LP8860LQVFPRQ1 [TI]

汽车类低 EMI 高性能 4 通道 LED 驱动器 | VFP | 32 | -40 to 125;
LP8860LQVFPRQ1
型号: LP8860LQVFPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类低 EMI 高性能 4 通道 LED 驱动器 | VFP | 32 | -40 to 125

驱动 接口集成电路 驱动器
文件: 总109页 (文件大小:1604K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
LP8860-Q1 具有四个 150mA 通道的低 EMI 汽车 LED 驱动器  
1 特性  
2 应用  
1
符合汽车应用 应用  
具有符合 AEC-Q100 标准的下列特性:  
为以下应用提供背光:  
汽车信息娱乐系统  
汽车仪表盘  
器件温度等级 1–40°C +125°C 环境工作温  
智能车镜  
输入电压工作范围:3V 48V  
抬头显示屏 (HUD)  
中央信息显示屏 (CID)  
音视频导航 (AVN)  
四路高精度电流阱  
电流匹配度为 0.5%(典型值)  
LED 灯串电流高达 150mA/通道  
3 说明  
采用外部 PWM 亮度控制,调光比大于 13  
000:1  
LP8860-Q1 是具有升压控制器的汽车用高效 LED 驱动  
器。该器件具有可通过 PWM 输入信号、SPI /I2C  
主机控制的 4 路高精度电流阱。  
通过 SPI I2C 进行 16 位调光控制  
支持显示模式(全局调光)和群集模式(独立调  
光)  
升压转换器具有基于 LED 电流阱余量电压的自适应输  
出电压控制。该特性可在所有条件下将电压调节到能够  
满足需要的最低水平,从而最大限度降低功耗。凭借宽  
范围可调频率,LP8860-Q1 能够避免调幅 (AM) 射频  
波段的干扰。  
针对更高 LED 驱动光效率的混合 PWM 和电流调  
针对 LED PWM 频率的同步  
具有介于 100kHz 2.2Mhz 之间的可编程开关频  
率和用于降低电磁干扰 (EMI) 的扩频选项的升压控  
制器  
LP8860-Q1 支持内置混合 PWM 和电流调光,从而降  
低了 EMI、延长了 LED 使用寿命且提高了总光学效  
率。相移 PWM 可减少人耳噪声和输出纹波。  
升压同步输入  
电力线场效应晶体管 (FET) 控制,可实现浪涌电流  
保护和待机节能  
器件信息(1)  
使用外部温度传感器自动降低 LED 电流  
丰富的故障诊断”  
器件型号  
LP8860-Q1  
封装  
封装尺寸(标称值)  
散热薄型四方扁平  
封装 (HLQFP) (32)  
7.00mm × 7.00mm  
简化原理图  
VIN  
3...40 V  
R
ISENSE  
L
D
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
Up to 48V  
Q2  
C
2x  
C
IN  
C
OUT  
系统效率  
Q1  
C1P  
C1N  
SD  
95  
GD  
ISENSE  
VSENSE_N  
VSENSE_P  
90  
85  
VDD 3.3V  
C
R
VDD  
SENSE  
C
CPUMP  
ISENSE_GND  
FB  
CPUMP  
VDD  
SQW  
VIN = 5 V  
VIN = 6 V  
VIN = 8 V  
VIN = 12 V  
VIN = 15 V  
80  
75  
70  
65  
FILTER  
Up to 150 mA/string  
BOOST SYNC  
V/H SYNC  
LP8860-Q1  
SYNC  
OUT1  
VSYNC  
BRIGHTNESS  
OUT2  
OUT3  
PWM  
SCLK/SCL  
MOSI/SDA  
MISO  
OUT4  
FAULT RESET  
EN  
NSS  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TSENSE  
ISET  
R
T°  
VDDIO/EN  
IF  
Brightness (%)  
C001  
FAULT  
FAULT  
NTC  
SGND PGND LGND PAD  
R
ISET  
VDDIO  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSA21  
 
 
 
 
 
 
 
 
 
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
目录  
7.17 Typical Characteristics.......................................... 13  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 18  
8.4 Device Functional Modes........................................ 48  
8.5 Programming........................................................... 49  
8.6 Register Maps......................................................... 55  
Application and Implementation ........................ 85  
9.1 Application Information............................................ 85  
9.2 Typical Applications ................................................ 85  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
器件比较............................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics .......................................... 7  
7.6 Current Sinks Electrical Characteristics.................... 7  
7.7 Boost Converter Characteristics ............................... 8  
7.8 Logic Interface Characteristics.................................. 9  
7.9 VIN Undervoltage Protection (VIN_UVLO) ................ 9  
7.10 VDD Undervoltage Protection (VDD_UVLO) ......... 10  
7.11 VIN Overvoltage Protection (VIN_OVP) ............... 10  
7.12 VIN Overcurrent Protection (VIN_OCP) ............... 10  
8
9
10 Power Supply Recommendations ..................... 99  
11 Layout................................................................. 100  
11.1 Layout Guidelines ............................................... 100  
11.2 Layout Example .................................................. 101  
12 器件和文档支持 ................................................... 102  
12.1 器件支持.............................................................. 102  
12.2 文档支持.............................................................. 102  
12.3 接收文档更新通知 ............................................... 102  
12.4 社区资源.............................................................. 102  
12.5 ..................................................................... 102  
12.6 静电放电警告....................................................... 102  
12.7 Glossary.............................................................. 102  
13 机械、封装和可订购信息..................................... 103  
7.13 Power-Line FET Control Electrical  
Characteristics ......................................................... 10  
7.14 External Temp Sensor Control Electrical  
Characteristics ......................................................... 10  
7.15 I2C Serial Bus Timing Parameters (SDA, SCLK) . 12  
7.16 SPI Timing Requirements ..................................... 12  
4 修订历史记录  
Changes from Revision F (July 2017) to Revision G  
Page  
使用更详细的封装图进行了更新 ......................................................................................................................................... 103  
Changes from Revision E (November 2016) to Revision F  
Page  
Changed placement of "7" data hold time in Figure 2 ......................................................................................................... 12  
Deleted "The LP8860-Q1 doesn’t support incremental addressing." after Table 20 ........................................................... 51  
Changed "short" to "open" in DRV_HEADER[2:0] row, EEPROM Register 4 ..................................................................... 70  
Changes from Revision D (September 2016) to Revision E  
Page  
Deleted 4-A row from VOCP in VIN Overcurrent Protection (VIN_OCP) table........................................................................ 10  
Changed "+ 150 mA" to "× 150 mA" in eq. 8 ...................................................................................................................... 41  
Deleted "01/4A" row from Input voltage overcurrent protection in Table 16 ........................................................................ 43  
Deleted duplicate of Figure 42 "State Diagram" .................................................................................................................. 48  
Changed "open" to "short" in DRV_LED_FAULT_THR[1:0] row, EEPROM Register 4 ...................................................... 70  
Changed "nit" to "not" - correct typo..................................................................................................................................... 71  
Deleted "01 = 4 A" from PL_SD_LEVEL[1:0] in EEPROM Register 10............................................................................... 75  
更新了 POA 中的可订购选项 .............................................................................................................................................. 103  
POA 中添加了预生产“R”可订购选项 .............................................................................................................................. 103  
2
版权 © 2014–2017, Texas Instruments Incorporated  
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Changes from Revision C (December 2015) to Revision D  
Page  
已更改 数据表标.................................................................................................................................................................. 1  
已更改 略微修改了特性项目中的措辞................................................................................................................................... 1  
已删除 安全........................................................................................................................................................................ 1  
已更改 公差 特性诊断..................................................................................................................................................... 1  
已删除 “SPI I2C 接口”......................................................................................................................................................... 1  
已添加 附加应用...................................................................................................................................................................... 1  
已更改 高开关宽范围可调”............................................................................................................................................... 1  
已删除 一些措辞(描述部分) 使其更加简洁;已重新编写最后一句话.................................................................................. 1  
已添加 器件比较.................................................................................................................................................................. 3  
Deleted Table 19 "Default EEPROM Context" - this information now in SNVA757, available in mysecureSW only ......... 50  
Changes from Revision B (March 2015) to Revision C  
Page  
已添加 特性项目修改:汽车.................................................................................................................................................... 1  
已更改 安全故障检测...................................................................................................................................................... 1  
已更改 简化原理图中的高达 40V”高达 48V” .................................................................................................................... 1  
Changed SPI Write Cycle and SPI Read Cycle diagrams .................................................................................................. 51  
Changes from Revision A (June 2014) to Revision B  
Page  
Changed EXT_TEMP_MINUS[1:0] from "2, 6, 10, 14 μA" to "1, 5, 9, 13 µA"...................................................................... 41  
Changed values for EXT_TEMP_MINUS from "2, 6, 10, 14 µA" to '1, 5, 9, 13 µA" ............................................................ 67  
已添加 文档支持部分 .......................................................................................................................................................... 102  
Changes from Original (May 2014) to Revision A  
Page  
Changed first sentence in paragraph beginning "EEPROM bits are intended to be set..." to 2 separate sentences ......... 50  
5 器件比较表  
LP8860-Q1  
LP8862-Q1  
LP8861-Q1  
TPS61193-Q1  
TPS61194-Q1  
TPS61196-Q1  
VIN 范围  
3V 48V  
4.5V 45V  
4.5V 45V  
4.5V 45V  
4.5V 45V  
8V 30V  
LED 通道的数量  
LED 电流/通道  
I2C/SPI 支持  
SEPIC 支持  
4
150mA  
2
160mA  
4
100mA  
3
100mA  
4
100mA  
6
200mA  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
VFP Package  
32-Lead PowerPAD™ Quad Flatpack S-PQFP-G32  
Top View  
C1P  
C1N  
VDD  
1
2
3
4
5
6
7
8
OUT2  
LGND  
OUT3  
OUT4  
24  
23  
22  
21  
SQW  
VSENSE_N  
VSENSE_P  
ISET  
20 IF  
19  
18  
VDDIO/EN  
PWM  
EP*  
TSENSE  
17 NSS  
*EXPOSED PAD  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NUMBER  
NAME  
Positive pin for charge pump flying capacitor.  
If feature is disabled, the pin may be left floating.  
1
C1P  
A
Negative pin for charge pump flying capacitor.  
If feature is disabled, the pin may be left floating.  
2
3
4
C1N  
VDD  
SQW  
A
P
A
Input voltage pin for internal circuit.  
Square wave output. Can be used for generating extra voltage rail.  
If unused, the pin may be left floating.  
5
6
VSENSE_N  
VSENSE_P  
A
A
Pin for input current sense.  
Pin for OVP/UVLO protection and input current sense.  
Optional resistor for setting LED maximum current.  
If feature is disabled, the pin may be left floating.  
7
8
ISET  
A
A
External temperature sensor for LED current control.  
If feature is disabled, the pin may be left floating.  
TSENSE  
Low pass filter for PLL.  
If feature is disabled, the pin may be left floating.  
9
FILTER  
SGND  
FAULT  
A
G
10  
11  
Signal ground.  
Fault signal output.  
If unused, the pin may be left floating.  
OD  
Input for synchronizing boost.  
This pin must be connected to GND if not used.  
12  
SYNC  
I
Input for synchronizing PWM generation to display refresh.  
This pin must be connected to GND if feature is disabled.  
13  
14  
15  
VSYNC  
MISO  
I
O
Slave data output (SPI). If unused, the pin may be left floating.  
Slave data input (SPI) or serial data (I2C).  
This pin must be connected to GND if not used.  
MOSI/SDA  
I/O  
Serial clock for SPI or I2C.  
This pin must be connected to GND if not used.  
Slave select (SPI mode) or fault reset (I2C or standalone mode).  
This pin must be connected to GND if not used.  
16  
17  
18  
SCLK/SCL  
NSS  
I
I
I
PWM dimming input.  
This pin must be connected to GND if feature is disabled.  
PWM  
19  
20  
VDDIO/EN  
IF  
I
I
Enable input pin and reference voltage for digital pins.  
Interface selection: low – I2C or standalone mode; high – SPI.  
LED current sink output.  
If unused, the pin may be left floating.  
21  
OUT4  
A
LED current sink output.  
If unused, the pin may be left floating.  
22  
23  
24  
OUT3  
LGND  
OUT2  
A
G
A
LED current ground.  
LED current sink output.  
If unused, the pin may be left floating.  
LED current sink output.  
If unused, the pin may be left floating.  
25  
OUT1  
A
26  
27  
28  
29  
30  
31  
FB  
ISENSE_GND  
ISENSE  
PGND  
A
A
A
G
A
P
Boost feedback input.  
Boost controller’s current sense resistor GND.  
Boost current sense pin.  
Power ground.  
GD  
Gate driver output for boost FET.  
Charge pump output pin.  
CPUMP  
Power line FET control.  
If unused, the pin may be left floating.  
32  
SD  
A
(1) A: Analog pin, G: Ground pin, P: Power pin, I: Input pin, I/O: Input/Output pin, O: Output pin, OD: Open Drain pin  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
UNIT  
Voltage on pins VSENSE_N, VSENSE_P, OUT1 to OUT4, FB, SD  
–0.3  
52  
V
Voltage on pins VDD, FILTER, SYNC, VSYNC, PWM, SCLK/SCL, MOSI/SDA, MISO, NSS,  
VDDIO/EN, IF, ISENSE, ISENSE_GND, FAULT, ISET, TSENSE, C1N  
–0.3  
6
V
V
Voltage on pins C1P, CPUMP, GD, SQW  
Continuous power dissipation(3)  
–0.3  
12  
Internally Limited  
(4)  
Ambient temperature, TA  
–40  
–40  
125  
150  
See(5)  
°C  
°C  
°C  
°C  
(4)  
Junction temperature, TJ  
Maximum lead temperature (soldering)  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pins.  
(3) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 165°C (typical) and  
disengages at TJ = 135°C (typical).  
(4) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
150°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX ).  
(5) For detailed soldering specifications and information, refer to PowerPAD™ Thermally Enhanced Package Application Note .  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
All pins  
V(ESD)  
Electrostatic discharge  
V
Corner pins  
(1,8,9,16,17,24,25,32)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Voltage on pins VSENSE_N, VSENSE_P  
VDD input voltage  
3
48  
5.5  
3
1.65  
0
V
VDDIO/EN input voltage  
VDD  
5.5  
V
Voltage on pins FILTER, ISENSE, ISENSE_GND, ISET, TSENSE, C1N  
FAULT, PWM, SCLK/SCL, MOSI/SDA, NSS, IF, SYNC, MISO, VSYNC  
Voltage on pins C1P, CPUMP, GD, SQW  
Voltage on pins OUT1 to OUT4, FB, SD  
V
0
VDDIO  
11  
V
0
V
0
48  
V
(1) All voltages are with respect to the potential at the GND pins.  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
7.4 Thermal Information  
LP8860  
THERMAL METRIC(1)  
HLQFP PowerPAD (VLP)  
UNIT  
32 PINS  
36.0  
23.3  
15.5  
3.2  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
15.5  
1.6  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power  
dissipation exists, special care must be paid to thermal dissipation issues in board design.  
7.5 Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).(1)(2)  
PARAMETER  
POWER SUPPLIES  
TEST CONDITIONS  
MIN  
TYP  
1
MAX  
UNIT  
Shutdown supply current for VDD Device disabled, VDDIO/EN = 0 V  
5
6
μA  
Backlight enabled (no load), boost  
enabled, PLL and CP disabled,  
DRV_LED_BIAS_CTRL[1:0] = 10 ,  
2.5  
IQ  
boost ƒSW = 300 kHz  
Active supply current for VDD,  
VDD = 5 V  
mA  
Backlight enabled (no load), boost  
enabled, CP disabled, ƒPLL = 10  
MHz, DRV_LED_BIAS_CTRL[1:0] =  
11, boost ƒSW = 400 kHz  
4.5  
15  
2.2  
VVDD_POR_R  
VVDD_POR_F  
TTSD  
Power-on reset rising threshold  
Power-on reset falling threshold  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
V
1.1  
150  
165  
30  
180  
°C  
TTSD_THR  
INTERNAL OSCILLATOR  
Frequency  
ƒOSC  
10  
MHz  
Frequency accuracy  
–7%  
7%  
(1) All voltages are with respect to the potential at the GND pins.  
(2) Minimum (MIN) and Maximum (MAX) limits are specified by design, test, or statistical analysis.  
7.6 Current Sinks Electrical Characteristics  
Limits apply over the full ambient temperature range –40°C TA +125°C. Unless otherwise specified: VDD = 3.3 V, VIN = 12  
V, EN/VDDIO = 3.3 V, L = 22 μH, CIN = 2 × 10 μF ceramic and 33 μF electrolytic, COUT = 2 × 10 μF ceramic and 33 μF  
electrolytic, CVDD = 1 μF, CCPUMP = 10 μF, Q = IPD25N06S4L-30-ND, D = SS5P10-M3/86A.  
PARAMETER  
TEST CONDITIONS  
Outputs OUT1 to OUT4, VOUT = 48 V  
OUT1 to OUT4  
MIN  
TYP  
0.1  
MAX UNIT  
ILEAKAGE  
IMAX  
Leakage current  
1
µA  
Maximum source current  
Output current accuracy  
Output current matching(1)  
150  
mA  
IOUT  
IOUT = 150 mA  
3%  
3%  
2%  
IMATCH  
IOUT = 150 mA, 100% brightness  
0.5%  
LED PWM output frequency  
for display mode  
PWM_FREQ[3:0] = 0000b  
PWM_FREQ[3:0] = 1111b  
4883  
39 063  
ƒLED_PWM  
Hz  
(1) Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current.  
Matching is the maximum difference from the average. For the constant current sinks on the part (OUT1 to OUT4), the following are  
determined: the maximum output current (MAX), the minimum output current (MIN), and the average output current of all outputs (AVG).  
Two matching numbers are calculated: (MAX-AVG)/AVG and (AVG-MIN)/AVG. The largest number of the two (worst case) is  
considered the matching figure. The typical specification provided is the most likely norm of the matching figure for all parts. Note that  
some manufacturers have different definitions in use.  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Current Sinks Electrical Characteristics (continued)  
Limits apply over the full ambient temperature range –40°C TA +125°C. Unless otherwise specified: VDD = 3.3 V, VIN = 12  
V, EN/VDDIO = 3.3 V, L = 22 μH, CIN = 2 × 10 μF ceramic and 33 μF electrolytic, COUT = 2 × 10 μF ceramic and 33 μF  
electrolytic, CVDD = 1 μF, CCPUMP = 10 μF, Q = IPD25N06S4L-30-ND, D = SS5P10-M3/86A.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ƒPWM  
PWM input frequency  
BRT_MODE[1:0] = 00, 01 and 10  
100  
500  
Hz  
Minimum on and off time for  
PWM input  
tPWM MIN  
400  
ns  
External 100 Hz PWM  
SPI or I2C control  
13 000:1  
Dimming ratio (input  
resolution)  
IDIM  
16  
10  
bit  
ƒLED_PWM = 5 kHz, ƒOSC = 5 MHz  
ƒLED_PWM= 10 kHz, ƒOSC = 5 MHz  
ƒLED_PWM = 20 kHz, ƒOSC = 5 MHz  
ƒLED_PWM = 40 kHz, ƒOSC = 5 MHz  
ƒLED_PWM = 5 kHz, ƒOSC = 40 MHz  
ƒLED_PWM = 10 kHz, ƒOSC = 40 MHz  
ƒLED_PWM = 20 kHz, ƒOSC = 40 MHz  
ƒLED_PWM = 40 kHz, ƒOSC = 40 MHz  
DRV_OUTx_CORR[3:0] = 1111  
DRV_OUTx_CORR[3:0] = 0000  
IOUT = 150 mA  
9
8
PWM output resolution, PWM  
control for BRT_MODE[1:0] =  
00, 01, and 10 (without  
dithering)  
7
PWMRES  
bits  
13  
12  
11  
10  
–7.4%  
6.5%  
0.5  
3.6  
3.6  
6.9  
10.6  
Individual output current  
adjustment range  
ΔIOUT  
VSAT  
Saturation voltage(2)  
0.75  
V
V
DRV_LED_FAULT_THR[1:0] = 00  
DRV_LED_FAULT_THR[1:0] = 01  
DRV_LED_FAULT_THR[1:0] = 10  
DRV_LED_FAULT_THR[1:0] = 11  
VSHORT_FAULT_THR LED short detection threshold  
(2) Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at 1 V.  
7.7 Boost Converter Characteristics  
Limits apply over the full ambient temperature range – 40°C TA +125°C. Unless otherwise specified: VDD = 3.3 V, VIN = 12  
V, EN/VDDIO = 3.3 V, L = 22 μH, CIN = 2 × 10 μF ceramic and 33-μF electrolytic, COUT = 2 × 10 μF ceramic and 33-μF  
electrolytic, CVDD = 1 μF, CCPUMP = 10 μF, Q = IPD25N06S4L-30-ND, D = SS5P10-M3/86A.  
PARAMETER  
TEST CONDITIONS  
MIN  
600  
150  
100  
TYP  
MAX  
UNIT  
VIN = 6 V, VBOOST = 48 V (ƒSW = 303 kHz)  
VIN = 3 V, VBOOST = 30 V (ƒSW = 1.1 MHz)  
VIN = 3 V, VBOOST = 30 V (ƒSW = 2.2 MHz)  
Maximum continuous load  
current  
ILOAD  
mA  
VOUT/VIN  
Conversion ratio  
10  
BOOST_FREQ = 000  
BOOST_FREQ = 001  
BOOST_FREQ = 010  
BOOST_FREQ = 011  
BOOST_FREQ = 100  
BOOST_FREQ = 101  
BOOST_FREQ = 110  
BOOST_FREQ = 111  
100  
200  
303  
400  
629  
800  
1100  
2200  
Switching frequency (central  
frequency if spread spectrum  
is enabled)  
ƒSW  
–7%  
7%  
kHz  
ms  
tBOOST  
START-UP  
(1)  
Start-up time  
50  
(1) Start-up time is measured from the moment the boost is activated until the VOUT crosses 90% of its initial voltage value.  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Boost Converter Characteristics (continued)  
Limits apply over the full ambient temperature range – 40°C TA +125°C. Unless otherwise specified: VDD = 3.3 V, VIN = 12  
V, EN/VDDIO = 3.3 V, L = 22 μH, CIN = 2 × 10 μF ceramic and 33-μF electrolytic, COUT = 2 × 10 μF ceramic and 33-μF  
electrolytic, CVDD = 1 μF, CCPUMP = 10 μF, Q = IPD25N06S4L-30-ND, D = SS5P10-M3/86A.  
PARAMETER  
TEST CONDITIONS  
RSENSE = 25 mΩ  
MIN  
TYP  
MAX  
UNIT  
BOOST_IMAX_SEL=000  
BOOST_IMAX_SEL=001  
BOOST_IMAX_SEL=010  
BOOST_IMAX_SEL=011  
BOOST_IMAX_SEL=100  
BOOST_IMAX_SEL=101  
BOOST_IMAX_SEL=110  
BOOST_IMAX_SEL=111  
2
3
4
5
6
7
8
9
IMAX  
SW current limit  
A
VGD  
Gate driver output voltage  
0
11  
V
A
IGD_SOURCE_ Gate driver peak current,  
PEAK  
BOOST_DRIVER_SIZE[1:0] = 11  
BOOST_GD_VOLT = 1  
VDD= 5 V, VCPUMP = 10 V  
FET SQ4850EY  
1.7  
1.5  
sourcing  
IGD_SINK_PEA Gate driver peak current,  
K
sinking  
7.8 Logic Interface Characteristics  
VDDIO/EN = 1.65 V to VDD, VDD = 3.3 V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.4  
UNIT  
LOGIC INPUT VDDIO/EN  
VIL  
VIH  
II  
Input low level  
Input high level  
Input current  
V
1.2  
1  
1
µA  
LOGIC INPUT SYNC, VSYNC, PWM, SCLK/SCL, MOSI/SDA, NSS, IF  
0.2 ×  
VDDIO/EN  
VIL  
Input low level  
V
VIH  
II  
Input high level  
Input current  
0.8 × VDDIO/EN  
1  
1
μA  
LOGIC OUTPUT FAULT  
VOL  
Output low level  
I = 3 mA  
0.3  
0.3  
0.5  
1
V
ILEAKAGE  
Output leakage current  
V = 5.5 V  
μA  
LOGIC OUTPUT MISO  
VOL  
VOH  
IL  
Output low level  
IOUT = 3 mA  
0.5  
1
V
IOUT = –2 mA  
0.9 ×  
VDDIO/EN  
Output high level  
0.7 × VDDIO/EN  
Output leakage current  
μA  
LOGIC OUTPUTS SDA  
VOL  
Output low level  
Output leakage current  
I = 3 mA  
0.3  
0.5  
1
V
ILEAKAGE  
V = 5.5 V  
μA  
7.9 VIN Undervoltage Protection (VIN_UVLO)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
UVLO[1:0] = 00  
UVLO[1:0] = 01  
UVLO[1:0] = 10  
UVLO[1:0] = 11  
Disabled  
2.64  
4.4  
3
5
8
3.36  
5.6  
VUVLO  
VIN UVLO threshold voltage  
V
7.04  
8.96  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.10 VDD Undervoltage Protection (VDD_UVLO)  
PARAMETER  
TEST CONDITIONS  
MIN  
MIN  
TYP  
2.5  
3
MAX  
UNIT  
V
VDD_UVLO_LEVEL = 0  
VDD_UVLO_LEVEL = 1  
VVDD_UVLO VDD UVLO threshold voltage  
VHYST  
VDD UVLO hysteresis  
50  
mV  
7.11 VIN Overvoltage Protection (VIN_OVP)  
PARAMETER  
TEST CONDITIONS  
TYP  
Disabled  
7
MAX  
UNIT  
OVP[1:0] = 00  
OVP[1:0] = 01  
OVP[1:0] = 10  
OVP[1:0] = 11  
6.16  
9.68  
19.8  
7.84  
12.32  
25.2  
VOVP  
VIN OVP threshold voltage  
V
11  
22.5  
7.12 VIN Overcurrent Protection (VIN_OCP)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN current protection limit with  
RISENSE = 20 mΩ, VIN = 12 V  
See(1)  
PL_SD_LEVEL[1:0] = 10  
PL_SD_LEVEL[1:0] = 11  
6
VOCP  
A
8
(1) Refer to Selecting Current Sensing Resistor for LP8860-Q1 Power Input application note.  
7.13 Power-Line FET Control Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IL,VSENSE_P  
IL,VSENSE_N  
IL,SD  
VSENSE_P pin leakage current  
VSENSE_N pin leakage current  
SD pin leakage current  
VSENSE_P = 48 V  
VSENSE_N = 48 V  
VSD = 48 V  
0.1  
3
µA  
PL_SD_SINK_LEVEL = 00  
PL_SD_SINK_LEVEL = 01  
PL_SD_SINK_LEVEL = 10  
PL_SD_SINK_LEVEL = 11  
55  
110  
220  
440  
Pulldown current for power-line  
p-FET, NMOS_PLFET_EN=0  
ISD PFET  
µA  
7.14 External Temp Sensor Control Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXT_TEMP_LEVEL_HIGH[3:0] = 0000  
EXT_TEMP_LEVEL_HIGH[3:0] = 0001  
EXT_TEMP_LEVEL_HIGH[3:0] = 0010  
EXT_TEMP_LEVEL_HIGH[3:0] = 0011  
EXT_TEMP_LEVEL_HIGH[3:0] = 0100  
EXT_TEMP_LEVEL_HIGH[3:0] = 0101  
EXT_TEMP_LEVEL_HIGH[3:0] = 0110  
EXT_TEMP_LEVEL_HIGH[3:0] = 0111  
EXT_TEMP_LEVEL_HIGH[3:0] = 1000  
EXT_TEMP_LEVEL_HIGH[3:0] = 1001  
EXT_TEMP_LEVEL_HIGH[3:0] = 1010  
EXT_TEMP_LEVEL_HIGH[3:0] = 1011  
EXT_TEMP_LEVEL_HIGH[3:0] = 1100  
EXT_TEMP_LEVEL_HIGH[3:0] = 1101  
EXT_TEMP_LEVEL_HIGH[3:0] = 1110  
EXT_TEMP_LEVEL_HIGH[3:0] = 1111  
79.67  
43.35  
29.77  
22.67  
18.30  
15.34  
13.21  
11.60  
10.34  
9.32  
8.49  
7.79  
7.20  
6.69  
6.25  
5.87  
TSENSE high level  
resistance value  
RTEMP_HIGH  
kΩ  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
External Temp Sensor Control Electrical Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXT_TEMP_LEVEL_LOW[3:0] = 0000  
EXT_TEMP_LEVEL_LOW[3:0] = 0001  
EXT_TEMP_LEVEL_LOW[3:0] = 0010  
EXT_TEMP_LEVEL_LOW[3:0] = 0011  
EXT_TEMP_LEVEL_LOW[3:0] = 0100  
EXT_TEMP_LEVEL_LOW[3:0] = 0101  
EXT_TEMP_LEVEL_LOW[3:0] = 0110  
EXT_TEMP_LEVEL_LOW[3:0] = 0111  
EXT_TEMP_LEVEL_LOW[3:0] = 1000  
EXT_TEMP_LEVEL_LOW[3:0] = 1001  
EXT_TEMP_LEVEL_LOW[3:0] = 1010  
EXT_TEMP_LEVEL_LOW[3:0] = 1011  
EXT_TEMP_LEVEL_LOW[3:0] = 1100  
EXT_TEMP_LEVEL_LOW[3:0] = 1101  
EXT_TEMP_LEVEL_LOW[3:0] = 1110  
EXT_TEMP_LEVEL_LOW[3:0] = 1111  
79.67  
43.35  
29.77  
22.67  
18.30  
15.34  
13.21  
11.60  
10.34  
9.32  
8.49  
7.79  
7.20  
6.69  
6.25  
5.87  
TSENSE low-level  
resistance value  
RTEMP_LOW  
kΩ  
TSENSE maximum  
resistance (missing  
resistor fault value)  
RTS_FLOAT  
2
MΩ  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.15 I2C Serial Bus Timing Parameters (SDA, SCLK)  
See Figure 1.  
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
ƒSCLK  
Clock frequency  
400  
1
2
3
4
5
6
7
8
9
10  
Hold time (repeated) START Condition  
Clock low time  
0.6  
1.3  
25000  
µs  
Clock high time  
600  
ns  
Set-up time for a repeated START condition  
Data hold time  
600  
ns  
50  
ns  
Data setup time  
100  
ns  
Rise Time of SDA and SCL  
Fall Time of SDA and SCL  
Set-up time for STOP condition  
Bus free time between a STOP and a START Condition  
20+0.1xCb  
15+0.1xCb  
600  
300  
300  
ns  
ns  
ns  
1.3  
µs  
Capacitive load parameter for each bus line  
load of 1 pF corresponds to 1 ns.  
Cb  
10  
200  
ns  
7.16 SPI Timing Requirements  
See Figure 2.  
MIN  
70  
35  
35  
35  
35  
20  
20  
NOM  
MAX  
UNIT  
ns  
1
Cycle time  
2
Enable lead time  
Enable lag time  
Clock low time  
Clock high time  
Data setup time  
Data hold time  
Disable time  
ns  
3
ns  
4
ns  
5
ns  
6
ns  
7
ns  
8
10  
29  
ns  
9
Data valid  
ns  
10  
Cb  
NSS inactive time  
Bus capacitance  
700  
5
ns  
40  
pF  
Figure 1. I2C Timing  
NSS  
t10t  
t2t  
t1t  
7
4
5
3
SCLK  
MOSI  
6
MSB IN  
BIT 14  
BIT 9  
BIT 8  
BIT 7  
BIT 1  
LSB IN  
9
8
High  
Impedance  
9
MISO  
MSBOUT  
BIT 1  
Data  
LSB OUT  
Address  
R/W  
Figure 2. SPI Timing Diagram  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
7.17 Typical Characteristics  
Unless otherwise specified: L= 22 µH (IHLP-5050FDER220M5A), CIN = 2 × 10-µF ceramic and 33 µF electrolytic, COUT = 2 ×  
10-µF ceramic and 33-µF electrolytic, Q = IPD25N06S4L-30-ND, D = SS5P10-M3/86A, VDD = 5 V, charge pump disabled, T =  
25°C  
95  
90  
85  
80  
75  
70  
65  
90  
85  
80  
75  
70  
65  
60  
VIN = 5 V  
VIN = 6 V  
VIN = 8 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 6 V  
VIN = 8 V  
VIN = 12 V  
VIN = 15 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Brightness (%)  
Brightness (%)  
C001  
C004  
ƒSW = 303 kHz  
4 strings  
8 LEDs/string  
150 mA/string  
ƒSW = 2.2 MHz  
4 strings  
8 LEDs/string  
100 mA/string  
Figure 3. System Efficiency  
Figure 4. System Efficiency  
4000  
160  
140  
120  
100  
80  
Vout = 26 V  
3500  
3000  
2500  
2000  
1500  
1000  
500  
25 mA  
30 mA  
50 mA  
60 mA  
80 mA  
100 mA  
120 mA  
150 mA  
Vout = 33 V  
Vout = 39 V  
Vout = 45 V  
60  
40  
20  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
Input Voltage (V)  
Voltage (V)  
C007  
C006  
ƒSW = 303 kHz  
Adaptive voltage control off  
Figure 5. Boost Maximum Output Current  
Figure 6. LED Current vs Headroom Voltage  
200  
180  
160  
140  
120  
100  
80  
200  
VIN = 5 V  
VIN = 6 V  
VIN = 8 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 6 V  
VIN = 8 V  
VIN = 12 V  
VIN = 15 V  
180  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Brightness (%)  
8 LEDs/string  
Phase shift 90º  
Brightness (%)  
8 LEDs/string  
Phase shift 90º  
C003  
C005  
ƒSW = 303 kHz  
4 strings  
150 mA/string  
ƒLED_PWM = 4.9 kHz  
fSW = 2.2 MHz  
4 strings  
100 mA/string  
fLED_PWM= 4.9 kHz  
Figure 7. Boost Ripple  
Figure 8. Boost Ripple  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LP8860-Q1 is a high-voltage LED driver for automotive infotainment, LED clusters, and medium-sized LCD  
backlight applications with a boost controller. The device can be used as a stand-alone device, with a simple  
four-wire control:  
VDDIO/EN for enable  
PWM input for brightness control  
FAULT output to indicate fault condition  
NSS input for fault reset  
Alternatively, the LP8860-Q1 can be controlled through I2C or SPI serial interface which allows wide range of  
user-specific configurable features.  
8.1.1 Boost Controller  
The boost controller generates a 16-V to 48-V supply for LED strings. To optimize LED drive efficiency the boost  
controller includes adaptive output voltage control which gets feedback from monitoring the internal LED current  
sinks voltage circuit. This feature minimizes power consumption by adjusting the boost voltage to lowest  
sufficient level in all conditions.  
Boost switching frequency can be set in a wide range from 100 kHz to 2.2 MHz. This enables system  
optimization for both high power applications, where efficiency is critical, and for lower power applications where  
small solution size can be achieved with high boost switching frequency.  
The LP8860-Q1 has several features for system EMI optimization:  
Boost switching frequency can be selected either below or above AM band.  
Spread spectrum can be enabled to reduce energy around the switching frequency and its harmonics.  
Boost switching can be synchronized to an external clock with a dedicated SYNC input.  
Gate drive strength for the external FET is controllable with EEPROM.  
8.1.2 LED Output Configurations  
The LP8860-Q1 has four high-precision current sinks with up to 150 mA per output capability. LED outputs can  
be connected parallel to reach higher current levels.  
LED outputs are highly configurable; for example, there are features such as brightness slope control, external  
clock synchronization, phase shifting, adaptive headroom control, etc.  
In general there are 2 main user modes:  
Display Mode (with full feature set) and/or  
Cluster Mode (with limited feature set)  
These modes and features are detailed in later sections.  
8.1.3 Display Mode  
In Display Mode LED outputs are configured to power an LCD backlight. Maximum current per string is set by  
RISET; alternatively, through a user-programmable EEPROM value.  
Brightness is controlled with PWM input or I2C/SPI register writes. An optional sloper feature enables automatic  
smooth transition between brightness levels. Sloper time can be programmed to EEPROM registers, and an  
advanced slope feature allows smoother response to eye compared to traditional linear slope.  
Outputs are controlled with a Phase Shift PWM (PSPWM) Scheme. Due to the phase shift between the outputs  
they are not activated simultaneously which brings several benefits:  
Peak load current from the boost output is decreased, which reduces the voltage ripple seen at the boost  
output and allows smaller output capacitors.  
Smaller ripple reduces the possible audible noise from the ceramic boost output capacitors.  
PSPWM scheme multiplies the effective load frequency seen at the boost output by number of active  
channels. This further reduces the audible noise by transferring the output ripple frequency above human  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Overview (continued)  
hearing.  
Optical ripple through LCD panel is reduced, helping to reduce the “waterfall” effect which is caused by  
asynchronous backlight ripple and LCD refresh.  
PWM output frequency is set with EEPROM registers from 4.9 kHz to 39 kHz. Selecting output frequency  
depends on the number of strings used, system requirements for the frequency, and desired dimming ratio.  
Dimming resolution is a function of PWM output frequency — the higher the frequency, the lower the resolution.  
User can choose to increase resolution by:  
enabling dithering function (optional through EEPROM), or  
increasing internal clock frequency.  
Increasing internal clock frequency increases device current consumption.  
In high-quality display systems an "anti-waterfall" feature may be required. The LP8860-Q1 supports this by  
offering output synchronization to the LCD refresh signal through VSYNC input. VSYNC input is synchronized to  
outputs through internal PLL; EEPROM and filtering are described in later sections.  
8.1.4 Cluster Mode  
In Cluster mode LED strings have independent control but fewer features enabled than in Display Mode.  
Brightness (PWM and current) are independently controlled for all 4 outputs. When there is an unequal number  
of LEDs per channel, the LP8860-Q1 adaptive voltage control is not used in Cluster mode; therefore, boost  
output voltage is fixed (or externally controlled or powered).  
In Cluster mode PWM frequency can be set through EEPROM, and Phase Shift PWM mode is enabled.  
Cluster mode does not support the PWM input pin, hybrid dimming, slope control or dither mode.  
8.1.5 Hybrid Dimming  
Hybrid dimming combines both PWM and current-dimming benefits offering the best optical efficiency to drive  
LEDs. At higher brightness levels only the LED constant current is controlled; at lower brightness levels LED  
brightness is controlled by adding PWM on top of low constant current value.  
Because LED optical efficacy declines with high forward current, reducing the current yields better system optical  
efficiency compared with conventional PWM dimming. An additional benefit of current dimming is reduced EMI  
compared to PWM switching. PWM dimming is used with lower brightness values to achieve a higher dimming  
ratio. The optimum switch point between PWM and current dimming is programmable and depends on the LED  
type.  
8.1.6 Charge Pump and Square Waveform (SQW) Output  
The gate driver for the external boost FET can be powered directly from the VDD input or from the charge pump  
integrated into the LP8860-Q1. When a 5-V rail is available in the system for VDD supply, it is typically a high  
enough voltage to drive the external FET, and the internal charge pump can be disabled. In this case, the VDD  
and CPUMP pins must be shorted together, and the fly cap can be removed. When the system VDD is not high  
enough to drive the gate of the boost FET (typical case is 3.3 V), the charge pump can be used to multiply the  
gate drive voltage to 2× VDD.  
The SQW output provides a 100-kHz square wave signal (1 mA maximum) with amplitude equal to the charge-  
pump output voltage. When the charge pump is disabled, the amplitude of the SQW signal is equal to VDD. See  
Charge Pump and High Output Voltage Application sections for usage examples.  
8.1.7 Power-Line FET  
Some automotive systems require a safety switch to disconnect the driver device from the battery. The LP8860-  
Q1 offers a power-line FET control circuit, which limits inrush current from the power line during start-up and  
reduces standby power consumption by disconnecting device from the power-line during an off state. This FET  
disconnects the boost and LED strings from the input during fault conditions. For example, when the input  
voltage is above the overvoltage protection (OVP) level, the power-line FET disconnects the LED strings from the  
power-line to protect LED outputs against overheating.  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Overview (continued)  
Depending on which fault has shut down the power-line FET, the device can enter automatic fault recovery state  
where the power-line FET is turned on in 100-ms time periods to see if the fault condition has been removed. If  
the fault was only short-term, and normal operation condition returns, the device turns back on automatically.  
8.1.8 Protection Features  
Extensive fault-detection and protection features of the LP8860-Q1 include:  
Open-string and shorted LED detections  
LED fault detection prevents system overheating in case of open in some of the LED strings  
Boost overcurrent  
Boost overvoltage  
VIN input overvoltage protection  
Threshold sensing from VSENSE_P pin  
VIN input undervoltage protection  
Threshold sensing from VSENSE_P pin  
VIN input overcurrent protection  
Threshold sensing across RISENSE resistor  
VDD input undervoltage lockout  
Thermal shutdown in case of die overtemperature (165°C nominal)  
Fault protection thresholds are EEPROM programmable and some protection features can be disabled, or  
masked, if necessary.  
A fault condition is indicated through the FAULT pin. If an I2C/SPI interface is used, the fault reason can be read  
from the register, and flags can be cleared with register write.  
8.1.9 Advanced Thermal Protection Features  
The LP8860-Q1 has a unique features for protecting against overheating:  
1. Die temperature based Thermal de-rating function. Average LED current is automatically lowered when die  
temperature increases above a predefined (90ºC, 100ºC, or 110ºC) level. Decreasing LED current reduces  
thermal loading on the device and prevents overheating.  
2. An external NTC sensor-based protection, where a sensor can be placed close to LEDs to protect them from  
overheating. The sensor is connected to the TSENSE pin of the device. Two methods are available:  
Current de-rating, where the LED current is lowered proportionally to the temperature measured with the  
external NTC sensor. This method is available only if LED max current is set with RISET resistor.  
Brightness limitation above a predefined temperature  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.2 Functional Block Diagram  
RISENSE  
Q2  
VIN  
D
CIN  
COUT  
VSENSE_P VSENSE_N  
SD  
POWER-LINE FET CONTROL  
C2X  
C1N  
C1P  
VDD  
CVDD  
VDD  
CCPUMP  
CHARGE PUMP  
CPUMP  
SQW  
FB  
Q1  
GD  
SYNC  
BOOST  
ISENSE  
CONTROLLER  
+
RSENSE  
ISENSE_GND  
PGND  
FILTER  
4 x LED  
CURRENT  
SINK  
ANALOG BLOCKS  
(CLOCK  
GENERATOR, PLL,  
VREF, ADC, DACs  
etc.)  
OUT1  
OUT2  
OUT3  
OUT4  
LGND  
ISET  
RISET  
TSENSE  
NTC  
tº  
PWM  
DIGITAL BLOCKS  
(FSM, PWM  
VSYNC  
DETECTOR,  
BRIGTNESS  
CONTROL,  
FAULT  
SLOPER, HYBRID  
DIMMING, SAFETY  
LOGIC etc.)  
VDDIO/EN  
SCLK/SCL  
MOSI/SDA  
MISO  
SPI/I2C  
INTERFACE  
EEPROM  
NSS  
IF  
SGND  
EXPOSED PAD  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Clock Generation  
The LP8860-Q1 has an internal 10-MHz oscillator which is used for clocking the PWM input duty cycle  
measurement. The 10-MHz clock is divided by two, and the 5-MHz clock is used for clocking the state machine  
and internal timings.  
The internal 5-MHz clock can be used for generating the LED PWM output frequency directly or it can be  
multiplied with an internal PLL to achieve higher resolution. The higher clock frequency for the PWM generation  
block allows the higher resolution; however, the tradeoff is higher power consumption of the part. Clock  
multiplication is set with <PWM_RESOLUTION[1:0]> EEPROM bits.  
8.3.1.1 LED PWM Clock Generation With VSYNC  
Unsynchronized LCD line scanning and LED backlight ripple may cause a “waterfall” effect. Synchronizating LED  
output PWM frequency with video processor or timing controller VSYNC/HSYNC signal can reduce this effect.  
The PLL can be used for generating required PWM generation clock from the VSYNC signal. This ensures that  
the LED output PWM remains synchronized to the VSYNC signal, and there is no clock variation between the  
LCD display video update and the LED backlight output frequency. If PWM_COUNTER_RESET = 1, the VSYNC  
signal rising edge restartsthe PWM generation, ensuring there is no clock drifting. The slow divider is intended for  
LED PWM frequency synchronization with an external VSYNC. An external filter connected to the FILTER pin  
must be used only if a slow divider is enabled — otherwise the LP8860-Q1 uses internal compensation.  
The ƒOUT of the PLL must be chosen in the 5-MHz to 40-MHz range. If VSYNC is enabled, the signal must be  
active before VDDIO/EN is set high and present whenever VDDIO/EN is high.  
VSYNC 50...150 Hz  
or 50...150 kHz  
SYNC_PRE_DIVIDER[3:0]  
VBOOST  
PWM_FREQ[3:0]  
PWM_COUNTER_RESET  
PWM_RESOLUTION[1:0]  
LED_STRING_CONF[2:0]  
EN_SYNC  
Predivider  
PLL  
0
1
PWM Generator  
Phase  
Detector  
1
VCO  
Filter  
5 MHz  
10 MHz Internal  
Oscillator  
Divider  
f/2  
0
fOUT  
EN_PLL  
SEL_DIVIDER  
State Machine,  
PWM Input, Internal  
Timings, Slope etc.  
1
0
PWM Input  
Divider  
1/Nfast  
Divider  
R_SEL[1:0]  
PWM_RESOLUTION[1:0]  
0
1
Divider  
1/Nslow  
PWM_SYNC  
SLOW_PLL_DIV[12:0]  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9. PLL Clock Generation  
8.3.1.2 LED PWM Frequency and Resolution  
LED output PWM frequency is selected with <PWM_FREQ[3:0]> EEPROM register when using a 5-MHz internal  
oscillator for generating PWM output. <LED_STRING_CONF[2:0]> bits define phase shift between LED outputs  
as described later. <PWM_RESOLUTION[1:0]> EEPROM bits select the PLL output frequency and hence the  
LED PWM resolution. PWM frequencies with <EN_SYNC> = 0 are listed in Table 1.  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Feature Description (continued)  
NOTE  
If the VSYNC signal is used for generating PWM output frequency, it affects all clock  
frequencies, as well as the LED PWM output frequency. The EEPROM Bit Explanations  
section explains how all the dividers affect the output clocks.  
VBOOST  
PWM_FREQ[3:0]  
LED_STRING_CONF[2:0]  
5 MHz  
PWM Generator  
EN_PLL=0  
PWM_RESOLUTION[1:0]=00  
PWM_COUNTER_RESET=0  
Copyright © 2016, Texas Instruments Incorporated  
Figure 10. PWM Clocking With Internal Oscillator  
VBOOST  
PWM_FREQ[3:0]  
PWM_RESOLUTION[1:0]  
LED_STRING_CONF[2:0]  
PLL  
5 MHz  
Phase  
Detector  
VCO  
Filter  
PWM Generator  
Divider  
1/Nfast  
Fout=10, 20, 40 MHz  
EN_PLL=1  
EN_SYNC=0  
SEL_DIVIDER =1  
PWM_COUNTER_RESET=0  
PWM_RESOLUTION[1:0]  
Copyright © 2016, Texas Instruments Incorporated  
Figure 11. PWM Clocking With PLL, Internal Oscillator as Reference  
Table 1. Output PWM Frequency and Resolution With Internal Oscillator  
00  
01  
10  
11  
OSC = 5 MHz  
OSC = 10 MHz  
OSC = 20 MHz  
OSC = 40 MHz  
PWM_FREQ[3:0]  
PWM_RESOLUTION[1:0]  
PWM FREQUENCY (Hz)  
RESOLUTION (bit)  
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
0111  
0110  
0101  
0100  
0011  
0010  
39063  
34180  
30518  
29297  
28076  
26855  
25635  
24412  
23192  
21973  
20752  
19531  
17090  
13428  
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
9
9
9
9
9
9
9
9
9
10  
10  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Feature Description (continued)  
Table 1. Output PWM Frequency and Resolution With Internal Oscillator (continued)  
00  
01  
10  
11  
OSC = 5 MHz  
OSC = 10 MHz  
OSC = 20 MHz  
OSC = 40 MHz  
PWM_FREQ[3:0]  
PWM_RESOLUTION[1:0]  
PWM FREQUENCY (Hz)  
RESOLUTION (bit)  
0001  
0000  
9766  
4883  
9
10  
11  
11  
12  
12  
13  
10  
VSYNC 50...150 Hz  
or 50...150 kHz  
VBOOST  
PWM_FREQ[3:0]  
PWM_COUNTER_RESET  
PWM_RESOLUTION[1:0]  
LED_STRING_CONF[2:0]  
SYNC_PRE_DIVIDER[3:0]  
PLL  
Phase  
Detector  
VCO  
Filter  
Predivider  
PWM generator  
EN_PLL=1  
SEL_DIVIDER=0  
EN_SYNC=1  
PWM_SYNC=1  
Divider  
1/Nslow  
SLOW_PLL_DIV[12:0]  
Copyright © 2016, Texas Instruments Incorporated  
Figure 12. PWM Synchronization With External VSYNC Input  
PWM clock frequencies with different <SEL_DIVIDER>, <EN_PLL>, and <EN_SYNC> combinations are listed in  
Table 2.  
Table 2. PLL Clock and LED PWM Frequency  
PWM_SYNC  
SEL_DIVIDER  
EN_PLL  
EN_SYNC  
PLL CLOCK  
5 MHz  
PWM FREQUENCY  
See Table 1  
0
0
0
X
1
0
0
1
1
0
0
1
5, 10, 20, 40 MHz  
See Table 1  
SYNC × R_SEL[1:0] ×  
SLOW_PLL_DIV[12:0]/  
SYNC_PRE_DIV[3:0]  
PLL clock / GEN_DIV  
1
0
1
1
SYNC × GEN_DIV ×  
SLOW_PLL_DIV[12:0]/  
SYNC_PRE_DIV[3:0]  
PLL clock / GEN_DIV  
GEN_DIV coefficients and resolution (bit) are listed on Table 3.  
Table 3. GEN_DIV Coefficients and Resolution  
PWM_RESOLUTION[1:0]  
00  
01  
10  
11  
PWM_  
FREQ[3:0]  
STEP GEN_DIV RES  
(bits)  
STEP  
GEN_DIV  
RES STEP  
(bits)  
GEN_DIV  
RES STEP  
(bits)  
GEN_DIV  
RES  
(bits)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
64  
1024.00  
512.00  
372.36  
292.57  
256.00  
240.94  
227.56  
10  
9
32  
64  
2048.00  
1024.00  
744.73  
585.14  
512.00  
481.88  
455.11  
11  
10  
9
16  
32  
44  
56  
64  
68  
72  
4096.00  
2048.00  
1489.45  
1170.29  
1024.00  
963.76  
12  
11  
10  
10  
10  
9
8
8192.00  
4096.00  
2978.91  
2340.57  
2048.00  
1927.53  
1820.44  
13  
12  
11  
11  
11  
10  
10  
128  
176  
224  
256  
272  
288  
16  
22  
28  
32  
34  
36  
8
88  
8
112  
128  
136  
144  
9
8
9
7
8
7
8
910.22  
9
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Table 3. GEN_DIV Coefficients and Resolution (continued)  
PWM_RESOLUTION[1:0]  
00  
01  
10  
11  
PWM_  
FREQ[3:0]  
STEP GEN_DIV RES  
(bits)  
STEP  
GEN_DIV  
RES STEP  
(bits)  
GEN_DIV  
RES STEP  
(bits)  
GEN_DIV  
RES  
(bits)  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
304  
320  
336  
352  
368  
384  
400  
448  
512  
215.58  
204.80  
195.05  
186.18  
178.09  
170.67  
163.84  
146.29  
128.00  
7
7
7
7
7
7
7
7
7
152  
160  
168  
176  
184  
192  
200  
224  
256  
431.16  
409.60  
390.10  
372.36  
356.17  
341.33  
327.68  
292.57  
256.00  
8
8
8
8
8
8
8
8
8
76  
80  
862.32  
819.20  
780.19  
744.73  
712.35  
682.67  
655.36  
585.14  
512.00  
9
9
9
9
9
9
9
9
9
38  
40  
42  
44  
46  
48  
50  
56  
64  
1724.63  
1638.40  
1560.38  
1489.45  
1424.70  
1365.33  
1310.72  
1170.29  
1024.00  
10  
10  
10  
10  
10  
10  
10  
10  
10  
84  
88  
92  
96  
100  
112  
128  
Dithering allows increased resolution and smaller average steps size. Dithering can be programmed with  
EEPROM bits <DITHER[2:0]> 0 to 4 bits. Figure 13 shows 1-bit dithering. For 3-bit dithering, every 8th pulse is  
made 1 LSB longer to increase the average value by 1/8th. Dither is available in steady state condition when  
<EN_STEADY_DITHER> is high, otherwise during slope only.  
PWM value 510 (10-bit)  
+1LSB  
PWM value 510 ½ (10-bit)  
PWM value 511 (10-bit)  
Figure 13. Example of the Dithering, 1-Bit Dither, 10-Bit Resolution  
8.3.2 Brightness Control (Display Mode)  
The LP8860-Q1 LED outputs can be configured to display or cluster mode. The following sections describe  
display mode options. Cluster mode is a special mode with individually controlled LED outputs. See Cluster  
Mode section for details.  
The LP8860-Q1 controls the brightness of the display with conventional PWM or with Hybrid PWM and Current  
dimming. Brightness control is received either from PWM input pin or from I2C/SPI register bits. The brightness  
source is selected with <BRT_MODE[1:0]> bits as follows:  
Table 4. Brightness Control Selection  
BRT_MODE[1:0]  
BRIGHTNESS CONTROL  
00  
01  
10  
11  
PWM input duty cycle  
PWM input duty cycle x Brightness register  
Brightness register  
PWM direct control (PWM in = PWM out)  
8.3.2.1 PWM Input Duty Cycle Based Control  
In this mode the LED brightness is controlled by the input PWM duty cycle. The PWM detector block measures  
the duty cycle in the PWM pin and uses this 16-bit value to control the duty cycle of the LED output PWM. Input  
PWM period is measured from rising edge to the next rising edge.  
The ratio of input PWM frequency and 10-MHz sampling clock defines resolution reachable with external PWM.  
PWM input block timeout is 24 ms after the last rising edge; it must be taken into account for 0% and 100%  
brightness setting. For setting 100% brightness, a high-level PWM input signal must last at least 24 ms. The  
minimum on and off time for the PWM input signal is 400 ns.  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
 
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.3.2.2 Brightness Register Control  
With brightness register control the LED output PWM is controlled with 16-bit resolution <DISP_CL1_BRT[15:0]>  
register bits.  
8.3.2.3 PWM Input Duty × Brightness Register  
In this mode the PWM input duty cycle value is multiplied with the 16-bit <DISP_CL1_BRT[15:0]> register value  
to achieve the LED output PWM.  
8.3.2.4 PWM-Input Direct Control  
With PWM-input direct control the output PWM directly follows the input PWM frequency and duty cycle. Due to  
the internal logic structure the input is clocked with the 5-MHz clock or the PLL clock (if it is enabled). The output  
PWM delay can be 5 to 6 clock cycles from input PWM.  
In the direct control mode several of the advanced features are not available: Phase Shift PWM (PSPWM),  
brightness slope, dither, Hybrid PWM and Current dimming, and LED current limitation with external NTC.  
Dimming ratio can be calculated as the ratio between the brightness PWM input signal and sampling clock (5-  
MHz or PLL clock) frequencies. In direct mode PWM duty cycle must be less than 100%. Boost adaptive mode  
turns off at 100% duty cycle.  
8.3.2.5 Brightness Slope  
Sloper makes the smooth transition from one brightness value to another. Slope time can be programmed with  
EEPROM bits <PWM_SLOPE[2:0]> from 0 to 511 ms. Slope time is used for sloping up and down. Advanced  
slope makes brightness changes smooth for eye.  
Table 5. Slope Time  
PWM_SLOPE[2:0]  
SLOPE TIME  
disabled  
1 ms  
000  
001  
010  
011  
100  
101  
110  
111  
2 ms  
52 ms  
105 ms  
210 ms  
315 ms  
511 ms  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Brightness (PWM)  
Sloper Input  
Time  
Steady state with or  
without dithering  
Brightness (PWM)  
PWM Output  
Normal slope  
If dither is enabled it will  
be used during transition  
to enable smooth effect  
Advanced slope  
Time  
Slope Time  
Figure 14. Sloper Operation  
8.3.2.6 LED Dimming Methods  
In additional to conventional PWM dimming control the LP8860-Q1 supports Hybrid PWM and Current dimming.  
Hybrid dimming combines the PWM and current dimming methods. PWM dimming operates with a lower range  
of light, and linear current dimming is used with higher brightness values. If the <EN_PWM_I EEPROM> bit is set  
to 1, the system enables hybrid dimming. Principles of PWM dimming and Hybrid PWM and Current dimming are  
illustrated by Figure 15. Only 25% switch points and slope gain = 1 are shown for simplicity.  
Max current can be set with EEPROM bits or  
with R  
resistor  
ISET  
PWM DIMMING  
CURRENT DIMMING  
100%  
75%  
50%  
25%  
I_SLOPE[2:0]=000  
Slope gain = 1  
GAIN_CTRL[2:0]=011  
Switch point = 25%  
100%  
100%  
25%  
25%  
50%  
50%  
BRIGHTNESS  
BRIGHTNESS  
Figure 15. Principles of PWM Dimming and Hybrid PWM and Current Dimming  
LED forward voltage increases and efficiency declines when forward current is increased. Use of constant  
current with PWM dimming at lower brightness and current dimming at greater brightness (instead of PWM  
dimming at full brightness range), yields better optical efficiency and resolution especially at lower brightness  
values. The optimum switch point between PWM and current dimming modes and current slope depend on the  
LED type.  
PWM control ranges from 12.5% to 50% and the current slope can be selected using <GAIN_CTRL[2:0]> and  
<I_SLOPE[2:0]> EEPROM bits, respectively (see Table 6 and Table 7).  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
 
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
100%  
25%  
BRIGHTNESS  
HYBRID DIMMING  
~20%  
PWM DIMMING  
BRIGHTNESS  
Figure 16. Optical Efficiency Improvement With PWM and Current Dimming  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Table 6. Gain Control Selections  
SWITCH POINT FROM PWM  
TO CURRENT DIMMING  
GAIN_CTRL[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
50.0%  
40.6%  
31.3%  
25.0%  
21.9%  
18.8%  
15.6%  
12.5%  
Table 7. Current Slope Control Selections  
I_SLOPE[2:0]  
SLOPE GAIN  
1.000  
000  
001  
010  
011  
100  
101  
110  
111  
1.023  
1.047  
1.070  
1.094  
1.117  
1.141  
1.164  
The current setting for DISP_CL1_CURRENT[11:0] in Hybrid PWM and Current dimming mode can be defined  
by the following formula (assuming individual LED sink current correction DRV_OUTx_CORR[3:0] is 0%):  
(100%- GAIN_CTRL[2 : 0])  
IDISP_CL1_CURRENT[11:0] = IMAX -DRV _LED_CURRENT_SCALE[2 : 0]ìI_SLOPE[2 : 0]ì  
100%  
(1)  
Example of calculation for Hybrid PWM and Current dimming mode, 100-mA maximum output current:  
Target maximum current 100 mA  
Maximum scale 100 mA  
(DRV_LED_CURRENT_SCALE[2:0]=101)  
IDISP_CL1_CURRENT = 100 – 100 × 1 × ((100 – 25) / 100) = 25 mA  
Slope = 1.000 (I_SLOPE[2:0]=000)  
Switch point = 25% (GAIN_CTRL[2:0]=011)  
Example of calculation for Hybrid PWM and Current dimming mode, 23-mA maximum output current:  
Target maximum current 23 mA  
Maximum scale 25 mA  
(DRV_LED_CURRENT_SCALE[2:0]=000)  
IDISP_CL1_CURRENT = 23 – 25 × 1.094 × ((100 – 25) / 100) = 2.49 mA  
Slope = 1.094 (I_SLOPE[2:0]=100)  
Switch point = 25% (GAIN_CTRL[2:0]=011)  
NOTE  
1. Formula is only approximation for the actual value.  
2. DISP_CL1_CURRENT[11:0] value must be chosen to avoid current saturation before 100%  
brightness is achieved.  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.3.2.7 PWM Calculation Data Flow for Display Mode  
Figure 17 shows the PWM calculation data flow for display mode. In PWM direct control mode most of the blocks  
are bypassed, and this flow chart does not apply.  
10  
MHz  
Clock  
External  
Temp Sensor  
HYSTERESIS  
[1:0]  
PWM_SLOPE[3:0]  
EN_BRT_ADV_SLOPE  
I_SLOPE[2:0]  
BRT_MODE[1:0]  
00  
DITHER[2:0]  
Current 12-bit  
PWM Input  
Signal  
16-bit  
PWM  
PWM &  
Current  
Control  
16-bit  
16-bit  
16-bit  
16-bit  
01  
Advanced  
Slope  
PWM  
Comparator  
Temperature  
Regulator  
...  
Detector  
Sloper  
Dither  
PWM  
16-bit  
16-bit  
16-bit  
10  
11  
PWM  
freq  
DISPLAY  
MODE LED  
CURRENT  
SINKS  
16-bit  
11-bit  
EN_PWM_I  
GAIN_CTRL[2:0]  
PWM  
Counter  
Brightness  
Register  
Internal  
Temp Sensor  
PWM_RESOLUTION  
[1:0]  
PWM_FREQ[3:0]  
PLL Clock 5...40 MHz  
Copyright © 2016, Texas Instruments Incorporated  
Figure 17. PWM Data Flow Calculation  
Table 8. PWM Calculation Blocks  
BLOCK NAME  
DESCRIPTION  
PWM detector block measures the duty cycle of the input PWM signal. Resolution depends on the  
input signal frequency. Hysteresis selection sets the minimum allowable change to the input.  
Smaller changes are ignored.  
PWM detector  
Brightness register  
Brightness mode control  
16-bit register for brightness setting <DISP_CL1_BRT[15:0]>  
Brightness control block gets 16-bit value from the PWM detector, and also 16-bit value from the  
brightness register <DISP_CL1_BRT[15:0]>. <BRT_MODE[1:0]> selects whether to use PWM input  
duty cycle value, the brightness register value or multiplication.  
Temperature regulator reduces LED PWM duty cycle depending on internal and external  
temperature sensor.  
See LED Current Dimming With Internal Temperature Sensor and LED Current Limitation With  
External NTC Sensor for details  
Temperature regulator  
External temperature sensor  
Internal temperature sensor  
External NTC temperature sensor  
Internal die temperature sensor  
Sloper makes the smooth transition from one brightness value to another. Slope time can be  
adjusted from 0 ms to 511 ms with <PWM_SLOPE[2:0]> EEPROM bits.  
Sloper  
Advanced sloper  
Advanced slope makes brightness changes smoother for eye; see Brightness Slope for details  
Hybrid PWM and Current dimming improves the optical efficiency of the LEDs by using PWM  
control with lower brightness values and current control with greater values. <EN_PWM_I>  
EEPROM bit enables Hybrid PWM and Current control. PWM dimming range can be set 12.5 to  
50% of the brightness range with <GAIN_CTRL[2:0]> EEPROM bits. Current slope can be adjusted  
by using the <I_SLOPE[2:0]> EEPROM bits. See LED Dimming Methods for details  
PWM and Current Control  
Dither  
With dithering the output resolution can be further increased. This way the brightness change steps  
are not visible to eye. The amount of dithering is 0 to 4 bits, and is selected with <DITHER[2:0]>  
EEPROM bits.  
PWM comparator compares the PWM counter output to the value received from the dither block.  
Output of the PWM comparator directly controls the LED current sinks. If Phase Shift PWM  
(PSPWM) mode is used, the PWM counter values for each LED output are modified by summing an  
offset value to create different phases.  
PWM comparator  
PWM counter  
Overflowing 16-bit PWM counter creates new PWM cycle. Step for incrementation is defined by  
<PWM_FREQ[3:0]> and <PWM_RESOLUTION[1:0]> bits, see Table 3.  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.3.3 LED Output Modes and Phase Shift PWM (PSPWM) Scheme  
The PSPWM scheme allows delaying the time when each LED output is active. When the LED outputs are not  
activated simultaneously, the peak load current from the boost output is greatly decreased. This reduces the  
ripple seen on the boost output and allows smaller output capacitors. Reduced ripple also reduces the output  
ceramic capacitor audible ringing. The PSPWM scheme also increases the load frequency seen on boost output  
up to 4 times, therefore transferring possible audible noise to a frequency above human hearing range. In  
addition, “optical ripple” through the LCD panel is reduced helping in waterfall noise reduction.  
Figure 18 shows the available LED output modes. The number of LED outputs used can be one to four; outputs  
can be tied together to increase current for one string or all four strings can be independently controlled in the  
cluster mode.  
In <LED_STRING_CONF[2:0]> = 000 the phase difference between channels is 90 degrees. This mode is  
intended for application in Figure 53. When <LED_STRING_CONF[2:0] > = 001 the phase difference between 3  
channels in display mode is 120 degrees. This mode is intended for application shown in Figure 63. When  
<LED_STRING_CONF[2:0]> = 010 the phase difference between 2 channels in display mode is 180 degrees,  
channels 3 and 4 in cluster mode, intended for application illustrated by Figure 60. LED strings not used in  
Display mode can be used for Cluster mode, or not used. When <LED_STRING_CONF[2:0]> = 111 all strings  
are in cluster mode.  
Phase shift  
90 degrees  
Cycle time  
1/(fPWM  
Phase shift  
120 degrees  
Cycle time  
1/(fPWM  
)
)
VBOOST  
VBOOST  
External  
power  
supply  
OUT1  
DISPLAY  
OUT1  
DISPLAY  
OUT2  
DISPLAY  
OUT2  
DISPLAY  
Output 4 in  
cluster mode  
or not  
1
2
3
4
connected  
OUT3  
DISPLAY  
1
2
3
OUT3  
DISPLAY  
4
OUT4  
CLUSTER  
OUT4  
DISPLAY  
4-channel Phase Shift PWM (Mode 0)  
3-channel Phase Shift PWM (Mode 1)  
Cycle time  
Phase shift 120 degrees  
1/(fPWM  
)
Phase shift  
180 degrees  
Cycle time  
1/(fPWM  
External  
power  
supply  
OUT1  
DISPLAY  
)
VBOOST  
External  
power  
supply  
OUT1  
DISPLAY  
VBOOST  
OUT2  
CLUSTER  
Outputs 2,3  
and 4 in  
cluster mode  
or not  
OUT2  
Outputs 3 and  
4 in cluster  
mode or not  
connected  
1
2
3
4
DISPLAY  
OUT3  
CLUSTER  
1
2
3
4
connected  
OUT3  
CLUSTER  
OUT4  
CLUSTER  
OUT4  
CLUSTER  
Phase shift 120 degrees  
2-channel Phase Shift PWM (Mode 2)  
Phase shift  
Cycle time  
Phase Shift PWM (Mode 3)  
VBOOST  
180 degrees  
1/(fPWM  
)
VBOOST  
Cycle time  
1/(fPWM  
)
OUT1  
OUT1  
OUT2  
OUT2  
DISPLAY  
OUT3  
1
2
3
OUT4  
DISPLAY  
4
1
2
3
OUT3  
4
OUT4  
DISPLAY  
Mode 4  
Mode 5  
Phase shift  
90 degrees  
Cycle time  
1/(fPWM  
)
Phase shift  
120 degrees  
Cycle time  
VBOOST  
1/(fPWM  
)
OUT1  
CLUSTER  
VBOOST  
External  
power  
OUT1  
OUT2  
DISPLAY  
supply  
OUT2  
CLUSTER  
Outputs 3 and  
4 in cluster  
mode or not  
connected  
OUT3  
CLUSTER  
OUT3  
CLUSTER  
1
2
3
4
1
2
3
4
OUT4  
CLUSTER  
OUT4  
CLUSTER  
Phase shift  
120 degrees  
Mode 6  
Mode 7  
Figure 18. Phase Shift Modes  
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 9. Description of the LED Output Modes  
MODE  
LED_STRING_CONF[2:0]  
DESCRIPTION  
0
000  
4 separate LED strings with 90° phase shift  
3 separate LED strings with 120° phase shift (String 4 in cluster mode or  
not used)  
1
001  
2 separate LED strings with 180° phase shift (Strings 3 and 4 in cluster  
mode or not used)  
2
3
4
5
6
7
010  
011  
100  
101  
110  
111  
1 LED string. (Strings 2,3 and 4 in cluster mode or not used)  
2 LED strings (1+2, 3+4) with 180° phase shift. Strings with same phase  
can be connected together.  
1 LED string (1+2+3+4). All strings with same phase (can be tied together).  
1 LED string (1+2). 1st and 2nd strings tied with same phase, strings 3 and  
4 are in cluster mode or not used  
All strings are used in cluster mode with 90° phase shift  
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Table 10. Output Mode Configuration  
LED_STRING_CONF[2:0]  
SETUP  
000  
001  
010  
011  
100  
101  
110  
111  
No. of  
Displ.  
Strings  
No. of  
Cluster  
Strings  
No. of  
Displ.  
Strings  
No. of  
Cluster  
Strings  
No. of  
Displ.  
Strings  
No. of  
Cluster  
Strings  
No. of  
Displ.  
Strings  
No. of  
Cluster  
Strings  
No. of  
Displ.  
Strings  
No. of  
Cluster  
Strings  
No. of  
Displ.  
Strings  
No. of  
Cluster  
Strings  
No. of  
Displ.  
Strings  
No. of  
Cluster  
Strings  
No. of  
Displ.  
Strings  
No. of  
Cluster  
Strings  
4
0
3
1
2
1+1  
1
1+1+1  
2+2  
0
same  
phase/  
4 tied  
0
same  
phase/  
2 tied  
1+1  
0
1+1+1+1  
Adaptive voltage control  
FAULT DETECTION  
Open LED string  
Y
Y
N
Y
N
Y
N
Y
Y
Y
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Short LED string  
Y/N  
Y/N  
OPTIONS  
Sloper  
Y
Y
N
Y
N
Y
N
Y
Y
Y
N
N
Dithering  
Int. temp. current dimming  
Ext. temp. current limit  
Ext. temp. current dimming  
Brightness modes  
PMW dimming  
Y
Y
Y
Y
Y
All  
Y
All  
Y
Reg. only  
All  
Y
Reg. only  
All  
Y
Reg. only  
All  
Y
All  
Y
All  
Y
Reg. only  
Reg. only  
Y
N
Y
N
Y
N
Y
N
Y
N
Hybrid PWM and Current Dimming  
LED OUTPUT PARAMETERS (PLL Frequency 40 MHz)  
ƒLED PWM min  
4.9 kHz  
13  
4.9 kHz  
13  
4.9 kHz  
13  
4.9 kHz  
13  
4.9 kHz  
13  
Resolution at min ƒLED  
fLED PWM max  
PWM  
39 kHz  
10  
39 kHz  
10  
39 kHz  
10  
39 kHz  
10  
4.9 kHz  
13  
Resolution at max ƒLED  
PWM  
Additional Dither for Display  
4
4
N
4
N
4
N
4
4
4
N
N
LED OUTPUT PARAMETERS (PLL Frequency 5 MHz/off  
fLED PWM min  
4.9 kHz  
4.9 kHz  
4.9 kHz  
10  
4.9 kHz  
10  
610 Hz  
13  
Resolution at min ƒLED  
ƒLED PWM Max  
10  
10  
39 kHz  
7
PWM  
39 kHz  
39 kHz  
39 kHz  
7
610 Hz  
13  
Resolution at max ƒLED  
7
4
PWM  
Additional bits with dither  
4
N
4
N
4
N
4
4
4
N
N
Copyright © 2014–2017, Texas Instruments Incorporated  
29  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.3.4 LED Current Setting  
EXT_TEMP_GAIN[3:0]  
EXT_TEMP_MINUS[1:0]  
EXT_TEMP_I_DIMMING_EN  
TEMPERATURE  
TSENSE  
DRV_OUT1_CORR[3:0]  
CURRENT  
DIMMING  
DRV_EN_EXT_LED_CUR_CTRL  
LED CURRENT  
SINK 1  
OUT1  
EXTERNAL  
ISET  
CURRENT  
SETTING  
1
0
DAC  
VREF  
DRV_OUT2_CORR[3:0]  
CL2_CURRENT[7:0]  
CL3_CURRENT[7:0]  
DAC  
DAC  
OUT2  
OUT3  
LED CURRENT  
SINK 2  
DRV_OUT3_CORR[3:0]  
LED CURRENT  
SINK 3  
DRV_OUT4_CORR[3:0]  
CL4_CURRENT[7:0]  
DISP_CL1_CURRENT[11:0]  
OUT4  
DAC  
LED CURRENT  
SIUNK 4  
DRV_LED_BIAS_CTRL[1:0]  
DRV_EN_SPLIT_FET  
DRV_LED_CURRENT_SCALE[2:0]  
Copyright © 2016, Texas Instruments Incorporated  
Figure 19. LED Current Setting  
The output LED current can be set by a register. Maximum output LED current can be set by an external resistor  
when that option is enabled. For strings in cluster mode current for every LED output can be set independently.  
The maximum current for the LED outputs in display mode are controlled with <DISP_CL1_CURRENT [11:0]>  
bits. Current for the outputs in the cluster mode are controlled separately by the register bits  
<DISP_CL1_CURRENT[11:0]>, <CL2_CURRENT[7:0]>, <CL3_CURRENT[7:0]>, and <CL4_CURRENT[7:0]>  
respectively. In the display mode resolution for current control is 12 bits. In the cluster mode resolution is 8 bits  
for all outputs except OUT1. For OUT1 maximum current resolution is always 12 bits.  
Additionally, current for every output current can be scaled with <DRV_LED_CURRENT_SCALE[2:0]> bits (see  
Table 11) and can be corrected by <DRV_OUTx_CORR[3:0]> EEPROM bits. The adjustment range is shown in  
Table 12 Maximum current settings are effective for display and cluster modes.  
Table 11. LED Current Scaling  
DRV_LED_CURRENT_SCALE[2:0]  
MAXIMUM CURRENT  
25 mA  
000  
001  
010  
011  
100  
101  
110  
30 mA  
50 mA  
60 mA  
80 mA  
100 mA  
120 mA  
30  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Table 11. LED Current Scaling (continued)  
DRV_LED_CURRENT_SCALE[2:0]  
111  
MAXIMUM CURRENT  
150 mA  
When maximum current is controlled by anexternal resistor RISET (<DRV_EN_EXT_LED_CUR_CTRL>=1),  
current for outputs in display mode or for OUT1 in cluster mode can be calculated as follows:  
3000ìV  
BG ì  
DISP_CL1_CURRENT[11: 0] DRV _LED_CURRENT_SCALE[2: 0] (DRV_OUTx_CORR[3 : 0] +100)  
ILED  
=
ì
ì
R
4095  
150  
100  
ISET  
(2)  
Where VBG = 1.2 V.  
space  
For example, if <DISP_CL1_CURRENT[11:0]> is 0xFFF, <DRV_LED_CURRENT_SCALE[0:2]> is 111, and a  
24-kΩ RISET resistor is used, then the LED maximum current is 150 mA.  
When current control with external resistor is disabled (<DRV_EN_EXT_LED_CUR_CTRL>=0) LED current for  
outputs in display mode or for OUT1 in cluster mode can be calculated as follow:  
DISP_CL1_CURRENT[11: 0]  
(DRV _OUTx _CORR[3 : 0] +100)  
ILED  
=
ìDRV _LED_CURRENT_SCALE[2: 0]ì  
4095  
100  
(3)  
When maximum current control with external resistor is enabled, LED current for OUT2…OUT4 outputs in cluster  
mode is defined as:  
3000ì VBG  
RISET  
CLx _CURRENT[7 : 0] DRV _LED_CURRENT _SCALE[2 : 0] (DRV _OUTx _CORR[3 : 0] +100)  
ILED  
=
ì
ì
ì
255  
150  
100  
(4)  
Otherwise, when current control with external resistor is disabled:  
CLx_CURRENT[7 : 0]  
(DRV _OUTx_CORR[3 : 0] +100)  
ILED  
=
ìDRV _LED_CURRENT_SCALE[2: 0]ì  
255  
100  
(5)  
Correction value is defined by <DRV_OUTx_CORR[3:0]> shown in Table 12:  
Table 12. Individual Current Correction  
DRV_OUTx_CORR[3:0]  
CORRECTION  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
6.50%  
5.60%  
4.70%  
3.70%  
2.80%  
1.90%  
0.90%  
0.00%  
–0.9%  
–1.90%  
–2.80%  
–3.70%  
–4.70%  
–5.60%  
–6.50%  
–7.40%  
NOTE  
Formulas are only approximation for the actual current.  
Copyright © 2014–2017, Texas Instruments Incorporated  
31  
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
The <DISP_CL1_CURRENT[11:0]> register is initialized during start-up by the <LED_CURRENT_CTRL[11:0]>  
EEPROM bits. <DRV_LED_CURRENT_SCALE[2:0]> are initialized by the <DRV_LED_CURRENT_SCALE[2:0]>  
EEPROM bits. Cluster mode current registers for outputs OUT2 and OUT3 are initialized by 0 during power on  
reset.  
Current register value must be not written to 0 if brightness is not zero – it may cause LED faults and adaptive  
voltage control instability.  
8.3.5 Cluster Mode  
Cluster is a simplified mode which allows independent current and PWM control for every string in cluster mode.  
In this mode brightness control is limited to conventional PWM through the SPI/I2C brightness registers. The  
PWM input pin, Hybrid PWM and Current dimming mode, slope control, or dither are not available. Brightness for  
different LED strings depends on <DISP_CL1_BRT[15:0]>, <CL2_BRT[12:0]>, <CL3_BRT[12:0]> and  
<CL4_BRT[12:0]> registers. If OUT1 is in cluster mode, only 13 MSB are used. If all LED outputs are in the  
cluster mode, LED output PWM resolution is always 13 bits, and frequency depends on  
<PWM_RESOLUTION[1:0]> bits (see Table 13). If one or more of the LED outputs is in display mode, frequency,  
and resolution for strings in the cluster mode is the same as for strings in the display mode (see Table 1).  
CL#_CURRENT[7:0]  
Cluster  
Current  
Register  
CL#_BRT[12:0]  
Cluster  
...  
PWM  
Comparator  
Brightness  
Register  
CLUSTER  
MODE LED  
CURRENT  
SINKS  
PWM_RESOLUTION[1:0]  
PWM_FREQ[3:0]  
PWM  
Counter  
PLL Clock 5...40 MHz  
Copyright © 2016, Texas Instruments Incorporated  
Figure 20. Cluster Mode Block Diagram  
Table 13. Output PWM Frequency for Mode 7 (All Strings in Cluster Mode)  
PWM_RESOLUTION[1:0]  
OSC frequency (MHz)  
ƒLED PWM (Hz)  
00  
5
01  
10  
10  
20  
11  
40  
610  
1221  
2442  
4883  
When the LP8860-Q1 is set in cluster mode, fault protection functionality is limited. Headroom for LED strings  
must be between the high-voltage comparator level <DRV_LED_FAULT_THR[1:0]> and low-voltage comparator  
level <DRV_HEADR[2:0]> (which depend upon saturation voltage); otherwise a fault is generated.  
Adaptive boost control does not follow strings in cluster mode. Display mode strings and cluster mode strings  
must not be connected to the same boost. When LED strings in display and cluster modes are connected to the  
same boost, LED open or short faults may be generated if the LED forward-voltage mismatch is too high.  
If all LED outputs are in cluster mode, boost output voltage is fixed and must be set by EEPROM  
<BOOST_INITIAL_VOLTAGE[5:0]> bits to a value high enough to ensure correct LED string operation in all  
conditions.  
<EN_CL_LED_FAULT>=0 disables cluster LED fault detection, even if all LED strings are in the cluster mode.  
The current de-rating (based on the internal temperature sensor) and LED current limitation (based on external  
temperature sensor) are not functional in this mode, and analog current dimming based on the external sensor  
functionality is limited (LED shutdown for high temperature is not operational).  
32  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.3.6 Boost Controller  
The LP8860-Q1 boost controller generates a 16-V to 48-V supply voltage for the LEDs. Output voltage can be  
increased by an external resistive voltage divider connected to the FB pin, but voltage lower than 16 V is not  
supported.  
The output voltage can be controlled either with EEPROM register bits <BOOST_INITIAL_VOLTAGE[5:0]>, or  
automatic adaptive boost control can be used. During start-up the output voltage is ramped to default start-up  
voltage <BOOST_INITIAL_VOLTAGE[5:0]> where it then adapts to the required voltage based on LED output  
headroom voltage (if adaptive mode has been enabled in EEPROM). Initial voltage for adaptive voltage control  
mode must be higher than LED string voltage — otherwise the system may generate a boost overvoltage fault  
during VDDIO/EN pin toggling if the output boost capacitor is not discharged below the initial voltage before the  
next boost start-up. A different option is to set <MASK_BOOST_OVP_STATUS> bit high to prevent a boost  
overvoltage fault.  
The converter is a magnetic switching PWM mode DC-DC converter with a current limit. The topology of the  
magnetic boost converter is called Current Programmed Mode (CPM) control, where the inductor current is  
measured and controlled with the feedback. Switching frequency is selectable from 100 kHz and 2.2 MHz with  
EEPROM bits <BOOST_FREQ_SEL[2:0]>. In most cases lower frequency has the highest system efficiency.  
In adaptive mode the boost output voltage is adjusted automatically based on LED current sink headroom  
voltage. Boost output voltage control step size is, in this case, 125 mV to ensure as small as possible current  
sink headroom and high efficiency. The adaptive mode is enabled with the <EN_ADAP EEPROM> bit. If boost is  
started with adaptive mode enabled, then the initial boost output voltage value is defined with the  
<BOOST_INITIAL_VOLTAGE[5:0]> EEPROM register bits in order to eliminate long output voltage iteration time  
when boost is started after VDDIO/EN toggling or power-on reset.  
Boost can be clocked by an external SYNC signal (100 kHz to 2.2 MHz); minimum pulse length for the signal is  
200 ns. If an external SYNC disappears, boost uses internal frequency defined by <BOOST_FREQ_SEL[2:0]>  
EEPROM bits. The boost frequency with external SYNC and EEPROM bits-defined frequency need to be close  
to each other; maximum frequency mismatch is ±25%. The boost controller has optional spread-spectrum  
switching operation (±3% from central frequency, 1.875-kHz modulation frequency) which reduces spectrum  
spikes around the switching frequency and its harmonic frequencies.  
Further EMI reduction can be achieved by limiting the rise and fall times of the FET with an additional external  
resistor on the GD pin.  
The boost gate driver is powered directly from VDD voltage or from the charge pump which multiplies VDD  
voltage by 2. If the charge pump is disabled, the VDD and CPUMP pins must be tied together.  
Copyright © 2014–2017, Texas Instruments Incorporated  
33  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
BOOST_INIT_VOLTAGE[5:0]  
BOOST_SEL_LLC[1:0]  
OCP  
BOOST_SEL_I[1:0]  
BOOST_SEL_P[1:0]  
FB  
LIGHT  
LOAD  
OVP  
R
BOOST_GD_VOLT  
BLANK TIME  
R
S
R
RC Filter  
GD  
-
GM  
R
+
GATE DRIVER  
BOOST_DRIVER_SIZE[1:0]  
BOOST_SEL_JITTER_FILTER[1:0]  
BOOST_EN_SPREAD_SPECTRUM  
BOOST_FREQ_SEL[2:0]  
CURRENT SENSE  
BOOST OSCILLATOR  
CURRENT RAMP  
GENERATOR  
OFF/BLANK TIME  
PULSE GENERATOR  
ISENSE  
GM  
MUX  
ISENCE_GND  
SYNC  
BOOST_EXT_CLK_SEL  
BOOST_IMAX_SEL[2:0]  
BOOST_SEL_IRAMP[1:0]  
BOOST_EN_IRAMP_SU_DELAY  
BOOST_BLANKTIME_SEL[1:0]  
BOOST_OFFTIME_SEL[1:0]  
Copyright © 2016, Texas Instruments Incorporated  
Figure 21. Boost Converter Topology  
8.3.7 Charge Pump  
The boost switch FET gate driver is powered typically from VDD voltage. When the VDD voltage is not high  
enough to drive the boost FET gate, the charge pump can be used to increase gate-driver voltage.  
The charge pump effectively doubles the VDD voltage for gate driver. Maximum DC output current is 50 mA.  
Boost driver voltage selection bit BOOST_GD_VOLT must be set to 1 before enabling the charge pump. If VDD  
voltage is 5 V, the charge pump is not typically needed. In this case, a flying capacitor is not necessary, and the  
charge pump output CPUMP pin must be connected to the VDD input pin.  
GATE DRIVER  
CP_2X_EN  
CP_2X_CLK[1:0]  
SQW_PULSE_GEN_EN  
CPUMP  
CP_2X_FAULT  
CHARGE PUMP  
SQW  
VDD  
C1P  
C1N  
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. Charge Pump  
Table 14. Charge Pump Clock Frequency  
CP_2X_CLK  
FREQUENCY (kHz)  
00  
01  
10  
11  
104  
208  
417  
833  
34  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Square-waveform (SQW) output provides a 100-kHz square wave signal (1 mA max) with amplitude equal to the  
charge pump output voltage. When the charge pump is disabled, amplitude of this voltage is equal to VDD. This  
signal can be used to generate low-current voltage rails; for example, a gate-reference voltage for output  
protective FET (Figure 61) or for using nMOSFET as power-line FET (Figure 25). Figure 23 and Figure 24 show  
examples of possible connections.  
C1P  
C1N  
GD  
SD  
VSENSE_N  
VSENSE_P  
ISENSE  
SQW  
VRAIL  
~10V  
5V  
VDD  
CPUMP  
LP8860  
Copyright © 2016, Texas Instruments Incorporated  
Figure 23. VRAIL Multiplied by 2  
C1P  
C1N  
GD  
SD  
VSENSE_N  
VSENSE_P  
ISENSE  
3.3V  
VRAIL  
~13.2V  
VDD  
SQW  
CPUMP  
LP8860  
~6.6V  
Copyright © 2016, Texas Instruments Incorporated  
Figure 24. VRAIL Multiplied by 4  
RISENSE  
Q2  
Up to 40V  
L1  
D1  
C
2x  
C
IN  
Q1  
C1N  
C1P  
GD  
SD  
VSENSE_N  
VSENSE_P  
ISENSE  
RSENSE  
ISENSE_GND  
FB  
VDD  
CPUMP  
LP8860  
SQW  
Copyright © 2016, Texas Instruments Incorporated  
Figure 25. Using nFET for Power-Line Control  
Copyright © 2014–2017, Texas Instruments Incorporated  
35  
 
 
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.3.8 Powerline Control FET  
The power-line FET limits peak current from the power line during start-up and allows the boost and LED strings  
to be disconnected during a fault condition, when device is in fault recovery state.  
The power-line control block has VSENSE_P and VSENSE_N pins for sensing input current and a shutdown SD  
pin for driving the gate of the power-line FET. The power-line FET is opened when the LP8860-Q1 is enabled by  
VDDIO/EN signal and VIN is greater than VGS in steady state (when pFET is used as a power-line FET). A power-  
line pFET must be chosen with minimal VGS in steady state. Gate current is defined by the  
<PL_SD_SINK_LEVEL[1:0]> EEPROM bits.  
RISENSE  
VIN  
CIN  
tVGS  
t
IG  
SD  
PL_SD_SINK_LEVEL[1:0]  
NMOS_PLFET_EN  
VSENSE_N  
VSENSE_P  
Copyright © 2016, Texas Instruments Incorporated  
Figure 26. Power-line FET Control  
During a shutdown state the LP8860-Q1 closes the power-line FET and prevents possible boost and LED  
leakage. Sense pins are used to detect overcurrent. Power-line FET is closed when an OCP fault occurs. A VIN  
OCP is indicated with PL_FET_FAULT bit. The power-line FET closes with all faults, followed by entering to a  
recovery state.  
When it is not possible to choose a pFET with the necessary characteristics, a schematic with nFET can be used  
(see Charge Pump section, Figure 25); the <NMOS_PLFET_EN EEPROM> bit must be set accordingly. In this  
case the SD pin provides current to shut down the power-line nFET during fault condition.  
8.3.9 Protection and Fault Detection Modes  
The LP8860-Q1 has fault detection for LED outputs, low and high input voltage, power line overcurrent, boost  
overcurrent, boost overvoltage, and charge pump overload. In addition, the device has thermal shutdown and  
LED overtemperature protection with an external NTC thermistor.  
Faults have dedicated fault flags in registers <FAULT> and <LED_FAULT>. Mask bits can be used to disable  
certain faults (see Table 17 for details). In addition the open-drain output pin FAULT can be used to indicate  
occurred fault. Writing CLEAR_FAULTS or setting the NSS pin (I2C interface mode only) high resets the fault.  
Setting the VDDIO/EN pin low, then high again, resets the faults as well.  
8.3.9.1 LED Fault Comparators and Adaptive Boost Control  
Every LED current sink has 3 comparators for adaptive boost control and fault detection. Each comparator  
outputs is filtered. Filter control bits <BL_COMP_FILTER_SEL [3:0]> select how many PWM generator clock  
cycles (5 MHz if PLL disabled or PLL clock) high/mid comparator is filtered before it is used to detect shorted  
LEDs and boost voltage down-scaling. Usually  
1 µs is sufficient; for 5-MHz frequency it means  
<BL_COMP_FILTER_SEL [3:0]> = 0000b, 10 MHz = 0001b, 20 MHz = 0010b, and 40 MHz = 0011b.  
Adaptive boost-control function adjusts the boost output voltage to the minimum sufficient voltage for proper LED  
current sink operation. The output with the highest VF LED string is detected and the boost output voltage  
adjusted accordingly. Current sink headroom can be adjusted with EEPROM bits <DRV_HEADR[2:0]>. Boost  
adaptive control voltage step size is 125 mV. Boost adaptive control operates similarly with and without PSPWM.  
Additionally, when faster boost response is needed in larger brightness steps, the "jump" command can be used.  
Jump allows increase of the boost voltage with greater steps. Jump is enabled with the <EN_JUMP> EEPROM  
bit. The threshold for the magnitude of brightness increase that requires use of jump can be set with the  
<JUMP_STEP_SIZE[1:0]> EEPROM bits. <BRIGHTNESS_JUMP_THRES[1:0]> EEPROM bits define when the  
jump command is activated.  
36  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
VBOOST  
Driver  
headroom  
VBOOST  
Figure 27. Boost Voltage Adaptation  
OUT#  
DRV_LED_FAULT_THR[1:0]  
HIGH_COMP  
DRV_LED_COMP_HYST[1:0]  
MID_COMP  
DRV_HEADR[2:0]  
LOW_COMP  
DAC  
Figure 28. Output Voltage Comparators  
Figure 29 shows different cases which cause boost voltage increase, decrease, or generate faults.  
Boost  
decreases  
voltage  
Short LED fault (at least  
one output should be  
between LOW_COMP  
and MID_COMP)  
Boost  
increases  
voltage  
Open LED fault  
when  
VBOOST=MAX  
No actions  
No actions  
Boost up level  
reached for 1  
output only  
Boost down  
level  
reached  
All outputs are  
above boost up  
level  
Open LED  
fault  
Short LED  
fault  
HIGH_COMP  
MID_COMP  
LOW_COMP  
Figure 29. Protection and Boost Adaptation Algorithms  
NOTE  
In the Cluster mode, if voltage of one or more outputs is below LOW_COMP, it causes  
open LED fault detection.  
8.3.9.2 LED Current Dimming With Internal Temperature Sensor  
The LP8860-Q1 can prevent thermal shutdown (TSD) by reducing the average LED strings current based on die  
temperature.  
When die temperature reaches <INT_TEMP_LIM[1:0]> EEPROM bits-defined threshold, the device automatically  
lowers the brightness (2.25% / ºC typical). Depending on brightness control mode either PWM duty cycle or  
current is used for average current reduction.  
Copyright © 2014–2017, Texas Instruments Incorporated  
37  
 
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
100%  
50%  
TSD  
160  
150  
90  
100  
110  
120  
130  
140  
TEMPERATURE (°C)  
Figure 30. Thermal De-Rating Function  
Example With 100% and 50% Brightness  
Table 15. Thermal De-rating Function Temperature  
Thresholds  
INT_TEMP_LIM[1:0]  
TEMPERATURE  
disabled  
90ºC  
00  
01  
10  
11  
100ºC  
110ºC  
Table 16. Temperature ADC Output for Different Temperatures  
DECIMAL OUTPUT VALUE OF TEMP[10:0] REGISTER  
TEMPERATURE (°C)  
VDD 3.6 (V)  
885  
VDD 5 (V)  
891  
–40  
–35  
–30  
–25  
–20  
–15  
-10  
-5  
901  
907  
916  
923  
932  
939  
948  
954  
964  
970  
980  
986  
994  
1002  
1018  
1034  
1050  
1066  
1082  
1098  
1115  
1131  
1147  
1163  
1180  
1196  
1212  
1229  
0
1010  
1026  
1041  
1057  
1073  
1089  
1105  
1121  
1137  
1154  
1170  
1186  
1202  
1219  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
38  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Table 16. Temperature ADC Output for Different Temperatures (continued)  
DECIMAL OUTPUT VALUE OF TEMP[10:0] REGISTER  
TEMPERATURE (°C)  
VDD 3.6 (V)  
1235  
VDD 5 (V)  
1245  
70  
75  
1252  
1262  
80  
1268  
1278  
85  
1285  
1293  
90  
1301  
1310  
95  
1318  
1328  
100  
105  
110  
1332  
1343  
1349  
1359  
1365  
1375  
8.3.9.3 LED Current Limitation With External NTC Sensor  
The <EXT_TEMP_COMP_EN> EEPROM bit enables the LED current limitation mode. The principle of current  
limitation is shown in Figure 31.  
When LED temperature reaches <EXT_TEMP_LEVEL_LOW[3:0]> level, the device automatically tries to reduce  
LED average current step-by-step by 3.125% from maximum brightness value. Step time is defined by  
<EXT_TEMP_PERIOD[4:0]> EEPROM bits. If temperature continues to increase and reaches  
<EXT_TEMP_LEVEL_HIGH[3:0]> level, the device shuts down the LEDs and generates a fault condition. The  
LEDs are turned on automatically when the temperature is below the <EXT_TEMP_LEVEL_LOW[3:0]> level.  
Otherwise, if after one or more steps the temperature drops down below <EXT_TEMP_LEVEL_LOW[3:0]>,  
brightness increases with the same step time until it reaches the original level. The LP8860-Q1 uses PWM duty  
reduction to reduce LED current. The device detects external NTC resistor availability, and the  
<TEMP_RES_MISSING> flag is set, if the NTC sensor is missing (resistance is 2 MΩ or more).  
PWM  
HIGH LEVEL  
Temperature  
LOW LEVEL  
TIME  
Figure 31. LED Current Limitation With NTC  
Copyright © 2014–2017, Texas Instruments Incorporated  
39  
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
TEMPERATURE  
EXT_TEMP_LEVEL_LOW[3:0]  
EXT_TEMP_FLAG_L  
FAULT PIN  
READ STATUS REGISTER  
(EXT_TEMP_FLAG_L and  
EXT_TEMP_FLAG_H bits)  
WRITE CLEAR FAULTS  
Figure 32. Timing Diagram for LED Current Limitation With NTC  
8.3.9.4 LED Current Dimming With External NTC Sensor  
When an external resistor for maximum current control is used, current dimming for LED current can be used  
also. In this case LED current can be de-rated when ambient temperature is high. This option must be enabled  
by <EXT_TEMP_I_DIMMING_EN> and <EXT_TEMP_COMP_EN> EEPROM bits.  
Knee point and slope are defined by <EXT_TEMP_MINUS[1:0]> and <EXT_TEMP_GAIN[3:0]> EEPROM bits  
respectively. LED shutdown temperature is defined by <EXT_TEMP_LEVEL_HIGH[3:0]> bits. Serial and parallel  
resistors R1 and R2 affect the slope and knee point and can be used for the thermal curve adjustment and NTC  
linearization.  
100%  
Knee Point  
High Temperature Comparator Level  
EXT_TEMP_LEVEL_HIGH[3:0]  
I1  
I2  
AMBIENT TEMPERATURE T1  
T2  
Figure 33. Current Dimming for High Ambient Temperature  
R1  
R2  
RT  
NTC  
Figure 34. NTC Linearization  
Figure 35 and Figure 36 show the block diagrams for current dimming.  
40  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
I
Tsense BLOCK  
ISET  
CURRENT  
MULTIPLIER  
CURRENT  
TSENSE  
SUBTRACTOR  
T°  
ISET  
EXTERNAL  
CURRENT  
SETTING  
LIMIT  
OUT  
LED  
CURRENT  
SINKS  
EXT_TEMP_GAIN[3:0]  
TSENSE  
OFFSET CURRENT  
Tsense  
BLOCK  
EXT_TEMP_MINUS[1:0]  
I
I
Copyright © 2016, Texas Instruments Incorporated  
ILED  
ITEMP  
ISET - ITEMP  
T°  
T°  
Copyright © 2016, Texas Instruments Incorporated  
Figure 35. Temperature-Dependent NTC Current  
(Subtracted from ISET Current)  
Figure 36. NTC Current Processing —  
Scaling, Shift, and Limitation  
Current dimming by external NTC sensor for 150-mA scale can be defined by formulas:  
VBG  
ISET  
=
ì1000  
50ìRISET  
(6)  
»
ÿ
Ÿ
Ÿ
Ÿ
Ÿ
Ÿ
Ÿ
Ÿ
Ÿ
Ÿ
÷
÷
÷
VBG  
R2ìRNTC  
R2 + RNTC  
ì1000 + 3.57mA  
R1+  
÷
«
ITEMP  
=
- EXT_TEMP_MINUS[1:0]  
EXT_TEMP_GAIN[3:0]  
Ÿ
(7)  
ITEMP cannot be negative; if ITEMP < 0, then ITEMP must be 0.  
ILED = (ISET – ITEMP) × 150 mA  
ILED cannot go below a 5-mA level; if calculated ILED < 5 mA, then ILED = 5 mA.  
where  
ISET: Maximum current setting with external resistor RISET, µA  
ITEMP: Temperature compensation, µA  
RISET: External resistor, kΩ  
R1, R2: Resistors for adjustment, kΩ  
ILED: Output current per channel, mA  
EXT_TEMP_MINUS[1:0]: 1, 5, 9, 13 µA  
EXT_TEMP_GAIN[[3:0]: 50/n, n = 16 to 1  
VBG: 1.2 V  
(8)  
8.3.9.5 Protection Feature and Fault Summary  
Table 17 summarizes protection features and related faults.  
Copyright © 2014–2017, Texas Instruments Incorporated  
41  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 17. Overview of the Fault/Protection Schemes  
FAULT/PROTECTION  
FAULT NAME  
THRESHOLD  
OVP_LEVEL[1:0] (V)  
ACTION(1)(2)  
MASK(3)  
FAULT CLEARING(4)(5)  
VIN overvoltage monitored from soft start. Fault  
causes entry to FAULT_RECOVERY state. If  
device is restarted successfully with recovery  
timer, the fault register bit is not automatically  
cleared.  
MASK_OVP_FSM  
Masks fault recovery, but  
not status and fault pin  
operations  
Fault bit and FAULT pin:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
00  
01  
10  
11  
OFF  
7
Input overvoltage  
protection  
VIN_OVP  
11  
FAULT pin is pulled low.  
22.5  
UVLO_LEVEL[1:0] (V)  
VIN undervoltage monitored from soft start.  
Fault causes entry to FAULT_RECOVERY  
state. If device is restarted successfully with  
recovery timer, the fault register bit is not  
automatically cleared.  
MASK_VIN_UVLO  
Masks fault recovery,  
status and fault pin  
operations  
Fault bit and FAULT pin:  
1.POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
00  
01  
10  
11  
OFF  
Input undervoltage  
protection  
VIN_UVLO  
3
5
8
FAULT pin is pulled low.  
VDD_UVLO_LEVEL  
Threshold (V)  
Device enters STANDBY state. Recovers when  
fault disappears. All registers are cleared or  
reloaded from EEPROM (if defined) with  
exception registers 0x00, 0x01, 0x04…0x0C.  
After recovery LP8860-Q1 provides the same  
brightness as before fault detection, if  
DISP_CL1_CURRENT[11:0] context stays  
same as LED_CURRENT_CTRL[11:0]  
EEPROM setting. If VDD voltage goes below  
POR level, registers 0x00, 0x01, 0x04…0x0C  
are cleared.  
0
2.5  
VDD undervoltage  
protection  
VDD_UVLO  
1
3
This fault does not have any flags and doesn’t  
generate FAULT. Voltage hysteresis is 50 mV  
(typical).  
VBOOST longer than 110 ms 5 V  
(typical) below set value.  
Set value is voltage value  
defined by logic during  
adaptation in adaptive mode or  
initial boost voltage setting in  
manual mode.  
Fault monitoring started from boost start. Fault  
causes entry to FAULT_RECOVERY state. If  
device is restarted successfully with recovery  
timer, the fault register bit is not automatically  
cleared.  
MASK_BOOST_OCP_  
FSM  
Masks fault recovery, but  
not status and fault pin  
operations  
Fault bit and FAULT pin:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
Boost overcurrent  
protection  
BOOST_OCP  
BOOST_OVP  
FAULT pin is pulled low.  
VBOOST voltage 1.6 V (typical)  
above set value  
Fault bit and FAULT pin:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
Set value is voltage value  
defined by logic during  
adaptation in adaptive mode or  
initial boost voltage setting in  
manual mode.  
Boost OVP fault monitored during normal  
operation  
FAULT pin is pulled low.  
Boost overvoltage  
protection  
MASK_BOOST_OVP_  
STATUS  
(1) Recovery time is 100 ms.  
(2) During fault recovery state the LED outputs and boost is shut down and power-line FET is turned off.  
(3) If fault recovery is masked, fault bit sets again after cleaning.  
(4) If fault is cleared during fault recovery state, FAULT pin is pulled low again after recovery state, if this fault still exists.  
(5) The NSS pin can be used for fault reset only for I2C interface mode. NSS is level sensitive; be aware NSS is set to low after fault reset.  
42  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Table 17. Overview of the Fault/Protection Schemes (continued)  
FAULT/PROTECTION  
FAULT NAME  
THRESHOLD  
ACTION(1)(2)  
MASK(3)  
FAULT CLEARING(4)(5)  
PL_SD_LEVEL[1:0] (A)  
Fault is detected with 2 methods:  
1. Detects overcurrent from soft start by  
measuring RISENSE voltage.  
2. Detects FB voltage at the end of soft start. If  
voltage is below 1.2 V, fault is detected. Fault  
causes entry to FAULT_RECOVERY state. If  
device is restarted successfully with recovery  
timer, the fault register bit is not automatically  
cleared.  
10  
11  
6
8
Fault bit and FAULT pin:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
Input voltage  
overcurrent protection  
PL_FET_FAULT  
FAULT pin is pulled low.  
DRV_LED_FAULT_THR[1:0] (V)  
LED output in display mode: Triggered if one or  
more outputs voltage is above  
00  
01  
10  
11  
3.6  
3.6  
DRV_LED_FAULT_THR and at least one LED  
output voltage is between DRV_HEADR and  
DRV_HEADR + DRV_LED_COMP_HYST. Is  
set only if LED faults are enabled in EEPROM.  
Shorted string is removed from voltage control  
loop and LED current sink n is disabled.  
LED output in cluster mode: If one or more  
outputs voltage above DRV_LED_FAULT_THR  
fault is detected. Is pulled low only if LED faults  
are enabled in EEPROM. Shorted string PWM  
output is disabled.  
Fault bit and FAULT pin:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
When fault is cleared it can be  
set again only during next POR  
or if there is another LED short  
fault in different output.  
6.9  
EN_DISPLAY_LED_  
FAULT for LEDs in display  
mode  
EN_CL_LED_FAULT for  
LEDs in cluster mode  
10.6  
Short LED fault  
SHORT_LED  
DRV_LED_COMP_HYST[1:0]  
(mV)  
00  
01  
10  
11  
1000  
750  
500  
250  
FAULT pin is pulled low.  
DRV_HEADR[2:0] (mV)  
LED output in display mode: Triggered if one or  
more outputs voltage is below DRV_HEADR,  
and boost adaptive control has reach the  
maximum voltage. Is set only if led faults  
enabled in EEPROM. Open string is removed  
from voltage control loop and PWM generation  
is disabled.  
LED output in cluster mode: Triggered if one or  
more outputs voltage is below DRV_HEADR. Is  
set only if LED faults enabled in EEPROM.  
Open string PWM generation is disabled.  
FAULT pin is pulled low.  
111  
110  
101  
100  
011  
010  
001  
000  
VSAT+50  
VSAT+175  
VSAT+300  
VSAT+450  
VSAT+575  
VSAT+700  
VSAT+875  
VSAT+1000  
Fault bit and FAULT pin:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
When open fault is cleared it can  
set again only during next  
power-up or if there is another  
LED open fault.  
EN_DISPLAY_LED  
_FAULT  
for LEDs in display mode  
EN_CL_LED_FAULT  
for LEDs in cluster mode  
Open LED fault  
OPEN_LED  
Defines which string has either open or short  
fault. Cleared only during power down.  
LED faults  
LED_FAULT[4:1]  
CP_2X_ FAULT  
POR or VDDIO/EN  
Charge pump voltage not high enough  
condition. Fault causes entry to  
Fault bit and FAULT pin:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
FAULT_RECOVERY state. CP voltage  
monitored from the boost soft start. If device is  
restarted successfully with recovery timer, the  
fault register bit is not automatically cleared.  
FAULT pin is pulled low.  
VCPUMD < 0.85 × (2 × VDD  
)
Charge pump fault  
(typical)  
Copyright © 2014–2017, Texas Instruments Incorporated  
43  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 17. Overview of the Fault/Protection Schemes (continued)  
FAULT/PROTECTION  
FAULT NAME  
THRESHOLD  
ACTION(1)(2)  
MASK(3)  
FAULT CLEARING(4)(5)  
INT_TEMP_LIM[1:0]  
When die temperature increases temperature  
defined by INT_TEMP_LIM[1:0] the device  
automatically lowers the PWM duty for outputs  
2.25%/ºC (typical). For Hybrid PWM and  
Current dimming mode current is used for  
brightness reduction as well.  
00  
01  
10  
11  
disabled  
Thermal Current Limit  
(LED Outputs)  
90°C  
100°C  
110°C  
No faults  
EXT_TEMP_LEVEL_LOW[3:0]  
Setting  
Level (kΩ)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
79.67  
43.35  
29.77  
22.67  
18.30  
15.34  
13.21  
11.60  
10.34  
9.32  
8.49  
7.79  
7.20  
6.69  
6.25  
5.87  
Fault bit:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin when fault  
deasserted.  
Fault is monitored during normal operation. If  
EXT_TEMP_LEVEL_LOW[3:0] is exceeded,  
LED current is reduced.  
FAULT pin is pulled low when  
EXT_TEMP_FLAG_L goes high.  
EXT_TEMP_  
FLAG_L  
EXT_TEMP_COMP_EN=0  
disables fault  
Fault pin:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
Thermal LED Current  
Limit with external  
NTC sensor.  
EXT_TEMP_LEVEL_HIGH[3:0]  
Setting  
Level (kΩ)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
79.67  
43.35  
29.77  
22.67  
18.30  
15.34  
13.21  
11.60  
10.34  
9.32  
8.49  
7.79  
7.20  
6.69  
6.25  
5.87  
Fault bit:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin when fault  
deasserted.  
Fault is monitored during normal operation. If  
EXT_TEMP_LEVEL_HIGH[3:0] limit is  
exceeded, the LED outputs are turned off.  
FAULT pin is pulled low.  
EXT_TEMP_  
FLAG_H  
EXT_TEMP_COMP_EN=0  
disables fault  
Fault pin:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
44  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Table 17. Overview of the Fault/Protection Schemes (continued)  
FAULT/PROTECTION  
FAULT NAME  
THRESHOLD  
ACTION(1)(2)  
MASK(3)  
FAULT CLEARING(4)(5)  
NTC is missing. Fault is monitored during  
normal operation. Not connected to FAULT  
output pin. TEMP_RES_FAULT is monitored if  
EXT_TEMP_COMP_EN EEPROM bit has been  
enabled  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
TEMP_RES_  
MISSING  
EXT_TEMP_COMP_EN=0  
disables fault  
NTC missing  
Resistance > 2 MΩ  
Thermal shutdown is monitored from soft start.  
Fault causes entry to the FAULT_RECOVERY  
state.  
Fault bit and FAULT pin:  
1. POR or VDDIO/EN  
2. Writing CLEAR_FAULTS bit  
or toggling NSS pin  
Rising temperature =165ºC  
Falling temperature = 135ºC  
Thermal shutdown  
TSD  
FAULT pin is pulled low.  
Copyright © 2014–2017, Texas Instruments Incorporated  
45  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Fault detection is digitally filtered — filtering time for different faults is shown in Table 18.  
Table 18. Fault Filters  
FAULT/PROTECTON  
Boost Overcurrent Protection  
Boost Overvoltage Protection  
Input Overvoltage Protection  
Input Undervoltage Protection  
Input Overcurrent Protection  
VDD Undervoltage Protection  
Thermal Shutdown  
FAULT NAME  
BOOST_OCP  
BOOST_OVP  
VIN_OVP  
TIME  
110 ms  
100 µs  
100 µs  
100 µs  
100 µs  
5 µs  
ENABLED  
From boost start  
In normal mode  
From soft start  
From soft start  
From soft start  
Always  
VIN_UVLO  
PL_FET_FAULT  
VDD_UVLO  
TSD  
100 µs  
10 µs  
From soft start  
From boost start  
In normal mode  
In normal mode  
In normal mode  
Charge Pump fault  
CP_2X_FAULT  
EXT_TEMP_FLAG_H  
EXT_TEMP_FLAG_L  
TEMP_RES_FAULT  
Thermal LED Current Limit with  
external NTC sensor.  
10 µs  
10 µs  
NTC missing  
100 µs  
OVP Threshold  
VIN  
FB  
OVP Threshold  
V
SD  
tsoftstart  
ttRECOVERY = 100 mst  
ttRECOVERY = 100 mst  
VIN_OVP  
FLAG  
FAULT PIN  
WRITE  
CLEAR_FAULTS  
Figure 37. Input OVP Triggering and Recovery  
UVLO  
Threshold  
VIN  
FB  
UVLO  
Threshold  
V
SD  
ttRECOVERY = 100 mst  
tsoftstart  
VIN_UVLO  
FLAG  
ttRECOVERY = 100 mst  
FAULT PIN  
WRITE  
CLEAR_FAULTS  
Figure 38. Input UVLO Triggering and Recovery  
46  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
PL_SD_LEVEL[1:0]  
I
IN  
FB  
V
SD  
ttRECOVERY = 100 mst  
tsoftstart  
ttRECOVERY = 100 mst  
PL_FET_FAULT  
FLAG  
FAULT PIN  
WRITE  
CLEAR_FAULTS  
Figure 39. Input OVP Triggering and Recovery  
OVERLOAD CONDITION  
OVERLOAD REMOVED  
tFILTER = 110 ms  
VDDIO/EN  
tFILTER = 110 ms  
tRECOVERY = 100 ms  
tFILTER = 110 ms  
tRECOVERY = 100 ms  
tFILTER = 110 ms  
tRECOVERY = 100 ms  
V
œ 5 V  
BOOST SET  
FB  
V
SD  
ttshutdown  
t
ttsoftstart  
t
BOOST_OCP  
FLAG  
FAULT PIN  
WRITE  
CLEAR_FAULTS  
Figure 40. Boost OCP Triggering and Recovery  
V
V
+1.6 V  
BOOST SET  
FB  
BOOST SET  
GD  
BOOST_OVP  
FLAG  
FAULT PIN  
WRITE  
CLEAR_FAULTS  
Figure 41. Boost OVP Triggering and Recovery  
Copyright © 2014–2017, Texas Instruments Incorporated  
47  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Standby Mode  
The device is in standby mode when the EN/VDDIO pin is low. Current consumption from the VDD pin in this  
mode is typically 1 µA.  
8.4.2 Active Mode  
The EN/VDDIO pin enables the logic and analog blocks. The device goes through the start-up sequence where  
EEPROM context is loaded to the registers, the power-line FET is enabled during soft start, and boost starts  
during boost start-time. In this mode I2C and SPI communication are available after soft start, and register  
settings can be changed.  
8.4.3 Fault Recovery State  
Fault recovery state is special state which can be caused by faults. In this state power line FET is switched off,  
boost and LED current sinks are disabled. I2C or SPI interfaces are available in this state — for example, fault  
flags can be read.  
POR=1  
STANDBY  
EEPROM:  
SOFT_START_SEL[1:0]  
00=5 ms  
VDDIO/EN=1  
01=10 ms  
10=20 ms  
11=50 ms  
EEPROM READ  
~300 s  
FAULTS  
100 ms  
SOFT START  
5...50 ms  
FAULT RECOVERY  
BOOST START  
50 ms  
FAULTS or  
BOOST_OCP  
VDDIO/EN=0  
NORMAL  
FAULTS or  
FAULTS:  
BOOST_OCP  
- PL_FET_FAULT  
- VIN_UVLO  
- VIN_OVP  
VDDIO/EN=0  
- TSD  
- CP_2X_FAULT  
SHUTDOWN  
VDD_UVLO=1  
Figure 42. State Diagram  
8.4.4 Start-Up and Shutdown Sequences  
Depending on EEPROM settings the LP8860-Q1 can be started up or shut down differently. Typical start-  
up/shutdown sequence is shown in Figure 43.  
48  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Device Functional Modes (continued)  
t>0  
t>500 s  
VIN  
VDD  
VDDIO/EN  
PL pFET Drain  
Headroom Adaptation  
VOUT = VIN Level œ Diode Drop  
VBOOST  
PWM OUT  
IQ  
Active Mode  
tSOFTt  
tSTARTt  
tBOOSTt  
tSTARTt  
Figure 43. Timing Diagram for the Typical Start-Up and Shutdown  
8.5 Programming  
8.5.1 EEPROM  
EEPROM memory stores various parameters for chip control. The 200-bit EEPROM memory is organized as 25  
× 8 bits. The EEPROM structure consists of a register front-end and the non-volatile memory (NVM). Register  
data can be read and written through the I2C/SPI serial interface. EEPROM must be burned with the new data;  
otherwise, data disappears after power-on reset or VDDIO/EN cycling. PWM outputs and PLL must be disabled  
when writing to EEPROM registers or burning EEPROM (<DISP_CL1_BRT[15:0]> = 0, <CL2_BRT[12:0]> = 0,  
<CL3_BRT[12:0]> = 0, <CL2_BRT[12:0]> = 0, <EN_PLL> = 0). To read and program EEPROM NVM separate  
commands need to be sent. Erase and program voltages are generated internally; no other voltages other than  
the normal VDD voltage is required. A complete EEPROM memory map is shown in the Table 23.  
The user must make sure that VDD power is on, and the VDDIO/EN pin is kept high, during the whole  
programming/burn sequence to avoid memory corruption.  
EE_PROG = 1  
EEPROM  
REGISTERS  
Address 60h...78h  
EEPROM  
NVM  
25 x 8 bits  
Startup or  
EE_READ=1  
User  
Device Control  
REGISTERS  
ADDRESS 00h...1Ah  
Device Control  
Figure 44. EEPROM and Register Configuration  
Copyright © 2014–2017, Texas Instruments Incorporated  
49  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Programming (continued)  
EEPROM has protection against accidental writes. EEPROM access can be unlocked by writing a pass code to  
the EEPROM_UNLOCK register. It unlocks the EEPROM Control register EEPROM_CNTRL and all EEPROM  
registers. Lock is enabled again by writing any other code to the EEPROM_UNLOCK register (for example, 0x00  
enables the lock any time).  
Table 19. EEPROM Pass Code Protection  
PASS CODE TO EEPROM_UNLOCK REGISTER  
0x08, 0xBA, 0xEF  
EEPROM is used as fixed product-configuration storage, to be set or programmed during production before  
normal operation. EEPROM can be reprogrammed for evaluation purposes up to 1000 cycles. Data-retention  
lifetime for factory-programmed content is 10 years, minimum. For more details regarding EEPROM options, see  
TI Application Note Selecting the Correct LP8860-Q1 EEPROM Version (SNVA757).  
50  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.5.2 Serial Interface  
The LP8860-Q1 supports 2 different interface modes:  
SPI interface (4-wire serial)  
I2C-compatible (2-wire serial)  
The user can define the interface mode by IF pin as shown in Table 20. The LP8860-Q1 detects interface mode  
selection during start-up. When the device is in normal mode, the IF signal does not affect the interface selection.  
Table 20. Interface Modes  
IF PIN  
GND  
INTERFACE  
I2C  
VDDIO  
SPI  
8.5.2.1 SPI Interface  
The LP8860-Q1 is compatible with SPI serial-bus specification, and it operates as a slave. The transmission  
consists of 16-bit write and read cycles. One cycle consists of 7 address bits, 1 read/write (R/W) bit, and 8 data  
bits. The R/W bit high state defines a write cycle and low defines a read cycle. MISO output is normally in a high-  
impedance state. When the slave select NSS for LP8680 is active (that is, low), MISO output is pulled low for  
both read and write operations, except for the period when Data is sent out during a read cycle. The Address  
and Data are transmitted MSB first. The Slave Select signal NSS must be low during the Cycle transmission.  
NSS resets the interface when high, and it has to be taken high between successive cycles. Data is clocked in  
on the rising edge of the SCLK clock signal, while data is clocked out on the falling edge of SCLK.  
NSS  
SCLK  
1
R/W  
MOSI  
MISO  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Hi-Z  
Hi-Z  
Figure 45. SPI Write Cycle  
NSS  
SCLK  
MOSI  
MISO  
R/W  
0
A6  
A5  
A4  
A3  
A2  
A1  
A0  
tDon't Caret  
D4 D3  
Hi-Z  
Hi-Z  
D7  
D6  
D5  
D2  
D1  
D0  
Figure 46. SPI Read Cycle  
8.5.2.2 I2C Serial Bus Interface  
8.5.2.2.1 Interface Bus Overview  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol is using a two-wire interface for bi-directional communications between the devices  
connected to the bus. The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL).  
These lines must be connected to a positive supply through a pullup resistor and remain HIGH even when the  
bus is idle.  
Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on  
whether it generates or receives the SCL. The LP8860-Q1 is always a slave device.  
Copyright © 2014–2017, Texas Instruments Incorporated  
51  
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.5.2.2.2 Data Transactions  
One data bit is transferred during each clock pulse. Data is sampled during the high state of the SCL.  
Consequently, throughout the clock high period, the data must remain stable. Any changes on the SDA line  
during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data must  
be sent during the low SCL state. This protocol permits a single data line to transfer both command/control  
information and data using the synchronous serial clock.  
SDA  
SCL  
Data Line  
Stable:  
Data Valid  
Change  
of Data  
Allowed  
Figure 47. Bit Transfer  
Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a  
Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is  
transferred with the most significant bit first. After each byte, an Acknowledge signal must follow. The following  
sections provide further details of this process.  
Data Output  
by  
Transmitter Stays Off the  
Bus During the  
Transmitter  
Acknowledgment Clock  
Data Output  
by  
Receiver  
Acknowledgment  
Signal From Receiver  
SCL  
3 - 6  
1
2
7
8
9
S
Start  
Condition  
Figure 48. Start and Stop  
The Master device on the bus always generates the Start and Stop Conditions (control codes). After a Start  
Condition is generated, the bus is considered busy and it retains this status until a certain time after a Stop  
Condition is generated. A high-to-low transition of the data line (SDA) while the clock (SCL) is high indicates a  
Start Condition. A low-to-high transition of the SDA line while the SCL is high indicates a Stop Condition.  
SDA  
SCL  
S
P
Start  
Stop  
Condition  
Condition  
Figure 49. Stop and Start Conditions  
In addition to the first Start Condition, a repeated Start Condition can be generated in the middle of a transaction.  
This allows another device to be accessed, or a register read cycle.  
8.5.2.2.3 Acknowledge Cycle  
The Acknowledge Cycle consists of two signals: the acknowledge clock pulse the master sends with each byte  
transferred, and the acknowledge signal sent by the receiving device.  
52  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
The master generates the acknowledge clock pulse on the ninth clock pulse of the byte transfer. The transmitter  
releases the SDA line (permits it to go high) to allow the receiver to send the acknowledge signal. The receiver  
must pull down the SDA line during the acknowledge clock pulse and ensure that SDA remains low during the  
high period of the clock pulse, thus signaling the correct reception of the last data byte and its readiness to  
receive the next byte.  
8.5.2.2.4 Acknowledge After Every Byte Rule  
The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge  
signal after every byte received.  
There is one exception to the acknowledge after every byte rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (negative acknowledge”) the last byte clocked out  
of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master),  
but the SDA line is not pulled down.  
8.5.2.2.5 Addressing Transfer Formats  
Each device on the bus has a unique slave address. The LP8860-Q1 operates as a slave device with 7-bit  
address combined with data direction bit. Default slave address is 2Dh as 7-bit or 5Ah for write and 5Bh for read  
in 8-bit format.  
Before any data is transmitted, the master transmits the address of the slave being addressed. The slave device  
sends an acknowledge signal on the SDA line, once it recognizes its address. The slave address is the first  
seven bits after a Start Condition. The direction of the data transfer (R/W) depends on the bit sent after the slave  
address — the eighth bit. When the slave address is sent, each device in the system compares this slave  
address with its own. If there is a match, the device considers itself addressed and sends an acknowledge  
signal. Depending upon the state of the R/W bit (1:read, 0:write), the device acts as a transmitter or a receiver.  
MSB  
LSB  
ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0 R/W  
Bit7  
x
bit6  
bit5  
x
bit4  
x
bit3  
x
bit2  
x
bit1  
x
bit0  
x
2
I C SLAVE address (chip address)  
Figure 50. Address and Read/Write Bit  
8.5.2.2.6 Control Register Write Cycle  
1. Master device generates start condition.  
2. Master device sends slave address (7 bits) and the data direction bit (r/w = “0”).  
3. Slave device sends acknowledge signal if the slave address is correct.  
4. Master sends control register address (8 bits).  
5. Slave sends acknowledge signal.  
6. Master sends data byte to be written to the address register.  
7. Slave sends acknowledgement.  
8. Write cycle ends when the master creates stop condition.  
8.5.2.2.7 Control Register Read Cycle  
1. Master device generates start condition.  
2. Master device sends slave address (7 bits) and the data direction bit (r/w = “0”).  
3. Slave device sends acknowledge signal if the slave address is correct.  
4. Master sends control register address (8 bits).  
5. Slave sends acknowledge signal if slave address is correct.  
6. Master generates repeated start condition  
7. Master sends the slave address (7 bits) and the data direction bit (r/w = “1”)  
8. Slave sends acknowledgment if the slave address is correct.  
9. Read cycle ends when master does not generate acknowledge signal after data byte and generates stop  
condition.  
Copyright © 2014–2017, Texas Instruments Incorporated  
53  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 21. Data Read and Write Cycles  
MODE  
Data Read  
ACTION(1)  
<Start Condition>  
<Slave Address><r/w = ‘0’>[Ack]  
<Register Addr.>[Ack]  
<Repeated Start Condition>  
<Slave Address><r/w = ‘1’>[Ack]  
[Register Data]<Ack or Nack>  
register address possible  
<Stop Condition>  
Data Write  
<Start Condition>  
<Slave Address><r/w=’0’>[Ack]  
<Register Addr.>[Ack]  
<Register Data>[Ack]  
register address possible  
<Stop Condition>  
(1) <> Data from master; [] Data from slave  
Slave Address  
(7 bits)  
Control Register Add.  
Register Data  
(8 bits)  
S
'0'  
A
A
A
P
(8 bits)  
Data transfered,  
byte + Ack  
R/W  
From Slave to Master  
From Master to Slave  
A - ACKNOWLEDGE (SDA Low)  
S - START CONDITION  
P - STOP CONDITION  
Figure 51. Register Write Format  
Slave Address  
(7 bits)  
Slave Address  
(7 bits)  
Data- Data  
(8 bits)  
Control Register Add.  
(8 bits)  
A/  
P
S
'0'  
A
A
Sr  
'1'  
A
NA  
Data transfered, byte +  
Ack/NAck  
R/W  
R/W  
Direction of the transfer will  
change at this point  
From Slave to Master  
From Master to Slave  
A
- ACKNOWLEDGE (SDA Low)  
NA - ACKNOWLEDGE (SDA High)  
- START CONDITION  
Sr - REPEATED START CONDITION  
- STOP CONDITION  
S
P
Figure 52. Register Read Format  
54  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6 Register Maps  
Table 22. Register Map  
ADDR  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
REGISTER  
D7  
D6  
D5  
D4  
D3  
DISP_CL1_BRT[15:8]  
DISP_CL1_BRT[7:0]  
D2  
D1  
D0  
DISP_CL1_BRT  
DISP_CL1_CURRENT  
CL2_BRT  
RESERVED  
DISP_CL1_CURRENT[11:8]  
CL2_BRT[12:8]  
DISP_CL1_CURRENT[7:0]  
RESERVED  
RESERVED  
RESERVED  
CL2_BRT[7:0]  
CL2_CURRENT  
CL3_BRT  
CL2_CURRENT[7:0]  
CL3_BRT[12:8]  
CL4_BRT[12:8]  
CL3_BRT[7:0]  
CL3_CURRENT  
CL4_BRT  
CL3_CURRENT[7:0]  
CL4_BRT[7:0]  
CL4_CURRENT  
CL4_CURRENT[7:0]  
CONFIGURATION  
RESERVED  
RESERVED  
DRV_LED_CURENT_SCALE[2:0]  
RESERVED  
EN_ADVANCED_  
SLOPE  
PWM_SLOPE[2:0]  
0x0E  
0x0F  
STATUS  
FAULT  
BRT_SLOPE_  
DONE  
TEMP_RES_  
MISSING  
EXT_TEMP_  
FLAG_L  
EXT_TEMP_  
FLAG_H  
VIN_OVP  
VIN_UVLO  
OPEN_LED  
TSD  
BOOST_OCP  
BOOST_OVP  
PL_FET_  
FAULT  
CP_2X_  
FAULT  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
LED FAULT  
FAULT CLEAR  
ID  
RESERVED  
SHORT_LED  
RESERVED  
LED_FAULT[4:1]  
CLEAR_FAULTS  
FULL_LAYER_REVISION  
RESERVED  
METAL_REVISION  
TEMP[10:8]  
TEMP MSB  
TEMP LSB  
TEMP[7:0]  
DISP LED CURRENT  
RESERVED  
LED_CURRENT[11:8]  
LED_CURRENT[7:0]  
PWM[15:8]  
DISP LED PWM  
PWM[7:0]  
EEPROM_CNTRL  
EE_READY  
RESERVED  
EEPROM_UNLOCK_CODE[7:0]  
EE_PROG  
EE_READ  
EEPROM_UNLOCK  
Copyright © 2014–2017, Texas Instruments Incorporated  
55  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 23. EEPROM Register Map(1)  
ADDR  
0x60  
REGISTER  
D7  
D6  
D5  
DRV_LED_BIAS_CTRL[1:0]  
LED_CURRENT_CTRL[7:0]  
EN_ADVANCED_  
D4  
D3  
D2  
D1  
D0  
EEPROM REG 0  
EEPROM REG 1  
EXT_TEMP_MINUS[1:0]  
LED_CURRENT_CTRL[11:8]  
0x61  
EN_STEADY_  
DITHER  
0x62  
0x63  
EEPROM REG 2  
EEPROM REG 3  
RESERVED  
PWM_INPUT_HYSTERESIS[1:0]  
PWM_SLOPE[2:0]  
SLOPE  
EN_DISPAY_LED_  
FAULT  
DRV_LED_CURRENT_SCALE[2:0]  
LED_STRING_CONF[2:0]  
EN-PWM_I  
EN_CL_LED_  
FAULT  
0x64  
0x65  
0x66  
EEPROM REG 4  
EEPROM REG 5  
EEPROM REG 6  
DRV_LED_COMP_HYST[1:0]  
I_SLOPE[2:0]  
DRV_LED_FAULT_THR[1:0]  
PWM_RESOLUTION[1:0]  
DRV_HEADR[2:0]  
DITHER[2:0]  
DRV_EN_EXT_  
LED_CUR_CTR  
DRV_EN_SPLI  
T_FET  
RESERVED  
GAIN_CTRL[2:0]  
BRT_MODE[1:0]  
0x67  
0x68  
0x69  
EEPROM REG 7  
EEPROM REG 8  
EEPROM REG 9  
DRV_OUT2_CORR[3:0]  
DRV_OUT4_CORR[3:0]  
EXT_TEMP_GAIN[3:0]  
NMOS_PLFET_  
DRV_OUT1_CORR[3:0]  
DRV_OUT3_CORR[3:0]  
BL_COMP_FILTER_SEL[3:0]  
EEPROM REG  
10  
EXT_TEMP_I_  
DIMMING_EN  
0x6A  
0x6B  
SOFT_START_SEL[1:0]  
PL_SD_LEVEL[1:0]  
PL_SD_SINK_LEVEL[1:0]  
EN  
EEPROM REG  
11  
SLOW_PLL_DIV[12:5]  
PWM_  
COUNTER_  
RESET  
EEPROM REG  
12  
0x6C  
EN_SYNC  
PWM_SYNC  
SLOW_PLL_DIV[4:0]  
EEPROM REG  
13  
0x6D  
0x6E  
0x6F  
R_SELL[1:0]  
SEL_DIVIDER  
EN_PLL  
SYNC_PRE_DIVIDER[3:0]  
PWM_FREQ[3:0]  
EEPROM REG  
14  
RESERVED  
SYNC_TYPE  
EEPROM REG  
15  
MASK_BOOST_  
OVP_FSM  
MASK_BOOST_  
OCP_FSM  
MASK_OVP_  
FSM  
MASK_VIN_  
UVLO  
UVLO_LEVEL[1:0]  
OVP_LEVEL[1:0]  
BOOST_EN_  
IRAMP _SU_  
DELAY  
EEPROM REG  
16  
BOOST_EXT_  
CLK_SEL  
BOOST_GD_  
VOLT  
0x70  
0x71  
RESERVED  
BOOST_IMAX_SEL[2:0]  
BOOST_EN_  
SPREAD_  
SPECTRUM  
EEPROM REG  
17  
BOOST_SEL_IND[1:0]  
BOOST_SEL_IRAMP[1:0]  
BOOST_FREQ_SEL[2:0]  
EEPROM REG  
18  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
BOOST_DRIVER_SIZE[1:0]  
RESERVED  
EN_ADAP  
EN_JUMP  
BRIGHTNESS_JUMP_THRES[1:0]  
BOOST_INITIAL_VOLTAGE[5:0]  
BOOST_SEL_I[1:0]  
JUMP_STEP_SIZE[1:0]  
EEPROM REG  
19  
EEPROM REG  
20  
BOOST_SEL_JITTER_FILTER[1:0  
]
BOOST_SEL_LLC[1:0]  
BOOST_OFFTIME_SEL[1:0]  
BOOST_SEL_P[1:0]  
BOOST_VO_SLOPE_CTRL[2:0]  
SQW_PULSE_  
EEPROM REG  
21  
BOOST_BLANKTIME_SEL[1:0]  
RESERVED  
RESERVED  
CP_2X_CLK[1:0]  
EXT_TEMP_LEVEL_LOW[3:0]  
EEPROM REG  
22  
VDD_UVLO_LEVE  
CP_2X_EN  
L
GEN_EN  
EEPROM REG  
23  
EXT_TEMP_LEVEL_HIGH[3:0]  
INT_TEMP_LIM[1:0]  
EEPROM REG  
24  
EXT_TEMP_  
COMP_EN  
EXT_TEMP_PERIOD[4:0]  
(1) Unused bits data must not be changed.  
56  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.1 Register Bit Explanations  
8.6.1.1 Display/Cluster1 Brightness Control MSB  
Address 0x00  
Reset value 0000 0000b  
DISP_CL1_BRT MSB  
7
6
5
4
3
2
1
0
DISP_CL1_BRT[15:8]  
Name  
DISP_CL1_BRT[15:8]  
Bit  
Access Description  
7:0  
R/W  
Backlight brightness control MSB  
8.6.1.2 Display/Cluster1 Brightness Control LSB  
Address 0x01  
Reset value 0000 0000b  
DISP_CL1_BRT LSB  
7
6
5
4
3
2
1
0
DISP_CL1_BRT[7:0]  
Name  
DISP_CL1_BRT LSB  
Bit  
Access Description  
7:0  
R/W  
Backlight brightness control LSB  
The DISP_CL1_BRT MSB register must be written first. New value is valid after writing DISP_CL1_BRT LSB. If  
output 1 is used in display mode, the Brightness/Cluster Output 1 Brightness Control register is used for all  
outputs in display mode (16-bits register). Otherwise it is the Brightness Control register for cluster output 1. For  
cluster bit control is 13 bit, most significant bit are used.  
8.6.1.3 Display/Cluster1 Output Current MSB  
Address 0x02  
Reset value loaded during start-up from EEPROM REG0  
DISP_CL1_CURRENT MSB  
7
6
5
4
3
2
1
0
RESERVED  
DISP_CL1_CURRENT[11:8]  
Name  
DISP_CL1_CURRENT[11:8]  
Bit  
Access  
Description  
Display/Cluster current control MSB  
3:0  
R/W  
Copyright © 2014–2017, Texas Instruments Incorporated  
57  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.1.4 Display/Cluster1 Output Current LSB  
Address 0x03  
Reset value loaded during start-up from EEPROM REG1  
DISP_CL1_CURRENT LSB  
7
6
5
4
3
2
1
0
DISP_CL1_CURRENT[7:0]  
Name  
DISP_CL1_CURRENT[7:0]  
Bit  
Access Description  
R/W Display/Cluster current control LSB  
7:0  
The DISP_CL1_CURRENT MSB register must be written first. New value is valid after writing  
DISP_CL1_CURRENT LSB. If one of few outputs is used in display mode, the DISP_CL1_CURRENT register is  
used for all outputs in display mode (12-bit), otherwise it is Cluster1 Output Current register.  
Maximum current is defined by DRV_LED_CURRENT_SCALE[2:0] bits.  
8.6.1.5 Cluster2 Brightness Control MSB  
Address 0x04  
Reset value 0000 0000b  
CL2_BRT MSB  
7
6
5
4
3
2
1
0
RESERVED  
CL2_BRT[12:8]  
Name  
CL2_BRT[12:8]  
Bit  
Access Description  
R/W Cluster output 2 brightness control MSB  
4:0  
8.6.1.6 Cluster2 Brightness Control LSB  
Address 0x05  
Reset value 0000 0000b  
CL2_BRT LSB  
7
6
5
4
3
2
1
0
CL2_BRT[7:0]  
Name  
CL2_BRT[7:0]  
Bit  
Access Description  
R/W Cluster output 2 brightness control LSB  
7:0  
The CL2_BRT MSB register must be written first. New value is valid after writing CL2_BRT LSB.  
58  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.1.7 Cluster2 Output Current  
Address 0x06  
Reset value 0000 0000b  
CL2_CURRENT  
7
6
5
4
3
2
1
0
CL2_CURRENT[7:0]  
Name  
CL2_CURRENT[7:0]  
Bit  
Access Description  
R/W Cluster output 2 current control  
7:0  
Maximum current is defined by DRV_LED_CURRENT_SCALE[2:0] bits.  
8.6.1.8 Cluster3 Brightness Control MSB  
Address 0x07  
Reset value 0000 0000b  
CL3_BRT MSB  
7
6
5
4
3
2
1
0
RESERVED  
CL3_BRT[12:8]  
Name  
CL3_BRT[12:8]  
Bit  
Access Description  
R/W Cluster output 3 brightness control MSB  
4:0  
8.6.1.9 Cluster3 Brightness Control LSB  
Address 0x08  
Reset value 0000 0000b  
CL3_BRT LSB  
7
6
5
4
3
2
1
0
CL3_BRT[7:0]  
Name  
CL3_BRT[7:0]  
Bit  
Access Description  
R/W Cluster output 3 brightness control LSB  
7:0  
The CL3_BRT MSB register must be written first. New value is valid after writing CL3_BRT LSB.  
Copyright © 2014–2017, Texas Instruments Incorporated  
59  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.1.10 Cluster3 Output Current  
Address 0x09  
Reset value 0000 0000b  
CL3_CURRENT  
7
6
5
4
3
2
1
0
CL3_CURRENT[7:0]  
Name  
CL3_CURRENT[7:0]  
Bit  
Access Description  
R/W Cluster output 3 current control  
7:0  
Maximum current is defined by DRV_LED_CURRENT_SCALE[2:0] bits.  
8.6.1.11 Cluster4 Brightness Control MSB  
Address 0x0A  
Reset value 0000 0000b  
CL4_BRT MSB  
7
6
5
4
3
2
1
0
RESERVED  
CL4_BRT[12:8]  
Name  
CL4_BRT[12:8]  
Bit  
Access Description  
R/W Cluster output 4 brightness control MSB  
4:0  
8.6.1.12 Cluster4 Brightness Control LSB  
Address 0x0B  
Reset value 0000 0000b  
CL4_BRT LSB  
7
6
5
4
3
2
1
0
CL4_BRT[7:0]  
Name  
CL4_BRT[7:0]  
Bit  
Access Description  
R/W Cluster output 4 brightness control LSB  
7:0  
The CL4_BRT MSB register must be written first. New value is valid after writing CL4_BRT LSB.  
60  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.1.13 Cluster4 Output Current  
Address 0x0C  
Reset value 0000 0000b  
CL4_CURRENT  
7
6
5
4
3
2
1
0
CL4_CURRENT[7:0]  
Name  
CL4_CURRENT[7:0]  
Bit  
Access Description  
R/W Cluster output 4 current control  
7:0  
Maximum current is defined by DRV_LED_CURRENT_SCALE[2:0] bits.  
8.6.1.14 Configuration  
Address 0x0D  
Reset value loaded during start-up from EEPROM  
CONFIGURATION  
7
6
5
4
3
2
1
0
RESERVED  
DRV_LED_CURRENT_SCALE[2:0]  
EN_ADVANCED  
_SLOPE  
PWM_SLOPE[2:0]  
Name  
Bit  
Access  
Description  
DRV_LED_CURRENT_SCALE[2:0]  
6:4  
R/W  
Scales the maximum LED current when EN_EXT_LED_CUR_CTRL = 0  
Effective for display and cluster mode.  
000 = 25 mA  
001 = 30 mA  
010 = 50 mA  
011 = 60 mA  
100 = 80 mA  
101 = 100 mA  
110 = 120 mA  
111 = 150 mA  
EN_ADVANCED_SLOPE  
PWM_SLOPE[2:0]  
3
R/W  
R/W  
Enable for advanced slope (smooth brightness change)  
0 = Linear slope used only  
1 = Advanced slope used  
2:0  
Linear brightness sloping time (typical)  
000 = 0 ms  
001 = 1 ms  
010 = 2 ms  
011 = 52 ms  
100 = 105 ms  
101 = 210 ms  
110 = 315 ms  
111 = 511 ms  
Copyright © 2014–2017, Texas Instruments Incorporated  
61  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.1.15 Status  
Address 0x0E  
Reset value 0000 0000b  
STATUS  
7
6
5
4
3
2
1
0
RESERVED  
BRT_SLOPE_DONE  
TEMP_RES_MISSING  
EXT_TEMP_FLAG_L  
EXT_TEMP_FLAG_H  
Name  
Bit  
Access Description  
BRT_SLOPE_DONE  
TEMP_RES_MISSING  
EXT_TEMP_FLAG_L  
EXT_TEMP_FLAG_H  
3
R
R
R
R
Status bit for the brightness sloping  
0 = Sloping ongoing  
1 = Sloping done  
2
1
0
NTC sensor missing flag  
0 = sensor OK  
1 = NTC sensor missing  
External temperature sensor low limit exceeded flag  
0 = limit not detected  
1 = low temperature limit detected  
External temperature sensor high limit exceeded flaf  
0 = limit not detected  
1 = high temperature limit detected  
8.6.1.16 Fault  
Address 0x0F  
Reset value 0000 0000b  
STATUS  
7
6
5
4
3
2
1
0
RESERVED  
VIN_OVP  
VIN_UVLO  
TSD  
BOOST_OCP  
BOOST_OVP  
PL_FET_FAULT CP_2X_FAULT  
Name  
Bit  
Access Description  
VIN_OVP  
6
R
R
R
R
R
R
R
VIN overvoltage protection flag  
0 = No fault  
1 = Fault detected  
VIN_UVLO  
TSD  
5
4
3
2
1
0
VIN undervoltage lockout flag  
0 = No fault  
1 = Fault detected  
Thermal shutdown  
0 = No flag  
1 = Fault detected  
BOOST_OCP  
BOOST_OVP  
PL_FET_FAULT  
CP_2X_FAULT  
Boost overcurrent protection flag  
0 = No flag  
1 = Fault detected  
Boost output overvoltage protection flag  
0 = No flag  
1 = Fault detected  
VIN overcurrent protection flag  
0 = No fault  
1 = Fault detected  
Charge pump output voltage too low  
0 = No fault  
1 = Fault detected  
62  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.1.17 LED Fault  
Address 0x10  
Reset value 0000 0000b  
LED FAULT  
7
6
5
4
3
2
1
0
RESERVED  
OPEN_LED  
SHORT_LED  
LED_FAULT[4:1]  
Name  
Bit  
Access Description  
OPEN_LED  
5
R
R
R
Open LED fault.  
0 = No fault  
1 = Fault detected  
SHORT_LED  
4
Short LED fault.  
0 = No fault  
1 = Fault detected  
LED_FAULT[4:1]  
3:0  
Defines which string has either open or short fault.  
0001 = LED OUT1  
0010 = LED OUT2  
0100 = LED OUT3  
1000 = LED OUT4  
8.6.1.18 Fault Clear  
Address 0x11  
Reset value 0000 0000b  
FAULT CLEAR  
7
6
5
4
3
2
1
0
RESERVED  
CLEAR_FAULTS  
Name  
CLEAR_FAULTS  
Bit  
Access Description  
W Write only bit, writing CLEAR_FAULTS high clears faults.  
0
8.6.1.19 Identification  
Address 0x12  
ID  
7
6
5
4
3
2
1
0
FULL_LAYER_REVISION[3:0]  
METAL REVISIONS[3:0]  
Name  
Bit  
7:4  
3:0  
Access Description  
FULL_LAYER_REVISION  
METAL REVISIONS  
R
R
Manufacturer ID code – full layer revision  
Manufacturer ID code – metal mask revision  
Copyright © 2014–2017, Texas Instruments Incorporated  
63  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.1.20 Temp MSB  
Address 0x13  
TEMP MSB  
7
6
5
4
3
2
1
0
RESERVED  
TEMP[10:8]  
Name  
TEMP[10:8]  
Bit  
Access Description  
2:0  
R
Device internal temperature sensor reading, first 3 MSB. MSB must be read before LSB,  
because reading of MSB register latches the data.  
8.6.1.21 Temp LSB  
Address 0x14  
TEMP LSB  
7
6
5
4
3
2
1
0
TEMP[7:0]  
Name  
TEMP[7:0]  
Bit  
Access Description  
7:0  
R
Device internal temperature sensor reading, last 8 LSB. MSB must be read before LSB,  
because reading of MSB register latches the data.  
8.6.1.22 Display LED Current MSB  
Address 0x15  
DISP LED CURRENT MSB  
7
6
5
4
3
2
1
0
RESERVED  
LED_CURRENT[11:8]  
Name  
LED_CURRENT[11:8]  
Bit  
Access Description  
3:0  
R
Display LED current value reading, first 3 MSB. DISP LED CURRENT MSB must be  
read before DISP LED CURRENT LSB, DISP LED PWM MSB, and DISP LED PWM  
LSB because reading of the MSB register latches the data for current and PWM.  
8.6.1.23 Display LED Current LSB  
Address 0x16  
DISP LED CURRENT LSB  
7
6
5
4
3
2
1
0
LED_CURRENT[7:0]  
Name  
LED_CURRENT[7:0]  
Bit  
Access Description  
Display LED current value reading, last 8 LSB.  
Note: DISP LED CURRENT MSB latches the data for current and PWM.  
7:0  
R
64  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.1.24 Display LED PWM MSB  
Address 0x17  
Reset value 0000 0000b  
DISP LED PWM MSB  
7
6
5
4
3
2
1
0
PWM[15:8]  
Name  
PWM[7:0]  
Bit  
Access Description  
R Display LED current value reading, first 8 MSB.  
Note: DISP LED CURRENT MSB latches the data for current and PWM.  
7:0  
8.6.1.25 Display LED PWM LSB  
Address 0x18  
Reset value 0000 0000b  
DISP LED PWM LSB  
7
6
5
4
3
2
1
0
PWM[7:0]  
Name  
PWM[7:0]  
Bit  
Access Description  
R Display LED PWM reading, last 8 LSB.  
Note: DISP LED CURRENT MSB latches the data for current and PWM.  
7:0  
8.6.1.26 EEPROM Control  
Address 0x19  
Reset value 1000 0000b  
EEPROM CTRL  
7
6
5
4
3
2
1
0
EE_READY  
RESERVED  
EE_PROG  
EE_READ  
Name  
Bit  
Access Description  
EE_READY  
7
R
EEPROM ready  
0 = EEPROM programming or read in progress  
1 = EEPROM ready, not busy  
EE_PROG  
1
0
R/W  
EEPROM programming  
0 = Normal operation  
1 = Start the EEPROM programming sequence. Programs data currently in the  
EEPROM registers to non-volatile memory (NVM).  
EE_READ  
R/W  
EEPROM read  
0 = Normal operation  
1 = Reads the data from NVM to the EEPROM registers. Can be used to restore  
default values if EEPROM registers are changed during testing.  
Programming sequence (program data permanently from registers to NVM):  
1. Turn on the chip by setting VDDIO/EN pin high.  
2. Unlock EEPROM by writing the unlock codes to register 0x1A.  
Write 0x08 to address 0x1A  
Write 0xBA to address 0x1A  
Write 0xEF to address 0x1A  
3. Write data to EEPROM registers (address 0x60…0x78).  
4. Write EE_PROG to high in address 0x19. (0x02 to address 0x19).  
Copyright © 2014–2017, Texas Instruments Incorporated  
65  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
5. Wait 200 ms.  
6. Write EE_PROG to low in address 0x19. (0x00 to address 0x19).  
Read sequence (load data from NVM to registers):  
1. Turn on the chip by writing setting VDDIO/EN pin high.  
2. Unlock EEPROM by writing the unlock codes to register 0x1A.  
Write 0x08 to address 0x1A  
Write 0xBA to address 0x1A  
Write 0xEF to address 0x1A  
3. Write EE_READ to high in address 0x19. (0x01 to address 0x19).  
4. Wait 1 ms.  
5. Write EE_READ to low in address 0x19. (0x00 to address 0x19).  
NOTE  
EEPROM bits are intended to be set/programmed before normal operation only once  
during silicon production, but can be reprogrammed for evaluation purposes up to 1000  
cycles.  
8.6.1.27 EEPROM Unlock Code  
Address 0x1A  
Reset value 0000 0000b  
EEPROM UNLOCK  
7
6
5
4
3
2
1
0
EEPROM UNLOCK_CODE[7:0]  
Name  
EEPROM_UNLOCK_CODE[7:0]  
Bit  
Access  
Description  
7:0  
W
Unlock EEPROM control register (0x19) and EEPROM registers.  
Writing 0x08, 0xBA, 0xEF sequence unlocks EEPROM registers.  
Lock is enabled again by writing any other code to the register.  
66  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.2 EEPROM Bit Explanations  
8.6.2.1 EEPROM Register 0  
Address 0x60  
EEPROM REGISTER 0  
7
6
5
4
3
2
1
0
EXT_TEMP_MINUS[1:0]  
DRV_LED_BIAS_CTRL[1:0]  
LED_CURRENT_CTRL[11:8]  
Name  
Bit  
Access Description  
EXT_TEMP_MINUS[1:0]  
7:6  
R/W  
External temperature sensor current dimming knee point, see LED Current Dimming  
With Internal Temperature Sensor for details.  
00 = 1 μA  
01 = 5 μA  
10 = 9 μA  
11 = 13 μA  
DRV_LED_BIAS_CTRL[1:0]  
LED_CURRENT_CTRL[11:8]  
5:4  
3:0  
R/W  
Controls the LED current sink bias current. Effects LED current sink rise time and  
current consumption. 150-mA LED current is suggested.  
00 = slowest LED current sink setting and low Iq (typical 800-ns rise time / 200 μA  
per sink)  
01 = slow (typical 400-ns rise time / 400 μA per sink)  
10 = fast (typical 200-ns rise time / 800 μA per sink)  
11 = fastest LED current sink and higher current consumption (typical100-ns rise  
time / 1.6 mA per sink)  
R/W  
MSB bits for 12-bit LED current control. Step size is 150 mA / 4095 = 36.63 µA  
(typical) when max current is set to 150 mA. Max current can be scaled with RISET  
resistor or with DRV_LED_CURRENT_SCALE EEPROM bits.  
000h = 0 mA  
001h = 0.037 mA  
002h = 0.073 mA  
003h = 0.110 mA  
FFEh = 149.963 mA  
FFFh = 150.000 mA  
8.6.2.2 EEPROM Register 1  
Address 0x61  
EEPROM REGISTER 1  
7
6
5
4
3
2
1
0
LED_CURRENT_CTRL[7:0]  
Name  
LED_CURRENT_CTRL[7:0]  
Bit  
7:0  
Access Description  
R/W  
LSB bits for 12-bit LED current control. Step size is 150 mA / 4095 = 36.63 µA when  
max current is set to 150 mA. Max current can be scaled with RISET resistor or with  
DRV_LED_CURRENT_SCALE EEPROM bits.  
000h = 0 mA  
001h = 0.037 mA  
002h = 0.073 mA  
003h = 0.110 mA  
FFEh = 149.963 mA  
FFFh = 150.000 mA  
Copyright © 2014–2017, Texas Instruments Incorporated  
67  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.2.3 EEPROM Register 2  
Address 0x62  
EEPROM REGISTER 2  
7
6
5
4
3
2
1
0
RESERVED  
EN_STEADY_DITHER  
PWM_INPUT_HYSTERESIS[1:0]  
EN_ADVANCED_SLOPE  
PWM_SLOPE[2:0]  
Name  
Bit  
Access Description  
EN_STEADY_DITHER  
6
R/W  
R/W  
Enable dithering in steady state condition  
0 = Disabled, dithering used in sloping (brightness changes) only  
1 = Enabled, dithering used in sloping as well as steady-state condition. Dithering  
defined with DITHER[2:0] bits.  
PWM_INPUT_HYSTERESIS[1:0]  
5:4  
PWM input hysteresis function. Defines how small changes in the PWM input are  
ignored. Hysteresis used to remove constant switching between two values.  
00 = ±1-step hysteresis with 16-bit resolution  
01 = ±8-step hysteresis with 16-bit resolution  
10 = ±16-step hysteresis with 16-bit resolution  
11 = ±256-step hysteresis with 16-bit resolution  
EN_ADVANCED_SLOPE  
PWM_SLOPE[2:0]  
3
R/W  
R/W  
Advanced smooth slope for brightness changes  
0 = Advanced slope is disabled  
1 = Use advanced slope for brightness change to make brightness changes  
smooth for eye  
2:0  
Linear brightness sloping time (typical)  
000 = Slope function disabled, immediate brightness change  
001 = 1 ms  
010 = 2 ms  
011 = 52 ms  
100 = 105 ms  
101 = 210 ms  
110 = 315 ms  
111 = 511 ms  
68  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.2.4 EEPROM Register 3  
Address 0x63  
EEPROM REGISTER 3  
7
6
5
4
3
2
1
0
EN_DISPLAY_LED_FAULT  
DRV_LED_CURRENT_SCALE[2:0]  
LED_STRING_CONF[2:0]  
EN_PWM_I  
Name  
Bit  
Access Description  
EN_DISPLAY_LED_FAULT  
7
R/W  
0 = LED open/short faults disabled  
1 = LED open/short faults enabled  
DRV_LED_CURRENT_SCALE[2:0]  
6:4  
R/W  
Scales the maximum LED current when EN_EXT_LED_CUR_CTRL = 0  
Effective for both modes – display and cluster.  
000 = 25 mA  
001 = 30 mA  
010 = 50 mA  
011 = 60 mA  
100 = 80 mA  
101 = 100 mA  
110 = 120 mA  
111 = 150 mA  
LED_STRING_CONF[2:0]  
3:1  
R/W  
LED current sink configuration  
000 = 4 separate LED strings with 90° phase shift  
001 = 3 separate LED strings with 120° phase shift (String 4 in cluster mode or  
not used)  
010 = 2 separate LED strings with 180° phase shift (Strings 3 and 4 in cluster  
mode or not used)  
011 = 1 LED string. (Strings 2,3 and 4 in cluster mode or not used)  
100 = 2 LED strings (1+2, 3+4) with 180° phase shift. Tied strings with same  
phase.  
101 = 1 LED string (1+2+3+4). Tied strings with same phase  
110 = 1 LED string (1+2). 1st and 2nd strings tied with same phase, strings 3  
and 4 are in cluster mode or not used  
111 = All strings are used in cluster mode  
EN_PWM_I  
0
R/W  
Enable Hybrid PWM and Current dimming mode  
0 = Disabled, dimming only with PWM  
1 = Enabled  
Copyright © 2014–2017, Texas Instruments Incorporated  
69  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.2.5 EEPROM Register 4  
Address 0x64  
EEPROM REGISTER 4  
7
6
5
4
3
2
1
0
EN_CL_LED_FAULT  
DRV_LED_COMP_HYST[1:0]  
DRV_LED_FAULT_THR[1:0]  
DRV_HEADER[2:0]  
Name  
Bit  
Access  
Description  
EN_CL_LED_FAULT  
7
R/W  
Enable open/short LED fault for cluster strings  
0 = LED fault in cluster mode disabled  
1 = LED fault in cluster mode enabled  
DRV_LED_COMP_HYST[1:0]  
6:5  
R/W  
LED comparator hysteresis – difference between mid and low  
comparator, used for boost adaptive voltage control (boost high  
level)  
00 = 1000 mV  
01 = 750 mV  
10 = 500 mV  
11 = 250 mV  
DRV_LED_FAULT_THR[1:0]  
DRV_HEADER[2:0]  
4:3  
2:0  
R/W  
R/W  
LED Fault thresholds, used for short LED detection.  
00 = 3.6 V  
01 = 3.6 V  
10 = 6.9 V  
11 = 10.6 V  
LED current sink headroom control, used for boost adaptive voltage  
control (boost low level) and open LED detection.  
VSAT is the saturation voltage of the sink, typically 500 mV with 150-  
mA current.  
111 = VSAT + 50 mV  
110 = VSAT + 175 mV  
101 = VSAT + 300 mV  
100 = VSAT + 450 mV  
011 = VSAT + 575 mV  
010 = VSAT + 700 mV  
001 = VSAT + 875 mV  
000 = VSAT + 1000 mV  
70  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.2.6 EEPROM Register 5  
Address 0x65  
EEPROM REGISTER 5  
7
6
5
4
3
2
1
0
I_SLOPE[2:0]  
PWM_RESOLUTION[1:0]  
DITHER[2:0]  
Name  
Bit  
Access  
Description  
I_SLOPE[2:0]  
7:5  
R/W  
Slope gain adjusts the current slope for Hybrid PWM and Current  
dimming mode  
000 = 1.000  
001 = 1.023  
010 = 1.047  
011 = 1.070  
100 = 1.094  
101 = 1.117  
110 = 1.141  
111 = 1.164  
PWM_RESOLUTION[1:0]  
4:3  
2:0  
R/W  
R/W  
For PWM clocking with internal oscillator (VSYNC is not used) these  
bits control the PLL multiplier and hence the PWM output resolution  
00 = 5-MHz clock used for generating PWM  
01 = 10-MHz clock used for generating PWM  
10 = 20-MHz clock used for generating PWM  
11 = 40-MHz clock used for generating PWM  
DITHER[2:0]  
Dither function controls  
000 = Dither function disabled  
001 = 1-bit dither  
010 = 2-bit dither  
011 = 3-bit dither  
1XX = 4-bit dither  
Copyright © 2014–2017, Texas Instruments Incorporated  
71  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.2.7 EEPROM Register 6  
Address 0x66  
EEPROM Register 6  
7
6
5
4
3
2
1
0
RESERVED  
GAIN_CTRL[2:0]  
EN_EXT_LED_CUR_CTRL  
DRV_EN_SPLIT_FET  
BRT_MODE[1:0]  
Name  
Bit  
Access  
Description  
GAIN_CTRL[2:0]  
6:4  
R/W  
Switch point from PWM to current control for Hybrid PWM and  
Current dimming mode  
000 = 50.0%  
001 = 40.6%  
010 = 31.3%  
011 = 25.0%  
100 = 21.9%  
101 = 18.8%  
110 = 15.6%  
111 = 12.5%  
EN_EXT_LED_CUR_CTRL  
DRV_EN_SPLIT_FET  
3
2
R/W  
R/W  
Enable LED current set resistor  
0 = Resistor is disabled and current is scaled with SCALE[2:0]  
EEPROM register bits  
1 = Enable LED current set resistor. LED current is scaled by the  
RISET resistor  
LED current sink FET control  
0 = big size FET is driving LED current  
1 = enable use of smaller FET for driving low LED output currents.  
Smaller FET is selected automatically when current setting is below  
1/16 of the scale. Automatic scaling improves accuracy for output  
currents below 1/16 of the full current scale.  
BRT_MODE[1:0]  
1:0  
R/W  
Brightness control mode  
00 = PWM input pin duty cycle control  
01 = PWM input duty x Brightness register  
10 = Brightness register  
11 = Direct PWM control from PWM input pin  
8.6.2.8 EEPROM Register 7  
Address 0x67  
EEPROM Register 7  
7
6
5
4
3
2
1
0
DRV_OUT2_CORR[3:0]  
DRV_OUT1_CORR[3:0]  
Name  
DRV_OUT2_CORR[3:0]  
Bit  
Access  
Description  
7:4  
R/W  
Current correction for OUT2 LED current sink  
0000 = 6.5%  
0001 = 5.6%  
0010 = 4.7%  
0011 = 3.7%  
0100 = 2.8%  
0101 = 1.9%  
0110 = 0.9%  
0111 = 0.0%  
1000 = –0.9%  
1001 = –1.9%  
1010 = –2.8%  
1011 = –3.7%  
1100 = –4.7%  
1101 = –5.6%  
1110 = –6.5%  
1111 = –7.4%  
72  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Name  
Bit  
Access  
Description  
DRV_OUT1_CORR[3:0]  
3:0  
R/W  
Current correction for OUT1 LED current sink  
0000 = 6.5%  
0001 = 5.6%  
0010 = 4.7%  
0011 = 3.7%  
0100 = 2.8%  
0101 = 1.9%  
0110 = 0.9%  
0111 = 0.0%  
1000 = –0.9%  
1001 = –1.9%  
1010 = –2.8%  
1011 = –3.7%  
1100 = –4.7%  
1101 = –5.6%  
1110 = –6.5%  
1111 = –7.4%  
8.6.2.9 EEPROM Register 8  
Address 0x68  
EEPROM Register 8  
7
6
5
4
3
2
1
0
DRV_OUT4_CORR[3:0]  
DRV_OUT3_CORR[3:0]  
Name  
DRV_OUT4_CORR[3:0]  
Bit  
Access  
Description  
7:4  
R/W  
Current correction for OUT4 LED current sink  
0000 = 6.5%  
0001 = 5.6%  
0010 = 4.7%  
0011 = 3.7%  
0100 = 2.8%  
0101 = 1.9%  
0110 = 0.9%  
0111 = 0.0%  
1000 = –0.9%  
1001 = –1.9%  
1010 = –2.8%  
1011 = –3.7%  
1100 = –4.7%  
1101 = –5.6%  
1110 = –6.5%  
1111 = –7.4%  
DRV_OUT3_CORR[3:0]  
3:0  
R/W  
Current correction for OUT3 LED current sink  
0000 = 6.5%  
0001 = 5.6%  
0010 = 4.7%  
0011 = 3.7%  
0100 = 2.8%  
0101 = 1.9%  
0110 = 0.9%  
0111 = 0.0%  
1000 = –0.9%  
1001 = –1.9%  
1010 = –2.8%  
1011 = –3.7%  
1100 = –4.7%  
1101 = –5.6%  
1110 = –6.5%  
1111 = –7.4%  
Copyright © 2014–2017, Texas Instruments Incorporated  
73  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.2.10 EEPROM Register 9  
Address 0x69  
EEPROM Register 8  
7
6
5
4
3
2
1
0
EXT_TEMP_GAIN[3:0]  
BL_COMP_FILTER_SEL[3:0]  
Name  
Bit  
Access  
Description  
EXT_TEMP_GAIN[3:0]  
7:4  
R/W  
External temperature sensor current dimming gain control, see LED  
Current Dimming With Internal Temperature Sensor for details.  
BL_COMP_FILTER_SEL[3:0]  
3:0  
R/W  
Filter selects how many PWM generator clock cycles high/mid  
comparator is filtered before it is used to detect shorted LEDs and  
boost voltage down scaling.  
0000 = 5  
0001 = 10  
0010 = 20  
0011 = 40  
0100 = 60  
0101 = 80  
0110 = 100  
0111 = 140  
1000 = 180  
1001 = 220  
1010 = 260  
1011 = 300  
1100 = 340  
1101 = 380  
1110 = 420  
1111 = 460  
74  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.2.11 EEPROM Register 10  
Address 0x6A  
EEPROM Register 9  
7
6
5
4
3
2
1
0
EXT_TEMP_I_DIMMING_  
EN  
NMOS_PLFET_EN  
SOFT_START_SEL[1:0]  
PL_SD_LEVEL[1:0]  
PL_SD_SINK_LEVEL[1:0]  
Name  
Bit  
Access  
Description  
EXT_TEMP_I_DIMMING_EN  
7
R/W  
R/W  
R/W  
External temperature sensor current dimming enabled  
0 = disabled  
1 = enabled  
NMOS_PLFET_EN  
6
Powerline FET selection:  
0 = pFET  
1 = nFET  
SOFT_START_SEL[1:0]  
5:4  
Soft-start time selection  
00 = 5 ms  
01 = 10 ms  
10 = 20 ms  
11 = 50 ms  
PL_SD_LEVEL[1:0]  
3:2  
1:0  
R/W  
R/W  
Power-line FET current limit selection VIN OCP (assumed RISENSE = 20 mΩ).  
10 = 6 A  
11 = 8 A  
PL_SD_SINK_LEVEL[1:0]  
Power-line FET gate current  
NMOS_PLFET_EN = 0  
NMOS_PLFET_EN = 1  
(current for normal mode) (current for fault recovery mode,  
otherwise 0mA)  
00  
01  
10  
11  
55 µA  
110 µA  
220 µA  
440 µA  
0.3 mA  
0.5 mA  
1.0 mA  
2.2 mA  
8.6.2.12 EEPROM Register 11  
Address 0x6B  
EEPROM Register 11  
7
6
5
4
3
2
1
0
SLOW_PLL_DIV[12:5]  
Name  
SLOW_PLL_DIV[12:5]  
Bit  
Access  
Description  
Divider for VSYNC operation. 8 MSB bits  
7:0  
R/W  
Copyright © 2014–2017, Texas Instruments Incorporated  
75  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.2.13 EEPROM Register 12  
Address 0x6C  
EEPROM Register 12  
7
6
5
4
3
2
1
0
EN_SYNC  
PWM_SYNC  
PWM_COUNTER_RESET  
SLOW_PLL_DIV[4:0]  
Name  
Bit  
Access  
Description  
EN_SYNC  
7
R/W  
VSYNC input enable  
0 = VSYNC input disabled  
1 = VSYNC input enabled  
PWM_SYNC  
6
R/W  
Enable PWM generation synchronization to VSYNC signal  
0 = Disabled  
1 = Enabled. PWM output used for phase detector input after  
dividing with SLOW_PLL_DIV divider  
PWM_COUNTER_RESET  
SLOW_PLL_DIV[4:0]  
5
R/W  
R/W  
Enable PWM generator resetting on VSYNC signal rising edge  
0 = Disabled  
1 = Enabled  
4:0  
Divider for VSYNC operation. 5 LSB bits  
8.6.2.14 EEPROM Register 13  
Address 0x6D  
EEPROM Register 13  
7
6
5
4
3
2
1
0
R_SEL[1:0]  
SEL_DIVIDER  
EN_PLL  
SYNC_PRE_DIVIDER[3:0]  
Name  
Bit  
Access  
Description  
R_SEL[1:0]  
7:6  
R/W  
Coefficient for the slow PLL divider  
00 = 16  
01 = 32  
10 = 64  
11 = 128  
SEL_DIVIDER  
EN_PLL  
5
4
R/W  
R/W  
R/W  
PLL divider selection  
0 = Slow PLL divider with external compensation (when using  
VSYNC)  
1 = Fast PLL divider with internal compensation (when using 5-MHz  
internal clock)  
PLL enable  
0 = PLL disabled and internal 5-MHz oscillator used for PWM  
generation  
1 = PLL is used for generating the PWM generation clock from the  
internal oscillator or VSYNC signal  
SYNC_PRE_DIVIDER[3:0]  
3:0  
VSYNC signal pre-divider from 1 to 16. Used when VSYNC  
frequency is higher than PWM output frequency.  
76  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.2.15 EEPROM Register 14  
Address 0x6E  
EEPROM Register 14  
7
6
5
4
3
2
1
0
RESERVED  
SYNC_TYPE  
PWM_FREQ[3:0]  
Name  
SYNC_TYPE  
Bit  
Access  
Description  
4
R/W  
Type of the VSYNC input. Affects the PLL functionality.  
0 = HSYNC (50 to 150 kHz)  
1 = VSYNC (50 to 150 Hz)  
PWM_FREQ[3:0]  
3:0  
R/W  
PWM output frequency setting when internal oscillator is used. See  
Brightness Control (Display Mode)  
8.6.2.16 EEPROM Register 15  
Address 0x6F  
EEPROM Register 13  
7
6
5
4
3
2
1
0
MASK_BOOST_OVP_ MASK_BOOST_OCP  
STATUS _FSM  
MASK_OVP_FSM  
MASK_VIN_UVLO  
UVLO_LEVEL[1:0]  
OVP_LEVEL[1:0]  
Name  
Bit  
Access  
Description  
MASK_BOOST_OVP_STATUS  
7
R/W  
Boost overvoltage protection enable  
0 = Enabled  
1 = Fault bit and FAULT pin disabled.  
MASK_BOOST_OCP_FSM  
6
5
R/W  
R/W  
R/W  
R/W  
Boost overcurrent protection fault recovery state enable  
0 = Enabled  
1 = Entering fault recovery state disabled. Fault bit and FAULT pin  
operate normally.  
MASK_OVP_FSM  
MASK_VIN_UVLO  
UVLO_LEVEL[1:0]  
VIN overvoltage fault recovery state enable  
0 = Enabled  
1 = Entering fault recovery state disabled. Fault bit and FAULT pin  
operate normally.  
4
VIN undervoltage lockout fault recovery state enable  
0 = Enabled  
1 = Entering fault recovery state disabled. Fault bit and FAULT pin  
operate normally.  
3:2  
VIN Undervoltage protection thresholds (UVLO)  
00 = disabled  
01 = 3 V  
10 = 5 V  
11 = 8 V  
OVP_LEVEL[1:0]  
1:0  
R/W  
VIN Overvoltage protection thresholds (OVP)  
00 = disabled  
01 = 7 V  
10 = 11 V  
11 = 22.5 V  
Copyright © 2014–2017, Texas Instruments Incorporated  
77  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.2.17 EEPROM Register 16  
Address 0x70  
EEPROM Register 16  
7
6
5
4
3
2
1
0
RESERVED  
BOOST_EN_IRAMP_DELAY BOOST_EXT_CLK_SEL  
BOOST_IMAX_SEL[2:0]  
BOOST_GD_VOLT  
Name  
Bit  
Access  
Description  
BOOST_EN_IRAMP_DELAY  
BOOST_EXT_CLK_SEL  
5
R/W  
Boost current ramp delay enable (for adjusting conversion  
ratio/stability, 35% of period)  
1 = Delay enabled  
0 = Delay disabled  
4
R/W  
R/W  
Boost clock selection  
0 = Internal clock  
1 = External clock (SYNC pin)  
If external clock selected and sync disappears for 1.5…2 periods,  
boost automatically switches to using internal oscillator with  
frequency defined by BOOST_FREQ_SEL[2:0]  
BOOST_IMAX_SEL[2:0]  
3:1  
Maximum current limit for boost SW mode. Values below based on  
25-msense resistor value.  
000 = 2 A  
001 = 3 A  
010 = 4 A  
011 = 5 A  
100 = 6 A  
101 = 7 A  
110 = 8 A  
111 = 9 A  
BOOST_GD_VOLT  
0
R/W  
Boost gate driver voltage selection  
1 = Charge pump output (VGATE DRIVER > 6 V)  
0 = VDD  
78  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.2.18 EEPROM Register 17  
Address 0x71  
EEPROM Register 17  
7
6
5
4
3
2
1
0
BOOST_EN_SPREAD_  
SPECTRUM  
BOOST_SEL_IND[1:0]  
BOOST_SEL_IRAMP[1:0]  
BOOST_FREQ_SEL[2:0]  
Name  
Bit  
Access  
Description  
BOOST_EN_SPREAD_  
SPECTRUM  
7
R/W  
Boost spread spectrum (±3% from central frequency, 1.875 kHz modulation  
frequency) enable  
0 = Spread spectrum disabled  
1 = Spread spectrum enabled  
BOOST_SEL_IND[1:0]  
6:5  
4:3  
R/W  
R/W  
See BOOST_SEL_IRAMP for selecting BOOST_SEL_IND setting  
Boost artificial current ramp peak value, A/s.  
BOOST_SEL_IRAMP[1:0]  
Select value higher than IRAMP_GAIN  
:
IRAMP_GAIN =1.2 x 0.5 x (VOUTmax - VINmin)/(0.7 x L x 60000), where VIN, VOUT are  
boost input and output voltage, L - inductance, H. 25-mRSENSE is suggested.  
BOOST_SEL_IND[1:0]  
BOOST_SEL_IRAMP  
[1:0]  
00  
01  
10  
11  
00  
130  
88  
65  
43  
28  
18  
34  
23  
15  
10  
29  
20  
13  
8.5  
01  
10  
56  
11  
37  
BOOST_FREQ_SEL[2:0]  
2:0  
R/W  
BOOST_EXT_CLK_SEL=0  
Boost output frequency selection (internal oscillator)  
000= 100 kHz  
001 = 200 kHz  
010 = 303 kHz  
011 = 400 kHz  
100 = 629 kHz  
101 = 800 kHz  
110 = 1100 kHz  
111 = 2200 kHz  
BOOST_EXT_CLK_SEL=1  
Boost output frequency selection (for external sync mode if external sync  
disappears)  
000= 100 kHz  
001 = 200 kHz  
010 = 303 kHz  
011 = 400 kHz  
100 = 625 kHz  
101 = 833 kHz  
110 = 1111 kHz  
111 = 2500 kHz  
Copyright © 2014–2017, Texas Instruments Incorporated  
79  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.2.19 EEPROM Register 18  
Address 0x72  
EEPROM Register 16  
7
6
5
4
3
2
1
0
BOOST_DRIVER_SIZE[1:0]  
EN_ADAP  
EN_JUMP  
BRIGHTNESS_JUMP_THRES[1:0]  
JUMP_STEP_SIZE[1:0]  
Name  
Bit  
7:6  
Access  
Description  
BOOST_DRIVER_SIZE[1:0]  
R/W  
Boost gate driver scaling. Affects gate driver peak current and SW  
node voltage rise/fall times  
00 = 0.4/0.45 A (typical) peak sink/source current  
01 = 0.75/0.87 A (typical) peak sink/source current  
10 = 1.2/1.3 A (typical) peak sink/source current  
11 = 1.5/1.7 A (typical) peak sink/source current  
EN_ADAP  
5
R/W  
Enable boost converter adaptive mode  
0 = adaptive mode disabled, boost converter output voltage is set with  
BOOST_INITIAL_VOLTAGE EEPROM register bits.  
1 = adaptive mode enabled. Boost converter start-up voltage is set  
with BOOST_INITIAL_VOLTAGE EEPROM register bits. Further boost  
voltage is adapted to the highest LED string VF.  
If all LED outputs are in cluster mode, adaptive mode is disabled  
automatically.  
EN_JUMP  
4
R/W  
R/W  
Enable large boost voltage jump command for the fast brightness  
increase.  
0 = Normal steps used for boost voltage control  
1 = Jump command allowed in boost voltage control  
BRIGHTNESS_JUMP_THRES[1:0]  
3:2  
Defines the magnitude of the input brightness change after which jump  
command is given.  
00 = Jump command after 10% brightness change  
01 = Jump command after 30% brightness change  
10 = Jump command after 50% brightness change  
11 = Jump command after 70% brightness change  
JUMP_STEP_SIZE[1:0]  
1:0  
R/W  
Boost control step size that jump command increases backlight boost  
output voltage  
00: 8 steps (1.0 V typ)  
01: 16 steps (2.0 V typ)  
10: 32 steps (4.0 V typ)  
11: 64 steps (8.0 V typ)  
80  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.2.20 EEPROM Register 19  
Address 0x73  
EEPROM Register 19  
7
6
5
4
3
2
1
0
RESERVED  
BOOST_INITIAL_VOLTAGE[5:0]  
Name  
Bit  
Access  
Description  
BOOST_INITIAL_VOLTAGE[5:0]  
5:0  
R/W  
Boost voltage control from 16 V to 47.5 V with 0.5 V step (without  
FB resistive divider). When resistive divider is used on the FB pin,  
the voltages are scaled accordingly. If adaptive boost control is  
enabled, this sets the initial start voltage for the boost converter. If  
adaptive mode is disabled, this sets the output voltage of the boost  
converter.  
000000 = 16.0 V (typical)  
000001 = 16.5 V (typical)  
000010 = 17.0 V (typical)  
000011 = 17.5 V (typical)  
000100 = 18.0 V (typical)  
...  
111100 = 46.0 V (typical)  
111101 = 46.5 V (typical)  
111110 = 47.0 V (typical)  
111111 = 47.5 V (typical)  
8.6.2.21 EEPROM Register 20  
Address 0x74  
EEPROM Register 20  
7
6
5
4
3
2
1
0
BOOST_SEL_LLC[1:0]  
BOOST_SEL_JITTER_FILTER[1:0]  
BOOST_SEL_I[1:0]  
BOOST_SEL_P[1:0]  
Name  
Bit  
Access  
Description  
BOOST_SEL_LLC[1:0]  
7:6  
R/W  
Light load comparator control. Selects boost PFM entry threshold  
(compensator current)  
00 = 5 μA (boost switches from PFM to PWM early at light loads)  
01 = 10 μA  
10 = 15 μA  
11 = 20 μA (boost operates in PFM mode to higher loads)  
BOOST_SEL_JITTER_FILTER[1:0]  
BOOST_SEL_I[1:0]  
5:4  
3:2  
1:0  
R/W  
R/W  
R/W  
Boost jitter filter selection  
00 = bypass  
01 = 300 kHz  
10 = 60 kHz  
11 = 30 kHz  
Boost PI compensator control: integral part  
00 = 1  
01 = 2  
10 = 3  
11 = 4  
BOOST_SEL_P[1:0]  
Boost PI compensator control: proportional part  
00 = 1  
01 = 2  
10 = 3  
11 = 4  
Copyright © 2014–2017, Texas Instruments Incorporated  
81  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.2.22 EEPROM Register 21  
Address 0x75  
EEPROM Register 21  
7
6
5
4
3
2
1
0
BOOST_OFFTIME_SEL[1:0]  
BOOST_BLANKTIME_SEL[1:0]  
RESERVED  
BOOST_VO_SLOPE_CTRL[2:0]  
Name  
Bit  
Access  
Description  
BOOST_OFFTIME_SEL[1:0]  
7:6  
R/W  
Boost time off selection  
00 = 131 ns  
01 = 68 ns  
10 = 38 ns  
11 = 24 ns  
BOOST_BLANKTIME_SEL[1:0]  
BOOST_VO_SLOPE_CTRL[2:0]  
5:4  
2:0  
R/W  
R/W  
Boost blank time selection  
00 = 162 ns  
01 = 88 ns  
10 = 63 ns  
11 = 40 ns  
Sets the speed for boost output voltage scaling up or down  
000 = 1 (every PWM cycle)  
001 = 2 (every other PWM cycle)  
010 = 3 (every third PWM cycle)  
011 = 4 (every 4th PWM cycle)  
100 = 5 (every 5th PWM cycle)  
101 = 6 (every 6th PWM cycle)  
110 = 8 (every 8th PWM cycle)  
111 = 16 (every 16th PWM cycle)  
8.6.2.23 EEPROM Register 22  
Address 0x76  
EEPROM Register 20  
7
6
5
4
3
2
1
0
VDD_UVLO_  
LEVEL  
RESERVED  
CP_2X_CLK[1:0]  
CP_2X_EN  
SQW_PULSE_  
GEN_EN  
Name  
Bit  
Access  
Description  
VDD_UVLO_LEVEL  
7
R/W  
VDD UVLO protection level  
0 = 2.5 V  
1 = 3.0 V  
Voltage hysteresis typically 50 mV.  
2.5V level can be used if PLL frequency up to 20 MHz. With higher  
PLL frequency logic is not specified to work down to 2.5 V VDD  
CP_2X_CLK[1:0]  
3:2  
R/W  
Charge pump clock frequency  
00 = 104 kHz  
01 = 208 kHz  
10 = 417 kHz  
11 = 833 kHz  
CP_2X_EN  
1
0
R/W  
R/W  
Charge pump enable. CP is enabled at soft start if CP_2X_EN  
EEPROM bit asserted.  
0 = disabled  
1 = enabled  
SQW_PULSE_GEN_EN  
External charge pump clock enable (50% duty cycle 100 kHz).  
Clock connected to SQW pin. SQW clock enabled at soft start.  
0 = disabled  
1 = enabled  
82  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
8.6.2.24 EEPROM Register 23  
Address 0x77  
EEPROM Register 23  
7
6
5
4
3
2
1
0
EXT_TEMP_LEVEL_HIGH[3:0]  
EXT_TEMP_LEVEL_LOW[3:0]  
Name  
Bit  
Access  
Description  
EXT_TEMP_LEVEL_HIGH[3:0]  
7:4  
R/W  
High external temperature sensor limit, kΩ  
0000 = 79.67  
0001 = 43.35  
0010 = 29.77  
0011 = 22.67  
0100 = 18.30  
0101 = 15.34  
0110 = 13.21  
0111 = 11.60  
1000 = 10.34  
1001 = 9.32  
1010 = 8.49  
1011 = 7.79  
1100 = 7.20  
1101 = 6.69  
1110 = 6.25  
1111 = 5.87  
EXT_TEMP_LEVEL_LOW[3:0]  
3:0  
R/W  
Low external temperature sensor limit, kΩ  
0000 = 79.67  
0001 = 43.35  
0010 = 29.77  
0011 = 22.67  
0100 = 18.30  
0101 = 15.34  
0110 = 13.21  
0111 = 11.60  
1000 = 10.34  
1001 = 9.32  
1010 = 8.49  
1011 = 7.79  
1100 = 7.20  
1101 = 6.69  
1110 = 6.25  
1111 = 5.87  
Copyright © 2014–2017, Texas Instruments Incorporated  
83  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
8.6.2.25 EEPROM Register 24  
Address 0x78  
EEPROM Register 24  
7
6
5
4
3
2
1
0
INT_TEMP_LIM[1:0]  
EXT_TEMP_PERIOD[4:0]  
EXT_TEMP_COMP_EN  
Name  
Bit  
Access  
Description  
INT_TEMP_LIM[1:0]  
7:6  
R/W  
Internal temperature sensor brightness thermal de-rating starting  
level.  
Thermal de-rating function temperature threshold:  
00 = thermal de-rating function disabled  
01 = 90°C  
10 = 100°C  
11 = 110°C  
EXT_TEMP_PERIOD[4:0]  
5:1  
R/W  
Step time for temperature limitation with external sensor  
00000 = 2 s  
00001 = 4 s  
00010 = 6 s  
00011 = 8 s  
00100 = 10 s  
00101 = 12 s  
00110 = 14 s  
00111 = 16 s  
01000 = 18 s  
01001 = 20 s  
01010 = 22 s  
01011 = 24 s  
01100 = 26 s  
01101 = 28 s  
01110 = 30 s  
01111 = 32 s  
11110 = 62 s  
11111 = 64 s  
EXT_TEMP_COMP_EN  
0
R/W  
External temperature sensor (NTC) enable  
0 = disabled  
1 = enabled  
84  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LP8860-Q1 is designed for automotive applications, and an input voltage VIN is intended to be connected to  
the car battery. The device is internally powered from the VDD pin, and voltage must be in 3-V to 5.5-V range.  
The device has flexible configurability; outputs configuration are defined by EEPROM settings. If the VDD voltage  
is not high enough to drive an external nMOSFET gate, an internal charge pump must be used to power the gate  
driver. The charge pump is configured by EEPROM.  
The LP8860-Q1 can be used as a stand-alone device, using only the VDDIO/EN pin and the PWM signal.  
Alternatively, the device can be a part of system, connected to a microprocessor by an SPI or I2C interface.  
NOTE  
Maximum operating voltage for VIN is 48 V; the boost converter can achieve output voltage  
up to 48 V (typical) without external feedback divider in adaptive voltage control mode.  
However, VIN must be below output voltage, and the conversion ratio (max 10) must be  
taken into account. If necessary, boost can provide higher output voltage with an external  
resistive feedback voltage divider. For high output-voltage applications, outputs must be  
protected by external components to prevent overvoltage.  
9.2 Typical Applications  
9.2.1 Typical Application for Display Backlight  
Figure 53 shows the typical application for the LP8860-Q1 with factory-programmed settings. It supports 4 LED  
strings in display mode with a 90° phase shift. Brightness control register is used for LED dimming by using  
conventional PWM dimming method. VDD voltage is 5 V, charge pump is disabled, and boost switching  
frequency is 303 kHz.  
VIN  
3...40 V  
R
ISENSE  
L
D
Up to 40 V  
Q2  
C
IN  
C
OUT  
Q1  
C1P  
C1N  
SD  
GD  
VSENSE_N  
VSENSE_P  
ISENSE  
VDD 5 V  
CVDD  
R
VDD  
SENSE  
ISENSE_GND  
FB  
CPUMP  
CCPUMP  
SQW  
FILTER  
LP8860-Q1  
SYNC  
OUT1  
VSYNC  
OUT2  
OUT3  
PWM  
SCL  
SDA  
SCLK/SCL  
MOSI/SDA  
MISO  
OUT4  
FAULT RESET  
EN  
NSS  
MCU/GPU  
TSENSE  
ISET  
VDDIO/EN  
IF  
FAULT  
FAULT  
SGND PGND LGND PAD  
VDDIO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 53. VDD = 5 V, I2C, 4 LED Outputs in Display Mode  
Copyright © 2014–2017, Texas Instruments Incorporated  
85  
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.1 Design Requirements  
Table 24. EEPROM Setting Example  
ADDRESS (HEX)  
DATA (HEX)  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
ED  
DF  
DC  
F0  
DF  
E5  
F2  
77  
77  
71  
3F  
B7  
17  
EF  
B0  
87  
CE  
72  
E5  
DF  
35  
06  
DC  
FF  
3E  
DESIGN PARAMETER  
VIN voltage range  
VALUE  
3 V to 40 V  
5 V  
VDD voltage  
Charge pump  
Disabled  
I2C  
Brightness Control  
Output configuration  
LED string current  
External current set resistor  
Boost frequency  
Inductor  
Mode 1, OUT1 to OUT4 are in display mode (phase shift 90º)  
130 mA  
Disabled  
303 kHz  
22 μH to 33 μH, at least 9-A saturation current  
Input/Output capacitors  
RISENSE  
10 μF ceramic and 33 μF electrolytic  
20 mΩ  
RSENSE  
25 mΩ  
Current dimming with external NTC  
Disabled  
86  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Inductor Selection  
There are two main considerations when choosing an inductor; the inductor must not saturate, and the inductor  
current ripple must be small enough to achieve the desired output voltage ripple. Different saturation current  
rating specifications are followed by different manufacturers so attention must be given to details. Saturation  
current ratings are typically specified at 25°C. However, ratings at the maximum ambient temperature of  
application should be requested from the manufacturer. Shielded inductors radiate less noise and are preferable.  
The saturation current must be greater than the sum of the maximum load current and the worst case average-  
to-peak inductor current. The equation below shows the worst case conditions.  
IOUTMAX  
ISAT  
>
+ IRIPPLE  
For Boost  
D‘  
VIN  
x
(VOUT - VIN)  
(2 x L x f)  
Where IRIPPLE  
=
VOUT  
(VOUT œ VIN)  
and D‘ = (1 - D)  
Where D =  
(VOUT  
)
IRIPPLE: peak inductor current  
IOUTMAX: maximum load current  
VIN: minimum input voltage in application  
L: min inductor value including worst case tolerances  
f: minimum switching frequency  
VOUT: output voltage  
D: Duty Cycle for CCM Operation  
VOUT: Output Voltage  
(9)  
As a result the inductor must be selected according to the ISAT. A more conservative and recommended  
approach is to choose an inductor that has a saturation current rating greater than the maximum switch current  
limit defined by <BOOST_IMAX_SEL[2:1]> EEPROM bits. A 22-µH to 33-µH inductor with a saturation current  
rating of at least 9 A is recommended for most applications. The inductor resistance must be less than 300 mΩ  
for good efficiency. See detailed information in Texas Instruments Application Note Understanding Boost Power  
Stages in Switch Mode Power Supplies (SLVA061). “Power Stage Designer™ Tools” can be used for the boost  
calculation: http://www.ti.com/tool/powerstage-designer.  
9.2.1.2.2 Output Capacitor Selection  
A ceramic capacitor with a 100-V voltage rating is recommended for the output capacitor. The DC-bias effect can  
reduce the effective capacitance by up to 80%, a consideration for capacitance value selection. Effectively the  
capacitance must be 33 µF for 600-mA loads. A different option is to use an aluminum electrolytic capacitor with  
low ESR and ceramic capacitor in parallel. Typically a 33-µF (ESR < 500 mΩ) with 10-µF (effective) ceramic  
capacitor in parallel is sufficient. If ESR is lower, capacitance for ceramic capacitor can be decreased.  
For higher switching frequency (2.2 MHz) and boost output current below 400 mA, two 10-µF ceramic capacitors  
in parallel are sufficient.  
9.2.1.2.3 Input Capacitor Selection  
A ceramic capacitor with 50-V voltage rating is recommended for the input capacitor. The DC-bias effect can  
reduce the effective capacitance by up to 80%, a consideration for capacitance value selection. Effectively the  
capacitance must be 33 µF for 600-mA loads. A different option is to use an aluminum electrolytic capacitor with  
low ESR and ceramic capacitor in parallel. Typically a 33-µF (ESR < 500 mΩ) with 10-µF (effective) ceramic  
capacitor in parallel is sufficient. If ESR is lower, capacitance for ceramic capacitor can be decreased.  
For higher switching frequency (2.2 MHz) and boost output current below 400 mA two 10-µF ceramic capacitors  
in parallel are sufficient.  
9.2.1.2.4 Charge Pump Output Capacitor  
A ceramic capacitor with at least 16-V voltage rating is recommended for the output capacitor of the charge  
pump. The DC-bias effect can reduce the effective capacitance by up to 80%, which needs to be considered in  
capacitance value selection. Typically a 10-µF capacitor is sufficient.  
Copyright © 2014–2017, Texas Instruments Incorporated  
87  
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
9.2.1.2.5 Charge Pump Flying Capacitor  
A ceramic capacitor with at least 10-V voltage rating is recommended for the flying capacitor of the charge pump.  
Typically 1-µF capacitor is sufficient.  
9.2.1.2.6 Diode  
A Schottky diode must be used for the boost output diode. Peak repetitive current must be greater than inductor  
peak current (up to 9 A) to ensure reliable operation. Average current rating must be greater than the maximum  
output current. Schottky diodes with a low forward drop and fast switching speeds are ideal for increasing  
efficiency. Choose a reverse breakdown voltage of the Schottky diode significantly larger than the output voltage.  
Do not use ordinary rectifier diodes because slow switching speeds and long recovery times cause the efficiency  
and the load regulation to suffer.  
9.2.1.2.7 Boost Converter Transistor  
An nFET transistor with high enough voltage rating (VDS at least 5 V higher than maximum output voltage) must  
be used. Current rating for the FET must be the same as the inductor peak current. Gate-drive voltage for the  
FET is VDD or about 2 x VDD, if the charge pump is enabled (EEPROM selection).  
9.2.1.2.8 Boost Sense Resistor  
A high-power 25-mresistor must be used for sensing the boost SW current. Power rating can be calculated  
from the inductor current and sense resistor resistance value.  
9.2.1.2.9 Power Line Transistor  
A pFET transistor with necessary voltage rating (VDS at least 5 V higher than max input voltage) must be used.  
Current rating for the FET must be the same as input peak current or greater. Transfer characteristic is very  
important for pFET. VGS for open transistor must be less then VIN. A 20-kΩ resistor between the pFET gate and  
source is sufficient.  
If a pFET with high enough VDS and low VGS is not available, it is possible to use an nFET with extra external  
components with the EEPROM bit NMOS_PLFET_EN set high. See Charge Pump section (Figure 25) for using  
the nFET as a power-line FET.  
9.2.1.2.10 Input Current Sense Resistor  
A high-power 20-mresistor must be used for sensing the boost input current. Power rating can be calculated  
from the input current and sense resistor resistance value.  
9.2.1.2.11 Filter Component Values  
Table 25 shows recommended filter component values for the VSYNC PLL filter (phase margin 60°). An external  
filter must be used only when external VSYNC is used; otherwise, the LP8860-Q1 uses internal compensation.  
C1  
FILTER  
C2  
R1  
Figure 54. Filter Components  
88  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
Table 25. Filter Components Selection  
V/H SYNC  
PLL FREQUENCY (MHz)  
C1  
C2  
R1  
50 Hz  
(BW3dB = 1 Hz)  
5
100 nF  
54 nF  
27 nF  
13.6 nF  
10 nF  
5 nF  
1.4 μF  
0.7 μF  
0.35 μF  
0.175 μF  
129 nF  
65 nF  
85 kΩ  
10  
20  
40  
5
170 kΩ  
338 kΩ  
677 kΩ  
14 kΩ  
20 kHz  
(BW3dB = 330 Hz)  
10  
20  
40  
5
28 kΩ  
2.5 nF  
1.2 nF  
22 nF  
12 nF  
6.2 nF  
3.1 nF  
32 nF  
56 kΩ  
16 nF  
112 kΩ  
5.6 kΩ  
11.2 kΩ  
22.3 kΩ  
44,7 kΩ  
50 kHz  
(BW3dB = 330 Hz)  
322 nF  
161 nF  
80 nF  
10  
20  
40  
40 nF  
9.2.1.2.11.1 Critical Components for Design  
Schematic on Figure 55 shows the critical part of circuitry: boost components, the LP8860-Q1 internal charge  
pump for gate driver powering and powering/grounding of LP8860-Q1 boost components. Layout example for  
this is shown in Figure 67.  
R1  
L1  
D1  
+VBATT  
Q1  
C5  
C3  
C4  
C8  
1
2
R2  
C9  
Q2  
C1P  
C1N  
32  
R3  
SD  
30  
28  
5
6
GD  
ISENSE  
VSENSE_N  
VSENSE_P  
VDD 3.3V  
C1  
3
R4  
R5  
VDD  
C6  
27  
26  
31  
ISENSE_GND  
FB  
CPUMP  
C2  
C7  
4
SQW  
9
FILTER  
12  
13  
LP8860-Q1  
25  
SYNC  
to LEDs  
OUT1  
VSYNC  
24  
22  
OUT2  
OUT3  
18  
16  
15  
14  
to LEDs  
PWM  
SCLK/SCL  
MOSI/SDA  
MISO  
21  
OUT4  
17  
19  
20  
NSS  
8
7
TSENSE  
ISET  
VDDIO/EN  
IF  
11  
FAULT  
SGND PGND LGND PAD  
10 29 23  
Copyright © 2016, Texas Instruments Incorporated  
Figure 55. Critical Components for Design  
Copyright © 2014–2017, Texas Instruments Incorporated  
89  
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 26. Bill of Materials for Design Example  
REFERENCE DESIGNATOR  
DESCRIPTION  
NOTE  
Input current sensing resistor  
Power-line FET gate pullup resistor  
Gate resistor for boost FET  
Current sensing filter resistor  
Boost current sensing resistor  
VDD bypass capacitor  
R1  
R2  
R3  
R4  
R5  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
L1  
20 m3 W  
20 k0.1 W  
10 0.1 W  
10 0.1 W  
25 m3 W  
1 μF 10 V ceramic capacitor  
10 μF 16 V ceramic capacitor  
33 μF 50 V electrolytic capacitor  
10 μF 50 V ceramic capacitor  
1 μF 10 V ceramic capacitor  
1000 pF 10 V ceramic capacitor  
39 pF 50 V ceramic capacitor  
33 μF 50 V electrolytic capacitor  
10 μF 100 V ceramic capacitor  
22 μH saturation current 9 A  
60 V 15 A Schottky diode  
Charge pump output capacitor  
Boost input capacitor  
Boost input capacitor  
Flying capacitor  
Current sensing filter capacitor  
High frequency bypass capacitor  
Boost output capacitor  
Boost output capacitor  
Boost inductor  
D1  
Q1  
Q2  
Boost Schottky diode  
60 V 10 A pMOSFET  
Power-line FET  
60 V 15 A nMOSFET  
Boost nMOSFET  
90  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
9.2.1.3 Application Performance Plots  
VDDIO/EN 5V/div  
VD POWER-LINE pFET 10V/div  
VBOOST 10 V/DIV  
LED OUT 10 V/DIV  
20ms/div  
40µs/div  
ƒSW = 303 kHz  
CIN = COUT= 33 µF(el) + 10 µF(cer)  
130 mA/string  
fLED_PWM = 4.9 kHz  
Phase shift 90º  
4 strings  
Figure 57. Typical Start-up  
Figure 56. Voltage of LED Outputs Showing Phase-Shift  
PWM Operation  
BOOST CURRENT  
100mA/DIV  
BOOST CURRENT  
100mA/DIV  
BOOST VOLTAGE  
1V/DIV  
BOOST VOLTAGE  
1V/DIV  
OUT1 5V/DIV  
OUT1 5V/DIV  
40ms/DIV  
40ms/DIV  
EN_PWM_I = 1  
PWM_SLOPE = 101  
I_SLOPE =000  
130 mA/string  
PWM_SLOPE =  
110  
130 mA/string  
Phase Shift = 90°  
10 LED/string  
GAIN_CTRL =  
111  
4 strings  
4 strings  
EN_ADVANCED_SLOPE = 0  
Phase Shift = 90°  
EN_ADVANCED_SLOPE = 0  
Figure 59. Slope With Hybrid Dimming and Phase Shift  
Figure 58. Slope with Phase-Shift Mode  
Copyright © 2014–2017, Texas Instruments Incorporated  
91  
 
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
9.2.2 Low VDD Voltage and Combined Output Mode Application  
Figure 60 shows the application for LED strings in Display mode (OUT1 and OUT2) and Cluster mode (OUT3  
and OUT4). External powering must be used for Cluster-mode LED strings. VDD voltage is 3.3 V, and the charge  
pump for gate driver powering is enabled.  
VIN  
3...40 V  
R
ISENSE  
L
D
Up to 40 V  
Q2  
C
2x  
C
IN  
C
OUT  
Q1  
C1P  
C1N  
SD  
GD  
ISENSE  
VSENSE_N  
VSENSE_P  
VDD 3.3 V  
R
VDD  
SENSE  
ISENSE_GND  
FB  
CVDD  
CCPUMP  
SQW  
FILTER  
OUT1  
LP8860-Q1  
SYNC  
OUT2  
VSYNC  
PWM  
SCLK  
MOSI  
MISO  
NSS  
SCLK/SCL  
MOSI/SDA  
MISO  
OUT3  
OUT4  
MCU/GPU  
NSS  
TSENSE  
ISET  
EN  
External  
Powering  
VDDIO/EN  
IF  
VDDIO  
FAULT  
FAULT  
GND  
PGND LGND PAD  
VDDIO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 60. VDD = 3.3V, SPI, 2 Outputs in Display Mode,  
2 in Cluster Mode Schematic  
9.2.2.1 Design Requirements  
Table 27. EEPROM Setting Example  
ADDRESS (HEX)  
DATA (HEX)  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
ED  
DF  
DC  
F4  
DF  
E5  
F2  
77  
77  
71  
3F  
B7  
17  
EF  
B0  
87  
CF  
72  
E5  
DF  
35  
06  
DE  
FF  
3E  
92  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
DESIGN PARAMETER  
VALUE  
VIN voltage range  
VDD voltage  
3 V to 40 V  
3.3 V  
Charge pump  
Enabled  
SPI  
Brightness Control  
Output configuration  
LED string current  
External current set resistor  
Boost frequency  
Mode 2, OUT1 and OUT2 - display mode (phase shift 180º), OUT3 and OUT4 - cluster mode  
OUT1 and OUT2 - 130 mA; OUT3 - 30 mA; OUT4 - 33 mA  
Disabled  
303 kHz  
Inductor  
22 μH to 33 μH, at least 5-A saturation current  
10 μF ceramic and 33 μF electrolytic  
Disabled  
Input/Output capacitors  
Current dimming with external NTC  
9.2.2.2 Detailed Design Procedure  
See Detailed Design Procedure.  
9.2.2.3 Application Performance Plots  
See Application Performance Plots.  
9.2.3 High Output Voltage Application  
The LP8860-Q1 has ability to control up to 16 or 17 LEDs per string with additional external components for  
output overvoltage protection. nFET transistors can protect outputs, and SQW output can be used to produce  
extra rail voltage for the transistor gates, if necessary voltage is not available in the system.  
VIN  
8...48 V  
R
ISENSE  
Up to 60 V  
L1  
Q2  
C
IN  
D1  
Q1  
C
OUT  
C1P  
C1N  
R1  
DIV  
GD  
SD  
VSENSE_N  
VSENSE_P  
ISENSE  
R
R2  
DIV  
SENSE  
VDD 5 V  
CVDD  
ISENSE_GND  
VDD  
FB  
CPUMP  
CCPUMP  
SQW  
VDD 5 V  
FILTER  
OUT1  
OUT2  
OUT3  
LP8860-Q1  
SYNC  
50 kHz  
VSYNC  
PWM  
SCL  
SDA  
SCLK/SCL  
MOSI/SDA  
MISO  
MCU/GPU  
OUT4  
NSS  
Protection  
FETs  
VDDIO/EN  
IF  
10 V  
TSENSE  
ISET  
FAULT  
SGND PGND LGND PAD  
VDDIO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 61. VDD = 5 V, I2C, High-Voltage Output with Output Protection FETs Circuits  
9.2.3.1 Design Requirements  
Copyright © 2014–2017, Texas Instruments Incorporated  
93  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Table 28. EEPROM Setting Example  
ADDRESS (HEX)  
DATA (HEX)  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
ED  
DF  
DC  
F4  
DF  
E5  
F2  
77  
77  
71  
3F  
B7  
17  
EF  
B0  
87  
CF  
72  
E5  
DF  
35  
06  
DE  
FF  
3E  
DESIGN PARAMETER  
VIN voltage range  
VALUE  
3 V to 48 V  
5 V  
VDD voltage  
Charge pump  
Brightness Control  
Disabled  
I2C  
Mode 0, all outputs are in display mode, phase shift 90º, synchronized with VSYNC 50kHz,  
10 LEDs per string, ƒLED_PWM= 10 kHz  
Output configuration  
LED string current  
OUT1 to OUT4 - 120 mA  
Disabled  
External current set resistor  
Boost frequency  
303 kHz  
Inductor  
22 μH to 33 μH, at least 9-A saturation current  
10 μF ceramic and 33 μF electrolytic  
Disabled  
Input/Output capacitors  
Current dimming with external NTC  
VSYNC  
Enabled, 50 kHz  
Feedback voltage divider  
R1DIV = 30 kΩ, R2DIV = 150 kΩ  
9.2.3.2 Detailed Design Procedure  
See Detailed Design Procedure.  
9.2.3.3 Application Performance Plots  
See Application Performance Plots.  
9.2.4 High Output Current Application  
The LP8860-Q1 outputs can be tied together to drive LED with higher current. To drive a 300 mA/string, connect  
2 outputs together. All 4 outputs connected together can drive up to a 600-mA LED string.  
94  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
VIN  
3...40V  
R
ISENSE  
L
D
Up to 40V  
Q2  
C
2x  
C
IN  
C
OUT  
Q1  
C1P  
C1N  
SD  
GD  
ISENSE  
VSENSE_N  
VSENSE_P  
VDD 3.3V  
R
VDD  
SENSE  
ISENSE_GND  
FB  
CPUMP  
SQW  
FILTER  
Up to 300mA/string  
BOOST SYNC 300 kHz  
LP8860-Q1  
SYNC  
OUT1  
VSYNC  
OUT2  
OUT3  
PWM  
SCLK  
MOSI  
SCLK/SCL  
MOSI/SDA  
MISO  
OUT4  
MISO  
NSS  
MCU/GPU  
NSS  
EN  
TSENSE  
ISET  
VDDIO/EN  
IF  
VDDIO  
FAULT  
FAULT  
SGND PGND LGND PAD  
VDDIO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 62. Two Channels at 300 mA/String, VDD = 3.3 V, SPI  
9.2.4.1 Design Requirements  
Table 29. EEPROM Setting Example  
ADDRESS (HEX)  
DATA (HEX)  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
EF  
FF  
DC  
F8  
DF  
E5  
F2  
77  
77  
71  
3F  
B7  
17  
EF  
B1  
87  
DF  
72  
E5  
DF  
35  
06  
DE  
FF  
3E  
Copyright © 2014–2017, Texas Instruments Incorporated  
95  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
DESIGN PARAMETER  
VIN voltage range  
VALUE  
3 V to 40 V  
3.3 V  
VDD voltage  
Charge pump  
Enabled  
SPI  
Brightness Control  
Output configuration  
LED string current  
Mode 4, OUT1 to OUT4 in display mode, phase shift between tied groups 180º  
OUT1 and OUT2 - 300 mA; OUT3 and OUT4 - 300 mA  
Disabled  
External current set resistor  
Boost frequency  
300 kHz externally synchronized  
Inductor  
22 μH to 33 μH, at least 9-A saturation current  
10-μF ceramic and 33-μF electrolytic  
Disabled  
Input/Output capacitors  
Current dimming with external NTC  
9.2.4.2 Detailed Design Procedure  
See Detailed Design Procedure.  
9.2.4.3 Application Performance Plots  
See Application Performance Plots.  
9.2.5 Three-Channel Configuration Without Serial Interface  
Outputs which are not used can be left floating. In this example 3 outputs are in use. PSPWM mode for 3 outputs  
is set to mode 1 <LED_STRING_CONF[2:0]> = 001b, and the serial interface is not used. The device is enabled  
with the EN/VDDIO pin, and brightness control is set with the PWM input. EEPROM settings must be pre-  
programmed for brightness dimming with external PWM.  
LED current dimming with external NTC sensor is used in this application to protect LEDs against over-heating.  
VIN  
3...40 V  
R
ISENSE  
L
D
Up to 40 V  
Q2  
C
IN  
C
OUT  
Q1  
C1P  
C1N  
SD  
GD  
VSENSE_N  
VSENSE_P  
ISENSE  
VDD 5 V  
R
VDD  
SENSE  
ISENSE_GND  
FB  
CPUMP  
SQW  
FILTER  
Up to 150 mA/string  
LP8860-Q1  
SYNC  
OUT1  
VSYNC  
BRIGHTNESS  
OUT2  
OUT3  
PWM  
SCLK/SCL  
MOSI/SDA  
MISO  
OUT4  
FAULT RESET  
EN  
R
T1  
NSS  
TSENSE  
ISET  
R
T°  
VDDIO/EN  
IF  
FAULT  
FAULT  
R
T2  
NTC  
SGND PGND LGND PAD  
R
ISET  
VDDIO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 63. Three-Channel Configuration without Serial Interface  
96  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
9.2.5.1 Design Requirements  
Table 30. EEPROM Setting Example  
ADDRESS (HEX)  
DATA (HEX)  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
6F  
FF  
DC  
F2  
DF  
E5  
F8  
77  
77  
E1  
BF  
B7  
17  
EF  
B1  
87  
CE  
72  
E5  
DF  
35  
06  
DC  
CF  
3F  
DESIGN PARAMETER  
VIN voltage range  
VDD voltage  
VALUE  
3 V to 40 V  
5 V  
Charge pump  
Disabled  
PWM  
Brightness Control  
Output configuration  
LED string current  
External current set resistor  
Boost frequency  
Mode 1, OUT1 to OUT3 - display mode; OUT4 - not used  
OUT1 to OUT3 - 150 mA  
Enabled, RISET = 24 kΩ  
303 kHz  
Inductor  
22 μH to 33 μH, at least 6-A saturation current  
10-μF ceramic and 33 μF electrolytic  
Input/Output capacitors  
Enabled,R= NCP15XH103F03RC (Murata), see Figure 64, RT1 = 6.6 kΩ, RT2 not  
assembled  
Current dimming with external NTC  
Copyright © 2014–2017, Texas Instruments Incorporated  
97  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
9.2.5.2 Detailed Design Procedure  
LED current dimming with external NTC sensor is used in this application — see section LED Current Dimming  
With External NTC Sensor for details. Figure 65 shows LED current de-rating versus temperature measured by  
NTC sensor with characteristic shown in Figure 64.  
4.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
EXT_TEMP_MINUS[1:0]=01b  
EXT_TEMP_GAIN[3:0]=1110b  
EXT_TEMP_LEVEL_HIGH[3:0]=1100b  
40  
50  
60  
70  
80  
90  
100  
110  
120  
40  
50  
60  
70  
80  
90  
100  
110  
120  
Temperature (ºC)  
C008  
Temperature (ºC)  
C009  
Figure 65. LED Current De-rating vs Temperature  
Figure 64. NTC Sensor Resistance vs Temperature  
9.2.5.3 Application Performance Plots  
See Application Performance Plots.  
9.2.6 Solution With Minimum External Components  
The LP8880-Q1 needs only a few external components for basic functionality if material cost and PCB area for a  
LP8860-Q1-based solution need to be minimized. In this example the power-line FET is removed, as is input  
current sensing. External synchronization functions are disabled.  
VIN  
3...40 V  
Up to 40 V  
L1  
D
C
IN  
Q
C1P  
C1N  
GD  
SD  
VSENSE_N  
VSENSE_P  
ISENSE  
R
SENSE  
VDD 5 V  
ISENSE_GND  
FB  
VDD  
CPUMP  
SQW  
FILTER  
OUT1  
OUT2  
OUT3  
OUT4  
LP8860-Q1  
SYNC  
VSYNC  
BRIGHTNESS  
PWM  
SCLK/SCL  
MOSI/SDA  
MISO  
FAULT RESET  
ENABLE  
TSENSE  
ISET  
NSS  
VDDIO/EN  
IF  
FAULT  
FAULT  
SGND PGND LGND PAD  
VDDIO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 66. Solution With Minimum External Components  
98  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
9.2.6.1 Design Requirements  
Table 31. EEPROM Setting Example  
ADDRESS (HEX)  
DATA (HEX)  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
EF  
FF  
DC  
D0  
DF  
E5  
F0  
77  
77  
71  
3F  
B7  
17  
EF  
B0  
87  
CE  
07  
E5  
DF  
75  
86  
DC  
FF  
3E  
DESIGN PARAMETER  
VIN voltage range  
VALUE  
3 V to 40 V  
5 V  
VDD voltage  
Charge pump  
Disabled  
PWM  
Brightness Control  
Output configuration  
LED string current  
Mode0, OUT1 to OUT4 in display mode, phase shift 90º  
OUT1 to OUT4 - 100 mA  
External current set resistor  
Boost frequency  
Disabled  
2.2 MHz  
Inductor  
4.7 µH to 22 µH, at least 6-A saturation current  
Input/Output capacitors  
Current dimming with external NTC  
2 × 10-μF ceramic  
Disabled  
10 Power Supply Recommendations  
The LP8860-Q1 is designed to operate from a car battery. VIN input must be protected from reversal voltage and  
voltage dump over 48 Volts. The impedance of the input supply rail must be low enough that the input current  
transient does not cause drop below VIN UVLO level. If the input supply is connected by using long wires,  
additional bulk capacitance may be required in addition to normal input capacitor .  
The voltage range for VDD is 3 V to 5.5 V. A ceramic capacitor must be placed as close as possible to the VDD  
pin. The boost gate driver is powered from the VDD pin; this must be taken into account. For high boost  
frequency and high internal PLL frequency (can be up to 40 MHz), power consumption from VDD pin can be  
around 20 mA to 40 mA.  
Copyright © 2014–2017, Texas Instruments Incorporated  
99  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Figure 67 shows a layout recommendation for the LP8860-Q1. Figure 67 is used to show the principles of good  
layout. This layout can be adapted to the actual application layout if and where possible. It is important that all  
boost components are close to each other and to the device; the high-current traces must be wide enough. VDD  
must be as noise-free as possible. Place a VDD bypass capacitor near the pin and ground it to a noise-free  
ground. A charge-pump capacitor and boost input and output capacitors must be connected to PGND. Here are  
some main points to help the PCB layout work:  
Current loops need to be minimized:  
For low frequency the minimal current loop can be achieved by placing the boost components as close to  
each other as possible. Input and output capacitor grounds need to be close to each other to minimize  
current loop size.  
Minimal current loops for high frequencies can be achieved by making sure that the ground plane is intact  
under the current traces. High frequency return currents try to find route with minimum impedance, which  
is the route with minimum loop area, not necessarily the shortest path. Minimum loop area is formed when  
return current flows just under the positive current route in the ground plane, if the ground plane is intact  
under the route.  
For high frequency the copper area capacitance must be taken into account. For example, the copper  
area for the drain of boost nMOSFET is a tradeoff between capacitance and components cooling capacity.  
GND plane must be intact under the high current boost traces to provide shortest possible return path and  
smallest possible current loops for high frequencies.  
Current loops when the boost switch is conducting and not conducting must be in the same direction in  
optimal case.  
Inductors must be placed so that the current flows in the same direction as in the current loops. Rotating the  
inductor 180° changes current direction.  
Use separate power and noise-free grounds. The power ground is used for boost converter return current and  
noise-free ground for more sensitive signals, like VDD bypass capacitor grounding as well as grounding the  
GND pins of the LP8860-Q1 itself.  
Boost output feedback voltage to LEDs need to be taken out after the output capacitors, not straight from the  
diode cathode.  
A small (for example, 39-pF) bypass capacitor must be placed close to the FB pin to suppress high frequency  
noise  
VDD line must be separated from the high current supply path to the boost converter to prevent high  
frequency ripple affecting the chip behavior. A separate 1-µF bypass capacitor is used for the VDD pin, and it  
is grounded to noise-free ground.  
Capacitor connected to charge pump output CPUMP must have 10-µF capacitance, grounded by shortest  
way to boost switch current sensing resistor. This capacitor must be as close as possible to CPUMP pin. This  
capacitor provides a greater peak current for gate driver and must be used even if the charge pump is  
disabled. If the charge pump is disabled, the VDD and CPUMP pins must be tied together.  
Input and output capacitors need strong grounding (wide traces, many vias to PGND plane).  
If two or more output capacitors are used, symmetrical layout must be used to get all capacitors working  
ideally.  
Input/output ceramic capacitors have DC-bias effect. If the output capacitance is too low, it can cause boost  
to become unstable on some loads. DC bias characteristics need to be obtained from the component  
manufacturer; it is not taken into account on component tolerance. TI recommends X5R/X7R capacitors.  
100  
Copyright © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
11.2 Layout Example  
BATTERY  
+VBATT -VBATT  
R1  
R2  
Input capacitors  
Q1  
L1  
C3  
C4  
C8  
C9  
D1  
Output capacitors  
Feedback line  
Connection  
between PGND  
and GND  
R5  
Q2  
Ground wire for  
current sensor  
R4  
C6  
R3  
C2  
C7  
1
2
3
4
5
6
7
8
24  
OUT2  
C1P  
C5  
C1  
C1N  
LGND 23  
VDD  
OUT3  
OUT4  
IF  
22  
21  
20  
19  
18  
17  
SQW  
VDD  
VSENSE_N  
VSENSE_P  
ISET  
VDDIO/EN  
PWM  
TSENSE  
NSS  
VIA to GND plane  
Figure 67. LP8860-Q1 Layout  
版权 © 2014–2017, Texas Instruments Incorporated  
101  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档  
如需相关文档,请参阅:  
PowerPAD™ 耐热增强型封装应用手册》  
《了解开关模式电源中的升压功率级》  
Power Stage Designer™ 工具  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
PowerPAD is a trademark of Texas Instruments Incorporated.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
102  
版权 © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2014–2017, Texas Instruments Incorporated  
103  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
PACKAGE OUTLINE  
VFP0032A  
PowerPAD TM LQFP - 1.6 mm max height  
SCALE 1.700  
PPLLAASSTTICICQQUUAADDFFLLAATTPPAACCKK  
7.2  
6.8  
B
NOTE 4  
25  
32  
PIN 1 ID  
1
24  
7.2  
6.8  
9.2  
TYP  
8.8  
NOTE 3  
8
17  
16  
9
A
0.45  
0.30  
32X  
28X 0.8  
4X 5.6  
0.22  
C A B  
C
1.6 MAX  
SEATING PLANE  
SEE DETAIL A  
(0.127)  
TYP  
9
16  
8
17  
0.25  
GAGE PLANE  
(1.4)  
2.86  
2.32  
33  
0.15  
0.05  
0.1 C  
0 -7  
0.75  
0.45  
A
15  
8X (0.6)  
NOTE 4  
DETAIL A  
TYPICAL  
8X (0.23)  
NOTE 4  
1
24  
32  
25  
4223940/A 10/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Strap features may not be present.  
5. Reference JEDEC registration MS-026.  
www.ti.com  
104  
版权 © 2014–2017, Texas Instruments Incorporated  
LP8860-Q1  
www.ti.com.cn  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
EXAMPLE BOARD LAYOUT  
VFP0032A  
PowerPADTM LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
( 5)  
NOTE 8  
(
2.86)  
SYMM  
32  
25  
SOLDER MASK  
DEFINED PAD  
32X (1.5)  
1
24  
32X (0.55)  
SYMM  
33  
(8.4)  
(1 TYP)  
28X (0.8)  
17  
8
(R0.05) TYP  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
SEE DETAILS  
9
16  
(1 TYP)  
(8.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223940/A 10/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled,  
plugged or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
版权 © 2014–2017, Texas Instruments Incorporated  
105  
LP8860-Q1  
ZHCSCK8G MAY 2014REVISED OCTOBER 2017  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
VFP0032A  
PowerPAD TM LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
(
2.86)  
BASED ON  
0.125 THICK STENCIL  
32  
SEE TABLE FOR  
SYMM  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
25  
32X (1.5)  
1
24  
32X (0.55)  
SYMM  
33  
(8.4)  
28X (0.8)  
17  
8
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
9
16  
(8.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.20 X 3.20  
2.86 X 2.86 (SHOWN)  
2.61 X 2.61  
0.125  
0.15  
0.175  
2.42 X 2.42  
4223940/A 10/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
106  
版权 © 2014–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP8860AQVFPRQ1  
LP8860BQVFPRQ1  
LP8860CQVFPRQ1  
LP8860DQVFPRQ1  
LP8860HQVFPRQ1  
LP8860JQVFPRQ1  
LP8860LQVFPRQ1  
LP8860NQVFPRQ1  
LP8860RQVFPRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HLQFP  
HLQFP  
HLQFP  
HLQFP  
HLQFP  
HLQFP  
HLQFP  
HLQFP  
HLQFP  
VFP  
VFP  
VFP  
VFP  
VFP  
VFP  
VFP  
VFP  
VFP  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
LP8860AQ1  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
LP8860BQ1  
LP8860CQ1  
LP8860DQ1  
LP8860HQ1  
LP8860JQ1  
LP8860LQ1  
LP8860NQ1  
LP8860RQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY