M430F4152 [TI]

; - 12号的铝制车身绘( RAL 7032 )
M430F4152
型号: M430F4152
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:


- 12号的铝制车身绘( RAL 7032 )

文件: 总81页 (文件大小:1552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
D
D
Low Supply-Voltage Range, 1.8 V to 3.6 V  
D
Integrated LCD Driver With Contrast  
Control for Up to 144 Segments  
Basic Timer With Real Time Clock Feature  
Brownout detector  
On-Chip Comparator for Analog Signal  
Compare Function or Slope A/D  
10-Bit 200-ksps Analog-to-Digital (A/D)  
Converter With Internal Reference,  
Sample-and-Hold, Autoscan, and Data  
Transfer Controller  
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by Security  
Fuse  
Bootstrap Loader  
On-Chip Emulation Module  
Family Members Include:  
MSP430F4152: 16KB+256B Flash Memory  
512B RAM  
MSP430F4132: 8KB+256B Flash Memory  
512B RAM  
Available in 64-Pin QFP Package and  
48-Pin QFN Package (See Available  
Options)  
For Complete Module Descriptions, See  
The MSP430x4xx Family User’s Guide,  
Literature Number SLAU056  
Ultralow Power Consumption  
Active Mode: 220 µA at 1 MHz, 2.2 V  
Standby Mode: 0.9 µA  
Off Mode (RAM Retention): 0.1 µA  
Five Power-Saving Modes  
Wake-Up From Standby Mode in Less  
Than 6 µs  
-- Internal Very Low Power,  
Low-Frequency Oscillator  
16-Bit RISC Architecture,  
125-ns Instruction Cycle Time  
16-Bit Timer_A With Three  
Capture/Compare Registers  
16-Bit Timer_A With Five Capture/Compare  
Registers  
Two Universal Serial Communication  
Interfaces (USCIs)  
USCI_A0  
-- Enhanced UART Supporting  
Auto-Baudrate Detection  
-- IrDA Encoder and Decoder  
-- Synchronous SPI  
USCI_B0  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
-- I 2 C  
-- Synchronous SPI  
Supply Voltage Supervisor/Monitor With  
Programmable Level Detection  
D
description  
The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generator that contribute to maximum code  
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less  
than 6 µs.  
The MSP430F41x2 is a microcontroller configuration with two 16-bit timers, a basic timer with a real--time clock,  
a 10-bit A/D converter, a versatile analog comparator, two universal serial communication interfaces, up to 48  
I/O pins, and a liquid crystal display driver.  
Typical applications for this device include analog and digital sensor systems, remote controls, thermostats,  
digital timers, hand-held meters, etc.  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range  
from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage  
because very small parametric changes could cause the device not to meet its published specifications. These devices have limited  
built-in ESD protection.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright 2010, Texas Instruments Incorporated  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
PLASTIC 64-PIN QFP (PM)  
PLASTIC 48-PIN QFN (RGZ)  
MSP430F4152IPM  
MSP430F4132IPM  
MSP430F4152IRGZ  
MSP430F4132IRGZ  
-- 4 0 °C to 85°C  
For the most current package and ordering information, see the Package Option  
Addendum at the end of this document, or see the TI web site at www.ti.com.  
Package drawings, thermal data, and symbolization are available at  
www.ti.com/packaging.  
DEVELOPMENT TOOL SUPPORT  
All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging  
and programming through easy to use development tools. Recommended hardware options include the  
following:  
D
Debugging and Programming Interface  
-- MSP-FET430UIF (USB)  
-- MSP-FET430PIF (Parallel Port)  
Debugging and Programming Interface with Target Board  
-- MSP-FET430U64A (PM package)  
Production Programmer  
D
D
-- MSP-GANG430  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
pin designation, MSP430F41x2IPM (QFP)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P6.1/UCB0SOMI/UCB0SCL  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P1.5/TA0CLK/CAOUT/S26  
P1.6/ACLK/CA0  
P1.7/TA0CLK/CAOUT/CA1  
P7.6/TA0.2/S25  
P5.0/TA1.1/S24  
R33/LCDCAP  
P6.2/UCB0SIMO/UCB0SDA  
2
P6.3/UCB0STE/UCA0CLK/A3/CA5/VeREF-/VREF-  
3
P6.4/UCB0CLK/UCA0STE/A4/CA6/VeREF+/VREF+  
4
P6.5/UCA0RXD/UCA0SOMI/A5  
5
P6.6/UCA0TXD/UCA0SIMO/A6  
6
DVCC  
XIN  
7
P5.1/R23  
64-pin  
8
P5.2/R13/LCDREF  
P5.3/R03  
PM PACKAGE  
(TOP VIEW)  
XOUT  
9
DVSS  
10  
11  
12  
13  
14  
15  
16  
P5.4/COM3  
P6.7/A7/CA7/SVSIN  
P4.7/ADC10CLK/S0  
P4.6/S1  
P5.5/COM2  
P5.6/COM1  
P5.7/COM0  
P4.5/S2  
P3.0/TA1.2/S23  
P3.1/TA1.3/S22  
P3.2/TA1.4/S21  
P4.4/S3  
P4.3/S4  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
pin designation, MSP430F41x2IRGZ (QFN)  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
3
4
5
6
7
8
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P6.1  
P6.2  
DVCC  
XIN  
XOUT  
P1.1/TA0.0/MCLK/S30  
P1.5/TA0CLK/CAOUT/S26  
P1.6/ACLK/CA0  
P1.7/TA0CLK/CAOUT/CA1  
R33/LCDCAP  
48-pin  
DVSS  
P5.1/R23  
RGZ PACKAGE  
(TOP VIEW)  
P6.7/A7/CA7/SVSIN  
P4.7/ADC10CLK/S0  
P4.6/S1  
P5.2/R13/LCDREF  
P5.3/R03  
P5.4/COM3  
9
10  
11  
12  
P4.5/S2  
P5.5/COM2  
P4.4/S3  
P5.6/COM1  
P4.3/S4  
P5.7/COM0  
13 14 15 16 17 18 19 20 21 22 23 24  
“Not available” pins in the 48-pin package should be initialized to output direction.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
functional block diagram  
XIN  
XOUT  
DVCC  
DVSS  
RAM  
AVCC  
AVSS  
P1.x/P2.x  
2x8  
P3.x/P4.x  
2x8  
P5.x/P6.x  
2x8  
P7.x  
1x7  
ACLK  
Oscillators  
FLL+  
VLO  
Ports  
P1/P2  
ADC10  
USCI A0  
UART/  
LIN,  
Port  
P7  
Ports  
P3/P4  
Ports  
P5/P6  
SMCLK  
Flash  
10--bit  
8 Channels  
Autoscan  
DTC  
IrDA, SPI  
2x8 I/O  
Interrupt  
capability  
16kB  
8kB  
512B  
512B  
1x7 I/O  
2x8 I/O  
2x8 I/O  
MCLK  
USCI B0  
SPI, I2C  
CPU  
64kB  
MAB  
incl. 16  
Registers  
MDB  
EEM  
Brownout  
Protection  
LCD_A  
144  
Segments  
1,2,3,4  
Mux  
Basic  
Timer &  
Real--  
Time  
Watchdog  
WDT+  
Timer_A3  
Timer _A5  
Comparator  
_A+  
JTAG  
Interface  
3 CC  
Registers  
5 CC  
Registers  
SVS,  
SVM  
15--Bit  
Clock  
S p y --B i --  
Wire  
RST/NMI  
NOTE: The USCI A0 and USCI B0 cannot be used in the 48-pin package options (RGZ).  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
64  
48  
PIN  
PIN  
General-purpose digital I/O pin  
I/O Timer0_A3, capture: CCI0A input, compare: Out0 output  
LCD segment output  
P1.0/TA0.0/S31  
53  
52  
51  
50  
49  
48  
47  
46  
37  
36  
--  
General-purpose digital I/O pin  
Timer0_A3, capture: CCI0B input  
MCLK signal output  
LCD segment output  
P1.1/TA0.0/  
MCLK/S30  
I/O  
General-purpose digital I/O pin  
I/O Timer0_A3, capture: CCI1A input, compare: Out1 output  
LCD segment output  
P1.2/TA0.1/S29  
General-purpose digital I/O pin  
Timer1_A5, capture: CCI0B input  
SVS comparator output  
LCD segment output  
P1.3/TA1.0/  
SVSOUT/S28  
--  
I/O  
General-purpose digital I/O pin/  
I/O Timer1_A5, capture: CCI0A input, compare: Out0 output  
LCD segment output  
P1.4/TA1.0/S27  
--  
General-purpose digital I/O pin  
Timer0_A3, clock signal TACLK input  
Comparator_A output  
LCD segment output  
P1.5/TA0CLK/  
CAOUT/S26  
35  
34  
33  
I/O  
General-purpose digital I/O pin  
I/O Comparator_A input 0  
ACLK signal output  
P1.6/ACLK/CA0  
General-purpose digital I/O pin  
Timer0_A3, clock signal TACLK input  
Comparator_A output  
Comparator_A input 1  
P1.7/TA0CLK  
CAOUT/CA1  
I/O  
General-purpose digital I/O pin  
I/O Timer1_A5, compare: Out1 Output  
LCD segment output  
P2.0/TA1.1/S15  
P2.1/TA1.2/S14  
P2.2/TA1.3/S13  
P2.3/TA1.4/S12  
27  
26  
25  
24  
23  
22  
21  
20  
General-purpose digital I/O pin  
I/O Timer1_A5, compare: Out2 Output  
LCD segment output  
General-purpose digital I/O pin  
I/O Timer1_A5, compare: Out3 Output  
LCD segment output  
General-purpose digital I/O pin  
I/O Timer1_A5, compare: Out4 output  
LCD segment output  
General-purpose digital I/O pin  
P2.4/S11  
P2.5/S10  
P2.6/S9  
P2.7/S8  
23  
22  
21  
20  
19  
18  
17  
16  
I/O  
LCD segment output  
General-purpose digital I/O pin  
LCD segment output  
I/O  
General-purpose digital I/O pin  
LCD segment output  
I/O  
General-purpose digital I/O pin  
LCD segment output  
I/O  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
Terminal Functions (continued)  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
64  
PIN  
48  
PIN  
General-purpose digital I/O pin  
I/O Timer1_A5, capture: CCI2A input, compare: Out2 output  
LCD segment output  
P3.0/TA1.2/S23  
P3.1/TA1.3/S22  
P3.2/TA1.4/S21  
35  
--  
--  
--  
General-purpose digital I/O pin  
I/O Timer1_A5, capture: CCI3A input, compare: Out3 output  
LCD segment output  
34  
33  
General-purpose digital I/O pin  
I/O Timer1_A5, capture: CCI4A input, compare: Out4 output  
LCD segment output  
General-purpose digital I/O pin  
P3.3/TA0.0/  
Timer0_A3, compare: Out0 output  
32  
31  
--  
I/O  
TA1CLK/S20  
Timer1_A5, clock signal TACLK input  
LCD segment output  
General-purpose digital I/O pin  
I/O Comparator_A output  
LCD segment output  
P3.4/CAOUT/S19  
24  
General-purpose digital I/O pin  
P3.5/S18  
P3.6/S17  
P3.7/S16  
P4.0/S7  
P4.1/S6  
P4.2/S5  
P4.3/S4  
P4.4/S3  
P4.5/S2  
P4.6/S1  
30  
29  
28  
19  
18  
17  
16  
15  
14  
13  
--  
I/O  
LCD segment output  
General-purpose digital I/O pin  
LCD segment output  
--  
I/O  
General-purpose digital I/O pin  
LCD segment output  
--  
I/O  
General-purpose digital I/O pin  
LCD segment output  
15  
14  
13  
12  
11  
10  
9
I/O  
General-purpose digital I/O pin  
LCD segment output  
I/O  
General-purpose digital I/O pin  
LCD segment output  
I/O  
General-purpose digital I/O pin  
LCD segment output  
I/O  
General-purpose digital I/O pin  
LCD segment output  
I/O  
General-purpose digital I/O pin  
LCD segment output  
I/O  
General-purpose digital I/O pin  
LCD segment output  
I/O  
General-purpose digital I/O pin  
I/O ADC10, conversion clock  
LCD segment output  
P4.7/ADC10CLK/  
S0  
12  
44  
8
--  
General-purpose digital I/O pin  
I/O Timer1_A5, capture: CCI1A input, compare: Out1 output  
LCD segment output  
P5.0/TA1.1/S24  
Capacitor connection for LCD charge pump  
I/O  
LCDCAP/R33  
P5.1/R23  
43  
42  
32  
31  
input port of the most positive analog LCD level (V4)  
General-purpose digital I/O pin  
I/O  
input port of the second most positive analog LCD level (V3)  
General-purpose digital I/O pin  
P5.2/LCDREF/  
R13  
41  
30  
I/O External LCD reference voltage input  
input port of the third most positive analog LCD level (V3 or V2)  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
Terminal Functions (continued)  
TERMINAL  
NAME  
NO.  
