LP8861-Q1 [TI]

适用于汽车照明的低 EMI、高性能 4 通道 LED 驱动器;
LP8861-Q1
型号: LP8861-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于汽车照明的低 EMI、高性能 4 通道 LED 驱动器

驱动 驱动器
文件: 总44页 (文件大小:1209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
LP8861-Q1 具有四个 100mA 通道的低 EMI 汽车 LED 驱动器  
1 特性  
3 说明  
1
符合汽车应用要求 要求  
具有符合 AECQ100 标准的下列结果:  
LP8861-Q1 是一款带有集成升压/SEPIC 转换器的低  
EMI 且易于使用的汽车类高效 LED 驱动器。该器件具  
有四路高精度电流阱,可通过脉宽调制 (PWM) 输入信  
号提供调光比率较高的亮度控制。  
器件温度 1 级:-40°C +125°C 的环境运行温  
度范围  
输入工作电压范围:4.5V 40V  
升压/SEPIC 转换器可基于 LED 电流阱余量电压提供  
自适应输出电压控制。该特性可在所有条件下将电压调  
节到能够满足需要的最低水平,从而最大限度降低功  
耗。升压/SEPIC 转换器支持针对开关频率进行扩频以  
及通过专用引脚实现外部同步。 凭借宽范围可调频  
率,LP8861-Q1 能够避免调幅 (AM) 射频波段的干  
扰。  
四路高精度电流阱  
电流匹配度为 1%(典型值)  
LED 灯串电流高达 100mA/通道  
100Hz 下的调光比为 10 000:1  
用于 LED 灯串电源的集成升压/SEPIC 转换器  
输出电压高达 45V  
开关频率:300kHz 2.2MHz  
开关同步输入  
LP8861-Q1 可选择驱动外部 p-FET,以在发生故障时  
断开输入电源与系统间的连接,从而减少浪涌电流并降  
低待机功耗。该器件可基于外部负温度系数 (NTC) 传  
感器测得的温度降低 LED 电流,以防 LED 过热并延  
长其使用寿命。  
扩展频谱可降低电磁干扰 (EMI)  
电力线场 FET 控制可实现浪涌电流保护和待机节能  
丰富的故障检测和容错功能 特性  
故障输出  
输入电压过压保护 (OVP)、欠压锁定 (UVLO)  
和过流保护 (OCP)  
LP8861-Q1 的输入电压范围为 4.5V 40V,支持汽  
车启动/停止以及负载突降的情况。LP8861-Q1 集成了  
丰富的故障检测和保护 功能。  
开路和短路 LED 故障检测  
使用外部温度传感器自动降低 LED 电流  
热关断  
器件信息(1)  
器件型号  
LP8861-Q1  
封装  
封装尺寸(标称值)  
最大限度减少外部组件数  
TSSOP (20)  
6.50mm x 4.50mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
为以下应用提供背光:  
简化原理图  
汽车信息娱乐系统  
汽车仪表盘  
VIN  
4.5...40 V  
RISENSE  
L1  
D1  
Q1  
Up to 45 V  
智能车镜  
C
OUT  
CIN BOOST  
RGS  
抬头显示屏 (HUD)  
中央信息显示屏 (CID)  
音视频导航 (AVN)  
R2  
R1  
SW  
SD  
VSENSE_N  
VIN  
FB  
C
FB  
CLDO  
VLDO  
RFSET  
C
Up to 100 mA/string  
IN  
LDO  
OUT1  
LP8861-Q1  
OUT2  
OUT3  
OUT4  
系统效率  
VLDO  
R4  
FSET  
SYNC  
100  
95  
90  
85  
80  
75  
70  
65  
60  
R3  
BRIGHTNESS  
EN  
PWM  
TSET  
R7  
TSENSE  
VDDIO/EN  
FAULT  
RTº  
ISET  
R6  
R5  
PGND  
GND PAD  
NTC  
VIN=5V  
VIN=8V  
VIN=12V  
VIN=16V  
RISET  
0
20  
40  
60  
80  
100  
Brightness (%)  
C010  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSA50  
 
 
 
 
 
 
 
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 25  
9.1 Application Information............................................ 25  
9.2 Typical Applications ................................................ 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
器件比较............................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics .......................................... 7  
7.6 Internal LDO Electrical Characteristics ..................... 7  
7.7 Protection Electrical Characteristics ......................... 7  
7.8 Power Line FET Control Electrical Characteristics ... 8  
7.9 Current Sinks Electrical Characteristics.................... 8  
7.10 PWM Brightness Control Electrical Characteristics 8  
7.11 Boost/SEPIC Converter Characteristics ................. 8  
7.12 Logic Interface Characteristics................................ 9  
7.13 Typical Characteristics.......................................... 10  
Detailed Description ............................................ 12  
9
10 Power Supply Recommendations ..................... 34  
11 Layout................................................................... 34  
11.1 Layout Guidelines ................................................. 34  
11.2 Layout Example .................................................... 35  
12 器件和文档支持 ..................................................... 36  
12.1 器件支持................................................................ 36  
12.2 文档支持................................................................ 36  
12.3 接收文档更新通知 ................................................. 36  
12.4 社区资源................................................................ 36  
12.5 ....................................................................... 36  
12.6 静电放电警告......................................................... 36  
12.7 术语表 ................................................................... 36  
13 机械、封装和可订购信息....................................... 36  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (April 2017) to Revision C  
Page  
Expanded descriptions for pins 3, 8, 9, 10, and 16 in Pin Functions .................................................................................... 5  
Changes from Revision A (November 2015) to Revision B  
Page  
已更改 “200Hz 下的调光比为 10 000:1”改为“100Hz 下的调光比为 10 000:1”........................................................................ 1  
已更改 的一些措辞2................................................................................................................................................................ 1  
已添加 新的列表项至应用 ....................................................................................................................................................... 1  
已更改 控制器转换器高开关...”宽范围可调...” ....................................................................................................... 1  
已添加 器件比较表 ............................................................................................................................................................. 3  
Changed "In synchronization" to "If synchronization"............................................................................................................. 5  
Changes to PWM Brightness Control Electrical Characteristics: delete "IOUT = 100 mA. No external load from LDO"  
from Minimum ON/OFF time test conditions; move "0.5" from MAX to TYP in same row; add footnote 1............................ 8  
Added footnote 1 to Boost/SEPIC Converter Characteristics for Toff, tsync_on_min, and tsync_off_min ............................ 8  
Deleted "Initial DC-DC voltage is about 88% of VMAX BOOST." from Integrated Boost/SEPIC Converter............................... 14  
Changed Equation 1............................................................................................................................................................. 14  
Added definitions for Equation 1........................................................................................................................................... 14  
Added paragraph after Figure 9 .......................................................................................................................................... 14  
Added new paragraph before Internal LDO ......................................................................................................................... 16  
Deleted "Dimming ratio is calculated as ratio between the input PWM period and minimum on/off time (0.5 μs)."  
from Brightness Control........................................................................................................................................................ 16  
Changed "less then" to "less than"....................................................................................................................................... 27  
2
版权 © 2015–2017, Texas Instruments Incorporated  
 
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
Changes from Original (August 2015) to Revision A  
Page  
Changed maximum Tstg from 160°C to 150°C ...................................................................................................................... 6  
Added last 2 sentences to end of Internal LDO. .................................................................................................................. 16  
Changed Equation 3 ............................................................................................................................................................ 16  
Changed Figure 29 to update VIN and VSENSE_N pin connections; removed RISENSE row from sub-section  
8.2.2.1 Design Requirements ............................................................................................................................................... 28  
5 器件比较表  
LP8860-Q1  
LP8862-Q1  
LP8861-Q1  
TPS61193-Q1  
TPS61194-Q1  
TPS61196-Q1  
VIN 范围  
3V 48V  
4.5V 45V  
4.5V 45V  
4.5V 45V  
4.5V 45V  
8V 30V  
# LED 通道  
LED 电流/通道  
I2C/SPI 支持  
SEPIC 支持  
4
150mA  
2
160mA  
4
100mA  
3
100mA  
4
100mA  
6
200mA  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
PWP Package  
20-Pin TSSOP with Exposed Thermal Pad  
Top View  
VIN  
LDO  
1
2
3
4
5
6
7
8
9
20 VSENSE_N  
19 SD  
FSET  
18 SW  
VDDIO/EN  
FAULT  
SYNC  
17 PGND  
16 FB  
15 OUT1  
14 OUT2  
13 OUT3  
12 OUT4  
11 GND  
PWM  
TSENSE  
TSET  
EP*  
ISET 10  
*EXPOSED PAD  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NUMBER  
NAME  
1
VIN  
P
A
Input power pin as well as the positive input for an optional current-sense resistor.  
Output of internal LDO; connect a 1-μF decoupling capacitor between this pin and noise-free  
ground.  
2
LDO  
Boost/SEPIC switching frequency setting resistor; for normal operation, resistor value from 24 k  
to 219 kmust be connected between this pin and ground.  
3
4
5
FSET  
VDDIO/EN  
FAULT  
A
I
Enable input for the device as well as supply input (VDDIO) for digital pins  
Fault signal output.  
If unused, the pin may be left floating.  
OD  
Input for synchronizing boost/SEPIC.  
6
SYNC  
I
If synchronization is not used, connect this pin to GND to disable spread spectrum or to  
VDDIO/EN to enable spread spectrum.  
7
8
PWM  
I
PWM dimming input.  
Input for NTC bridge. Refer to LED Current Dimming With External Temperature Sensor for  
proper connection. If unused, the pin must be left floating.  
TSENSE  
A
Input for NTC bridge. Refer to LED Current Dimming With External Temperature Sensor for  
proper connection. This pin must be connected to GND if not used.  
9
TSET  
A
LED current setting resistor; for normal operation, resistor value from 24 kto 129 kmust be  
connected between this pin and ground.  
10  
11  
12  
ISET  
GND  
A
G
A
Ground.  
Current sink output.  
This pin must be connected to GND if not used.  
OUT4  
Current sink output.  
This pin must be connected to GND if not used.  
13  
14  
15  
16  
OUT3  
OUT2  
OUT1  
FB  
A
A
A
A
Current sink output.  
This pin must be connected to GND if not used.  
Current sink output.  
This pin must be connected to GND if not used.  
Boost/SEPIC feedback input; for normal operation this pin must be connected to the middle of a  
resistor divider between VOUT and ground using feedback resistor values from 5 kto 150 k.  
17  
18  
PGND  
SW  
G
A
Boost/SEPIC power ground.  
Boost/SEPIC switch pin.  
Power-line FET control.  
If unused, the pin may be left floating.  
19  
20  
SD  
A
A
Input current sense pin. Connect to VIN pin when optional input current sense resistor is not  
used.  
VSENSE_N  
(1) A: Analog pin, G: Ground pin, P: Power pin, I: Input pin, I/O: Input/Output pin, O: Output pin, OD: Open Drain pin  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VIN, VSENSE_N, SD, SW, FB  
50  
45  
Voltage on pins  
OUT1…OUT4  
V
LDO, SYNC, FSET, ISET, TSENSE, TSET, PWM, VDDIO/EN, FAULT  
5.5  
Continuous power dissipation(3)  
Internally Limited  
(4)  
Ambient temperature range, TA  
Junction temperature range, TJ  
–40  
–40  
125  
ºC  
ºC  
ºC  
°C  
(4)  
150  
See(5)  
150  
Maximum lead temperature (soldering)  
Storage temperature, Tstg  
–65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pins.  
(3) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 165°C (typical) and  
disengages at TJ = 145°C (typical).  
(4) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
150°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).  
(5) For detailed soldering specifications and information, refer to the PowerPAD™ Thermally Enhanced Package Application Note  
(SLMA002).  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
Other pins  
V
Corner pins (1,10,11,20)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VIN  
4.5  
0
45  
45  
VSENSE_N, SD, SW  
Voltage on pins  
OUT1…OUT4  
0
40  
V
FB, FSET, LDO, ISET, TSENSE, TSET, VDDIO/EN, FAULT  
SYNC, PWM  
0
5.25  
0
VDDIO/EN  
(1) All voltages are with respect to the potential at the GND pins.  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
7.4 Thermal Information  
LP8861-Q1  
THERMAL METRIC(1)  
PWP (TSSOP)  
20 PINS  
44.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
26.5  
Junction-to-board thermal resistance  
22.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
22.2  
RθJCbot  
2.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power  
dissipation exists, special care must be paid to thermal dissipation issues in board design.  
7.5 Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Device disabled, VVDDIO/EN = 0 V,  
VIN = 12 V  
Standby supply current  
4.5  
20  
μA  
IQ  
VIN = 12 V, VBOOST= 26 V, output  
current 80 mA/channel, ƒSW= 300  
kHz  
Active supply current  
5
12  
mA  
V
LDO pin voltage. Output of the  
internal LDO or an external supply  
input (VDD).  
VPOR_R  
Power-on reset rising threshold  
Power-on reset falling threshold  
2.7  
LDO pin voltage. Output of the  
internal LDO or an external supply  
input (VDD).  
VPOR_F  
1.5  
V
TTSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
150  
165  
20  
175  
°C  
°C  
TTSD_THR  
(1) All voltages are with respect to the potential at the GND pins.  
(2) Min and Max limits are specified by design, test, or statistical analysis.  
7.6 Internal LDO Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
Output voltage  
TEST CONDITIONS  
MIN  
4.15  
120  
TYP  
4.3  
220  
50  
MAX  
4.45  
430  
UNIT  
V
VLDO  
VIN = 12 V  
VDR  
Dropout voltage  
External current load 5 mA  
mV  
mA  
mA  
ISHORT  
IEXT_MAX  
Short circuit current  
Maximum current for external load  
5
7.7 Protection Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
41  
TYP  
42  
MAX  
44  
UNIT  
V
VOVP  
VIN OVP threshold voltage  
VIN OCP current  
IOCP  
RSENSE = 50 mΩ  
2.7  
3.2  
4.0  
100  
6
3.7  
A
VUVLO  
VIN UVLO  
V
VUVLO_HYST  
VIN UVLO hysteresis  
LED short detection threshold  
mV  
V
5.6  
7
Copyright © 2015–2017, Texas Instruments Incorporated  
7
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
7.8 Power Line FET Control Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
VSENSE_N pin leakage current  
SD leakage current  
TEST CONDITIONS  
VVSENSE_N = 45 V  
VSD = 45 V  
MIN  
TYP  
0.1  
MAX  
UNIT  
µA  
3
3
0.1  
µA  
SD pulldown current  
185  
230  
283  
µA  
7.9 Current Sinks Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
ILEAKAGE  
IMAX  
Leakage current  
Outputs OUT1 to OUT4, VOUTx = 45 V  
OUT1 to OUT4  
0.1  
5
Maximum current  
100  
mA  
IOUT  
Output current accuracy  
Output current matching(1)  
Saturation voltage(2)  
IOUT = 100 mA  
5%  
5%  
3.5%  
0.7  
IMATCH  
VSAT  
IOUT = 100 mA, PWM duty = 100%  
IOUT = 100 mA, VLDO = 4.3 V  
1%  
0.4  
V
(1) Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current.  
Matching is the maximum difference from the average. For the constant current sinks on the part (OUT1 to OUT4), the following are  
determined: the maximum output current (MAX), the minimum output current (MIN), and the average output current of all outputs (AVG).  
Matching number is calculated: (MAX-MIN)/AVG. The typical specification provided is the most likely norm of the matching figure for all  
parts. LED current sinks were characterized with 1-V headroom voltage. Note that some manufacturers have different definitions in use.  
(2) Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at 1 V.  
7.10 PWM Brightness Control Electrical Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Hz  
Recommended PWM input  
frequency  
ƒPWM  
100  
20 000  
tON/OFF  
Minimum ON/OFF time(1)  
0.5  
µs  
(1) This specification is not ensured by ATE.  
7.11 Boost/SEPIC Converter Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
Unless otherwise specified: VIN = 12 V, VVDDIO/EN = 3.3 V, L = 22 μH, CIN = 2 × 10-μF ceramic and 33-μF electrolytic,  
COUT = 2 × 10-μF ceramic and 33-μF electrolytic, D = NRVB460MFS, ƒSW = 300 kHz.  
PARAMETER  
Input voltage  
Output voltage  
TEST CONDITIONS  
MIN  
4.5  
10  
TYP  
MAX  
40  
UNIT  
V
VIN  
VOUT  
45  
V
Minimum switching frequency  
(central frequency if spread  
spectrum is enabled)  
ƒSW_MIN  
300  
kHz  
kHz  
Defined by RFSET resistor  
Maximum switching frequency  
(central frequency if spread  
spectrum is enabled)  
ƒSW_MAX  
2200  
VOUT/VIN  
TOFF  
Conversion ratio  
Minimum switch OFF time(1)  
10  
55  
ƒ
SW 1.15 MHz  
ns  
A
ISW_MAX  
RDSon  
SW current limit  
1.8  
2
2.2  
FET RDSon  
Pin-to-pin  
240  
400  
2200  
mΩ  
kHz  
ƒSYNC  
External SYNC frequency  
300  
External SYNC minimum ON  
time(1)  
tSYNC_ON_MIN  
tSYNC_OFF_MIN  
150  
150  
ns  
ns  
External SYNC minimum OFF  
time(1)  
(1) This specification is not ensured by ATE.  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
7.12 Logic Interface Characteristics  
TJ = 40°C to +125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC INPUT VDDIO/EN  
VIL  
VIH  
II  
Input low level  
Input high level  
Input current  
0.4  
V
V
1.65  
1  
5
30  
0.2 × VVDDIO/EN  
1
µA  
LOGIC INPUTS SYNC, PWM  
VIL  
VIH  
II  
Input low level  
Input high level  
Input current  
V
0.8 × VVDDIO/EN  
1  
μA  
LOGIC OUTPUT FAULT  
VOL  
Output low level  
Pullup current 3 mA  
V = 5.5 V  
0.3  
0.5  
1
V
ILEAKAGE  
Output leakage current  
μA  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
7.13 Typical Characteristics  
Unless otherwise specified: D = NRVB460MFS, T = 25°C.  
1000  
900  
800  
700  
600  
500  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
Vboost = 22 V  
Vboost = 30 V  
Vboost = 37 V  
Vboost = 22 V  
Vboost = 30V  
Vboost = 37 V  
400  
300  
200  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
Input Voltage (V)  
Input Voltage (V)  
C001  
C002  
ƒSW = 300 kHz  
L = 33 μH  
DC Load (PWM = 100%)  
ƒSW = 800 kHz  
L = 15 μH  
DC Load (PWM = 100%)  
CIN and COUT = 33 µF + 2 × 10 µF (ceramic)  
CIN and COUT = 2 × 10 µF (ceramic)  
Figure 1. Maximum Boost Output Current  
Figure 2. Maximum Boost Output Current  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
Vboost = 22 V  
Vboost = 30 V  
Vboost = 37 V  
Vboost = 22 V  
Vboost = 30 V  
Vboost = 37 V  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
Input Voltage (V)  
Input Voltage (V)  
C003  
C004  
ƒSW = 1.5 MHz  
L = 8.2 μH  
DC Load (PWM = 100%)  
ƒSW = 2.2 MHz  
L = 4.7 μH  
DC Load (PWM = 100%)  
CIN and COUT = 2 × 10 µF (ceramic)  
CIN and COUT = 2 × 10 µF (ceramic)  
Figure 3. Maximum Boost Output Current  
Figure 4. Maximum Boost Output Current  
100  
80  
60  
40  
20  
0
2200  
1800  
1400  
1000  
600  
200  
20  
40  
60  
80  
100  
120  
140  
160  
20  
60  
100  
140  
180  
220  
RISET (k)  
C005  
RFSET (k)  
C009  
Figure 5. LED Current vs RISET  
Figure 6. Boost Switching Frequency ƒSW vs RFSET  
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
Typical Characteristics (continued)  
Unless otherwise specified: D = NRVB460MFS, T = 25°C.  
120  
100  
80  
60  
40  
20  
0
6
5
4
3
2
1
0
40  
50  
60  
70  
80  
90  
100  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output current (mA)  
Voltage (V)  
C013  
C014  
RISET = 24 kΩ  
Figure 7. LED Current Sink Matching  
Figure 8. LED Current Sink Saturation Voltage  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LP8861-Q1 is a highly integrated LED driver for automotive infotainment, lighting systems, and medium-  
sized LCD backlight applications. It includes a boost/SEPIC converter with an integrated FET, an internal LDO,  
and four LED current sinks. A VDDIO/EN pin provides the supply voltage for digital IOs (PWM and SYNC inputs)  
and at the same time enables the device.  
The switching frequency on the boost/SEPIC regulator is set by a resistor connected to the FSET pin. The  
maximum voltage is set by a resistive divider connected to the FB pin. For the best efficiency the voltage is  
adapted automatically to the minimum necessary level needed to drive the LED strings. This is done by  
monitoring LED output voltage in real time. For EMI reduction and control two optional features are available:  
Spread spectrum, which reduces EMI noise spikes at the switching frequency and its harmonic frequencies.  
Boost/SEPIC can be synchronized to an external clock frequency connected to the SYNC pin.  
The four constant current sinks for driving the LEDs provide current up to 100 mA per sink and can be tied  
together to get a higher current. Value for the current value is set with a resistor connected to the ISET pin.  
Current sinks that are not used must be connected to the ground. Grounded current sinks are disabled and  
excluded from the adaptive voltage and open/short LED fault detection loop.  
Brightness is controlled with the PWM input. Frequency range for the input PWM is from 100 Hz to 20 kHz. LED  
output PWM follows the input PWM so the output frequency is equal to the input frequency.  
The LP8861-Q1 has extensive fault detection features:  
Open-string and shorted LED detections  
LED fault detection prevents system overheating in case of open or short in some of the LED strings  
VIN input-overvoltage protection  
Threshold sensing from VIN pin  
VIN input undervoltage protection  
Threshold sensing from VIN pin  
VIN input overcurrent protection  
Threshold sensing across RISENSE resistor  
Thermal shutdown in case of die overtemperature  
LED thermal protection with a external NTC (optional feature)  
Fault condition is indicated with the FAULT output pin. Additionally, the LP8861-Q1 supports control for an  
optional power-line FET allowing further protection in boost/SEPIC overcurrent state by disconnecting the device  
from power-line in fault condition. With the power-line FET control it is possible to protect device, boost  
components, and LEDs in case of shorted VBOOST and too-high VIN voltage. Power-line FET control also features  
soft-start which reduces the peak current from the power line during start-up.  
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
8.2 Functional Block Diagram  
L
RISENSE  
D
Q
VIN  
RGS  
CIN  
COUT  
CIN BOOST  
VIN  
VSENSE_N  
SD  
POWER-LINE FET CONTROL  
LDO  
LDO  
CLDO  
SW  
SYNC  
FSET  
PGND  
FB  
BOOST  
CONTROLLER  
RFSET  
RISET  
4 x LED  
CURRENT  
SINK  
ISET  
OUT1  
OUT2  
OUT3  
OUT4  
GND  
TSET  
CURRENT  
SETTING  
TSENSE  
PWM  
VDDIO/  
EN  
DIGITAL BLOCKS  
(FSM, ADAPTIVE VOLTAGE  
CONTROL, SAFETY LOGIC  
etc.)  
FAULT  
ANALOG BLOCKS  
(CLOCK GENERATOR, VREF,  
TSD etc.)  
VDDIO  
EXPOSED PAD  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Integrated Boost/SEPIC Converter  
The LP8861-Q1 boost/SEPIC DC-DC converter generates supply voltage for the LEDs. The maximum output  
voltage VMAX BOOST is defined by an external resistive divider (R1, R2).  
Maximum voltage must be chosen based on the maximum voltage required for LED strings. Recommended VMAX  
is about 30% higher than maximum LED string voltage. DC-DC output voltage is adjusted automatically  
BOOST  
based on LED current sink headroom voltage. Maximum, minimum, and initial boost voltages can be calculated  
with Equation 1:  
V
BG  
VBOOST  
=
+K ì 0.0387 ì R1+ VBG  
«
÷
R2  
where  
VBG = 1.2 V  
R2 recommended value is 130 kΩ  
Resistor values are in kΩ  
K = 1 for maximum adaptive boost voltage (typical)  
K = 0 for minimum adaptive boost voltage (typical)  
K = 0.88 for initial boost voltage (typical)  
(1)  
45  
40  
35  
30  
25  
20  
15  
10  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
R1 (k)  
C008  
Figure 9. Maximum Converter Output Voltage vs R1 Resistance  
Alternatively, a T-divider can be used if resistance less than 100 kΩ is required for the external resistive divider.  
Refer to LP8861-Q1EVM Evaluation Module for details.  
The converter is a current mode DC-DC converter, where the inductor current is measured and controlled with  
the feedback. Switching frequency is adjustable between 300 kHz and 2.2 MHz with RFSET resistor as shown in  
Equation 2:  
ƒSW = 67600/ (RFSET + 6.4)  
where  
ƒSW is switching frequency, kHz  
RFSET is frequency setting resistor, kΩ  
(2)  
14  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
Feature Description (continued)  
In most cases lower frequency has higher system efficiency. Boost parameters are chosen automatically during  
start-up according to the selected switching frequency (see Table 2). In boost mode a 15-pF capacitor CFB must  
be placed across resistor R1 when operating in 300 kHz ... 500 kHz range (see Figure 24). When operating in  
the 1.8-MHz...2.2-MHz range, CFB = 4.7 pF (see Figure 29).  
D
VIN  
VBOOST  
CIN  
COUT  
R1  
SW  
OCP  
ADAPTIVE  
VOLTAGE  
CONTROL  
R2  
LIGHT  
LOAD  
CURRENT  
SENSE  
OVP  
RC  
R
S
R
R
filter  
FB  
-
GM  
PGND  
R
+
SYNC  
FSET  
GM  
FSET  
CTRL  
BLANK  
TIME  
BOOST  
OSCILLATOR  
OFF/BLANK  
TIME  
CURRENT  
RAMP  
PULSE  
GENERATOR  
GENERATOR  
RFSET  
Figure 10. Boost Block Diagram  
Boost clock can be driven by an external SYNC signal between 300 kHz…2.2 MHz. If the external  
synchronization input disappears, boost continues operation at the frequency defined by RFSET resistor. When  
external frequency disappears and SYNC pin level is low, boost continues operation without spread spectrum  
immediately. If SYNC remains high, boost continues switching with spread spectrum enabled after 256 µs.  
External SYNC frequency must be 1.2…1.5 times higher than the frequency defined by the RFSET resistor.  
Minimum frequency setting with RFSET is 250 kHz to support minimum switching frequency with external clock  
frequency 300 kHz.  
The optional spread-spectrum feature (±3% from central frequency, 1-kHz modulation frequency) reduces EMI  
noise spikes at the switching frequency and its harmonic frequencies. When external synchronization is used,  
spread spectrum is not available.  
Table 1. Boost Synchronization Mode  
SYNC PIN STATUS  
MODE  
Low  
High  
Spread spectrum disabled  
Spread spectrum enabled  
300...2200 kHz frequency  
Spread spectrum disabled, external synchronization mode  
Copyright © 2015–2017, Texas Instruments Incorporated  
15  
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
Table 2. Boost Parameters(1)  
TYPICAL BOOST  
TYPICAL  
INDUCTANCE  
(µH)  
FREQUENCY  
INPUT  
AND OUTPUT  
CAPACITORS (µF)  
MIN SWITCH  
BLANK  
TIME (ns)  
CURRENT  
RAMP (A/s)  
CURRENT RAMP  
DELAY (ns)  
RANGE  
(kHz)  
OFF TIME (ns)(2)  
2 × 10 (cer.) + 33  
(electr.)  
1
300...480  
33  
150  
95  
24  
550  
2
3
4
480...1150  
1150...1650  
1650...2200  
15  
10  
10 (cer.) +33 (electr.)  
3 × 10 (cer.)  
60  
40  
40  
95  
95  
70  
43  
79  
300  
0
4.7  
3 × 10 (cer.)  
145  
0
(1) Parameters are for reference only.  
(2) Due to current sensing comparator delay the actual minimum off time is 6 ns (typical) longer than in the table.  
Boost SW pin DC current is limited to 2 A (typical). To support warm start transient condition the current limit is  
automatically increased to 2.5 A for a short period of 1.5 seconds when a 2-A limit is reached.  
NOTE  
Application condition where the 2-A limit is exceeded continuously is not allowed. In this  
case the current limit would be 2 A for 1.5 seconds followed by 2.5-A limit for 1.5 seconds,  
and this 3-second period repeats.  
To keep switching voltage within safe levels there is a 48-V limit comparator in the event that FB loop is broken.  
8.3.2 Internal LDO  
The internal LDO regulator converts the input voltage at VIN to a 4.3-V output voltage. The LDO regulator  
supplies internal and external circuitry. The maximum external load is 5 mA. Connect LDO output with a  
minimum of 1-µF ceramic capacitor to ground as close to the LDO pin as possible. If an external voltage higher  
than 4.5 V is connected to LDO pin, the internal LDO is disabled, and the internal circuitry is powered from the  
external power supply. VIN and VSENSE_N pins must be connected to the same external voltage as LDO pin.  
See Figure 29 for application schematic example.  
8.3.3 LED Current Sinks  
8.3.3.1 Current Sink Configuration  
The LP8861-Q1 detects LED current sinks configuration during start-up. Any sink connected to the ground is  
disabled and excluded from the adaptive boost control and fault detection.  
8.3.3.2 Current Setting  
Maximum current for the LED current sinks is controlled with external RISET resistor. RISET value for target  
maximum current can be calculated using Equation 3:  
RISET = 2342 / (IOUT œ 2.5)  
where  
RISET is current setting resistor, kΩ  
IOUT is output current per output, mA  
(3)  
8.3.3.3 Brightness Control  
The LP8861-Q1 controls the brightness of the display with conventional PWM. Output PWM directly follows the  
input PWM. Input PWM frequency can be in the range of 100 Hz to 20 kHz.  
8.3.4 Power-Line FET Control  
The LP8861-Q1 has a control pin (SD) for driving the gate of an external power-line FET. Power-line FET is an  
optional feature; an example schematic is shown in Figure 24. Power-line FET limits inrush current by turning on  
gradually when the device is enabled (VDDIO/EN = high, VIN > VGS). Inrush current is controlled by increasing  
sink current for the FET gradually to 230 μA.  
16  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
In shutdown the LP8861-Q1 turns off the power-line FET and prevents the possible boost and LEDs leakage.  
The power switch also turns off in case of any fault which causes the device to enter FAULT RECOVERY state.  
8.3.5 LED Current Dimming With External Temperature Sensor  
The LP8861-Q1 has an optional feature to decrease automatically LED current when LED overheating is  
detected with an external NTC sensor. An example of the behavior is shown in Figure 11. When the NTC  
temperature reaches T1, the LP8861-Q1 starts to decrease the LED current. When the LED current has reduced  
to 17.5% of the nominal value, current turns off until temperature returns to the operation range. When TSET pin  
is grounded this feature is disabled. Temperature T1 and de-rate slope are defined by external resistors as  
explained below.  
100%  
17.5%  
T1  
T2  
AMBIENT TEMPERATURE  
Figure 11. Temperature-Based LED Current Dimming Functionality  
VBG  
ISET_SCALED  
1:2000  
ISET  
+
LED OUT  
RISET  
VDD  
R2  
-
ILED  
ITSENSE  
LED DRIVER  
R1  
RT  
TSET  
TSENSE  
R5  
ITSENSE  
R3  
R4  
NTC  
Figure 12. Temperature-Based LED Current Dimming Implementation  
When the TSET pin is grounded LED current is set by RISET resistor:  
RISET = 2342 / (IOUT œ 2.5)  
(4)  
When external NTC is connected, the TSENSE pin current decreases LED output current. The following steps  
describe how to calculate LED output current.  
Parallel resistance of the NTC sensor RT and resistor R4 is calculated by formula:  
RT ìR4  
RT + R4  
RII =  
(5)  
17  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
TSET voltage can be calculated with Equation 6:  
R3  
VTSET = VDD  
ì
R2 + R3  
(6)  
TSENSE pin current is calculated by Equation 7:  
RII  
VTSET - VDD  
RII + R5 -  
ì
RII + R1  
2
ITSENSE  
=
RII  
RII + R1  
(7)  
(8)  
ISET pin current defined by RISET is:  
VBG  
ISET _ SCALED  
=
RISET  
For Equation 9, ITSENSE current must be limited between 0 and ISET_SCALED. If ITSENSE > ISET_SCALED then set  
ITSENSE = ISET_SCALED. If ITSENSE < 0 then set ITSENSE = 0.  
LED driver output current is:  
ILED = (ISET_SCALED – ITSENSE ) x 2 000  
(9)  
When current is lower than 17.5% of the nominal value, the current is set to 0 (so called cut-off point).  
An Excel® calculator is available for calculating the component values for a specific NTC and target thermal  
profile (contact your local TI representative). Figure 13 shows an example thermal profile implementation.  
120  
100  
80  
60  
40  
20  
0
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
LED current  
TSENSE current  
70  
60  
80  
90  
100  
110  
120  
Temperature (ºC)  
C006  
NTC – 10 kΩ at 25ºC  
RISET = 24 kΩ  
R1 = 10 kΩ  
R2 = 10 kΩ  
R3 = 2 kΩ  
R4 = 100 kΩ  
R5 = 7.5 kΩ  
VDD = 4.3 V  
Figure 13. Calculation Example  
8.3.6 Protection and Fault Detection  
The LP8861-Q1 has fault detection for LED open and short, VIN input overvoltage (VIN_OVP), VIN undervoltage  
lockout (VIN_UVLO), power line overcurrent (VIN_OCP), and thermal shutdown (TSD).  
18  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
 
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
8.3.6.1 Adaptive Boost Control and Functionality of LED Fault Comparators  
Adaptive boost control function adjusts the boost output voltage to the minimum sufficient voltage for proper LED  
current sink operation. The output with highest VF LED string is detected and boost output voltage adjusted  
accordingly. Boost adaptive control voltage step size is defined by maximum boost voltage settings, VSTEP  
=
(VMAX BOOST - VMIN BOOST) / 256. Periodic down pressure is applied to the target boost voltage to achieve better  
system efficiency.  
Every LED current sink has 3 comparators for an adaptive boost control and fault detection. Comparator outputs  
are filtered, filtering time is 1 µs.  
OUT#  
SHORT STRING  
DETECTION LEVEL  
HIGH_COMP  
VOLTAGE THRESHOLD  
MID_COMP  
LOWEST VOLTAGE  
LOW_COMP  
CURRENT/PWM  
CONTROL  
Figure 14. Comparators for Adaptive Voltage Control and LED Fault Detection  
Figure 15 illustrates different cases which cause boost voltage increase, decrease, or generate faults. In normal  
operation, voltage at all the OUT# pins is between LOW_COMP and MID_COMP levels and boost voltage stays  
constant. LOW_COMP level is the minimum for proper LED current sink operation, 1.1 × VSAT + 0.2 V (typical).  
MID_COMP level is 1.1 × VSAT + 1.2 V (typical) — that is, typical headroom window is 1 V.  
When voltage at all the OUT# pins increases above MID_COMP level, boost voltage adapts downwards.  
When voltage at any of the OUT# pins falls below LOW_COMP threshold, boost voltage adapts upwards. In the  
condition where boost voltage reaches the maximum and there are one or more outputs still below LOW_COMP  
level, an open LED fault is detected.  
HIGH_COMP level, 6 V typical, is the threshold for shorted LED detection. When the voltage of one or more of  
the OUT# pins increases above HIGH_COMP level and at least one of the other outputs is within the normal  
headroom window, shorted LED fault is detected.  
Shorted LED fault (at  
Boost  
decreases  
voltage  
Boost  
increases  
voltage  
least one output should  
be between LOW_COMP  
and MID_COMP)  
Open LED fault when  
VBOOST = VSET BOOST MAX  
No actions  
No actions  
Shorted  
LED fault  
Minimum  
headroom  
level reached  
All outputs are  
above headroom  
window  
Open LED  
fault  
HIGH_COMP  
MID_COMP  
HEADROOM  
WINDOW  
LOW_COMP  
Figure 15. Boost Adaptation and LED Protection Algorithms  
Copyright © 2015–2017, Texas Instruments Incorporated  
19  
 
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
8.3.6.2 Overview of the Fault/Protection Schemes  
The LP8861-Q1 fault detection behavior is described in Table 3. Detected faults (excluding LED faults) cause the  
device to enter FAULT_RECOVERY state. In FAULT_RECOVERY the boost and LED outputs of LP8861-Q1 are  
disabled, power-line FET is turned off, and the FAULT pin is pulled low. Device recovers automatically and  
enters normal operating mode (ACTIVE) after a recovery time of 100 ms if the fault condition has disappeared.  
When recovery is successful, the FAULT pin is released.  
In case a LED fault is detected, device continues normal operation and only the faulty string is disabled. Fault is  
indicated via FAULT pin which can be released by toggling VDDIO/EN pin low for a short period of 2…20 µs.  
LEDs are turned off for this period but device stays in ACTIVE mode. If VDDIO/EN is low longer, device goes to  
STANDBY and restarts when EN goes high again.  
Table 3. Fault/Protection Schemes  
FAULT_  
RECOVERY  
STATE  
FAULT/  
PROTECTION  
CONNECTED TO  
FAULT PIN  
FAULT NAME  
THRESHOLD  
ACTION  
1. Overvoltage is monitored from the beginning of soft start. Fault is  
detected if the duration of overvoltage condition is 100 µs minimum.  
2. Overvoltage is monitored from the beginning of normal operation  
(ACTIVE mode). Fault is detected if overvoltage condition duration is  
560 ms minimum (tfilter). After the first fault detection filter time is  
reduced to 50 ms for following recovery cycles. When device  
recovers and has been in ACTIVE mode for 160 ms, filter is  
increased back to 560 ms.  
1. VIN > 42 V  
2. VBOOST > VSET_BOOST + (6...10)  
V
VSET_BOOST is voltage value  
defined by logic during  
adaptation  
VIN overvoltage  
protection  
VIN_OVP  
Yes  
Yes  
Detects undervoltage condition at VIN pin. Sensed from the  
beginning of soft start. Fault is detected if undervoltage condition  
duration is 100 µs minimum.  
VIN undervoltage  
lockout  
Falling 3.9 V  
Rising 4 V  
VIN_UVLO  
VIN_OCP  
Yes  
Yes  
Yes  
Yes  
Detects overcurrent by measuring voltage of the SENSE resistor  
connected between VIN and VSENSE_N pins. Sensed from the  
beginning of soft start. Fault is detected if undervoltage condition  
duration is 10 µs minimum.  
VIN overcurrent  
protection  
3 A (50-mΩ current sensor  
resistor)  
Detected if one or more outputs are below threshold level, and boost  
adaptive control has reached maximum voltage. Open string(s) is  
removed from voltage control loop and PWM is disabled.  
Open LED fault  
OPEN_LED  
LOW_COMP threshold  
Yes  
No  
Fault pin is cleaned by toggling VDDIO/EN pin. If VDDIO/EN is low  
for a short period of 2…20 µs, LEDs are turned off for this period but  
device stays ACTIVE. If VDDIO/EN is low longer, device goes to  
STANDBY and restarts when EN goes high again.  
Detected if one or more outputs voltages are above shorted string  
detection level and at least one LED output voltage is within  
headroom window. Shorted string(s) are removed from the boost  
voltage control loop and outputs PWM(s) are disabled.  
Fault pin is cleaned by toggling VDDIO/EN pin. If VDDIO/EN is low  
for a short period of 2…20 µs, LEDs are turned off for this period but  
device stays ACTIVE. If VDDIO/EN is low longer, device goes to  
STANDBY and restarts when EN goes high again.  
Shorted LED fault  
SHORT_LED  
Shorted string detection level 6 V  
Yes  
Yes  
No  
165ºC  
Thermal Shutdown Hysteresis  
20ºC  
Thermal  
protection  
Thermal shutdown is monitored from the beginning of soft start. Die  
temperature must decrease by 20ºC for device to recover.  
TSD  
Yes  
20  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
Time is not enough to  
discharge COUT  
VIN OVERVOLTAGE  
VIN OK  
VIN  
VBOOST  
VSET_BOOST +6...10 V  
Powerline  
FET state  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
IOUT  
FAULT  
tFILTER = 560 ms  
tRECOVERY  
100 ms  
=
tSOFTSTART  
tBOOST START  
+
tFILTER  
50 ms  
=
tRECOVERY  
100 ms  
=
tSOFTSTART  
tBOOST START 40 - 50 ms  
+
tFILTER  
=
tRECOVERY  
100 ms  
=
tSOFTSTART + tFILTER =  
tBOOST START 50 ms  
Figure 16. VIN Overvoltage Protection (Boost OVP)  
VIN OVP threshold  
VIN  
BOOST OVP threshold  
FB  
Powerline  
FET state  
ON  
OFF  
ON  
ttSOFTSTART +t  
ttBOOST STARTUP  
FAULT  
ttRECOVERY = 100 mst  
ttRECOVERY = 100 mst  
t
Figure 17. VIN Overvoltage Protection (VIN OVP)  
UVLO rising threshold  
UVLO falling threshold  
VIN  
FB  
Powerline  
FET state  
ON  
OFF  
ON  
ttSOFTSTART +t  
ttBOOST STARTUP  
FAULT  
ttRECOVERY = 100 mst  
ttRECOVERY = 100 mst  
t
Figure 18. VIN Undervoltage Lockout  
Copyright © 2015–2017, Texas Instruments Incorporated  
21  
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
3 A @ 50 m  
IIN  
FB  
Powerline  
FET state  
ON  
OFF  
ON  
OFF  
ttSOFTSTART +t  
ttBOOST STARTUP  
ttRECOVERY = 100 mst  
ttRECOVERY = 100 mst  
t
FAULT  
Figure 19. Input Voltage Overcurrent Protection  
VBOOST SET MAX LEVEL  
VBOOST  
VOUT  
OTHER LEDs  
VOUT  
OPEN LED  
LOW_COMP level  
t = 2...20 µs  
VDDIO/EN  
FAULT  
Figure 20. LED Open Fault  
MID_COMP level  
LOW_COMP level  
VOUT OTHER  
VOUT  
SHORTED LED  
HIGH_COMP level  
t = 2...20 µs  
VDDIO/EN  
FAULT  
Figure 21. LED Short Fault  
22  
Copyright © 2015–2017, Texas Instruments Incorporated  
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
8.4 Device Functional Modes  
8.4.1 Device States  
The LP8861-Q1 enters STANDBY mode when the internal LDO output rises above the power-on reset level,  
VLDO > VPOR_R. In STANDBY mode device is able to detect the VDDIO/EN signal. When VDDIO/EN is pulled  
high, device powers up. During soft start the external power line FET is opened gradually to limit inrush current.  
Soft start is followed by boost start, during which time boost voltage is ramped to the initial value. After boost  
start LED outputs are sensed to detect grounded current sinks. Grounded current sinks are disabled and  
excluded from the boost voltage control loop.  
If a fault condition is detected, the LP8861-Q1 enters FAULT_RECOVERY state. In this state power line FET is  
switched off and both the boost and LED current sinks are disabled. Fault that cause the device to enter  
FAULT_RECOVERY are listed in Figure 22. When LED open or short is detected, faulty string is disabled but  
LP8861-Q1 stays in ACTIVE mode.  
POR = 1  
STANDBY  
VDDIO / EN = 1  
100 ms  
VIN_OCP  
VIN_OVP  
VIN_UVLO  
SOFT START  
65 ms  
50 ms  
TSD  
FAULT RECOVERY  
BOOST START  
FAULTS  
VDDIO / EN = 0  
FAULTS:  
NO  
FAULT  
RECOVERY?  
FAULTS  
- VIN_OCP  
- VIN_OVP  
- VIN_UVLO  
- TSD  
LED OUTPUT  
CONFIGURATION  
DETECTION  
YES  
ACTIVE  
BOOST, LED CURRENT SINKS  
AND POWER LINE FET ARE  
DISABLED IN FAULT RECOVERY  
STATE  
VDDIO / EN = 0  
SHUTDOWN  
Figure 22. State Diagram  
Copyright © 2015–2017, Texas Instruments Incorporated  
23  
 
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
t > 500 s  
T = 50 s  
VIN  
LDO  
VDDIO/EN  
SYNC  
PL pFET drain  
Headroom adaptation  
VOUT = VIN level œ diode drop  
VBOOST  
PWM OUT  
IQ  
Active mode  
SOFT  
tSTARTt  
tBOOSTt  
START  
Figure 23. Timing Diagram for the Typical Start-Up and Shutdown  
24  
Copyright © 2015–2017, Texas Instruments Incorporated  
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LP8861-Q1 is designed for automotive applications, and an input voltage VIN is intended to be connected to  
the car battery. Device circuitry is powered from the internal LDO which, alternatively, can be used as external  
VDD voltage — in that case, external voltage must be in the 4.5-V to 5.5-V range.  
The LP8861-Q1 uses a simple four-wire control:  
VDDIO/EN for enable  
PWM input for brightness control  
SYNC pin for boost synchronisation (optional)  
FAULT output to indicate fault condition (optional)  
9.2 Typical Applications  
9.2.1 Typical Application for 4 LED Strings  
Figure 24 shows the typical application for LP8861-Q1 which supports 4 LED strings with maximum current 100  
mA and boost switching frequency of 300 kHz.  
VIN  
4.5...28 V  
RISENSE  
Q1  
L1  
D1  
Up to 37 V  
CIN BOOST  
COUT  
RGS  
R2  
R1  
SW  
SD  
VSENSE_N  
VIN  
FB  
CFB  
CIN  
Up to 100 mA/string  
LDO  
CLDO  
OUT1  
LP8861-Q1  
OUT2  
OUT3  
RFSET  
FSET  
SYNC  
PWM  
OUT4  
BRIGHTNESS  
TSET  
TSENSE  
ISET  
EN  
VDDIO/EN  
FAULT  
FAULT  
RISET  
R3  
VDDIO  
PGND GND  
PAD  
Figure 24. Typical Application for Four Strings 100 mA/String Configuration  
Copyright © 2015–2017, Texas Instruments Incorporated  
25  
 
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.1 Design Requirements  
DESIGN PARAMETER  
VALUE  
VIN voltage range  
4.5…28 V  
LED string  
4 x 8 LEDs (30 V)  
LED string current  
100 mA  
Max boost voltage  
37 V  
Boost switching frequency  
300 kHz  
External boost sync  
not used  
Boost spread spectrum  
enabled  
L1  
CIN  
33 μH  
10 µF 50 V  
CIN BOOST  
COUT  
CLDO  
CFB  
2 × 10-µF, 50-V ceramic + 33-µF, 50-V electrolytic  
2 × 10-µF, 50-V ceramic + 33-µF, 50-V electrolytic  
1 µF 10 V  
15 pF  
RISET  
RFSET  
RISENSE  
R1  
24 kΩ  
210 kΩ  
50 mΩ  
750 kΩ  
130 kΩ  
10 kΩ  
R2  
R3  
RGS  
20 kΩ  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Inductor Selection  
There are two main considerations when choosing an inductor; the inductor must not saturate, and the inductor  
current ripple must be small enough to achieve the desired output voltage ripple. Different saturation current  
rating specifications are followed by different manufacturers so attention must be given to details. Saturation  
current ratings are typically specified at 25°C. However, ratings at the maximum ambient temperature of  
application should be requested from the manufacturer. Shielded inductors radiate less noise and are preferred.  
The saturation current must be greater than the sum of the maximum load current and the worst-case average to  
peak inductor current. Equation 10 shows the worst-case conditions:  
IOUTMAX  
ISAT  
>
+ IRIPPLE  
For Boost  
D‘  
VIN  
x
(VOUT - VIN)  
(2 x L x f)  
Where IRIPPLE  
=
VOUT  
(VOUT œ VIN)  
and D‘ = (1 - D)  
Where D =  
(VOUT  
)
IRIPPLE - peak inductor current  
IOUTMAX - maximum load current  
VIN - minimum input voltage in application  
L - min inductor value including worst case tolerances  
ƒ - minimum switching frequency  
VOUT - output voltage  
D - Duty Cycle for CCM Operation  
VOUT - Output Voltage  
(10)  
26  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
As a result the inductor should be selected according to the ISAT. A more conservative and recommended  
approach is to choose an inductor that has a saturation current rating greater than the maximum current limit. A  
saturation current rating at least 3 A is recommended for most applications. See Table 2 for inductance  
recommendation for the different switch frequency ranges. The inductor’s resistance should be less than 300 mΩ  
for good efficiency.  
See detailed information in Understanding Boost Power Stages in Switch Mode Power Supplies (SLVA061).  
Power Stage Designer™ Tools can be used for the boost calculation: http://www.ti.com/tool/powerstage-  
designer.  
9.2.1.2.2 Output Capacitor Selection  
A ceramic and electrolytic capacitors should have sufficient voltage rating. The DC-bias effect in ceramic  
capacitors can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance  
value selection. Capacitance recommendation for different switching frequency range is shown in Table 2. To  
minimize audible of noise ceramic capacitors their geometric size is usually minimized.  
9.2.1.2.3 Input Capacitor Selection  
A ceramic and electrolytic capacitors should have sufficient voltage rating. The DC-bias effect in ceramic  
capacitors can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance  
value selection. Capacitance recommendation for different switching frequency range is shown in Table 2. To  
minimize audible of noise ceramic capacitors their geometric size is usually minimized.  
9.2.1.2.4 LDO Output Capacitor  
A ceramic capacitor with at least 10-V voltage rating is recommended for the output capacitor of the LDO. The  
DC-bias effect in ceramic capacitors can reduce the effective capacitance by up to 80%, which needs to be  
considered in capacitance value selection. Typically a 1-µF capacitor is sufficient.  
9.2.1.2.5 Diode  
A Schottky diode should be used for the boost output diode. Ordinary rectifier diodes should not be used,  
because slow switching speeds and long recovery times degrade the efficiency and the load regulation. Diode  
rating for peak repetitive current should be greater than inductor peak current (up to 3 A) to ensure reliable  
operation. Average current rating should be greater than the maximum output current. Schottky diodes with a low  
forward drop and fast switching speeds are ideal for increasing efficiency. Choose a reverse breakdown voltage  
of the Schottky diode significantly larger than the output voltage.  
9.2.1.2.6 Power Line Transistor  
A pFET transistor with necessary voltage rating (VDS at least 5 V higher than max input voltage) should be used.  
Current rating for the FET should be the same as input peak current or greater. Transfer characteristic is very  
important for pFET. VGS for open transistor must be less than VIN. A 20-kΩ resistor between pFET gate and  
source is sufficient.  
9.2.1.2.7 Input Current Sense Resistor  
A high-power 50-mresistor should be used for sensing the boost input current. Power rating can be calculated  
from the input current and sense resistor resistance value. Increasing RISENSE decreases VIN OCP current  
proportionally.  
Copyright © 2015–2017, Texas Instruments Incorporated  
27  
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
9.2.1.3 Application Curves  
SD 2V/div  
VBOOST 10V/div  
IBOOST 200mA/div  
VDDIO/EN 5 V/div  
20ms/div  
OUT1/OUT2/BOOST 10V/div  
FAULT 2V/div  
40ms/div  
ƒSW = 300 kHz  
VIN = 10 V  
Brightness PWM 50% 100 Hz  
Figure 26. Open LED Fault  
Figure 25. Typical Start-up  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
VIN=5V  
VIN=8V  
VIN=12V  
VIN=16V  
VIN=5V  
VIN=8V  
VIN=12V  
VIN=16V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Brightness (%)  
Brightness (%)  
C011  
C012  
Load 4 strings, 8 LED per string  
I = 100 mA/string for VIN = 12 V and 16 V  
I = 60 mA/sting for VIN = 8 V  
ƒSW= 300 kHz  
Load 4 strings, 8 LED per string  
I = 100 mA/string for VIN = 12 V and VIN = 16 V  
I = 60 mA/sting for VIN = 8 V  
ƒSW = 300 kHz  
I = 50 mA/string for VIN = 5 V  
I = 50 mA/string for VIN = 5 V  
Figure 27. Boost Efficiency  
Figure 28. System Efficiency  
9.2.2 High Output Current Application  
The LP8861-Q1 current sinks can be tied together to drive LED with higher current. To drive 200 mA per string 2  
outputs can be connected together. All 4 outputs connected together can drive an up to 400-mA LED string.  
Device circuitry is powered from external VDD voltage.  
28  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
VIN  
4.5...28 V  
Q1  
L1  
D1  
Up to 37 V  
CIN  
CIN BOOST  
COUT  
R2  
R1  
SW  
SD  
VSENSE_N  
VIN  
FB  
CFB  
VDD 5 V  
Up to 200 mA/string  
LDO  
CLDO  
OUT1  
LP8861-Q1  
OUT2  
OUT3  
RFSET  
FSET  
SYNC  
PWM  
OUT4  
BRIGHTNESS  
TSET  
TSENSE  
ISET  
EN  
VDDIO/EN  
FAULT  
FAULT  
RISET  
R3  
PGND GND  
PAD  
VDDIO  
Figure 29. Two Strings 200 mA/String Configuration  
9.2.2.1 Design Requirements  
DESIGN PARAMETER  
VALUE  
4.5…28 V  
2 × 8 LEDs (30 V)  
200 mA  
VIN voltage range  
LED string  
LED string current  
Max boost voltage  
37 V  
Boost switching frequency  
2.2 MHz  
External boost sync  
not used  
Boost spread spectrum  
disabled  
L1  
CIN  
4.7 μH  
10 µF 50 V  
2 × 10-µF, 50-V ceramic  
3 × 10-µF, 50-V ceramic  
1 µF 10 V  
4.7 pF  
CIN BOOST  
COUT  
CLDO  
CFB  
RISET  
RFSET  
R1  
24 kΩ  
24 kΩ  
750 kΩ  
R2  
130 kΩ  
R3  
10 kΩ  
RGS  
20 kΩ  
9.2.2.2 Detailed Design Procedure  
See Detailed Design Procedure.  
9.2.2.3 Application Curves  
See Application Curves.  
Copyright © 2015–2017, Texas Instruments Incorporated  
29  
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
9.2.3 SEPIC Mode Application  
When LED string voltage can be above or below VIN voltage, SEPIC configuration can be used. The SW pin  
voltage is equal to the sum of the input voltage and output voltage in SEPIC mode — this fact limits the  
maximum input voltage in this mode. LED current sinks not used should be connected to ground. External  
frequency can be used to synchronize boost/SEPIC switching frequency, and external frequency can be  
modulated to spread switching frequency spectrum.  
RISENSE  
Q1  
D1  
VIN  
L1  
CIN SEPIC  
C1  
COUT  
RGS  
R2  
R1  
SW  
SD  
VSENSE_N  
VIN  
FB  
CIN  
Up to 100 mA/string  
LDO  
CLDO  
OUT1  
LP8861-Q1  
RFSET  
OUT2  
OUT3  
FSET  
BOOST SYNC  
BRIGHTNESS  
SYNC  
PWM  
OUT4  
TSET  
EN  
VDDIO/EN  
FAULT  
TSENSE  
ISET  
FAULT  
R3  
VDDIO  
PGND GND  
PAD  
RISET  
Figure 30. SEPIC Mode, 4 Strings 100 mA/String Configuration  
30  
Copyright © 2015–2017, Texas Instruments Incorporated  
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
9.2.3.1 Design Requirements  
DESIGN PARAMETER  
VALUE  
VIN voltage range  
4.5…30 V  
LED string  
4 × 4 LEDs (14.5 V)  
LED string current  
100 mA  
Max boost voltage  
17.5 V  
Boost switching frequency  
300 kHz  
External boost sync  
used  
Boost spread spectrum  
not available with external sync  
L1  
CIN  
33 μH  
10 µF 50 V  
CIN SEPIC  
C1  
2 × 10-µF, 50-V ceramic + 33-µF 50-V electrolytic  
10-µF 50-V ceramic  
COUT  
CLDO  
RISET  
RFSET  
RISENSE  
R1  
2 × 10-µF, 50-V ceramic + 33-µF 50-V electrolytic  
1 µF 10 V  
24 kΩ  
210 kΩ  
50 mΩ  
390 kΩ  
130 kΩ  
10 kΩ  
R2  
R3  
RGS  
20 kΩ  
9.2.3.2 Detailed Design Procedure  
See Detailed Design Procedure for external component recommendations. The Power Stage Designer™ Tools  
can be use for defining SEPIC component current and voltage ratings according to application:  
http://www.ti.com/tool/powerstage-designer  
9.2.3.2.1 Diode  
A Schottky diode with a low forward drop and fast switching speed should be used for the SEPIC output diode.  
Do not use ordinary rectifier diodes, because slow switching speeds and long recovery times degrade the  
efficiency and load regulation. The diode must be able to handle peak repetitive current greater than the  
integrated FET peak current (SW pin limit), thus 3 A or higher must be used to ensure reliable operation.  
Average current rating should be greater than the maximum output current. Choose a diode with reverse  
breakdown larger than the sum of input voltage and output voltage.  
9.2.3.2.2 Inductor  
Coupled or uncoupled inductors can be used in SEPIC mode. Coupled inductor typically provides better  
efficiency. Power Stage Designer™ Tools can be used for the SEPIC inductance calculation:  
http://www.ti.com/tool/powerstage-designer.  
Copyright © 2015–2017, Texas Instruments Incorporated  
31  
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
9.2.3.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
VIN=8V  
VIN=12V  
VIN=14V  
VIN=18V  
VIN=8V  
VIN=12V  
VIN=14V  
VIN=18V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Brightness (%)  
Brightness (%)  
C016  
C015  
Load 4 strings, 4 LED per string  
I = 100 mA/string  
ƒSW = 300 kHz  
Load 4 strings, 4 LED per string  
I = 100 mA/string  
ƒSW = 300 kHz  
Figure 32. System Efficiency  
Figure 31. SEPIC Efficiency  
9.2.4 Application with Temperature Based LED Current De-rating  
The LP8881-Q1 is able to protect connected LED strings from overheating. LED current versus temperature  
behavior can be adjusted with external resistor as described in LED Current Dimming With External Temperature  
Sensor.  
VIN  
4.5...30 V  
RISENSE  
Q1  
L1  
D1  
Up to 43 V  
CIN BOOST  
COUT  
RGS  
R2  
R1  
SW  
SD  
VSENSE_N  
VIN  
FB  
CFB  
VLDO  
CIN  
Up to 50 mA/string  
LDO  
CLDO  
OUT1  
LP8861-Q1  
OUT2  
OUT3  
RFSET  
FSET  
SYNC  
PWM  
VLDO  
R4  
OUT4  
BRIGHTNESS  
R3  
RTº  
TSET  
TSENSE  
ISET  
R7  
EN  
VDDIO/EN  
FAULT  
FAULT  
R6  
R5  
R8  
VDDIO  
NTC  
PGND GND  
PAD  
RISET  
Figure 33. Temperature Based LED Current De-rating  
32  
Copyright © 2015–2017, Texas Instruments Incorporated  
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
9.2.4.1 Design Requirements  
DESIGN PARAMETER  
VALUE  
VIN voltage range  
4.5…30 V  
LED string  
4 × 9 LEDs (33 V)  
LED string current  
50 mA  
Max boost voltage  
43 V  
Boost switching frequency  
400 kHz  
External boost sync  
not used  
Boost spread spectrum  
enabled  
L1  
CIN  
33 μH  
10-µF 50-V ceramic  
CIN BOOST  
COUT  
CLDO  
CFB  
2 × 10-µF, 50-V ceramic + 33-µF, 50-V electrolytic  
2 × 10-µF, 50-V ceramic + 33-µF, 50-V electrolytic  
1 µF 10 V  
15 pF  
RISET  
RFSET  
RISENSE  
R1  
48 kΩ  
160 kΩ  
50 mΩ  
866 kΩ  
130 kΩ  
12 kΩ  
R2  
R3  
R4  
10 kΩ  
R5  
1.8 kΩ  
R6  
82 kΩ  
R7  
16 kΩ  
R8  
10 kΩ  
RT  
10 kΩ @ 25°C  
20 kΩ  
RGS  
9.2.4.2 Detailed Design Procedure  
See Detailed Design Procedure.  
9.2.4.3 Application Curve  
60  
50  
40  
30  
20  
10  
0
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
Temperature (ºC)  
C007  
Figure 34. LED Current vs Temperature  
Copyright © 2015–2017, Texas Instruments Incorporated  
33  
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
The LP8861-Q1 device is designed to operate from a car battery. The device should be protected from reverse  
voltage polarity and voltage dump over 50 V. The resistance of the input supply rail must be low enough so that  
the input current transient does not cause too high drop at the LP8861-Q1 VIN pin. If the input supply is  
connected by using long wires additional bulk capacitance may be required in addition to the ceramic bypass  
capacitors in the VIN line.  
11 Layout  
11.1 Layout Guidelines  
Figure 35 is a layout recommendation for the LP8861-Q1 used to demonstrate the principles of good layout. This  
layout can be adapted to the actual application layout if or where possible. It is important that all boost  
components are close to the chip, and the high current traces must be wide enough. By placing boost  
components on one side of the chip it is easy to keep the ground plane intact below the high current paths. This  
way other chip pins can be routed more easily without splitting the ground plane. Bypass LDO capacitor must as  
close as possible to the device.  
Here are some main points to help the PCB layout work:  
Current loops need to be minimized:  
For low frequency the minimal current loop can be achieved by placing the boost components as close as  
possible to the SW and PGND pins. Input and output capacitor grounds need to be close to each other to  
minimize current loop size  
Minimal current loops for high frequencies can be achieved by making sure that the ground plane is intact  
under the current traces. High-frequency return currents try to find route with minimum impedance, which  
is the route with minimum loop area, not necessarily the shortest path. Minimum loop area is formed when  
return current flows just under the positive current route in the ground plane, if the ground plane is intact  
under the route  
GND plane needs to be intact under the high current boost traces to provide shortest possible return path and  
smallest possible current loops for high frequencies.  
Current loops when the boost switch is conducting and not conducting need to be on the same direction in  
optimal case.  
Inductors must be placed so that the current flows in the same direction as in the current loops. Rotating  
inductor 180° changes current direction.  
Use separate power and noise-free grounds. Power ground is used for boost converter return current and  
noise-free ground for more sensitive signals, like LDO bypass capacitor grounding as well as grounding the  
GND pin of the device itself.  
Boost output feedback voltage to LEDs need to be taken out after the output capacitors, not straight from the  
diode cathode.  
Place LDO 1-µF bypass capacitor as close as possible to the LDO pin.  
Input and output capacitors need strong grounding (wide traces, many vias to GND plane).  
If two output capacitors are used they need symmetrical layout to get both capacitors working ideally.  
Output ceramic capacitors have DC-bias effect. If the output capacitance is too low, it can cause boost to  
become unstable on some loads; this increases EMI. DC bias characteristics need to be obtained from the  
component manufacturer; DC bias is not taken into account on component tolerance. X5R/X7R capacitors are  
recommended.  
34  
Copyright © 2015–2017, Texas Instruments Incorporated  
LP8861-Q1  
www.ti.com.cn  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
11.2 Layout Example  
RISENSE  
VIN  
RGS  
1
2
VIN  
VSENSE_N  
SD  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
LDO  
LDO  
FSET  
RFSET  
3
SW  
VDDIO/EN  
4
PGND  
FB  
FAULT  
SYNC  
5
6
OUT1  
OUT2  
OUT3  
OUT4  
GND  
VBOOST  
PWM  
7
TSENSE  
8
TSET  
RISET  
9
10  
ISET  
Figure 35. LP8861-Q1 Layout  
版权 © 2015–2017, Texas Instruments Incorporated  
35  
LP8861-Q1  
ZHCSE41C AUGUST 2015REVISED MAY 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档  
更多信息,请参见以下文档:  
《使用 LP8861-Q1EVM 评估模块》  
PowerPAD™ 耐热增强型封装应用手册》  
德州仪器 (TI) 应用手册《了解开关模式电源中的升压功率级》  
Power Stage Designer™ 工具》http://www.ti.com.cn/tool/cn/powerstage-designer  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
Excel is a registered trademark of Microsoft Corporation.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
36  
版权 © 2015–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP8861QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
20  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
LP8861Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP8861QPWPRQ1  
HTSSOP PWP  
20  
2000  
330.0  
16.4  
6.95  
7.1  
1.6  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
LP8861QPWPRQ1  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LP8861QPWPRQ1

适用于汽车照明的低 EMI、高性能 4 通道 LED 驱动器 | PWP | 20 | -40 to 125
TI

LP8862-Q1

适用于汽车照明的高性能 2 通道 LED 驱动器
TI

LP8862QPWPRQ1

适用于汽车照明的高性能 2 通道 LED 驱动器 | PWP | 20 | -40 to 125
TI

LP8863-Q1

具有 6 个 150mA 通道的 LP8863-Q1 汽车显示屏 LED 背光驱动器
TI

LP8863ADCPRQ1

具有 6 个 150mA 通道的 LP8863-Q1 汽车显示屏 LED 背光驱动器 | DCP | 38 | -40 to 125
TI

LP8864-Q1

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864-Q1_V01

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864-Q1_V02

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864-Q1_V03

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864QDCPRQ1

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864QRHBRQ1

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864S-Q1

LP8864S-Q1 Automotive Display LED-backlight Driver with Four 150-mA Channels
TI