LPV801 [TI]

单路、5.5V、8kHz、超低静态电流 (450nA)、1.6V 最小电源电压、RRO 运算放大器;
LPV801
型号: LPV801
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单路、5.5V、8kHz、超低静态电流 (450nA)、1.6V 最小电源电压、RRO 运算放大器

放大器 运算放大器
文件: 总28页 (文件大小:1204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LPV801, LPV802  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
LPV801/LPV802 320nA 毫微功耗运算放大器  
1 特性  
3 说明  
1
毫微功耗电源电流:320nA/通道  
LPV801(单通道)和 LPV802(双通道)组成了超低  
功耗运算放大器系列,适用于由电池供电的无线和低功  
耗有线设备 中的 感测应用。LPV80x 放大器的带宽为  
8kHz,静态电流为 320nA,可最大限度降低运行电池  
寿命至关重要的设备(如 CO 检测器、烟雾检测器和  
PIR 运动检测器)消耗的功率。  
偏移电压:3.5mV(最大值)  
TcVos1µV/°C  
单位增益带宽:8kHz  
宽电源电压范围:1.6V 5.5V  
低输入偏置电流:0.1pA  
单位增益稳定  
除超低功耗特性外,LPV80x 放大器还具有实现毫微微  
安偏置电流的 CMOS 输入级。LPV80x 放大器还特有  
一个负轨感测输入级和一个相对于电源轨的摆幅为毫伏  
级的轨到轨输出级,从而尽可能保持最宽的动态范围。  
LPV80x 设有电磁干扰 (EMI) 保护,可降低来自手机、  
WiFi、无线电发射器和标签阅读器的无用射频信号对系  
统造成的影响。  
轨到轨输出  
无输出反转  
EMI 保护  
温度范围:–40℃ 至 125℃  
行业标准封装:  
5 引脚小外形尺寸晶体管 (SOT)-23 封装(单通  
道版本)  
LPV8xx 系列毫微功耗放大器  
电源  
8 引脚超薄小外形尺寸 (VSSOP) 封装(双通道  
版本)  
电流  
(典型值/通  
道)  
偏移电压  
(最大值)  
器件编号  
通道  
2 应用  
气体检测器(CO O2 传感器)  
LPV801  
LPV802  
LPV811  
LPV812  
1
2
1
2
500nA  
320nA  
450nA  
405nA  
3.5mV  
3.5mV  
300µV  
300µV  
PIR 运动检测器  
离子化烟雾报警器  
温度调节装置  
物联网 (IoT) 远程传感器  
有效的射频识别 (RFID) 阅读器和标签  
便携式医疗设备  
器件信息(1)  
器件型号  
封装  
封装尺寸  
LPV801  
LPV802  
SOT-23 (5)  
VSSOP (8)  
2.90mm x 1.60mm  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
电化学传感器中的毫微功耗放大器  
PIR 运动检测器中的毫微功耗放大器  
CE  
RE  
WE  
+
VREF  
LPV802a  
+
Output to  
Comparator  
LPV802a  
IR  
VREF  
+
CF  
RF  
LPV802b  
RLoad  
VOUT  
+
VREF  
LPV802b  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNOSCZ3  
 
 
 
LPV801, LPV802  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 12  
8
9
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application: Three Terminal CO Gas Sensor  
Amplifier ................................................................... 14  
8.3 Do's and Don'ts ...................................................... 17  
Power Supply Recommendations...................... 17  
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Example .................................................... 17  
11 器件和文档支持 ..................................................... 18  
11.1 器件支持 ............................................................... 18  
11.2 接收文档更新通知 ................................................. 18  
11.3 社区资源................................................................ 18  
11.4 相关链接................................................................ 18  
11.5 ....................................................................... 18  
11.6 静电放电警告......................................................... 18  
11.7 Glossary................................................................ 18  
12 机械、封装和可订购信息....................................... 18  
7
4 修订历史记录  
Changes from Original (August 2016) to Revision A  
Page  
已更改 产品预览量产数据”............................................................................................................................................... 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
LPV801, LPV802  
www.ti.com.cn  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
5 Pin Configuration and Functions  
LPV802 8-Pin VSSOP  
DGK Package  
Top View  
LPV801 5-Pin SOT-23  
DBV Package  
Top View  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
A
OUT  
V-  
1
2
3
5
4
V+  
OUT B  
-IN B  
+IN B  
B
+IN  
-IN  
Pin Functions: LPV801 DBV  
PIN  
I/O  
DESCRIPTION  
NAME  
OUT  
-IN  
NUMBER  
1
4
3
2
5
O
I
Output  
Inverting Input  
+IN  
V-  
I
Non-Inverting Input  
P
P
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
Pin Functions: LPV802 DGK  
PIN  
I/O  
DESCRIPTION  
NAME  
OUT A  
-IN A  
+IN A  
V-  
NUMBER  
1
2
3
4
5
6
7
8
O
I
Channel A Output  
Channel A Inverting Input  
Channel A Non-Inverting Input  
Negative (lowest) power supply  
Channel B Non-Inverting Input  
Channel B Inverting Input  
Channel B Output  
I
P
I
+IN B  
-IN B  
OUT B  
V+  
I
O
P
Positive (highest) power supply  
Copyright © 2016, Texas Instruments Incorporated  
3
LPV801, LPV802  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
MAX  
6
UNIT  
V
Supply voltage, Vs = (V+) - (V-)  
(2) (3)  
Voltage  
Common mode  
Differential  
(V-) - 0.3  
(V-) - 0.3  
-10  
(V+) + 0.3  
(V+) + 0.3  
10  
V
Input pins  
V
Input pins  
Current  
mA  
Output short  
current  
Continuous Continuous  
(4)  
Operating temperature  
Storage temperature, Tstg  
Junction temperature  
–40  
–65  
125  
150  
150  
°C  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Not to exceed -0.3V or +6.0V on ANY pin, referred to V-  
(3) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should  
be current-limited to 10 mA or less.  
(4) Short-circuit to Vs/2, one amplifer per package. Continuous short circuit operation at elevated ambient temperature can result in  
exceeding the maximum allowed junction temperature of 150°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±750 V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.6  
NOM  
MAX  
5.5  
UNIT  
V
Supply voltage (V+ – V–)  
Specified temperature  
-40  
125  
°C  
6.4 Thermal Information  
LPV801  
DBV  
LPV802  
DGK  
THERMAL METRIC(1)  
UNIT  
5 PINS  
8 PINS  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
177.4  
133.9  
36.3  
184.2  
75.3  
θJCtop  
θJB  
Junction-to-board thermal resistance  
105.5  
13.5  
ºC/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
23.6  
ψJB  
35.7  
103.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016, Texas Instruments Incorporated  
LPV801, LPV802  
www.ti.com.cn  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
6.5 Electrical Characteristics  
TA = 25°C, VS = 1.8V to 5 V, VCM = VOUT = VS/2, and RL10 MΩ to VS / 2, unless otherwise noted.(1)  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VS = 1.8V, 3.3V, and 5V,  
VCM = V-  
0.55  
±3.5  
±3.5  
VOS  
Input offset voltage  
mV  
VS = 1.8V, 3.3V, and 5V,  
VCM = (V+) – 0.9 V  
0.55  
1
ΔVOS/ΔT Input offset drift  
PSRR Power-supply rejection  
ratio  
INPUT VOLTAGE RANGE  
VCM = V-  
TA = –40°C to 125°C  
µV/°C  
µV/V  
VS = 1.8V to 5V,  
VCM = V-  
1.6  
60  
VCM  
Common-mode voltage  
range  
VS = 5 V  
0
4.1  
V
Common-mode rejection  
ratio  
CMRR  
(V–) VCM (V+) – 0.9 V, VS= 5V  
80  
98  
dB  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
VS = 1.8V  
VS = 1.8V  
±100  
±100  
fA  
IOS  
INPUT IMPEDANCE  
Differential  
7
3
pF  
Common mode  
NOISE  
En  
Input voltage noise  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 100 Hz  
6.5  
340  
420  
µVp-p  
en  
Input voltage noise  
density  
nV/Hz  
ƒ = 1 kHz  
OPEN-LOOP GAIN  
AOL  
Open-loop voltage gain  
(V–) + 0.3 V VO (V+) – 0.3 V, RL = 100 kΩ  
VS = 1.8V, RL = 100 kΩ to V+/2  
120  
3.5  
dB  
OUTPUT  
VOH  
Voltage output swing  
from positive rail  
10  
mV  
VOL  
Voltage output swing  
from negative rail  
VS = 1.8V, RL = 100 kΩ to V+/2  
VS = 3.3V, Short to VS/2  
ƒ = 1 KHz, IO = 0 A  
2.5  
4.7  
90  
10  
ISC  
ZO  
Short-circuit current  
mA  
Open loop output  
impedance  
kΩ  
FREQUENCY RESPONSE  
GBP  
Gain-bandwidth product  
CL = 20 pF, RL = 10 MΩ, VS = 5V  
8
2
kHz  
G = 1, Rising Edge, CL = 20 pF, VS = 5V  
G = 1, Falling Edge, CL = 20 pF, VS = 5V  
SR  
Slew rate (10% to 90%)  
V/ms  
2.1  
POWER SUPPLY  
IQ-LPV801 Quiescent Current  
VCM = V-, IO = 0, VS = 3.3 V  
VCM = V-, IO = 0, VS = 3.3 V  
500  
320  
550  
415  
nA  
nA  
Quiescent Current,  
IQ-LPV802  
Per Channel  
(1) LPV801 Specifications are Preliminary until released.  
Copyright © 2016, Texas Instruments Incorporated  
5
LPV801, LPV802  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, RL = 10MΩ to VS/2 ,CL = 20pF, VCM = VS / 2V unless otherwise specified.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
+125°C  
+25°C  
+125°C  
+25°C  
-40°C  
-40°C  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
C001  
C001  
VCM = V-  
LPV801  
RL=No Load  
VCM = V-  
LPV802  
RL=No Load  
Figure 1. Supply Current vs. Supply Voltage, LPV801  
Figure 2. Supply Current vs. Supply Voltage, LPV802  
500  
500  
+125°C  
+25°C  
-40°C  
+125°C  
+25°C  
-40°C  
400  
300  
400  
300  
200  
200  
100  
100  
0
0
œ100  
œ200  
œ300  
œ400  
œ500  
œ100  
œ200  
œ300  
œ400  
œ500  
0
0.15  
0.3  
0.45  
0.6  
0.75  
0.9  
0
0.4  
0.8  
1.2  
1.6  
2
2.4  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
C003  
C003  
VS= 1.8V  
RL= 10MΩ  
VS= 3.3V  
RL= 10MΩ  
Figure 3. Typical Offset Voltage vs. Common Mode Voltage  
Figure 4. Typical Offset Voltage vs. Common Mode Voltage  
500  
1k  
+125°C  
400  
+25°C  
300  
-40°C  
200  
100  
10  
100  
0
1
œ100  
œ200  
œ300  
œ400  
œ500  
100m  
10m  
1m  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
0
25  
50  
75  
100  
125  
œ50  
œ25  
Common Mode Voltage (V)  
Temperature (°C)  
C003  
C001  
VS= 5V  
RL= 10MΩ  
VS= 5V  
TA = -40 to 125  
VCM = Vs/2  
Figure 5. Typical Offset Voltage vs. Common Mode Voltage  
Figure 6. Input Bias Current vs. Temperature  
6
Copyright © 2016, Texas Instruments Incorporated  
 
LPV801, LPV802  
www.ti.com.cn  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
Typical Characteristics (continued)  
at TA = 25°C, RL = 10MΩ to VS/2 ,CL = 20pF, VCM = VS / 2V unless otherwise specified.  
100  
100  
80  
80  
60  
60  
40  
40  
20  
20  
0
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ20  
œ40  
œ60  
œ80  
œ100  
0.0  
0.2  
0.3  
0.5  
0.6  
0.8  
0.9  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
C001  
C002  
VS= 1.8V  
TA = -40°C  
VS= 5V  
TA = -40°C  
Figure 7. Input Bias Current vs. Common Mode Voltage  
Figure 8. Input Bias Current vs. Common Mode Voltage  
1000  
800  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
œ200  
œ400  
œ600  
œ800  
œ1000  
œ200  
œ400  
œ600  
œ800  
œ1000  
0.0  
0.2  
0.3  
0.5  
0.6  
0.8  
0.9  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
C004  
C005  
VS= 1.8V  
TA = 25°C  
VS= 5V  
TA = 25°C  
Figure 9. Input Bias Current vs. Common Mode Voltage  
Figure 10. Input Bias Current vs. Common Mode Voltage  
500  
400  
500  
400  
300  
300  
200  
200  
100  
100  
0
0
œ100  
œ200  
œ300  
œ400  
œ500  
œ100  
œ200  
œ300  
œ400  
œ500  
0.0  
0.2  
0.3  
0.5  
0.6  
0.8  
0.9  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
C003  
C006  
VS= 1.8V  
TA = 125°C  
VS= 5V  
TA = 125°C  
Figure 11. Input Bias Current vs. Common Mode Voltage  
Figure 12. Input Bias Current vs. Common Mode Voltage  
Copyright © 2016, Texas Instruments Incorporated  
7
LPV801, LPV802  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, RL = 10MΩ to VS/2 ,CL = 20pF, VCM = VS / 2V unless otherwise specified.  
10  
10  
+125°C  
+25°C  
-40°C  
+125°C  
+25°C  
-40°C  
1
1
100m  
10m  
1m  
100m  
10m  
1m  
100  
100  
1ꢀ  
10ꢀ  
100ꢀ  
1m  
10m  
1ꢀ  
10ꢀ  
100ꢀ  
1m  
10m  
Output Sourcing Current (A)  
Output Sinking Current (A)  
C003  
C006  
VS= 5V  
RL= No Load  
VS= 1.8V  
RL= No Load  
Figure 13. Output Swing vs. Sourcing Current, 1.8V  
Figure 14. Output Swing vs. Sinking Current, 1.8V  
10  
10  
+125°C  
+25°C  
-40°C  
+125°C  
+25°C  
-40°C  
1
100m  
10m  
1m  
1
100m  
10m  
1m  
100  
100  
1ꢀ  
10ꢀ  
100ꢀ  
1m  
10m  
1ꢀ  
10ꢀ  
100ꢀ  
1m  
10m  
Output Sourcing Current (A)  
Output Sinking Current (A)  
C001  
C005  
VS= 3.3V  
RL= No Load  
VS= 3.3V  
RL= No Load  
Figure 15. Output Swing vs. Sourcing Current, 3.3V  
Figure 16. Output Swing vs. Sinking Current, 3.3V  
10  
10  
+125°C  
+25°C  
-40°C  
+125°C  
+25°C  
-40°C  
1
100m  
10m  
1m  
1
100m  
10m  
1m  
100  
100  
1ꢀ  
10ꢀ  
100ꢀ  
1m  
10m  
1ꢀ  
10ꢀ  
100ꢀ  
1m  
10m  
Output Sourcing Current (A)  
Output Sinking Current (A)  
C002  
C004  
VS= 5V  
RL= No Load  
VS= 5V  
RL= No Load  
Figure 17. Output Swing vs. Sourcing Current, 5V  
Figure 18. Output Swing vs. Sinking Current, 5V  
8
Copyright © 2016, Texas Instruments Incorporated  
LPV801, LPV802  
www.ti.com.cn  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
Typical Characteristics (continued)  
at TA = 25°C, RL = 10MΩ to VS/2 ,CL = 20pF, VCM = VS / 2V unless otherwise specified.  
500 us/div  
500 us/div  
C002  
C002  
TA = 25  
RL= 10MΩ  
Vout = 200mVpp  
AV = +1  
TA = 25  
RL= 10MΩ  
Vout = 200mVpp  
VS= ±0.9V  
CL= 20pF  
VS= ±2.5V  
CL= 20pF  
AV = +1  
Figure 19. Small Signal Pulse Response, 1.8V  
Figure 20. Small Signal Pulse Response, 5V  
500 us/div  
500 us/div  
C002  
C002  
TA = 25  
RL= 10MΩ  
Vout = 1Vpp  
AV = +1  
TA = 25  
RL= 10MΩ  
Vout = 2Vpp  
AV = +1  
VS= ±0.9V  
CL= 20pF  
VS= ±2.5V  
CL= 20pF  
Figure 21. Large Signal Pulse Response, 1.8V  
Figure 22. Large Signal Pulse Response, 5V  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
+PSRR  
-PSRR  
60  
40  
20  
0
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
Frequency (Hz)  
RL= 10MΩ  
CL= 20p  
Frequency (Hz)  
RL= 10MΩ  
CL= 20p  
C001  
C001  
TA = 25  
VS= 3.3V  
VCM = Vs/2  
ΔVS = 0.5Vpp  
TA = 25  
VS= 5V  
ΔVCM = 0.5Vpp  
AV = +1  
VCM = Vs/2  
AV = +1  
Figure 24. ±PSRR vs Frequency  
Figure 23. CMRR vs Frequency  
Copyright © 2016, Texas Instruments Incorporated  
9
LPV801, LPV802  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, RL = 10MΩ to VS/2 ,CL = 20pF, VCM = VS / 2V unless otherwise specified.  
160  
140  
120  
100  
80  
180  
158  
135  
113  
90  
160  
140  
120  
100  
80  
180  
125°C  
25°C  
-40°C  
125°C  
25°C  
-40°C  
158  
135  
113  
90  
GAIN  
GAIN  
60  
68  
60  
68  
PHASE  
PHASE  
40  
45  
40  
45  
20  
23  
20  
23  
0
0
0
0
œ20  
-23  
œ20  
-23  
1m  
10m 100m  
1
10  
100  
1k  
10k 100k  
1m  
10m 100m  
1
10  
100  
1k  
10k 100k  
Frequency (Hz)  
Frequency (Hz)  
C001  
C002  
TA = -40, 25, 125°C  
VS= 5V  
RL= 10MΩ  
CL= 20pF  
VOUT = 200mVPP  
VCM = Vs/2  
TA = -40, 25, 125°C  
VS= 3.3V  
RL= 10MΩ  
CL= 20pF  
VOUT = 200mVPP  
VCM = Vs/2  
Figure 25. Open Loop Gain and Phase, 5V, 10 MΩ Load  
Figure 26. Open Loop Gain and Phase, 3.3V, 10 MΩ Load  
160  
180  
158  
135  
113  
90  
160  
180  
158  
135  
113  
90  
125°C  
25°C  
-40°C  
125°C  
25°C  
-40°C  
140  
120  
100  
80  
140  
120  
100  
80  
GAIN  
GAIN  
60  
68  
60  
68  
PHASE  
PHASE  
40  
45  
40  
45  
20  
23  
20  
23  
0
0
0
0
œ20  
-23  
œ20  
-23  
1m  
10m 100m  
1
10  
100  
1k  
10k 100k  
1m  
10m 100m  
1
10  
100  
1k  
10k 100k  
Frequency (Hz)  
Frequency (Hz)  
C003  
C002  
TA = -40, 25, 125°C  
VS= 5V  
RL= 1MΩ  
CL= 20pF  
VOUT = 200mVPP  
VCM = Vs/2  
TA = -40, 25, 125°C  
VS= 3.3V  
RL= 1MΩ  
CL= 20pF  
VOUT = 200mVPP  
VCM = Vs/2  
Figure 27. Open Loop Gain and Phase, 5V, 1 MΩ Load  
Figure 28. Open Loop Gain and Phase, 3.3V, 1 MΩ Load  
160  
180  
158  
135  
113  
90  
160  
180  
158  
135  
113  
90  
125°C  
25°C  
-40°C  
125°C  
25°C  
-40°C  
140  
120  
100  
80  
140  
120  
100  
80  
GAIN  
GAIN  
60  
68  
60  
68  
PHASE  
PHASE  
40  
45  
40  
45  
20  
23  
20  
23  
0
0
0
0
œ20  
-23  
œ20  
-23  
1m  
10m 100m  
1
10  
100  
1k  
10k 100k  
1m  
10m 100m  
1
10  
100  
1k  
10k 100k  
Frequency (Hz)  
Frequency (Hz)  
C001  
C002  
TA = -40, 25, 125°C  
VS= 5V  
RL= 100kΩ  
CL= 20pF  
VOUT = 200mVPP  
VCM = Vs/2  
TA = -40, 25, 125°C  
VS= 3.3V  
RL= 100kΩ  
CL= 20pF  
VOUT = 200mVPP  
VCM = Vs/2  
Figure 29. Open Loop Gain and Phase, 5V, 100kΩ Load  
Figure 30. Open Loop Gain and Phase, 3.3V, 100kΩ Load  
10  
Copyright © 2016, Texas Instruments Incorporated  
LPV801, LPV802  
www.ti.com.cn  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
Typical Characteristics (continued)  
at TA = 25°C, RL = 10MΩ to VS/2 ,CL = 20pF, VCM = VS / 2V unless otherwise specified.  
1M  
100k  
10k  
1k  
160  
140  
120  
100  
80  
180  
158  
135  
113  
90  
125°C  
25°C  
-40°C  
GAIN  
60  
68  
PHASE  
40  
45  
20  
23  
0
0
œ20  
-23  
100  
1m  
10m 100m  
1
10  
100  
1k  
10k 100k  
100m  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C003  
Frequency (Hz)  
VS= 5 V  
C001  
TA = -40, 25, 125°C  
VS= 1.8V  
RL= 10MΩ  
CL= 20pF  
VOUT = 200mVPP  
VCM = Vs/2  
TA = 25°C  
RL= 10MΩ  
Figure 32. Open Loop Output Impedance  
Figure 31. Open Loop Gain and Phase, 1.8V, 10 MΩ Load  
160  
180  
158  
135  
113  
90  
10000  
1000  
100  
125°C  
25°C  
-40°C  
140  
120  
100  
80  
GAIN  
60  
68  
PHASE  
40  
45  
20  
23  
0
0
œ20  
-23  
1m  
10m 100m  
1
10  
100  
1k  
10k 100k  
10  
100m  
1
10  
100  
1k  
10k  
Frequency (Hz)  
C003  
Frequency (Hz)  
RL= 1MΩ  
C001  
TA = -40, 25, 125°C  
VS= 1.8V  
RL= 1MΩ  
CL= 20pF  
VOUT = 200mVPP  
VCM = Vs/2  
TA = 25  
VS= 5V  
VCM = Vs/2  
CL= 20pF  
AV = +1  
Figure 33. Open Loop Gain and Phase, 1.8V, 1 MΩ Load  
Figure 34. Input Voltage Noise vs Frequency  
120  
100  
80  
60  
40  
20  
0
160  
180  
158  
135  
113  
90  
LPV802, -20dBm  
LPV802, -10dBm  
LPV802, 0dBm  
125°C  
25°C  
-40°C  
140  
120  
100  
80  
GAIN  
60  
68  
PHASE  
40  
45  
20  
23  
0
0
œ20  
-23  
10k 100k  
1m  
10m 100m  
1
10  
100  
1k  
10  
100  
1000  
Frequency (Hz)  
C003  
Frequency (MHz)  
RL= 1MΩ  
C001  
TA = -40, 25, 125°C  
VS= 1.8V  
RL= 100kΩ  
CL= 20pF  
VOUT = 200mVPP  
VCM = Vs/2  
TA = 25  
VCM = Vs/2  
VS= 3.3V  
CL= 20pF  
AV = +1  
Figure 35. Open Loop Gain and Phase, 1.8V, 100kΩ Load  
Figure 36. EMIRR Performance  
Copyright © 2016, Texas Instruments Incorporated  
11  
LPV801, LPV802  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LPV801 (single) and LPV802 (dual) series nanoPower CMOS operational amplifiers are designed for long-  
life battery-powered and energy harvested applications. They operate on a single supply with operation as low as  
1.6V. The output is rail-to-rail and swings to within 3.5mV of the supplies with a 100kΩ load. The common-mode  
range extends to the negative supply making it ideal for single-supply applications. EMI protection has been  
employed internally to reduce the effects of EMI.  
Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristics  
curves.  
7.2 Functional Block Diagram  
7.3 Feature Description  
The amplifier's differential inputs consist of a non-inverting input (+IN) and an inverting input (–IN). The amplifer  
amplifies only the difference in voltage between the two inputs, which is called the differential input voltage. The  
output voltage of the op-amp VOUT is given by Equation 1:  
VOUT = AOL (IN+ – IN)  
where  
AOL is the open-loop gain of the amplifier, typically around 120 dB (1,000,000x, or 1,000,000 Volts per  
microvolt).  
(1)  
7.4 Device Functional Modes  
7.4.1 Negative-Rail Sensing Input  
The input common-mode voltage range of the LPV80x extends from (V-) to (V+) – 0.9 V. In this range, low offset  
can be expected with a minimum of 80dB CMRR. The LPV80x is protected from output "inversions" or  
"reversals".  
7.4.2 Rail to Rail Output Stage  
The LPV80x output voltage swings 3.5 mV from rails at 1.8 V supply, which provides the maximum possible  
dynamic range at the output. This is particularly important when operating on low supply voltages.  
The LPV80x Maximum Output Voltage Swing graph defines the maximum swing possible under a particular  
output load.  
7.4.3 Design Optimization for Nanopower Operation  
When designing for ultralow power, choose system feedback components carefully. To minimize quiecent current  
consumption, select large-value feedback resistors. Any large resistors will react with stray capacitance in the  
circuit and the input capacitance of the operational amplifier. These parasitic RC combinations can affect the  
stability of the overall system. A feedback capacitor may be required to assure stability and limit overshoot or  
gain peaking.  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
LPV801, LPV802  
www.ti.com.cn  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
Device Functional Modes (continued)  
When possible, use AC coupling and AC feedback to reduce static current draw through the feedback elements.  
Use film or ceramic capacitors since large electolytics may have large static leakage currents in the nanoamps.  
7.4.4 Driving Capacitive Load  
The LPV80x is internally compensated for stable unity gain operation, with a 8 kHz typical gain bandwidth.  
However, the unity gain follower is the most sensitive configuration to capacitive load. The combination of a  
capacitive load placed directly on the output of an amplifier along with the amplifier’s output impedance creates a  
phase lag, which reduces the phase margin of the amplifier. If the phase margin is significantly reduced, the  
response will be under damped which causes peaking in the transfer and, when there is too much peaking, the  
op amp might start oscillating.  
In order to drive heavy (>50pF) capacitive loads, an isolation resistor, RISO, should be used, as shown in  
Figure 37. By using this isolation resistor, the capacitive load is isolated from the amplifier’s output. The larger  
the value of RISO, the more stable the amplifier will be. If the value of RISO is sufficiently large, the feedback loop  
will be stable, independent of the value of CL. However, larger values of RISO result in reduced output swing and  
reduced output current drive. The recommended value for RISO is 30-50kΩ.  
R
ISO  
-
V
OUT  
V
IN  
+
C
L
Figure 37. Resistive Isolation Of Capacitive Load  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
LPV801, LPV802  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LPV80x is a ultra-low power operational amplifier that provides 8 kHz bandwidth with only 320nA typical  
quiescent current, and near precision drift specifications. These rail-to-rail output amplifiers are specifically  
designed for battery-powered applications. The input common-mode voltage range extends to the negative  
supply rail and the output swings to within millivolts of the rails, maintaining a wide dynamic range.  
8.2 Typical Application: Three Terminal CO Gas Sensor Amplifier  
R1  
10 k  
C1  
0.1µF  
Potentiostat (Bias Loop)  
CE  
R2  
10 kΩ  
2.5V  
RE  
CO Sensor  
U1  
+
VREF  
WE  
Transimpedance Amplifier (I to V conversion)  
RF  
ISENS  
Riso  
49.9 kꢀ  
RL  
U2  
VTIA  
+
VREF  
C2  
1µF  
Figure 38. Three Terminal Gas Sensor Amplifer Schematic  
8.2.1 Design Requirements  
Figure 38 shows a simple micropower potentiostat circuit for use with three terminal unbiased CO sensors,  
though it is applicable to many other type of three terminal gas sensors or electrochemical cells.  
The basic sensor has three electrodes; The Sense or Working Electrode (“WE”), Counter Electrode (“CE”) and  
Reference Electrode (“RE”). A current flows between the CE and WE proportional to the detected concentration.  
The RE monitors the potential of the internal reference point. For an unbiased sensor, the WE and RE electrodes  
must be maintained at the same potential by adjusting the bias on CE. Through the Potentiostat circuit formed by  
U1, the servo feedback action will maintain the RE pin at a potential set by VREF  
.
R1 is to maintain stability due to the large capacitence of the sensor. C1 and R2 form the Potentiostat integrator  
and set the feedback time constant.  
U2 forms a transimpedance amplifer ("TIA") to convert the resulting sensor current into a proportional voltage.  
The transimpedance gain, and resulting sensitivity, is set by RF according to Equation 2.  
VTIA = (-I * RF) + VREF  
(2)  
RL is a load resistor of which the value is normally specified by the sensor manufacturer (typically 10 ohms). The  
potential at WE is set by the applied VREF. Riso provides capacitive isolation and, combined with C2, form the  
output filter and ADC reservoir capacitor to drive the ADC.  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
 
LPV801, LPV802  
www.ti.com.cn  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
Typical Application: Three Terminal CO Gas Sensor Amplifier (continued)  
8.2.2 Detailed Design Procedure  
For this example, we will be using a CO sensor with a sensitivity of 69nA/ppm. The supply votlage and maximum  
ADC input voltage is 2.5V, and the maximum concentration is 300ppm.  
First the VREF voltage must be determined. This voltage is a compromise between maximum headroom and  
resolution, as well as allowance for "footroom" for the minimum swing on the CE terminal, since the CE terminal  
generally goes negative in relation to the RE potential as the concentration (sensor current) increases. Bench  
measurements found the difference between CE and RE to be 180mV at 300ppm for this particular sensor.  
To allow for negative CE swing "footroom" and voltage drop across the 10k resistor, 300mV was chosen for  
VREF  
.
Therefore +300mV will be used as the minimum VZERO to add some headroom.  
VZERO = VREF = +300mV  
where  
VZERO is the zero concentration voltage  
VREF is the reference voltage (300mV)  
(3)  
Next we calculate the maximum sensor current at highest expected concentration:  
ISENSMAX = IPERPPM * ppmMAX = 69nA * 300ppm = 20.7uA  
where  
ISENSMAX is the maximum expected sensor current  
IPERPPM is the manufacturer specified sensor current in Amps per ppm  
ppmMAX is the maximum required ppm reading  
(4)  
(5)  
Now find the available output swing range above the reference voltage available for the measurement:  
VSWING = VOUTMAX – VZERO = 2.5V – 0.3V = 2.2V  
where  
VSWING is the expected change in output voltage  
VOUTMAX is the maximum amplifer output swing (usually near V+)  
Now we calculate the transimpedance resistor (RF) value using the maximum swing and the maximum sensor  
current:  
RF = VSWING / ISENSMAX = 2.2V / 20.7µA = 106.28 k(we will use 110 kfor a common value)  
(6)  
Copyright © 2016, Texas Instruments Incorporated  
15  
LPV801, LPV802  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Typical Application: Three Terminal CO Gas Sensor Amplifier (continued)  
8.2.3 Application Curve  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
Vc  
Vw  
Vtia  
Vdif  
0
15  
30  
45  
60  
75  
90  
105  
120  
135  
150  
Time (sec)  
C007  
Figure 39. Monitored Voltages when exposed to 200ppm CO  
Figure 39 shows the resulting circuit voltages when the sensor was exposed to 200ppm step of carbon monoxide  
gas. VC is the monitored CE pin voltage and clearly shows the expected CE voltage dropping below the WE  
voltage, VW, as the concentration increases.  
VTIA is the output of the transimpedance amplifer U2. VDIFF is the calculated difference between VREF and VTIA  
,
which will be used for the ppm calculation.  
20  
18  
16  
14  
12  
10  
8
300  
250  
200  
150  
100  
50  
6
4
2
0
0
0
15  
30  
45  
60  
75  
90 105 120 135 150  
0
15  
30  
45  
60  
75  
90 105 120 135 150  
Time (sec)  
Time (sec)  
C002  
C003  
Figure 40. Calculated Sensor Current  
Figure 41. Calculated ppm  
Figure 40 shows the calculated sensor current using the formula in Equation 7 :  
ISENSOR = VDIFF / RF = 1.52V / 110 kΩ = 13.8uA  
(7)  
(8)  
Equation 8 shows the resulting conversion of the sensor current into ppm.  
ppm = ISENSOR / IPERPPM = 13.8µA / 69nA = 200  
Total supply current for the amplifier section is less than 700 nA, minus sensor current. Note that the sensor  
current is sourced from the amplifier output, which in turn comes from the amplifier supply voltage. Therefore,  
any continuous sensor current must also be included in supply current budget calculations.  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
 
LPV801, LPV802  
www.ti.com.cn  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
8.3 Do's and Don'ts  
Do properly bypass the power supplies.  
Do add series resistance to the output when driving capacitive loads, particularly cables, Muxes and ADC inputs.  
Do add series current limiting resistors and external schottky clamp diodes if input voltage is expected to exceed  
the supplies. Limit the current to 1mA or less (1KΩ per volt).  
9 Power Supply Recommendations  
The LPV80x is specified for operation from 1.6 V to 5.5 V (±0.8 V to ±2.75 V) over a –40°C to 125°C temperature  
range. Parameters that can exhibit significant variance with regard to operating voltage or temperature are  
presented in the Typical Characteristics.  
CAUTION  
Supply voltages larger than 6 V can permanently damage the device.  
For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines it is  
suggested that 100 nF capacitors be placed as close as possible to the operational amplifier power supply pins.  
For single supply, place a capacitor between V+ and Vsupply leads. For dual supplies, place one capacitor  
between V+ and ground, and one capacitor between Vand ground.  
Low bandwidth nanopower devices do not have good high frequency (> 1 kHz) AC PSRR rejection against high-  
frequency switching supplies and other 1 kHz and above noise sources, so extra supply filtering is recommended  
if kilohertz or above noise is expected on the power supply lines.  
10 Layout  
10.1 Layout Guidelines  
The V+ pin should be bypassed to ground with a low ESR capacitor.  
The optimum placement is closest to the V+ and ground pins.  
Care should be taken to minimize the loop area formed by the bypass capacitor connection between V+ and  
ground.  
The ground pin should be connected to the PCB ground plane at the pin of the device.  
The feedback components should be placed as close to the device as possible to minimize strays.  
10.2 Layout Example  
Figure 42. SOT-23 Layout Example (Top View)  
版权 © 2016, Texas Instruments Incorporated  
17  
LPV801, LPV802  
ZHCSFD7A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
TINA-TI 基于 SPICE 的模拟仿真程序,http://www.ti.com.cn/tool/cn/tina-ti  
DIP 适配器评估模块,http://www.ti.com.cn/tool/cn/dip-adapter-evm  
TI 通用运行放大器评估模块,http://www.ti.com.cn/tool/cn/opampevm  
TI FilterPro 滤波器设计软件,http://www.ti.com.cn/tool/cn/filterpro  
11.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 相关链接  
以下表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
LPV801  
LPV802  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
18  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LPV801DBVR  
LPV801DBVT  
LPV802DGKR  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
VSSOP  
DBV  
DBV  
DGK  
5
5
8
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
15VM  
15VM  
Samples  
Samples  
Samples  
SN  
NIPDAUAG | SN  
LPV  
802  
LPV802DGKT  
ACTIVE  
VSSOP  
DGK  
8
NIPDAUAG | SN  
Level-1-260C-UNLIM  
-40 to 125  
LPV  
802  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Sep-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Sep-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LPV801DBVR  
LPV801DBVT  
LPV802DGKR  
LPV802DGKR  
LPV802DGKT  
LPV802DGKT  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DBV  
DBV  
DGK  
DGK  
DGK  
DGK  
5
5
8
8
8
8
3000  
250  
178.0  
178.0  
330.0  
330.0  
330.0  
178.0  
8.4  
8.4  
3.2  
3.2  
5.3  
5.3  
5.3  
5.3  
3.2  
3.2  
3.4  
3.4  
3.4  
3.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
2500  
2500  
250  
12.4  
12.4  
12.4  
13.4  
12.0  
12.0  
12.0  
12.0  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Sep-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LPV801DBVR  
LPV801DBVT  
LPV802DGKR  
LPV802DGKR  
LPV802DGKT  
LPV802DGKT  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DBV  
DBV  
DGK  
DGK  
DGK  
DGK  
5
5
8
8
8
8
3000  
250  
208.0  
208.0  
364.0  
366.0  
366.0  
202.0  
191.0  
191.0  
364.0  
364.0  
364.0  
201.0  
35.0  
35.0  
27.0  
50.0  
50.0  
28.0  
2500  
2500  
250  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY