LPV542 [TI]

双路、5.5V、8kHz、超低静态电流 (480nA)、1.6V 最小电源电压、RRIO 运算放大器;
LPV542
型号: LPV542
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、5.5V、8kHz、超低静态电流 (480nA)、1.6V 最小电源电压、RRIO 运算放大器

放大器 运算放大器
文件: 总27页 (文件大小:1156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LPV542  
ZHCSDK3 MARCH 2015  
LPV542 双路毫微功耗 1.8V490nARRIO CMOS 运算放大器  
1 特性  
3 说明  
1
宽电源电压范围:1.6V 5.5V  
低电源电流:490nA(典型值/通道)  
低偏移电压:3mV(最大值/室温)  
TcVos1µV/°C(典型值)  
增益带宽:8kHz(典型值)  
轨到轨输入和输出  
LPV542 是一款超低功耗双路运算放大器,带宽  
8kHz,静态电流 490nA,是电池供电应用的理想选  
择,如医疗和健身可穿戴设备、楼宇自动化和遥感节  
点。  
每个放大器的 CMOS 输入级偏置电流仅为皮安级,可  
以减少光电二极管和充电感测应用等兆欧级反馈电阻拓  
扑中引入的常见误差。 此外,输入共模范围扩展到电  
源轨,输出摆幅扩展到电源轨的 ±3mV 范围内,从而  
保持了最宽的动态范围。 同样,LPV542 设有 EMI 保  
护,可降低来自手机、WiFi、无线电发射器和标签阅读  
器的无用射频信号对系统造成的影响。  
单位增益稳定  
低输入偏置电流:1pA(最大值/室温)  
强化的电磁干扰 (EMI) 保护  
温度范围:-40℃ 至 125℃  
3mm x 3mm x 0.45mm 薄型 X1SON 封装  
2 应用  
LPV542 可在 1.6V 的低电源电压下运行,确保在电池  
低电量的情况下保持出色性能。 该器件采用 8 焊盘  
3mm x 3mm x 0.45mm 薄型无铅 X1SON 封装和标准  
8 引脚 VSSOP 封装。  
可穿戴产品  
个人健康监视器  
电池组  
手机和平板电脑  
器件信息(1)  
太阳能或能量采集系统  
PIR、烟雾、燃气和火灾检测系统  
电池供电物联网 (IoT) 设备  
远程传感器  
器件型号  
LPV542  
封装  
X1SON (8)  
VSSOP (8)  
封装尺寸(标称值)  
3.00mm x 3.00mm  
3.00mm × 3.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
微功耗参考缓冲器  
空白  
空白  
毫微功耗氧气传感器放大器  
电源电流与 电源电压间的关系  
1000  
100 M  
VCM = 0.3V  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V+  
1 Mꢀ  
VOUT  
+
125°C  
85°C  
25°C  
0°C  
R
L
-40°C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
OXYGEN SENSOR  
Supply Voltage (V)  
C001  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNOSCX9  
 
 
 
LPV542  
ZHCSDK3 MARCH 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application: 60 Hz Twin "T" Notch Filter..... 16  
8.3 Do's and Don'ts ...................................................... 17  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Ratings............................ 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics 1.8 V ................................. 5  
6.6 Electrical Characteristics 3.3 V ................................. 6  
6.7 Electrical Characteristics 5 V .................................... 7  
6.8 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 器件支持 ............................................................... 19  
11.2 文档支持 ............................................................... 19  
11.3 ....................................................................... 19  
11.4 静电放电警告......................................................... 19  
11.5 术语表 ................................................................... 19  
12 机械封装和可订购信息 .......................................... 19  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 3 月  
*
最初发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
LPV542  
www.ti.com.cn  
ZHCSDK3 MARCH 2015  
5 Pin Configuration and Functions  
8-Pad X1SON  
DNX Package  
Top View  
8-Pin VSSOP  
DGK Package  
Top View  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
Exposed  
Thermal  
Die Pad  
on  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
A
OUT B  
-IN B  
+IN B  
OUT B  
-IN B  
+IN B  
B
Underside(1)  
(1) Connect thermal die pad to V-.  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
OUT A  
-IN A  
+IN A  
V-  
DGK  
DNX  
1
2
3
4
5
6
7
8
--  
1
2
O
I
Channel A Output  
Channel A Inverting Input  
Channel A Non-Inverting Input  
Negative (lowest) power supply  
Channel B Non-Inverting Input  
Channel B Inverting Input  
Channel B Output  
3
I
4
P
I
+IN B  
-IN B  
OUT B  
V+  
5
6
I
7
O
P
P
8
Positive (highest) power supply  
Die Pad  
DAP  
Die Attach Pad. Connect to V- (DNX package only)  
Copyright © 2015, Texas Instruments Incorporated  
3
LPV542  
ZHCSDK3 MARCH 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
MIN  
-0.3  
MAX  
UNIT  
V
Supply voltage, V+ to V–  
6
(V+) + 0.3  
10  
Voltage(2)  
Current(2)  
(V-) - 0.3  
V
Signal input pins  
-10  
mA  
Output short current  
Continuous(4)  
Junction temperature  
Storage temperature, Tstg  
-40  
-65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be  
current-limited to 10 mA or less.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(4) Short-circuit to V-.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Ratings  
MIN  
1.6  
NOM  
MAX  
5.5  
UNIT  
V
Supply Voltage ( V+– V−  
Specified Temperature  
)
-40  
125  
°C  
6.4 Thermal Information  
DGK (VSSOP)  
8 PINS  
DNX (X1SON)  
THERMAL METRIC(1)  
UNIT  
8 PINS  
46.3  
33.3  
21  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.2  
ψJB  
21.2  
7
RθJC(bot) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
LPV542  
www.ti.com.cn  
ZHCSDK3 MARCH 2015  
6.5 Electrical Characteristics 1.8 V  
TA = 25°C, V+ = 1.8V, V= 0V, VCM = VO = V+/2, and RL > 1 MΩ , unless otherwise noted.  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN TYP(1)  
MAX  
UNIT  
Input offset voltage (VOS  
)
VCM = 0.3 V  
VCM = 1.5 V  
±1  
±1  
±2  
±3  
±4  
mV  
Over temperature  
Drift (dVOS/dT)  
VCM = 0.3 V and 1.5 V  
1
µV/°C  
dB  
Power-Supply Rejection Ratio  
(PSRR)  
VS = 1.6 V to 5.5 V, VCM = 0.3 V  
83  
109  
INPUT VOLTAGE RANGE  
Common-mode voltage range (VCM  
)
CMRR 60 dB  
0
63  
87  
63  
1.8  
V
Common-Mode Rejection Ratio  
(CMRR)  
0 V < VCM < 1.8 V  
0 V < VCM < 0.7 V  
1.3 V < VCM < 1.8 V  
92  
92  
98  
dB  
INPUT BIAS CURRENT  
Input bias current (IB)  
TA = 25°C  
±0.1  
±0.1  
±1  
±100  
±1  
TA = –40°C to 125°C  
pA  
Input offset current (IOS  
)
INPUT IMPEDANCE  
Differential  
Common mode  
NOISE  
1013 || 2.5  
1013 || 2.5  
Ω || pF  
Input voltage noise density, f = 1 kHz (en)  
Current noise density, f = 1 kHz (in)  
OPEN-LOOP GAIN  
250  
80  
nV/Hz  
fAHz  
Open-loop voltage gain (AOL  
)
RL = 100 kto V+/2, 0.5 V < VO < 1.3 V  
91  
101  
dB  
OUTPUT  
Voltage output swing from positive rail  
Voltage output swing from negative rail  
Output current sourcing  
RL = 100 kΩ to V+/2  
RL = 100 kΩ to V+/2  
Sourcing, VO to V, VIN(diff) = 100 mV  
Sinking, VO to V+, VIN(diff) = –100 mV  
3
2
3
5
20  
20  
mV  
mA  
1
1
Output current sinking  
FREQUENCY RESPONSE  
Gain-bandwidth product (GBWP)  
Slew rate (SR)  
CL = 20 pF  
7
3.4  
3.7  
kHz  
G = +1, Rising edge, 1Vp-p, CL = 20 pF  
G = +1, Falling edge, 1Vp-p, CL = 20 pF  
V/ms  
POWER SUPPLY  
Specified voltage range (VS)  
Quiescent current per channel (IQ)  
Over temperature  
1.6  
5.5  
800  
V
VCM = 0.3 V, IO = 0  
VCM = 1.5 V, IO = 0  
490  
680  
1100  
1100  
1500  
nA  
Quiescent current per channel (IQ)  
Over temperature  
(1) Refer to Typical Characteristics.  
Copyright © 2015, Texas Instruments Incorporated  
5
LPV542  
ZHCSDK3 MARCH 2015  
www.ti.com.cn  
6.6 Electrical Characteristics 3.3 V  
TA = 25°C, V+ = 3.3V, V= 0V, VCM = VO = V+/2, and RL > 1 MΩ , unless otherwise noted.  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
Input offset voltage (VOS  
)
VCM = 0.3  
VCM = 3 V  
±1  
±1  
±2  
±3  
±4  
mV  
Over temperature  
Drift (dVOS/dT)  
VCM = 0.3 V and 3 V  
1
µV/°C  
dB  
Power-Supply Rejection Ratio  
(PSRR)  
VS = 1.6 V to 5.5 V, VCM = 0.3 V  
83  
109  
INPUT VOLTAGE RANGE  
Common-mode voltage range (VCM  
)
CMRR 60 dB  
0
64  
88  
64  
3.3  
V
Common-Mode Rejection Ratio  
(CMRR)  
0 V < VCM < 3.3 V  
0 V < VCM < 2.2V  
2.7 V < VCM < 3.3 V  
98  
98  
dB  
105  
INPUT BIAS CURRENT  
Input bias current (IB)  
TA = 25°C  
±0.1  
±0.1  
±1  
±100  
±1  
TA = –40°C to 125°C  
pA  
Input offset current (IOS  
)
INPUT IMPEDANCE  
Differential  
Common mode  
NOISE  
1013 || 2.5  
1013 || 2.5  
Ω || pF  
Input voltage noise density, f = 1 kHz (en)  
Current noise density, f = 1 kHz (in)  
OPEN-LOOP GAIN  
250  
60  
nV/Hz  
fAHz  
Open-loop voltage gain (AOL  
)
RL = 100 kto V+/2, 0.5 V < VO < 2.8 V  
91  
101  
dB  
OUTPUT  
Voltage output swing from positive Rail  
Voltage output swing from negative Rail  
Output current sourcing  
RL = 100 kΩ to V+/2  
RL = 100 kΩ to V+/2  
Sourcing, VO to V, VIN(diff) = 100 mV  
Sinking, VO to V+, VIN(diff) = –100 mV  
3
2
20  
20  
mV  
mA  
5
5
14  
19  
Output current sinking  
FREQUENCY RESPONSE  
Gain-bandwidth product (GBWP)  
Slew rate (SR)  
CL = 20 pF  
8
3.6  
3.7  
kHz  
G = +1, Rising edge, 1Vp-p, CL = 20 pF  
G = +1, Falling edge, 1Vp-p, CL = 20 pF  
V/ms  
POWER SUPPLY  
Specified voltage range (VS)  
Quiescent current per channel (IQ)  
Over temperature  
1.6  
5.5  
800  
V
VCM = 0.3 V, IO = 0  
VCM = 3 V, IO = 0  
480  
650  
1200  
1100  
1500  
nA  
Quiescent current per channel (IQ)  
Over temperature  
(1) Refer to Typical Characteristics.  
6
Copyright © 2015, Texas Instruments Incorporated  
LPV542  
www.ti.com.cn  
ZHCSDK3 MARCH 2015  
6.7 Electrical Characteristics 5 V  
TA = 25°C, V+ = 5 V, V= 0 V, VCM = VO = V+/2, and RL > 1 MΩ , unless otherwise noted.  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
Input offset voltage (VOS  
)
VCM = 0.3 V  
VCM = 4.7V  
±1  
±1  
±2  
±3  
±4  
mV  
Over temperature  
Drift (dVOS/dT)  
VCM = 0.3 V and 4.7V  
1
µV/°C  
dB  
Power-Supply Rejection Ratio  
(PSRR)  
VS = 1.6 V to 5.5 V, VCM = 0.3 V  
83  
109  
INPUT VOLTAGE RANGE  
Common-Mode voltage range (VCM  
)
CMRR 60 dB  
0
73  
88  
73  
5
V
Common-Mode Rejection Ratio  
(CMRR)  
0 V < VCM < 5 V  
0 V < VCM < 3.9V  
4.4 V < VCM < 5 V  
101  
101  
109  
dB  
INPUT BIAS CURRENT  
Input bias current (IB)  
TA = 25°C  
±0.1  
±0.1  
±1  
±100  
±1  
TA = –40°C to 125°C  
pA  
Input offset current (IOS  
)
INPUT IMPEDANCE  
Differential  
Common mode  
NOISE  
1013 || 2.5  
1013 || 2.5  
Ω || pF  
Input voltage noise density, f = 1 kHz (en)  
Current noise density, f = 1 kHz (in)  
OPEN-LOOP GAIN  
250  
65  
nV/Hz  
fAHz  
Open-loop voltage gain (AOL  
)
RL = 100 kto V+/2, 0.5 V < VO < 4.5 V  
91  
101  
dB  
OUTPUT  
Voltage output swing from positive rail  
Voltage output swing from negative rail  
Output current sourcing  
RL = 100 kΩ to V+/2  
RL = 100 kΩ to V+/2  
Sourcing, VO to V, VIN(diff) = 100 mV  
Sinking, VO to V+, VIN(diff) = –100 mV  
3
2
20  
20  
mV  
mA  
10  
10  
30  
36  
Output current sinking  
FREQUENCY RESPONSE  
Gain-bandwidth product (GBWP)  
Slew rate (SR)  
CL = 20 pF  
8
3.6  
3.7  
kHz  
G = +1, Rising edge, 1Vp-p, CL = 20 pF  
G = +1, Falling edge, 1Vp-p, CL = 20 pF  
V/ms  
POWER SUPPLY  
Specified voltage range (VS)  
Quiescent current per channel (IQ)  
Over temperature  
1.6  
5.5  
850  
V
VCM = 0.3 V, IO = 0  
VCM = 4.7 V, IO = 0  
480  
680  
1300  
1100  
1600  
nA  
Quiescent current per channel (IQ)  
Over temperature  
(1) Refer to Typical Characteristics.  
Copyright © 2015, Texas Instruments Incorporated  
7
LPV542  
ZHCSDK3 MARCH 2015  
www.ti.com.cn  
6.8 Typical Characteristics  
TA = 25 °C, VS = 5 V, VOUT = VCM = VS/2, RLOAD = 1 MΩ connected to VS/2, and CL = 20 pF, unless otherwise noted.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VCM = 0.3V  
VCM = VS - 0.3V  
125°C  
85°C  
25°C  
0°C  
125°C  
85°C  
25°C  
0°C  
-40°C  
-40°C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
C001  
C001  
No Output Load  
VCM = 0.3 V  
No Output Load  
VCM = (V+) – 0.3 V  
Figure 1. Supply Voltage vs Supply Current per Channel,  
Low Vcm  
Figure 2. Supply Voltage vs Supply Current per Channel,  
High Vcm  
1000  
900  
800  
700  
600  
500  
400  
1000  
900  
800  
700  
600  
500  
400  
125°C  
85°C  
25°C  
0°C  
125°C  
85°C  
25°C  
0°C  
300  
200  
100  
0
300  
200  
100  
0
-40°C  
-40°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
C001  
C001  
No Output Load  
No Output Load  
Figure 3. Supply Current vs  
Common Mode at 1.8 V  
Figure 4. Supply Current vs  
Common Mode at 2.7 V  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
125°C  
85°C  
25°C  
0°C  
125°C  
85°C  
25°C  
0°C  
-40°C  
-40°C  
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
C001  
C001  
No Output Load  
No Output Load  
Figure 5. Supply Current vs  
Common Mode at 3.3 V  
Figure 6. Supply Current vs  
Common Mode at 5 V  
8
Copyright © 2015, Texas Instruments Incorporated  
 
LPV542  
www.ti.com.cn  
ZHCSDK3 MARCH 2015  
Typical Characteristics (continued)  
TA = 25 °C, VS = 5 V, VOUT = VCM = VS/2, RLOAD = 1 MΩ connected to VS/2, and CL = 20 pF, unless otherwise noted.  
100  
100  
10  
10  
1
1
0.1  
0.1  
-40°C  
25°C  
-40°C  
25°C  
0.01  
0.001  
0.01  
0.001  
125°C  
125°C  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Referred to V- (mV)  
Output Referred to V+ (mV)  
SNK  
SRC  
VS = 1.8 V  
VS = 1.8 V  
Figure 7. Output Sinking Current vs  
Output Swing at 1.8 V  
Figure 8. Output Sourcing Current vs  
Output Swing at 1.8 V  
100  
10  
100  
10  
1
1
0.1  
0.1  
-40°C  
25°C  
-40°C  
25°C  
0.01  
0.001  
0.01  
0.001  
125°C  
125°C  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Referred to V- (mV)  
SNK  
Output Referred to V+ (mV)  
SRC  
VS = 2.7 V  
VS = 2.7 V  
Figure 9. Output Sinking Current vs  
Output Swing at 2.7 V  
Figure 10. Output Sourcing Current vs  
Output Swing at 2.7 V  
100  
10  
100  
10  
1
1
0.1  
0.1  
-40°C  
25°C  
-40°C  
0.01  
0.001  
0.01  
0.001  
25°C  
125°C  
10000  
125°C  
1
10  
100  
1000  
1
10  
100  
1000  
10000  
Output Referred to V- (mV)  
Output Referred to V+ (mV)  
SNK  
SRC  
VS = 3.3 V  
VS = 3.3 V  
Figure 11. Output Sinking Current vs  
Output Swing at 3.3 V  
Figure 12. Output Sourcing Current vs  
Output Swing at 3.3 V  
Copyright © 2015, Texas Instruments Incorporated  
9
LPV542  
ZHCSDK3 MARCH 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25 °C, VS = 5 V, VOUT = VCM = VS/2, RLOAD = 1 MΩ connected to VS/2, and CL = 20 pF, unless otherwise noted.  
100  
100  
10  
10  
1
1
0.1  
0.1  
-40°C  
25°C  
-40°C  
25°C  
0.01  
0.001  
0.01  
0.001  
125°C  
125°C  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Referred to V- (mV)  
Output Referred to V+ (mV)  
SNK  
SRC  
VS = 5 V  
VS = 5 V  
Figure 13. Output Sinking Current vs  
Output Swing at 5 V  
Figure 14. Output Sourcing Current vs  
Output Swing at 5 V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
-40°C  
25°C  
-40°C  
25°C  
125°C  
125°C  
0
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Supply Voltage (V)  
Supply Voltage (V)  
SHR  
SHR  
Output set high (sourcing), shorted to V–  
Ouput set low (sinking), shorted to V+  
Figure 15. Output Short Circut Current to V- vs  
Supply Voltage  
Figure 16. Output Short Circut Current to V+ vs  
Supply Voltage  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.3  
0.3  
0.9  
1.5  
2.1  
2.7  
3.3  
-0.3  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
C004  
C001  
VS = 3.3 V  
TA = 25°C  
VS = 1.8 V  
TA = 25°C  
Figure 18. Input Bias Current vs  
Common Mode Voltage at 3.3V  
Figure 17. Input Bias Current vs  
Common Mode Voltage at 1.8 V  
10  
Copyright © 2015, Texas Instruments Incorporated  
LPV542  
www.ti.com.cn  
ZHCSDK3 MARCH 2015  
Typical Characteristics (continued)  
TA = 25 °C, VS = 5 V, VOUT = VCM = VS/2, RLOAD = 1 MΩ connected to VS/2, and CL = 20 pF, unless otherwise noted.  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.3 0.3 0.9 1.5 2.1 2.7 3.3 3.9 4.5 5.1  
-0.3  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
C007  
C002  
VS = 5 V  
TA = 25°C  
VS = 1.8 V  
TA = 85°C  
Figure 19. Input Bias Current vs  
Common Mode Voltage at 5V  
Figure 20. Input Bias Current vs  
Common Mode Voltage at 1.8V  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.3  
0.3  
0.9  
1.5  
2.1  
2.7  
3.3  
-0.3 0.3 0.9 1.5 2.1 2.7 3.3 3.9 4.5 5.1  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
C005  
C008  
VS = 3.3 V  
TA = 85°C  
VS = 5 V  
TA = 85°C  
Figure 21. Input Bias Current vs  
Common Mode Voltage at 3.3 V  
Figure 22. Input Bias Current vs  
Common Mode Voltage at 5 V  
50  
40  
50  
40  
30  
30  
20  
20  
10  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-0.3  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
-0.3  
0.3  
0.9  
1.5  
2.1  
2.7  
3.3  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
C003  
C006  
VS = 1.8 V  
TA = 125°C  
VS = 3.3 V  
TA = 125°C  
Figure 23. Input Bias Current vs  
Common Mode Voltage at 1.8 V  
Figure 24. Input Bias Current vs  
Common Mode Voltage at 3.3 V  
Copyright © 2015, Texas Instruments Incorporated  
11  
LPV542  
ZHCSDK3 MARCH 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25 °C, VS = 5 V, VOUT = VCM = VS/2, RLOAD = 1 MΩ connected to VS/2, and CL = 20 pF, unless otherwise noted.  
50  
10k  
VS = 5V  
RL=100k  
40  
30  
20  
10  
0
1k  
-10  
-20  
-30  
-40  
-50  
100  
-0.3 0.3 0.9 1.5 2.1 2.7 3.3 3.9 4.5 5.1  
Common Mode Voltage (V)  
100m  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C009  
C001  
VS = 5 V  
TA = 125°C  
CL = 20 pF  
VS = 5 V  
RL = 100 kΩ  
CL = 20 pF  
Figure 25. Input Bias Current vs  
Common Mode Voltage at 5 V  
Figure 26. Input Referred Voltage Noise  
IN  
IN  
OUT  
OUT  
Time (100us/div)  
Time (200us/div)  
C001  
C002  
VS = ±0.9 V  
G = +1  
RL = 10 MΩ  
CL = 20 pF  
VS = ±0.9 V  
G = +1  
RL = 10 MΩ  
CL = 20 pF  
VIN = ±100 mV  
VIN = ±500mV  
Figure 27. Pulse Response, 200mVpp at 1.8 V  
Figure 28. Pulse Response, 1Vpp at 1.8V  
IN  
IN  
OUT  
OUT  
Time (100us/div)  
Time (200us/div)  
C003  
C002  
VS = ±2.5 V  
G = +1  
RL = 10 MΩ  
CL = 20 pF  
VS = ±2.5 V  
G = +1  
RL = 10 MΩ  
CL = 20 pF  
VIN = ±100 mV  
VIN = ±1V  
Figure 29. Pulse Response, 200mVpp at 5V  
Figure 30. Pulse Response, 2Vpp at 5V  
12  
Copyright © 2015, Texas Instruments Incorporated  
LPV542  
www.ti.com.cn  
ZHCSDK3 MARCH 2015  
Typical Characteristics (continued)  
TA = 25 °C, VS = 5 V, VOUT = VCM = VS/2, RLOAD = 1 MΩ connected to VS/2, and CL = 20 pF, unless otherwise noted.  
40  
30  
20  
10  
0
180  
135  
90  
40  
30  
20  
10  
0
180  
135  
90  
-40°C  
25°C  
125°C  
-40°C  
25°C  
125°C  
Gain  
Gain  
Phase  
Phase  
45  
45  
0
0
±10  
±45  
±10  
±45  
100  
1000  
10000  
100000  
100  
100  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
C011  
C008  
VS = 1.8 V  
RL = 100 kΩ  
CL = 20 pF  
VS = 5 V  
RL = 100 kΩ  
CL = 20 pF  
Figure 31. Gain and Phase vs  
Temperature at 1.8 V  
Figure 32. Gain and Phase vs  
Temperature at 5 V  
40  
30  
20  
10  
0
180  
40  
30  
20  
10  
0
180  
-40°C  
-40°C  
Gain  
Gain  
25°C  
25°C  
125°C  
125°C  
135  
90  
135  
90  
Phase  
Phase  
45  
45  
0
0
±10  
±45  
100000  
±10  
±45  
100000  
100  
1000  
10000  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
C012  
C009  
VS = 1.8 V  
RL = 1 MΩ  
CL = 20 pF  
VS = 5 V  
RL = 1 MΩ  
CL = 20 pF  
Figure 33. Gain and Phase vs  
Temperature at 1.8 V  
Figure 34. Gain and Phase vs  
Temperature at 5 V  
40  
30  
20  
10  
0
180  
40  
30  
20  
10  
0
180  
-40°C  
-40°C  
Gain  
Gain  
25°C  
25°C  
125°C  
125°C  
135  
90  
135  
90  
Phase  
Phase  
45  
45  
0
0
±10  
±45  
100000  
±10  
±45  
100000  
1000  
10000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
C010  
C013  
VS = 5 V  
RL = 10 MΩ  
CL = 20 pF  
VS = 1.8 V  
RL = 10 MΩ  
CL = 20 pF  
Figure 36. Gain and Phase vs  
Temperature at 5 V  
Figure 35. Gain and Phase vs  
Temperature at 1.8 V  
Copyright © 2015, Texas Instruments Incorporated  
13  
LPV542  
ZHCSDK3 MARCH 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LPV542 dual op amplifier is unity-gain stable and can operate on a single supply, making it highly versatile  
and easy to use.  
The LPV542 is fully specified and tested from 1.6 V to 5.5 V. Parameters that vary significantly with operating  
voltages or temperature are shown in the Typical Characteristics curves.  
7.2 Functional Block Diagram  
7.3 Feature Description  
The amplifier's differential inputs consist of a non-inverting input (+IN) and an inverting input (–IN). The amplifer  
amplifies only the difference in voltage between the two inputs, which is called the differential input voltage. The  
output voltage of the op-amp VOUT is given by Equation 1:  
VOUT = AOL (IN+ – IN)  
where  
AOL is the open-loop gain of the amplifier, typically around 100 dB (100,000x, or 100,000 Volts per microvolt).  
(1)  
7.4 Device Functional Modes  
7.4.1 Rail-To-Rail Input  
The input common-mode voltage range of the LPV542 extends to the supply rails. This is achieved with a  
complementary input stage — an N-channel input differential pair in parallel with a P-channel differential pair.  
The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 800 mV to 200 mV above  
the positive supply, while the P-channel pair is on for inputs from 300 mV below the negative supply to  
approximately (V+) – 800 mV. There is a small transition region, typically (V+) – 1.2 V to (V+) – 0.8 V, in which  
both pairs are on. This 400 mV transition region can vary 200 mV with process variation. Within the 400 mV  
transition region PSRR, CMRR, offset voltage, offset drift, and THD may be degraded compared to operation  
outside this region.  
7.4.2 Supply Current Changes over Common Mode  
Because of the ultra-low supply current, changes in common mode voltages will cause a noticeable change in  
the supply current as the input stages transition through the transition region, as shown in Figure 37 below.  
1000  
900  
800  
700  
600  
500  
400  
125°C  
85°C  
25°C  
0°C  
300  
200  
100  
0
-40°C  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Voltage (V)  
C001  
Figure 37. Supply Current Change over Common Mode at 5 V  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
LPV542  
www.ti.com.cn  
ZHCSDK3 MARCH 2015  
Device Functional Modes (continued)  
For the lowest supply current operation, keep the input common mode range between V- and 1 V below V+.  
7.4.3 Design Optimization With Rail-To-Rail Input  
In most applications, operation is within the range of only one differential pair. However, some applications can  
subject the amplifier to a common-mode signal in the transition region. Under this condition, the inherent  
mismatch between the two differential pairs may lead to degradation of the CMRR and THD. The unity-gain  
buffer configuration is the most problematic as it will traverse through the transition region if a sufficiently wide  
input swing is required.  
7.4.4 Design Optimization for Nanopower Operation  
When designing for ultralow power, choose system components carefully. To minimize current consumption,  
select large-value resistors. Any resistors will react with stray capacitance in the circuit and the input capacitance  
of the operational amplifier. These parasitic RC combinations can affect the stability of the overall system. A  
feedback capacitor may be required to assure stability and limit overshoot or gain peaking.  
When possible, use AC coupling and AC feedback to reduce static current draw through the feedback elements.  
Use film or ceramic capacitors since large electolytics may have static leakage currents in the tens to hundreds  
of nanoamps.  
7.4.5 Common-Mode Rejection  
The CMRR for the LPV542 is specified in two ways so the best match for a given application may be used. First,  
the CMRR of the device in the common-mode range below the transition region (VCM < (V+) – 0.9 V) is given.  
This specification is the best indicator of the capability of the device when the application requires use of one of  
the differential input pairs. Second, the CMRR at VS = 5 V over the entire common-mode range is specified.  
7.4.6 Output Stage  
The LPV542 output voltage swings 3 mV from rails at 3.3 V supply, which provides the maximum possible  
dynamic range at the output. This is particularly important when operating on low supply voltages.  
The LPV542 Maximum Output Voltage Swing defines the maximum swing possible under a particular output  
load.  
7.4.7 Driving Capacitive Load  
The LPV542 is internally compensated for stable unity gain operation, with a 8 kHz typical gain bandwidth.  
However, the unity gain follower is the most sensitive configuration to capacitive load. The combination of a  
capacitive load placed directly on the output of an amplifier along with the amplifier’s output impedance creates a  
phase lag, which reduces the phase margin of the amplifier. If the phase margin is significantly reduced, the  
response will be under damped which causes peaking in the transfer and, when there is too much peaking, the  
op amp might start oscillating.  
In order to drive heavy (>50pF) capacitive loads, an isolation resistor, RISO, should be used, as shown in  
Figure 38. By using this isolation resistor, the capacitive load is isolated from the amplifier’s output. The larger  
the value of RISO, the more stable the amplifier will be. If the value of RISO is sufficiently large, the feedback loop  
will be stable, independent of the value of CL. However, larger values of RISO result in reduced output swing and  
reduced output current drive.  
R
ISO  
-
V
OUT  
V
IN  
+
C
L
Figure 38. Resistive Isolation Of Capacitive Load  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
LPV542  
ZHCSDK3 MARCH 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LPV542 is a ultra-low power operational amplifier that provides 8 kHz bandwidth with only 490nA quiescent  
current, and near precision offset and drift specifications at a low cost. These rail-to-rail input and output  
amplifiers are specifically designed for battery-powered applications. The input common-mode voltage range  
extends to the power-supply rails and the output swings to within millivolts of the rails, maintaining a wide  
dynamic range.  
8.2 Typical Application: 60 Hz Twin "T" Notch Filter  
V
= 3V oꢀ2V @ end of life  
BATT  
CR2032 Coin Cell  
225 mAh = 5 circuits @ 9.5 yrs.  
10 M:  
10 M:  
V
BATT  
-
Remote Sensor  
To ADC  
V
OUT  
10 M:  
10 M:  
+
V
IN  
Signal  
+
60 Hz  
Signal × 2  
(No 60 Hz)  
270 pF  
270 pF  
60 Hz Twin T Notch Filter  
= 2 V/V  
10 M:  
10 M:  
A
V
270 pF  
270 pF  
Figure 39. 60 Hz Notch Filter  
8.2.1 Design Requirements  
Small signals from transducers in remote and distributed sensing applications commonly suffer strong 60 Hz  
interference from AC power lines. The circuit of Figure 39 notches out the 60 Hz and provides a gain AV = 2 for  
the sensor signal represented by a 1 kHz sine wave. Similar stages may be cascaded to remove 2nd and 3rd  
harmonics of 60 Hz. Thanks to the nA power consumption of the LPV542, even 5 such circuits can run for 9.5  
years from a small CR2032 lithium cell. These batteries have a nominal voltage of 3 V and an end of life voltage  
of 2 V. With an operating voltage from 1.6 V to 5.5 V the LPV542 can function over this voltage range.  
8.2.2 Detailed Design Procedure  
The notch frequency is set by:  
F0 = 1 / 2πRC.  
(2)  
To achieve a 60 Hz notch use R = 10 Mand C = 270 pF. If eliminating 50 Hz noise, which is common in  
European systems, use R = 11.8 Mand C = 270 pF.  
The Twin T Notch Filter works by having two separate paths from VIN to the amplifier’s input. A low frequency  
path through the series input resistors and another separate high frequency path through the series input  
capacitors. However, at frequencies around the notch frequency, the two paths have opposing phase angles and  
the two signals will tend to cancel at the amplifier’s input.  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
LPV542  
www.ti.com.cn  
ZHCSDK3 MARCH 2015  
Typical Application: 60 Hz Twin "T" Notch Filter (continued)  
To ensure that the target center frequency is achieved and to maximize the notch depth (Q factor) the filter  
needs to be as balanced as possible. To obtain circuit balance, while overcoming limitations of available  
standard resistor and capacitor values, use passives in parallel to achieve the 2C and R/2 circuit requirements  
for the filter components that connect to ground.  
To make sure passive component values stay as expected clean board with alcohol, rinse with deionized water,  
and air dry. Make sure board remains in a relatively low humidity environment to minimize moisture which may  
increase the conductivity of board components. Also large resistors come with considerable parasitic stray  
capacitance which effects can be reduced by cutting out the ground plane below components of concern.  
Large resistors are used in the feedback network to minimize battery drain. When designing with large resistors,  
resistor thermal noise, op amp current noise, as well as op amp voltage noise, must be considered in the noise  
analysis of the circuit. The noise analysis for the circuit in Figure 39 can be done over a bandwidth of 2 kHz,  
which takes the conservative approach of overestimating the bandwidth (LPV542 typical GBW/AV is lower). The  
total noise at the output is approximately 800 µVpp, which is excellent considering the total consumption of the  
circuit is only 900 nA. The dominant noise terms are op amp voltage noise , current noise through the feedback  
network (430 µVpp), and current noise through the notch filter network (280 µVpp). Thus the total circuit's noise  
is below 1/2 LSB of a 10-bit system with a 2 V reference, which is 1 mV.  
8.2.3 Application Curve  
Figure 40. 60 Hz Notch Filter Waveform  
8.3 Do's and Don'ts  
Do properly bypass the power supplies.  
Do add series resistance to the output when driving capacitive loads, particularly cables, Muxes and ADC inputs.  
Do add series current limiting resistors and external schottky clamp diodes if input voltage is expected to exceed  
the supplies. Limit the current to 1 mA or less (1 KΩ per volt).  
Copyright © 2015, Texas Instruments Incorporated  
17  
LPV542  
ZHCSDK3 MARCH 2015  
www.ti.com.cn  
9 Power Supply Recommendations  
The LPV542 is specified for operation from 1.6 V to 5.5 V (±0.8 V to ±2.75 V) over a –40°C to 125°C  
temperature range. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics.  
CAUTION  
Supply voltages larger than 6 V can permanently damage the device.  
For proper operation, the power supplies bust be properly decoupled. For decoupling the supply lines it is  
suggested that 10 nF capacitors be placed as close as possible to the operational amplifier power supply pins.  
For single supply, place a capacitor between V+ and Vsupply leads. For dual supplies, place one capacitor  
between V+ and ground, and one capacitor between Vand ground.  
Low bandwidth nanopower devices do not have good high frequency (> 1 kHz) AC PSRR rejection against high-  
frequency switching supplies and other 1 kHz and above noise sources, so extra supply filtering is recommended  
if kilohertz or above noise is expected on the power supply lines.  
10 Layout  
10.1 Layout Guidelines  
The V+ pin should be bypassed to ground with a low ESR capacitor.  
The optimum placement is closest to the V+ and ground pins.  
Care should be taken to minimize the loop area formed by the bypass capacitor connection between V+ and  
ground.  
The ground pin should be connected to the PCB ground plane at the pin of the device.  
The feedback components should be placed as close to the device as possible to minimize strays.  
There is an internal electrical connection between the exposed Die Attach Pad (DAP) and the V- pin. For best  
performance the DAP should be connected to the exact same potential as the V- pin. Do not use the DAP as the  
primary V- supply. Floating the DAP pad is not recommended. The DAP and V- pin should be joined directly as  
shown in the Layout Example.  
10.2 Layout Example  
Figure 41. X1SON Layout Example (top view)  
18  
版权 © 2015, Texas Instruments Incorporated  
 
LPV542  
www.ti.com.cn  
ZHCSDK3 MARCH 2015  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
TINA-TI 基于 SPICE 的模拟仿真程序,http://www.ti.com.cn/tool/cn/tina-ti  
DIP 适配器评估模块,http://www.ti.com.cn/tool/cn/dip-adapter-evm  
TI 通用运行放大器评估模块,http://www.ti.com.cn/tool/cn/opampevm  
TI FilterPro 滤波器设计软件,http://www.ti.com.cn/tool/cn/filterpro  
11.2 文档支持  
11.2.1 相关文档  
相关文档如下:  
AN-1798《设计电化学传感器》,SNOA514  
AN-1803《互阻抗放大器设计注意事项》,SNOA515  
AN-1852《设计 pH 电极》,SNOA529  
《直观补偿互阻抗放大器》,SBOA055  
《高速运算放大器互阻抗注意事项》,SBOA112  
FET 互阻抗放大器噪声分析》,SBOA060  
《电路板布局布线技巧》,SLOA089  
《运算放大器应用手册》,SBOA092  
11.3 商标  
All trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LPV542DGKR  
LPV542DGKT  
ACTIVE  
VSSOP  
VSSOP  
DGK  
8
8
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
LP  
V542  
Samples  
Samples  
ACTIVE  
DGK  
NIPDAUAG | SN  
LP  
V542  
LPV542DNXR  
LPV542DNXT  
ACTIVE  
ACTIVE  
X1SON  
X1SON  
DNX  
DNX  
8
8
NIPDAUAG  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
LPV542  
Samples  
Samples  
LPV542  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DNX0008A  
X1SON - 0.5 mm max height  
SCALE 4.300  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.5 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.127)  
TYP  
1.65±0.1  
4
1
5
2X  
1.5  
2.38±0.1  
8
6X 0.5  
0.3  
8X  
0.2  
0.45  
0.35  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A  
C
B
8X  
4221623/A 08/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DNX0008A  
X1SON - 0.5 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
SYMM  
8X (0.6)  
1
8
8X (0.25)  
SYMM  
(2.38)  
(0.94)  
5
6X (0.5)  
4
(0.575)  
(
0.2) VIA  
TYP  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221623/A 08/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DNX0008A  
X1SON - 0.5 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.51)  
SYMM  
METAL  
TYP  
8X (0.6)  
1
8
2X  
(1.06)  
8X (0.25)  
SYMM  
(0.63)  
6X (0.5)  
5
4
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
82% PRINTED SOLDER COVERAGE BY AREA  
SCALE:30X  
4221623/A 08/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LPV542DGKR

Dual, 5.5-V, 8-kHz, ultra low quiescent current (480-nA), 1.6-V min supply, RRIO op amp | DGK | 8 | -40 to 125
TI

LPV542DGKT

Dual, 5.5-V, 8-kHz, ultra low quiescent current (480-nA), 1.6-V min supply, RRIO op amp | DGK | 8 | -40 to 125
TI

LPV542DNXR

Dual, 5.5-V, 8-kHz, ultra low quiescent current (480-nA), 1.6-V min supply, RRIO op amp | DNX | 8 | -40 to 125
TI

LPV542DNXT

Dual, 5.5-V, 8-kHz, ultra low quiescent current (480-nA), 1.6-V min supply, RRIO op amp | DNX | 8 | -40 to 125
TI

LPV7215

580 nA Rail-to-Rail Input and Output, 1.8V, Push-Pull Output Comparator
NSC

LPV7215

Micropower, CMOS Input, RRIO, 1.8V, Push-Pull Output Comparator
INTERSIL

LPV7215

毫微功耗 CMOS 单路比较器
TI

LPV7215MF

580 nA Rail-to-Rail Input and Output, 1.8V, Push-Pull Output Comparator
NSC

LPV7215MF

Micropower, CMOS Input, RRIO, 1.8V, Push-Pull Output Comparator
INTERSIL

LPV7215MF/NOPB

毫微功耗 CMOS 单路比较器 | DBV | 5 | -40 to 125
TI

LPV7215MFX

580 nA Rail-to-Rail Input and Output, 1.8V, Push-Pull Output Comparator
NSC

LPV7215MFX

Micropower, CMOS Input, RRIO, 1.8V, Push-Pull Output Comparator
INTERSIL