I/O  
DESCRIPTION  
64  
48  
PIN  
PIN  
General-purpose digital I/O pin  
P5.3/R03  
40  
29  
28  
27  
26  
25  
I/O  
I/O  
I/O  
I/O  
I/O  
input port of the fourth most positive analog LCD level (V1)  
General-purpose digital I/O pin  
common output, COM0--3 are used for LCD backplanes  
P5.4/COM3  
P5.5/COM2  
P5.6/COM1  
P5.7/COM0  
39  
38  
37  
36  
General-purpose digital I/O pin  
common output, COM0--3 are used for LCD backplanes  
General-purpose digital I/O pin  
common output, COM0--3 are used for LCD backplanes  
General-purpose digital I/O pin  
common output, COM0--3 are used for LCD backplanes  
General-purpose digital I/O pin  
P6.0/TA1.2/A2 /  
CA4  
Timer1_A5, compare: Out2 output  
63  
47  
I/O  
ADC10 analog input A2  
Comparator_A input 4  
P6.1/  
General-purpose digital I/O pin  
2
UCB0SOMI /  
1
2
1
2
I/O  
I/O  
2
USCI B0 slave out/master in in SPI mode, SCL I C clock in I C mode  
UCB0SCL  
P6.2/  
General-purpose digital I/O pin  
UCB0SIMO /  
2
2
USCI B0 slave in/master out in SPI mode, SDA I C data in I C mode  
UCB0SDA  
General-purpose digital I/O pin  
P6.3/UCB0STE/  
UCA0CLK/A3/  
USCI B0 slave transmit enable/USCI A0 clock input/output  
ADC10 analog input A3 / negative reference  
Comparator_A input 5  
3
4
--  
--  
I/O  
I/O  
CA5/V  
/V  
eref-- ref--  
General-purpose digital I/O pin  
P6.4/UCB0CLK/  
UCA0STE/A4/  
USCI B0 clock input/output, USCI A0 slave transmit enable  
ADC10 analog input A4/ positive reference  
Comparator_A input 6  
CA6/V  
/V  
eref+ ref+  
General-purpose digital I/O pin  
I/O USCI A0 receive data input in UART mode, slave data out/master in in SPI mode  
ADC10 analog input A5  
P6.5/UCA0RXD/  
UCA0SOMI/A5  
5
6
--  
--  
General-purpose digital I/O pin  
I/O USCI A0 transmit data output in UART mode, slave data in/master out SPI mode  
ADC10 analog input A6  
P6.6/UCA0TXD/  
UCA0SIMO/A6  
General-purpose digital I/O pin  
P6.7/A7/CA7/  
SVSIN  
ADC10 analog input A7  
11  
54  
7
I/O  
Comparator_A input 7  
SVS input  
P7.0/TDO/TDI/  
S32  
38  
I/O General-purpose digital I/O pin  
JTAG test data output terminal or test data input in programming an test  
LCD segment output  
P7.1/TDI/TCLK/  
S33  
55  
56  
39  
40  
I/O General-purpose digital I/O pin  
JTAG test data input or test clock input in programming an test  
LCD segment output  
P7.2/TMS/S34  
I/O General-purpose digital I/O pin  
JTAG test mode select, input terminal for device programming and test  
LCD segment output  
64-pin package devices only  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
Terminal Functions (continued)  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
64  
PIN  
48  
PIN  
P7.3/TCK/S35  
57  
41  
I/O General-purpose digital I/O pin  
Test clock input for device programming and test  
LCD segment output  
General-purpose digital I/O pin  
Timer1_A5, capture: CCI4B input, compare: Out4 output  
ADC10 analog input A0  
P7.4/TA1.4/  
A0/CA2  
60  
44  
I/O  
I/O  
Comparator_A input 2  
General-purpose digital I/O pin  
Timer1_A5, capture: CCI3B input, compare: Out3 output  
ADC10 analog input A1  
P7.5/TA1.3/  
A1/CA3  
61  
45  
45  
--  
Comparator_A input 3  
General-purpose digital I/O pin  
I/O Timer0_A3, capture: CCI2A input, compare: Out2 output  
LCD segment output  
P7.6/TA0.2/S25  
AV  
AV  
64  
62  
7
48  
46  
3
Analog supply voltage, positive terminal  
CC  
SS  
Analog supply voltage, negative terminal  
DV  
DV  
Digital supply voltage, positive terminal. Supplies all digital parts.  
Digital supply voltage, negative terminal. Supplies all digital parts.  
CC  
SS  
10  
9
6
XOUT  
XIN  
5
O
I
Output port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.  
8
4
RST/NMI/  
SBWTDIO  
58  
42  
I
Reset or nonmaskable interrupt input  
Spy-Bi-Wire test data input/output during programming and test  
TEST/SBWTCLK  
Thermal Pad  
59  
43  
I
Selects test mode for JTAG pins on Port7. The device protection fuse is connected to TEST.  
NA  
NA  
NA QFN package pad (RGZ package only). Connection to DV is recommended.  
SS  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator, respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; Table 2 shows the address  
modes.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g., ADD R4,R5  
R4 + R5 ------> R5  
e.g., CALL  
e.g., JNE  
R8  
PC ---->(TOS), R8----> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
F
F
F
F
F
F
F
F
F
R10 —> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV & MEM, & TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5) —> M(6+R6)  
M(EDE) —> M(TONI)  
M(MEM) —> M(TCDAT)  
M(R10) —> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) —> R11  
R10 + 2 —> R10  
F
MOV @Rn+,Rm  
MOV #X,TONI  
Immediate  
F
#45 —> M(TONI)  
NOTE: S = source, D = destination  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request, and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
Active mode (AM)  
-- All clocks are active  
D
Low-power mode 0 (LPM0)  
-- CPU is disabled  
-- ACLK and SMCLK remain active  
-- FLL+ loop control remains active  
Low-power mode 1 (LPM1)  
D
D
-- CPU is disabled  
-- ACLK and SMCLK remain active  
-- FLL+ loop control is disabled  
Low-power mode 2 (LPM2)  
-- CPU is disabled  
-- MCLK, FLL+ loop control, and DCOCLK are disabled  
-- DCO’s dc generator remains enabled  
-- ACLK remains active  
D
D
Low-power mode 3 (LPM3)  
-- CPU is disabled  
-- MCLK, FLL+ loop control, and DCOCLK are disabled  
-- DCO’s dc generator is disabled  
-- ACLK remains active  
Low-power mode 4 (LPM4)  
-- CPU is disabled  
-- ACLK is disabled  
-- MCLK, FLL+ loop control, and DCOCLK are disabled  
-- DCO’s dc generator is disabled  
-- Crystal oscillator is stopped  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range 0xFFFF to 0xFFC0.  
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
If the reset vector (located at address 0xFFFE) contains 0xFFFF (e.g., flash is not programmed), the CPU goes  
into LPM4 immediately after power-up.  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
PRIORITY  
Power-Up  
External Reset  
PORIFG  
RSTIFG  
WDTIFG  
KEYV  
Watchdog  
Reset  
0xFFFE  
15, highest  
Flash Memory  
PC Out--of--Range (see Note 4)  
(see Note 1)  
NMI  
NMIIFG (see Notes 1 and 3)  
OFIFG (see Notes 1 and 3)  
ACCVIFG (see Notes 1, 2, and 4)  
(Non)maskable  
(Non)maskable  
(Non)maskable  
Oscillator Fault  
0xFFFC  
14  
Flash Memory Access Violation  
Timer_A5  
TA1CCR0 CCIFG0 (see Note 2)  
Maskable  
0xFFFA  
0xFFF8  
13  
12  
TA1CCR1 to TACCR4 CCIFGs,  
and TAIFG (see Notes 1 and 2)  
Timer_A5  
Maskable  
Comparator_A+  
CAIFG  
Maskable  
Maskable  
0xFFF6  
0xFFF4  
11  
10  
Watchdog Timer+  
WDTIFG  
UCA0RXIFG (see Note 1),  
UCB0RXIFG (SPI mode), or  
UCB0STAT UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG (I2C mode)  
USCI_A0/B0 Receive  
USCI_A0/B0 Transmit  
Maskable  
0xFFF2  
9
(see Note 1)  
UCA0TXIFG (see Note 1),  
UCB0TXIFG (SPI mode), or  
UCB0RXIFG and UCB0TXIFG (I2C mode)  
(see Note 1)  
Maskable  
0xFFF0  
8
ADC10  
ADC10IFG (see Note 2)  
Maskable  
Maskable  
0xFFEE  
0xFFEC  
7
6
Timer_A3  
TACCR0 CCIFG0 (see Note 2)  
TACCR1 CCIFG1 and TACCR2 CCIFG2,  
TAIFG (see Notes 1 and 2)  
Timer_A3  
Maskable  
Maskable  
0xFFEA  
5
I/O Port P1 (Eight Flags)  
P1IFG.0 to P1IFG.7 (see Notes 1 and 2)  
0xFFE8  
0xFFE6  
0xFFE4  
0xFFE2  
0xFFE0  
4
3
2
1
I/O Port P2 (Eight Flags)  
Basic Timer1/RTC  
P2IFG.0 to P2IFG.7 (see Notes 1 and 2)  
BTIFG  
Maskable  
Maskable  
0, lowest  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module.  
3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh).  
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
4. Access and key violations, KEYV and ACCVIFG.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
special function registers  
Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits  
not allocated to a functional purpose are not physically present in the device. This arrangement provides simple  
software access.  
interrupt enable 1 and 2  
Address  
00h  
7
6
5
4
3
2
1
0
ACCVIE  
rw--0  
NMIIE  
rw--0  
OFIE  
rw--0  
WDTIE  
rw--0  
WDTIE  
Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog  
timer is configured in interval timer mode.  
OFIE  
Oscillator fault enable  
NMIIE  
ACCVIE  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
Address  
01h  
7
6
5
4
3
2
1
0
BTIE  
rw--0  
UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE  
rw--0 rw--0 rw--0 rw--0  
UCA0RXIE  
UCA0TXIE  
UCB0RXIE  
UCB0TXIE  
BTIE  
USCI_A0 receive interrupt enable  
USCI_A0 transmit interrupt enable  
USCI_B0 receive interrupt enable  
USCI_B0 transmit interrupt enable  
Basic timer interrupt enable  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
interrupt flag register 1 and 2  
Address  
02h  
7
6
5
4
3
2
1
0
NMIIFG  
rw--0  
RSTIFG  
rw--(0)  
PORIFG  
rw--(1)  
OFIFG  
rw--1  
WDTIFG  
rw--(0)  
WDTIFG  
Set on watchdog timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.  
OFIFG  
Flag set on oscillator fault  
RSTIFG  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset  
on VCC power-up.  
PORIFG  
NMIIFG  
Power-on interrupt flag. Set on VCC power--up.  
Set via RST/NMI-pin  
Address  
03h  
7
6
5
4
3
2
1
0
UCB0  
TXIFG  
UCB0  
RXIFG  
UCA0  
TXIFG  
UCA0  
RXIFG  
BTIFG  
rw--0  
rw--1  
rw--0  
rw--1  
rw--0  
UCA0RXIFG USCI_A0 receive interrupt flag  
UCA0TXIFG USCI_A0 transmit interrupt flag  
UCB0RXIFG USCI_B0 receive interrupt flag  
UCB0TXIFG  
BTIFG  
USCI_B0 transmit interrupt flag  
Basic Timer1 interrupt flag  
Legend  
rw:  
rw-0,1:  
rw-(0,1):  
Bit can be read and written.  
Bit can be read and written. It is Reset or set by PUC.  
Bit can be read and written. It is Reset or set by POR.  
SFR bit is not present in device  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
memory organization  
MSP430F4152  
MSP430F4132  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
16KB  
0FFFFh -- 0FFE0h  
0FFFFh -- 0C000h  
8KB  
0FFFFh -- 0FFE0h  
0FFFFh -- 0E000h  
Information memory  
Boot memory  
RAM  
Size  
256 Byte  
256 Byte  
Flash  
010FFh -- 01000h  
010FFh -- 01000h  
Size  
ROM  
1KB  
0FFFh -- 0C00h  
1KB  
0FFFh -- 0C00h  
Size  
512B  
03FFh -- 0200h  
512B  
03FFh -- 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh -- 0100h  
0FFh -- 010h  
0Fh -- 00h  
01FFh -- 0100h  
0FFh -- 010h  
0Fh -- 00h  
bootstrap loader (BSL)  
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access  
to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the  
features of the BSL and its implementation, see the MSP430 Memory Programming User’s Guide, literature  
number SLAU265.  
BSL FUNCTION  
Data transmit  
Data receive  
PM PACKAGE PINS  
53 -- P1.0  
RGZ PACKAGE PINS  
37 -- P1.0  
52 -- P1.1  
36 -- P1.1  
flash memory (Flash)  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
64 bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n.  
Segments A to D are also called information memory.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number  
SLAU056.  
oscillator and system clock  
The clock system in the MSP430F41x2 is supported by the FLL+ module that includes support for a 32768-Hz  
watch crystal oscillator, an internal very low-power low--frequency oscillator, an internal digitally-controlled  
oscillator (DCO), and an 8-MHz high-frequency crystal oscillator (XT1). The FLL+ clock module is designed to  
meet the requirements of both low system cost and low power consumption. The FLL+ features a digital  
frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency  
to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock  
source and stabilizes in less than 6 µs. The FLL+ module provides the following clock signals:  
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or a very  
low-power LF oscillator  
D
D
D
Main clock (MCLK), the system clock used by the CPU  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8  
brownout, supply voltage supervisor  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user  
selectable level and supports both supply voltage supervision (the device is automatically reset) and supply  
voltage monitoring (SVM, the device is not automatically reset).  
The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not  
have ramped to VCC(min) at that time. The user must insure the default FLL+ settings are not changed until VCC  
reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min)  
.
digital I/O  
There are seven 8-bit I/O ports implemented—ports P1 through P7. Port P7 is a 7-bit I/O port.  
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
watchdog timer (WDT+)  
The primary function of the WDT+ module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
Basic Timer1 and Real-Time Clock (RTC)  
The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both  
timers can be read and written by software. The Basic Timer1 is extended to provide an integrated real-time  
clock (RTC). An internal calendar compensates for month with less than 31 days and includes leap year  
correction.  
LCD_A driver with regulated charge pump  
The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A  
controller has dedicated data memory to hold segment drive information. Common and segment signals are  
generated as defined by the mode. Static, 2--MUX, 3--MUX, and 4--MUX LCDs are supported by this peripheral.  
The module can provide a LCD voltage independent of the supply voltage via an integrated charge pump.  
Furthermore it is possible to control the level of the LCD voltage and thus contrast in software.  
Timer0_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
TIMER_A3 SIGNAL CONNECTIONS  
MODULE  
OUTPUT  
SIGNAL  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE  
INPUT NAME  
MODULE  
BLOCK  
PM  
RGZ  
PM  
RGZ  
48 -- P1.5  
46 -- P1.7  
35 -- P1.5  
33 -- P1.7  
TA0CLK  
TACLK  
ACLK  
SMCLK  
TA0CLK  
TA0.0  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
48 -- P1.5  
53 -- P1.0  
52 -- P1.1  
35 -- P1.5  
37 -- P1.0  
36 -- P1.1  
53 -- P1.0  
32 -- P3.3  
37 -- P1.0  
--  
TA0.0  
CCR0  
CCR1  
CCR2  
TA0  
TA1  
TA2  
DV  
DV  
SS  
CC  
V
CC  
51 -- P1.2  
45 -- P7.6  
--  
--  
TA0.1  
CCI1A  
CCI1B  
GND  
51 -- P1.2  
CAOUT (internal)  
ADC10 (internal)  
ADC10 (internal)  
--  
DV  
DV  
SS  
CC  
V
CC  
TA0.2  
CCI2A  
CCI2B  
GND  
45 -- P7.6  
ACLK (internal)  
DV  
DV  
SS  
CC  
V
CC  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
Timer1_A5  
Timer_A5 is a 16-bit timer/counter with five capture/compare registers. Timer_A5 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A5 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
TIMER_A5 SIGNAL CONNECTIONS  
MODULE  
OUTPUT  
SIGNAL  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE  
INPUT NAME  
MODULE  
BLOCK  
PM  
RGZ  
PM  
RGZ  
32 -- P3.3  
--  
TA1CLK  
ACLK  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
CCR3  
CCR4  
NA  
TA0  
TA1  
TA2  
TA3  
TA4  
SMCLK  
TA1CLK  
TA1.0  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
32 -- P3.3  
49 -- P1.4  
50 -- P1.3  
--  
--  
--  
49 -- P1.4  
--  
TA1.0  
ADC10 (internal)  
ADC10 (internal)  
DV  
DV  
SS  
CC  
V
CC  
44 -- P5.0  
35 -- P3.0  
--  
--  
TA1.1  
CCI1A  
CCI1B  
GND  
44 -- P5.0  
27 -- P2.0  
--  
CAOUT (internal)  
23 -- P2.0  
DV  
DV  
ADC10 (internal)  
ADC10 (internal)  
SS  
CC  
V
CC  
TA1.2  
CCI2A  
CCI2B  
GND  
35 -- P3.0  
26 -- P2.1  
63 -- P6.0  
--  
ACLK (internal)  
22 -- P2.1  
47 -- P6.0  
DV  
DV  
SS  
CC  
V
CC  
34 -- P3.1  
61 -- P7.5  
--  
TA1.3  
TA1.3  
CCI3A  
CCI3B  
GND  
34 -- P3.1  
25 -- P2.2  
61 -- P7.5  
--  
45 -- P7.5  
21 -- P2.2  
45 -- P7.5  
DV  
DV  
SS  
CC  
V
CC  
33 -- P3.2  
60 -- P7.4  
--  
TA1.4  
TA1.4  
CCI4A  
CCI4B  
GND  
33 -- P3.2  
24 -- P2.3  
60 -- P7.4  
--  
44 -- P7.4  
20 -- P2.3  
44 -- P7.4  
DV  
DV  
SS  
CC  
V
CC  
universal serial communication interface (USCI) (USCI_A0, USCI_B0)  
The USCI module is used for serial data communication. The USCI module supports synchronous  
communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART,  
enhanced UART with automatic baudrate detection (LIN), and IrDA.  
USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.  
USCI_B0 provides support for SPI (3 or 4 pin) and I2C.  
Comparator_A+  
The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions,  
battery-voltage supervision, and monitoring of external analog signals.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
ADC10  
The ADC10 module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator, and data transfer controller (DTC) for automatic conversion  
result handling, allowing ADC samples to be converted and stored without any CPU intervention.  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Watchdog  
Timer0_A3  
Watchdog timer control  
WDTCTL  
0120h  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_A register  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_A control  
TA0CCR2  
TA0CCR1  
TA0CCR0  
TA0R  
TA0CCTL2  
TA0CCTL1  
TA0CCTL0  
TA0CTL  
0176h  
0174h  
0172h  
0170h  
0166h  
0164h  
0162h  
0160h  
012Eh  
Timer_A interrupt vector  
TA0IV  
Timer1_A5  
Capture/compare register 4  
Capture/compare register 3  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_A register  
Capture/compare control 4  
Capture/compare control 3  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_A control  
TA1CCR4  
TA1CCR3  
TA1CCR2  
TA1CCR1  
TA1CCR0  
TA1R  
TA1CCTL4  
TA1CCTL3  
TA1CCTL2  
TA1CCTL1  
TA1CCTL0  
TA1CTL  
019A  
0198  
0196h  
0194h  
0192h  
0190h  
018A  
0188  
0186h  
0184h  
0182h  
0180h  
011Eh  
012Ch  
012Ah  
0128h  
Timer_A interrupt vector  
Flash control 3  
Flash control 2  
TA1IV  
FCTL3  
FCTL2  
FCTL1  
Flash  
Flash control 1  
ADC10  
ADC data transfer start address  
ADC memory  
ADC control register 1  
ADC control register 0  
ADC analog enable 0  
ADC analog enable 1  
ADC data transfer control register 1  
ADC data transfer control register 0  
ADC10SA  
01BCh  
01B4h  
01B2h  
01B0h  
004Ah  
004Bh  
0049h  
0048h  
ADC10MEM  
ADC10CTL1  
ADC10CTL0  
ADC10AE0  
ADC10AE1  
ADC10DTC1  
ADC10DTC0  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS  
LCD_A  
LCD Voltage Control 1  
LCD Voltage Control 0  
LCD Voltage Port Control 1  
LCD Voltage Port Control 0  
LCD memory 20  
:
LCDAVCTL1  
LCDAVCTL0  
LCDAPCTL1  
LCDAPCTL0  
LCDM20  
:
0AFh  
0AEh  
0ADh  
0ACh  
0A4h  
:
LCD memory 16  
LCD memory 15  
:
LCDM16  
LCDM15  
:
0A0h  
09Fh  
:
LCD memory 1  
LCD control and mode  
LCDM1  
LCDACTL  
091h  
090h  
USCI A0/B0  
USCI A0 auto baud rate control  
USCI A0 transmit buffer  
USCI A0 receive buffer  
USCI A0 status  
USCI A0 modulation control  
USCI A0 baud rate control 1  
USCI A0 baud rate control 0  
USCI A0 control 1  
UCA0ABCTL  
UCA0TXBUF  
UCA0RXBUF  
UCA0STAT  
UCA0MCTL  
UCA0BR1  
UCA0BR0  
UCA0CTL1  
UCA0CTL0  
UCA0IRRCTL  
UCA0IRTCTL  
UCB0TXBUF  
UCB0RXBUF  
UCB0STAT  
UCB0CIE  
UCB0BR1  
UCB0BR0  
UCB0CTL1  
UCB0CTL0  
UCB0SA  
UCB0OA  
CAPD  
CACTL2  
CACTL1  
0x005D  
0x0067  
0x0066  
0x0065  
0x0064  
0x0063  
0x0062  
0x0061  
0x0060  
0x005F  
0x005E  
0x006F  
0x006E  
0x006D  
0x006C  
0x006B  
0x006A  
0x0069  
0x0068  
0x011A  
0x0118  
05Bh  
USCI A0 control 0  
USCI A0 IrDA receive control  
USCI A0 IrDA transmit control  
USCI B0 transmit buffer  
USCI B0 receive buffer  
USCI B0 status  
USCI B0 I2C Interrupt enable  
USCI B0 baud rate control 1  
USCI B0 baud rate control 0  
USCI B0 control 1  
USCI B0 control 0  
USCI B0 I2C slave address  
USCI B0 I2C own address  
Comparator_A port disable  
Comparator_A control2  
Comparator_A control1  
Comparator_A+  
05Ah  
059h  
Brownout, SVS  
FLL+ Clock  
SVS control register (Reset by brownout signal) SVSCTL  
056h  
FLL+ Control 2  
FLL+ Control 1  
FLL_CTL2  
FLL_CTL1  
055h  
054h  
FLL+ Control 0  
FLL_CTL0  
SCFQCTL  
SCFI1  
053h  
052h  
051h  
050h  
System clock frequency control  
System clock frequency integrator  
System clock frequency integrator  
SCFI0  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS  
RTC  
(Basic Timer1)  
Real Time Clock Year High Byte  
RTCYEARH  
RTCYEARL  
RTCMON  
RTCDAY  
BTCNT2  
04Fh  
04Eh  
04Dh  
04Ch  
047h  
046h  
045h  
Real Time Clock Year Low Byte  
Real Time Clock Month  
Real Time Clock Day of Month  
Basic Timer1 Counter  
Basic Timer1 Counter  
Real Time Counter 4  
BTCNT1  
RTCNT4  
(Real Time Clock Day of Week)  
Real Time Counter 3  
(Real Time Clock Hour)  
Real Time Counter 2  
(Real Time Clock Minute)  
Real Time Counter 1  
(RTCDOW)  
RTCNT3  
(RTCHOUR)  
RTCNT2  
(RTCMIN)  
RTCNT1  
044h  
043h  
042h  
(Real Time Clock Second)  
Real Time Clock Control  
Basic Timer1 Control  
(RTCSEC)  
RTCCTL  
BTCTL  
041h  
040h  
Port P7  
Port P6  
Port P5  
Port P4  
Port P3  
Port P2  
Port P7 selection  
Port P7 direction  
Port P7 output  
P7SEL  
P7DIR  
P7OUT  
P7IN  
03Bh  
03Ah  
039h  
038h  
037h  
036h  
035h  
034h  
033h  
032h  
031h  
030h  
01Fh  
01Eh  
01Dh  
01Ch  
01Bh  
01Ah  
019h  
018h  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
Port P7 input  
Port P6 selection  
Port P6 direction  
Port P6 output  
P6SEL  
P6DIR  
P6OUT  
P6IN  
Port P6 input  
Port P5 selection  
Port P5 direction  
Port P5 output  
P5SEL  
P5DIR  
P5OUT  
P5IN  
Port P5 input  
Port P4 selection  
Port P4 direction  
Port P4 output  
P4SEL  
P4DIR  
P4OUT  
P4IN  
Port P4 input  
Port P3 selection  
Port P3 direction  
Port P3 output  
P3SEL  
P3DIR  
P3OUT  
P3IN  
Port P3 input  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt-edge select  
Port P2 interrupt flag  
Port P2 direction  
Port P2 output  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P2 input  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS (CONTINUED)  
Port P1  
Port P1 selection register  
Port P1 interrupt enable  
Port P1 interrupt-edge select  
Port P1 interrupt flag  
Port P1 direction  
P1SEL  
P1IE  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
Special functions SFR interrupt flag 2  
SFR interrupt flag 1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
SFR interrupt enable 2  
SFR interrupt enable 1  
IE1  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)†  
Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to 4.1 V  
Voltage applied to any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC + 0.3 V  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA  
Storage temperature, Tstg  
:
Unprogrammed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --55°C to 150°C  
Programmed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --55°C to 85°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages referenced to V  
The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage is  
SS.  
FB  
applied to the TEST pin when blowing the JTAG fuse.  
recommended operating conditions  
MIN  
1.8  
2.2  
0
NOM  
MAX  
3.6  
3.6  
0
UNIT  
V
Supply voltage during program execution, V (AV = DV = V )  
CC  
CC  
CC  
CC  
Supply voltage during flash memory programming, V (AV = DV = V )  
CC  
V
CC  
CC  
CC  
Supply voltage, V (AV = DV = V  
)
SS  
V
SS  
SS  
SS  
Operating free-air temperature range, T  
-- 4 0  
85  
°C  
A
LF selected,  
XTS_FLL = 0  
Watch crystal  
Ceramic resonator  
Crystal  
32.768  
kHz  
MHz  
MHz  
XT1 selected,  
XTS_FLL = 1  
LFXT1 crystal frequency, f  
(see Note 1)  
(LFXT1)  
0.45  
1
6
6
XT1 selected,  
XTS_FLL = 1  
V
V
= 1.8 V  
= 3.0 V  
dc  
dc  
4.15  
8
CC  
CC  
Processor frequency (signal MCLK), f  
MHz  
(System)  
NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.  
fSystem (MHz)  
8 MHz  
Supply voltage range,  
MSP430F41x2, during  
program execution  
Supply voltage range, MSP430F41x2,  
during flash memory programming  
4.15 MHz  
1.8  
2.2  
3.0  
3.6  
Supply Voltage - V  
Figure 1. Frequency vs Supply Voltage  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
supply current into AVCC + DVCC excluding external current  
PARAMETER  
T
A
V
MIN  
TYP  
MAX  
UNIT  
CC  
Active mode (see Note 1),  
2.2 V  
3 V  
220  
295  
f
f
= f  
= 1 MHz,  
(SMCLK)  
(MCLK)  
(ACLK)  
XTS=0, SELM=(0,1)  
I
-- 4 0 °C to 85°C  
µA  
(AM)  
= 32768 Hz,  
350  
398  
2.2 V  
3 V  
33  
50  
60  
92  
I
I
Low-power mode 0 (LPM0) (see Note 1)  
--40°C to 85°C  
-- 4 0 °C to 85°C  
µA  
µA  
(LPM0)  
(LPM2)  
Low-power mode 2 (LPM2),  
f(MCLK) = f (SMCLK) = 0 MHz,  
f(ACLK) = 32768 Hz, SCG0 = 0 (see Note 2)  
2.2 V  
3 V  
6
7
13  
15  
-- 4 0 °C  
25°C  
60°C  
85°C  
-- 4 0 °C  
25°C  
60°C  
85°C  
-- 4 0 °C  
25°C  
85°C  
-- 4 0 °C  
25°C  
85°C  
-- 4 0 °C  
25°C  
60°C  
85°C  
-- 4 0 °C  
25°C  
60°C  
85°C  
0.85  
0.90  
1.15  
2.15  
1.0  
1.1  
1.4  
2.5  
1.8  
2.1  
3.6  
2.1  
2.3  
4.1  
0.1  
0.1  
0.35  
1.1  
0.1  
0.1  
0.8  
1.9  
1.4  
1.2  
1.4  
3.0  
1.5  
1.5  
1.9  
3.5  
3.3  
3.2  
5.0  
3.6  
3.6  
5.5  
0.5  
0.5  
0.9  
2.5  
0.8  
0.8  
1.2  
3.5  
Low-power mode 3 (LPM3),  
2.2 V  
3 V  
f
f
= f  
= 0 MHz,  
(MCLK)  
(ACLK)  
(SMCLK)  
= 32768 Hz, SCG0 = 1,  
Basic Timer1 enabled , ACLK selected,  
LCD_A enabled, LCDCPEN = 0,  
(static mode, f  
(see Notes 2 and 3)  
I
I
I
µA  
µA  
µA  
(LPM3)  
(LPM3)  
(LPM4)  
= f  
/32)  
LCD  
(ACLK)  
Low-power mode 3 (LPM3),  
f
f
= f  
= 0 MHz,  
2.2 V  
3 V  
(MCLK)  
(ACLK)  
(SMCLK)  
= 32768 Hz, SCG0 = 1,  
Basic Timer1 enabled , ACLK selected,  
LCD_A enabled, LCDCPEN = 0,  
(4-mux mode, f  
(see Notes 2 and 3)  
= f  
/32)  
LCD  
(ACLK)  
2.2 V  
3 V  
Low-power mode 4 (LPM4),  
f
f
= 0 MHz, f  
= 0 MHz,  
(MCLK)  
(ACLK)  
(SMCLK)  
= 0 Hz, SCG0 = 1 (see Note 2)  
NOTES: 1. Timer_A is clocked by f  
= 1 MHz. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
CC  
CC  
(DCOCLK)  
2. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
3. The LPM3 currents are characterized with a Micro Crystal CC4V--T1A (9 pF) crystal and OSCCAPx = 01h.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
typical characteristics -- LPM4 current  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Vcc = 3.6V  
Vcc = 3.0V  
Vcc = 2.2V  
Vcc = 1.8V  
--40.0 --20.0 0.0  
20.0 40.0 60.0 80.0 100.0  
-- Temperature -- °C  
T
A
Figure 2. ILPM4 -- LPM4 Current vs Temperature  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Schmitt-trigger inputs -- ports P1, P2, P3, P4, P5, P6, and P7, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)  
PARAMETER  
V
MIN  
1.1  
1.5  
0.4  
0.9  
0.3  
0.5  
MAX  
1.55  
1.98  
0.9  
UNIT  
CC  
2.2 V  
3 V  
V
V
V
Positive-going input threshold voltage  
V
IT+  
IT--  
hys  
2.2 V  
3 V  
Negative-going input threshold voltage  
Input voltage hysteresis (V -- V  
V
V
1.3  
2.2 V  
3 V  
1.1  
)
IT--  
IT+  
1
inputs Px.y, TAx  
PARAMETER  
TEST CONDITIONS  
V
MIN  
62  
MAX  
UNIT  
CC  
2.2 V  
3 V  
Port P1, P2: P1.x to P2.x, external trigger signal  
for the interrupt flag (see Note 1)  
t
t
f
f
External interrupt timing  
Timer_A capture timing  
ns  
(int)  
50  
2.2 V  
3 V  
62  
TA0, TA1, TA2  
ns  
(cap)  
50  
2.2 V  
3 V  
8
10  
8
Timer_A clock frequency externally  
applied to pin  
TACLK, INCLK: t = t  
(L)  
MHz  
MHz  
(TAext)  
(H)  
2.2 V  
3 V  
Timer_A, clock frequency  
SMCLK or ACLK signal selected  
(TAint)  
10  
NOTES: 1. The external signal sets the interrupt flag every time the minimum t  
parameters are met. It may be set even with trigger signals  
(int)  
shorter than t  
.
(int)  
leakage current -- ports P1, P2, P3, P4, P5, P6, and P7 (see Note 1)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
MAX  
UNIT  
CC  
I
Leakage current  
Port Px  
V
(see Note 2)  
(Px.y)  
2.2 V/3 V  
±50  
nA  
lkg(Px.y)  
NOTES: 1. The leakage current is measured with V or V applied to the corresponding pin(s), unless otherwise noted.  
SS  
CC  
2. The port pin must be selected as input.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs -- ports P1, P2, P3, P4, P5, P6, and P7  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
I
I
I
I
I
= --1.5 mA,  
= --6 mA,  
= --1.5 mA,  
= --6 mA,  
= 1.5 mA,  
= 6 mA,  
V
V
V
V
V
V
V
V
= 2.2 V  
= 2.2 V  
= 3 V  
(see Note 1)  
(see Note 2)  
(see Note 1)  
(see Note 2)  
(see Note 1)  
(see Note 2)  
(see Note 1)  
(see Note 2)  
V
--0.25  
V
V
V
V
OH(max)  
OH(max)  
OH(max)  
OH(max)  
OL(max)  
OL(max)  
OL(max)  
OL(max)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
-- 0 . 6  
CC  
V
V
High-level output voltage  
V
OH  
V
--0.25  
CC  
= 3 V  
V
-- 0 . 6  
CC  
= 2.2 V  
= 2.2 V  
= 3 V  
V
V
V
V
V
+0.25  
SS  
SS  
SS  
SS  
SS  
V
+0.6  
SS  
Low-level output voltage  
V
OL  
= 1.5 mA,  
= 6 mA,  
V
+0.25  
SS  
= 3 V  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed ±12 mA to satisfy the maximum  
OH(max)  
OL(max),  
2. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed ±48 mA to satisfy the maximum  
OH(max)  
OL(max),  
output frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
MHz  
f
f
(x = 1, 2, 3, 4, 5, 6, 7, 0 y 7)  
C
C
= 20 pF, I = ±1.5 mA  
V
= 2.2 V / 3 V  
dc  
f
f
(Px.y)  
L
L
CC  
System  
P1.1/TA0.0/MCLK/S30  
= 20 pF  
(MCLK)  
L
System  
f
f
= f  
= f  
40%  
60%  
(MCLK)  
(MCLK)  
(XT1)  
P1.1/TA0.0/MCLK/S30,  
t
Duty cycle of output frequency  
C
V
= 20 pF,  
50%--  
15 ns  
50%+  
15 ns  
(Xdc)  
L
CC  
50%  
(DCOCLK)  
= 2.2 V / 3 V  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs -- ports Px (continued)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 2.2 V  
V
= 3 V  
CC  
T
= --40°C  
CC  
P1.0  
A
T
= --40°C  
A
P1.0  
T
A
= 25°C  
T
= 25°C  
A
T
A
= 85°C  
T
A
= 85°C  
0
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
-- Low-Level Output Voltage -- V  
V
-- Low-Level Output Voltage -- V  
OL  
OL  
Figure 3  
Figure 4  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
-- 5 . 0  
0.0  
V
= 2.2 V  
V
= 3 V  
CC  
P1.0  
CC  
P1.0  
-- 5 . 0  
--10.0  
--15.0  
--20.0  
--25.0  
--30.0  
--35.0  
--40.0  
--45.0  
--50.0  
--55.0  
--60.0  
--65.0  
--10.0  
--15.0  
--20.0  
--25.0  
--30.0  
--35.0  
T
= 25°C  
A
T
A
= 85°C  
T
A
= 25°C  
T
= 85°C  
A
T
= --40°C  
A
T
= --40°C  
A
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
V
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
-- High-Level Output Voltage -- V  
-- High-Level Output Voltage -- V  
OH  
OH  
Figure 5  
Figure 6  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
wake-up LPM3  
PARAMETER  
TEST CONDITIONS  
f = 1 MHz  
MIN  
MAX  
UNIT  
6
6
6
f = 2 MHz  
f = 3 MHz  
t
Delay time  
V
= 2.2 V/3 V  
CC  
µs  
d(LPM3)  
POR/brownout reset (BOR) (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.7 × V  
MAX  
UNIT  
µs  
t
2000  
d(BOR)  
V
dV /dt 3 V/s (see Figure 7)  
V
CC(start)  
CC  
(B_IT--)  
Brownout  
(see Note 2)  
V
V
dV /dt 3 V/s (see Figure 7)  
dV /dt 3 V/s (see Figure 7)  
CC  
1.71  
V
mV  
(B_IT--)  
CC  
hys(B_IT--)  
Pulse length needed at RST/NMI pin to accepted reset internally,  
= 2.2 V/3 V  
t
2
µs  
(reset)  
V
CC  
NOTES: 1. The current consumption of the brownout module is already included in the I current consumption data.  
CC  
The voltage level V  
+ V  
is 1.8V.  
(B_IT--)  
hys(B_IT--)  
2. During power up, the CPU begins code execution following a period of t  
after V = V  
+ V  
. The default FLL+  
hys(B_IT--)  
d(BOR)  
CC  
(B_IT--)  
settings must not bechangeduntil V V  
, where V  
is the minimum supply voltage for the desired operating frequency.  
CC  
CC(min)  
CC(min)  
See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout.  
typical characteristics  
V
CC  
V
hys(B_IT--)  
V
(B_IT--)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 7. POR/Brownout Reset (BOR) vs Supply Voltage  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
typical characteristics (continued)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(min)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
-- Pulse Width -- µs  
t
pw  
-- Pulse Width -- µs  
t
pw  
Figure 8. V(CC)min Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(min)  
0.5  
0
t = t  
f
r
0.001  
1
1000  
t
f
t
r
t
pw  
-- Pulse Width -- µs  
t
pw  
-- Pulse Width -- µs  
Figure 9. VCC(min) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
SVS (supply voltage supervisor/monitor)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
150  
2000  
200  
12  
UNIT  
µs  
µs  
dV /dt > 30 V/ms (see Figure 10)  
5
CC  
t
(SVSR)  
dV /dt 30 V/ms  
CC  
t
t
SVS , switch from VLD = 0 to VLD 0, V = 3 V  
20  
µs  
d(SVSon)  
settle  
ON  
CC  
VLD 0  
µs  
V
VLD 0, V /dt 3 V/s (see Figure 10)  
1.55  
120  
1.7  
V
(SVSstart)  
CC  
VLD = 1  
70  
210  
mV  
V
V
/dt 3 V/s (see Figure 10)  
/dt 3 V/s (see Figure 10),  
V
V
(SVS_IT--)  
×
CC  
(SVS_IT--)  
VLD = 2 to 14  
0.001  
0.016  
V
×
hys(SVS_IT-- )  
CC  
VLD = 15  
4.4  
20  
mV  
External voltage applied on A7  
VLD = 1  
VLD = 2  
VLD = 3  
VLD = 4  
VLD = 5  
VLD = 6  
VLD = 7  
VLD = 8  
VLD = 9  
VLD = 10  
VLD = 11  
VLD = 12  
VLD = 13  
VLD = 14  
1.8  
1.9  
2.1  
2.2  
2.3  
2.4  
2.5  
2.65  
2.8  
2.9  
3.05  
3.2  
2.05  
2.25  
2.37  
2.48  
2.6  
2.71  
2.86  
3
1.94  
2.05  
2.14  
2.24  
2.33  
2.46  
2.58  
2.69  
2.83  
2.94  
3.11  
3.24  
3.43  
V
V
/dt 3 V/s (see Figure 10 and Figure 11)  
CC  
V
V
(SVS_IT--)  
3.13  
3.29  
3.42  
3.35  
3.5  
3.61  
3.76  
3.99  
3.7  
/dt 3 V/s (see Figure 10 and Figure 11),  
External voltage applied on A7  
CC  
VLD = 15  
1.1  
1.2  
10  
1.3  
15  
I
CC(SVS)  
VLD 0, V = 2.2 V/3 V  
µA  
CC  
(see Note 1)  
The recommended operating voltage range is limited to 3.6 V.  
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value somewhere  
t
settle  
between 2 and 15. The overdrive is assumed to be > 50 mV.  
NOTE 1: The current consumption of the SVS module is not included in the I current consumption data.  
CC  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
typical characteristics  
Software sets VLD > 0:  
SVS is active  
AV  
CC  
V
hys(SVS_IT--)  
V
(SVS_IT--)  
V
(SVSstart)  
V
hys(B_IT--)  
V
(B_IT--)  
V
CC(start)  
Brown-  
out  
Brownout  
Region  
Region  
Brownout  
1
0
t
t
SVS out  
1
d(BOR)  
d(BOR)  
SVS Circuit is Active From VLD > to V < V(  
CC  
B_IT--)  
0
t
t
d(SVSon)  
d(SVSR)  
Set POR  
1
undefined  
0
Figure 10. SVS Reset (SVSR) vs Supply Voltage  
V
CC  
t
pw  
3 V  
2
Rectangular Drop  
V
CC(min)  
1.5  
1
Triangular Drop  
1 ns  
1 ns  
V
t
CC  
pw  
0.5  
0
3 V  
1
10  
100  
1000  
t
pw  
-- Pulse Width -- µs  
V
CC(min)  
t = t  
f
r
t
f
t
r
t -- Pulse Width -- µs  
Figure 11. VCC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1)  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
DCO  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX  
UNIT  
CC  
N
= 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2,  
(DCO)  
DCOPLUS = 0  
f
2.2 V/3 V  
1
MHz  
(DCOCLK)  
(DCO2)  
2.2 V  
3 V  
0.3  
0.3  
2.5  
2.7  
0.7  
0.8  
5.7  
6.5  
1.2  
1.3  
9
0.65  
0.7  
5.6  
6.1  
1.3  
1.5  
10.8  
12.1  
2
1.25  
1.3  
10.5  
11.3  
2.3  
2.5  
18  
f
f
f
f
f
f
f
f
f
f
FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
2.2 V  
3 V  
FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1 (see Note 1)  
FN_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1  
(DCO27)  
(DCO2)  
2.2 V  
3 V  
2.2 V  
3 V  
FN_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1 (see Note 1)  
FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1  
FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1 (see Note 1)  
FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1  
FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1 (see Note 1)  
FN_8 = 1, FN_4 = FN_3 = FN_2 = x, DCOPLUS = 1  
(DCO27)  
(DCO2)  
20  
2.2 V  
3 V  
3
2.2  
15.5  
17.9  
2.8  
3.4  
21.5  
26.6  
4.2  
6.3  
32  
3.5  
25  
2.2 V  
3 V  
(DCO27)  
(DCO2)  
10.3  
1.8  
2.1  
13.5  
16  
28.5  
4.2  
5.2  
33  
2.2 V  
3 V  
2.2 V  
3 V  
(DCO27)  
(DCO2)  
41  
2.2 V  
3 V  
2.8  
4.2  
21  
6.2  
9.2  
46  
2.2 V  
3 V  
FN_8 = 1,FN_4 = FN_3 = FN_2 = x, DCOPLUS = 1 (see Note 1)  
Step size between adjacent DCO taps:  
(DCO27)  
30  
46  
70  
1 < TAP 20  
TAP = 27  
2.2 V  
3 V  
1.06  
1.07  
–0.2  
–0.2  
1.11  
1.17  
-- 0 . 6  
-- 0 . 6  
S
n
S
= f  
/ f , (see Figure 13 for taps 21 to 27)  
DCO(Tap n+1) DCO(Tap n)  
n
–0.4  
–0.4  
Temperature drift, N  
D = 2, DCOPLUS = 0  
= 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0,  
(DCO)  
D
D
%/_C  
t
Drift with V variation, N  
FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0  
= 01E0h,  
(DCO)  
CC  
0
5
15  
%/V  
V
NOTES: 1. Do not exceed the maximum system frequency.  
f
f
(DCO)  
(DCO)  
f
f
°
(DCO20 C)  
(DCO3V)  
1.0  
1.0  
0
1.8  
2.4  
3.0  
3.6  
-- 4 0  
-- 2 0  
0
20  
40  
60  
85  
V
-- V  
T -- °C  
A
CC  
Figure 12. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
1.17  
Max  
1.11  
1.07  
1.06  
Min  
1
20  
27  
DCO Tap  
Figure 13. DCO Tap Step Size  
Legend  
Tolerance at Tap 27  
DCO Frequency  
Adjusted by Bits  
9
5
2
to 2 in SCFI1 {N  
}
{DCO}  
Tolerance at Tap 2  
Overlapping DCO Ranges:  
Uninterrupted Frequency Range  
FN_2=0  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=1  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=x  
FN_2=x  
FN_3=x  
FN_4=1  
FN_8=0  
FN_2=x  
FN_3=1  
FN_4=0  
FN_8=0  
FN_3=x  
FN_4=x  
FN_8=1  
Figure 14. Five Overlapping DCO Ranges Controlled by FN_x Bits  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
crystal oscillator, LFXT1, low-frequency modes (see Note 4)  
PARAMETER  
TEST CONDITIONS  
XTS = 0, LFXT1Sx = 0 or 1  
XTS = 0, LFXT1Sx = 0,  
V
MIN  
TYP  
MAX UNIT  
CC  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
f
1.8 V to 3.6 V  
32768  
Hz  
LFXT1,LF  
f
= 32768 kHz,  
500  
200  
LFXT1,LF  
C
L,eff  
= 6 pF  
Oscillation allowance for  
LF crystals  
OA  
k  
LF  
XTS = 0, LFXT1Sx = 0,  
= 32768 kHz,  
f
LFXT1,LF  
C
L,eff  
= 12 pF  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
8.5  
11  
Integrated effective load  
capacitance, LF mode  
(see Note 1)  
C
L,eff  
pF  
XTS = 0,  
Duty cycle  
LF mode  
Measured at P1.6/ACLK,  
2.2 V/3 V  
2.2 V/3 V  
30  
10  
50  
70  
%
f
= 32768Hz  
LFXT1,LF  
Oscillator fault frequency,  
LF mode (see Note 3)  
XTS = 0, XCAPx = 0.  
LFXT1Sx = 3 (see Note 2)  
f
10000  
Hz  
Fault,LF  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Measured with logic level input frequency but also applies to operation with crystals.  
3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and  
frequencies in between might set the flag.  
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.  
-- Keep the trace between the device and the crystal as short as possible.  
-- Design a good ground plane around the oscillator pins.  
-- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
-- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
-- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
-- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
-- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
crystal oscillator, LFXT1, high frequency modes  
PARAMETER  
TEST CONDITIONS  
V
MIN  
0.45  
1
TYP  
MAX UNIT  
CC  
Ceramic resonator  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
f
LFXT1 oscillator crystal frequency  
MHz  
6
LFXT1  
Crystal resonator  
See Note 2  
Integrated effective load capacitance,  
HF mode (see Note 1)  
C
L,eff  
1
pF  
Duty cycle  
Measured at P1.6/ACLK  
2.2 V/3 V  
40  
50  
60  
%
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
internal very low power, low-frequency oscillator (VLO)  
PARAMETER  
TEST CONDITIONS  
= --40°C to 85°C  
A
V
MIN  
TYP  
12  
MAX UNIT  
CC  
f
VLO frequency  
T
2.2 V/3 V  
2.2 V/3 V  
4
20  
kHz  
%/°C  
%/V  
VLO  
df  
df  
/dT  
/dV  
VLO frequency temperature drift  
VLO frequency supply voltage drift  
See Note  
0.5  
4
VLO  
VLO  
See Note 2  
1.8V to 3.6V  
CC  
NOTES: 1. Calculated using the box method:  
I Version: (MAX(--40_C to 85_C) -- MIN(--40_C to 85_C))/MIN(--40_C to 85_C)/(85_C -- (--40_C))  
2. Calculated using the box method: (MAX(1.8 V to 3.6 V) -- MIN(1.8 V to 3.6 V))/MIN(1.8 V to 3.6 V)/(3.6 V -- 1.8 V)  
RAM  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
MAX  
UNIT  
VRAMh  
See Note 1  
1.6  
V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution  
should take place during this supply voltage condition.  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
LCD_A  
PARAMETER  
TEST CONDITIONS  
V
MIN  
2.2  
TYP  
MAX UNIT  
CC  
Charge pump enabled  
V
Supply voltage range  
3.6  
V
CC(LCD)  
(LCDCPEN = 1, VLCDx > 0000)  
Charge pump enabled  
C
LCD  
Capacitor on LCDCAP (see Note 1)  
4.7  
µF  
(LCDCPEN = 1, VLCDx > 0000)  
V
=3V, LCDCPEN = 1,  
LCD(typ)  
VLCDx= 1000, all segments on  
= f /32  
f
I
Average supply current (see Note 2)  
2.2 V  
3.8  
µA  
LCD  
ACLK  
CC(LCD)  
LCD  
no LCD connected (see Note 3)  
= 25°C  
T
A
f
LCD frequency  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
1.1 kHz  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VLCDx = 0000  
VLCDx = 0001  
VLCDx = 0010  
VLCDx = 0011  
VLCDx = 0100  
VLCDx = 0101  
VLCDx = 0110  
VLCDx = 0111  
VLCDx = 1000  
VLCDx = 1001  
VLCDx = 1010  
VLCDx = 1011  
VLCDx = 1100  
VLCDx = 1101  
VLCDx = 1110  
VLCDx = 1111  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
CC  
2.60  
2.66  
2.72  
2.78  
2.84  
2.90  
2.96  
3.02  
3.08  
3.14  
3.20  
3.26  
3.32  
3.38  
3.44  
3.60  
10  
V
V
= 3 V, LCDCPEN = 1,  
LCD  
R
LCD driver output impedance  
2.2 V  
kΩ  
LCD  
VLCDx = 1000, I  
= ±10 µA  
LOAD  
NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device.  
2. Refer to the supply current specifications I  
for additional current specifications with the LCD_A module active.  
(LPM3)  
3. Connecting an actual display will increase the current consumption depending on the size of the LCD.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Comparator_A+ (see Note 1)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
25  
MAX  
40  
UNIT  
CC  
2.2 V  
3 V  
I
I
CAON = 1, CARSEL = 0, CAREF = 0  
µA  
(CC)  
45  
30  
45  
60  
50  
80  
2.2 V  
3 V  
CAON = 1, CARSEL = 0, CAREF = 1/2/3,  
No load at P1.6/CA0 and P1.7/CA1  
µA  
(Refladder/RefDiode)  
Voltage @ 0.25 V  
node  
node  
PCA0 = 1, CARSEL = 1, CAREF = 1,  
No load at P1.6/CA0 and P1.7/CA1  
CC  
V
V
2.2 V / 3 V  
2.2V / 3 V  
0.23  
0.47  
0.24  
0.48  
0.25  
0.5  
(Ref025)  
(Ref050)  
V
CC  
Voltage @ 0.5 V  
PCA0 = 1, CARSEL = 1, CAREF = 2,  
No load at P1.6/CA0 and P1.7/CA1  
CC  
V
CC  
PCA0 = 1, CARSEL = 1, CAREF = 3,  
No load at P1.6/CA0 and P1.7/CA1,  
A
2.2 V  
3 V  
390  
400  
480  
490  
540  
550  
See Figure 15 and  
Figure 16  
V
V
mV  
V
(RefVT)  
IC  
T
= 85°C  
Common-mode input  
voltage range  
CAON = 1  
2.2 V / 3 V  
0
V
-- 1  
30  
CC  
V -- V  
Offset voltage  
See Note 2  
CAON = 1  
2.2 V / 3 V  
2.2 V / 3 V  
2.2 V  
-- 3 0  
0
mV  
mV  
p
S
V
Input hysteresis  
0.7  
165  
120  
1.9  
1.4  
300  
240  
2.8  
hys  
80  
70  
1.4  
0.9  
T
A
= 25°C,  
ns  
Overdrive 10 mV, without filter: CAF = 0  
3 V  
t
(see Note 3)  
(response LH and HL)  
2.2 V  
T
= 25°C  
A
µs  
Overdrive 10 mV, with filter: CAF = 1  
3 V  
1.5  
2.2  
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.  
The two successive measurements are then summed together.  
3. The response time is measured at P1.6/CA0 with an input voltage step and the Comparator_A already enabled (CAON=1). If CAON  
is set at the same time, a settling time of up to 300ns is added to the response time.  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
typical characteristics  
REFERENCE VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
REFERENCE VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
= 3 V  
CC  
V
= 2.2 V  
CC  
Typical  
Typical  
-- 4 5  
-- 2 5  
-- 5  
1 5  
3 5  
5 5  
7 5  
9 5  
-- 4 5  
-- 2 5  
-- 5  
1 5  
3 5  
5 5  
7 5  
9 5  
T
A
-- Free-Air Temperature -- °C  
T
A
-- Free-Air Temperature -- °C  
Figure 15. V(RefVT) vs Temperature  
Figure 16. V(RefVT) vs Temperature  
0 V  
V
CC  
CAF  
0
1
CAON  
To Internal  
Modules  
Low-Pass Filter  
0
1
0
1
+
_
V+  
V--  
CAOUT  
Set CAIFG  
Flag  
τ ≈ 2 µs  
Figure 17. Block Diagram of Comparator_A Module  
V
CAOUT  
Overdrive  
V--  
400 mV  
V+  
t
(response)  
Figure 18. Overdrive Definition  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
10-bit ADC, power supply and input range conditions (see Note )  
PARAMETER  
TEST CONDITIONS  
V
MIN  
2.2  
TYP  
MAX UNIT  
CC  
Analog supply voltage  
range  
V
V
= 0 V  
SS  
3.6  
V
V
CC  
Analog input voltage  
range (see Note 2)  
All Ax terminals,  
Analog inputs selected in ADC10AE register  
V
Ax  
0
V
CC  
f
5 MHz,  
2.2 V  
3 V  
0.52  
0.6  
1.05  
1.2  
ADC10CLK =  
ADC10ON = 1, REFON = 0  
ADC10 supply current  
(see Note 3)  
I
mA  
mA  
mA  
ADC10  
ADC10SHT0 = 1, ADC10SHT1 = 0, ADC10DIV = 0  
f
5 MHz,  
ADC10CLK =  
ADC10ON = 0, REF2_5V = 0,  
REFON = 1, REFOUT = 0  
2.2 V/3 V  
3 V  
Reference supply  
current, reference buffer  
disabled (see Note 4)  
I
0.25  
1.1  
0.4  
REF+  
f
5 MHz,  
ADC10CLK =  
ADC10ON = 0, REF2_5V = 1,  
REFON = 1, REFOUT = 0  
f
5 MHz,  
ADC10CLK =  
Reference buffer supply  
current with  
ADC10SR = 0  
(see Note 4)  
2.2 V/3 V  
2.2 V/3 V  
1.4  
1.8  
mA  
mA  
ADC10ON = 0,  
REFON = 1, REF2_5V = 0,  
REFOUT = 1,  
I
I
REFB,0  
REFB,1  
ADC10SR = 0  
f
5 MHz,  
ADC10CLK =  
2.2 V/3 V  
2.2 V/3 V  
0.5  
0.7  
0.8  
mA  
mA  
Reference buffer supply  
current with  
ADC10SR = 1  
(see Note 4)  
ADC10ON = 0,  
REFON = 1,  
REF2_5V = 0,  
REFOUT = 1,  
ADC10SR = 1  
C
R
Input capacitance  
Only one terminal Ax selected at a time  
27  
pF  
I
Input MUX ON  
resistance  
0V V V  
2.2 V/3 V  
2000  
I
Ax  
CC  
NOTES: 1. The leakage current is defined in the leakage current table with Px.x/Ax parameter.  
2. The analog input voltage range must be within the selected reference voltage range V to V for valid conversion results.  
R+  
R--  
.
3. The internal reference supply current is not included in current consumption parameter I  
ADC10  
4. The internal reference current is supplied via terminal V . Consumption is independent of the ADC10ON control bit, unless a  
CC  
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, built-in voltage reference  
PARAMETER  
TEST CONDITIONS  
1 mA, REF2_5V = 0  
0.5 mA, REF2_5V = 1  
1 mA, REF2_5V = 1  
V
MIN TYP  
MAX UNIT  
CC  
I
I
I
2.2  
2.8  
2.9  
VREF+  
VREF+  
VREF+  
Positive built-in reference analog  
supply voltage range  
V
V
V
CC,REF+  
2.2 V/  
3 V  
I
I
I  
I  
max, REF2_5V = 0  
1.41  
2.35  
1.5  
1.59  
V
V
VREF+  
VREF+  
VREF+  
VREF+  
Positive built-in reference voltage  
REF+  
max, REF2_5V = 1  
3 V  
2.2 V  
3 V  
2.5  
2.65  
±0.5  
±1  
I
Maximum V  
load current  
REF+  
mA  
LD,VREF+  
I
500 µA ± 100 µA,  
VREF+ =  
2.2 V/  
3 V  
Analog input voltage V 0.75 V,  
±2  
±2  
LSB  
Ax  
REF2_5V = 0  
V
V
load regulation  
REF+  
I
500 µA ± 100 µA,  
VREF+ =  
Analog input voltage V 1.25 V,  
3 V  
LSB  
Ax  
REF2_5V = 1  
I
= 100 µA900 µA,  
ADC10SR = 0  
ADC10SR = 1  
3 V  
3V  
400  
VREF+  
load regulation response  
REF+  
time  
V
0.5 x V  
Error of  
ns  
Ax  
REF+,  
2000  
conversion result 1 LSB  
Max. capacitance at pin V  
(see Note 1)  
I
≤ ±1 mA,  
2.2 V/  
3 V  
REF+  
VREF+  
C
VREF+  
100  
pF  
REFON = 1, REFOUT = 1  
I
const. with 0 mA I  
1 mA  
VREF+  
2.2 V/  
3 V  
VREF+ =  
TC  
Temperature coefficient  
±100 ppm/°C  
REF+  
(see Note 3)  
I 0.5 mA, REF2_5V = 0,  
VREF+ =  
Settling time of internal reference  
voltage (see Note 2)  
3.6 V  
30  
1
µs  
t
t
REFON  
REFON = 0 1  
I
0.5 mA,  
VREF+ =  
ADC10SR = 0 2.2 V  
ADC10SR = 1 2.2 V  
REF2_5V = 0,  
REFON = 1,  
2.5  
2
REFBURST = 1  
Settling time of reference buffer  
(see Note 2)  
µs  
REFBURST  
I
0.5 mA,  
VREF+ =  
ADC10SR = 0  
3 V  
REF2_5V = 1,  
REFON = 1,  
ADC10SR = 1  
operational  
3 V  
4.5  
to  
REFBURST = 1  
NOTES: 1. The  
capacitance  
applied  
to  
the  
/V  
internal  
buffer  
amplifier,  
if  
switched  
terminal  
P6.4/UCB0CLK/UCA0STE/A4/CA6/V  
otherwise.  
(REFOUT = 1), must be limited; the reference buffer may become unstable,  
eref+ ref+  
2. The condition is that the error in a conversion started after t  
3. Calculated using the box method: ((MAX(V  
or t  
is less than ±0.5 LSB.  
RefBuf  
REFON  
(T)) -- MIN(V  
(T))) / MIN(V  
(T)) / (T  
-- T  
)
REF  
REF  
REF  
MAX  
MIN  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, external reference (see Note 1)  
PARAMETER  
TEST CONDITIONS  
> V  
V
MIN  
1.4  
TYP  
MAX UNIT  
CC  
V
,
eREF--  
eREF+  
V
CC  
SREF1 = 1, SREF0 = 0  
Positive external reference input  
voltage range (see Note 2)  
V
eREF+  
V
V
eREF--  
V (V -- 0.15 V)  
eREF+  
CC  
1.4  
0
3.0  
1.2  
SREF1 = 1, SREF0 = 1 (see Note 3)  
Negative external reference input  
voltage range (see Note 4)  
V
eREF--  
V
eREF+  
> V  
V
V
eREF--  
Differential external reference input  
voltage range  
V  
eREF  
V
eREF+  
> V  
(see Note 5)  
1.4  
V
CC  
eREF--  
V  
= V  
-- V  
eREF  
eREF+ eREF--  
0V V  
V  
,
CC  
eREF+  
2.2 V/3 V  
±1  
SREF1 = 1, SREF0 = 0  
I
I
Static input current into V  
Static input current into V  
µA  
µA  
VeREF+  
VeREF--  
eREF+  
0V V (V -- 0.15 V) 3 V,  
eREF+  
CC  
2.2 V/3 V  
2.2 V/3 V  
0
SREF1 = 1, SREF0 = 1 (see Note 3)  
0V V V  
±1  
eREF--  
eREF--  
CC  
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C , is also  
I
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
3. Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer  
supply current I  
. The current consumption can be limited to the sample and conversion period with REBURST = 1.  
REFB  
4. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied  
with reduced accuracy requirements.  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, timing parameters  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
For specified  
ADC10SR = 0  
ADC10SR = 1  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
0.45  
6.3  
MHz  
1.5  
performance of  
ADC10 linearity  
parameters  
f
f
ADC10 input clock frequency  
ADC10CLK  
ADC10OSC  
0.45  
3.7  
ADC10DIVx = 0, ADC10SSELx = 0  
ADC10 built-in oscillator frequency  
6.3 MHz  
f
f
ADC10CLK = ADC10OSC  
ADC10 built-in oscillator,  
ADC10SSELx = 0  
ADC10CLK = ADC10OSC  
2.2 V/3 V  
2.06  
3.51  
µs  
f
f
t
t
Conversion time  
CONVERT  
ADC10ON  
13×  
f
from ACLK, MCLK or  
ADC10CLK  
SMCLK: ADC10SSELx 0  
ADC10DIV×  
µs  
1/f  
ADC10CLK  
Turn on settling time of the ADC  
See Note 1  
100  
ns  
NOTE 1: The condition is that the error in a conversion started after t  
settled.  
is less than ±0.5 LSB. The reference and input signals are already  
ADC10ON  
10-bit ADC, linearity parameters  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
±1 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±2 LSB  
CC  
E
E
E
Integral linearity error  
Differential linearity error  
Offset error  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V  
I
D
O
Source impedance R < 100 Ω  
S
SREFx = 010, Unbuffered external reference, V  
1.5 V  
2.5 V  
±1.1  
±1.1  
eREF+ =  
SREFx = 010, Unbuffered external reference, V  
3 V  
eREF+ =  
SREFx = 011, Buffered external reference (see Note 2),  
1.5 V  
Gain error  
E
E
2.2 V  
3 V  
±1.1  
±1.1  
±4 LSB  
±3 LSB  
G
V
eREF+ =  
SREFx = 011, Buffered external reference (see Note 2),  
2.5 V  
V
eREF+ =  
SREFx = 010, Unbuffered external reference, V  
1.5 V  
2.5 V  
2.2 V  
3 V  
±2  
±2  
±5 LSB  
±5 LSB  
eREF+ =  
eREF+ =  
SREFx = 010, Unbuffered external reference, V  
SREFx = 011, Buffered external reference (see Note 2),  
1.5 V  
Total unadjusted error  
2.2 V  
3 V  
±2  
±2  
±7 LSB  
±6 LSB  
T
V
eREF+ =  
SREFx = 011, Buffered external reference (see Note 2),  
2.5 V  
V
eREF+ =  
NOTE 1: The reference buffer’s offset adds to the gain and total unadjusted error.  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, temperature sensor and built-in VMID  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
40  
MAX  
120  
UNIT  
CC  
2.2 V  
3 V  
Temperature sensor supply  
current (see Note )  
REFON = 0, INCHx = 0Ah,  
I
µA  
SENSOR  
ADC10ON = 1, T = 25_C  
A
60  
160  
ADC10ON = 1, INCHx = 0Ah  
(see Note 2)  
2.2 V/3 V  
3.55  
mV/°C  
mV  
TC  
SENSOR  
ADC10ON = 1, INCHx = 0Ah  
(see Note 2)  
V
Sensor offset voltage  
--100  
100  
1395  
1185  
1095  
Offset,Sensor  
Temperature sensor voltage  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
1195  
985  
895  
1295  
1085  
995  
mV  
at T = 85°C  
A
Temperature sensor voltage  
Sensor output voltage  
(see Note 3)  
V
Sensor  
at T = 25°C  
A
mV  
Temperature sensor voltage  
at T = 0°C  
A
Sample time required if  
channel 10 is selected (see  
Note 4)  
ADC10ON = 1, INCHx = 0Ah,  
2.2 V/3 V  
30  
µs  
t
I
Sensor(sample)  
VMID  
Error of conversion result 1 LSB  
2.2 V  
3 V  
NA  
NA  
Current into divider at  
channel11 (see Note 5)  
ADC10ON = 1, INCHx = 0Bh  
ADC10ON = 1, INCHx = 0Bh,  
µA  
2.2 V  
3 V  
1.06  
1.46  
1.1  
1.5  
1.14  
1.54  
V
t
V
divider at channel 11  
CC  
V
MID  
V
is 0.5 x V  
MID  
CC  
Sample time required if  
channel 11 is selected  
(see Note 6)  
2.2 V  
3 V  
1400  
1220  
ADC10ON = 1, INCHx = 0Bh,  
Error of conversion result 1 LSB  
ns  
VMID(sample)  
NOTES: 1. The sensor current I  
is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON = 1 and INCH = 0Ah and sample signal  
SENSOR  
is high). When REFON = 1, I  
sensor input (INCH = 0Ah).  
2. The following formula can be used to calculate the temperature sensor output voltage:  
is included in I  
. When REFON = 0, I  
applies during conversion of the temperature  
SENSOR  
REF+  
SENSOR  
V
V
= TC  
= TC  
( 273 + T [°C] ) + V  
[mV] or  
Sensor,typ  
Sensor,typ  
Sensor  
Sensor  
Offset,sensor  
(T = 0°C) [mV]  
T [°C] + V  
Sensor  
A
3. Results based on characterization and/or production test, not TC  
or V  
.
Offset,sensor  
Sensor  
4. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time t  
.
SENSOR(on)  
5. No additional current is needed. The V  
is used during sampling.  
MID  
6. The on-time t  
is included in the sampling time t  
; no additional on time is needed.  
VMID(on)  
VMID(sample)  
Timer0_A3, Timer1_A5  
PARAMETER  
TEST CONDITIONS  
V
MIN  
MAX UNIT  
CC  
Internal: SMCLK, ACLK,  
2.2 V  
3 V  
8
f
t
Timer_A clock frequency  
Timer_A, capture timing  
MHz  
10  
External: TACLK, INCLK,  
TA  
Duty cycle = 50% ±10%  
TA0, TA1, TA2  
2.2 V/3 V  
20  
ns  
TA,cap  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
USCI (UART mode)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
Internal: SMCLK, ACLK  
External: UCLK  
Duty cycle = 50% ± 10%  
f
USCI input clock frequency  
f
MHz  
USCI  
SYSTEM  
Maximum BITCLK clock frequency  
(equals baudrate in MBaud)  
(see Note 1)  
fmax,  
2.2V /3 V  
2
MHz  
ns  
BITCLK  
2.2 V  
3 V  
50  
50  
150  
100  
UART receive deglitch time  
(see Note 2)  
t
τ
NOTES: 1. The DCO wake-up time must be considered in LPM3/4 for baudrates above 1 MHz.  
2. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed.  
USCI (SPI master mode) (see Figure 19 and Figure 20)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
MAX UNIT  
CC  
SMCLK, ACLK  
f
t
t
t
USCI input clock frequency  
f
MHz  
ns  
USCI  
SYSTEM  
Duty cycle = 50% ± 10%  
2.2 V  
3 V  
110  
75  
0
SOMI input data setup time  
SOMI input data hold time  
SU,MI  
2.2 V  
3 V  
ns  
HD,MI  
0
2.2 V  
3 V  
30  
20  
UCLK edge to SIMO valid,  
SIMO output data valid time  
ns  
VALID,MO  
C
L
= 20 pF  
1
NOTE: fUCxCLK  
=
with tLOHI max(tVALID,MO(USCI) + tSU,SI(Slave),  
t
SU,MI(USCI) + tVALID,SO(Slave)).  
2tLOHI  
For the slave’s parameters t  
and t  
refer to the SPI parameters of the attached slave.  
VALID,SO(Slave)  
SU,SI(Slave)  
USCI (SPI slave mode) (see Figure 21 and Figure 22)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
STE lead time  
t
t
t
t
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
50  
ns  
STE,LEAD  
STE,LAG  
STE,ACC  
STE,DIS  
STE low to clock  
STE lag time  
Last clock to STE high  
10  
ns  
ns  
ns  
STE access time  
STE low to SOMI data out  
50  
50  
STE disable time  
STE high to SOMI high impedance  
2.2 V  
3 V  
20  
15  
10  
10  
t
t
t
SIMO input data setup time  
SIMO input data hold time  
ns  
SU,SI  
2.2 V  
3 V  
ns  
HD,SI  
2.2 V  
3 V  
75  
50  
110  
UCLK edge to SOMI valid,  
= 20 pF  
SOMI output data valid time  
ns  
75  
VALID,SO  
C
L
1
NOTE: fUCxCLK  
=
with tLOHI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).  
2tLOHI  
For the master’s parameters t  
and t  
refer to the SPI parameters of the attached master.  
VALID,MO(Master)  
SU,MI(Master)  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
t
LO/HI  
LO/HI  
SU,MI  
t
HD,MI  
SOMI  
SIMO  
t
VALID,MO  
Figure 19. SPI Master Mode, CKPH = 0  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
LO/HI  
LO/HI  
t
HD,MI  
t
SU,MI  
SOMI  
SIMO  
t
VALID,MO  
Figure 20. SPI Master Mode, CKPH = 1  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
t
t
STE,LAG  
STE,LEAD  
STE  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
t
LO/HI  
LO/HI  
SU,SI  
t
HD,SI  
SIMO  
SOMI  
t
t
t
STE,DIS  
STE,ACC  
VALID,SO  
Figure 21. SPI Slave Mode, CKPH = 0  
t
t
STE,LAG  
STE,LEAD  
STE  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
LO/HI  
LO/HI  
t
HD,SI  
t
SU,SI  
SIMO  
SOMI  
t
t
t
STE,DIS  
STE,ACC  
VALID,SO  
Figure 22. SPI Slave Mode, CKPH = 1  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
USCI (I2C mode) (see Figure 23)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
MHz  
CC  
Internal: SMCLK, ACLK  
External: UCLK  
Duty cycle = 50% ± 10%  
f
USCI input clock frequency  
f
SYSTEM  
USCI  
f
t
SCL clock frequency  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
SCL  
f
f
f
f
100kHz  
> 100kHz  
100kHz  
> 100kHz  
us  
us  
us  
us  
ns  
ns  
us  
SCL  
SCL  
SCL  
SCL  
Hold time (repeated) START  
HD,STA  
t
Setup time for a repeated START  
SU,STA  
t
t
t
Data hold time  
HD,DAT  
SU,DAT  
SU,STO  
Data set--up time  
Setup time for STOP  
250  
4.0  
50  
150  
100  
600  
600  
ns  
ns  
Pulse width of spikes suppressed by  
input filter  
t
SP  
3 V  
50  
t
t
t
SU,STA HD,STA  
HD,STA  
SDA  
SCL  
1/f  
t
SP  
SCL  
t
t
SU,STO  
SU,DAT  
t
HD,DAT  
Figure 23. I2C Mode Timing  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
flash memory  
TEST  
CONDITIONS  
PARAMETER  
V
MIN NOM  
MAX  
UNIT  
CC  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
2.2  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from DV during program  
2.5V/3.6V  
2.5V/3.6V  
2.5V/3.6V  
2.5V/3.6V  
3
PGM  
CC  
Supply current from DV during erase  
CC  
3
7
mA  
ERASE  
CPT  
Cumulative program time  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
see Note 1  
see Note 2  
10  
ms  
200  
ms  
CMErase  
4
5
10  
100  
10  
cycles  
years  
t
T = 25°C  
J
Retention  
t
t
t
t
t
t
Word or byte program time  
35  
30  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
21  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 3  
t
FTG  
6
5297  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writingto a64--byte flashblock. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. The mass erase duration generated by the flash timing generator is at least 11.1 ms ( = 5297x1 / f , max = 5297 x 1 / 476 kHz).  
FTG  
To achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is  
met. (A worst case minimum of 19 cycles is required.)  
3. These values are hardwired into the Flash Controller’s state machine (t  
= 1 / f  
).  
FTG  
FTG  
JTAG and Spy-Bi-Wire interface  
TEST  
CONDITIONS  
PARAMETER  
V
MIN  
TYP  
MAX  
UNIT  
CC  
f
t
Spy-Bi-Wire input frequency  
2.2 V/3 V  
2.2 V/3 V  
0
8
MHz  
us  
SBW  
Spy-Bi-Wire low clock pulse length  
0.025  
15  
SBW,Low  
Spy-Bi-Wire enable time,  
TEST high to acceptance of first clock edge  
(see Note 1)  
t
2.2 V/3 V  
1
us  
SBW,En  
t
f
Spy-Bi-Wire return to normal operation time  
2.2 V/3 V  
2.2 V  
15  
0
100  
5
us  
SBW,Ret  
TCK  
MHz  
MHz  
kΩ  
TCK input frequency (see Note 2)  
3 V  
0
10  
90  
R
Internal pulldown resistance on TEST  
2.2 V/3 V  
25  
60  
Internal  
NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum t  
before applying the first SBWCLK clock edge.  
time after pulling the TEST/SBWCLK pin high  
SBW,En  
2.  
f
may be restricted to meet the timing requirements of the module selected.  
TCK  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
JTAG fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
V
MIN  
MAX  
UNIT  
CC  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TDI/TCLK for fuse-blow  
Supply current into TDI/TCLK during fuse blow  
Time to blow fuse  
T
A
= 25°C  
2.5  
6
V
V
CC(FB)  
FB  
7
100  
1
I
t
mA  
ms  
FB  
FB  
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched  
to bypass mode.  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.0 to P1.4, input/output with Schmitt trigger  
Pad Logic  
LCDS24/28  
Segment Sy  
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1.0/TA0.0/S31  
P1.1/TA0.0/MCLK/S30  
P1.2/TA0.1/S29  
Bus  
Keeper  
EN  
P1SEL.x  
P1IN.x  
P1.3/TA1.0/SVSOUT/S28  
P1.4/TA1.0/S27  
EN  
Module X IN  
P1IRQ.x  
D
P1IE.x  
EN  
Set  
Q
P1IFG.x  
P1SEL.x  
P1IES.x  
Interrupt  
Edge Select  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
Port P1 (P1.0 to P1.4) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
P1.0/TA0.0/S31  
X
FUNCTION  
LCDS24  
P1DIR.x  
P1SEL.x  
LCDS28  
0
P1.x (I/O)  
I: 0, O: 1  
0
1
1
x
0
1
1
x
0
1
1
x
0
1
1
x
0
1
1
x
0
Timer0_A3.CCI0A  
Timer0_A3.TA0  
S31  
0
0
1
0
x
1 (LCDS28)  
P1.1/TA0.0/MCLK/S30  
P1.2/TA0.1/S29  
1
2
3
4
P1.x (I/O)  
I: 0, O: 1  
0
Timer0_A3.CCI0B  
MCLK  
0
0
1
0
S30  
x
1 (LCDS28)  
P1.x (I/O)  
I: 0, O: 1  
0
Timer0_A3.CCI1A  
Timer0_A3.TA1  
S29  
0
0
1
0
x
1 (LCDS28)  
P1.3/TA1.0/SVSOUT/S28  
P1.4/TA1.0/S27  
P1.x (I/O)  
I: 0, O: 1  
0
Timer1_A5.CCI0B  
SVSOUT  
0
0
1
0
S28  
x
1 (LCDS28)  
P1.x (I/O)  
I: 0, O: 1  
0
Timer1_A5.CCI0A  
Timer1_A5.TA0  
S27  
0
1
x
0
0
1 (LCDS24)  
NOTES: 1. x: Don’t care  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.5, input/output with Schmitt trigger  
Pad Logic  
LCDS24  
Segment Sy  
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1SEL.x  
P1.5/TA0CLK/  
CAOUT/S26  
Bus  
Keeper  
EN  
P1IN.x  
from TA0CLK of P1.7  
TA0CLK  
EN  
D
P1IE.x  
EN  
Set  
P1IRQ.x  
Q
P1IFG.x  
P1SEL.x  
P1IES.x  
Interrupt  
Edge Select  
Port P1 (P1.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
LCDS24  
LCDS28  
P1DIR.x  
P1SEL.x  
P1.5/TA0CLK/CAOUT/S26  
5
P1.x (I/O)  
I: 0, O: 1  
0
1
1
x
0
Timer0_A3.TACLK  
CAOUT  
0
1
x
0
0
S26  
1 (LCDS24)  
NOTES: 1. x: Don’t care  
2. The input TA0CLK of P1.5 and P1.7 are logically ORed. Therefore only one of them should be enabled at a time to feed in TA0CLK.  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.6, input/output with Schmitt trigger  
Pad Logic  
To Comparator_A  
From Comparator_A  
CAPD.y  
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module Out  
P1.6/ACLK/CA0  
Bus  
Keeper  
EN  
P1SEL.x  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Set  
Q
P1IFG.x  
P1SEL.x  
P1IES.x  
Interrupt  
Edge Select  
Port P1 (P1.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
CAPD  
P1DIR.x  
P1SEL.x  
P1.6/ACLK/CA0  
6
P1.x (I/O)  
ACLK  
0
I: 0, O: 1  
0
1
x
0
1
x
CA0  
1 (CAPD.0)  
NOTES: 1. x: Don’t care  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.7, input/output with Schmitt trigger  
Pad Logic  
To Comparator_A  
From Comparator_A  
CAPD.y  
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module Out  
P1.7/TA0CLK/  
CAOUT/CA1  
Bus  
Keeper  
EN  
P1SEL.x  
P1IN.x  
EN  
D
TA0CLK  
to P1.5  
P1IE.x  
EN  
Set  
P1IRQ.x  
Q
P1IFG.x  
P1SEL.x  
P1IES.x  
Interrupt  
Edge Select  
Port P1 (P1.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
CAPD  
P1DIR.x  
P1SEL.x  
P1.7/TA0CLK/CAOUT/CA1  
7
P1.x (I/O)  
0
I: 0, O: 1  
0
1
1
x
Timer0_A3.TACLK  
CAOUT  
0
0
1
x
0
CA1  
1 (CAPD.1)  
NOTES: 1. x: Don’t care  
2. The input TA0CLK of P1.5 and P1.7 are combined by a logical OR. Therefore, only one of them should be enabled at a time to feed  
in TA0CLK.  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P2 pin schematic: P2.0 to P2.7 input/output with Schmitt trigger  
Pad Logic  
LCDS8/12  
Segment Sy  
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
P2OUT.x  
0
1
Module X OUT  
P2.0/TA1.1/S15  
P2.1/TA1.2/S14  
P2.2/TA1.3/S13  
P2.3/TA1.4/S12  
P2.4/S11  
Bus  
Keeper  
EN  
P2SEL.x  
P2IN.x  
P2.5/S10  
EN  
P2.6/S9  
P2.7/S8  
Module X IN  
P2IRQ.x  
D
P2IE.x  
EN  
Set  
Q
P2IFG.x  
P2SEL.x  
P2IES.x  
Interrupt  
Edge Select  
56  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
Port P2 (P2.0 to P2.7) pin functions  
CONTROL BITS / SIGNALS  
LCDS8  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
LCDS12  
P2.0/TA1.1/S15  
0
P2.x (I/O)  
Timer1_A5.TA1  
S15  
I: 0, O: 1  
0
1
x
0
1
x
0
1
x
0
1
x
0
x
0
x
0
x
0
x
0
1
0
x
1 (LCDS12)  
P2.1/TA1.2/S14  
P2.2/TA1.3/S13  
P2.3/TA1.4/S12  
1
2
3
P2.x (I/O)  
Timer1_A5.TA2  
S14  
I: 0, O: 1  
0
1
0
x
1 (LCDS12)  
P2.x (I/O)  
Timer1_A5.TA3  
S13  
I: 0, O: 1  
0
1
0
x
1 (LCDS12)  
P2.x (I/O)  
Timer1_A5.TA4  
S12  
I: 0, O: 1  
0
1
0
x
1 (LCDS12)  
P2.4/S11  
P2.5/S10  
P2.6/S9  
P2.7/S8  
4
5
6
7
P2.x (I/O)  
S11  
I: 0, O: 1  
0
x
1 (LCDS8)  
P2.x (I/O)  
S10  
I: 0, O: 1  
0
x
1 (LCDS8)  
0
P2.x (I/O)  
S9  
I: 0, O: 1  
x
I: 0, O: 1  
x
1 (LCDS8)  
0
P2.x (I/O)  
S8  
1 (LCDS8)  
NOTES: 1. x: Don’t care  
57  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P3 pin schematic: P3.0 to P3.7 input/output with Schmitt trigger  
Pad Logic  
LCDS16/20  
Segment Sy  
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
P3OUT.x  
0
1
Module X OUT  
P3.0/TA1.2/S23  
P3.1/TA1.3/S22  
P3.2/TA1.4/S21  
P3.3/TA0.0/TA1CLK/S20  
P3.4/CAOUT/S19  
P3.5/S18  
Bus  
Keeper  
EN  
P3SEL.x  
P3IN.x  
EN  
D
P3.6/S17  
P3.7/S16  
Module X IN  
58  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
Port P3 (P3.0 to P3.7) pin functions  
CONTROL BITS / SIGNALS  
LCDS16  
PIN NAME (P3.X)  
P3.0/TA1.2/S23  
X
FUNCTION  
P3DIR.x  
P3SEL.x  
LCDS20  
0
P3.x (I/O)  
Timer1_A5.CCI2A  
Timer1_A5.TA2  
S23  
I: 0, O: 1  
0
1
1
x
0
1
1
x
0
1
1
x
0
1
1
x
0
1
x
0
x
0
x
0
x
0
0
0
1
0
x
1 (LCDS20)  
P3.1/TA1.3/S22  
1
2
3
4
P3.x (I/O)  
Timer1_A5.CCI3A  
Timer1_A5.TA3  
S22  
I: 0, O: 1  
0
0
0
1
0
x
1 (LCDS20)  
P3.2/TA1.4/S21  
P3.x (I/O)  
Timer1_A5.CCI4A  
Timer1_A5.TA4  
S21  
I: 0, O: 1  
0
0
0
1
0
x
1 (LCDS20)  
P3.3/TA0.0/TA1CLK/S20  
P3.4/CAOUT/S19  
P3.x (I/O)  
Timer1_A5.TACLK  
Timer0_A3.TA0  
S20  
I: 0, O: 1  
0
0
0
1
0
x
1 (LCDS20)  
P3.x (I/O)  
CAOUT  
I: 0, O: 1  
0
1
0
S19  
x
1 (LCDS16)  
P3.5/S18  
5
6
7
P3.x (I/O)  
S18  
I: 0, O: 1  
0
x
1 (LCDS16)  
0
P3.6/S17  
P3.x (I/O)  
S17  
I: 0, O: 1  
x
I: 0, O: 1  
x
1 (LCDS16)  
0
P3.7/S16  
P3.x (I/O)  
S16  
1 (LCDS16)  
NOTES: 1. x: Don’t care  
59  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P4 pin schematic: P4.0 to P4.7 input/output with Schmitt trigger  
LCDS0/4  
Pad Logic  
Segment Sy  
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
0
1
Module X Out  
P4.0/S7  
P4.1/S6  
Bus  
Keeper  
EN  
P4SEL.x  
P4IN.x  
P4.2/S5  
P4.3/S4  
P4.4/S3  
P4.5/S2  
P4.6/S1  
P4.7/ADC10CLK/S0  
Port P4 (P4.0 to P4.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P4.X)  
P4.0/S7  
X
FUNCTION  
LCDS4  
P4DIR.x  
P4SEL.x  
LCDS0  
0
P4.x (I/O)  
S7  
I: 0, O: 1  
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
1
x
0
x
1 (LCDS4)  
P4.1/S6  
1
2
3
4
5
6
7
P4.x (I/O)  
S6  
I: 0, O: 1  
0
x
1 (LCDS4)  
P4.2/S5  
P4.x (I/O)  
S5  
I: 0, O: 1  
0
x
1 (LCDS4)  
P4.3/S4  
P4.x (I/O)  
S4  
I: 0, O: 1  
0
x
1 (LCDS4)  
P4.4/S3  
P4.x (I/O)  
S3  
I: 0, O: 1  
0
x
1 (LCDS0)  
P4.5/S2  
P4.x (I/O)  
S2  
I: 0, O: 1  
0
x
1 (LCDS0)  
P4.6/S1  
P4.x (I/O)  
S1  
I: 0, O: 1  
0
x
1 (LCDS0)  
P4.7/ADC10CLK/S0  
P4.x (I/O)  
ADC10CLK  
S0  
I: 0, O: 1  
0
0
1
x
1 (LCDS0)  
NOTES: 1. x: Don’t care  
60  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P5 pin schematic: P5.0, input/output with Schmitt trigger  
Pad Logic  
LCDS24  
Segment Sy  
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
P5OUT.x  
0
1
Module X OUT  
P5.0/TA1.1/S24  
Bus  
Keeper  
EN  
P5SEL.x  
P5IN.x  
EN  
D
Module X IN  
Port P5 (P5.0) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
X
FUNCTION  
P5DIR.x  
P5SEL.x  
LCDS24  
P5.0/TA1.1/S24  
0
P5.x (I/O)  
I: 0, O: 1  
0
1
1
x
0
0
0
1
Timer1_A5.CCI1A  
Timer1_A5.TA1  
S24  
0
1
x
NOTES: 1. x: Don’t care  
61  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P5 pin schematic: P5.1 to P5.7, input/output with Schmitt trigger  
Pad Logic  
LCD Signal  
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
P5OUT.x  
0/1  
0
1
P5.1/R23  
P5.2/R13LCDREF  
P5.3/R03  
Bus  
Keeper  
EN  
P5SEL.x  
P5IN.x  
P5.4/COM3  
P5.5/COM2  
P5.6/COM1  
P5.7/COM0  
Port P5 (P5.1 to P5.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
X
FUNCTION  
P5DIR.x  
P5SEL.x  
P5.1/R23  
1
P5.x (I/O)  
R23  
I: 0, O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
x
P5.2/LCDREF/R13  
P5.3/R03  
2
3
4
5
6
7
P5.x (I/O)  
R13 or LCDREF  
P5.x (I/O)  
R03  
I: 0, O: 1  
x
I: 0, O: 1  
x
P5.4/COM3  
P5.5/COM2  
P5.6/COM1  
P5.7/COM0  
P5.x (I/O)  
COM3  
I: 0, O: 1  
x
P5.x (I/O)  
COM2  
I: 0, O: 1  
x
P5.x (I/O)  
COM1  
I: 0, O: 1  
x
I: 0, O: 1  
x
P5.x (I/O)  
COM0  
NOTES: 1. x: Don’t care  
62  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P6 pin schematic: P6.0, input/output with Schmitt trigger  
Pad Logic  
To Comparator_A  
From Comparator_A  
CAPD.4  
ADC10AE0.2  
INCH=2  
To ADC10  
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
P6OUT.x  
0
1
Module Out  
P6.0/TA1.2/A2/CA4  
Bus  
Keeper  
EN  
P6SEL.x  
P6IN.x  
EN  
D
Module X IN  
Port P6 (P6.0) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
CAPD  
ADC10AE0.y  
P6DIR.x  
P6SEL.x  
P6.0/TA1.2/A2/CA4  
0
P6.x (I/O)  
0
0
I: 0, O: 1  
0
1
x
x
Timer1_A5.TA2  
0
0
1 (y=2)  
x
1
x
x
A2  
x
CA4  
1 (CAPD.4)  
NOTES: 1. x: Don’t care  
63  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P6 pin schematic: P6.1 and P6.2, inpututput with Schmitt trigger  
Pad Logic  
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
Module  
direction  
P6OUT.x  
0
1
Module X OUT  
P6.1/UCB0SOMI/UCB0SCL  
P6.2/UCB0SIMO/UCB0SDA  
P6SEL.x  
P6IN.x  
EN  
D
Module X IN  
Port P6 (P6.1 and P6.2) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
P6.1/UCB0SOMI/UCB0SCL  
1
P6.x (I/O)  
I: 0, O: 1  
0
1
0
1
UCB0SOMI/UCB0SCL (see Note 2)  
P6.x (I/O)  
x
I: 0, O: 1  
x
P6.2/UCB0SIMO/UCB0SDA  
NOTES: 1. x: Don’t care  
2
UCB0SIMO/UCB0SDA (see Note 2)  
2. The pin direction is controlled by the USCI module.  
64  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P6 pin schematic: P6.3 and P6.4, input/output with Schmitt trigger  
Pad Logic  
To Comparator_A  
From Comparator_A  
CAPD.5/6  
ADC10AE0.3/4  
INCH=3/4  
To ADC10  
P6DIR.x  
0
1
Direction  
0: Input  
from Module  
1: Output  
P6OUT.x  
0
1
Module Out  
P6.3/UCB0STE/  
UCA0CLK/A3/CA5/  
Veref-/Vref-  
Bus  
Keeper  
EN  
P6SEL.x  
P6IN.x  
P6.4/UCB0CLK/  
UCA0STE/A4/CA6/  
Veref+/Vref+  
EN  
D
Module X IN  
Port P6 (P6.3 and P6.4) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
CAPD  
ADC10AE0.y  
P6DIR.x  
P6SEL.x  
P6.3/UCB0STE/  
3
P6.x (I/O)  
UCB0STE/UCA0CLK (see Note 2)  
0
0
I: 0, O: 1  
0
1
x
x
0
1
x
x
UCA0CLK/A3/CA5/  
0
0
x
/V  
/V  
eref-- ref--  
A3/V  
CA5  
/V  
x
1 (y=3)  
x
eref-- ref--  
1 (CAPD.5)  
x
x
P6.4/UCB0CLK/  
4
P6.x (I/O)  
0
0
I: 0, O: 1  
UCA0STE/A4/CA6/  
UCB0CLK/UCA0STE (see Note 2)  
0
0
1 (y=4)  
x
x
x
x
/V  
/V  
eref+ ref+  
A4/V  
CA6  
/V  
x
eref+ ref+  
1 (CAPD.6)  
NOTES: 1. x: Don’t care  
2. The pin direction is controlled by the USCI module.  
65  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P6 pin schematic: P6.5 and P6.6, input/output with Schmitt trigger  
INCHx = 5/6  
To ADC10  
Pad Logic  
ADC10AE0.5/6  
P6DIR.x  
0
1
Direction  
0: Input  
Module  
direction  
1: Output  
P6OUT.x  
0
1
Module X OUT  
P6.5/UCA0RXD/  
UCA0SOMI/A5  
P6.6/UCA0TXD/  
UCA0SIMO/A6  
Bus  
Keeper  
EN  
P6SEL.x  
P6IN.x  
EN  
D
Module X IN  
Port P6 (P6.5 and P6.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
ADC10AE0.y  
P6DIR.x  
P6SEL.x  
P6.5/UCA0RXD/  
UCA0SOMI/A5  
5
P6.x (I/O)  
0
I: 0, O: 1  
0
1
x
0
1
x
UCA0RXD/UCA0SOMI (see Note 2)  
0
1 (y=5)  
0
x
A5  
x
P6.6/UCA0TXD/  
UCA0SIMO/A6  
6
P6.x (I/O)  
I: 0, O: 1  
UCA0TXD/UCA0SIMO (see Note 2)  
A6  
0
x
x
1 (y=6)  
NOTES: 1. x: Don’t care  
2. The pin direction is controlled by the USCI module.  
66  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P6 pin schematic: P6.7, input/output with Schmitt trigger  
Pad Logic  
to SVS Mux  
VLD = 15  
To Comparator_A  
From Comparator_A  
CAPD.7  
ADC10AE0.7  
INCH=7  
To ADC10  
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
P6OUT.x  
0/1  
0
1
P6.7/A7/CA7/SVSIN  
Bus  
Keeper  
EN  
P6SEL.x  
P6IN.x  
Port P6 (P6.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
VLDx = 15  
CAPD  
ADC10AE0  
P6DIR.x  
P6SEL.x  
P6.7/A7/CA7/SVSIN  
7
P7.x (I/O)  
0
0
0
1
0
0
I: 0, O: 1  
0
x
x
x
A7  
x
1 (y = 7)  
x
x
x
CA7  
SVSIN  
1 (CAPD.7)  
0
x
0
NOTES: 1. x: Don’t care  
67  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
/APPLICATION INFORMATION  
Port P7 pin schematic: P7.0 to P7.3, input/output with Schmitt trigger  
Pad Logic  
Sy  
LCDS32  
P7DIR.x  
0
1
Direction  
0: Input  
1: Output  
P7OUT.x  
0/1  
0
1
P7.0/TDO/TDI/S32  
P7.1/TDI/TCLK/S33  
P7.2/TMS/S34  
Bus  
Keeper  
EN  
P7SEL.x  
P7IN.x  
P7.3/TCK/S35  
To JTAG  
From JTAG  
Port P7 (P7.0 to P7.3) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P7.X)  
X
FUNCTION  
JTAG Mode  
P7DIR.x  
P7SEL.x  
LCDS32  
P7.0/TDO/TDI/S32  
0
P7.x (I/O)  
0
1
0
0
1
0
0
1
0
0
1
0
I: 0, O: 1  
0
x
x
0
x
x
0
x
x
0
x
x
0
x
1
0
x
1
0
x
1
0
x
1
TDO/TDI (see Note 1)  
S32  
x
x
P7.1/TDI/TCLK/S33  
P7.2/TMS/S34  
1
2
3
P7.x (I/O)  
I: 0, O: 1  
TDI/TCLK (see Note 1)  
S33  
x
x
P7.x (I/O)  
I: 0, O: 1  
TMS (see Note 1)  
S34  
x
x
P7.3/TCK/S35  
P7.3 (I/O)  
I: 0, O: 1  
TCK (see Note 1)  
S35  
x
x
NOTES: 1. In JTAG Mode the internal pullup/pulldown resistors are disabled.  
2. X: Don’t care.  
68  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P7 pin schematic: P7.4 and P7.5, input/output with Schmitt trigger  
Pad Logic  
To Comparator_A  
From Comparator_A  
CAPD.2/3  
ADC10AE0.0/1  
INCH=0/1  
To ADC10  
P7DIR.x  
0
1
Direction  
0: Input  
1: Output  
P7OUT.x  
0
1
Module Out  
P7.4/TA1.4/A0/CA2  
P7.5/TA1.3/A1/CA3  
Bus  
Keeper  
EN  
P7SEL.x  
P7IN.x  
EN  
D
Module X IN  
Port P7 (P7.4 and P7.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P7.X)  
X
FUNCTION  
CAPD  
ADC10AE0.y  
P7DIR.x  
P7SEL.x  
P7.4/TA1.4/A0/CA2  
4
P7.x (I/O)  
0
0
I: 0, O: 1  
0
1
1
x
x
0
1
1
x
x
Timer1_A5.TA4  
0
0
1
Timer1_A5.CCI4B  
0
0
0
A0  
x
1 (y=0)  
x
CA2  
1 (CAPD.2)  
x
x
P7.5/TA1.3/A1/CA3  
5
P7.x (I/O)  
Timer1_A5.TA3  
Timer1_A5.CCI3B  
A1  
0
0
I: 0, O: 1  
0
0
1
0
x
x
0
0
1 (y=1)  
x
x
CA3  
1 (CAPD.3)  
NOTES: 1. x: Don’t care  
69  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
Port P7 pin schematic: P7.6, input/output with Schmitt trigger  
Pad Logic  
LCDS24  
Segment Sy  
P7DIR.x  
0
1
Direction  
0: Input  
1: Output  
P7OUT.x  
0
1
Module X OUT  
P7.6/TA0.2/S25  
Bus  
Keeper  
EN  
P7SEL.x  
P7IN.x  
EN  
D
Module X IN  
Port P7 (P7.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P7.X)  
X
FUNCTION  
P7DIR.x  
P7SEL.x  
LCDS24  
P7.6/TA0.2/S25  
6
P7.x (I/O)  
I: 0, O: 1  
0
1
1
x
0
0
0
1
Timer0_A3.CCI2A  
Timer0_A3.TA2  
S25  
0
1
x
NOTES: 1. x: Don’t care  
70  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
APPLICATION INFORMATION  
JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger  
TDO  
Controlled by JTAG  
Controlled by JTAG  
JTAG  
TDO/TDI  
Controlled  
by JTAG  
DV  
DV  
CC  
CC  
TDI  
Fuse  
Burn & Test  
Fuse  
Test  
and  
TDI/TCLK  
DV  
CC  
Emulation  
Module  
TMS  
TCK  
TMS  
TCK  
DV  
CC  
During Programming Activity and  
During Blowing of the Fuse, Pin  
TDO/TDI Is Used to Apply the Test  
Input Data for JTAG Circuitry  
JTAG fuse check mode  
For details on the JTAG fuse check mode, see the MSP430 Memory Programming User’s Guide (SLAU265)  
chapter ”Fuse Check and Reset of the JTAG State Machine (TAP Controller)”.  
71  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F41x2  
MIXED SIGNAL MICROCONTROLLER  
SLAS648D -- APRIL 2009 -- REVISED SEPTEMBER 2010  
Data Sheet Revision History  
LITERATURE  
NUMBER  
SUMMARY  
SLAS648  
Production Data release  
Changed TDI/TCLK to TEST in Note 1 of “absolute maximum ratings” table (page 23)  
SLAS648A  
Changed lower limit of Storage temperature, Programmed device from --40°C to --55°C in “absolute maximum ratings”  
table (page 23)  
Corrected Timer_A3 Signal Connections and Timer_A5 Signal Connections tables (pages 17, 18)  
SLAS648B  
SLAS648C  
Removed bullet indicating that Segment A contains calibration data (page 15)  
Added note to functional block diagram (page 5)  
In “absolute maximum ratings” table, changed LFXT1 crystal frequency, f  
MIN from 450 to 0.45 MHz (with  
(LFXT1)  
ceramic resonator) and from 1000 to 1 MHz (with crystal) (page 23)  
SLAS648D  
In “crystal oscillator, LFXT1, high frequency modes” table, changed f  
crystal resonator (page 36)  
MAX from 8 to 6 MHz for both ceramic and  
LFXT1  
72  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Oct-2010  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430F4132IPM  
MSP430F4132IPMR  
MSP430F4132IRGZR  
MSP430F4132IRGZT  
MSP430F4152IPM  
MSP430F4152IPMR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
VQFN  
VQFN  
LQFP  
LQFP  
PM  
PM  
64  
64  
48  
48  
64  
64  
160  
1000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Contact TI Distributor  
or Sales Office  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
Request Free Samples  
Request Free Samples  
Request Free Samples  
Request Free Samples  
Request Free Samples  
RGZ  
RGZ  
PM  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
160  
Green (RoHS  
& no Sb/Br)  
PM  
1000  
Green (RoHS  
& no Sb/Br)  
MSP430F4152IRGZ  
MSP430F4152IRGZR  
OBSOLETE  
ACTIVE  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
TBD  
Call TI  
Call TI  
Samples Not Available  
Request Free Samples  
2500  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
MSP430F4152IRGZT  
ACTIVE  
VQFN  
RGZ  
48  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Request Free Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Oct-2010  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Oct-2010  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F4132IPMR  
MSP430F4152IPMR  
LQFP  
LQFP  
PM  
PM  
64  
64  
1000  
1000  
330.0  
330.0  
24.4  
24.4  
12.3  
12.3  
12.3  
12.3  
2.5  
2.5  
16.0  
16.0  
24.0  
24.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Oct-2010  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F4132IPMR  
MSP430F4152IPMR  
LQFP  
LQFP  
PM  
PM  
64  
64  
1000  
1000  
346.0  
346.0  
346.0  
346.0  
41.0  
41.0  
Pack Materials-Page 2  
MECHANICAL DATA  
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996  
PM (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
33  
48  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
0°7°  
11,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040152/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. May also be thermally enhanced plastic with leads connected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY