU_RST trigger, the device re-initializes the ESM_MCU.  
8.15.3.2.1 ESM Start-Up in PWM Mode  
After the MCU has set the start bit of the ESM_MCU (bit ESM_MCU_START ), there are two possible scenarios:  
1. The deglitched signal of the monitored input pin has a low level at the moment the MCU sets the start bit. In  
this scenario, the ESM_MCU starts the following procedure:  
a. Start a timer with a time-length according the value configured in ESM_MCU_LMAX[7:0] .  
b. Wait for a first rising edge on its deglitched input signal.  
c. If the rising edge comes before the configured time-length elapses, the ESM_MCU skips the next step  
and starts to monitor the high-pulse duration time. Hereafter, the ESM_MCU detects good-events or  
bad-events as described in 8.15.3.1. 8-58 shows an example this scenario as Case Number 1.  
d. If the configured time-length (configured in ESM_MCU_LMAX[7:0] ) elapses, the ESM_MCU detects a  
bad-event and increments the error-counter with +2. Hereafter, the ESM detects good-events or bad-  
events as described in 8.15.3.1. 8-60 shows an example this scenario as Case Number 3.  
e. If the ESM_MCU error-counter value is above its configured threshold, the ESM_MCU has detected a  
so-called ESM-error and starts the Error-Handling Procedure as described in 8.15.3.1.  
f. During this Error-Handling Procedure, the ESM_MCU continues to monitor its input pin, and updates the  
error-counter accordingly when it detects good-events or bad-events, until the Error-Handling Procedure  
reaches the step in which the ESM_MCU sends an ESM_MCU_RST trigger to the PFSM, which,  
depending on the PFSM configuration, resets the MCU . 8-61 shows a scenario in which the device  
resets the MCU as Case Number 4.  
g. If the ESM_MCU error-counter reaches a value equal or less its configured threshold before the elapse  
of the configured delay-1 or delay-2 time-intervals and the MCU software clears all ESM_MCU related  
Copyright © 2022 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
interrupt bits, the ESM-error is no longer present and the ESM_MCU stops the Error-Handling Procedure  
as described in 8.15.3.1.  
2. The deglitched signal monitored input pin has a high level at the moment the MCU sets the start bit. In this  
scenario, the ESM_MCU starts the following procedure:  
a. Start a timer with a time-length according the value configured in ESM_MCU_HMAX[7:0] .  
b. Wait for a first falling edge on its deglitched input signal.  
c. If the falling edge comes before the configured time-length elapses, the ESM_MCU skips the next step  
and starts to monitor the low-pulse duration time. Hereafter, the ESM_MCU detects good-events or bad-  
events as described in 8.15.3.1. 8-59 shows an example this scenario as Case Number 2.  
d. If the configured time-length (configured in ESM_MCU_HMAX[7:0] ) elapses, the ESM_MCU detects a  
bad-event and increments the error-counter with +2. Hereafter, the ESM_MCU detects good-events or  
bad-events as described in 8.15.3.1.  
e. If the ESM_MCU error-counter value is above its configured threshold, the ESM_MCU has detected a  
so-called ESM-error and starts the Error-Handling Procedure as described in 8.15.3.1.  
f. During this Error-Handling Procedure, the ESM continues to monitor its input pin, and updates the error-  
counter accordingly when it detects good-events or bad-events, until the Error-Handling Procedure  
reaches the step in which the ESM_MCU sends an ESM_MCU_RST trigger to the PFSM, which,  
depending on the PFSM configuration, resets the MCU , as Case Number 4.  
g. If the ESM_MCU error-counter reaches a value equal or less its configured threshold before the elapse  
of the configured delay-1 or delay-2 time-intervals and the MCU software clears all ESM_MCU related  
interrupt bits, the ESM-error is no longer present and the ESM_MCU stops the Error-Handling Procedure  
as described in 8.15.3.1.  
8.15.3.3 ESM Flow Chart and Timing Diagrams in PWM Mode  
For a complete overview on how the ESM_MCU works in PWM Mode, please refer to the flow-chart in 8-57.  
In this flow-chart, the _x stands for _MCU 8-58, 8-59, 8-60, and 8-61 show example waveforms for  
several error-cases for the ESM_MCU in PWM Mode. In this flow-chart, the _x stands for _MCU  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Global Reset Conditions:  
NO  
ESM_x-CONFIGURE  
- Device releases MCU/SoC reset pins  
- Device forces ENABLE_DRV= 0  
- MCU clears all interrupt bits  
- Device releases nINT pin if no other interrupt bits are set  
- Warm-Reset from Watchdog or ESM_x  
- Immediate or Orderly Shutdown  
NO ESM_x  
NO  
- MCU/SoC reset inac ve  
- MCU can set ENABLE_DRV bit -  
nINT pin released  
(if no other interrupt bits are set)  
- no ESM_x interrupt bit set  
YES  
ESM_x_EN  
=0?  
- Device Power-On-Reset  
ESM_x_START  
=1?  
NO  
ESM_x_EN  
=0?  
-
ESM_x con gura on registers unlocked  
YES  
START  
- MCU either clears ESM_x_EN, or  
1) MCU con gures ESM in PWM-Mode +  
ESM_x_H/L_MAX/MIN mes  
2) MCU con gures ESM_x_DELAY1, ESM_x_DELAY2 and  
ESM_x_ENDRV  
YES  
Device locks all  
ESM_x  
con gura on  
registers  
- Device stops  
YES  
ESM_x_PWM Mode  
Procedure and ESM_x  
PWM Error-Handling  
Procedure  
NO  
ESM_x_EN=1  
?
3) MCU sets ESM_x_START  
ESM_x_  
START=1?  
NO  
YES  
Note: the procedures „Check ESM_x_START=1", „ESM_x PWM Mode Procedure“ and „ESM_x  
PWM Error-Handling Procedure“ run in parallel. If ESM_x_START=0, the device stops the  
„ESM_x PWM Mode Procedure“ and the „ESM_x PWM Error-Handling Procedure“  
Check  
ESM_x_START=1  
- Device resets the  
ESM_x_DELAY1 and  
ESM_x_DELAY2 mers  
- Device clears  
ESM_x_START=0  
- Device resets the  
ESM_x_DELAY1  
and ESM_x_DELAY2  
mers  
ESM_x_ PWM Mode Procedure  
NO  
YES  
NO  
ESM_x  
ESM_x  
detects  
Falling Edge  
?
ESM_x_  
LMAX time  
elapsed?  
ESM_x_  
HMAX time  
elapsed?  
ESM_x pin  
level  
= 0?  
detects  
Rising Edge  
?
YES  
NO  
NO  
NO  
NO  
YES  
YES  
- MCU/SoC reset inac ve  
Reset-Extension  
me-interval  
elapsed?  
YES  
YES  
ESM_x  
PWM Error-  
Handling  
- MCU can set ENABLE_DRV bit  
- nINT pin released  
(if no other interrupt bits are set)  
- no ESM_x interrupt bit set  
ESM_x  
PWM Error-  
Handling  
Device increase  
ESM_x  
Error-Counter  
with +2  
Device increase  
ESM_x  
Error-Counter  
with +2  
Procedure  
Procedure  
NO  
NO  
ESM_x  
detects  
Falling Edge  
?
ESM_x  
detects  
Rising Edge  
?
ESM_x_  
HMAX time  
elapsed?  
ESM_x_  
LMAX time  
elapsed?  
YES  
YES  
NO  
NO  
Device increase  
ESM_x  
Device increase  
ESM_x  
YES  
YES  
Error-Counter  
with +2  
Error-Counter  
with +2  
ESM_x_  
HMIN time  
elapsed?  
ESM_x_  
LMIN time  
elapsed?  
Device increase  
ESM_x  
Error-Counter  
with +2  
Device increase  
ESM_x  
Error-Counter  
with +2  
NO  
NO  
YES  
YES  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-  
Handling Procedure  
Device decrease  
ESM_x  
Error-Counter  
with -1  
NO  
NO  
ESM_x  
detects  
Rising Edge  
?
ESM_x  
detects  
Falling Edge  
?
ESM_x_  
LMAX time  
elapsed?  
ESM_x_  
HMAX time  
elapsed?  
NO  
NO  
Device decrease  
ESM_x  
YES  
YES  
Error-Counter  
with -1  
Device increase ESM_x  
Error-Counter with +2  
Device increase ESM_x  
Error-Counter with +2  
YES  
YES  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-  
Handling Procedure  
ESM_x_  
LMIN time  
elapsed?  
ESM_x_  
HMIN time  
elapsed?  
Device increase ESM_x  
Error-Counter with +2  
Device increase ESM_x  
Error-Counter with +2  
NO  
NO  
YES  
YES  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-Handling Procedure  
Note: until step ESM_x-RESET, the  
ESM_x_PWM Mode Procedure runs  
NO  
ESM_x  
Error-Counter  
Threshold &  
ESM_x_PIN_INT=  
0?  
ESM_x-INTERRUPT  
in parallel  
Con gura on  
- If ESM_x_PIN_MASK=0, device sets  
ESM_x_PIN_INT interrupt bit and pulls nINT  
pin low  
ESM_x_DELAY1  
me-interval  
elapsed?  
NO  
YES  
bit  
ESM_x_ENDRV  
=1?  
YES  
ESM_x  
- Device starts ESM_x_DELAY1 mer, or  
con nues to run this mer if already started  
- Device does not change ENABLE_DRV bit  
- Device does not change the level of the  
MCU/SoC reset pins  
Error-Counter  
>Threshold  
YES  
START  
END  
Device forces  
ENABLE_DRV= 0  
NO  
YES  
NO  
- Device releases nINT pin if  
all interrupt bits are cleared  
- ESM resets ESM_x_DELAY1  
and ESM_x_DELAY2 mers  
ESM_x_DELAY2  
set to 0?  
YES  
YES  
NO  
ESM_x  
Error-Counter  
< Threshold &  
ESM_x_PIN_INT=0 &  
ESM_x_FAIL_INT  
=0?  
ESM_x-RESET  
If ESM_x_RST_MASK=0:  
- ESM_x_RST trigger send to to FSM  
- device sets ESM_x_RST_INT interrupt  
bit and pulls nINT pin low  
- If ESM_x_FAIL_MASK=0, device sets  
ESM_x_FAIL_INT interrupt bit and pulls nINT pin  
low  
- Device starts ESM_x_DELAY2 mer, or con nues  
to run this mer if already started  
ESM_x_DELAY2  
me-interval  
elapsed?  
YES  
NO  
NO  
8-57. Flow-Chart for ESM_MCU in PWM Mode  
Copyright © 2022 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
MCU sets ESM_x_START  
x
0
1
ESM_x_START  
tdegl_ESMx 15  
s
tHIGH_MAX_TH  
(ESM_x_HMAX [7:0] + 1) × 15  
=
tHIGH_MAX_TH  
(ESM_x_HMAX [7:0] + 1) × 15  
=
s
s
tHIGH_MIN_TH  
(ESM_x_HMIN [7:0] + 1)  
× 15  
=
tHIGH_MIN_TH  
(ESM_x_HMIN [7:0] + 1)  
× 15  
=
s
s
tLOW_MAX_TH  
=
tLOW_MAX_TH  
=
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1) × 15  
s
(ESM_x_LMAX[7:0] + 1) × 15  
s
(ESM_x_LMAX[7:0] + 1) × 15 s  
tLOW_MIN_TH  
=
tLOW_MIN_TH =  
(ESM_x_LMIN[7:0] + 1) × 15 s  
(ESM_x_LMIN[7:0] + 1) × 15  
s
High-Pulse Timer  
Stopped,  
High-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Reset and  
Low-Pulse Timer  
Reset and Started  
Low-Pulse Timer  
Reset and Started  
Deglitched ESM_x  
Input Signal  
Started  
Low-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Stopped,  
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Reset and Started  
no bad event trigger as  
long as rising edge on  
ESM_x signal comes  
before elapse of  
tPWM_LOW  
tPWM_LOW  
tPWM_HIGH  
tPWM_HIGH  
1 ESM_x good-event  
1 ESM_x good-event  
tLOW_MAX_TH  
InternalESM_x  
badeventTrigger  
InternalESM_x  
goodeventTrigger  
ESM_x_ERR_CNT[4:0]  
x
00000  
ESM_x_PIN_INT  
(ESM_x_PIN_MASK=0)  
0
nINT Pin  
ESM_x_FAIL_INT  
(ESM_x_FAIL_MASK=0)  
0
ESM_x_RST_INT  
(ESM_x_RST_MASK=0)  
0
0
ENABLE_DRV  
x
1
MCU sets ENABLE_DRV (only possible if ESM_MCU_START=1)  
Case Number 1:  
PWM signal has a low level at the moment the MCU sets bit ESM_x_start, and the PMIC receives a PWM Error Signal with Correct Timing afterwards  
8-58. Example Waveform for ESM_MCU in PWM Mode Case Number 1: ESM_MCU Starts with Low-Level at Deglitched Input signal, and  
Receives Correct PWM Signal Afterwards. (The _x stand for _MCU )  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
137  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
MCU sets ESM_x_START  
x
0
1
ESM_x_START  
tdegl_ESMx 15  
s
tHIGH_MAX_TH  
(ESM_x_HMAX [7:0] + 1) × 15  
=
tHIGH_MAX_TH  
(ESM_x_HMAX [7:0] + 1) × 15  
=
tHIGH_MAX_TH  
(ESM_x_HMAX [7:0] + 1) × 15  
=
s
s
s
tHIGH_MIN_TH  
(ESM_x_HMIN [7:0] + 1)  
× 15  
=
tHIGH_MIN_TH  
(ESM_x_HMIN [7:0] + 1)  
× 15  
=
s
s
tLOW_MAX_TH  
=
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1) × 15  
s
(ESM_x_LMAX[7:0] + 1) × 15  
s
tLOW_MIN_TH  
=
tLOW_MIN_TH  
=
(ESM_x_LMIN[7:0] + 1) × 15  
s
(ESM_x_LMIN[7:0] + 1) × 15  
s
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Stopped,  
High-Pulse Timer  
Stopped,  
High-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Reset and Started  
Deglitched ESM_x  
Input Signal  
Low-Pulse Timer  
Reset and Started  
Low-Pulse Timer  
Reset and Started  
Low-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Stopped,  
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Reset and Started  
no bad event trigger as  
long as falling edge on  
ESM_x signal comes  
before elapse of  
tPWM_HIGH  
tPWM_HIGH  
tPWM_LOW  
tPWM_LOW  
1 ESM_x good-event  
1 ESM_x good-event  
tHIGH_MAX_TH  
InternalESM_x  
badeventTrigger  
InternalESM_x  
goodeventTrigger  
x
00000  
0
ESM_x_ERR_CNT[4:0]  
ESM_x_PIN_INT  
(ESM_x_PIN_MASK=0)  
nINT Pin  
ESM_x_FAIL_INT  
(ESM_x_FAIL_MASK=0)  
0
ESM_x_RST_INT  
(ESM_x_RST_MASK=0)  
0
0
ENABLE_DRV  
x
1
MCU sets ENABLE_DRV (only possible if ESM_MCU_START=1)  
Case Number 2:  
PWM signal has a high level at the moment the MCU sets bit ESM_x_start, and the PMIC receives a PWM Error Signal with Correct Timing afterwards  
8-59. Example Waveform for ESM_MCU in PWM Mode Case Number 2: ESM_MCU Starts with High-Level at Deglitched Input Signal, and  
Receives Correct PWM Signal Afterwards (The _x stand for _MCU )  
Copyright © 2022 Texas Instruments Incorporated  
138  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
MCU sets ESM_x_START  
x
0
1
ESM_x_START  
tdegl_ESMx 15 μs  
tHIGH_MAX_TH  
(ESM_x_HMAX [7:0] + 1) ×  
=
tHIGH_MAX_TH  
(ESM_x_HMAX [7:0] + 1) ×  
15  
=
tHIGH_MAX_TH  
(ESM_x_HMAX [7:0] + 1) ×  
=
15  
s
s
15 s  
tHIGH_MIN_TH  
(ESM_x_HMIN  
[7:0] + 1) × 15  
=
tHIGH_MIN_TH =  
tHIGH_MIN_TH  
=
(ESM_x_HMIN  
(ESM_x_HMIN  
s
[7:0] + 1) × 15  
s
[7:0] + 1) × 15 s  
tLOW_MAX_TH  
=
tLOW_MAX_TH  
=
tLOW_MAX_TH  
(ESM_x_LMAX[7:0] + 1)  
× 15  
=
tLOW_MAX_TH  
=
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1)  
(ESM_x_LMAX[7:0] + 1)  
(ESM_x_LMAX[7:0] + 1)  
(ESM_x_LMAX[7:0] + 1)  
× 15  
s
× 15  
s
s
× 15  
s
× 15 s  
tLOW_MIN_TH  
(ESM_x_LMIN[7:0]  
+ 1) × 15  
=
tLOW_MIN_TH  
=
tLOW_MIN_TH =  
(ESM_x_LMIN[7:0]  
(ESM_x_LMIN[7:0]  
s
+ 1) × 15  
s
+ 1) × 15 s  
Deglitched ESM_x  
Input Signal  
tPWM_LOW  
tPWM_LOW  
tPWM_HIGH  
1 ESM_x good event  
tPWM_LOW  
tPWM_HIGH  
1 ESM_x good event  
tPWM_HIGH  
1 ESM_x good event  
InternalESM_xbad  
eventTrigger  
InternalESM_xgood  
eventTrigger  
ESM_x_ERR_CNT[4:0]  
00010  
00001  
00000  
ESM_x_DELAY2  
00000  
x
00000  
ESM_x_ERR_CNT_  
TH[3:0] = 0001  
ESM_x_DELAY1 and  
ESM_x_DELAY1  
ESM_x_DELAY2 timers reset after  
MCU clears ESM_x_PIN_INT and  
ESM_x_FAIL_INT  
MCU clears ESM_x_PIN_INT  
ESM_x_ERR_CNT[4:0]  
ESM_x_ERR_CNT_TH[3:0]  
&
ESM_x_PIN_INT  
0
0
1
0
&
nINT Pin  
MCU clears  
ESM_x_FAIL_INT  
1
0
ESM_x_FAIL_INT  
0
0
ESM_x_RST_INT  
ENABLE_DRV  
x
1
0
1
Note: PMIC clears ENABLE_DRV  
only when configuration bit  
ESM_x_ENDRV=1  
MCU sets ENABLE_DRV (only possible  
if ESM_x_START=1)  
MCU sets ENABLE_DRV (only possible if ESM_MCU_START=1)  
Case Number 3: ESM_DELAY2 > 0  
PWM signal has a low level at the moment the MCU sets bit ESM_x_start, but the PMIC receives the PWM Error Signal too late. Afterwards PWM Error Signal recovers with Correct Timing and  
ESM_x_ERR_CNT[4:0] reaches a value less than the configured ESM_x_ERR_CNT_TH[3:0] before elapse of the ESM_x_DELAY2 time-interval  
8-60. Example Waveform for ESM in PWM Mode Case Number 3: ESM_MCU Starts with Low-Level at Deglitched Input Signal, but  
Receives Too Late a Correct PWM Signal Afterwards (The _x stand for _MCU )  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
139  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Reset-Extension  
Time  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
MCU sets  
ESM_x_START after all  
interrupt bits are cleared  
MCU sets ESM_x_START  
x
0
0
1
1
ESM_x_START  
tdegl_ESMx 15  
s
tdegl_ESMx 15 s  
=
tHIGH_MAX_TH  
=
tHIGH_MAX_TH  
(ESM_x_HMA(ESM_x_HMAX  
[7:0] + 1) × 15 [7:0] + 1) × 15  
=
tHIGH_MAX_TH =  
tHIGH_MAX_TH  
(ESM_x_HMAX  
[7:0] + 1) × 15  
(ESM_x_HMAX  
[7:0] + 1) × 15  
tHIGH_MIN_TH  
(ESM_x_  
HMIN [7:0] +  
1) x 15  
s
s
s
tHIGH_MIN_TH  
(ESM_x_  
=
=
tHIGH_MIN_TH  
(ESM_x_  
=
tHIGH_MIN_TH  
(ESM_x_  
=
HMIN [7:0] +  
HMIN [7:0] +  
1) x 15  
HMIN [7:0] +  
1) x 15  
1) × 15  
s
s
s
s
tLOW_MAX_TH  
(ESM_x_LMAX[7:0] + 1)  
× 15  
=
tLOW_MAX_TH  
(ESM_x_LMAX[7:0] + 1)  
=
tLOW_MAX_TH  
(ESM_x_LMAX[7:0] + 1)  
=
tLOW_MAX_TH  
(ESM_x_LMAX[7:0] + 1)  
=
tLOW_MAX_TH  
(ESM_x_LMAX[7:0] + 1)  
=
tLOW_MAX_TH  
(ESM_x_LMAX[7:0]  
+ 1) × 15  
=
s
× 15  
s
× 15  
s
× 15  
s
× 15 s  
s
tLOW_MIN_TH  
(ESM_x_LMIN[7:  
0] + 1) × 15  
=
tLOW_MIN_TH  
(ESM_x_LMIN[7:  
0] + 1) × 15  
=
tLOW_MIN_TH  
(ESM_x_LMIN[7:  
0] + 1) × 15  
=
tLOW_MIN_TH =  
(ESM_x_LMIN[7:  
0] + 1) × 15  
Deglitched ESM_x  
Input Signal  
s
s
s
s
t
t
tPWM_HIGH  
tPWM_LOW  
tPWM_HIGH  
tPWM_LOW  
tPWM_HIGH  
tPWM_LOW  
P
W
M
_
H
I
G
H
P
W
M
_
L
O
W
1 ESM_x good event  
1 ESM_x good event  
InternalESM_xbad  
eventTrigger  
InternalESM_xgood  
eventTrigger  
ESM_x_ERR_  
CNT[4:0]  
00100  
00101  
00000  
x
00000  
00110  
00010  
ESM_x_ERR_CNT_  
TH[3:0] = 0011  
ESM_x_DELAY1 and ESM_x_DELAY2 timers  
reset when ESM_x resets the MCU or SoC  
ESM_x_DELAY1  
ESM_x_DELAY2  
MCU clears ESM_x_PIN_INT  
ESM_x_ERR_CNT[4:0]  
&
ESM_x_ERR_CNT_TH[3:0]  
ESM_x_PIN_INT  
(ESM_x_PIN_MASK  
=0)  
0
1
0
&
nINT Pin  
MCU clears  
ESM_x_FAIL_INT  
ESM_x_FAIL_INT  
(ESM_x_FAIL_MASK  
=0)  
1
0
0
MCU clears  
ESM_x_RST_INT  
ESM_x_RST_INT  
(ESM_x_RST_MASK  
=0)  
0
0
0
1
ENABLE_DRV  
x
1
0
1
Note: PMIC clears ENABLE_DRV  
only when configuration bit  
ESM_x_ENDRV=1  
MCU sets ENABLE_DRV (only possible if  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV ( only possible if  
ESM_x_START=1)  
Case Number 4: _DELAY2 > 0  
PWM signal has an error after start-up, and the ESM_x_ERR_CNT[4:0] > ESM_x_ERR_CNT_TH[3:0] during the elapse of ESM_x_DELAY1 and ESM_x_DELAY2. Hence the PMIC  
pulls the nRSTOUT / nRSOUT_SoC pin low, and releases this pin after the reset-extension time. After this, MCU clears all errors and restarts the ESM_x  
8-61. Example Waveform for ESM_MCU in PWM Mode Case Number 4: ESM_MCU Starts with Low-Level at Deglitched Input Signal and  
Receives a Correct PWM Signal. Afterwards the ESM_MCU Detects Bad Events, and the PWM Signal Recovers Too Late which Leads to an  
ESM_MCU Reset Trigger to the PFSM (The _x stand for _MCU )  
Copyright © 2022 Texas Instruments Incorporated  
140  
Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16 Register Map  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1 LP8764x_map Registers  
8-19 lists the memory-mapped registers for the LP8764x_map registers. All register offset addresses not  
listed in 8-19 should be considered as reserved locations and the register contents should not be modified.  
8-19. LP8764X_MAP Registers  
Offset  
0x1  
Acronym  
Register Name  
Section  
DEV_REV  
8.16.1.1  
8.16.1.2  
8.16.1.3  
8.16.1.4  
8.16.1.5  
8.16.1.6  
8.16.1.7  
8.16.1.8  
8.16.1.9  
8.16.1.10  
8.16.1.11  
8.16.1.12  
8.16.1.13  
8.16.1.14  
8.16.1.15  
8.16.1.16  
8.16.1.17  
8.16.1.18  
8.16.1.19  
8.16.1.20  
8.16.1.21  
8.16.1.22  
8.16.1.23  
8.16.1.24  
8.16.1.25  
8.16.1.26  
8.16.1.27  
8.16.1.28  
8.16.1.29  
8.16.1.30  
8.16.1.31  
8.16.1.32  
8.16.1.33  
8.16.1.34  
8.16.1.35  
8.16.1.36  
8.16.1.37  
8.16.1.38  
8.16.1.39  
0x2  
NVM_CODE_1  
0x3  
NVM_CODE_2  
0x4  
BUCK1_CTRL  
0x5  
BUCK1_CONF  
0x6  
BUCK2_CTRL  
0x7  
BUCK2_CONF  
0x8  
BUCK3_CTRL  
0x9  
BUCK3_CONF  
0xA  
BUCK4_CTRL  
0xB  
BUCK4_CONF  
0xE  
BUCK1_VOUT_1  
BUCK1_VOUT_2  
BUCK2_VOUT_1  
BUCK2_VOUT_2  
BUCK3_VOUT_1  
BUCK3_VOUT_2  
BUCK4_VOUT_1  
BUCK4_VOUT_2  
BUCK1_PG_WINDOW  
BUCK2_PG_WINDOW  
BUCK3_PG_WINDOW  
BUCK4_PG_WINDOW  
VCCA_VMON_CTRL  
VCCA_PG_WINDOW  
VMON1_PG_WINDOW  
VMON1_PG_LEVEL  
VMON2_PG_WINDOW  
VMON2_PG_LEVEL  
GPIO1_CONF  
0xF  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x18  
0x19  
0x1A  
0x1B  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
GPIO2_CONF  
GPIO3_CONF  
GPIO4_CONF  
GPIO5_CONF  
GPIO6_CONF  
GPIO7_CONF  
GPIO8_CONF  
GPIO9_CONF  
GPIO10_CONF  
Copyright © 2022 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-19. LP8764X_MAP Registers (continued)  
Offset  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x72  
Acronym  
Register Name  
Section  
ENABLE_CONF  
GPIO_OUT_1  
8.16.1.40  
8.16.1.41  
8.16.1.42  
8.16.1.43  
8.16.1.44  
8.16.1.45  
8.16.1.46  
8.16.1.47  
8.16.1.48  
8.16.1.49  
8.16.1.50  
8.16.1.51  
8.16.1.52  
8.16.1.53  
8.16.1.54  
8.16.1.55  
8.16.1.56  
8.16.1.57  
8.16.1.58  
8.16.1.59  
8.16.1.60  
8.16.1.61  
8.16.1.62  
8.16.1.63  
8.16.1.64  
8.16.1.65  
8.16.1.66  
8.16.1.67  
8.16.1.68  
8.16.1.69  
8.16.1.70  
8.16.1.71  
8.16.1.72  
8.16.1.73  
8.16.1.74  
8.16.1.75  
8.16.1.76  
8.16.1.77  
8.16.1.78  
8.16.1.79  
8.16.1.80  
8.16.1.81  
8.16.1.82  
GPIO_OUT_2  
GPIO_IN_1  
GPIO_IN_2  
RAIL_SEL_1  
RAIL_SEL_3  
FSM_TRIG_SEL_1  
FSM_TRIG_SEL_2  
FSM_TRIG_MASK_1  
FSM_TRIG_MASK_2  
FSM_TRIG_MASK_3  
MASK_BUCK1_2  
MASK_BUCK3_4  
MASK_VMON  
MASK_GPIO1_8_FALL  
MASK_GPIO1_8_RISE  
MASK_GPIO9_10  
MASK_STARTUP  
MASK_MISC  
MASK_MODERATE_ERR  
MASK_FSM_ERR  
MASK_COMM_ERR  
MASK_READBACK_ERR  
MASK_ESM  
INT_TOP  
INT_BUCK  
INT_BUCK1_2  
INT_BUCK3_4  
INT_VMON  
INT_GPIO  
INT_GPIO1_8  
INT_STARTUP  
INT_MISC  
INT_MODERATE_ERR  
INT_SEVERE_ERR  
INT_FSM_ERR  
INT_COMM_ERR  
INT_READBACK_ERR  
INT_ESM  
STAT_BUCK1_2  
STAT_BUCK3_4  
STAT_VMON  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-19. LP8764X_MAP Registers (continued)  
Offset  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x7B  
0x7C  
0x7D  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x8A  
0x8B  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0xA1  
0xA7  
0xA8  
0xA9  
0xAB  
0xC3  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
Acronym  
Register Name  
Section  
STAT_STARTUP  
STAT_MISC  
8.16.1.83  
8.16.1.84  
8.16.1.85  
8.16.1.86  
8.16.1.87  
8.16.1.88  
8.16.1.89  
8.16.1.90  
8.16.1.91  
8.16.1.92  
8.16.1.93  
8.16.1.94  
8.16.1.95  
8.16.1.96  
8.16.1.97  
8.16.1.98  
8.16.1.99  
8.16.1.100  
8.16.1.101  
8.16.1.102  
8.16.1.103  
8.16.1.104  
8.16.1.105  
8.16.1.106  
8.16.1.107  
8.16.1.108  
8.16.1.109  
8.16.1.110  
8.16.1.111  
8.16.1.112  
8.16.1.113  
8.16.1.114  
8.16.1.115  
8.16.1.116  
8.16.1.117  
8.16.1.118  
8.16.1.119  
8.16.1.120  
8.16.1.121  
8.16.1.122  
8.16.1.123  
8.16.1.124  
8.16.1.125  
STAT_MODERATE_ERR  
STAT_SEVERE_ERR  
STAT_READBACK_ERR  
PGOOD_SEL_1  
PGOOD_SEL_4  
PLL_CTRL  
CONFIG_1  
ENABLE_DRV_REG  
MISC_CTRL  
ENABLE_DRV_STAT  
RECOV_CNT_REG_1  
RECOV_CNT_REG_2  
FSM_I2C_TRIGGERS  
FSM_NSLEEP_TRIGGERS  
BUCK_RESET_REG  
SPREAD_SPECTRUM_1  
FREQ_SEL  
FSM_STEP_SIZE  
USER_SPARE_REGS  
ESM_MCU_START_REG  
ESM_MCU_DELAY1_REG  
ESM_MCU_DELAY2_REG  
ESM_MCU_MODE_CFG  
ESM_MCU_HMAX_REG  
ESM_MCU_HMIN_REG  
ESM_MCU_LMAX_REG  
ESM_MCU_LMIN_REG  
ESM_MCU_ERR_CNT_REG  
REGISTER_LOCK  
CUSTOMER_NVM_ID_REG  
VMON_CONF  
INT_SPI_STATUS  
SOFT_REBOOT_REG  
STARTUP_CTRL  
SCRATCH_PAD_REG_1  
SCRATCH_PAD_REG_2  
SCRATCH_PAD_REG_3  
SCRATCH_PAD_REG_4  
PFSM_DELAY_REG_1  
PFSM_DELAY_REG_2  
PFSM_DELAY_REG_3  
Copyright © 2022 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8-19. LP8764X_MAP Registers (continued)  
Offset  
0xD0  
Acronym  
Register Name  
Section  
PFSM_DELAY_REG_4  
WD_ANSWER_REG  
8.16.1.126  
8.16.1.127  
8.16.1.128  
8.16.1.129  
8.16.1.130  
8.16.1.131  
8.16.1.132  
8.16.1.133  
8.16.1.134  
8.16.1.135  
8.16.1.136  
0x401  
0x402  
0x403  
0x404  
0x405  
0x406  
0x407  
0x408  
0x409  
0x40A  
WD_QUESTION_ANSW_CNT  
WD_WIN1_CFG  
WD_WIN2_CFG  
WD_LONGWIN_CFG  
WD_MODE_REG  
WD_QA_CFG  
WD_ERR_STATUS  
WD_THR_CFG  
WD_FAIL_CNT_REG  
Complex bit access types are encoded to fit into small table cells. 8-20 shows the codes that are used for  
access types in this section.  
8-20. LP8764x_map Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
W1C  
W
Write  
1C  
1 to clear  
WSelfClrF  
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.1 DEV_REV Register (Offset = 0x1) [Reset = 0x00]  
DEV_REV is shown in 8-57 and described in 8-21.  
Return to the 8-19.  
8-57. DEV_REV Register  
7
6
5
4
3
2
1
0
TI_DEVICE_ID  
R/W-0b  
8-21. DEV_REV Register Field Descriptions  
Bit  
7:0  
Field  
TI_DEVICE_ID  
Type  
Reset  
Description  
R/W  
0b  
Refer to Technical Reference Manual / User's Guide for specific  
numbering.  
Copyright © 2022 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.2 NVM_CODE_1 Register (Offset = 0x2) [Reset = 0x00]  
NVM_CODE_1 is shown in 8-58 and described in 8-22.  
Return to the 8-19.  
8-58. NVM_CODE_1 Register  
7
6
5
4
3
2
1
0
TI_NVM_ID  
R/W-0b  
8-22. NVM_CODE_1 Register Field Descriptions  
Bit  
7:0  
Field  
TI_NVM_ID  
Type  
Reset  
Description  
R/W  
0b  
0x00 - 0xF0 are reserved for TI manufactured NVM variants  
0xF1 - 0xFF are reserved for special use  
0xF1 = Engineering sample, blank NVM [trim and basic defaults  
only], customer programmable for engineering use only  
0xF2 = Production unit, blank NVM [trim and basic defaults only],  
customer programmable in volume production  
0xF3-FF = Reserved, do not use  
This bit is Read-Only for I2C/SPI access.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.3 NVM_CODE_2 Register (Offset = 0x3) [Reset = 0x00]  
NVM_CODE_2 is shown in 8-59 and described in 8-23.  
Return to the 8-19.  
8-59. NVM_CODE_2 Register  
7
6
5
4
3
2
1
0
TI_NVM_REV  
R/W-0b  
8-23. NVM_CODE_2 Register Field Descriptions  
Bit  
7:0  
Field  
TI_NVM_REV  
Type  
Reset  
Description  
R/W  
0b  
NVM revision of the IC  
This bit is Read-Only for I2C/SPI access.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.4 BUCK1_CTRL Register (Offset = 0x4) [Reset = 0x22]  
BUCK1_CTRL is shown in 8-60 and described in 8-24.  
Return to the 8-19.  
8-60. BUCK1_CTRL Register  
7
6
5
4
3
2
1
0
BUCK1_RV_SE RESERVED  
L
BUCK1_PLDN BUCK1_VMON BUCK1_VSEL BUCK1_FPWM BUCK1_FPWM  
BUCK1_EN  
_EN  
_MP  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
8-24. BUCK1_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK1_RV_SEL  
R/W  
0b  
Select residual voltage checking for BUCK1 feedback pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6
5
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK1_PLDN  
Enable output pull-down resistor when BUCK1 is disabled:  
(Default from NVM memory)  
0b = Pull-down resistor disabled  
1b = Pull-down resistor enabled  
4
3
2
BUCK1_VMON_EN  
BUCK1_VSEL  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Enable BUCK1 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0b = OV, UV, SC and ILIM comparators are disabled  
1b = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK1:  
(Default from NVM memory)  
0b = BUCK1_VOUT_1  
1b = BUCK1_VOUT_2  
BUCK1_FPWM_MP  
Forces the BUCK1 regulator to operate always in multi-phase and  
forced PWM operation mode:  
(Default from NVM memory)  
0b = Automatic phase adding and shedding.  
1b = Forced to multi-phase operation, all phases in the multi-phase  
configuration.  
1
0
BUCK1_FPWM  
BUCK1_EN  
R/W  
R/W  
1b  
0b  
Forces the BUCK1 regulator to operate in PWM mode:  
(Default from NVM memory)  
0b = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1b = Forced to PWM operation.  
Enable BUCK1 regulator:  
(Default from NVM memory)  
0b = BUCK regulator is disabled  
1b = BUCK regulator is enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.5 BUCK1_CONF Register (Offset = 0x5) [Reset = 0x22]  
BUCK1_CONF is shown in 8-61 and described in 8-25.  
Return to the 8-19.  
8-61. BUCK1_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK1_ILIM  
R/W-100b  
BUCK1_SLEW_RATE  
R/W-10b  
8-25. BUCK1_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
BUCK1_ILIM  
0b  
100b  
Sets the switch peak current limit of BUCK1. Can be programmed at  
any time during operation.  
Maximum programmable current limit may be limited based on  
device settings.  
(Default from NVM memory)  
0b = Reserved  
1b = Reserved  
10b = 2.5 A  
11b = 3.5 A  
100b = 4.5 A  
101b = 5.5 A  
110b = 6.5 A  
111b = 7.5 A  
2:0  
BUCK1_SLEW_RATE  
R/W  
10b  
Sets the output voltage slew rate for BUCK1 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0b = 33 mV/μs  
1b = 20 mV/μs  
10b = 10 mV/μs  
11b = 5.0 mV/μs  
100b = 2.5 mV/μs  
101b = 1.3 mV/μs  
110b = 0.63 mV/μs  
111b = 0.31 mV/μs  
Copyright © 2022 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.6 BUCK2_CTRL Register (Offset = 0x6) [Reset = 0x22]  
BUCK2_CTRL is shown in 8-62 and described in 8-26.  
Return to the 8-19.  
8-62. BUCK2_CTRL Register  
7
6
5
4
3
2
1
0
BUCK2_RV_SE RESERVED  
L
BUCK2_PLDN BUCK2_VMON BUCK2_VSEL  
_EN  
RESERVED  
BUCK2_FPWM  
BUCK2_EN  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
8-26. BUCK2_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK2_RV_SEL  
R/W  
0b  
Select residual voltage checking for BUCK2 feedback pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6
5
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK2_PLDN  
Enable output pull-down resistor when BUCK2 is disabled:  
(Default from NVM memory)  
0b = Pull-down resistor disabled  
1b = Pull-down resistor enabled  
4
3
BUCK2_VMON_EN  
BUCK2_VSEL  
R/W  
R/W  
0b  
0b  
Enable BUCK2 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0b = OV, UV, SC and ILIM comparators are disabled  
1b = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK2:  
(Default from NVM memory)  
0b = BUCK2_VOUT_1  
1b = BUCK2_VOUT_2  
2
1
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK2_FPWM  
Forces the BUCK2 regulator to operate in PWM mode:  
(Default from NVM memory)  
0b = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1b = Forced to PWM operation.  
0
BUCK2_EN  
R/W  
0b  
Enable BUCK2 regulator:  
(Default from NVM memory)  
0b = BUCK regulator is disabled  
1b = BUCK regulator is enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.7 BUCK2_CONF Register (Offset = 0x7) [Reset = 0x22]  
BUCK2_CONF is shown in 8-63 and described in 8-27.  
Return to the 8-19.  
8-63. BUCK2_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK2_ILIM  
R/W-100b  
BUCK2_SLEW_RATE  
R/W-10b  
8-27. BUCK2_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
BUCK2_ILIM  
0b  
100b  
Sets the switch peak current limit of BUCK2. Can be programmed at  
any time during operation.  
Maximum programmable current limit may be limited based on  
device settings.  
(Default from NVM memory)  
0b = Reserved  
1b = Reserved  
10b = 2.5 A  
11b = 3.5 A  
100b = 4.5 A  
101b = 5.5 A  
110b = 6.5 A  
111b = 7.5 A  
2:0  
BUCK2_SLEW_RATE  
R/W  
10b  
Sets the output voltage slew rate for BUCK2 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0b = 33 mV/μs  
1b = 20 mV/μs  
10b = 10 mV/μs  
11b = 5.0 mV/μs  
100b = 2.5 mV/μs  
101b = 1.3 mV/μs  
110b = 0.63 mV/μs  
111b = 0.31 mV/μs  
Copyright © 2022 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.8 BUCK3_CTRL Register (Offset = 0x8) [Reset = 0x22]  
BUCK3_CTRL is shown in 8-64 and described in 8-28.  
Return to the 8-19.  
8-64. BUCK3_CTRL Register  
7
6
5
4
3
2
1
0
BUCK3_RV_SE RESERVED  
L
BUCK3_PLDN BUCK3_VMON BUCK3_VSEL BUCK3_FPWM BUCK3_FPWM  
BUCK3_EN  
_EN  
_MP  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
8-28. BUCK3_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK3_RV_SEL  
R/W  
0b  
Select residual voltage checking for BUCK3 feedback pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6
5
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK3_PLDN  
Enable output pull-down resistor when BUCK3 is disabled:  
(Default from NVM memory)  
0b = Pull-down resistor disabled  
1b = Pull-down resistor enabled  
4
3
2
BUCK3_VMON_EN  
BUCK3_VSEL  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Enable BUCK3 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0b = OV, UV, SC and ILIM comparators are disabled  
1b = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK3:  
(Default from NVM memory)  
0b = BUCK3_VOUT_1  
1b = BUCK3_VOUT_2  
BUCK3_FPWM_MP  
Forces the BUCK3 regulator to operate always in multi-phase and  
forced PWM operation mode:  
(Default from NVM memory)  
0b = Automatic phase adding and shedding.  
1b = Forced to multi-phase operation, all phases in the multi-phase  
configuration.  
1
0
BUCK3_FPWM  
BUCK3_EN  
R/W  
R/W  
1b  
0b  
Forces the BUCK3 regulator to operate in PWM mode:  
(Default from NVM memory)  
0b = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1b = Forced to PWM operation.  
Enable BUCK3 regulator:  
(Default from NVM memory)  
0b = BUCK regulator is disabled  
1b = BUCK regulator is enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.9 BUCK3_CONF Register (Offset = 0x9) [Reset = 0x22]  
BUCK3_CONF is shown in 8-65 and described in 8-29.  
Return to the 8-19.  
8-65. BUCK3_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK3_ILIM  
R/W-100b  
BUCK3_SLEW_RATE  
R/W-10b  
8-29. BUCK3_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
BUCK3_ILIM  
0b  
100b  
Sets the switch peak current limit of BUCK3. Can be programmed at  
any time during operation.  
Maximum programmable current limit may be limited based on  
device settings.  
(Default from NVM memory)  
0b = Reserved  
1b = Reserved  
10b = 2.5 A  
11b = 3.5 A  
100b = 4.5 A  
101b = 5.5 A  
110b = 6.5 A  
111b = 7.5 A  
2:0  
BUCK3_SLEW_RATE  
R/W  
10b  
Sets the output voltage slew rate for BUCK3 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0b = 33 mV/μs  
1b = 20 mV/μs  
10b = 10 mV/μs  
11b = 5.0 mV/μs  
100b = 2.5 mV/μs  
101b = 1.3 mV/μs  
110b = 0.63 mV/μs  
111b = 0.31 mV/μs  
Copyright © 2022 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.10 BUCK4_CTRL Register (Offset = 0xA) [Reset = 0x22]  
BUCK4_CTRL is shown in 8-66 and described in 8-30.  
Return to the 8-19.  
8-66. BUCK4_CTRL Register  
7
6
5
4
3
2
1
0
BUCK4_RV_SE RESERVED  
L
BUCK4_PLDN BUCK4_VMON BUCK4_VSEL  
_EN  
RESERVED  
BUCK4_FPWM  
BUCK4_EN  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
8-30. BUCK4_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK4_RV_SEL  
R/W  
0b  
Select residual voltage checking for BUCK4 feedback pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6
5
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK4_PLDN  
Enable output pull-down resistor when BUCK4 is disabled:  
(Default from NVM memory)  
0b = Pull-down resistor disabled  
1b = Pull-down resistor enabled  
4
3
BUCK4_VMON_EN  
BUCK4_VSEL  
R/W  
R/W  
0b  
0b  
Enable BUCK4 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0b = OV, UV, SC and ILIM comparators are disabled  
1b = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK4:  
(Default from NVM memory)  
0b = BUCK4_VOUT_1  
1b = BUCK4_VOUT_2  
2
1
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK4_FPWM  
Forces the BUCK4 regulator to operate in PWM mode:  
(Default from NVM memory)  
0b = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1b = Forced to PWM operation.  
0
BUCK4_EN  
R/W  
0b  
Enable BUCK4 regulator:  
(Default from NVM memory)  
0b = BUCK regulator is disabled  
1b = BUCK regulator is enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.11 BUCK4_CONF Register (Offset = 0xB) [Reset = 0x22]  
BUCK4_CONF is shown in 8-67 and described in 8-31.  
Return to the 8-19.  
8-67. BUCK4_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK4_ILIM  
R/W-100b  
BUCK4_SLEW_RATE  
R/W-10b  
8-31. BUCK4_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
BUCK4_ILIM  
0b  
100b  
Sets the switch peak current limit of BUCK4. Can be programmed at  
any time during operation.  
Maximum programmable current limit may be limited based on  
device settings.  
(Default from NVM memory)  
0b = Reserved  
1b = Reserved  
10b = 2.5 A  
11b = 3.5 A  
100b = 4.5 A  
101b = 5.5 A  
110b = 6.5 A  
111b = 7.5 A  
2:0  
BUCK4_SLEW_RATE  
R/W  
10b  
Sets the output voltage slew rate for BUCK4 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0b = 33 mV/μs  
1b = 20 mV/μs  
10b = 10 mV/μs  
11b = 5.0 mV/μs  
100b = 2.5 mV/μs  
101b = 1.3 mV/μs  
110b = 0.63 mV/μs  
111b = 0.31 mV/μs  
Copyright © 2022 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.12 BUCK1_VOUT_1 Register (Offset = 0xE) [Reset = 0x00]  
BUCK1_VOUT_1 is shown in 8-68 and described in 8-32.  
Return to the 8-19.  
8-68. BUCK1_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK1_VSET1  
R/W-0b  
8-32. BUCK1_VOUT_1 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK1_VSET1  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.13 BUCK1_VOUT_2 Register (Offset = 0xF) [Reset = 0x00]  
BUCK1_VOUT_2 is shown in 8-69 and described in 8-33.  
Return to the 8-19.  
8-69. BUCK1_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK1_VSET2  
R/W-0b  
8-33. BUCK1_VOUT_2 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK1_VSET2  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.14 BUCK2_VOUT_1 Register (Offset = 0x10) [Reset = 0x00]  
BUCK2_VOUT_1 is shown in 8-70 and described in 8-34.  
Return to the 8-19.  
8-70. BUCK2_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK2_VSET1  
R/W-0b  
8-34. BUCK2_VOUT_1 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK2_VSET1  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.15 BUCK2_VOUT_2 Register (Offset = 0x11) [Reset = 0x00]  
BUCK2_VOUT_2 is shown in 8-71 and described in 8-35.  
Return to the 8-19.  
8-71. BUCK2_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK2_VSET2  
R/W-0b  
8-35. BUCK2_VOUT_2 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK2_VSET2  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.16 BUCK3_VOUT_1 Register (Offset = 0x12) [Reset = 0x00]  
BUCK3_VOUT_1 is shown in 8-72 and described in 8-36.  
Return to the 8-19.  
8-72. BUCK3_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK3_VSET1  
R/W-0b  
8-36. BUCK3_VOUT_1 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK3_VSET1  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.17 BUCK3_VOUT_2 Register (Offset = 0x13) [Reset = 0x00]  
BUCK3_VOUT_2 is shown in 8-73 and described in 8-37.  
Return to the 8-19.  
8-73. BUCK3_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK3_VSET2  
R/W-0b  
8-37. BUCK3_VOUT_2 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK3_VSET2  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.18 BUCK4_VOUT_1 Register (Offset = 0x14) [Reset = 0x00]  
BUCK4_VOUT_1 is shown in 8-74 and described in 8-38.  
Return to the 8-19.  
8-74. BUCK4_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK4_VSET1  
R/W-0b  
8-38. BUCK4_VOUT_1 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK4_VSET1  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.19 BUCK4_VOUT_2 Register (Offset = 0x15) [Reset = 0x00]  
BUCK4_VOUT_2 is shown in 8-75 and described in 8-39.  
Return to the 8-19.  
8-75. BUCK4_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK4_VSET2  
R/W-0b  
8-39. BUCK4_VOUT_2 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK4_VSET2  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.20 BUCK1_PG_WINDOW Register (Offset = 0x18) [Reset = 0x00]  
BUCK1_PG_WINDOW is shown in 8-76 and described in 8-40.  
Return to the 8-19.  
8-76. BUCK1_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK1_UV_THR  
R/W-0b  
BUCK1_OV_THR  
R/W-0b  
8-40. BUCK1_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
BUCK1_UV_THR  
0b  
Powergood low threshold level for BUCK1:  
(Default from NVM memory)  
0b = -3% / -30mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100mV  
2:0  
BUCK1_OV_THR  
R/W  
0b  
Powergood high threshold level for BUCK1:  
(Default from NVM memory)  
0b = +3% / +30mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.21 BUCK2_PG_WINDOW Register (Offset = 0x19) [Reset = 0x00]  
BUCK2_PG_WINDOW is shown in 8-77 and described in 8-41.  
Return to the 8-19.  
8-77. BUCK2_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK2_UV_THR  
R/W-0b  
BUCK2_OV_THR  
R/W-0b  
8-41. BUCK2_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
BUCK2_UV_THR  
0b  
Powergood low threshold level for BUCK2:  
(Default from NVM memory)  
0b = -3% / -30mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100mV  
2:0  
BUCK2_OV_THR  
R/W  
0b  
Powergood high threshold level for BUCK2:  
(Default from NVM memory)  
0b = +3% / +30mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.22 BUCK3_PG_WINDOW Register (Offset = 0x1A) [Reset = 0x00]  
BUCK3_PG_WINDOW is shown in 8-78 and described in 8-42.  
Return to the 8-19.  
8-78. BUCK3_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK3_UV_THR  
R/W-0b  
BUCK3_OV_THR  
R/W-0b  
8-42. BUCK3_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
BUCK3_UV_THR  
0b  
Powergood low threshold level for BUCK3:  
(Default from NVM memory)  
0b = -3% / -30mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100mV  
2:0  
BUCK3_OV_THR  
R/W  
0b  
Powergood high threshold level for BUCK3:  
(Default from NVM memory)  
0b = +3% / +30mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.23 BUCK4_PG_WINDOW Register (Offset = 0x1B) [Reset = 0x00]  
BUCK4_PG_WINDOW is shown in 8-79 and described in 8-43.  
Return to the 8-19.  
8-79. BUCK4_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK4_UV_THR  
R/W-0b  
BUCK4_OV_THR  
R/W-0b  
8-43. BUCK4_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
BUCK4_UV_THR  
0b  
Powergood low threshold level for BUCK4:  
(Default from NVM memory)  
0b = -3% / -30mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100mV  
2:0  
BUCK4_OV_THR  
R/W  
0b  
Powergood high threshold level for BUCK4:  
(Default from NVM memory)  
0b = +3% / +30mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100mV  
Copyright © 2022 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.24 VCCA_VMON_CTRL Register (Offset = 0x2B) [Reset = 0x00]  
VCCA_VMON_CTRL is shown in 8-80 and described in 8-44.  
Return to the 8-19.  
8-80. VCCA_VMON_CTRL Register  
7
6
5
4
3
2
1
0
VMON_DEGLITCH_SEL  
VMON2_RV_S  
EL  
VMON2_EN  
VMON1_RV_S  
EL  
VMON1_EN  
VCCA_VMON_  
EN  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-44. VCCA_VMON_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
VMON_DEGLITCH_SEL R/W  
0b  
Deglitch time select for BUCKx_VMON, VMONx and VCCA_VMON  
(Default from NVM memory)  
0b = 4 us  
1b = 20 us  
4
VMON2_RV_SEL  
VMON2_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
Select residual voltage checking for VMON2 pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
3
Enable VMON2 OV and UV comparators:  
(Default from NVM memory)  
0b = OV and UV comparators are disabled  
1b = OV and UV comparators are enabled  
2
VMON1_RV_SEL  
VMON1_EN  
Select residual voltage checking for VMON1 pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
1
Enable VMON1 OV and UV comparators:  
(Default from NVM memory)  
0b = OV and UV comparators are disabled  
1b = OV and UV comparators are enabled  
0
VCCA_VMON_EN  
Enable VCCA OV and UV comparators:  
(Default from NVM memory)  
0b = OV and UV comparators are disabled  
1b = OV and UV comparators are enabled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.25 VCCA_PG_WINDOW Register (Offset = 0x2C) [Reset = 0x00]  
VCCA_PG_WINDOW is shown in 8-81 and described in 8-45.  
Return to the 8-19.  
8-81. VCCA_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
VCCA_PG_SE  
T
VCCA_UV_THR  
VCCA_OV_THR  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-45. VCCA_PG_WINDOW Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0b  
6
VCCA_PG_SET  
0b  
Powergood level for VCCA pin:  
(Default from NVM memory)  
0b = 3.3 V  
1b = 5.0 V  
5:3  
VCCA_UV_THR  
R/W  
0b  
Powergood low threshold level for VCCA pin:  
(Default from NVM memory)  
0b = -3%  
1b = -3.5%  
10b = -4%  
11b = -5%  
100b = -6%  
101b = -7%  
110b = -8%  
111b = -10%  
2:0  
VCCA_OV_THR  
R/W  
0b  
Powergood high threshold level for VCCA pin:  
(Default from NVM memory)  
0b = +3%  
1b = +3.5%  
10b = +4%  
11b = +5%  
100b = +6%  
101b = +7%  
110b = +8%  
111b = +10%  
Copyright © 2022 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.26 VMON1_PG_WINDOW Register (Offset = 0x2D) [Reset = 0x00]  
VMON1_PG_WINDOW is shown in 8-82 and described in 8-46.  
Return to the 8-19.  
8-82. VMON1_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
VMON1_RANG  
E
VMON1_UV_THR  
VMON1_OV_THR  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-46. VMON1_PG_WINDOW Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0b  
6
VMON1_RANGE  
0b  
Select OV/UV voltage monitoring range:  
(Default from NVM memory)  
0b = 0.3 - 3.34 V  
1b = 3.35 - 5.0 V  
5:3  
VMON1_UV_THR  
R/W  
0b  
Powergood low threshold level for VMON1.  
Threshold values in brackets are for extended voltage range  
(VMON1_RANGE = 1):  
(Default from NVM memory)  
0b = -3% / -30 mV / (-150 mV)  
1b = -3.5% / -35 mV / (-175 mV)  
10b = -4% / -40 mV / (-200 mV)  
11b = -5% / -50 mV / (-250 mV)  
100b = -6% / -60 mV / (-300 mV)  
101b = -7% / -70 mV / (-350 mV)  
110b = -8% / -80 mV / (-400 mV)  
111b = -10% / -100 mV / (-500 mV)  
2:0  
VMON1_OV_THR  
R/W  
0b  
Powergood high threshold level for VMON1.  
Threshold values in brackets are for extended voltage range  
(VMON1_RANGE = 1):  
(Default from NVM memory)  
0b = +3% / +30 mV / (+150 mV)  
1b = +3.5% / +35 mV / (+175 mV)  
10b = +4% / +40 mV / (+200 mV)  
11b = +5% / +50 mV / (+250 mV)  
100b = +6% / +60 mV / (+300 mV)  
101b = +7% / +70 mV / (+350 mV)  
110b = +8% / +80 mV / (+400 mV)  
111b = +10% / +100mV / (+500 mV)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.27 VMON1_PG_LEVEL Register (Offset = 0x2E) [Reset = 0x00]  
VMON1_PG_LEVEL is shown in 8-83 and described in 8-47.  
Return to the 8-19.  
8-83. VMON1_PG_LEVEL Register  
7
6
5
4
3
2
1
0
VMON1_PG_SET  
R/W-0b  
8-47. VMON1_PG_LEVEL Register Field Descriptions  
Bit  
7:0  
Field  
VMON1_PG_SET  
Type  
Reset  
Description  
R/W  
0b  
Powergood voltage level of VMON1 pin, VMON1_OV_THR[2:0] and  
VMON1_UV_THR[2:0] defines the threshold levels.  
See Voltage monitoring chapter for voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.28 VMON2_PG_WINDOW Register (Offset = 0x2F) [Reset = 0x00]  
VMON2_PG_WINDOW is shown in 8-84 and described in 8-48.  
Return to the 8-19.  
8-84. VMON2_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
VMON2_RANG  
E
VMON2_UV_THR  
VMON2_OV_THR  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-48. VMON2_PG_WINDOW Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0b  
6
VMON2_RANGE  
0b  
Select OV/UV voltage monitoring range:  
(Default from NVM memory)  
0b = 0.3 - 3.34 V  
1b = 3.35 - 5.0 V  
5:3  
VMON2_UV_THR  
R/W  
0b  
Powergood low threshold level for VMON2.  
Threshold values in brackets are for extended voltage range  
(VMON2_RANGE = 1):  
(Default from NVM memory)  
0b = -3% / -30 mV / (-150 mV)  
1b = -3.5% / -35 mV / (-175 mV)  
10b = -4% / -40 mV / (-200 mV)  
11b = -5% / -50 mV / (-250 mV)  
100b = -6% / -60 mV / (-300 mV)  
101b = -7% / -70 mV / (-350 mV)  
110b = -8% / -80 mV / (-400 mV)  
111b = -10% / -100 mV / (-500 mV)  
2:0  
VMON2_OV_THR  
R/W  
0b  
Powergood high threshold level for VMON2.  
Threshold values in brackets are for extended voltage range  
(VMON2_RANGE = 1):  
(Default from NVM memory)  
0b = +3% / +30mV / (+150 mV)  
1b = +3.5% / +35 mV / (+175 mV)  
10b = +4% / +40 mV / (+200 mV)  
11b = +5% / +50 mV / (+250 mV)  
100b = +6% / +60 mV / (+300 mV)  
101b = +7% / +70 mV / (+350 mV)  
110b = +8% / +80 mV / (+400 mV)  
111b = +10% / +100mV / (+500 mV)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.29 VMON2_PG_LEVEL Register (Offset = 0x30) [Reset = 0x00]  
VMON2_PG_LEVEL is shown in 8-85 and described in 8-49.  
Return to the 8-19.  
8-85. VMON2_PG_LEVEL Register  
7
6
5
4
3
2
1
0
VMON2_PG_SET  
R/W-0b  
8-49. VMON2_PG_LEVEL Register Field Descriptions  
Bit  
7:0  
Field  
VMON2_PG_SET  
Type  
Reset  
Description  
R/W  
0b  
Powergood voltage level of VMON2 pin, VMON2_OV_THR[2:0] and  
VMON2_UV_THR[2:0] defines the threshold levels.  
See Voltage monitoring chapter for voltage levels.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.30 GPIO1_CONF Register (Offset = 0x31) [Reset = 0x2A]  
GPIO1_CONF is shown in 8-86 and described in 8-50.  
Return to the 8-19.  
8-86. GPIO1_CONF Register  
7
6
5
4
3
2
1
0
GPIO1_SEL  
GPIO1_DEGLIT GPIO1_PU_PD GPIO1_PU_SE  
GPIO1_OD  
GPIO1_DIR  
CH_EN  
_EN  
L
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
8-50. GPIO1_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO1_SEL  
R/W  
1b  
GPIO1 signal function:  
(Default from NVM memory)  
0b = GPIO1  
1b = EN_DRV  
10b = NRSTOUT_SOC  
11b = PGOOD  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO1_DEGLITCH_EN  
GPIO1_PU_PD_EN  
GPIO1_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO1 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 us deglitch time.  
Control for GPIO1 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO1 pin pull-up/pull-down resistor:  
GPIO1_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO1_OD  
GPIO1_DIR  
R/W  
R/W  
1b  
0b  
GPIO1 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO1 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.31 GPIO2_CONF Register (Offset = 0x32) [Reset = 0x0A]  
GPIO2_CONF is shown in 8-87 and described in 8-51.  
Return to the 8-19.  
8-87. GPIO2_CONF Register  
7
6
5
4
3
2
1
0
GPIO2_SEL  
GPIO2_DEGLIT GPIO2_PU_PD GPIO2_PU_SE  
GPIO2_OD  
GPIO2_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
8-51. GPIO2_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO2_SEL  
R/W  
0b  
GPIO2 signal function:  
(Default from NVM memory)  
0b = GPIO2  
1b = SCL_I2C2  
10b = CS_SPI  
11b = TRIG_WDOG  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO2_DEGLITCH_EN  
GPIO2_PU_PD_EN  
GPIO2_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO2 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 us deglitch time.  
Control for GPIO2 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO2 pin pull-up/pull-down resistor:  
GPIO2_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO2_OD  
GPIO2_DIR  
R/W  
R/W  
1b  
0b  
GPIO2 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO2 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2022 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.32 GPIO3_CONF Register (Offset = 0x33) [Reset = 0x0A]  
GPIO3_CONF is shown in 8-88 and described in 8-52.  
Return to the 8-19.  
8-88. GPIO3_CONF Register  
7
6
5
4
3
2
1
0
GPIO3_SEL  
GPIO3_DEGLIT GPIO3_PU_PD GPIO3_PU_SE  
GPIO3_OD  
GPIO3_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
8-52. GPIO3_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO3_SEL  
R/W  
0b  
GPIO3 signal function:  
(Default from NVM memory)  
0b = GPIO3  
1b = SDA_I2C2  
10b = SDO_SPI  
11b = SDO_SPI  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO3_DEGLITCH_EN  
GPIO3_PU_PD_EN  
GPIO3_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO3 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 us deglitch time.  
Control for GPIO3 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO3 pin pull-up/pull-down resistor:  
GPIO3_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO3_OD  
GPIO3_DIR  
R/W  
R/W  
1b  
0b  
GPIO3 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO3 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.33 GPIO4_CONF Register (Offset = 0x34) [Reset = 0x0A]  
GPIO4_CONF is shown in 8-89 and described in 8-53.  
Return to the 8-19.  
8-89. GPIO4_CONF Register  
7
6
5
4
3
2
1
0
GPIO4_SEL  
GPIO4_DEGLIT GPIO4_PU_PD GPIO4_PU_SE  
GPIO4_OD  
GPIO4_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
8-53. GPIO4_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO4_SEL  
R/W  
0b  
GPIO4 signal function:  
(Default from NVM memory)  
0b = GPIO4  
1b = ENABLE  
10b = TRIG_WDOG  
11b = BUCK1_VMON. Buck1 voltage monitoring input is GPIO4  
instead of FB_B1.  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO4_DEGLITCH_EN  
GPIO4_PU_PD_EN  
GPIO4_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO4 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 us deglitch time.  
Control for GPIO4 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO4 pin pull-up/pull-down resistor:  
GPIO4_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO4_OD  
GPIO4_DIR  
R/W  
R/W  
1b  
0b  
GPIO4 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO4 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2022 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.34 GPIO5_CONF Register (Offset = 0x35) [Reset = 0x0A]  
GPIO5_CONF is shown in 8-90 and described in 8-54.  
Return to the 8-19.  
8-90. GPIO5_CONF Register  
7
6
5
4
3
2
1
0
GPIO5_SEL  
GPIO5_DEGLIT GPIO5_PU_PD GPIO5_PU_SE  
GPIO5_OD  
GPIO5_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
8-54. GPIO5_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO5_SEL  
R/W  
0b  
GPIO5 signal function:  
(Default from NVM memory)  
0b = GPIO5  
1b = SYNCCLKIN  
10b = SYNCCLKOUT  
11b = nRSTOUT_SOC  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO5_DEGLITCH_EN  
GPIO5_PU_PD_EN  
GPIO5_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO5 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 us deglitch time.  
Control for GPIO5 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO5 pin pull-up/pull-down resistor:  
GPIO5_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO5_OD  
GPIO5_DIR  
R/W  
R/W  
1b  
0b  
GPIO5 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO5 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.35 GPIO6_CONF Register (Offset = 0x36) [Reset = 0x0A]  
GPIO6_CONF is shown in 8-91 and described in 8-55.  
Return to the 8-19.  
8-91. GPIO6_CONF Register  
7
6
5
4
3
2
1
0
GPIO6_SEL  
GPIO6_DEGLIT GPIO6_PU_PD GPIO6_PU_SE  
GPIO6_OD  
GPIO6_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
8-55. GPIO6_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO6_SEL  
R/W  
0b  
GPIO6 signal function:  
(Default from NVM memory)  
0b = GPIO6  
1b = nERR_MCU  
10b = SYNCCLKOUT  
11b = PGOOD  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO6_DEGLITCH_EN  
GPIO6_PU_PD_EN  
GPIO6_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO6 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 us deglitch time.  
Control for GPIO6 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO6 pin pull-up/pull-down resistor:  
GPIO6_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO6_OD  
GPIO6_DIR  
R/W  
R/W  
1b  
0b  
GPIO6 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO6 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2022 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.36 GPIO7_CONF Register (Offset = 0x37) [Reset = 0x0A]  
GPIO7_CONF is shown in 8-92 and described in 8-56.  
Return to the 8-19.  
8-92. GPIO7_CONF Register  
7
6
5
4
3
2
1
0
GPIO7_SEL  
GPIO7_DEGLIT GPIO7_PU_PD GPIO7_PU_SE  
GPIO7_OD  
GPIO7_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
8-56. GPIO7_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO7_SEL  
R/W  
0b  
GPIO7 signal function:  
(Default from NVM memory)  
0b = GPIO7  
1b = nERR_MCU  
10b = REFOUT  
11b = VMON1  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO7_DEGLITCH_EN  
GPIO7_PU_PD_EN  
GPIO7_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO7 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 us deglitch time.  
Control for GPIO7 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO7 pin pull-up/pull-down resistor:  
GPIO7_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO7_OD  
GPIO7_DIR  
R/W  
R/W  
1b  
0b  
GPIO7 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO7 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.37 GPIO8_CONF Register (Offset = 0x38) [Reset = 0x0A]  
GPIO8_CONF is shown in 8-93 and described in 8-57.  
Return to the 8-19.  
8-93. GPIO8_CONF Register  
7
6
5
4
3
2
1
0
GPIO8_SEL  
GPIO8_DEGLIT GPIO8_PU_PD GPIO8_PU_SE  
GPIO8_OD  
GPIO8_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
8-57. GPIO8_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO8_SEL  
R/W  
0b  
GPIO8 signal function:  
(Default from NVM memory)  
0b = GPIO8  
1b = SCLK_SPMI  
10b = VMON2  
11b = VMON2  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO8_DEGLITCH_EN  
GPIO8_PU_PD_EN  
GPIO8_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO8 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 us deglitch time.  
Control for GPIO8 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO8 pin pull-up/pull-down resistor:  
GPIO8_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO8_OD  
GPIO8_DIR  
R/W  
R/W  
1b  
0b  
GPIO8 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO8 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2022 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.38 GPIO9_CONF Register (Offset = 0x39) [Reset = 0x0A]  
GPIO9_CONF is shown in 8-94 and described in 8-58.  
Return to the 8-19.  
8-94. GPIO9_CONF Register  
7
6
5
4
3
2
1
0
GPIO9_SEL  
GPIO9_DEGLIT GPIO9_PU_PD GPIO9_PU_SE  
GPIO9_OD  
GPIO9_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
8-58. GPIO9_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO9_SEL  
R/W  
0b  
GPIO9 signal function:  
(Default from NVM memory)  
0b = GPIO9  
1b = SDATA_SPMI  
10b = PGOOD  
11b = SYNCCLKIN  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO9_DEGLITCH_EN  
GPIO9_PU_PD_EN  
GPIO9_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO9 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 us deglitch time.  
Control for GPIO9 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO9 pin pull-up/pull-down resistor:  
GPIO9_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO9_OD  
GPIO9_DIR  
R/W  
R/W  
1b  
0b  
GPIO9 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO9 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.39 GPIO10_CONF Register (Offset = 0x3A) [Reset = 0x0A]  
GPIO10_CONF is shown in 8-95 and described in 8-59.  
Return to the 8-19.  
8-95. GPIO10_CONF Register  
7
6
5
4
3
2
1
0
GPIO10_SEL  
GPIO10_DEGLI GPIO10_PU_P GPIO10_PU_S  
GPIO10_OD  
GPIO10_DIR  
TCH_EN  
D_EN  
EL  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
8-59. GPIO10_CONF Register Field Descriptions  
Bit  
Field  
GPIO10_SEL  
Type  
Reset  
Description  
7:5  
R/W  
0b  
GPIO10 signal function:  
(Default from NVM memory)  
0b = GPIO10  
1b = nRSTOUT  
10b = nRSTOUT_SOC  
11b = nRSTOUT_SOC  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO10_DEGLITCH_EN R/W  
0b  
1b  
0b  
GPIO10 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 us deglitch time.  
GPIO10_PU_PD_EN  
GPIO10_PU_SEL  
R/W  
R/W  
Control for GPIO10 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO10 pin pull-up/pull-down resistor:  
GPIO10_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO10_OD  
GPIO10_DIR  
R/W  
R/W  
1b  
0b  
GPIO10 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO10 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2022 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.40 ENABLE_CONF Register (Offset = 0x3C) [Reset = 0x88]  
ENABLE_CONF is shown in 8-96 and described in 8-60.  
Return to the 8-19.  
8-96. ENABLE_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-10b  
ENABLE_POL  
R/W-0b  
RESERVED  
R/W-1000b  
8-60. ENABLE_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
10b  
0b  
Description  
7:6  
5
RESERVED  
ENABLE_POL  
Control for ENABLE pin polarity:  
(Default from NVM memory)  
0b = Active high  
1b = Active low  
4:0  
RESERVED  
R/W  
1000b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.41 GPIO_OUT_1 Register (Offset = 0x3D) [Reset = 0x00]  
GPIO_OUT_1 is shown in 8-97 and described in 8-61.  
Return to the 8-19.  
8-97. GPIO_OUT_1 Register  
7
6
5
4
3
2
1
0
GPIO8_OUT  
R/W-0b  
GPIO7_OUT  
R/W-0b  
GPIO6_OUT  
R/W-0b  
GPIO5_OUT  
R/W-0b  
GPIO4_OUT  
R/W-0b  
GPIO3_OUT  
R/W-0b  
GPIO2_OUT  
R/W-0b  
GPIO1_OUT  
R/W-0b  
8-61. GPIO_OUT_1 Register Field Descriptions  
Bit  
Field  
GPIO8_OUT  
Type  
Reset  
Description  
7
R/W  
0b  
Control for GPIO8 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
6
5
4
3
2
1
0
GPIO7_OUT  
GPIO6_OUT  
GPIO5_OUT  
GPIO4_OUT  
GPIO3_OUT  
GPIO2_OUT  
GPIO1_OUT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Control for GPIO7 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO6 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO5 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO4 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO3 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO2 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO1 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Copyright © 2022 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.42 GPIO_OUT_2 Register (Offset = 0x3E) [Reset = 0x00]  
GPIO_OUT_2 is shown in 8-98 and described in 8-62.  
Return to the 8-19.  
8-98. GPIO_OUT_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
GPIO10_OUT  
R/W-0b  
GPIO9_OUT  
R/W-0b  
8-62. GPIO_OUT_2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:2  
1
RESERVED  
0b  
GPIO10_OUT  
0b  
Control for GPIO10 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
0
GPIO9_OUT  
R/W  
0b  
Control for GPIO9 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.43 GPIO_IN_1 Register (Offset = 0x3F) [Reset = 0x00]  
GPIO_IN_1 is shown in 8-99 and described in 8-63.  
Return to the 8-19.  
8-99. GPIO_IN_1 Register  
7
6
5
4
3
2
1
0
GPIO8_IN  
R-0b  
GPIO7_IN  
R-0b  
GPIO6_IN  
R-0b  
GPIO5_IN  
R-0b  
GPIO4_IN  
R-0b  
GPIO3_IN  
R-0b  
GPIO2_IN  
R-0b  
GPIO1_IN  
R-0b  
8-63. GPIO_IN_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_IN  
GPIO7_IN  
GPIO6_IN  
GPIO5_IN  
GPIO4_IN  
GPIO3_IN  
GPIO2_IN  
GPIO1_IN  
R
0b  
Level of GPIO8 signal:  
0b = Low  
1b = High  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Level of GPIO7 signal:  
0b = Low  
1b = High  
Level of GPIO6 signal:  
0b = Low  
1b = High  
Level of GPIO5 signal:  
0b = Low  
1b = High  
Level of GPIO4 signal:  
0b = Low  
1b = High  
Level of GPIO3 signal:  
0b = Low  
1b = High  
Level of GPIO2 signal:  
0b = Low  
1b = High  
Level of GPIO1 signal:  
0b = Low  
1b = High  
Copyright © 2022 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.44 GPIO_IN_2 Register (Offset = 0x40) [Reset = 0x00]  
GPIO_IN_2 is shown in 8-100 and described in 8-64.  
Return to the 8-19.  
8-100. GPIO_IN_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
GPIO10_IN  
R-0b  
GPIO9_IN  
R-0b  
8-64. GPIO_IN_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
1
RESERVED  
GPIO10_IN  
R
0b  
R
0b  
Level of GPIO10 signal:  
0b = Low  
1b = High  
0
GPIO9_IN  
R
0b  
Level of GPIO9 signal:  
0b = Low  
1b = High  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.45 RAIL_SEL_1 Register (Offset = 0x41) [Reset = 0x00]  
RAIL_SEL_1 is shown in 8-101 and described in 8-65.  
Return to the 8-19.  
8-101. RAIL_SEL_1 Register  
7
6
5
4
3
2
1
0
BUCK4_GRP_SEL  
R/W-0b  
BUCK3_GRP_SEL  
R/W-0b  
BUCK2_GRP_SEL  
R/W-0b  
BUCK1_GRP_SEL  
R/W-0b  
8-65. RAIL_SEL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5:4  
3:2  
1:0  
BUCK4_GRP_SEL  
R/W  
0b  
Rail group selection for BUCK4:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
BUCK3_GRP_SEL  
BUCK2_GRP_SEL  
BUCK1_GRP_SEL  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Rail group selection for BUCK3:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Rail group selection for BUCK2:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Rail group selection for BUCK1:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Copyright © 2022 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.46 RAIL_SEL_3 Register (Offset = 0x43) [Reset = 0x00]  
RAIL_SEL_3 is shown in 8-102 and described in 8-66.  
Return to the 8-19.  
8-102. RAIL_SEL_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
VMON2_GRP_SEL  
R/W-0b  
VMON1_GRP_SEL  
R/W-0b  
VCCA_GRP_SEL  
R/W-0b  
8-66. RAIL_SEL_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5:4  
3:2  
1:0  
VMON2_GRP_SEL  
R/W  
0b  
Rail group selection for VMON2 monitoring:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
VMON1_GRP_SEL  
VCCA_GRP_SEL  
RESERVED  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Rail group selection for VMON1 monitoring:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Rail group selection for VCCA monitoring:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.47 FSM_TRIG_SEL_1 Register (Offset = 0x44) [Reset = 0x00]  
FSM_TRIG_SEL_1 is shown in 8-103 and described in 8-67.  
Return to the 8-19.  
8-103. FSM_TRIG_SEL_1 Register  
7
6
5
4
3
2
1
0
SEVERE_ERR_TRIG  
R/W-0b  
OTHER_RAIL_TRIG  
R/W-0b  
SOC_RAIL_TRIG  
R/W-0b  
MCU_RAIL_TRIG  
R/W-0b  
8-67. FSM_TRIG_SEL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5:4  
3:2  
1:0  
SEVERE_ERR_TRIG  
R/W  
0b  
Trigger selection for Severe Error:  
(Default from NVM memory)  
0b = Immediate shutdown  
1b = Orderly shutdown  
10b = MCU power error  
11b = SOC power error  
OTHER_RAIL_TRIG  
SOC_RAIL_TRIG  
MCU_RAIL_TRIG  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Trigger selection for OTHER rail group:  
(Default from NVM memory)  
0b = Immediate shutdown  
1b = Orderly shutdown  
10b = MCU power error  
11b = SOC power error  
Trigger selection for SOC rail group:  
(Default from NVM memory)  
0b = Immediate shutdown  
1b = Orderly shutdown  
10b = MCU power error  
11b = SOC power error  
Trigger selection for MCU rail group:  
(Default from NVM memory)  
0b = Immediate shutdown  
1b = Orderly shutdown  
10b = MCU power error  
11b = SOC power error  
Copyright © 2022 Texas Instruments Incorporated  
192 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.48 FSM_TRIG_SEL_2 Register (Offset = 0x45) [Reset = 0x00]  
FSM_TRIG_SEL_2 is shown in 8-104 and described in 8-68.  
Return to the 8-19.  
8-104. FSM_TRIG_SEL_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
MODERATE_ERR_TRIG  
R/W-0b  
8-68. FSM_TRIG_SEL_2 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7:2  
1:0  
R/W  
0b  
MODERATE_ERR_TRIG R/W  
0b  
Trigger selection for Moderate Error:  
(Default from NVM memory)  
0b = Immediate shutdown  
1b = Orderly shutdown  
10b = MCU power error  
11b = SOC power error  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.49 FSM_TRIG_MASK_1 Register (Offset = 0x46) [Reset = 0x00]  
FSM_TRIG_MASK_1 is shown in 8-105 and described in 8-69.  
Return to the 8-19.  
8-105. FSM_TRIG_MASK_1 Register  
7
6
5
4
3
2
1
0
GPIO4_FSM_M GPIO4_FSM_M GPIO3_FSM_M GPIO3_FSM_M GPIO2_FSM_M GPIO2_FSM_M GPIO1_FSM_M GPIO1_FSM_M  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-69. FSM_TRIG_MASK_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO4_FSM_MASK_POL R/W  
0b  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
6
5
4
3
2
1
0
GPIO4_FSM_MASK  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO3_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO3_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO2_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO2_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO1_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO1_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
Copyright © 2022 Texas Instruments Incorporated  
194 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.50 FSM_TRIG_MASK_2 Register (Offset = 0x47) [Reset = 0x00]  
FSM_TRIG_MASK_2 is shown in 8-106 and described in 8-70.  
Return to the 8-19.  
8-106. FSM_TRIG_MASK_2 Register  
7
6
5
4
3
2
1
0
GPIO8_FSM_M GPIO8_FSM_M GPIO7_FSM_M GPIO7_FSM_M GPIO6_FSM_M GPIO6_FSM_M GPIO5_FSM_M GPIO5_FSM_M  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-70. FSM_TRIG_MASK_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_FSM_MASK_POL R/W  
0b  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
6
5
4
3
2
1
0
GPIO8_FSM_MASK  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO7_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO7_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO6_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO6_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO5_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO5_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.51 FSM_TRIG_MASK_3 Register (Offset = 0x48) [Reset = 0x00]  
FSM_TRIG_MASK_3 is shown in 8-107 and described in 8-71.  
Return to the 8-19.  
8-107. FSM_TRIG_MASK_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
GPIO10_FSM_ GPIO10_FSM_ GPIO9_FSM_M GPIO9_FSM_M  
MASK_POL  
MASK  
ASK_POL  
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-71. FSM_TRIG_MASK_3 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7:4  
3
R/W  
0b  
GPIO10_FSM_MASK_PO R/W  
L
0b  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
2
1
0
GPIO10_FSM_MASK  
R/W  
0b  
0b  
0b  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO9_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO9_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
Copyright © 2022 Texas Instruments Incorporated  
196 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.52 MASK_BUCK1_2 Register (Offset = 0x49) [Reset = 0x00]  
MASK_BUCK1_2 is shown in 8-108 and described in 8-72.  
Return to the 8-19.  
8-108. MASK_BUCK1_2 Register  
7
6
5
4
3
2
1
0
BUCK2_ILIM_M RESERVED  
ASK  
BUCK2_UV_M BUCK2_OV_M BUCK1_ILIM_M RESERVED  
BUCK1_UV_M BUCK1_OV_M  
ASK  
ASK  
ASK  
ASK  
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-72. MASK_BUCK1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK2_ILIM_MASK  
R/W  
0b  
Masking for BUCK2 current monitoring interrupt BUCK2_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0b  
0b  
BUCK2_UV_MASK  
Masking of BUCK2 under-voltage detection interrupt  
BUCK2_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
BUCK2_OV_MASK  
BUCK1_ILIM_MASK  
R/W  
R/W  
0b  
0b  
Masking of BUCK2 over-voltage detection interrupt BUCK2_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking for BUCK1 current monitoring interrupt BUCK1_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
BUCK1_UV_MASK  
Masking of BUCK1 under-voltage detection interrupt  
BUCK1_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
BUCK1_OV_MASK  
R/W  
0b  
Masking of BUCK1 over-voltage detection interrupt BUCK1_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.53 MASK_BUCK3_4 Register (Offset = 0x4A) [Reset = 0x00]  
MASK_BUCK3_4 is shown in 8-109 and described in 8-73.  
Return to the 8-19.  
8-109. MASK_BUCK3_4 Register  
7
6
5
4
3
2
1
0
BUCK4_ILIM_M RESERVED  
ASK  
BUCK4_UV_M BUCK4_OV_M BUCK3_ILIM_M RESERVED  
BUCK3_UV_M BUCK3_OV_M  
ASK  
ASK  
ASK  
ASK  
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-73. MASK_BUCK3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK4_ILIM_MASK  
R/W  
0b  
Masking for BUCK4 current monitoring interrupt BUCK4_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0b  
0b  
BUCK4_UV_MASK  
Masking of BUCK4 under-voltage detection interrupt  
BUCK4_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
BUCK4_OV_MASK  
BUCK3_ILIM_MASK  
R/W  
R/W  
0b  
0b  
Masking of BUCK4 over-voltage detection interrupt BUCK4_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking for BUCK3 current monitoring interrupt BUCK3_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
BUCK3_UV_MASK  
Masking of BUCK3 under-voltage detection interrupt  
BUCK3_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
BUCK3_OV_MASK  
R/W  
0b  
Masking of BUCK3 over-voltage detection interrupt BUCK3_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
198 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.54 MASK_VMON Register (Offset = 0x4E) [Reset = 0x00]  
MASK_VMON is shown in 8-110 and described in 8-74.  
Return to the 8-19.  
8-110. MASK_VMON Register  
7
6
5
4
3
2
1
0
RESERVED  
VMON2_UV_M VMON2_OV_M  
RESERVED  
VMON1_UV_M VMON1_OV_M VCCA_UV_MA VCCA_OV_MA  
ASK  
ASK  
ASK  
ASK  
SK  
SK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-74. MASK_VMON Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
Description  
0b  
6
VMON2_UV_MASK  
0b  
Masking of VMON2 under-voltage detection interrupt  
VMON2_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
5
VMON2_OV_MASK  
R/W  
0b  
Masking of VMON2 over-voltage detection interrupt  
VMON2_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
RESERVED  
R/W  
R/W  
0b  
0b  
VMON1_UV_MASK  
Masking of VMON1 under-voltage detection interrupt  
VMON1_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
VMON1_OV_MASK  
R/W  
0b  
Masking of VMON1 over-voltage detection interrupt  
VMON1_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
1
0
VCCA_UV_MASK  
VCCA_OV_MASK  
R/W  
R/W  
0b  
0b  
Masking of VCCA under-voltage detection interrupt VCCA_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of VCCA over-voltage detection interrupt VCCA_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.55 MASK_GPIO1_8_FALL Register (Offset = 0x4F) [Reset = 0x00]  
MASK_GPIO1_8_FALL is shown in 8-111 and described in 8-75.  
Return to the 8-19.  
8-111. MASK_GPIO1_8_FALL Register  
7
6
5
4
3
2
1
0
GPIO8_FALL_ GPIO7_FALL_ GPIO6_FALL_ GPIO5_FALL_ GPIO4_FALL_ GPIO3_FALL_ GPIO2_FALL_ GPIO1_FALL_  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-75. MASK_GPIO1_8_FALL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_FALL_MASK  
GPIO7_FALL_MASK  
GPIO6_FALL_MASK  
GPIO5_FALL_MASK  
GPIO4_FALL_MASK  
GPIO3_FALL_MASK  
GPIO2_FALL_MASK  
GPIO1_FALL_MASK  
R/W  
0b  
Masking of interrupt for GPIO8 low state transition:  
This bit does not affect GPIO8_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Masking of interrupt for GPIO7 low state transition:  
This bit does not affect GPIO7_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO6 low state transition:  
This bit does not affect GPIO6_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO5 low state transition:  
This bit does not affect GPIO5_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO4 low state transition:  
This bit does not affect GPIO4_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO3 low state transition:  
This bit does not affect GPIO3_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO2 low state transition:  
This bit does not affect GPIO2_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO1 low state transition:  
This bit does not affect GPIO1_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
200 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.56 MASK_GPIO1_8_RISE Register (Offset = 0x50) [Reset = 0x00]  
MASK_GPIO1_8_RISE is shown in 8-112 and described in 8-76.  
Return to the 8-19.  
8-112. MASK_GPIO1_8_RISE Register  
7
6
5
4
3
2
1
0
GPIO8_RISE_ GPIO7_RISE_ GPIO6_RISE_ GPIO5_RISE_ GPIO4_RISE_ GPIO3_RISE_ GPIO2_RISE_ GPIO1_RISE_  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-76. MASK_GPIO1_8_RISE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_RISE_MASK  
GPIO7_RISE_MASK  
GPIO6_RISE_MASK  
GPIO5_RISE_MASK  
GPIO4_RISE_MASK  
GPIO3_RISE_MASK  
GPIO2_RISE_MASK  
GPIO1_RISE_MASK  
R/W  
0b  
Masking of interrupt for GPIO8 high state transition:  
This bit does not affect GPIO8_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Masking of interrupt for GPIO7 high state transition:  
This bit does not affect GPIO7_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO6 high state transition:  
This bit does not affect GPIO6_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO5 high state transition:  
This bit does not affect GPIO5_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO4 high state transition:  
This bit does not affect GPIO4_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO3 high state transition:  
This bit does not affect GPIO3_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO2 high state transition:  
This bit does not affect GPIO2_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO1 high state transition:  
This bit does not affect GPIO1_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.57 MASK_GPIO9_10 Register (Offset = 0x51) [Reset = 0x00]  
MASK_GPIO9_10 is shown in 8-113 and described in 8-77.  
Return to the 8-19.  
8-113. MASK_GPIO9_10 Register  
7
6
5
4
3
2
1
0
RESERVED  
GPIO10_RISE_ GPIO9_RISE_  
RESERVED  
GPIO10_FALL_ GPIO9_FALL_  
MASK  
MASK  
MASK  
MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-77. MASK_GPIO9_10 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:5  
4
RESERVED  
0b  
GPIO10_RISE_MASK  
0b  
Masking of interrupt for GPIO10 high state transition:  
This bit does not affect GPIO10_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
3
GPIO9_RISE_MASK  
R/W  
0b  
Masking of interrupt for GPIO9 high state transition:  
This bit does not affect GPIO9_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
GPIO10_FALL_MASK  
Masking of interrupt for GPIO10 low state transition:  
This bit does not affect GPIO10_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
GPIO9_FALL_MASK  
R/W  
0b  
Masking of interrupt for GPIO9 low state transition:  
This bit does not affect GPIO9_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
202 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.58 MASK_STARTUP Register (Offset = 0x52) [Reset = 0x00]  
MASK_STARTUP is shown in 8-114 and described in 8-78.  
Return to the 8-19.  
8-114. MASK_STARTUP Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
SOFT_REBOO  
T_MASK  
FSD_MASK  
RESERVED  
R/W-0b  
ENABLE_MAS  
K
RESERVED  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-78. MASK_STARTUP Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5
RESERVED  
0b  
SOFT_REBOOT_MASK  
0b  
Masking of SOFT_REBOOT_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
FSD_MASK  
R/W  
0b  
Masking of FSD_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
3:2  
1
RESERVED  
R/W  
R/W  
0b  
0b  
ENABLE_MASK  
Masking of ENABLE_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
RESERVED  
R/W  
0b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.59 MASK_MISC Register (Offset = 0x53) [Reset = 0x00]  
MASK_MISC is shown in 8-115 and described in 8-79.  
Return to the 8-19.  
8-115. MASK_MISC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
TWARN_MASK  
RESERVED EXT_CLK_MAS BIST_PASS_M  
K
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-79. MASK_MISC Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:4  
3
RESERVED  
0b  
TWARN_MASK  
0b  
Masking of TWARN_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
EXT_CLK_MASK  
Masking of EXT_CLK_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
BIST_PASS_MASK  
R/W  
0b  
Masking of BIST_PASS_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
204 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.60 MASK_MODERATE_ERR Register (Offset = 0x54) [Reset = 0x00]  
MASK_MODERATE_ERR is shown in 8-116 and described in 8-80.  
Return to the 8-19.  
8-116. MASK_MODERATE_ERR Register  
7
6
5
4
3
2
1
0
NRSTOUT_RE NINT_READBA  
RESERVED SPMI_ERR_MA RESERVED  
SK  
REG_CRC_ER BIST_FAIL_MA  
RESERVED  
ADBACK_MAS  
K
CK_MASK  
R_MASK  
SK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-80. MASK_MODERATE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
NRSTOUT_READBACK_ R/W  
MASK  
0b  
Masking of NRSTOUT_READBACK_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
NINT_READBACK_MASK R/W  
0b  
Masking of NINT_READBACK_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
5
4
RESERVED  
R/W  
R/W  
0b  
0b  
SPMI_ERR_MASK  
Masking of SPMI_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
3
2
RESERVED  
R/W  
R/W  
0b  
0b  
REG_CRC_ERR_MASK  
Masking of REG_CRC_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
1
0
BIST_FAIL_MASK  
RESERVED  
R/W  
R/W  
0b  
0b  
Masking of BIST_FAIL_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.61 MASK_FSM_ERR Register (Offset = 0x56) [Reset = 0x00]  
MASK_FSM_ERR is shown in 8-117 and described in 8-81.  
Return to the 8-19.  
8-117. MASK_FSM_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
SOC_PWR_ER MCU_PWR_ER ORD_SHUTDO IMM_SHUTDO  
R_MASK  
R_MASK  
WN_MASK  
WN_MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-81. MASK_FSM_ERR Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7:4  
3
R/W  
0b  
SOC_PWR_ERR_MASK R/W  
0b  
Masking of SOC_PWR_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
0
MCU_PWR_ERR_MASK R/W  
0b  
0b  
0b  
Masking of MCU_PWR_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
ORD_SHUTDOWN_MAS R/W  
K
Masking of ORD_SHUTDOWN_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
IMM_SHUTDOWN_MASK R/W  
Masking of IMM_SHUTDOWN_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
206 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.62 MASK_COMM_ERR Register (Offset = 0x57) [Reset = 0x00]  
MASK_COMM_ERR is shown in 8-118 and described in 8-82.  
Return to the 8-19.  
8-118. MASK_COMM_ERR Register  
7
6
5
4
3
2
1
0
I2C2_ADR_ER  
R_MASK  
RESERVED  
I2C2_CRC_ER  
R_MASK  
RESERVED  
COMM_ADR_E  
RR_MASK  
RESERVED COMM_CRC_E COMM_FRM_E  
RR_MASK  
RR_MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-82. MASK_COMM_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2C2_ADR_ERR_MASK  
R/W  
0b  
Masking of I2C2_ADR_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0b  
0b  
I2C2_CRC_ERR_MASK  
Masking of I2C2_CRC_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
RESERVED  
R/W  
0b  
0b  
COMM_ADR_ERR_MASK R/W  
Masking of COMM_ADR_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
0b  
0b  
COMM_CRC_ERR_MAS R/W  
K
Masking of COMM_CRC_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
COMM_FRM_ERR_MAS R/W  
K
0b  
Masking of COMM_FRM_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.63 MASK_READBACK_ERR Register (Offset = 0x58) [Reset = 0x00]  
MASK_READBACK_ERR is shown in 8-119 and described in 8-83.  
Return to the 8-19.  
8-119. MASK_READBACK_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
NRSTOUT_SO  
C_READBACK  
_MASK  
RESERVED  
R/W-0b  
EN_DRV_REA  
DBACK_MASK  
R/W-0b  
R/W-0b  
8-83. MASK_READBACK_ERR Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7:4  
3
R/W  
0b  
NRSTOUT_SOC_READB R/W  
ACK_MASK  
0b  
Masking of NRSTOUT_SOC_READBACK_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2:1  
0
RESERVED  
R/W  
0b  
0b  
EN_DRV_READBACK_M R/W  
ASK  
Masking of EN_DRV_READBACK_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2022 Texas Instruments Incorporated  
208 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.64 MASK_ESM Register (Offset = 0x59) [Reset = 0x00]  
MASK_ESM is shown in 8-120 and described in 8-84.  
Return to the 8-19.  
8-120. MASK_ESM Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
ESM_MCU_RS ESM_MCU_FAI ESM_MCU_PIN  
RESERVED  
T_MASK  
L_MASK  
_MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-84. MASK_ESM Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5
RESERVED  
0b  
ESM_MCU_RST_MASK  
0b  
Masking of ESM_MCU_RST_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
ESM_MCU_FAIL_MASK R/W  
0b  
0b  
0b  
Masking of ESM_MCU_FAIL_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
ESM_MCU_PIN_MASK  
RESERVED  
R/W  
R/W  
Masking of ESM_MCU_PIN_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2:0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.65 INT_TOP Register (Offset = 0x5A) [Reset = 0x00]  
INT_TOP is shown in 8-121 and described in 8-85.  
Return to the 8-19.  
8-121. INT_TOP Register  
7
6
5
4
3
2
1
0
FSM_ERR_INT SEVERE_ERR MODERATE_E  
MISC_INT  
STARTUP_INT  
GPIO_INT  
VMON_INT  
BUCK_INT  
_INT  
RR_INT  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
8-85. INT_TOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
FSM_ERR_INT  
R
0b  
Interrupt indicating that INT_FSM_ERR register has pending  
interrupt. The reason for the interrupt is indicated in INT_FSM_ERR  
register.  
This bit is cleared automatically when INT_FSM_ERR register is  
cleared to 0x00.  
SEVERE_ERR_INT  
MODERATE_ERR_INT  
R
R
0b  
0b  
Interrupt indicating that INT_SEVERE_ERR register has pending  
interrupt. The reason for the interrupt is indicated in  
INT_SEVERE_ERR register.  
This bit is cleared automatically when INT_SEVERE_ERR register is  
cleared to 0x00.  
Interrupt indicating that INT_MODERATE_ERR register has pending  
interrupt. The reason for the interrupt is indicated in  
INT_MODERATE_ERR register.  
This bit is cleared automatically when INT_MODERATE_ERR  
register is cleared to 0x00.  
4
3
MISC_INT  
R
R
0b  
0b  
Interrupt indicating that INT_MISC register has pending interrupt.  
The reason for the interrupt is indicated in INT_MISC register.  
This bit is cleared automatically when INT_MISC register is cleared  
to 0x00.  
STARTUP_INT  
Interrupt indicating that INT_STARTUP register has pending  
interrupt. The reason for the interrupt is indicated in INT_STARTUP  
register.  
This bit is cleared automatically when INT_STARTUP register is  
cleared to 0x00.  
2
1
0
GPIO_INT  
VMON_INT  
BUCK_INT  
R
R
R
0b  
0b  
0b  
Interrupt indicating that INT_GPIO register has pending interrupt.  
The reason for the interrupt is indicated in INT_GPIO register.  
This bit is cleared automatically when INT_GPIO register is cleared  
to 0x00.  
Interrupt indicating that INT_VMON register has pending interrupt.  
The reason for the interrupt is indicated in INT_VMON register.  
This bit is cleared automatically when INT_VMON register is cleared  
to 0x00.  
Interrupt indicating that INT_BUCK register has pending interrupt.  
The reason for the interrupt is indicated in INT_BUCK register.  
This bit is cleared automatically when INT_BUCK register is cleared  
to 0x00.  
Copyright © 2022 Texas Instruments Incorporated  
210 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.66 INT_BUCK Register (Offset = 0x5B) [Reset = 0x00]  
INT_BUCK is shown in 8-122 and described in 8-86.  
Return to the 8-19.  
8-122. INT_BUCK Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
BUCK3_4_INT BUCK1_2_INT  
R-0b R-0b  
8-86. INT_BUCK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
1
RESERVED  
R
0b  
BUCK3_4_INT  
R
0b  
Interrupt indicating that INT_BUCK3_4 register has pending  
interrupt.  
This bit is cleared automatically when INT_BUCK3_4 register is  
cleared to 0x00.  
0
BUCK1_2_INT  
R
0b  
Interrupt indicating that INT_BUCK1_2 register has pending  
interrupt.  
This bit is cleared automatically when INT_BUCK1_2 register is  
cleared to 0x00.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.67 INT_BUCK1_2 Register (Offset = 0x5C) [Reset = 0x00]  
INT_BUCK1_2 is shown in 8-123 and described in 8-87.  
Return to the 8-19.  
8-123. INT_BUCK1_2 Register  
7
6
5
4
3
2
1
0
BUCK2_ILIM_I BUCK2_SC_IN BUCK2_UV_IN BUCK2_OV_IN BUCK1_ILIM_I BUCK1_SC_IN BUCK1_UV_IN BUCK1_OV_IN  
NT  
T
T
T
NT  
T
T
T
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
8-87. INT_BUCK1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK2_ILIM_INT  
R/W1C  
0b  
Latched status bit indicating that BUCK2 output current limit has  
been triggered.  
Write 1 to clear.  
6
BUCK2_SC_INT  
R/W1C  
0b  
Latched status bit indicating following errors on BUCK2 output  
voltage:  
- BUCK2 output voltage has fallen below the short-circuit threshold  
level during operation, or  
- BUCK2 output did not exceed this short-circuit threshold level after  
expected ramp-up time, or  
- BUCK2 output exceeded this short-circuit threshold level before  
start-up of BUCK2 regulator  
Write 1 to clear.  
5
4
3
2
BUCK2_UV_INT  
BUCK2_OV_INT  
BUCK1_ILIM_INT  
BUCK1_SC_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
Latched status bit indicating that BUCK2 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK2 output over-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK1 output current limit has  
been triggered.  
Write 1 to clear.  
Latched status bit indicating following errors on BUCK1 output  
voltage:  
- BUCK1 output voltage has fallen below the short-circuit threshold  
level during operation, or  
- BUCK1 output did not exceed this short-circuit threshold level after  
expected ramp-up time, or  
- BUCK1 output exceeded this short-circuit threshold level before  
start-up of BUCK1 regulator  
Write 1 to clear.  
1
0
BUCK1_UV_INT  
BUCK1_OV_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that BUCK1 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK1 output over-voltage has  
been detected.  
Write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
212 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.68 INT_BUCK3_4 Register (Offset = 0x5D) [Reset = 0x00]  
INT_BUCK3_4 is shown in 8-124 and described in 8-88.  
Return to the 8-19.  
8-124. INT_BUCK3_4 Register  
7
6
5
4
3
2
1
0
BUCK4_ILIM_I BUCK4_SC_IN BUCK4_UV_IN BUCK4_OV_IN BUCK3_ILIM_I BUCK3_SC_IN BUCK3_UV_IN BUCK3_OV_IN  
NT  
T
T
T
NT  
T
T
T
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
8-88. INT_BUCK3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK4_ILIM_INT  
R/W1C  
0b  
Latched status bit indicating that BUCK4 output current limit has  
been triggered.  
Write 1 to clear.  
6
BUCK4_SC_INT  
R/W1C  
0b  
Latched status bit indicating following errors on BUCK4 output  
voltage:  
- BUCK4 output voltage has fallen below the short-circuit threshold  
level during operation, or  
- BUCK4 output did not exceed this short-circuit threshold level after  
expected ramp-up time, or  
- BUCK4 output exceeded this short-circuit threshold level before  
start-up of BUCK4 regulator  
Write 1 to clear.  
5
4
3
2
BUCK4_UV_INT  
BUCK4_OV_INT  
BUCK3_ILIM_INT  
BUCK3_SC_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
Latched status bit indicating that BUCK4 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK4 output over-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK3 output current limit has  
been triggered.  
Write 1 to clear.  
Latched status bit indicating following errors on BUCK3 output  
voltage:  
- BUCK3 output voltage has fallen below the short-circuit threshold  
level during operation, or  
- BUCK3 output did not exceed this short-circuit threshold level after  
expected ramp-up time, or  
- BUCK3 output exceeded this short-circuit threshold level before  
start-up of BUCK3 regulator  
Write 1 to clear.  
1
0
BUCK3_UV_INT  
BUCK3_OV_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that BUCK3 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK3 output over-voltage has  
been detected.  
Write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 213  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.69 INT_VMON Register (Offset = 0x62) [Reset = 0x00]  
INT_VMON is shown in 8-125 and described in 8-89.  
Return to the 8-19.  
8-125. INT_VMON Register  
7
6
5
4
3
2
1
0
VMON2_RV_IN VMON2_UV_IN VMON2_OV_IN VMON1_RV_IN VMON1_UV_IN VMON1_OV_IN VCCA_UV_INT VCCA_OV_INT  
T
T
T
T
T
T
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
8-89. INT_VMON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VMON2_RV_INT  
R/W1C  
0b  
Latched status bit indicating that the VMON2 voltage has been  
above residual voltage threshold level during voltage check.  
Write 1 to clear interrupt.  
6
5
VMON2_UV_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that the VMON2 input voltage has  
decreased below the under-voltage monitoring level. The actual  
status of the VMON2 under-voltage monitoring is indicated by  
VMON2_UV_STAT bit.  
Write 1 to clear interrupt.  
VMON2_OV_INT  
Latched status bit indicating that the VMON2 input voltage has  
exceeded the over-voltage detection level. The actual status of the  
over-voltage is indicated by VMON2_OV_STAT bit.  
Write 1 to clear interrupt.  
4
3
VMON1_RV_INT  
VMON1_UV_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that the VMON1 voltage has been  
above residual voltage threshold level during voltage check.  
Write 1 to clear interrupt.  
Latched status bit indicating that the VMON1 input voltage has  
decreased below the under-voltage monitoring level. The actual  
status of the VMON1 under-voltage monitoring is indicated by  
VMON1_UV_STAT bit.  
Write 1 to clear interrupt.  
2
1
VMON1_OV_INT  
VCCA_UV_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that the VMON1 input voltage has  
exceeded the over-voltage detection level. The actual status of the  
over-voltage is indicated by VMON1_OV_STAT bit.  
Write 1 to clear interrupt.  
Latched status bit indicating that the VCCA input voltage has  
decreased below the under-voltage monitoring level. The actual  
status of the VCCA under-voltage monitoring is indicated by  
VCCA_UV_STAT bit.  
Write 1 to clear interrupt.  
0
VCCA_OV_INT  
R/W1C  
0b  
Latched status bit indicating that the VCCA input voltage has  
exceeded the over-voltage detection level. The actual status of the  
over-voltage is indicated by VCCA_OV_STAT bit.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
214 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.70 INT_GPIO Register (Offset = 0x63) [Reset = 0x00]  
INT_GPIO is shown in 8-126 and described in 8-90.  
Return to the 8-19.  
8-126. INT_GPIO Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
GPIO1_8_INT  
R-0b  
RESERVED  
R/W-0b  
GPIO10_INT  
R/W1C-0b  
GPIO9_INT  
R/W1C-0b  
8-90. INT_GPIO Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
Description  
7:4  
3
RESERVED  
0b  
GPIO1_8_INT  
0b  
Interrupt indicating that INT_GPIO1_8 has pending interrupt. The  
reason for the interrupt is indicated in INT_GPIO1_8 register.  
This bit is cleared automatically when INT_GPIO1_8 register is  
cleared to 0x00.  
2
1
RESERVED  
GPIO10_INT  
R/W  
0b  
0b  
R/W1C  
Latched status bit indicating that GPIO10 has pending interrupt.  
GPIO10_IN bit in GPIO_IN_2 register shows the status of the  
GPIO10 signal.  
Write 1 to clear interrupt.  
0
GPIO9_INT  
R/W1C  
0b  
Latched status bit indicating that GPIO9 has pending interrupt.  
GPIO9_IN bit in GPIO_IN_2 register shows the status of the GPIO9  
signal.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 215  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.71 INT_GPIO1_8 Register (Offset = 0x64) [Reset = 0x00]  
INT_GPIO1_8 is shown in 8-127 and described in 8-91.  
Return to the 8-19.  
8-127. INT_GPIO1_8 Register  
7
6
5
4
3
2
1
0
GPIO8_INT  
R/W1C-0b  
GPIO7_INT  
R/W1C-0b  
GPIO6_INT  
R/W1C-0b  
GPIO5_INT  
R/W1C-0b  
GPIO4_INT  
R/W1C-0b  
GPIO3_INT  
R/W1C-0b  
GPIO2_INT  
R/W1C-0b  
GPIO1_INT  
R/W1C-0b  
8-91. INT_GPIO1_8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_INT  
GPIO7_INT  
GPIO6_INT  
GPIO5_INT  
GPIO4_INT  
GPIO3_INT  
GPIO2_INT  
GPIO1_INT  
R/W1C  
0b  
Latched status bit indicating that GPIO8 has pending interrupt.  
GPIO8_IN bit in GPIO_IN_1 register shows the status of the GPIO8  
signal.  
Write 1 to clear interrupt.  
6
5
4
3
2
1
0
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Latched status bit indicating that GPIO7 has pending interrupt.  
GPIO7_IN bit in GPIO_IN_1 register shows the status of the GPIO7  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO6 has pending interrupt.  
GPIO6_IN bit in GPIO_IN_1 register shows the status of the GPIO6  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO5 has pending interrupt.  
GPIO5_IN bit in GPIO_IN_1 register shows the status of the GPIO5  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO4 has pending interrupt.  
GPIO4_IN bit in GPIO_IN_1 register shows the status of the GPIO4  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO3 has pending interrupt.  
GPIO3_IN bit in GPIO_IN_1 register shows the status of the GPIO3  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO2 has pending interrupt.  
GPIO2_IN bit in GPIO_IN_1 register shows the status of the GPIO2  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO1 has pending interrupt.  
GPIO1_IN bit in GPIO_IN_1 register shows the status of the GPIO1  
signal.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
216 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.72 INT_STARTUP Register (Offset = 0x65) [Reset = 0x00]  
INT_STARTUP is shown in 8-128 and described in 8-92.  
Return to the 8-19.  
8-128. INT_STARTUP Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
SOFT_REBOO  
T_INT  
FSD_INT  
RESERVED  
R/W-0b  
ENABLE_INT  
RESERVED  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W-0b  
8-92. INT_STARTUP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5
RESERVED  
R/W  
0b  
SOFT_REBOOT_INT  
FSD_INT  
R/W1C  
R/W1C  
0b  
Latched status bit indicating that software reboot occurred.  
4
0b  
Latched status bit indicating that PMIC has started from  
NO_SUPPLY state (first supply detection).  
Write 1 to clear.  
3:2  
1
RESERVED  
R/W  
0b  
0b  
ENABLE_INT  
R/W1C  
Latched status bit indicating that ENABLE pin active event has been  
detected.  
Write 1 to clear.  
0
RESERVED  
R/W  
0b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 217  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.73 INT_MISC Register (Offset = 0x66) [Reset = 0x00]  
INT_MISC is shown in 8-129 and described in 8-93.  
Return to the 8-19.  
8-129. INT_MISC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
TWARN_INT  
RESERVED  
EXT_CLK_INT BIST_PASS_IN  
T
R/W1C-0b  
R/W-0b  
R/W1C-0b  
R/W1C-0b  
8-93. INT_MISC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3
RESERVED  
TWARN_INT  
R/W  
0b  
R/W1C  
0b  
Latched status bit indicating that the die junction temperature has  
exceeded the thermal warning level. The actual status of the thermal  
warning is indicated by TWARN_STAT bit in STAT_MISC register.  
Write 1 to clear interrupt.  
2
1
RESERVED  
R/W  
0b  
0b  
EXT_CLK_INT  
R/W1C  
Latched status bit indicating that external clock is not valid.  
Internal clock is automatically taken into use.  
Write 1 to clear.  
0
BIST_PASS_INT  
R/W1C  
0b  
Latched status bit indicating that BIST has been completed.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
218 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.74 INT_MODERATE_ERR Register (Offset = 0x67) [Reset = 0x00]  
INT_MODERATE_ERR is shown in 8-130 and described in 8-94.  
Return to the 8-19.  
8-130. INT_MODERATE_ERR Register  
7
6
5
4
3
2
1
0
NRSTOUT_RE NINT_READBA  
RESERVED  
SPMI_ERR_IN RECOV_CNT_I REG_CRC_ER BIST_FAIL_INT TSD_ORD_INT  
ADBACK_INT  
CK_INT  
T
NT  
R_INT  
R/W1C-0b  
R/W1C-0b  
R/W-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
8-94. INT_MODERATE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
NRSTOUT_READBACK_I R/W1C  
NT  
0b  
Latched status bit indicating that NRSTOUT read-back error has  
been detected.  
Write 1 to clear interrupt.  
6
NINT_READBACK_INT  
R/W1C  
0b  
Latched status bit indicating that NINT read-back error has been  
detected.  
Write 1 to clear interrupt.  
5
4
RESERVED  
R/W  
0b  
0b  
SPMI_ERR_INT  
R/W1C  
Latched status bit indicating that the SPMI communication interface  
has detected an error.  
Write 1 to clear interrupt.  
3
2
1
0
RECOV_CNT_INT  
REG_CRC_ERR_INT  
BIST_FAIL_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
Latched status bit indicating that RECOV_CNT has reached the limit  
(RECOV_CNT_THR).  
Write 1 to clear.  
Latched status bit indicating that the register CRC checking has  
detected an error.  
Write 1 to clear interrupt.  
Latched status bit indicating that the LBIST or ABIST has detected  
an error.  
Write 1 to clear interrupt.  
TSD_ORD_INT  
Latched status bit indicating that the die junction temperature has  
exceeded the thermal level causing a sequenced shutdown. The  
regulators have been disabled. The regulators cannot be enabled if  
this bit is active. The actual status of the temperature is indicated by  
TSD_ORD_STAT bit in STAT_MODERATE_ERR register.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 219  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.75 INT_SEVERE_ERR Register (Offset = 0x68) [Reset = 0x00]  
INT_SEVERE_ERR is shown in 8-131 and described in 8-95.  
Return to the 8-19.  
8-131. INT_SEVERE_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
PFSM_ERR_IN VCCA_OVP_IN TSD_IMM_INT  
T
T
R/W-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
8-95. INT_SEVERE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
2
RESERVED  
R/W  
0b  
PFSM_ERR_INT  
R/W1C  
0b  
Latched status bit indicating that the PFSM sequencer has detected  
an error.  
Write 1 to clear interrupt.  
1
0
VCCA_OVP_INT  
TSD_IMM_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that the VCCA input voltage has  
exceeded the over-voltage threshold level causing an immediate  
shutdown. The regulators have been disabled.  
Write 1 to clear interrupt.  
Latched status bit indicating that the die junction temperature has  
exceeded the thermal level causing an immediate shutdown. The  
regulators have been disabled. The regulators cannot be enabled if  
this bit is active. The actual status of the temperature is indicated by  
TSD_IMM_STAT bit in STAT_SEVERE_ERR register.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
220 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.76 INT_FSM_ERR Register (Offset = 0x69) [Reset = 0x00]  
INT_FSM_ERR is shown in 8-132 and described in 8-96.  
Return to the 8-19.  
8-132. INT_FSM_ERR Register  
7
6
5
4
3
2
1
0
WD_INT  
ESM_INT  
READBACK_E COMM_ERR_I SOC_PWR_ER MCU_PWR_ER ORD_SHUTDO IMM_SHUTDO  
RR_INT  
NT  
R_INT  
R_INT  
WN_INT  
WN_INT  
R-0b  
R-0b  
R-0b  
R-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
8-96. INT_FSM_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WD_INT  
R
0b  
Interrupt indicating that WD_ERR_STATUS register has pending  
interrupt.  
This bit is cleared automatically when WD_RST_INT, WD_FAIL_INT  
and WD_LONGWIN_TIMEOUT_INT are cleared.  
6
5
ESM_INT  
R
R
0b  
0b  
Interrupt indicating that INT_ESM has pending interrupt.  
This bit is cleared automatically when INT_ESM register is cleared to  
0x00.  
READBACK_ERR_INT  
Interrupt indicating that INT_READBACK_ERR has pending  
interrupt.  
This bit is cleared automatically when INT_READBACK_ERR  
register is cleared to 0x00.  
4
COMM_ERR_INT  
R
0b  
Interrupt indicating that INT_COMM_ERR has pending interrupt. The  
reason for the interrupt is indicated in INT_COMM_ERR register.  
This bit is cleared automatically when INT_COMM_ERR register is  
cleared to 0x00.  
3
2
1
0
SOC_PWR_ERR_INT  
MCU_PWR_ERR_INT  
ORD_SHUTDOWN_INT  
IMM_SHUTDOWN_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
Latched status bit indicating that SOC power error has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that MCU power error has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that orderly shutdown has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that immediate shutdown has been  
detected.  
Write 1 to clear.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 221  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.77 INT_COMM_ERR Register (Offset = 0x6A) [Reset = 0x00]  
INT_COMM_ERR is shown in 8-133 and described in 8-97.  
Return to the 8-19.  
8-133. INT_COMM_ERR Register  
7
6
5
4
3
2
1
0
I2C2_ADR_ER  
R_INT  
RESERVED  
I2C2_CRC_ER  
R_INT  
RESERVED  
COMM_ADR_E  
RR_INT  
RESERVED COMM_CRC_E COMM_FRM_E  
RR_INT  
RR_INT  
R/W1C-0b  
R/W-0b  
R/W1C-0b  
R/W-0b  
R/W1C-0b  
R/W-0b  
R/W1C-0b  
R/W1C-0b  
8-97. INT_COMM_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2C2_ADR_ERR_INT  
R/W1C  
0b  
Latched status bit indicating that I2C2 write to non-existing, protected  
or read-only register address has been detected.  
- Valid for I2C2  
- CRC on I2C2 must be enabled (I2C2_CRC_EN=1 - NVM default  
bit) and I2C2_CRC_ERR_MASK=0 are required to generate nINT  
interrupt  
Write 1 to clear interrupt.  
6
5
RESERVED  
R/W  
0b  
0b  
I2C2_CRC_ERR_INT  
R/W1C  
Latched status bit indicating that I2C2 CRC error has been detected.  
- Valid for I2C2  
- CRC on I2C2 must be enabled (I2C2_CRC_EN=1 - NVM default  
bit) and I2C2_CRC_ERR_MASK=0 are required to generate nINT  
interrupt  
Write 1 to clear interrupt.  
Write 1 to clear interrupt.  
4
3
RESERVED  
R/W  
0b  
0b  
COMM_ADR_ERR_INT  
R/W1C  
Latched status bit indicating that I2C1/SPI write to non-existing,  
protected or read-only register address has been detected.  
- Valid for SPI and I2C1  
- CRC on I2C/SPI must be enabled (I2C1_SPI_CRC_EN=1 - NVM  
default bit) and COMM_CRC_ERR_MASK=0 are required to  
generate nINT interrupt  
Write 1 to clear interrupt.  
Write 1 to clear interrupt.  
2
1
RESERVED  
R/W  
0b  
0b  
COMM_CRC_ERR_INT  
R/W1C  
Latched status bit indicating that I2C1/SPI CRC error has been  
detected.  
- Valid for SPI and I2C1  
- CRC on I2C/SPI must be enabled (I2C1_SPI_CRC_EN=1 - NVM  
default bit) and COMM_CRC_ERR_MASK=0 are required to  
generate nINT interrupt  
Write 1 to clear interrupt.  
0
COMM_FRM_ERR_INT  
R/W1C  
0b  
Latched status bit indicating that SPI frame error has been detected.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
222 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.78 INT_READBACK_ERR Register (Offset = 0x6B) [Reset = 0x00]  
INT_READBACK_ERR is shown in 8-134 and described in 8-98.  
Return to the 8-19.  
8-134. INT_READBACK_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
NRSTOUT_SO  
C_READBACK  
_INT  
RESERVED  
R/W-0b  
EN_DRV_REA  
DBACK_INT  
R/W1C-0b  
R/W1C-0b  
8-98. INT_READBACK_ERR Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7:4  
3
R/W  
0b  
NRSTOUT_SOC_READB R/W1C  
ACK_INT  
0b  
Latched status bit indicating that NRSTOUT_SOC read-back error  
has been detected.  
Write 1 to clear interrupt.  
2:1  
0
RESERVED  
R/W  
0b  
0b  
EN_DRV_READBACK_IN R/W1C  
T
Latched status bit indicating that EN_DRV read-back error has been  
detected.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 223  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.79 INT_ESM Register (Offset = 0x6C) [Reset = 0x00]  
INT_ESM is shown in 8-135 and described in 8-99.  
Return to the 8-19.  
8-135. INT_ESM Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
ESM_MCU_RS ESM_MCU_FAI ESM_MCU_PIN  
RESERVED  
T_INT  
L_INT  
_INT  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W-0b  
8-99. INT_ESM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5
RESERVED  
R/W  
0b  
ESM_MCU_RST_INT  
R/W1C  
0b  
Latched status bit indicating that MCU ESM reset has been detected.  
Write 1 to clear interrupt.  
4
3
ESM_MCU_FAIL_INT  
ESM_MCU_PIN_INT  
RESERVED  
R/W1C  
R/W1C  
R/W  
0b  
0b  
0b  
Latched status bit indicating that MCU ESM fail has been detected.  
Write 1 to clear interrupt.  
Latched status bit indicating that MCU ESM fault has been detected.  
Write 1 to clear interrupt.  
2:0  
Copyright © 2022 Texas Instruments Incorporated  
224 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.80 STAT_BUCK1_2 Register (Offset = 0x6D) [Reset = 0x00]  
STAT_BUCK1_2 is shown in 8-136 and described in 8-100.  
Return to the 8-19.  
8-136. STAT_BUCK1_2 Register  
7
6
5
4
3
2
1
0
BUCK2_ILIM_S  
TAT  
RESERVED BUCK2_UV_ST BUCK2_OV_ST BUCK1_ILIM_S  
RESERVED BUCK1_UV_ST BUCK1_OV_ST  
AT  
AT  
TAT  
AT  
AT  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
8-100. STAT_BUCK1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK2_ILIM_STAT  
R
0b  
Status bit indicating that BUCK2 output current is above current limit  
level.  
6
5
RESERVED  
R
R
0b  
0b  
BUCK2_UV_STAT  
Status bit indicating that BUCK2 output voltage is below under-  
voltage threshold.  
4
3
BUCK2_OV_STAT  
BUCK1_ILIM_STAT  
R
R
0b  
0b  
Status bit indicating that BUCK2 output voltage is above over-voltage  
threshold.  
Status bit indicating that BUCK1 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0b  
0b  
BUCK1_UV_STAT  
Status bit indicating that BUCK1 output voltage is below under-  
voltage threshold.  
0
BUCK1_OV_STAT  
R
0b  
Status bit indicating that BUCK1 output voltage is above over-voltage  
threshold.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 225  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.81 STAT_BUCK3_4 Register (Offset = 0x6E) [Reset = 0x00]  
STAT_BUCK3_4 is shown in 8-137 and described in 8-101.  
Return to the 8-19.  
8-137. STAT_BUCK3_4 Register  
7
6
5
4
3
2
1
0
BUCK4_ILIM_S  
TAT  
RESERVED BUCK4_UV_ST BUCK4_OV_ST BUCK3_ILIM_S  
RESERVED BUCK3_UV_ST BUCK3_OV_ST  
AT  
AT  
TAT  
AT  
AT  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
8-101. STAT_BUCK3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK4_ILIM_STAT  
R
0b  
Status bit indicating that BUCK4 output current is above current limit  
level.  
6
5
RESERVED  
R
R
0b  
0b  
BUCK4_UV_STAT  
Status bit indicating that BUCK4 output voltage is below under-  
voltage threshold.  
4
3
BUCK4_OV_STAT  
BUCK3_ILIM_STAT  
R
R
0b  
0b  
Status bit indicating that BUCK4 output voltage is above over-voltage  
threshold.  
Status bit indicating that BUCK3 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0b  
0b  
BUCK3_UV_STAT  
Status bit indicating that BUCK3 output voltage is below under-  
voltage threshold.  
0
BUCK3_OV_STAT  
R
0b  
Status bit indicating that BUCK3 output voltage is above over-voltage  
threshold.  
Copyright © 2022 Texas Instruments Incorporated  
226 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.82 STAT_VMON Register (Offset = 0x72) [Reset = 0x00]  
STAT_VMON is shown in 8-138 and described in 8-102.  
Return to the 8-19.  
8-138. STAT_VMON Register  
7
6
5
4
3
2
1
0
RESERVED  
VMON2_UV_S VMON2_OV_S  
RESERVED  
VMON1_UV_S VMON1_OV_S VCCA_UV_STA VCCA_OV_STA  
TAT  
TAT  
TAT  
TAT  
T
T
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
8-102. STAT_VMON Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R
0b  
6
VMON2_UV_STAT  
R
0b  
Status bit indicating that VMON2 input voltage is below under-  
voltage level.  
5
VMON2_OV_STAT  
R
0b  
Status bit indicating that VMON2 input voltage is above over-voltage  
level.  
4
3
RESERVED  
R
R
0b  
0b  
VMON1_UV_STAT  
Status bit indicating that VMON1 input voltage is below under-  
voltage level.  
2
1
0
VMON1_OV_STAT  
VCCA_UV_STAT  
VCCA_OV_STAT  
R
R
R
0b  
0b  
0b  
Status bit indicating that VMON1 input voltage is above over-voltage  
level.  
Status bit indicating that VCCA input voltage is below under-voltage  
level.  
Status bit indicating that VCCA input voltage is above over-voltage  
level.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 227  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.83 STAT_STARTUP Register (Offset = 0x73) [Reset = 0x00]  
STAT_STARTUP is shown in 8-139 and described in 8-103.  
Return to the 8-19.  
8-139. STAT_STARTUP Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
ENABLE_STAT  
R-0b  
RESERVED  
R-0b  
8-103. STAT_STARTUP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
1
RESERVED  
ENABLE_STAT  
RESERVED  
R
0b  
R
0b  
Status bit indicating ENABLE pin status  
0
R
0b  
Copyright © 2022 Texas Instruments Incorporated  
228 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.84 STAT_MISC Register (Offset = 0x74) [Reset = 0x00]  
STAT_MISC is shown in 8-140 and described in 8-104.  
Return to the 8-19.  
8-140. STAT_MISC Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
TWARN_STAT  
R-0b  
RESERVED  
EXT_CLK_STA  
T
RESERVED  
R-0b  
R-0b  
R-0b  
8-104. STAT_MISC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3
RESERVED  
R
0b  
TWARN_STAT  
R
0b  
Status bit indicating that die junction temperature is above the  
thermal warning level.  
2
1
0
RESERVED  
R
R
R
0b  
0b  
0b  
EXT_CLK_STAT  
RESERVED  
Status bit indicating that external clock is not valid.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 229  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.85 STAT_MODERATE_ERR Register (Offset = 0x75) [Reset = 0x00]  
STAT_MODERATE_ERR is shown in 8-141 and described in 8-105.  
Return to the 8-19.  
8-141. STAT_MODERATE_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
TSD_ORD_STA  
T
R-0b  
R-0b  
8-105. STAT_MODERATE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:1  
0
RESERVED  
R
0b  
TSD_ORD_STAT  
R
0b  
Status bit indicating that the die junction temperature is above the  
thermal level causing a sequenced shutdown.  
Copyright © 2022 Texas Instruments Incorporated  
230 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.86 STAT_SEVERE_ERR Register (Offset = 0x76) [Reset = 0x00]  
STAT_SEVERE_ERR is shown in 8-142 and described in 8-106.  
Return to the 8-19.  
8-142. STAT_SEVERE_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
VCCA_OVP_S TSD_IMM_STA  
TAT  
T
R-0b  
R-0b  
8-106. STAT_SEVERE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
1
RESERVED  
R
0b  
VCCA_OVP_STAT  
R
0b  
Status bit indicating that the VCCA voltage is above overvoltage  
protection level.  
0
TSD_IMM_STAT  
R
0b  
Status bit indicating that the die junction temperature is above the  
thermal level causing an immediate shutdown.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 231  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.87 STAT_READBACK_ERR Register (Offset = 0x77) [Reset = 0x00]  
STAT_READBACK_ERR is shown in 8-143 and described in 8-107.  
Return to the 8-19.  
8-143. STAT_READBACK_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
NRSTOUT_SO NRSTOUT_RE NINT_READBA EN_DRV_REA  
C_READBACK ADBACK_STAT  
_STAT  
CK_STAT  
DBACK_STAT  
R-0b  
R-0b  
R-0b  
R-0b  
8-107. STAT_READBACK_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3
RESERVED  
R
0b  
NRSTOUT_SOC_READB  
ACK_STAT  
R
0b  
Status bit indicating that NRSTOUT_SOC pin output is high and  
device is driving it low.  
2
1
0
NRSTOUT_READBACK_  
STAT  
R
R
R
0b  
0b  
0b  
Status bit indicating that NRSTOUT pin output is high and device is  
driving it low.  
NINT_READBACK_STAT  
Status bit indicating that NINT pin output is high and device is driving  
it low.  
EN_DRV_READBACK_S  
TAT  
Status bit indicating that EN_DRV pin output is different than driven.  
Copyright © 2022 Texas Instruments Incorporated  
232 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.88 PGOOD_SEL_1 Register (Offset = 0x78) [Reset = 0x00]  
PGOOD_SEL_1 is shown in 8-144 and described in 8-108.  
Return to the 8-19.  
8-144. PGOOD_SEL_1 Register  
7
6
5
4
3
2
1
0
PGOOD_SEL_BUCK4  
R/W-0b  
PGOOD_SEL_BUCK3  
R/W-0b  
PGOOD_SEL_BUCK2  
R/W-0b  
PGOOD_SEL_BUCK1  
R/W-0b  
8-108. PGOOD_SEL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
PGOOD_SEL_BUCK4  
R/W  
0b  
PGOOD signal source control from BUCK4  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
5:4  
3:2  
1:0  
PGOOD_SEL_BUCK3  
PGOOD_SEL_BUCK2  
PGOOD_SEL_BUCK1  
R/W  
R/W  
R/W  
0b  
0b  
0b  
PGOOD signal source control from BUCK3  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
PGOOD signal source control from BUCK2  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
PGOOD signal source control from BUCK1  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 233  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.89 PGOOD_SEL_4 Register (Offset = 0x7B) [Reset = 0x00]  
PGOOD_SEL_4 is shown in 8-145 and described in 8-109.  
Return to the 8-19.  
8-145. PGOOD_SEL_4 Register  
7
6
5
4
3
2
1
0
PGOOD_WIND PGOOD_POL PGOOD_SEL_ PGOOD_SEL_ PGOOD_SEL_ PGOOD_SEL_ PGOOD_SEL_ PGOOD_SEL_  
OW  
NRSTOUT_SO  
C
NRSTOUT  
TDIE_WARN  
VMON2  
VMON1  
VCCA  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-109. PGOOD_SEL_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGOOD_WINDOW  
R/W  
0b  
Type of voltage monitoring for PGOOD signal:  
(Default from NVM memory)  
0b = Only undervoltage is monitored  
1b = Both undervoltage and overvoltage are monitored  
6
5
4
3
2
1
0
PGOOD_POL  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
PGOOD signal polarity select:  
(Default from NVM memory)  
0b = PGOOD signal is high when monitored inputs are valid  
1b = PGOOD signal is low when monitored inputs are valid  
PGOOD_SEL_NRSTOUT R/W  
_SOC  
PGOOD signal source control from nRSTOUT_SOC pin:  
(Default from NVM memory)  
0b = Masked  
1b = nRSTOUT_SOC pin low state forces PGOOD signal to low  
PGOOD_SEL_NRSTOUT R/W  
PGOOD signal source control from nRSTOUT pin:  
(Default from NVM memory)  
0b = Masked  
1b = nRSTOUT pin low state forces PGOOD signal to low  
PGOOD_SEL_TDIE_WAR R/W  
N
PGOOD signal source control from thermal warning  
(Default from NVM memory)  
0b = Masked  
1b = Thermal warning affecting to PGOOD signal  
PGOOD_SEL_VMON2  
PGOOD_SEL_VMON1  
PGOOD_SEL_VCCA  
R/W  
R/W  
R/W  
PGOOD signal source control from VMON2 monitoring  
(Default from NVM memory)  
0b = Masked  
1b = VMON2 OV/UV threshold affecting PGOOD signal  
PGOOD signal source control from VMON1 monitoring  
(Default from NVM memory)  
0b = Masked  
1b = VMON1 OV/UV threshold affecting PGOOD signal  
PGOOD signal source control from VCCA monitoring  
(Default from NVM memory)  
0b = Masked  
1b = VCCA OV/UV threshold affecting PGOOD signal  
Copyright © 2022 Texas Instruments Incorporated  
234 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.90 PLL_CTRL Register (Offset = 0x7C) [Reset = 0x00]  
PLL_CTRL is shown in 8-146 and described in 8-110.  
Return to the 8-19.  
8-146. PLL_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
EXT_CLK_FREQ  
R/W-0b  
8-110. PLL_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:2  
1:0  
RESERVED  
0b  
EXT_CLK_FREQ  
0b  
Frequency of the external clock (SYNCCLKIN):  
See electrical specification for input clock frequency tolerance.  
(Default from NVM memory)  
0b = 1.1 MHz  
1b = 2.2 MHz  
10b = 4.4 MHz  
11b = 8.8 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 235  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.91 CONFIG_1 Register (Offset = 0x7D) [Reset = 0xC0]  
CONFIG_1 is shown in 8-147 and described in 8-111.  
Return to the 8-19.  
8-147. CONFIG_1 Register  
7
6
5
4
3
2
1
0
NSLEEP2_MAS NSLEEP1_MAS EN_ILIM_FSM_  
I2C2_HS  
R/W-0b  
I2C1_HS  
R/W-0b  
RESERVED TSD_ORD_LEV TWARN_LEVE  
K
K
CTRL  
EL  
L
R/W-1b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-111. CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
NSLEEP2_MASK  
R/W  
1b  
Masking for NSLEEP2 pin(s) and NSLEEP2B bit:  
(Default from NVM memory)  
0b = NSLEEP2(B) affects FSM state transitions.  
1b = NSLEEP2(B) does not affect FSM state transitions.  
6
NSLEEP1_MASK  
R/W  
1b  
Masking for NSLEEP1 pin(s) and NSLEEP1B bit:  
(Default from NVM memory)  
0b = NSLEEP1(B) affects FSM state transitions.  
1b = NSLEEP1(B) does not affect FSM state transitions.  
5
4
EN_ILIM_FSM_CTRL  
I2C2_HS  
R/W  
R/W  
0b  
0b  
(Default from NVM memory)  
0b = Buck regulators ILIM interrupts do not affect FSM triggers.  
1b = Buck regulators ILIM interrupts affect FSM triggers.  
Select I2C2 speed (input filter)  
(Default from NVM memory)  
0b = Standard, fast or fast+ by default, can be set to Hs-mode by Hs-  
mode controller code.  
1b = Forced to Hs-mode  
3
I2C1_HS  
R/W  
0b  
Select I2C1 speed (input filter)  
(Default from NVM memory)  
0b = Standard, fast or fast+ by default, can be set to Hs-mode by Hs-  
mode controller code.  
1b = Forced to Hs-mode  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
TSD_ORD_LEVEL  
Thermal shutdown threshold level.  
(Default from NVM memory)  
0b = 140C  
1b = 145C  
0
TWARN_LEVEL  
R/W  
0b  
Thermal warning threshold level.  
(Default from NVM memory)  
0b = 130C  
1b = 140C  
Copyright © 2022 Texas Instruments Incorporated  
236 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.92 ENABLE_DRV_REG Register (Offset = 0x80) [Reset = 0x00]  
ENABLE_DRV_REG is shown in 8-148 and described in 8-112.  
Return to the 8-19.  
8-148. ENABLE_DRV_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
ENABLE_DRV  
R/W-0b  
8-112. ENABLE_DRV_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:1  
0
RESERVED  
0b  
ENABLE_DRV  
0b  
Control for EN_DRV pin:  
FORCE_EN_DRV_LOW must be 0 to control EN_DRV pin.  
Otherwise EN_DRV pin is low.  
0b = Low  
1b = High  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 237  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.93 MISC_CTRL Register (Offset = 0x81) [Reset = 0x00]  
MISC_CTRL is shown in 8-149 and described in 8-113.  
Return to the 8-19.  
8-149. MISC_CTRL Register  
7
6
5
4
3
2
1
0
SYNCCLKOUT_FREQ_SEL  
SEL_EXT_CLK REFOUT_EN  
R/W-0b R/W-0b  
CLKMON_EN  
LPM_EN  
NRSTOUT_SO  
C
NRSTOUT  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-113. MISC_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
SYNCCLKOUT_FREQ_S R/W  
EL  
0b  
SYNCCLKOUT enable/frequency select:  
0b = SYNCCLKOUT off  
1b = 1.1 MHz  
10b = 2.2 MHz  
11b = 4.4 MHz  
5
SEL_EXT_CLK  
R/W  
0b  
Selection of external clock:  
0b = Forced to internal RC oscillator.  
1b = Automatic external clock use when available, interrupt is  
generated if the external clock is expected (SEL_EXT_CLK = 1), but  
it is not available or the clock frequency is not within the valid range.  
4
3
2
REFOUT_EN  
CLKMON_EN  
LPM_EN  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Control bandgap voltage to REFOUT pin.  
0b = Disabled  
1b = Enabled  
Control of internal clock monitoring.  
0b = Disabled  
1b = Enabled  
Low power mode control.  
LPM_EN sets device in a low power mode. Intended use case is for  
the PFSM to set LPM_EN upon entering a deep sleep state. The end  
objective is to disable the digital oscillator to reduce power  
consumption.  
The following functions are disabled when LPM_EN=1.  
-TSD cycling of all sensors/thresholds  
-regmap/SRAM CRC continuous checking  
-SPMI WD NVM_ID request/response polling  
-Disable clock monitoring  
0b = Low power mode disabled  
1b = Low power mode enabled  
1
0
NRSTOUT_SOC  
NRSTOUT  
R/W  
R/W  
0b  
0b  
Control for nRSTOUT_SOC signal:  
0b = Low  
1b = High  
Control for nRSTOUT signal:  
0b = Low  
1b = High  
Copyright © 2022 Texas Instruments Incorporated  
238 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.94 ENABLE_DRV_STAT Register (Offset = 0x82) [Reset = 0x08]  
ENABLE_DRV_STAT is shown in 8-150 and described in 8-114.  
Return to the 8-19.  
8-150. ENABLE_DRV_STAT Register  
7
6
5
4
3
2
1
0
RESERVED  
SPMI_LPM_EN FORCE_EN_D NRSTOUT_SO NRSTOUT_IN  
EN_DRV_IN  
RV_LOW  
C_IN  
R/W-0b  
R/W-0b  
R/W-1b  
R-0b  
R-0b  
R-0b  
8-114. ENABLE_DRV_STAT Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:5  
4
RESERVED  
SPMI_LPM_EN  
0b  
0b  
This bit is read/write for PFSM and read-only for I2C/SPI  
SPMI low power mode control.  
SPMI_LPM_EN sets SPMI in a low power mode that stops SPMI WD  
(Bus heartbeat). The PMICs on the SPMI-bus must set  
SPMI_LPM_EN=1 synchronously to prevent SPMI WD failures.  
Therefore to mitigate clock variations, setting SPMI_LPM_EN=1  
must be done early in the power-up sequence.  
The following functions are disabled when SPMI_LPM_EN=1.  
-SPMI WD NVM_ID request/response polling  
0b = SPMI low power mode disabled  
1b = SPMI low power mode enabled  
3
FORCE_EN_DRV_LOW  
R/W  
1b  
This bit is read/write for PFSM and read-only for I2C/SPI  
0b = ENABLE_DRV bit can be written by I2C/SPI  
1b = ENABLE_DRV bit is forced low and cannot be written high by  
I2C/SPI  
2
1
0
NRSTOUT_SOC_IN  
NRSTOUT_IN  
R
R
R
0b  
0b  
0b  
Level of NRSTOUT_SOC pin:  
0b = Low  
1b = High  
Level of NRSTOUT pin:  
0b = Low  
1b = High  
EN_DRV_IN  
Level of EN_DRV pin:  
0b = Low  
1b = High  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 239  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.95 RECOV_CNT_REG_1 Register (Offset = 0x83) [Reset = 0x00]  
RECOV_CNT_REG_1 is shown in 8-151 and described in 8-115.  
Return to the 8-19.  
8-151. RECOV_CNT_REG_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
RECOV_CNT  
R-0b  
8-115. RECOV_CNT_REG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3:0  
RESERVED  
R
0b  
RECOV_CNT  
R
0b  
Recovery counter status. Counter value is incremented each time  
PMIC goes through warm reset.  
Copyright © 2022 Texas Instruments Incorporated  
240 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.96 RECOV_CNT_REG_2 Register (Offset = 0x84) [Reset = 0x00]  
RECOV_CNT_REG_2 is shown in 8-152 and described in 8-116.  
Return to the 8-19.  
8-152. RECOV_CNT_REG_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
RECOV_CNT_  
CLR  
RECOV_CNT_THR  
R/W-0b  
R/W-0b  
R/WSelfClrF-0b  
8-116. RECOV_CNT_REG_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
4
RESERVED  
RECOV_CNT_CLR  
R/W  
0b  
R/WSelfClrF 0b  
Recovery counter clear. Write 1 to clear the counter. This bit is  
automatically set back to 0.  
3:0  
RECOV_CNT_THR  
R/W 0b  
Recovery counter threshold value for immediate power-down of all  
supply rails.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 241  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.97 FSM_I2C_TRIGGERS Register (Offset = 0x85) [Reset = 0x00]  
FSM_I2C_TRIGGERS is shown in 8-153 and described in 8-117.  
Return to the 8-19.  
8-153. FSM_I2C_TRIGGERS Register  
7
6
5
4
3
2
1
0
TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_  
7
6
5
4
3
2
1
0
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/WSelfClrF-0b R/WSelfClrF-0b R/WSelfClrF-0b R/WSelfClrF-0b  
8-117. FSM_I2C_TRIGGERS Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
TRIGGER_I2C_7  
TRIGGER_I2C_6  
TRIGGER_I2C_5  
TRIGGER_I2C_4  
TRIGGER_I2C_3  
0b  
Trigger for PFSM program.  
Trigger for PFSM program.  
Trigger for PFSM program.  
Trigger for PFSM program.  
6
0b  
5
0b  
4
0b  
3
R/WSelfClrF 0b  
R/WSelfClrF 0b  
R/WSelfClrF 0b  
R/WSelfClrF 0b  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
2
1
0
TRIGGER_I2C_2  
TRIGGER_I2C_1  
TRIGGER_I2C_0  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
Copyright © 2022 Texas Instruments Incorporated  
242 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.98 FSM_NSLEEP_TRIGGERS Register (Offset = 0x86) [Reset = 0x00]  
FSM_NSLEEP_TRIGGERS is shown in 8-154 and described in 8-118.  
Return to the 8-19.  
8-154. FSM_NSLEEP_TRIGGERS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
NSLEEP2B  
R/W-0b  
NSLEEP1B  
R/W-0b  
8-118. FSM_NSLEEP_TRIGGERS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:2  
1
RESERVED  
NSLEEP2B  
0b  
0b  
Parallel register bit for NSLEEP2 function:  
0b = NSLEEP2 low  
1b = NSLEEP2 high  
0
NSLEEP1B  
R/W  
0b  
Parallel register bit for NSLEEP1 function:  
0b = NSLEEP1 low  
1b = NSLEEP1 high  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 243  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.99 BUCK_RESET_REG Register (Offset = 0x87) [Reset = 0x00]  
BUCK_RESET_REG is shown in 8-155 and described in 8-119.  
Return to the 8-19.  
8-155. BUCK_RESET_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK4_RESET BUCK3_RESET BUCK2_RESET BUCK1_RESET  
R/W-0b R/W-0b R/W-0b R/W-0b  
8-119. BUCK_RESET_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:4  
3
RESERVED  
0b  
BUCK4_RESET  
0b  
Reset signal for Buck logic.  
(Default from NVM memory)  
2
1
0
BUCK3_RESET  
BUCK2_RESET  
BUCK1_RESET  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Reset signal for Buck logic.  
(Default from NVM memory)  
Reset signal for Buck logic.  
(Default from NVM memory)  
Reset signal for Buck logic.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
244 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.100 SPREAD_SPECTRUM_1 Register (Offset = 0x88) [Reset = 0x00]  
SPREAD_SPECTRUM_1 is shown in 8-156 and described in 8-120.  
Return to the 8-19.  
8-156. SPREAD_SPECTRUM_1 Register  
7
6
5
4
3
2
1
0
SS_DEPTH  
R/W-0b  
RESERVED  
R/W-0b  
SS_EN  
R/W-0b  
8-120. SPREAD_SPECTRUM_1 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:3  
2
RESERVED  
SS_EN  
0b  
0b  
Spread spectrum enable.  
(Default from NVM memory)  
0b = Spread spectrum disabled  
1b = Spread spectrum enabled  
1:0  
SS_DEPTH  
R/W  
0b  
Spread spectrum modulation depth.  
(Default from NVM memory)  
0b = No modulation  
1b = +/- 6.3%  
10b = +/- 8.4%  
11b = RESERVED  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 245  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.101 FREQ_SEL Register (Offset = 0x8A) [Reset = 0x00]  
FREQ_SEL is shown in 8-157 and described in 8-121.  
Return to the 8-19.  
8-157. FREQ_SEL Register  
7
6
5
4
3
2
1
0
BUCK4_FREQ_SEL  
R/W-0b  
BUCK3_FREQ_SEL  
R/W-0b  
BUCK2_FREQ_SEL  
R/W-0b  
BUCK1_FREQ_SEL  
R/W-0b  
8-121. FREQ_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5:4  
3:2  
1:0  
BUCK4_FREQ_SEL  
R/W  
0b  
Buck4 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
NVM configuration. See Technical Reference Manual / User's Guide  
for details.  
(Default from NVM memory)  
0b = 2.2 MHz  
1b = 4.4 MHz  
10b = 8.8 MHz  
11b = 8.8 MHz  
BUCK3_FREQ_SEL  
BUCK2_FREQ_SEL  
BUCK1_FREQ_SEL  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Buck3 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
NVM configuration. See Technical Reference Manual / User's Guide  
for details.  
(Default from NVM memory)  
0b = 2.2 MHz  
1b = 4.4 MHz  
10b = 8.8 MHz  
11b = 8.8 MHz  
Buck2 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
NVM configuration. See Technical Reference Manual / User's Guide  
for details.  
(Default from NVM memory)  
0b = 2.2 MHz  
1b = 4.4 MHz  
10b = 8.8 MHz  
11b = 8.8 MHz  
Buck1 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
NVM configuration. See Technical Reference Manual / User's Guide  
for details.  
(Default from NVM memory)  
0b = 2.2 MHz  
1b = 4.4 MHz  
10b = 8.8 MHz  
11b = 8.8 MHz  
Copyright © 2022 Texas Instruments Incorporated  
246 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.102 FSM_STEP_SIZE Register (Offset = 0x8B) [Reset = 0x00]  
FSM_STEP_SIZE is shown in 8-158 and described in 8-122.  
Return to the 8-19.  
8-158. FSM_STEP_SIZE Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
PFSM_DELAY_STEP  
R/W-0b  
8-122. FSM_STEP_SIZE Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:5  
4:0  
RESERVED  
0b  
PFSM_DELAY_STEP  
0b  
Step size for PFSM sequence counter.  
Step size is 50ns * 2PFSM_DELAY_STEP  
(Default from NVM memory)  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 247  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.103 USER_SPARE_REGS Register (Offset = 0x8E) [Reset = 0x00]  
USER_SPARE_REGS is shown in 8-159 and described in 8-123.  
Return to the 8-19.  
8-159. USER_SPARE_REGS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
USER_SPARE_ USER_SPARE_ USER_SPARE_ USER_SPARE_  
4
3
2
1
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-123. USER_SPARE_REGS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
7:4  
3
RESERVED  
0b  
USER_SPARE_4  
USER_SPARE_3  
USER_SPARE_2  
USER_SPARE_1  
0b  
(Default from NVM memory)  
(Default from NVM memory)  
(Default from NVM memory)  
(Default from NVM memory)  
2
0b  
1
0b  
0
0b  
Copyright © 2022 Texas Instruments Incorporated  
248 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.104 ESM_MCU_START_REG Register (Offset = 0x8F) [Reset = 0x00]  
ESM_MCU_START_REG is shown in 8-160 and described in 8-124.  
Return to the 8-19.  
8-160. ESM_MCU_START_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
ESM_MCU_ST  
ART  
R/W-0b  
R/W-0b  
8-124. ESM_MCU_START_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:1  
0
RESERVED  
0b  
ESM_MCU_START  
0b  
Control bit to start the ESM_MCU:  
0b = ESM_MCU not started. Device clears ENABLE_DRV bit when  
bit ESM_MCU_EN=1  
1b = ESM_MCU started.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 249  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.105 ESM_MCU_DELAY1_REG Register (Offset = 0x90) [Reset = 0x00]  
ESM_MCU_DELAY1_REG is shown in 8-161 and described in 8-125.  
Return to the 8-19.  
8-161. ESM_MCU_DELAY1_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_DELAY1  
R/W-0b  
8-125. ESM_MCU_DELAY1_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_DELAY1  
R/W  
0b  
These bits configure the duration of the ESM_MCU delay-1 time-  
interval (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
250 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.106 ESM_MCU_DELAY2_REG Register (Offset = 0x91) [Reset = 0x00]  
ESM_MCU_DELAY2_REG is shown in 8-162 and described in 8-126.  
Return to the 8-19.  
8-162. ESM_MCU_DELAY2_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_DELAY2  
R/W-0b  
8-126. ESM_MCU_DELAY2_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_DELAY2  
R/W  
0b  
These bits configure the duration of the ESM_MCU delay-2 time-  
interval (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 251  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.107 ESM_MCU_MODE_CFG Register (Offset = 0x92) [Reset = 0x00]  
ESM_MCU_MODE_CFG is shown in 8-163 and described in 8-127.  
Return to the 8-19.  
8-163. ESM_MCU_MODE_CFG Register  
7
6
5
4
3
2
1
0
ESM_MCU_MO ESM_MCU_EN ESM_MCU_EN  
RESERVED  
ESM_MCU_ERR_CNT_TH  
R/W-0b  
DE  
DRV  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-127. ESM_MCU_MODE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ESM_MCU_MODE  
R/W  
0b  
This bit selects the mode for the ESM_MCU:  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
0b = Level Mode  
1b = PWM Mode  
6
ESM_MCU_EN  
R/W  
0b  
ESM_MCU enable configuration bit:  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
(Default from NVM memory)  
0b = ESM_MCU disabled. MCU can set ENABLE_DRV bit to 1 if all  
other interrupt bits are cleared  
1b = ESM_MCU enabled. MCU can set ENABLE_DRV bit to 1 if:  
- bit ESM_MCU_START=1, and  
- (ESM_MCU_FAIL_INT=0 or ESM_MCU_ENDRV=0), and  
- ESM_MCU_RST_INT=0, and  
- all other interrupt bits are cleared  
5
ESM_MCU_ENDRV  
RESERVED  
R/W  
R/W  
0b  
Configuration bit to select ENABLE_DRV clear on ESM-error for  
ESM_MCU:  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
0b = ENABLE_DRV not cleared when ESM_MCU_FAIL_INT=1  
1b = ENABLE_DRV cleared when ESM_MCU_FAIL_INT=1  
4
0b  
0b  
3:0  
ESM_MCU_ERR_CNT_T R/W  
H
Configuration bits for the threshold of the ESM_MCU error-counter.  
The ESM_MCU starts the Error Handling Procedure (see Section  
4.17.1) if ESM_MCU_ERR_CNT[4:0] >  
ESM_MCU_ERR_CNT_TH[3:0].  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
252 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.108 ESM_MCU_HMAX_REG Register (Offset = 0x93) [Reset = 0x00]  
ESM_MCU_HMAX_REG is shown in 8-164 and described in 8-128.  
Return to the 8-19.  
8-164. ESM_MCU_HMAX_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_HMAX  
R/W-0b  
8-128. ESM_MCU_HMAX_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_HMAX  
R/W  
0b  
These bits configure the maximum high-pulse time-threshold  
(tHIGH_MAX_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 253  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.109 ESM_MCU_HMIN_REG Register (Offset = 0x94) [Reset = 0x00]  
ESM_MCU_HMIN_REG is shown in 8-165 and described in 8-129.  
Return to the 8-19.  
8-165. ESM_MCU_HMIN_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_HMIN  
R/W-0b  
8-129. ESM_MCU_HMIN_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_HMIN  
R/W  
0b  
These bits configure the minimum high-pulse time-threshold  
(tHIGH_MIN_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
254 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.110 ESM_MCU_LMAX_REG Register (Offset = 0x95) [Reset = 0x00]  
ESM_MCU_LMAX_REG is shown in 8-166 and described in 8-130.  
Return to the 8-19.  
8-166. ESM_MCU_LMAX_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_LMAX  
R/W-0b  
8-130. ESM_MCU_LMAX_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_LMAX  
R/W  
0b  
These bits configure the maximum low-pulse time-threshold  
(tLOW_MAX_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 255  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.111 ESM_MCU_LMIN_REG Register (Offset = 0x96) [Reset = 0x00]  
ESM_MCU_LMIN_REG is shown in 8-167 and described in 8-131.  
Return to the 8-19.  
8-167. ESM_MCU_LMIN_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_LMIN  
R/W-0b  
8-131. ESM_MCU_LMIN_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_LMIN  
R/W  
0b  
These bits configure the minimum low-pulse time-threshold  
(tLOW_MAX_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2022 Texas Instruments Incorporated  
256 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.112 ESM_MCU_ERR_CNT_REG Register (Offset = 0x97) [Reset = 0x00]  
ESM_MCU_ERR_CNT_REG is shown in 8-168 and described in 8-132.  
Return to the 8-19.  
8-168. ESM_MCU_ERR_CNT_REG Register  
7
6
5
4
3
2
ESM_MCU_ERR_CNT  
R-0b  
1
0
RESERVED  
R-0b  
8-132. ESM_MCU_ERR_CNT_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
4:0  
RESERVED  
R
0b  
ESM_MCU_ERR_CNT  
R
0b  
Status bits to indicate the value of the ESM_MCU Error-Counter. The  
device clears these bits when ESM_MCU_START bit is 0, or when  
the device resets the MCU.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 257  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.113 REGISTER_LOCK Register (Offset = 0xA1) [Reset = 0x00]  
REGISTER_LOCK is shown in 8-169 and described in 8-133.  
Return to the 8-19.  
8-169. REGISTER_LOCK Register  
7
6
5
4
3
2
1
0
RESERVED  
REGISTER_LO  
CK_STATUS  
R/W-0b  
R/W-0b  
8-133. REGISTER_LOCK Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7:1  
0
R/W  
0b  
REGISTER_LOCK_STAT R/W  
US  
0b  
Unlocking registers: write 0x9B to this address.  
Locking registers: write anything else than 0x9B to this address.  
Written 8 bit data to this address is not stored, only lock status can  
be read.  
REGISTER_LOCK_STATUS bit shows the lock status:  
0b = Registers are unlocked  
1b = Registers are locked  
Copyright © 2022 Texas Instruments Incorporated  
258 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.114 CUSTOMER_NVM_ID_REG Register (Offset = 0xA7) [Reset = 0x00]  
CUSTOMER_NVM_ID_REG is shown in 8-170 and described in 8-134.  
Return to the 8-19.  
8-170. CUSTOMER_NVM_ID_REG Register  
7
6
5
4
3
2
1
0
CUSTOMER_NVM_ID  
R/W-0b  
8-134. CUSTOMER_NVM_ID_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
CUSTOMER_NVM_ID  
R/W  
0b  
Initiate a soft reboot by triggering a PFSM orderly shutdown.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 259  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.115 VMON_CONF Register (Offset = 0xA8) [Reset = 0x00]  
VMON_CONF is shown in 8-171 and described in 8-135.  
Return to the 8-19.  
8-171. VMON_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
VMON2_SLEW_RATE  
R/W-0b  
VMON1_SLEW_RATE  
R/W-0b  
8-135. VMON_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
VMON2_SLEW_RATE  
0b  
Voltage slew-rate for VMON2 pin. Setting is used to calculate OV/UV  
monitoring delays.  
0b = 33 mV/μs  
1b = 20 mV/μs  
10b = 10 mV/μs  
11b = 5.0 mV/μs  
100b = 2.5 mV/μs  
101b = 1.3 mV/μs  
110b = 0.63 mV/μs  
111b = 0.31 mV/μs  
2:0  
VMON1_SLEW_RATE  
R/W  
0b  
Voltage slew-rate for VMON1 pin. Setting is used to calculate OV/UV  
monitoring delays.  
0b = 33 mV/μs  
1b = 20 mV/μs  
10b = 10 mV/μs  
11b = 5.0 mV/μs  
100b = 2.5 mV/μs  
101b = 1.3 mV/μs  
110b = 0.63 mV/μs  
111b = 0.31 mV/μs  
Copyright © 2022 Texas Instruments Incorporated  
260 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.116 INT_SPI_STATUS Register (Offset = 0xA9) [Reset = 0x00]  
INT_SPI_STATUS is shown in 8-172 and described in 8-136.  
Return to the 8-19.  
8-172. INT_SPI_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
COMM_ADR_E COMM_CRC_E COMM_FRM_E ESM_MCU_PIN TWARN_SWIN  
WD_SWINT  
EN_DRV_STAT  
RR_SWINT  
RR_SWINT  
RR_SWINT  
_SWINT  
T
R/W-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R-0b  
8-136. INT_SPI_STATUS Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0b  
6
COMM_ADR_ERR_SWIN R/W1C  
T
0b  
Latched status bit indicating that SPI (or I2C1) write to non-existing,  
protected or read-only register address, or read from non-existing  
register address has been detected.  
CRC on I2C/SPI must be enabled (I2C1_SPI_CRC_EN=1 - NVM  
default bit) is required to generate the error-indication with this status  
bit  
This interrupt bit cannot be masked with the  
COMM_ADR_ERR_MASK bit  
Write 1 to clear interrupt.  
5
COMM_CRC_ERR_SWIN R/W1C  
T
0b  
Latched status bit indicating that SPI (or I2C1) CRC error has been  
detected.  
CRC on I2C/SPI must be enabled (I2C1_SPI_CRC_EN=1 - NVM  
default bit) is required to generate the error-indication with this status  
bit  
This interrupt bit cannot be masked with the  
COMM_CRC_ERR_MASK bit  
Write 1 to clear interrupt.  
4
3
2
COMM_FRM_ERR_SWIN R/W1C  
T
0b  
0b  
0b  
Latched status bit indicating that SPI frame error has been detected.  
Write 1 to clear interrupt.  
ESM_MCU_PIN_SWINT R/W1C  
Latched status bit indicating that MCU ESM fault has been detected.  
Write 1 to clear interrupt.  
TWARN_SWINT  
R/W1C  
Latched status bit indicating that the die junction temperature has  
exceeded the thermal warning level. The actual status of the thermal  
warning is indicated by TWARN_STAT bit in STAT_MISC register.  
Write 1 to clear interrupt.  
1
0
WD_SWINT  
R/W1C  
R
0b  
0b  
Latched status bit indicating that Watchdog error has been detected.  
This bit is cleared by writing 1 when WD_RST_INT, WD_FAIL_INT  
and WD_LONGWIN_TIMEOUT_INT are cleared.  
EN_DRV_STAT  
State of EN_DRV pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 261  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.117 SOFT_REBOOT_REG Register (Offset = 0xAB) [Reset = 0x00]  
SOFT_REBOOT_REG is shown in 8-173 and described in 8-137.  
Return to the 8-19.  
8-173. SOFT_REBOOT_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
SOFT_REBOO  
T
R/W-0b  
R/WSelfClrF-0b  
8-137. SOFT_REBOOT_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:1  
0
RESERVED  
R/W  
0b  
SOFT_REBOOT  
R/WSelfClrF 0b  
Write 1 to request a soft reboot.  
This bit is automatically cleared.  
Copyright © 2022 Texas Instruments Incorporated  
262 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.118 STARTUP_CTRL Register (Offset = 0xC3) [Reset = 0x00]  
STARTUP_CTRL is shown in 8-174 and described in 8-138.  
Return to the 8-19.  
8-174. STARTUP_CTRL Register  
7
6
5
4
3
2
1
0
FIRST_START  
UP_DONE  
STARTUP_DEST  
FAST_BIST  
LP_STANDBY_ SKIP_LP_STAN  
RESERVED  
SEL  
DBY_EE_REA  
D
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-138. STARTUP_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FIRST_STARTUP_DONE R/W  
0b  
Control for register reset and EEPROM read at INIT state.  
See "Register Resets and EEPROM read at INIT state" chapter for  
operation.  
Note that SKIP_LP_STANDBY_EE_READ affects the operation  
when transitioning from LP_STANDBY to INIT.  
0b = Conf_registers are reset and default values are loaded from  
EEPROM  
1b = Conf_registers stay unchanged  
6:5  
STARTUP_DEST  
R/W  
0b  
FSM start-up destination select.  
0b = STANDBY/LP_STANDBY based on LP_STANDBY_SEL  
1b = Reserved  
10b = MCU_ONLY  
11b = ACTIVE  
4
3
2
FAST_BIST  
R/W  
R/W  
0b  
0b  
0b  
FAST_BIST  
0b = Logic and analog BIST is run at BOOT BIST.  
1b = Only analog BIST is run at BOOT BIST.  
LP_STANDBY_SEL  
Control to enter low power standby state:  
0b = Normal standby state is used.  
1b = Low power standby state is used as standby state.  
SKIP_LP_STANDBY_EE_ R/W  
READ  
Control for regmap and regmap_rtc register resets and EEPROM  
read:  
0b = register reset and EEPROM read are controlled by  
FIRST_STARTUP_DONE bit  
1b = registers stay unchanged (no reset or EEPROM read)  
1:0  
RESERVED  
R/W  
0b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 263  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.119 SCRATCH_PAD_REG_1 Register (Offset = 0xC9) [Reset = 0x00]  
SCRATCH_PAD_REG_1 is shown in 8-175 and described in 8-139.  
Return to the 8-19.  
8-175. SCRATCH_PAD_REG_1 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_1  
R/W-0b  
8-139. SCRATCH_PAD_REG_1 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_1  
R/W  
0b  
Scratchpad for temporary data storage. The register is reset when  
VINT is disabled. The data is maintained when VINT regulator is  
enabled, for example during STANDBY state and not during  
LP_STANDBY state.  
Copyright © 2022 Texas Instruments Incorporated  
264 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.120 SCRATCH_PAD_REG_2 Register (Offset = 0xCA) [Reset = 0x00]  
SCRATCH_PAD_REG_2 is shown in 8-176 and described in 8-140.  
Return to the 8-19.  
8-176. SCRATCH_PAD_REG_2 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_2  
R/W-0b  
8-140. SCRATCH_PAD_REG_2 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_2  
R/W  
0b  
Scratchpad for temporary data storage. The register is reset when  
VINT is disabled. The data is maintained when VINT regulator is  
enabled, for example during STANDBY state and not during  
LP_STANDBY state.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 265  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.121 SCRATCH_PAD_REG_3 Register (Offset = 0xCB) [Reset = 0x00]  
SCRATCH_PAD_REG_3 is shown in 8-177 and described in 8-141.  
Return to the 8-19.  
8-177. SCRATCH_PAD_REG_3 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_3  
R/W-0b  
8-141. SCRATCH_PAD_REG_3 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_3  
R/W  
0b  
Scratchpad for temporary data storage. The register is reset when  
VINT is disabled. The data is maintained when VINT regulator is  
enabled, for example during STANDBY state and not during  
LP_STANDBY state.  
Copyright © 2022 Texas Instruments Incorporated  
266 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.122 SCRATCH_PAD_REG_4 Register (Offset = 0xCC) [Reset = 0x00]  
SCRATCH_PAD_REG_4 is shown in 8-178 and described in 8-142.  
Return to the 8-19.  
8-178. SCRATCH_PAD_REG_4 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_4  
R/W-0b  
8-142. SCRATCH_PAD_REG_4 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_4  
R/W  
0b  
Scratchpad for temporary data storage. The register is reset when  
VINT is disabled. The data is maintained when VINT regulator is  
enabled, for example during STANDBY state and not during  
LP_STANDBY state.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 267  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.123 PFSM_DELAY_REG_1 Register (Offset = 0xCD) [Reset = 0x00]  
PFSM_DELAY_REG_1 is shown in 8-179 and described in 8-143.  
Return to the 8-19.  
8-179. PFSM_DELAY_REG_1 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY1  
R/W-0b  
8-143. PFSM_DELAY_REG_1 Register Field Descriptions  
Bit  
7:0  
Field  
PFSM_DELAY1  
Type  
Reset  
Description  
R/W  
0b  
Generic delay1 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
268 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.124 PFSM_DELAY_REG_2 Register (Offset = 0xCE) [Reset = 0x00]  
PFSM_DELAY_REG_2 is shown in 8-180 and described in 8-144.  
Return to the 8-19.  
8-180. PFSM_DELAY_REG_2 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY2  
R/W-0b  
8-144. PFSM_DELAY_REG_2 Register Field Descriptions  
Bit  
7:0  
Field  
PFSM_DELAY2  
Type  
Reset  
Description  
R/W  
0b  
Generic delay2 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 269  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.125 PFSM_DELAY_REG_3 Register (Offset = 0xCF) [Reset = 0x00]  
PFSM_DELAY_REG_3 is shown in 8-181 and described in 8-145.  
Return to the 8-19.  
8-181. PFSM_DELAY_REG_3 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY3  
R/W-0b  
8-145. PFSM_DELAY_REG_3 Register Field Descriptions  
Bit  
7:0  
Field  
PFSM_DELAY3  
Type  
Reset  
Description  
R/W  
0b  
Generic delay3 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
270 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.126 PFSM_DELAY_REG_4 Register (Offset = 0xD0) [Reset = 0x00]  
PFSM_DELAY_REG_4 is shown in 8-182 and described in 8-146.  
Return to the 8-19.  
8-182. PFSM_DELAY_REG_4 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY4  
R/W-0b  
8-146. PFSM_DELAY_REG_4 Register Field Descriptions  
Bit  
7:0  
Field  
PFSM_DELAY4  
Type  
Reset  
Description  
R/W  
0b  
Generic delay4 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 271  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.127 WD_ANSWER_REG Register (Offset = 0x401) [Reset = 0x00]  
WD_ANSWER_REG is shown in 8-183 and described in 8-147.  
Return to the 8-19.  
8-183. WD_ANSWER_REG Register  
7
6
5
4
3
2
1
0
WD_ANSWER  
R/W-0b  
8-147. WD_ANSWER_REG Register Field Descriptions  
Bit  
7:0  
Field  
WD_ANSWER  
Type  
Reset  
Description  
R/W  
0b  
MCU answer byte. The MCU must write the expected reference  
Answer-x into this register.  
Each watchdog question requires four answer bytes:  
- Three answer bytes (Answer-3, Answer-2, Answer-1) must be  
written in Window-1.  
- The fourth (final) answer-byte (Answer-0) must be written in  
Window-2.  
The number of written answer bytes is tracked with the  
WD_ANSW_CNT counter in the WD_QUESTION_ANSW_CNT  
register.  
These bits only apply for Watchdog in Q&A mode.  
Copyright © 2022 Texas Instruments Incorporated  
272 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.128 WD_QUESTION_ANSW_CNT Register (Offset = 0x402) [Reset = 0x3C]  
WD_QUESTION_ANSW_CNT is shown in 8-184 and described in 8-148.  
Return to the 8-19.  
8-184. WD_QUESTION_ANSW_CNT Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
WD_ANSW_CNT  
R-11b  
WD_QUESTION  
R-1100b  
8-148. WD_QUESTION_ANSW_CNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5:4  
RESERVED  
R
0b  
WD_ANSW_CNT  
R
11b  
Current, received watchdog-answer count state.  
These bits only apply for Watchdog in Q&A mode.  
3:0  
WD_QUESTION  
R
1100b  
Watchdog question.  
The MCU must read (or calculate ) the current watchdog question  
value to generate correct answers.  
These bits only apply for Watchdog in Q&A mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 273  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.129 WD_WIN1_CFG Register (Offset = 0x403) [Reset = 0x7F]  
WD_WIN1_CFG is shown in 8-185 and described in 8-149.  
Return to the 8-19.  
8-185. WD_WIN1_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
WD_WIN1  
R/W-1111111b  
8-149. WD_WIN1_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
WD_WIN1  
0b  
6:0  
1111111b  
These bits are for programming the duration of Watchdog Window-1  
(see Watchdog chapter).  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2022 Texas Instruments Incorporated  
274 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.130 WD_WIN2_CFG Register (Offset = 0x404) [Reset = 0x7F]  
WD_WIN2_CFG is shown in 8-186 and described in 8-150.  
Return to the 8-19.  
8-186. WD_WIN2_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
WD_WIN2  
R/W-1111111b  
8-150. WD_WIN2_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
WD_WIN2  
0b  
6:0  
1111111b  
These bits are for programming the duration of Watchdog Window-2  
(see Watchdog chapter).  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 275  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.131 WD_LONGWIN_CFG Register (Offset = 0x405) [Reset = 0xFF]  
WD_LONGWIN_CFG is shown in 8-187 and described in 8-151.  
Return to the 8-19.  
8-187. WD_LONGWIN_CFG Register  
7
6
5
4
3
2
1
0
WD_LONGWIN  
R/W-11111111b  
8-151. WD_LONGWIN_CFG Register Field Descriptions  
Bit  
7:0  
Field  
WD_LONGWIN  
Type  
Reset  
Description  
R/W  
11111111b  
These bits are for programming the duration of Watchdog Long  
Window (see Watchdog chapter).  
These bits can be only be written when the watchdog is in the Long  
Window.  
(Default from NVM memory)  
Copyright © 2022 Texas Instruments Incorporated  
276 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.132 WD_MODE_REG Register (Offset = 0x406) [Reset = 0x02]  
WD_MODE_REG is shown in 8-188 and described in 8-152.  
Return to the 8-19.  
8-188. WD_MODE_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
WD_PWRHOL WD_MODE_SE WD_RETURN_  
D
LECT  
LONGWIN  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
8-152. WD_MODE_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:3  
2
RESERVED  
0b  
WD_PWRHOLD  
0b  
Watchdog hold on.  
MCU can write this bit to 1.  
MCU needs to clear this bit to get out of the Long Window:  
0b = watchdog goes out of the Long Window and starts the first  
watchdog-sequence when the configured Long Window time-interval  
elapses  
1b = watchdog stays in Long Window  
1
0
WD_MODE_SELECT  
R/W  
1b  
0b  
Watchdog mode-select:  
MCU can set this to required value only when watchdog is in the  
Long Window.  
0b = Trigger Mode  
1b = Q&A mode.  
WD_RETURN_LONGWIN R/W  
MCU can set this bit to put the watchdog from operating back to the  
Long Window (see Watchdog chapter):  
0b = Watchdog continues operating  
1b = Watchdog returns to Long-Window after completion of the  
current watchdog-sequence.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 277  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.133 WD_QA_CFG Register (Offset = 0x407) [Reset = 0x0A]  
WD_QA_CFG is shown in 8-189 and described in 8-153.  
Return to the 8-19.  
8-189. WD_QA_CFG Register  
7
6
5
4
3
2
1
0
WD_QA_FDBK  
R/W-0b  
WD_QA_LFSR  
R/W-0b  
WD_QUESTION_SEED  
R/W-1010b  
8-153. WD_QA_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
WD_QA_FDBK  
R/W  
0b  
Feedback configuration bits for the watchdog question. These bits  
control the sequence of the generated questions and respective  
reference answers (see Watchdog chapter).  
These bits are only used for the watchdog in Q&A mode.  
These bits can be only be written when the watchdog is in the Long  
Window.  
5:4  
3:0  
WD_QA_LFSR  
R/W  
R/W  
0b  
LFSR-equation configuration bits for the watchdog question (see  
Watchdog chapter).  
These bits are only used for the watchdog in Q&A mode.  
These bits can be only be written when the watchdog is in the Long  
Window.  
WD_QUESTION_SEED  
1010b  
The watchdog question-seed value (see Watchdog chapter).  
The MCU updates the question-seed value to generate a set of new  
questions.  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2022 Texas Instruments Incorporated  
278 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.134 WD_ERR_STATUS Register (Offset = 0x408) [Reset = 0x00]  
WD_ERR_STATUS is shown in 8-190 and described in 8-154.  
Return to the 8-19.  
8-190. WD_ERR_STATUS Register  
7
6
5
4
3
2
1
0
WD_RST_INT WD_FAIL_INT WD_ANSW_ER WD_SEQ_ERR WD_ANSW_EA WD_TRIG_EAR WD_TIMEOUT WD_LONGWIN  
R
RLY  
LY  
_TIMEOUT_INT  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
8-154. WD_ERR_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WD_RST_INT  
R/W1C  
0b  
Latched status bit to indicate that the device went through warm  
reset due to WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0]).  
Write 1 to clear.  
6
5
WD_FAIL_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit to indicate that the watchdog has cleared the  
ENABLE_DRV bit due to WD_FAIL_CNT[3:0] > WD_FAIL_TH[2:0].  
Write 1 to clear.  
WD_ANSW_ERR  
Latched status bit to indicate that the watchdog has detected an  
incorrect answer-byte.  
Write 1 to clear.  
This bit only applies for Watchdog in Q&A mode.  
4
3
2
WD_SEQ_ERR  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
Latched status bit to indicate that the watchdog has detected an  
incorrect sequence of the answer-bytes.  
Write 1 to clear.  
This bit only applies for Watchdog in Q&A mode.  
WD_ANSW_EARLY  
WD_TRIG_EARLY  
WD_TIMEOUT  
Latched status bit to indicate that the watchdog has received the final  
answer-byte in Window-1.  
Write 1 to clear.  
This bit only applies for Watchdog in Q&A mode.  
Latched status bit to indicate that the watchdog has received the  
watchdog-trigger in Window-1.  
Write 1 to clear.  
This bit only applies for Watchdog in Trigger mode.  
1
0
0b  
0b  
Latched status bit to indicate that the watchdog has detected a time-  
out event in the started watchdog sequence.  
Write 1 to clear.  
WD_LONGWIN_TIMEOU R/W1C  
T_INT  
Latched status bit to indicate that device went through warm reset  
due to elapse of Long Window time-interval.  
Write 1 to clear interrupt.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 279  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.135 WD_THR_CFG Register (Offset = 0x409) [Reset = 0xFF]  
WD_THR_CFG is shown in 8-191 and described in 8-155.  
Return to the 8-19.  
8-191. WD_THR_CFG Register  
7
6
5
4
3
2
1
0
WD_RST_EN  
R/W-1b  
WD_EN  
R/W-1b  
WD_FAIL_TH  
R/W-111b  
WD_RST_TH  
R/W-111b  
8-155. WD_THR_CFG Register Field Descriptions  
Bit  
Field  
WD_RST_EN  
Type  
Reset  
Description  
7
R/W  
1b  
Watchdog reset configuration bit:  
This bit can be only be written when the watchdog is in the Long  
Window.  
0b = No warm reset when WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0]  
+ WD_RST_TH[2:0])  
1b = Warm reset when WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0]).  
6
WD_EN  
R/W  
1b  
Watchdog enable configuration bit:  
This bit can be only be written when the watchdog is in the Long  
Window.  
(Default from NVM memory)  
0b = watchdog disabled. MCU can set ENABLE_DRV bit to 1 if all  
other interrupt status bits are cleared  
1b = watchdog enabled. MCU can set ENABLE_DRV bit to 1 if:  
- watchdog is out of the Long Window  
- WD_FAIL_CNT[3:0] =< WD_FAIL_TH[2:0]  
- WD_FIRST_OK=1  
- all other interrupt status bits are cleared.  
5:3  
2:0  
WD_FAIL_TH  
WD_RST_TH  
R/W  
R/W  
111b  
111b  
Configuration bits for the 1st threshold of the watchdog fail counter:  
Device clears ENABLE_DRV bit when WD_FAIL_CNT[3:0] >  
WD_FAIL_TH[2:0].  
These bits can be only be written when the watchdog is in the Long  
Window.  
Configuration bits for the 2nd threshold of the watchdog fail counter:  
Device goes through warm reset when WD_FAIL_CNT[3:0] >  
(WD_FAIL_TH[2:0] + WD_RST_TH[2:0]).  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2022 Texas Instruments Incorporated  
280 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
8.16.1.136 WD_FAIL_CNT_REG Register (Offset = 0x40A) [Reset = 0x20]  
WD_FAIL_CNT_REG is shown in 8-192 and described in 8-156.  
Return to the 8-19.  
8-192. WD_FAIL_CNT_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
WD_BAD_EVE WD_FIRST_OK RESERVED  
NT  
WD_FAIL_CNT  
R-0b  
R-0b  
R-0b  
R-1b  
R-0b  
8-156. WD_FAIL_CNT_REG Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R
0b  
6
WD_BAD_EVENT  
R
0b  
Status bit to indicate that the watchdog has detected a bad event in  
the current watchdog sequence.  
The device clears this bit at the end of the watchdog sequence.  
5
WD_FIRST_OK  
R
1b  
Status bit to indicate that the watchdog has detected a good event.  
The device clears this bit when the watchdog goes to the Long  
Window.  
4
RESERVED  
R
R
0b  
0b  
3:0  
WD_FAIL_CNT  
Status bits to indicate the value of the Watchdog Fail Counter.  
The device clears these bits when the watchdog goes to the Long  
Window.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 281  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The device is a multi-phase step-down converter with four switcher cores, that can be configured to:  
Single output four-phase regulator  
Three-phase and one-phase regulators  
Two-phase and two one-phase regulators  
Four one-phase regulators or  
Two 2-phase regulators  
9.2 Typical Applications  
The five possible configurations are shown in the following figures.  
VIN  
L1  
L2  
L3  
L4  
PVIN_B1...4  
SW_B1  
SW_B2  
SW_B3  
SW_B4  
CIN1 CIN2 CIN3 CIN4  
VOUT1  
COUT1 COUT2 COUT3 COUT4  
LOAD  
VCCA  
VIO  
VIO  
CVCCA  
CPOL1  
CVIO  
SDA_I2C1/  
SDI_SPI  
FB_B1  
FB_B2  
SCL_I2C1/  
SCK_SPI  
VOUT_LDO  
CLDOVINT  
nINT  
GPIO1...10  
FB_B3  
FB_B4  
AGNDs  
PGND  
Copyright © 2022, Texas Instruments Incorporated  
9-1. 4-Phase Configuration  
Copyright © 2022 Texas Instruments Incorporated  
282 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
VIN  
L1  
L2  
L3  
PVIN_B1...4  
SW_B1  
SW_B2  
SW_B3  
CIN1 CIN2 CIN3 CIN4  
VOUT1  
COUT1 COUT2 COUT3  
LOAD  
VCCA  
VIO  
VIO  
CVCCA  
CPOL1  
CVIO  
SDA_I2C1/  
SDI_SPI  
FB_B1  
FB_B2  
SCL_I2C1/  
SCK_SPI  
L4  
VOUT4  
SW_B4  
FB_B4  
LOAD  
nINT  
GPIO1...10  
CPOL4  
COUT4  
VOUT_LDO  
CLDOVINT  
FB_B3  
AGNDs  
PGND  
Copyright © 2022, Texas Instruments Incorporated  
9-2. 3-Phase and 1-Phase Configuration  
VIN  
L1  
PVIN_B1...4  
SW_B1  
SW_B2  
VOUT1  
CIN1 CIN2 CIN3 CIN4  
L2  
LOAD  
LOAD  
COUT1 COUT2  
CPOL1  
VCCA  
VIO  
VIO  
FB_B1  
FB_B2  
CVCCA  
CVIO  
L3  
VOUT3  
SW_B3  
FB_B3  
SDA_I2C1/  
SDI_SPI  
COUT3  
L4  
CPOL3  
SCL_I2C1/  
SCK_SPI  
VOUT4  
SW_B4  
FB_B4  
nINT  
GPIO1...10  
LOAD  
COUT4  
CPOL4  
VOUT_LDO  
CLDOVINT  
AGNDs  
PGND  
Copyright © 2022, Texas Instruments Incorporated  
9-3. 2-Phase and Dual 1-Phase Configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 283  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
VOUT1  
VIN  
L1  
PVIN_B1...4  
SW_B1  
FB_B1  
LOAD  
CIN1 CIN2 CIN3 CIN4  
COUT1  
L2  
CPOL1  
VCCA  
VIO  
VOUT2  
VIO  
CVCCA  
SW_B2  
FB_B2  
LOAD  
CVIO  
COUT2  
L3  
CPOL2  
SDA_I2C1/  
SDI_SPI  
VOUT3  
SCL_I2C1/  
SCK_SPI  
SW_B3  
FB_B3  
LOAD  
COUT3  
L4  
CPOL3  
nINT  
GPIO1...10  
VOUT4  
SW_B4  
FB_B4  
LOAD  
COUT4  
CPOL4  
VOUT_LDO  
CLDOVINT  
AGNDs  
PGND  
Copyright © 2022, Texas Instruments Incorporated  
9-4. Four 1-Phase configuration  
VIN  
L1  
PVIN_B1...4  
SW_B1  
SW_B2  
VOUT1  
COUT1 COUT2  
CIN1 CIN2 CIN3 CIN4  
L2  
LOAD  
CPOL1  
VCCA  
VIO  
VIO  
FB_B1  
FB_B2  
CVCCA  
CVIO  
L3  
L4  
SDA_I2C1/  
SDI_SPI  
SW_B3  
SW_B4  
VOUT3  
COUT3 COUT4  
LOAD  
SCL_I2C1/  
SCK_SPI  
CPOL3  
FB_B3  
FB_B4  
nINT  
GPIO1...10  
VOUT_LDO  
CLDOVINT  
AGNDs  
PGND  
Copyright © 2022, Texas Instruments Incorporated  
9-5. Dual 2-Phase configuration  
Copyright © 2022 Texas Instruments Incorporated  
284 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
9.2.1.1 Buck Inductor Selection  
The buck inductors L1, L2, L3, and L4 are shown in the 9.2. The inductance and DCR of the inductor affects  
the control loop of the buck regulator. TI recommends using inductors similar to those listed in 9-2. Pay  
attention to the saturation current and temperature rise current of the inductor. Check that the saturation current  
is higher than the peak current limit and the temperature rise current is higher than the maximum expected rms  
output current. DC resistance of the inductor must be minimized for good efficiency at high-current condition.  
The inductor AC loss (resistance) also affects conversion efficiency. Higher Q factor at switching frequency  
usually gives better efficiency at light load to middle load. Shielded inductors are preferred as they radiate less  
noise.  
Inductors must be chosen based on the phase configuration, switching frequency, and output voltage. See table  
below for selecting inductance.  
9-1. Inductor Selection Table  
Phase  
f SW (MHz)  
2.2  
VOUT (V)  
Inductance (nH)  
470  
220  
1000  
470  
220  
470  
Multiphase  
0.3 - 1.9  
4.4  
0.3 - 3.34  
0.5 - 0.7 (DDR Termination)  
0.3 - 1.9  
2.2  
4.4  
Single Phase  
1.9 - 3.34  
Recommended inductors based on these requirements are shown below.  
9-2. Recommended Inductors  
DCR typical  
(maximum)  
(m)  
RATED DC CURRENT,  
ISAT typical (maximum) / ITEMP  
typical (maximum) (A)  
DIMENSIONS  
L × W × H (mm)  
MANUFACTURER  
PART NUMBER  
VALUE  
TDK  
Murata  
TDK  
TFM322512ALMA1R0 1.0 µH (20%)  
MTAA  
3.2 × 2.5 × 1.2  
5.1 (4.6) / 4.4 (4.0)  
30 (37)  
DFE322520FD-1R0M= 1.0 µH (20%)  
P2  
3.2 × 2.5 × 2.0  
3.2 × 2.5 × 1.2  
2.5 × 2.0 × 1.2  
2.0 × 1.6 × 1.0  
- (22)  
(7.5) / (4.1)  
7.6 (6.9) / 6.1 (5.3)  
6.5 (5.8) / 5.6 (4.9)  
5.0 (4.5) / 4.5 (3.9)  
TFM322512ALMAR47 0.47 µH (20%)  
MTAA  
16 (21)  
19 (24)  
28 (39)  
TDK  
TFM252012ALMAR47 0.47 µH (20%)  
MTAA  
TDK  
TFM201610ALMAR47 0.47 µH (20%)  
MTAA  
(5.2) / (4)(1)  
(5.1) / (4.5)  
10 (9.5) / 9.5 (7.3)  
Murata  
Murata  
TDK  
DFE252012PD-R47M 0.47 µH (20%)  
DFE2HCAHR47MJ0 0.47 µH (20%)  
2.5 × 2.0 × 1.2  
2.5 × 2.0 × 1.2  
3.2 × 2.5 × 1.2  
- (27)  
19 (25)  
6 (11)  
TFM322512ALMAR22 0.22 µH (20%)  
MTAA  
TDK  
TDK  
TFM252012ALMA  
0.22 µH (20%)  
2.5 × 2.0 × 1.2  
2.0 × 1.6 × 1.0  
9 (8) / 8.5 (6.7)  
8 (13)  
TFM201610ALMAR24 0.24 µH (20%)  
MTAA  
6.5 (5.9) / 6.2 (5.0)  
15 (23)  
Murata  
DFE2MCAHR24MJ0 0.24 µH (20%)  
2.5 × 2.0 × 1.2  
(5.0) / (4.2)  
(25)  
(1) Operating temperature range is up to 125°C including self temperature rise.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 285  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
9.2.1.2 Buck Input Capacitor Selection  
The buck input capacitors CIN1, CIN2, CIN3, and CIN4 are shown in the 9.2. A ceramic input bypass capacitor of  
10 μF is required for each phase of the regulator. Place the input capacitor as close as possible to the PVIN_Bx  
pin and PGND pin of the device. A larger value or higher voltage rating improves the input voltage filtering. Use  
X7R type of capacitors, not Y5V or F. DC bias characteristics capacitors must be considered, minimum effective  
input capacitance to ensure good performance is 3 μF per buck input at maximum input voltage including  
tolerances and ambient temperature range. See 9-3.  
The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and reduces  
voltage ripple imposed on the input power source. A ceramic capacitor's low ESR provides the best noise  
filtering of the input voltage spikes due to this rapidly changing current. Select an input filter capacitor with  
sufficient ripple current rating. In addition ferrite can be used in front of the input capacitor to reduce the EMI.  
For optimal performance, additional 1 μF 3-terminal input capacitors are required. Buck1 and buck2 can share  
one 3-T capacitor and buck3 and buck4 can share one 3-T capacitor. See 9-3 .  
9-3. Recommended Input Capacitors (X7R Dielectric)  
DIMENSIONS L × W × H  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
VOLTAGE RATING  
(mm)  
Murata  
TDK  
GCM21BR71A106KE22  
10 µF (10%)  
10 µF (10%)  
0805  
0805  
2 × 1.25 × 1.25  
2 × 1.25 × 1.25  
10 V  
10 V  
CGA4J1X7S1C106K125A  
B
Murata  
TDK  
NFM18HC105C1C3 (3-T)  
YFF18AC0J105M (3-T)  
1 µF (20%)  
1 µF (20%)  
0603  
0603  
1.6 × 0.8 × 0.7  
1.6 × 0.8 × 0.6  
16 V  
6.3 V  
9.2.1.3 Buck Output Capacitor Selection  
The buck output capacitors COUT1, COUT2, COUT3, and COUT4 are shown in 9.2. Use ceramic local output  
capacitors, X7R or X7T types; do not use Y5V or F. DC bias voltage characteristics of ceramic capacitors must  
be considered. The output filter capacitor smooths out current flow from the inductor to the load, helps maintain a  
steady output voltage during transient load changes and reduces output voltage ripple. These capacitors must  
be selected with sufficient capacitance and sufficiently low ESR and ESL to perform these functions. Minimum  
effective output capacitance (including the DC voltage roll-off, tolerances, aging and temperature effects) is  
defined in Electrical Characteristics table for different buck configurations.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value used for  
selection process is at the switching frequency of the part. See 9-4.  
POL capacitors (CPOL1, CPOL2, CPOL3, CPOL4) can be used to improve load transient performance and to  
decrease the ripple voltage. A higher output capacitance improves the load step behavior and reduces the  
output voltage ripple as well as decreases the PFM switching frequency. Note that the output capacitor may be  
the limiting factor in the output voltage ramp and the maximum total output capacitance listed in electrical  
characteristics must not be exceeded. At shutdown the output voltage is discharged to 0.15 V level using forced-  
PWM operation. The discharging of the output capacitor can increase the input voltage if the load current is  
small and the output capacitor is large. Below 0.15 V level the output capacitor is discharged by the internal  
discharge resistor and with large capacitor more time is required to settle VOUT down as a consequence of the  
increased time constant.  
Copyright © 2022 Texas Instruments Incorporated  
286 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
9-4. Recommended Output Capacitors (X7R or X7T Dielectric)  
DIMENSIONS L × W × H  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
VOLTAGE RATING  
(mm)  
Murata  
TDK  
GCM32EC71A476KE02  
47 µF (10%)  
47 µF (20%)  
1210  
1210  
10 V  
10 V  
CGA6P1X7S1A476M250A  
C
Murata  
TDK  
GCM32ER70J476ME19  
47 µF (20%)  
47 µF (20%)  
1210  
1210  
3.2 × 2.5 × 2.5  
3.2 × 1.6 × 1.6  
6.3 V  
6.3 V  
CGA6P1X7S0J476M250A  
C
TDK  
Murata  
TDK  
CGA5L1X7T0G476M  
47 µF (20%)  
22 µF (10%)  
22 µF (20%)  
1206  
1206  
1206  
4 V  
GCM31CR71A226KE02  
10 V  
10 V  
CGA5L1X7S1A226M160A  
C
Murata  
TDK  
GCM21BD70J226ME36  
CGA4J1X7T0J226M  
22 µF (20%)  
22 µF (20%)  
10 µF (20%)  
0805  
0805  
0603  
2.0 × 1.25 × 1.25  
1.6 × 0.8 × 1.25  
6.3 V  
6.3 V  
4 V  
Murata  
NFM18HC106D0G (3-T)  
Every buck output requires a local output capacitor to form the capacitive part of the LC output filter. These local  
output capacitors must be placed as close to the inductor as possible to minimize electromagnetic emissions.  
See 11.1 for more information about component placement.  
To achieve better ripple and transient performance, additional capacitors are recommended to compensate the  
parasitic impedances due to board routing and provide faster transient response to a load step. These caps are  
placed close to the point of load (POL). POL capacitor usage varies based on the application and generally  
follows the SoC or FPGA input capacitor requirements. Low ESL 3-terminal caps are recommended, as their  
high performance can help reduce the total number of capacitors required which simplifies board layout design  
and saves board area. They also help to reduce the total cost of the solution.  
9-6 is an example power distribution network (PDN) of local and POL caps at the output of a buck for optimal  
ripple and transient performance. 9-5 lists the local and POL capacitors used to validate the buck transient  
and ripple performance specified in the parametric table. 9-6 lists the actual capacitor part numbers used for  
the different use case tests. It is recommended to simulate and validate that the capacitor network chosen for a  
particular design meets the desired requirements as these are provided as guidelines.  
9-6. Buck Regulators Power Distribution Network (PDN)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 287  
Product Folder Links: LP8764-Q1  
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
9-5. Local and POL Capacitors and Inductors used for Buck Use Case Simulations and Validations  
Use  
Case #  
Use Case Test  
Condition  
Phase  
Config.  
CL per  
phase  
RPCB per LPCB per  
phase1 phase2  
Fsw  
L
CPOL1  
CPOL2  
1
2
4.4 MHz MP Min C 4.4 MHz  
4.4 MHz MP Max C 4.4 MHz  
2.2 MHz MP Min C 2.2 MHz  
2.2 MHz MP Max C 2.2 MHz  
1 - 4 PH  
1 - 4 PH  
1 - 4 PH  
1 - 4 PH  
1 PH  
220 nH  
220 nH  
470 nH  
470 nH  
470 nH  
220 nH  
220 nH  
470 nH  
470 nH  
1000 nH  
1000 nH  
1000 nH  
1000 nH  
47 µF × 1  
47 µF × 4  
47 µF × 3  
47 µF × 3  
22 µF × 1  
22 µF × 1  
47 µF × 1  
47 µF × 1  
47 µF × 2  
47 µF × 3  
100 µF × 4  
47 µF × 3  
47 µF × 3  
2.5 nH  
2.5 nH  
2.5 nH  
2.5 nH  
6 nH  
10 µF × 4  
10 µF × 2  
10 µF × 4  
10 µF × 4  
10 µF × 2  
10 µF × 2  
10 µF × 4  
10 µF × 4  
10 µF × 2  
10 µF × 2  
10 µF × 2  
10 µF × 4  
10 µF × 4  
8 mΩ  
8 mΩ  
3
8 mΩ  
4
680 µF × 1  
8 mΩ  
5
DDR VTT  
2.2 MHz  
27 mΩ  
8 mΩ  
6
4.4 MHz LC Min C 4.4 MHz  
4.4 MHz LC Max C 4.4 MHz  
4.4 MHz HV Min C 4.4 MHz  
4.4 MHz HV Max C 4.4 MHz  
2.2 MHz SP Min C 2.2 MHz  
2.2 MHz SP Max C 2.2 MHz  
1 PH  
2.5 nH  
2.5 nH  
6 nH  
7
1 PH  
8 mΩ  
8
1 PH  
27 mΩ  
27 mΩ  
4.1 mΩ  
4.1 mΩ  
4.1 mΩ  
4.1 mΩ  
9
1 PH  
6 nH  
10  
11  
12  
13  
1 PH  
1.3 nH  
1.3 nH  
1.3 nH  
1.3 nH  
1 PH  
5 Vin SP Min C  
5 Vin SP Max C  
2.2 MHz  
2.2 MHz  
1 PH  
1 PH  
680 µF x 1  
1. RPCB is the PCB wiring resistance between local and POL capacitors including both positive and negative  
paths. For multi-phase outputs the total resistance is divided by the number of phases.  
2. LPCB is the PCB wiring inductance between local and POL capacitors including both positive and negative  
paths. For multi-phase outputs the total inductance is divided by the number of phases.  
Power input and output wiring parasitic resistance and inductance must be minimized.  
9-6. Capacitor and Inductor Part Numbers in Buck Use Case Simulations and Validations  
Component  
Component  
Component Part Number  
Description  
Value  
MuRata 3-T Cap: 1.0 μF ±20% 16 V, X7S, 0603, -55°C  
to 125°C  
(1)  
CIN  
1 µF  
NFM18HC105C1C3(2)  
MuRata Cap: 22 μF±20%, 10 V, X7R, 1206, -55°C to  
125°C  
CL  
CL  
22 µF  
47 µF  
GCM31CR71A226KE02  
GCM32ER70J476ME19  
GCM32ED70G107M***  
NFM18HC106D0G(2)  
MuRata Cap: 47 µF ±20%, 6.3 V, X7R, 1210, -55°C to  
125°C  
MuRata Cap: 100 µF ±20%, 4 V, X5R, 1210, -55°C to  
125°C  
CL  
100 µF  
10 µF  
MuRata 3-T Cap: 10.0 μF ±20% 4 V, X7S, 0603, -55°C  
to 125°C  
CPOL1  
CPOL2  
L
Kemet Cap: 680 µF ±20%, 6.3 V, Tantalum, 2917, -55°C  
to 125°C  
680 µF  
220 nH  
470 nH  
1 µH  
T510X687K006ATA023  
TFM322512ALMAR22MTAA  
TFM322512ALMAR47MTAA  
TFM322512ALMA1R0MTAA  
TDK Inductor: 0.22 µH, 20 V, 13 mΩDCR, 8.5A Isat,  
6.7A Itemp, -55°C to 150°C  
TDK Inductor: 0.47 µH, 20 V, 24 mΩDCR, 5.8A Isat,  
4.9A Itemp, -55°C to 150°C  
L
TDK Inductor: 1 µH, 20 V, 30 mΩDCR, 5.1A Isat, 4.4A  
Itemp, -55°C to 150°C  
L
(1) One 3-T capacitor is shared with Buck1/Buck2 and Buck3/Buck4 inputs. Additional bulk capacitors are connected to PVIN_x power  
supplies.  
(2) Low ESL 3-terminal cap  
Copyright © 2022 Texas Instruments Incorporated  
288 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
 
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
9.2.1.4 LDO Output Capacitor Selection  
A 2.2-µF capacitor is recommended for internal LDO output. See 9-7 for the specific part number of the  
recommended output capacitors.  
9-7. Recommended LDO Output Capacitors(1)  
MANUFACTURER  
TDK  
PART NUMBER  
VALUE  
EIA size code SIZE (mm)  
CGA3E1X7S1C225M080AC  
GCM188R70J225KE22  
2.2 µF, 16 V, X7S  
2.2 µF, 16 V, X7R  
0603  
0603  
1.6 × 0.8  
1.6 × 0.8  
Murata  
(1) Component minimum and maximum tolerance values are specified in the electrical parameters section of each IP.  
9.2.1.5 VCCA Supply Filtering Components  
The VCCA input is used to power LDOVINT internal regulator and other internal functions. The VCCA input pin  
is always connected in parallel with the buck input pins (PVIN_Bx pins). See 9-8 for recommended  
components for VCCA input supply filtering.  
9-8. Recommended VCCA Supply Filtering Components  
DIMENSIONS L × W × VOLTAGE RATING  
MANUFACTURER PART NUMBER  
VALUE  
CASE SIZE  
H (mm)  
(V)  
10  
10  
Murata  
TDK  
GCM155C71A474KE36  
CGA2B3X7S1A474K050BB  
470 nF  
470 nF  
0402  
0402  
1.0 × 0.5 × 0.5  
1.0 × 0.5 × 0.5  
9-9. Recommended VIO Capacitor  
MANUFACTURE  
R
USED FOR  
VALIDATION  
COMPONENT  
PART NUMBER  
VALUE  
EIA SIZE CODE SIZE (mm)  
Capacitor  
Murata  
GCM155C71A474KE36  
0.47 µF, 10 V, 0402  
X7S  
1.0 × 0.5  
1.0 × 0.5  
Yes  
Capacitor  
TDK  
CGA2B3X7S1A474K050BB 0.47 µF, 10 V, 0402  
X7S  
9.2.2 Detailed Design Procedure  
The performance of the device depends greatly on the care taken in designing the printed circuit board (PCB).  
The use of low-inductance and low serial-resistance ceramic capacitors is strongly recommended, while correct  
grounding is crucial. Attention must be given to decoupling the power supplies. Decoupling capacitors must be  
connected close to the device and between the power and ground pins to support high peak currents being  
drawn from system power rail during turnon of the switching MOSFETs. Keep input and output traces as short as  
possible, because trace inductance, resistance, and capacitance can easily become the performance limiting  
items. The separate power pins PVIN_Bx are not connected together internally. Connect the PVIN_Bx power  
connections together outside the package using power plane construction.  
9.2.3 Voltage Scaling Precautions  
Voltage scaling behavior depends on the set slew rate and output capacitance. Therefore there may be  
limitations on maximum capacitance with certain slew rate settings. Worst case over- and undershoot also  
depends on the phase margin of the buck converter. Good phase margin mitigates the over- and undershoot.  
Reducing the output voltage slew rate reduces the slew rate current thus reducing the worst case over- and  
undershoot.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 289  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
Vin  
IOUT  
Lind  
Buck  
control  
COUT  
Iload  
9-7. Power stage  
The following equations must be met to ensure the output voltage scaling with regulator switching frequency:  
I
I
+ I  
≤ I  
(27)  
(28)  
SR_vout  
load_max  
out_max  
≤ I  
− I  
out_min  
load_min  
SR_vout  
Where I  
= SR  
C
SR_vout  
Vout out  
Vout  
SRVout  
t
Iout  
ISR_vout  
Iload  
t
9-8. Voltage ramp  
The worst case overshoot can be calculated with the following equations.  
t
I
Iout_scale_down SR_vout  
V
=
(29)  
overshoot  
2C  
out  
I
V
L
SR_vout  
out  
Where t  
=
and SR  
=
.
ind  
Iout_scale_down  
Iout_scale_down  
SR  
Iout_scale_down  
After substitutions  
Copyright © 2022 Texas Instruments Incorporated  
290 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
2
SR  
C
L
Vout out ind  
V
=
(30)  
overshoot  
2V  
out  
Vout  
Vovershoot  
t
Iout  
Iout  
ISR_vout  
tIout_scale_down  
9-9. Overshoot  
The worst case undershoot can be calculated with the following equations  
SRIout_scale_down  
t
t
I
Iout_scale_up SR_vout  
V
=
(31)  
undershoot  
2C  
out  
I
V
− V  
SR_vout  
in out  
Where t  
=
and SR  
=
.
Iout_scale_up  
Iout_scale_up  
SR  
L
ind  
Iout_scale_up  
After substitutions  
2
SR  
C
L
Vout out ind  
V
=
(32)  
undershoot  
2 V − V  
in out  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 291  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
9.2.4 Application Curves  
VIN = 3.3V, VOUT = 1.0V, TA = 25°C unless otherwise noted.  
Efficiency results for other use cases can be estimated using PEET-GUI,  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
2.2 MHz, 4-ph  
4.4 MHz, 4-ph  
2.2 MHz, 3-ph  
4.4 MHz, 3-ph  
2.2 MHz, 2-ph  
4.4 MHz, 2-ph  
2.2 MHz, 1-ph  
4.4 MHz, 1-ph  
2.2 MHz, 0.8 V  
4.4 MHz, 0.8 V  
2.2 MHz, 1.2 V  
4.4 MHz, 1.2 V  
2.2 MHz, 1.8 V  
4.4 MHz, 1.8 V  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Output current (A)  
Output current (A)  
9-11. Efficiency with Different Phase  
9-10. Efficiency in Single Phase, Auto Mode  
Configurations. Auto Mode.  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
VIN=3.3V, AUTO  
VIN=5V, AUTO  
VIN=3.3V, FPWM  
VIN=5V, FPWM  
VIN=3.3V, AUTO  
VIN=5V, AUTO  
VIN=3.3V, FPWM  
VIN=5V, FPWM  
20  
10  
0
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45 710 20  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45 710 20  
Output current (A)  
Output current (A)  
VOUT = 1.8V  
VOUT = 1.8V  
9-12. Efficiency in 2.2 MHz 4-Phase Mode  
9-13. Efficiency in 4.4 MHz 4-Phase Mode  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
125°C  
90°C  
125°C  
90°C  
40  
40  
30  
20  
10  
0
60°C  
30°C  
0°C  
-20°C  
-40°C  
30  
20  
10  
0
60°C  
30°C  
0°C  
-20°C  
-40°C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Output current (A)  
Output current (A)  
9-14. Efficiency in 2.2 MHz 4-Phase, Force  
9-15. Efficiency in 4.4MHz 4-Phase, Force  
Multiphase Mode  
Multiphase Mode  
Copyright © 2022 Texas Instruments Incorporated  
292 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
1.002  
1.0016  
1.0012  
1.0008  
1.0004  
1
1.002  
1.0016  
1.0012  
1.0008  
1.0004  
1
5V AUTO  
5V AUTO  
5V FPWM  
3.3V AUTO  
3.3V FPWM  
5V FPWM  
3.3V AUTO  
3.3V FPWM  
0.9996  
0.9992  
0.9988  
0.9984  
0.9996  
0.9992  
0.9988  
0.9984  
0.998  
0.998  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
ILOAD = 0.4A  
ILOAD = 4A  
9-16. Output Voltage Accuracy 2.2MHz. 4-Phase 9-17. Output Voltage Accuracy 2.2MHz. 4-Phase  
Mode. Mode.  
1.002  
1.0016  
1.0012  
1.0008  
1.0004  
1
1.002  
1.0016  
1.0012  
1.0008  
1.0004  
1
0.9996  
0.9992  
0.9988  
0.9984  
0.998  
0.9996  
0.9992  
0.9988  
0.9984  
0.998  
5V AUTO  
5V AUTO  
5V FPWM  
3.3V AUTO  
3.3V FPWM  
5V FPWM  
3.3V AUTO  
3.3V FPWM  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
ILOAD = 0.1A  
ILOAD = 1A  
9-18. Output Voltage Accuracy 4.4MHz Single  
9-19. Output Voltage Accuracy 4.4MHz Single  
Phase Mode  
Phase Mode  
1.003  
1.003  
fSW 4.4MHz 4-phase  
fSW 2.2MHz 4-phase  
fSW 4.4MHz 1-phase  
fSW 4.4MHz 4-phase  
fSW 2.2MHz 4-phase  
fSW 4.4MHz 1-phase  
1.002  
1.002  
fSW 2.2MHz 1-phase  
fSW 2.2MHz 1-phase  
1.001  
1.001  
1
0.999  
0.998  
0.997  
1
0.999  
0.998  
0.997  
0
2
4
6
8
10  
Load (A)  
12  
14  
16  
18  
20  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Load (A)  
1
9-21. Load Regulation, FPWM Mode  
9-20. Load Regulation, Auto Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 293  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
1.002  
1.0015  
1.001  
1.0005  
1
1.002  
1.0015  
1.001  
1.0005  
1
fSW 4.4MHz 4-phase  
fSW 2.2MHz 4-phase  
fSW 4.4MHz 1-phase  
fSW 2.2MHz 2-phase  
fSW 4.4MHz 4-phase, 4A load  
fSW 2.2MHz 4-phase, 4A load  
fSW 4.4MHz 1-phase, 1A load  
fSW 2.2MHz 2-phase, 1A load  
0.9995  
0.999  
0.9985  
0.998  
0.9995  
0.999  
0.9985  
0.998  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
2.8  
3.1  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
VIN (V)  
VIN (V)  
No Load  
9-23. Line Regulation  
9-22. Line Regulation  
V
OUT 10mV/div  
VOUT 10mV/div  
VSW(1V/div)  
VSW 2V/div  
Time (10 µs/div)  
Time (400 ns/div)  
ILOAD = 10 mA  
ILOAD = 10 mA  
9-24. Output Voltage Ripple 4.4 MHz Single  
9-25. Output Voltage Ripple 2.2 MHz 4-Phase  
Phase Auto Mode  
FPWM Mode  
V
OUT 10mV/div  
V
OUT 10mV/div  
VSW 2V/div  
VSW (2V/div)  
Time (40 µs/div)  
Time (200 ns/div)  
ILOAD = 200 mA  
ILOAD = 10 mA  
9-26. Output Voltage Ripple 4.4 MHz Single  
9-27. Output Voltage Ripple 4.4 MHz 4-Phase.  
Phase FPWM Mode  
Auto mode.  
Copyright © 2022 Texas Instruments Incorporated  
294 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
VOUT 10mV/div  
VOUT 10mV/div  
VSW (2V/div)  
VSW (2V/div)  
Time (10 µs/div)  
Time (20 µs/div)  
ILOAD = 10 mA  
ILOAD = 10 mA  
9-28. Output Voltage Ripple 4.4 MHz 3-Phase.  
9-29. Output Voltage Ripple 4.4 MHz 2-Phase.  
Auto mode.  
Auto mode.  
VOUT 10mV/div  
VOUT 10mV/div  
VSW (2V/div)  
VSW (2V/div)  
Time (100 ns/div)  
Time (200 ns/div)  
ILOAD = 200 mA  
ILOAD = 200 mA  
9-30. Output Voltage Ripple 4.4 MHz 4-Phase.  
9-31. Output Voltage Ripple 4.4 MHz 3-Phase.  
FPWM mode.  
FPWM mode.  
V
OUT 10mV/div  
VOUT 10mV/div  
VSW (2V/div)  
VSW (2V/div)  
Time (200 ns/div)  
Time (400 ns/div)  
ILOAD = 200 mA  
ILOAD = 200 mA  
9-32. Output Voltage Ripple 4.4 MHz 2-Phase.  
9-33. Output Voltage Ripple 2.2 MHz 3-Phase.  
FPWM mode.  
FPWM mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 295  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
V
OUT 10mV/div  
VOUT 10mV/div  
VSW (2V/div)  
VSW (2V/div)  
Time (200 ns/div)  
Time (200 ns/div)  
ILOAD = 200 mA  
ILOAD = 200 mA  
9-34. Output Voltage Ripple 2.2 MHz 2-Phase.  
9-35. Output Voltage Ripple 2.2 MHz Single  
FPWM mode.  
Phase. FPWM mode.  
V
OUT 10mV/div  
VOUT 10mV/div  
VSW 2V/div  
VSW 2V/div  
Time (2 µs/div)  
Time (2 µs/div)  
9-36. PFM to PWM Transition 4.4 MHz Single  
9-37. PWM to PFM Transition 4.4 MHz Single  
Phase Auto Mode  
Phase Auto Mode  
VOUT 10mV/div  
V
OUT 10mV/div  
VSW (2V/div)  
VSW (2V/div)  
Time (4 µs/div)  
Time (2 µs/div)  
9-38. PFM to PWM Transition 2.2 MHz Single  
9-39. PWM to PFM Transition 2.2 MHz Single  
Phase Auto Mode  
Phase Auto Mode  
Copyright © 2022 Texas Instruments Incorporated  
296 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
VOUT 10mV/div  
VOUT 10mV/div  
ILOAD(1A/div)  
ILOAD(1A/div)  
Time (40 µs/div)  
Time (40 µs/div)  
Load 100mA to 2A  
Load 100mA to 2A  
9-40. Load Transient Response, Auto Mode. 4.4  
9-41. Load Transient Response, FPWM Mode.  
MHz Single Phase  
4.4 MHz Single Phase  
V
OUT 20mV/div  
VOUT 20mV/div  
ILOAD (4A/div)  
ILOAD (4A/div)  
Time (20 µs/div)  
Time (20 µs/div)  
Load 100mA to 8A  
Load 100mA to 8A  
9-43. Load Transient Response, FPWM Mode.  
9-42. Load Transient Response, Auto Mode. 2.2  
2.2 MHz 4-Phase.  
MHz 4-Phase.  
V
OUT 20mV/div  
VOUT 20mV/div  
ILOAD (4A/div)  
ILOAD (4A/div)  
Time (20 µs/div)  
Time (20 µs/div)  
Load 100mA to 8A  
Load 100mA to 6A  
9-44. Load Transient Response, Auto Mode. 4.4 9-45. Load Transient Response, Auto Mode. 4.4  
MHz 4-Phase.  
MHz 3-Phase.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 297  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
VOUT 20mV/div  
VOUT 20mV/div  
ILOAD (2A/div)  
ILOAD (4A/div)  
Time (20 µs/div)  
Time (20 µs/div)  
Load 100mA to 4A  
Load 100mA to 8A  
9-46. Load Transient Response, Auto Mode. 4.4  
9-47. Load Transient Response, FPWM Mode.  
MHz 2-Phase.  
4.4 MHz 4-Phase.  
VOUT 20mV/div  
VOUT 20mV/div  
ILOAD (4A/div)  
ILOAD (2A/div)  
Time (20 µs/div)  
Time (20 µs/div)  
Load 100mA to 6A  
Load 100mA to 4A  
9-48. Load Transient Response, FPWM Mode.  
9-49. Load Transient Response, FPWM Mode.  
4.4 MHz 3-Phase.  
4.4 MHz 2-Phase.  
VOUT 20mV/div  
VOUT 20mV/div  
ILOAD (4A/div)  
ILOAD (2A/div)  
Time (20 µs/div)  
Time (20 µs/div)  
Load 100mA to 6A  
Load 100mA to 4A  
9-50. Load Transient Response, Auto Mode. 2.2 9-51. Load Transient Response, Auto Mode. 2.2  
MHz 3-Phase.  
MHz 2-Phase.  
Copyright © 2022 Texas Instruments Incorporated  
298 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
VOUT 20mV/div  
VOUT 10mV/div  
ILOAD (1A/div)  
ILOAD (4A/div)  
Time (20 µs/div)  
Time (20 µs/div)  
Load 100mA to 2A  
Load 100mA to 6A  
9-52. Load Transient Response, Auto Mode. 2.2  
9-53. Load Transient Response, FPWM Mode.  
MHz Single Phase.  
2.2 MHz 3-Phase.  
V
OUT 20mV/div  
V
OUT 10mV/div  
ILOAD (2A/div)  
ILOAD (1A/div)  
Time (20 µs/div)  
Time (20 µs/div)  
Load 100mA to 4A  
Load 100mA to 2A  
9-54. Load Transient Response, FPWM Mode.  
9-55. Load Transient Response, FPWM Mode.  
2.2 MHz 2-Phase.  
2.2 MHz Single Phase.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 299  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.8 V and 5.5 V. This input supply  
must be well regulated and able to withstand maximum input current and maintain stable voltage without voltage  
drop even at load transition condition. The resistance of the input supply rail must be low enough that the input  
current transient does not cause too high drop in the device supply voltage that can cause false UVLO fault  
triggering. If the input supply is located more than a few inches from the additional bulk capacitance of the  
device may be required in addition to the ceramic bypass capacitors.  
Copyright © 2022 Texas Instruments Incorporated  
300 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The high frequency and large switching currents of the device make the choice of layout important. Good power  
supply results only occur when care is given to correct design and layout. Layout affects noise pickup and  
generation and can cause a good design to perform with less-than-expected results. With a range of output  
currents from milliamps to 10 A and over, good power supply layout is much more difficult than most general  
PCB design. Use the following steps as a reference to ensure the device is stable and maintains correct voltage  
and current regulation across its intended operating voltage and current range.  
1. Place CIN as close as possible to the PVIN_Bx pin and the PGND pin. Route the VIN trace wide and thick to  
avoid IR drops. The trace between the positive node of the input capacitor and the PVIN_Bx pins of the  
device, as well as the trace between the negative node of the input capacitor and power PGND pin, must be  
kept as short as possible. The input capacitance provides a low-impedance voltage source for the switching  
converter. The inductance of the connection is the most important parameter of a local decoupling capacitor  
parasitic inductance on these traces must be kept as small as possible for correct device operation. The  
parasitic inductance can be reduced by using a ground plane as close as possible to top layer by using thin  
dielectric layer between top layer and ground plane.  
2. The output filter, consisting of COUT and L, converts the switching signal at SW_Bx to the noiseless output  
voltage. The output filter must be placed as close as possible to the device keeping the switch node small,  
for best EMI behavior. Route the traces between the output capacitors of the device and the load direct and  
wide to avoid losses due to the IR drop.  
3. Input for analog blocks (VCCA and AGND) must be isolated from noisy signals. Connect VCCA directly to a  
quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling  
capacitor as close as possible to the VCCA pin.  
4. If the processor load supports remote voltage sensing, connect the feedback pins FB_Bx of the device to the  
respective sense pins on the processor. The sense lines are susceptible to noise. They must be kept away  
from noisy signals such as PGND, PVIN_Bx, and SW_Bx, as well as high bandwidth signals such as the I2C.  
Avoid both capacitive and inductive coupling by keeping the sense lines short, direct, and close to each  
other. Run the lines in a quiet layer. Isolate them from noisy signals by a voltage or ground plane if possible.  
Running the signal as a differential pair is recommended. If series resistors are used for load current  
measurement, place them after connection of the voltage feedback.  
5. PGND, PVIN_Bx, and SW_Bx must be routed on thick layers. They must not surround inner signal layers,  
that are not able to withstand interference from noisy PGND, PVIN_Bx and SW_Bx.  
Due to the small package of this converter and the overall small solution size, the thermal performance of the  
PCB layout is important. Many system-dependent parameters such as thermal coupling, airflow, added heat  
sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component. Proper PCB layout, focusing on thermal performance, results in lower  
die temperatures. Wide and thick power traces come with the ability to sink dissipated heat. The heat dissipation  
can be improved further on multi-layer PCB designs with vias to different planes, that results in reduced junction-  
to-ambient (RθJA) and junction-to-board (RθJB) thermal resistances and thereby reduces the device junction  
temperature, TJ. TI strongly recommends to perform of a careful system-level 2D or full 3D dynamic thermal  
analysis at the beginning product design process, by using a thermal modeling analysis software.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 301  
Product Folder Links: LP8764-Q1  
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
11.2 Layout Example  
Via to GND plane  
Via to VVCCA plane  
Via to VOUT plane  
VOUT4  
VOUT3  
COUT4  
COUT3  
VCCA  
GND  
L4  
L3  
VCCA  
PLANE on  
bottom  
VOUT  
CIN6  
C4 on  
C3 on  
PLANE on  
middle layer  
32 31 30 29 28 27 26  
bottom  
bottom  
GPIO1  
GPIO8 25  
1
CVIO  
GPIO2  
VIO 24  
FB_B3 23  
FB_B4 22  
2
3
4
5
6
GPIO3  
GND area on  
SCL_I2C1  
SDA_I2C1  
FB_B2  
bo om for  
BUCK  
AGND2  
21  
20  
CVOUT_LDO  
VOUT_LDO  
AGND1  
capacitors  
19  
18  
FB_B1  
GPIO4  
7
8
9
VCCA  
GND plane  
on second  
layer (not  
shown in  
gure)  
CVCCA  
nINT  
GPIO7  
17  
10 11 12 13 14 15 16  
C1 on  
bottom  
C2 on  
bottom  
CIN5  
GND  
VCCA  
L1  
L2  
COUT1  
COUT2  
VOUT1  
VOUT2  
The output voltage rails are shorted together based on the buck configuration.  
11-1. Device Board Layout  
Copyright © 2022 Texas Instruments Incorporated  
302 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 303  
Product Folder Links: LP8764-Q1  
 
 
 
 
 
 
 
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
RQK0032A  
PLASTIC QUAD FLATPACK-NO LEAD  
5.1  
4.9  
A
B
0.1 MIN  
5.6  
5.4  
PIN 1 IDENTIFICATION  
(0.05)  
SECTION A-A  
TYPICAL  
1
0.8  
C
SEATING PLANE  
0.05  
0.00  
0.08  
1.4  
1.2  
0.95  
0.75  
C
2X 4.125  
PKG  
6X  
4X  
4X 0.5625  
(0.2) TYP  
16  
10  
13  
4X 0.575  
9
17  
0.85  
0.65  
4X  
24X 0.5  
PKG  
A
A
2.2 0.1  
0.3  
0.2  
33  
2X  
4.15  
28X  
0.1  
C A B  
0.05  
C
1.3  
1.1  
8X  
0.45  
0.35  
4X  
0.1  
C A B  
0.05  
C
25  
1
32  
26  
0.975  
0.775  
0.7 0.1  
4X  
0.425  
0.325  
4X  
0.85  
0.65  
4X  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
4X 0.625 0.1  
0.05  
C
4225338/B 07/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
304 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
RQK0032A  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.575)  
(4.45)  
(4.35)  
(4.125)  
(3.9)  
4X (0.95)  
4X (1.075)  
32  
26  
8X  
(1.4)  
25  
1
2X  
(0.85)  
(2.2)  
33  
(4.95)  
(4.825)  
(4.5)  
(5.9)  
PKG  
(4.15)  
28X (0.25)  
24X  
(0.5)  
(Ø 0.2) VIA  
TYP  
9
17  
4X (0.4)  
4X (0.575)  
10  
16  
(R0.05) TYP  
4X (0.375)  
(0.7)  
4X (0.825)  
4X (0.95)  
4X (1.05)  
6X (1.5)  
PKG  
4X (0.5625)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MIN  
ALL AROUND  
METAL  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225338/B 07/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 305  
Product Folder Links: LP8764-Q1  
LP8764-Q1  
ZHCSQ47 MARCH 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
RQK0032A  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.575)  
(4.45)  
(4.35)  
(4.1)  
(3.9)  
4X (0.95)  
32  
26  
2X (0.935)  
4X (1.075)  
8X  
(1.4)  
25  
1
2X  
(1.6475)  
4X  
(0.735)  
(R0.05) TYP  
PKG  
2X  
(0.59)  
33  
(4.95)  
(4.825)  
(4.5)  
(4.1)  
2X  
(0.98)  
28X (0.25)  
24X  
(0.5)  
9
17  
8X (0.35)  
8X (0.55)  
METAL TYP  
10  
16  
2X (0.66)  
4X (0.825)  
4X (0.95)  
PKG  
4X (1.05)  
6X (1.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
PIN 1,9,16 & 25: 93%; PIN 13& 29: 79%; PIN 33: 84%  
SCALE: 15X  
4225338/B 07/2020  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
306 Submit Document Feedback  
Product Folder Links: LP8764-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP876411B4RQKRQ1  
LP876411B5RQKRQ1  
LP876441B1RQKRQ1  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RQK  
32  
32  
32  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
LP8764  
11B4-Q1  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
RQK  
SN  
SN  
LP8764  
11B5-Q1  
RQK  
LP8764  
41B1-Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
RQK0032B  
PLASTIC QUAD FLATPACK-NO LEAD  
5.1  
4.9  
A
B
0.100  
MIN  
5.6  
5.4  
PIN 1 IDENTIFICATION  
(0.13)  
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.22)  
2X 4.125  
PKG  
6X 1.3±0.1  
4X 0.85±0.1  
4X 0.5625  
(0.2) TYP  
4X 0.75±0.1  
16  
10  
13  
(0.23)  
4X 0.575  
9
17  
A
A
(0.16)  
24X 0.5  
PKG  
2.2±0.1  
33  
2X  
28X 0.25±0.05  
4.15  
0.1  
C A B  
0.05  
C
4X 0.4±0.05  
0.1  
C A B  
0.05  
C
25  
1
PIN 1 ID  
(OPTIONAL)  
32  
26  
8X 1.2±0.1  
4X 0.88±0.1  
4X 0.75±0.1  
4X 0.625±0.1  
4X 0.375±0.05  
0.7±0.1  
0.1  
C A B  
0.05  
C
4225326/B 07/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RQK0032B  
(4.575)  
(4.45)  
(4.35)  
(4.125)  
(3.9)  
4X (0.95)  
4X (0.375)  
4X (0.5625)  
4X (1.075)  
32  
26  
8X  
(1.4)  
25  
1
2X  
(0.85)  
(2.2)  
33  
(4.95)  
(5.9)  
PKG  
(4.15)  
(4.5)  
(4.825)  
28X (0.25)  
24X  
(0.5)  
(Ø 0.2) VIA  
TYP  
9
17  
4X (0.4)  
4X (0.575)  
10  
16  
(0.7)  
4X (0.825)  
4X (0.95)  
(R0.05) TYP  
PKG  
4X (1.05)  
6X (1.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MIN  
ALL AROUND  
METAL  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225326/B 07/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RQK0032B  
(4.575)  
(4.45)  
(4.35)  
(4.1)  
(3.9)  
4X (0.95)  
4X (1.075)  
32  
26  
2X (0.935)  
8X  
(1.4)  
25  
1
2X  
(1.6475)  
4X (0.735)  
2X  
(0.59)  
33  
(4.95)  
PKG  
(4.1)  
(4.825)  
(4.5)  
2X  
(0.98)  
28X (0.25)  
24X  
(0.5)  
9
17  
8X (0.35)  
8X (0.55)  
METAL TYP  
10  
16  
2X (0.66)  
4X (0.825)  
(R0.05) TYP  
4X (0.95)  
PKG  
4X (1.05)  
6X (1.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
PIN 1,9,16 & 25: 93%; PIN 13& 29: 79%; PIN 33: 84%  
SCALE: 15X  
4225326/B 07/2020  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY