LPV511MGX/NOPB [TI]

单路、12V、27kHz 运算放大器 | DCK | 5 | -40 to 85;
LPV511MGX/NOPB
型号: LPV511MGX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单路、12V、27kHz 运算放大器 | DCK | 5 | -40 to 85

放大器 光电二极管 运算放大器
文件: 总27页 (文件大小:1215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LPV511  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
LPV511 Micropower, Rail-to-Rail Input and Output Operational Amplifier  
1 Features  
3 Description  
The LPV511 is a micropower operational amplifier  
that operates from a voltage supply range as wide as  
2.7 V to 12 V with ensured specifications at 3 V, 5 V,  
and 12 V. The ultra-low power LPV511 exhibits an  
excellent speed to power ratio, drawing only 880 nA  
of supply current with a bandwidth of 27 kHz. These  
specifications make the LPV511 an ideal choice for  
battery-powered systems that require long life  
through low supply current, such as instrumentation,  
sensor conditioning and battery current monitoring.  
1
Wide Supply Voltage Range: 2.7 V to 12 V  
Slew Rate: 7.7 V/ms  
Supply Current: 880 nA  
Output Short-Circuit Current: 1.35 mA  
Rail-to-Rail Input  
Rail-to-Rail Output: 100 mV from Rails  
Bandwidth (CL = 50 pF, RL = 1 MΩ): 27 kHz  
Unity Gain Stable  
The LPV511 has an input range that includes both  
supply rails for ground and high-side battery sensing  
applications. The LPV511 output swings within 100  
mV of either rail to maximize the signal's dynamic  
range in low supply applications. In addition, the  
output is capable of sourcing 650 µA of current when  
powered by a 12-V battery.  
2 Applications  
Battery Powered Systems  
Security Systems  
Micropower Thermostats  
Solar Powered Systems  
Portable Instrumentation  
Micropower Filters  
The LPV511 is fabricated on TI's advanced VIP50C  
process.  
The LPV511 is available in the space-saving SC70  
package, which makes it ideal for portable electronics  
with area-constrained PC boards.  
Remote Sensor Amplifiers  
Device Information(1)  
PART NUMBER  
LPV511  
PACKAGE  
BODY SIZE (NOM)  
SC70 (5)  
2.00 mm × 1.25 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Typical Supply Current  
High-Side Battery Current Sensor  
V+  
1.6  
1.4  
+
125°/  
R1  
2 kΩ  
85º/  
-
1.2  
1
RSENSE  
R2  
œ
0.2 Ω  
Q1  
2N3906  
25°/  
2 kΩ  
0.8  
0.6  
0.4  
+
-40°/  
VOUT  
Load  
R3  
10 kΩ  
ICHARGE  
0.2  
0
R
0
2
4
6
8
10  
12  
SENSE ì R3  
VOUT  
=
ì ICHARGE = 1W ì ICHARGE  
SUPPLY VOLTAGE (V)  
R1  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
LPV511  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Applications ................................................ 16  
8.3 Dos and Don'ts ....................................................... 17  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics: 3 V ................................... 5  
6.6 Electrical Characteristics: 5 V ................................... 6  
6.7 Electrical Characteristics: 12 V ................................ 7  
6.8 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 14  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
11 Device and Documentation Support ................. 19  
11.1 Device Support .................................................... 19  
11.2 Documentation Support ....................................... 19  
11.3 Community Resource............................................ 19  
11.4 Trademarks........................................................... 19  
11.5 Electrostatic Discharge Caution............................ 19  
11.6 Glossary................................................................ 19  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 19  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (March 2013) to Revision D  
Page  
Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation  
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and  
Mechanical, Packaging, and Orderable Information section ................................................................................................. 1  
Added Thermal Information table .......................................................................................................................................... 4  
Changes from Revision B (March 2013) to Revision C  
Page  
Changed layout of National Semiconductor Data Sheet to TI format .................................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 2005–2016, Texas Instruments Incorporated  
Product Folder Links: LPV511  
 
LPV511  
www.ti.com  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
5 Pin Configuration and Functions  
DCK Package  
5-Pin SC70  
Top View  
5
4
1
2
3
VOUT  
V-  
V+  
+
-
VIN  
VIN  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
VOUT  
V–  
O
P
I
Output  
2
Negative supply voltage  
Noninverting input  
Inverting input  
+
3
VIN  
4
VIN  
I
5
V+  
P
Positive supply voltage  
Copyright © 2005–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LPV511  
LPV511  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
V+ + 0.3  
–65  
MAX  
2.1  
UNIT  
VIN Differential  
V
V
V
Supply voltage (V+ - V)  
Voltage at input and output pins  
Short-circuit duration  
13.2  
V0.3  
See(3)  
(4)  
Junction temperature, TJ  
150  
150  
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) Output short-circuit duration is infinite for V+ < 6 V at room temperature and below. For V+ > 6 V, allowable short-circuit duration is 1.5  
ms.  
(4) The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient  
temperature is PD = (TJ(MAX) – TA) / RθJA. All numbers apply for packages soldered directly onto a PC board.  
6.2 ESD Ratings  
VALUE  
±2000  
±200  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2)  
Machine model (MM)(3)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) Human Body Model: 1.5 kΩ in series with 100 pF.  
(3) Machine Model: 0 Ω in series with 200 pF.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–40  
2.7  
MAX  
UNIT  
Temperature(1)  
Supply voltage (V+ – V)  
85  
12  
°C  
V
(1) The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient  
temperature is PD = (TJ(MAX) – TA) / RθJA. All numbers apply for packages soldered directly onto a PC board.  
6.4 Thermal Information  
LPV511  
THERMAL METRIC(1)  
DCK (SC70)  
UNIT  
5 PINS  
278  
105.8  
56.4  
3
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
55  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Submit Documentation Feedback  
Copyright © 2005–2016, Texas Instruments Incorporated  
Product Folder Links: LPV511  
 
LPV511  
www.ti.com  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
6.5 Electrical Characteristics: 3 V  
Unless otherwise specified, all limits are specified for TJ = 25°C, V+ = 3 V, V= 0 V, VCM = VO = V+/2, and RL = 100 kΩ to  
V+/2.(1)  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3)  
MAX(2)  
±3  
UNIT  
TJ = 25°C  
±0.2  
VOS  
Input offset voltage  
mV  
TJ = –40°C to 85°C  
TJ = 25°C  
±3.8  
±0.3  
–320  
110  
TC VOS  
Input offset voltage drift(4)  
µV/°C  
TJ = –40°C to 85°C  
±15  
TJ = 25°C  
–1000  
–1600  
VCM = 0.5 V  
VCM = 2.5 V  
TJ = –40°C to 85°C  
TJ = 25°C  
IB  
Input bias current(5)  
Input offset current  
pA  
pA  
800  
TJ = –40°C to 85°C  
1900  
IOS  
±10  
100  
TJ = 25°C  
77  
70  
VCM Stepped from 0 V to  
1.5 V  
TJ = –40°C to 85°C  
TJ = 25°C  
75  
115  
80  
VCM Stepped from 2.4 V  
to 3 V  
CMRR  
Common mode rejection ratio  
dB  
dB  
TJ = –40°C to 85°C  
TJ = 25°C  
68  
60  
VCM Stepped from 0.5 V  
to 2.5 V  
TJ = –40°C to 85°C  
TJ = 25°C  
56  
V+ = 2.7 V to 5 V,  
VCM = 0.5 V  
72  
114  
115  
117  
TJ = –40°C to 85°C  
TJ = 25°C  
68  
V+ = 3 V to 5 V,  
VCM = 0.5 V  
76  
PSRR  
Power supply rejection ratio  
TJ = –40°C to 85°C  
TJ = 25°C  
72  
V+ = 5 V to 12 V,  
VCM = 0.5 V  
84  
TJ = –40°C to 85°C  
TJ = 25°C  
80  
0.1  
0
3.1  
3
CMVR  
AVOL  
Input common-mode voltage CMRR 50 dB  
V
TJ = –40°C to 85°C  
TJ = 25°C  
75  
105  
105  
2.9  
Sinking, VO = 2.5 V  
Large signal voltage gain  
TJ = –40°C to 85°C  
TJ = 25°C  
70  
dB  
75  
Sourcing, VO = 0.5 V  
TJ = –40°C to 85°C  
TJ = 25°C  
70  
2.85  
2.8  
Output swing high  
Output swing low  
VID = 100 mV  
TJ = –40°C to 85°C  
TJ = 25°C  
VO  
V
100  
150  
200  
VID = 100 mV  
TJ = –40°C to 85°C  
Sourcing  
VID = 100 mV  
500  
225  
ISC  
Output short circuit current(6)  
µA  
Sinking  
VID = 100 mV  
225  
1350  
0.88  
TJ = 25°C  
1.2  
1.5  
IS  
Supply current  
Slew rate(7)  
µA  
TJ = –40°C to 85°C  
TJ = 25°C  
5.25  
3.10  
7.7  
AV = 1, VO ramps from  
0.5 V to 2.5 V  
SR  
V/ms  
TJ = –40°C to 85°C  
(1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device.  
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using the  
Statistical Quality Control (SQC) method.  
(3) Typical values represent the most likely parametric norm at the time of characterization.  
(4) Offset voltage drift is specified by design and/or characterization and is not tested in production. Offset voltage drift is determined by  
dividing the change in VOS at temperature extremes into the total temperature change.  
(5) Positive current corresponds to current flowing into the device.  
(6) The Short-Circuit Test is a momentary test. See Note 3 in Absolute Maximum Ratings.  
(7) Slew rate is the average of the rising and falling slew rates.  
Copyright © 2005–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LPV511  
 
LPV511  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
www.ti.com  
Electrical Characteristics: 3 V (continued)  
Unless otherwise specified, all limits are specified for TJ = 25°C, V+ = 3 V, V= 0 V, VCM = VO = V+/2, and RL = 100 kΩ to  
V+/2.(1)  
PARAMETER  
TEST CONDITIONS  
RL = 1 MΩ, CL= 50 pF  
MIN(2)  
TYP(3)  
27  
MAX(2)  
UNIT  
kHz  
GBW  
Gain bandwidth product  
Phase margin  
RL = 1 MΩ, CL= 50 pF  
f = 100 Hz  
53  
º
en  
in  
Input-referred voltage noise  
320  
0.02  
0.01  
nV/Hz  
f = 10 Hz  
Input-referred current noise  
pA/Hz  
f = 1 kHz  
6.6 Electrical Characteristics: 5 V  
Unless otherwise specified, all limits are specified for TJ = 25°C, V+ = 5 V, V= 0 V, VCM = VO = V+/2, and RL = 100 kΩ to  
V+/2.(1)  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3)  
MAX(2)  
±3  
UNIT  
TJ = 25°C  
±0.2  
VOS  
Input offset voltage  
mV  
TJ = –40°C to 85°C  
TJ = 25°C  
±3.8  
±0.3  
–320  
110  
TC VOS  
Input offset voltage drift(4)  
µV/°C  
TJ = –40°C to 85°C  
±15  
TJ = 25°C  
–1000  
–1600  
VCM = 0.5 V  
VCM = 4.5 V  
TJ = –40°C to 85°C  
TJ = 25°C  
IB  
Input bias current(5)  
Input offset current  
pA  
pA  
800  
TJ = –40°C to 85°C  
1900  
IOS  
±10  
115  
TJ = 25°C  
80  
73  
75  
68  
65  
62  
72  
68  
76  
72  
84  
80  
—0.1  
0
VCM Stepped from  
0 V to 2.5 V  
TJ = –40°C to 85°C  
TJ = 25°C  
107  
87  
VCM Stepped from  
4.4 to 5 V  
CMRR  
Common mode rejection ratio  
dB  
dB  
TJ = –40°C to 85°C  
TJ = 25°C  
VCM Stepped from  
0.5 to 4.5 V  
TJ = –40°C to 85°C  
TJ = 25°C  
V+ = 2.7 V to 5 V,  
VCM = 0.5 V  
114  
115  
117  
TJ = –40°C to 85°C  
TJ = 25°C  
V+ = 3 V to 5 V,  
VCM = 0.5 V  
PSRR  
Power supply rejection ratio  
TJ = –40°C to 85°C  
TJ = 25°C  
V+ = 5 V to 12 V,  
VCM = 0.5 V  
TJ = –40°C to 85°C  
TJ = 25°C  
5.1  
5
CMVR  
AVOL  
Input common-mode voltage CMRR 50 dB  
V
TJ = –40°C to 85°C  
TJ = 25°C  
78  
73  
78  
73  
110  
110  
Sinking, VO = 4.5 V  
Large signal voltage gain  
TJ = –40°C to 85°C  
TJ = 25°C  
dB  
Sourcing, VO = 0.5 V  
TJ = –40°C to 85°C  
(1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device.  
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using the  
Statistical Quality Control (SQC) method.  
(3) Typical values represent the most likely parametric norm at the time of characterization.  
(4) Offset voltage drift is specified by design and/or characterization and is not tested in production. Offset voltage drift is determined by  
dividing the change in VOS at temperature extremes into the total temperature change.  
(5) Positive current corresponds to current flowing into the device.  
6
Submit Documentation Feedback  
Copyright © 2005–2016, Texas Instruments Incorporated  
Product Folder Links: LPV511  
 
LPV511  
www.ti.com  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
Electrical Characteristics: 5 V (continued)  
Unless otherwise specified, all limits are specified for TJ = 25°C, V+ = 5 V, V= 0 V, VCM = VO = V+/2, and RL = 100 kΩ to  
V+/2.(1)  
PARAMETER  
TEST CONDITIONS  
TJ = 25°C  
MIN(2)  
4.8  
TYP(3)  
MAX(2)  
UNIT  
4.89  
Output swing high  
VID = 100 mV  
V
TJ = –40°C to 85°C  
TJ = 25°C  
4.75  
VO  
110  
200  
250  
Output swing low  
VID = 100 mV  
mV  
µA  
TJ = –40°C to 85°C  
Sourcing to V−  
VID = 100 mV  
Sinking to V+  
–550  
–225  
ISC  
Output short circuit current(6)  
225  
1350  
0.97  
VID = 100 mV  
TJ = 25°C  
1.2  
1.5  
IS  
Supply current  
Slew rate(7)  
µA  
TJ = –40°C to 85°C  
TJ = 25°C  
5.25  
3.1  
7.5  
AV = 1, VO ramps from  
0.5 V to 4.5 V  
SR  
V/ms  
TJ = –40°C to 85°C  
GBW  
Gain bandwidth product  
Phase margin  
RL = 1 MΩ, CL= 50 pF  
RL = 1 MΩ, CL= 50 pF  
f = 100 Hz  
27  
53  
kHz  
°
en  
in  
Input-referred voltage noise  
320  
0.02  
0.01  
nV/Hz  
f = 10 Hz  
Input-referred current noise  
pA/Hz  
f = 1 kHz  
(6) The Short-Circuit Test is a momentary test. See Note 3 in Absolute Maximum Ratings.  
(7) Slew rate is the average of the rising and falling slew rates.  
6.7 Electrical Characteristics: 12 V  
Unless otherwise specified, all limits are specified for TJ = 25°C, V+ = 12 V, V= 0 V, VCM = VO = V+/2, and RL = 100 kΩ to  
V+/2.(1)  
(3)  
(2)  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP  
MAX  
UNIT  
TJ = 25°C  
±0.2  
±0.3  
320  
110  
±3  
VOS  
Input offset voltage  
mV  
TJ = –40°C to 85°C  
TJ = 25°C  
±3.8  
TC VOS Input offset voltage drift(4)  
µV/°C  
TJ = –40°C to 85°C  
±15  
TJ = 25°C  
1000  
1600  
VCM = 0.5 V  
TJ = –40°C to 85°C  
TJ = 25°C  
IB  
Input bias current(5)  
Input offset current  
pA  
pA  
800  
VCM = 11.5 V  
TJ = –40°C to 85°C  
1900  
IOS  
±10  
115  
TJ = 25°C  
75  
70  
75  
68  
70  
65  
VCM Stepped from  
0 V to 6 V  
TJ = –40°C to 85°C  
TJ = 25°C  
110  
97  
VCM Stepped from  
11.4 V to 12 V  
CMRR Common mode rejection ratio  
dB  
TJ = –40°C to 85°C  
TJ = 25°C  
VCM Stepped from  
0.5 V to 11.5 V  
TJ = –40°C to 85°C  
(1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device.  
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using the  
Statistical Quality Control (SQC) method.  
(3) Typical values represent the most likely parametric norm at the time of characterization.  
(4) Offset voltage drift is specified by design and/or characterization and is not tested in production. Offset voltage drift is determined by  
dividing the change in VOS at temperature extremes into the total temperature change.  
(5) Positive current corresponds to current flowing into the device.  
Copyright © 2005–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LPV511  
 
LPV511  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
www.ti.com  
Electrical Characteristics: 12 V (continued)  
Unless otherwise specified, all limits are specified for TJ = 25°C, V+ = 12 V, V= 0 V, VCM = VO = V+/2, and RL = 100 kΩ to  
V+/2.(1)  
(3)  
(2)  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
72  
TYP  
MAX  
UNIT  
V+ = 2.7 V to 5 V,  
TJ = 25°C  
114  
115  
117  
VCM = 0.5 V  
TJ = –40°C to 85°C  
TJ = 25°C  
68  
V+ = 3 V to 5 V,  
VCM = 0.5 V  
76  
PSRR  
Power supply rejection ratio  
TJ = –40°C to 85°C  
TJ = 25°C  
72  
V+ = 5 V to 12 V,  
VCM = 0.5 V  
84  
TJ = –40°C to 85°C  
TJ = 25°C  
80  
0.1  
0
12.1  
12  
CMVR Input common-mode voltage  
CMRR 50 dB  
V
TJ = –40°C to 85°C  
TJ = 25°C  
89  
110  
110  
Sinking, VO = 0.5 V  
Sourcing, VO = 11.5 V  
VID = 100 mV  
TJ = –40°C to 85°C  
TJ = 25°C  
84  
AVOL  
Large signal voltage gain  
dB  
89  
TJ = –40°C to 85°C  
TJ = 25°C  
84  
11.8  
11.72  
11.85  
150  
Output swing high  
Output swing low  
V
TJ = –40°C to 85°C  
TJ = 25°C  
VO  
200  
280  
VID = 100 mV  
mV  
TJ = –40°C to 85°C  
Sourcing  
VID = 100 mV  
650  
200  
ISC  
Output short circuit current(6)  
µA  
Sinking  
VID = 100 mV  
200  
1300  
1.2  
TJ = 25°C  
1.75  
2.5  
IS  
Supply current  
Slew rate(7)  
µA  
TJ = –40°C to 85°C  
5.25  
3.1  
7
SR  
AV = 1, VO ramped from 1 V to 11 V  
V/ms  
GBW  
Gain bandwidth product  
Phase margin  
RL = 1 MΩ, CL= 50 pF  
RL = 1 MΩ, CL= 50 pF  
f = 100 Hz  
25  
52  
kHz  
°
en  
in  
Input-referred voltage noise  
320  
0.02  
0.01  
nV/Hz  
f = 10 Hz  
Input-referred current noise  
pA/Hz  
f = 1 kHz  
(6) The Short-Circuit Test is a momentary test. See Note 3 in Absolute Maximum Ratings.  
(7) Slew rate is the average of the rising and falling slew rates.  
8
Submit Documentation Feedback  
Copyright © 2005–2016, Texas Instruments Incorporated  
Product Folder Links: LPV511  
 
LPV511  
www.ti.com  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
6.8 Typical Characteristics  
At TJ = 25°C, unless otherwise specified.  
1
1.6  
+
125°/  
V
= 3V  
1.4  
0.8  
0.6  
85º/  
1.2  
1
-40°C  
0.4  
0.2  
0
25°/  
0.8  
0.6  
0.4  
25°C  
-40°/  
-0.2  
-0.4  
0.2  
0
85ºC  
0
2
4
6
8
10  
12  
0
1
2
3
SUPPLY VOLTAGE (V)  
V
(V)  
CM  
Figure 1. Supply Current vs Supply Voltage  
Figure 2. Input Offset Voltage vs Input Common Mode  
1
1
+
+
V
= 12V  
V
= 5V  
0.8  
0.6  
0.4  
0.8  
0.6  
-40°C  
-40°C  
0.4  
0.2  
0
0.2  
0
25°C  
25°C  
85°C  
-0.2  
-0.4  
-0.6  
85°C  
-0.2  
-0.4  
1
2
3
4
5
0
2
4
8
10  
12  
6
V
(V)  
CM  
V
(V)  
CM  
Figure 3. Input Offset Voltage vs Input Common Mode  
Figure 4. Input Offset Voltage vs Input Common Mode  
2
+
5
+
V
= 5V  
V = 5V  
1.8  
1.6  
1.4  
1.2  
1
4.5  
4
85°C  
125°C  
25°C  
3.5  
3
-40°C  
85°C  
25°C  
2.5  
2
-40°C  
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
125°C  
-40°C  
0.5  
0
0.1  
1
10  
0.1  
1
10  
+
-
OUTPUT VOLTAGE REFERENCED TO V (V)  
OUTPUT VOLTAGE REFERENCED TO V (V)  
Figure 5. Sourcing Current vs Output Voltage  
Figure 6. Sinking Current vs Output Voltage  
Copyright © 2005–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LPV511  
 
LPV511  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
www.ti.com  
Typical Characteristics (continued)  
At TJ = 25°C, unless otherwise specified.  
2
+
5
4.5  
4
+
V
= 12V  
V
= 12V  
85°C  
1.8  
1.6  
1.4  
1.2  
1
125°C  
25°C  
3.5  
3
85°C  
25°C  
-40°C  
2.5  
2
-40°C  
0.8  
0.6  
0.4  
0.2  
0
125°C  
1.5  
1
-40°C  
0.5  
0
0.1  
1
10  
100  
0.1  
1
10  
100  
+
-
OUTPUT VOLTAGE REFERENCED TO V (V)  
OUTPUT VOLTAGE REFERENCED TO V (V)  
Figure 7. Sourcing Current vs Output Voltage  
Figure 8. Sinking Current vs Output Voltage  
700  
500  
+
125°C  
400  
V
= 3V  
125°C  
500  
300  
-40°C  
300  
200  
25°C  
85°C  
100  
100  
0
25°C  
-40°C  
-100  
-300  
-500  
-100  
-200  
-300  
85°C  
+
125°C  
2.5  
125°C  
V
= 5V  
0
0.5  
1
1.5  
(V)  
2
3
0
1
2
3
4
5
V
V
(V)  
CM  
CM  
Figure 9. Input Bias Current vs Common Mode Voltage  
Figure 10. Input Bias Current vs Common Mode Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
500  
+
V
= 12V  
125°C  
400  
-40°C  
300  
200  
100  
0
25°C  
85°C  
-100  
-200  
125°C  
0
5
10  
15  
1
10  
100  
1k  
10k  
V
(V)  
CM  
FREQUENCY (Hz)  
Figure 11. Input Bias Current vs Common Mode Voltage  
Figure 12. PSRR vs Frequency  
10  
Submit Documentation Feedback  
Copyright © 2005–2016, Texas Instruments Incorporated  
Product Folder Links: LPV511  
LPV511  
www.ti.com  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
Typical Characteristics (continued)  
At TJ = 25°C, unless otherwise specified.  
203  
203  
180  
180  
160  
140  
120  
100  
80  
+
+
V
C
R
= 2.7V  
V
C
R
= 5V  
160  
140  
120  
100  
80  
180  
158  
135  
180  
158  
135  
= 20 pF  
= 1 MW  
= 20 pF  
= 1 MW  
L
L
L
L
113  
90  
113  
90  
tI!{9  
D!Lb  
tI!{9  
D!Lb  
60  
68  
60  
68  
25°C  
25°C  
-40°C  
-40°C  
45  
45  
40  
40  
125°C  
125°C  
20  
0
23  
0
20  
0
23  
0
-20  
100  
-23  
1M  
-20  
100  
-23  
1M  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. Frequency Response vs Temperature  
Figure 14. Frequency Response vs Temperature  
203  
180  
158  
135  
180  
160  
140  
120  
100  
80  
203  
180  
158  
135  
180  
160  
140  
120  
100  
80  
+
+
V
= ±6V  
V
= 2.7V  
C
R
= 20 pF  
= 1 MW  
C
L
= 20 pF  
L
L
113  
90  
113  
90  
PHASE  
GAIN  
tI!{9  
D!Lb  
R
= 10 MW  
L
60  
68  
60  
68  
25°C  
-40°C  
45  
45  
40  
40  
125°C  
20  
0
23  
0
20  
0
23  
0
R
= 1 MW  
L
-20  
100  
-23  
1M  
-20  
100  
-23  
1M  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. Frequency Response vs Temperature  
Figure 16. Frequency Response vs RL  
203  
180  
158  
135  
180  
160  
140  
120  
100  
80  
203  
180  
158  
135  
113  
90  
180  
160  
140  
120  
100  
80  
+
+
V
= 5V  
V
= ±6V  
C
L
= 20 pF  
C
L
= 20 pF  
113  
90  
tI!{9  
D!Lb  
PHASE  
GAIN  
R
= 10 MW  
R = 10 MW  
L
L
60  
68  
60  
68  
45  
45  
40  
40  
20  
0
23  
0
20  
0
23  
0
R
= 1 MW  
R
= 1 MW  
L
L
-20  
100  
-23  
1M  
-20  
100  
-23  
1M  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Frequency Response vs RL  
Figure 18. Frequency Response vs RL  
Copyright © 2005–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LPV511  
LPV511  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
www.ti.com  
Typical Characteristics (continued)  
At TJ = 25°C, unless otherwise specified.  
180  
203  
180  
158  
135  
113  
90  
180  
160  
140  
120  
100  
80  
203  
180  
158  
135  
113  
90  
+
+
V
R
= 2.7V  
V
= 5V  
160  
140  
120  
100  
80  
= 1 MW  
R
L
= 1 MW  
L
C
= 100 pF  
L
C
L
= 100 pF  
PHASE  
PHASE  
C
= 50 pF  
L
C
= 50 pF  
= 20 pF  
L
60  
68  
60  
68  
C
= 200 pF  
C
= 200 pF  
L
L
C
= 20 pF  
45  
L
40  
45  
40  
C
L
GAIN  
GAIN  
20  
23  
20  
23  
0
0
0
0
-20  
100  
-23  
1M  
-20  
100  
-23  
1M  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Frequency Response vs CL  
Figure 20. Frequency Response vs CL  
900  
180  
170  
150  
130  
110  
90  
+
+
V
= ±6V  
V
= 5V  
160  
140  
120  
100  
80  
800  
700  
600  
R
= 1 MW  
L
tI!{9  
C
= 100 pF  
L
500  
400  
300  
200  
100  
0
70  
C
= 50 pF  
L
L
60  
50  
C
= 200 pF  
L
40  
C
= 20 pF 30  
D!Lb  
20  
10  
0
-10  
-20  
100  
-30  
1M  
0.1  
1
10  
100  
1k  
10k  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. Voltage Noise vs Frequency  
Figure 21. Frequency Response vs CL  
+
V
= 5V  
+
INPUT  
INPUT  
V
= 5V  
OUTPUT  
OUTPUT  
200 ms/DIV  
200 ms/DIV  
Figure 23. Noninverting Small-Signal Pulse Response  
Figure 24. Noninverting Large-Signal Pulse Response  
12  
Submit Documentation Feedback  
Copyright © 2005–2016, Texas Instruments Incorporated  
Product Folder Links: LPV511  
LPV511  
www.ti.com  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
Typical Characteristics (continued)  
At TJ = 25°C, unless otherwise specified.  
INPUT  
INPUT  
OUTPUT  
OUTPUT  
+
+
V
= 5V  
V
= 5V  
200 ms/DIV  
200 ms/DIV  
Figure 25. Inverting Small-Signal Pulse Response  
Figure 26. Inverting Large-Signal Pulse Response  
Copyright © 2005–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LPV511  
LPV511  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The LPV511 is a micropower operational amplifier that operates from a voltage supply range as wide as 2.7 V to  
12 V with ensured specifications at 3 V, 5 V, and 12 V. The LPV511 exhibits an excellent speed-to-power ratio,  
drawing only 880 nA of supply current with a bandwidth of 27 kHz.  
7.2 Functional Block Diagram  
VCC  
CLASS AB  
OUTPUT  
CONTROL  
INN  
INP  
GND  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
The LPV511 has a rail-to-rail input which provides more flexibility for the system designer. As can be seen from  
Functional Block Diagram, rail-to-rail input is achieved by using in parallel, one PNP differential pair and one  
NPN differential pair. When the common mode input voltage (VCM) is near V+, the NPN pair is on and the PNP  
pair is off. When VCM is near V, the NPN pair is off and the PNP pair is on. When VCM is between V+ and V,  
internal logic decides how much current each differential pair will get. This special logic ensures stable and low  
distortion amplifier operation within the entire common mode voltage range.  
7.4 Device Functional Modes  
7.4.1 Input Stage  
Because both input stages have their own offset voltage (VOS) characteristic, the offset voltage of the LPV511  
becomes a function of VCM. VOS has a crossover point at 1 V below V+. See the VOS vs VCM curve in Typical  
Characteristics. Caution must be taken in situations where the input signal amplitude is comparable to the VOS  
value and/or the design requires high accuracy. In these situations, it is necessary for the input signal to avoid  
the crossover point.  
The input bias current, IB will change in value and polarity as the input crosses the transition region. In addition,  
parameters such as PSRR and CMRR which involve the input offset voltage will also be affected by changes in  
VCM across the differential pair transition region.  
Differential input voltage is the difference in voltage between the noninverting (+) input and the inverting input ()  
of the op amp. Due to the three series diodes across the two inputs, the absolute maximum differential input  
voltage is ±2.1 V. This may not be a problem to most conventional op amp designs; however, designers must  
avoid using the LPV511 as a comparator.  
14  
Submit Documentation Feedback  
Copyright © 2005–2016, Texas Instruments Incorporated  
Product Folder Links: LPV511  
 
LPV511  
www.ti.com  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
Device Functional Modes (continued)  
7.4.2 Output Stage  
The LPV511 output voltage swing 100 mV from rails at 3-V supply, which provides the maximum possible  
dynamic range at the output. This is particularly important when operating on low supply voltages.  
The LPV511 maximum output voltage swing defines the maximum swing possible under a particular output load.  
The LPV511 output swings 110 mV from the rail at 5-V supply with an output load of 100 kΩ.  
7.4.3 Driving Capacitive Load  
The LPV511 is internally compensated for stable unity gain operation, with a 27-kHz typical gain bandwidth.  
However, the unity gain follower is the most sensitive configuration to capacitive load. Direct capacitive loading  
reduces the phase margin of the op amp. When the output is required to drive a large capacitive load, greater  
than 100 pF, a small series resistor at the output of the amplifier improves the phase margin (see Figure 27).  
In Figure 27, the isolation resistor RISO and the load capacitor CL form a pole to increase stability by adding more  
phase margin to the overall system. The desired performance depends on the value of RISO. The bigger the RISO  
resistor value, the more stable VOUT will be. But the DC accuracy is degraded when the RISO gets bigger. If there  
were a load resistor in Figure 27, the output voltage would be divided by RISO and the load resistor.  
RISO  
-
VOUT  
VIN  
+
Copyright © 2016, Texas Instruments Incorporated  
Figure 27. Resistive Isolation of Capacitive Load  
Copyright © 2005–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LPV511  
 
LPV511  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LPV511 is fabricated with Texas Instrument's state-of-the-art VIP50C process.  
8.2 Typical Applications  
8.2.1 Battery Current Sensing  
The rail-to-rail common mode input range and the very low quiescent current make the LPV511 ideal to use in  
high-side and low-side battery current sensing applications. The high-side current sensing circuit in Figure 28 is  
commonly used in a battery charger to monitor the charging current to prevent over charging. A sense resistor  
RSENSE is connected to the battery directly.  
V+  
+
-
R1  
2 kΩ  
RSENSE  
R2  
œ
0.2 Ω  
Q1  
2N3906  
2 kΩ  
+
VOUT  
Load  
R3  
10 kΩ  
ICHARGE  
R
SENSE ì R3  
VOUT  
=
ì ICHARGE = 1W ì ICHARGE  
R1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. High Side Current Sensing  
8.2.1.1 Design Requirements  
The high-side current-sensing circuit (Figure 28) is commonly used in a battery charger to monitor charging  
current to prevent overcharging. A sense resistor RSENSE is connected to the battery directly. This system  
requires an op amp with rail-to-rail input. The LPV511 ideal for this application because its common-mode input  
range extends up to the positive supply.  
8.2.1.2 Detailed Design Procedure  
As seen in Figure 28, the ICHARGE current flowing through sense resistor RSENSE develops a voltage drop equal to  
VSENSE. The voltage at the negative sense point will now be less than the positive sense point by an amount  
proportional to the VSENSE voltage.  
The low-bias currents of the LPV511 cause little voltage drop through R2, so the negative input of the LPV551  
amplifier is at essentially the same potential as the negative sense input.  
The LPV511 will detect this voltage error between its inputs and servo the transistor base to conduct more  
current through Q1, increasing the voltage drop across R1 until the LPV511 inverting input matches the  
noninverting input. At this point, the voltage drop across R1 now matches VSENSE  
.
IG, a current proportional to ICHARGE, will flow according to the following relation to:  
IG = VRSENSE / R1 = ( RSENSE × ICHARGE ) / R1  
(1)  
16  
Submit Documentation Feedback  
Copyright © 2005–2016, Texas Instruments Incorporated  
Product Folder Links: LPV511  
 
LPV511  
www.ti.com  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
Typical Applications (continued)  
IG also flows through the gain resistor R3 developing a voltage drop equal to:  
V3 = IG × R3 = ( VRSENSE / R1 ) × R3 = ( ( RSENSE × ICHARGE ) / R2 ) × R3  
VOUT = (RSENSE × ICHARGE ) × G  
(2)  
(3)  
where  
G = R3 / R1  
8.2.1.3 Application Curve  
Figure 29 shows the results of the example current sense circuit.  
5
4
3
2
1
0
0
1
2
I
3
4
5
C001  
(A)  
CHARGE  
The error after 4 V where transistor Q1 runs out of headroom and saturates, limiting the upper output swing.  
Figure 29. Current Sense Amplifier Results  
8.2.2 Summing Amplifier  
The LPV511 operational amplifier is a perfect fit in a summing amplifier circuit because of the rail-to-rail input and  
output and the sub-micro Amp quiescent current. In this configuration, the amplifier outputs the sum of the three  
input voltages.  
Equation 4 shows the ratio of the sum and the output voltage is defined using feedback and input resistors.  
«
VREF - V1 VREF - V2 VREF - V3  
+
V
REF  
+
+
VOUT = RF  
«
R1  
R2  
R3  
(4)  
R1  
R2  
R3  
V1  
RF  
V2  
V3  
-
VOUT  
VREF  
+
Copyright © 2016, Texas Instruments Incorporated  
Figure 30. Summing Amplifier Circuit  
8.3 Dos and Don'ts  
Do properly bypass the power supplies.  
Do add series resistence to the output when driving capacitive loads, particularly cables, Muxes and ADC inputs.  
Do add series current limiting resistors and external Schottky clamp diodes if input voltage is expected to exceed  
the supplies. Limit the current to 1 mA or less (1 kΩ per volt).  
Copyright © 2005–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LPV511  
 
 
LPV511  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
www.ti.com  
9 Power Supply Recommendations  
The LPV80x is specified for operation from 1.6 V to 5.5 V (±0.8 V to ±2.75 V) over a –40°C to 125°C temperature  
range. Parameters that can exhibit significant variance with regard to operating voltage or temperature are  
presented in the Electrical Characteristics: 3 V.  
CAUTION  
Supply voltages larger than 13.2 V can permanently damage the device.  
For proper operation, the power supplies bust be properly decoupled. For decoupling the supply lines it is  
suggested that 100 nF capacitors be placed as close as possible to the operational amplifier power supply pins.  
For single supply, place a capacitor between V+ and Vsupply leads. For dual supplies, place one capacitor  
between V+ and ground, and one capacitor between Vand ground.  
Low bandwidth nanopower devices do not have good high frequency (> 1 kHz) AC PSRR rejection against high-  
frequency switching supplies and other 1 kHz and above noise sources, so extra supply filtering is recommended  
if kilohertz or above noise is expected on the power supply lines.  
10 Layout  
10.1 Layout Guidelines  
The V+ pin should be bypassed to ground with a low-ESR capacitor.  
The optimum placement is closest to the V+ and ground pins.  
Take care to minimize the loop area formed by the bypass capacitor connection between V+ and ground.  
The ground pin should be connected to the PCB ground plane at the pin of the device.  
The feedback components should be placed as close to the device as possible minimizing strays.  
10.2 Layout Example  
Figure 31. SOT-23 Layout Example  
18  
Submit Documentation Feedback  
Copyright © 2005–2016, Texas Instruments Incorporated  
Product Folder Links: LPV511  
LPV511  
www.ti.com  
SNOSAG7D AUGUST 2005REVISED AUGUST 2016  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
LPV511 PSPICE Model, http://www.ti.com/lit/zip/snom023  
TINA-TI SPICE-Based Analog Simulation Program, http://www.ti.com/tool/tina-ti  
DIP Adapter Evaluation Module, http://www.ti.com/tool/dip-adapter-evm  
TI Universal Operational Amplifier Evaluation Module, http://www.ti.com/tool/opampevm  
TI Filterpro Software, http://www.ti.com/tool/filterpro  
11.2 Documentation Support  
11.2.1 Related Documentation  
Handbook of Operational Amplifier Applications (SBOA092)  
Compensate Transimpedance Amplifiers Intuitively (SBOA055)  
Circuit Board Layout Techniques (SLOA089)  
AN-1803 Design Considerations for a Transimpedance Amplifier (SNOA515)  
11.3 Community Resource  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2005–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LPV511  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LPV511MG/NOPB  
LPV511MGX/NOPB  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
5
5
1000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
A91  
A91  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LPV511MG/NOPB  
LPV511MGX/NOPB  
SC70  
SC70  
DCK  
DCK  
5
5
1000  
3000  
178.0  
178.0  
8.4  
8.4  
2.25  
2.25  
2.45  
2.45  
1.2  
1.2  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LPV511MG/NOPB  
LPV511MGX/NOPB  
SC70  
SC70  
DCK  
DCK  
5
5
1000  
3000  
208.0  
208.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

LPV521

Nanopower, 1.8V, RRIO, CMOS Input, Operational Amplifier
NSC

LPV521

单路、5.5V、6.2kHz、超低静态电流 (350nA)、1.6V 最小电源电压、RRIO 运算放大器
TI

LPV521MG

Nanopower, 1.8V, RRIO, CMOS Input, Operational Amplifier
NSC

LPV521MG/NOPB

Single, 5.5-V, 6.2-kHz, ultra low quiescent current (350-nA), 1.6-V min supply, RRIO op amp | DCK | 5 | -40 to 125
TI

LPV521MGE

Nanopower, 1.8V, RRIO, CMOS Input, Operational Amplifier
NSC

LPV521MGE/NOPB

Single, 5.5-V, 6.2-kHz, ultra low quiescent current (350-nA), 1.6-V min supply, RRIO op amp | DCK | 5 | -40 to 125
TI

LPV521MGX

Nanopower, 1.8V, RRIO, CMOS Input, Operational Amplifier
NSC

LPV521MGX/NOPB

Single, 5.5-V, 6.2-kHz, ultra low quiescent current (350-nA), 1.6-V min supply, RRIO op amp | DCK | 5 | -40 to 125
TI

LPV531

Programmable Micropower CMOS Input, Rail-to-Rail Output Operational Amplifier
NSC

LPV531

Programmable Micropower CMOS Input, Rail-to-Rail Output Operational Amplifier
TI

LPV531MK

Programmable Micropower CMOS Input, Rail-to-Rail Output Operational Amplifier
NSC

LPV531MK/NOPB

Programmable Micropower CMOS Input, Rail-to-Rail Output Operational Amplifier
TI