MCF8315A1VRGFR [TI]

40V 最大电压、4A 峰值电流、无传感器 FOC 控制、三相 BLDC 电机驱动器 | RGF | 40 | -40 to 125;
MCF8315A1VRGFR
型号: MCF8315A1VRGFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

40V 最大电压、4A 峰值电流、无传感器 FOC 控制、三相 BLDC 电机驱动器 | RGF | 40 | -40 to 125

电机 驱动 传感器 驱动器
文件: 总212页 (文件大小:6854K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCF8315A  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
MCF8315A 无传感器磁场定向控(FOC)FET BLDC 驱动器  
1 特性  
3 说明  
• 采用集成无传感器电机控制算法的三BLDC 电机  
驱动器  
MCF8315A 为驱动峰值电流高达 4A 的速度受控型  
12V 24V 无刷直流电机 (BLDC) 或永磁同步电机  
(PMSM) 客户提供了一个单芯片无代码无传感器  
FOC 解决方案。MCF8315A 集成了三个 ½ 具有  
40V 的绝对最大电压和 240mΩ 的低 RDS(ON)高边 +  
低边 FETMCF8315A 集成了电源管理电路包括  
可用于为外部电路供电的电压可调节降压稳压器  
3.3V/5V170mALDO (3.3V/20mA)。  
– 无代码场定向控(FOC)  
– 模拟、PWM 和基于频率的速度输入模式仅当  
MCF8315A 配置为待机器(DEV_MODE = 0b)  
时可用  
– 基I2C 的速度输入模式在睡(DEV_MODE  
= 1b) 和待机器(DEV_MODE = 0b) 中均可  
用。  
– 使用电机参数提取工(MPET) 离线测量电机参  
5 点可配置速度配置文件支持  
– 通过正向重新同步和反向驱动支持风力机  
– 抗电压浪(AVS) 保护  
FOC 算法配置可存储在非易失性 EEPROM 从而  
允许器件在配置后独立运行。该器件通PWM 输入、  
模拟电压、可变频率方波或 I2C 命令接收速度命令。  
MCF8315A 集成多种保护特性旨在出现故障事件时  
保护该器件、电机和系统。  
– 通过自动死区时间补偿提高了声学性能  
4.5V 35V 工作电压绝对最大40V)  
• 高输出电流能力4A 峰值  
备注  
TI 建议在发出速度命令之前在器件上电或  
从睡眠状态唤醒后添200ms 延迟。  
MOSFET 导通状态电阻  
器件信息(1)  
TA = 25°C RDS(ON) (HS + LS):  
240mΩ典型值)  
• 低功耗睡眠模式请参阅7-6  
封装尺寸标称值)  
器件型号  
封装  
VQFN (40)  
MCF8315A1V  
7.00mm x 5.00mm  
VVM = 24VTA = 25°C 5µA最大值)  
• 速度环路精度3% 使用内部时钟1% 使用外部时  
钟参考  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 支持高75kHz PWM 频率以支持低电感电机  
• 不需要外部电流检测电阻使用内置电流检测功能  
• 内3.3V20mA LDO 稳压器  
• 内3.3V/5V170mA 降压稳压器  
• 专DRVOFF 引脚以禁用高阻态输出  
• 展频和压摆率用于降EMI  
• 整套集成保护特性  
参考文档:  
• 参MCF8315A 调优指南  
• 请参MCF8315A EVM GUI  
LDO out  
3.3 V, up to 20 mA  
4.5 to 35 V (40 V abs max)  
MCT8315A  
Buck out  
3.3 or 5.0 V, up to 170 mA  
SPEED  
PWM, analog, frequency or  
A
B
C
commanded over I2  
C
β
DIRECTION  
BRAKE  
B
– 电源欠压锁(UVLO)  
– 电源过压保(OVP)  
– 电机锁定检测5 种不同类型)  
– 过流保(OCP)  
– 热警告和热关(OTW/TSD)  
Sensorless  
Trap  
A
α
FG  
C
Speed feecback  
EEPROM  
nFAULT  
I2  
C
Buck/LDO Regulator  
Optional during operation for  
I2C speed, diagnostics, or on-  
the-fly configuration  
4 A peak output current,  
typically 12 to 24 V  
Integrated Current Sensing  
– 故障条件指示引(nFAULT)  
– 可选择通I2C 接口进行故障诊断  
简化原理图  
2 应用  
无刷直(BLDC) 电机模块  
住宅和起居风扇  
空气净化器和加湿器风扇  
洗衣机和洗碗机泵  
汽车风扇和风机  
CPAP 呼吸机  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFP6  
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
Table of Contents  
7.6 EEPROM access and I2C interface.......................... 76  
7.7 EEPROM (Non-Volatile) Register Map..................... 82  
7.8 RAM (Volatile) Register Map...................................135  
8 Application and Implementation................................193  
8.1 Application Information........................................... 193  
8.2 Typical Applications................................................ 193  
9 Power Supply Recommendations..............................200  
9.1 Bulk Capacitance....................................................200  
10 Layout.........................................................................201  
10.1 Layout Guidelines................................................. 201  
10.2 Layout Example.................................................... 202  
10.3 Thermal Considerations........................................203  
11 Device and Documentation Support........................204  
11.1 支持资源................................................................204  
11.2 Trademarks........................................................... 204  
11.3 静电放电警告.........................................................204  
11.4 术语表................................................................... 204  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Characteristics of the SDA and SCL bus for  
Standard and Fast mode.............................................11  
6.7 Typical Characteristics..............................................13  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................15  
7.3 Feature Description...................................................16  
7.4 Device Functional Modes..........................................73  
7.5 External Interface......................................................73  
Information.................................................................. 204  
4 Revision History  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Changes from Revision * (December 2022) to Revision A (April 2023)  
Page  
Updated I2C Data Word section to clarify default I2C Target ID........................................................................77  
Updated CRC Byte Calculation section with CRC initial value.........................................................................81  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
2
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
5 Pin Configuration and Functions  
DVDD  
DGND  
1
2
32  
31  
30  
29  
EXT_WD  
SCL  
SDA  
FG  
3
FB_BK  
4
GND_BK  
SW_BK  
CPL  
28 SPEED/WAKE  
5
27  
26  
25  
24  
23  
22  
21  
AVDD  
AGND  
6
CPH  
7
CP  
NC  
8
9
VM  
VM  
NC  
NC  
10  
11  
12  
VM  
NC  
Thermal Pad  
PGND  
DRVOFF  
5-1. MCF8315A, 40-Pin VQFN With Exposed Thermal Pad, Top View  
5-1. Pin Functions  
PIN  
40-pin Package  
MCF8315A  
26  
TYPE(1)  
GND  
O
DESCRIPTION  
NAME  
AGND  
Device analog ground. Refer Layout Guidelines for connection recommendation.  
Alarm signal: push-pull output. Pulled logic high during fault condition, if enabled.  
If ALARM pin is not used, leave it floating.  
ALARM  
AVDD  
39  
27  
3.3-V internal regulator output. Connect a X5R or X7R, 1-µF, 6.3-V ceramic capacitor  
between the AVDD and AGND pins. This regulator can source up to 20 mA for external  
circuits.  
PWR O  
High Brake the motor  
Low Normal motor operation  
If BRAKE pin is not used, connect to AGND directly.  
BRAKE  
CP  
35  
8
I
If BRAKE pin is used to brake the motor, use an external 100-kpull-down resistor (to  
AGND).  
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the  
CP and VM pins.  
PWR  
CPH  
CPL  
7
6
PWR  
PWR  
Charge pump switching node. Connect a X5R or X7R, 47-nF, ceramic capacitor between  
the CPH and CPL pins. TI recommends a capacitor voltage rating at least twice the  
normal operating voltage of the device.  
DACOUT1  
DACOUT2  
36  
37  
O
O
DAC output DACOUT1  
DAC output DACOUT2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
5-1. Pin Functions (continued)  
PIN  
40-pin Package  
MCF8315A  
TYPE(1)  
DESCRIPTION  
NAME  
Multi-purpose pin:  
DAC output when configured as DACOUT2  
CSA output when configured as SOX  
DACOUT2/S  
OX  
38  
2
O
DGND  
DIR  
GND  
Device digital ground. Refer Layout Guidelines for connection recommendation.  
Direction of motor spinning;  
When low, phase driving sequence is OUT A OUT C OUT B  
When high, phase driving sequence is OUT A OUT B OUT C  
If DIR pin is not used, connect to AGND or AVDD directly (depending on phase driving  
34  
I
sequence needed).  
If DIR pin is used for changing motor spin direction, use an external 100-kpull-down  
resistor (to AGND).  
DRVOFF  
DVDD  
21  
1
I
Coast (Hi-Z) all six MOSFETs when DRVOFF is high.  
1.5-V internal regulator output. Connect a X5R or X7R, 2.2-µF, 6.3-V ceramic capacitor  
between the DVDD and DGND pins.  
PWR  
EXT_CLK  
EXT_WD  
33  
32  
I
I
External clock reference input in external clock reference mode.  
External watchdog input.  
Feedback for buck regulator output control. Connect to buck regulator output after the  
inductor/resistor.  
FB_BK  
FG  
3
PWR I/O  
O
Motor speed indicator : open-drain output; requires an external pull-up resistor to 1.8-V to  
5.0-V.  
29  
GND_BK  
NC  
4
GND  
-
Buck regulator ground. Refer Layout Guidelines for connection recommendation.  
No connection. Leave these pins floating.  
22, 23, 24, 25  
Fault indicator. Pulled logic-low with fault condition; Open-drain output requires an  
external pull-up resistor to 1.8 V to 5.0 V.  
nFAULT  
40  
O
OUTA  
OUTB  
OUTC  
PGND  
SCL  
13, 14  
16, 17  
19, 20  
12, 15, 18  
31  
PWR O  
PWR O  
PWR O  
GND  
I
Half-bridge output A  
Half-bridge output B  
Half-bridge output C  
Device power ground. Refer Layout Guidelines for connection recommendation.  
I2C clock input  
I2C data line  
SDA  
30  
I/O  
SPEED/  
WAKE  
Device speed input; supports analog, PWM or frequency based speed input. The speed  
pin input can be configured through SPEED_MODE.  
28  
5
I
SW_BK  
PWR  
Buck switch node. Connect this pin to an inductor or resistor.  
Device and motor power supply. Connect to motor supply voltage; bypass to PGND with  
one 0.1-µF capacitor plus one bulk capacitor. TI recommends a capacitor voltage rating at  
least twice the normal operating voltage of the device.  
VM  
9, 10, 11  
PWR I  
GND  
Thermal pad  
Must be connected to AGND.  
(1) I = input, O = output, GND = ground, PWR = power, NC = no connect  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
4
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
1  
MAX UNIT  
Power supply pin voltage (VM)  
40  
0.3  
V
V
Voltage difference between ground pins (GND_BK, DGND, PGND, AGND)  
Charge pump voltage (CPH, CP)  
VVM + 6  
VVM +0.3  
VVM +0.3  
4
V
Charge pump negative switching pin voltage (CPL)  
Switching node pin voltage (SW_BK)  
V
V
Analog regulators pin voltage (AVDD)  
V
Analog regulators pin voltage (DVDD)  
1.7  
V
Logic pin input voltage (BRAKE, DRVOFF, DIR, EXT_CLK, EXT_WD, SCL, SDA, SPEED)  
Open drain pin output voltage (nFAULT, FG)  
Output pin voltage (OUTA, OUTB, OUTC)  
Ambient temperature, TA  
6
V
6
V
VVM + 1  
125  
V
°C  
°C  
°C  
40  
40  
65  
Junction temperature, TJ  
150  
Storage tempertaure, Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JS-002(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
VVM  
Power supply voltage  
VVM  
4.5  
24  
35  
4
V
A
(1)  
IOUT  
Peak output winding current  
OUTA, OUTB, OUTC  
BRAKE, DRVOFF, DIR, EXT_CLK,  
EXT_WD, SPEED, SDA, SCL  
VIN_LOGIC  
Logic input voltage  
5.5  
V
0.1  
0.1  
VOD  
IOD  
TA  
Open drain pullup voltage  
nFAULT, FG  
nFAULT, FG  
5.5  
5
V
Open drain output current capability  
Operating ambient temperature  
Operating junction temperature  
mA  
°C  
°C  
125  
150  
40  
40  
TJ  
(1) Power dissipation and thermal limits must be observed  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
 
 
 
 
 
MCF8315A  
www.ti.com.cn  
UNIT  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
6.4 Thermal Information  
MCF8315A  
THERMAL METRIC(1)  
RGF (VQFN)  
40 Pins  
28  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
16.7  
8.9  
RθJB  
ΨJT  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.8  
8.9  
ΨJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
3.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
TJ = 40°C to +150°C, VVM = 4.5 to 35 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES  
VVM > 6 V, VSPEED = 0, TA = 25 °C  
VSPEED = 0, TA = 125 °C  
3
5
7
µA  
µA  
IVMQ  
VM sleep mode current  
3.5  
VVM 12 V, Standby Mode, DRVOFF =  
High, TA = 25 °C, LBK = 47 uH, CBK = 22  
µF  
8
16  
29  
mA  
mA  
VVM > 6 V, Standby Mode, DRVOFF =  
High, TA = 25 °C, RBK = 22 , CBK = 22  
µF  
25  
IVMS  
VM standby mode current  
VVM 12 V, Standby Mode, DRVOFF =  
High, LBK = 47 uH, CBK = 22 µF  
8
16.5  
29  
mA  
mA  
VVM > 6 V, Standby Mode, DRVOFF =  
High, RBK = 22 , CBK = 22 µF  
25  
VVM > 6 V, VSPEED > VEX_SL  
,
PWM_FREQ_OUT = 0011b (25 kHz),  
TA = 25 °C, LBK = 47 uH, CBK = 22 µF,  
No Motor Connected  
11  
27  
11  
18  
30.5  
17  
mA  
mA  
mA  
mA  
VVM > 6 V, VSPEED > VEX_SL  
,
PWM_FREQ_OUT = 0011b (25 kHz),  
TA = 25 °C, RBK = 22 , CBK = 22 µF, No  
Motor Connected  
IVM  
VM operating mode current  
VVM > 6 V, VSPEED > VEX_SL  
,
PWM_FREQ_OUT = 0011b (25 kHz),  
LBK = 47 uH, CBK = 22 µF, No Motor  
Connected  
VVM > 6 V, VSPEED > VEX_SL  
,
PWM_FREQ_OUT = 0011b (25 kHz),  
RBK = 22 , CBK = 22 µF, No Motor  
Connected  
28  
30.5  
VAVDD  
IAVDD  
VDVDD  
VVCP  
Analog regulator voltage  
3.125  
3.3  
3.465  
20  
V
mA  
V
0 mA IAVDD 20 mA  
External analog regulator load  
Digital regulator voltage  
1.4  
4.0  
1.55  
4.7  
1.65  
5.5  
Charge pump regulator voltage  
VCP with respect to VM  
V
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
6
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
TJ = 40°C to +150°C, VVM = 4.5 to 35 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BUCK REGULATOR  
VVM > 6 V, 0 mA IBK 170 mA,  
BUCK_SEL = 00b  
3.1  
4.6  
3.7  
5.2  
3.3  
5.0  
4.0  
5.7  
3.5  
5.4  
4.3  
6.2  
V
V
V
V
VVM > 6 V, 0 mA IBK 170 mA,  
BUCK_SEL = 01b  
Buck regulator average voltage  
(LBK = 47 µH, CBK = 22 µF)  
VVM > 6 V, 0 mA IBK 170 mA,  
BUCK_SEL = 10b  
VBK  
VVM > 6.7 V, 0 mA IBK 170 mA,  
BUCK_SEL = 11b  
VVM–  
IBK*(RLBK  
+2) 1  
VVM < 6.0 V (BUCK_SEL = 00b, 01b,  
10b, 11b), 0 mA IBK 170 mA  
V
VVM > 6 V, 0 mA IBK 20 mA,  
BUCK_SEL = 00b  
3.1  
4.6  
3.7  
5.2  
3.3  
5.0  
4.0  
5.7  
3.5  
5.4  
4.3  
6.2  
V
V
V
V
VVM > 6 V, 0 mA IBK 20 mA,  
BUCK_SEL = 01b  
Buck regulator average voltage  
(LBK = 22 µH, CBK = 22 µF)  
VVM > 6 V, 0 mA IBK 20 mA,  
BUCK_SEL = 10b  
VBK  
VVM > 6.7 V, 0 mA IBK 20 mA,  
BUCK_SEL = 11b  
VVM–  
IBK*(RLBK  
+2)1  
VVM < 6.0 V (BUCK_SEL = 00b, 01b,  
10b, 11b), 0 mA IBK 20 mA  
V
VVM > 6 V, 0 mA IBK 10 mA,  
BUCK_SEL = 00b  
3.1  
4.6  
3.7  
5.2  
3.3  
5.0  
4.0  
5.7  
3.5  
5.4  
4.3  
6.2  
V
V
V
V
VVM > 6 V, 0 mA IBK 10 mA,  
BUCK_SEL = 01b  
Buck regulator average voltage  
VVM > 6 V, 0 mA IBK 10 mA,  
BUCK_SEL = 10b  
VBK  
(RBK = 22 , CBK = 22 µF)  
VVM > 6.7 V, 0 mA IBK 10 mA,  
BUCK_SEL = 11b  
VVM–  
IBK*(RBK  
+2)  
VVM < 6.0 V (BUCK_SEL = 00b, 01b,  
10b, 11b), 0 mA IBK 10 mA  
V
VVM > 6 V, 0 mA IBK 170 mA, Buck  
regulator with inductor, LBK = 47 uH, CBK  
= 22 µF  
100  
100  
100  
mV  
mV  
mV  
100  
100  
100  
VVM > 6 V, 0 mA IBK 20 mA, Buck  
regulator with inductor, LBK = 22 uH, CBK  
= 22 µF  
VBK_RIP  
Buck regulator ripple voltage  
VVM > 6 V, 0 mA IBK 10 mA, Buck  
regulator with resistor; RBK = 22 , CBK  
= 22 µF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
TJ = 40°C to +150°C, VVM = 4.5 to 35 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LBK = 47 uH, CBK = 22 µF,  
BUCK_PS_DIS = 1b  
170  
mA  
mA  
mA  
mA  
mA  
mA  
LBK = 47 uH, CBK = 22 µF,  
BUCK_PS_DIS = 0b  
170 –  
IAVDD  
LBK = 22 uH, CBK = 22 µF,  
BUCK_PS_DIS = 1b  
20  
IBK  
External buck regulator load  
LBK = 22 uH, CBK = 22 µF,  
BUCK_PS_DIS = 0b  
20 –  
IAVDD  
RBK = 22 , CBK = 22 µF,  
BUCK_PS_DIS = 1b  
10  
RBK = 22 , CBK = 22 µF,  
BUCK_PS_DIS = 0b  
10 –  
IAVDD  
Regulation Mode  
20  
20  
535  
535  
2.95  
2.7  
kHz  
kHz  
V
fSW_BK  
Buck regulator switching frequency  
Buck regulator undervoltage lockout  
Linear Mode  
VBK rising, BUCK_SEL = 00b  
VBK falling, BUCK_SEL = 00b  
VBK rising, BUCK_SEL = 01b  
VBK falling, BUCK_SEL = 01b  
VBK rising, BUCK_SEL = 10b  
VBK falling, BUCK_SEL = 10b  
VBK rising, BUCK_SEL = 11b  
VBK falling, BUCK_SEL = 11b  
2.7  
2.5  
4.3  
4.1  
2.7  
2.5  
4.3  
4.1  
2.8  
2.6  
4.4  
4.2  
2.8  
2.6  
4.4  
4.2  
V
4.55  
4.36  
2.95  
2.7  
V
V
VBK_UV  
V
V
4.55  
4.36  
V
V
Rising to falling threshold, BUCK_SEL =  
00b  
90  
90  
90  
90  
200  
200  
200  
200  
400  
400  
400  
400  
mV  
mV  
mV  
mV  
Rising to falling threshold, BUCK_SEL =  
01b  
Buck regulator undervoltage lockout  
hysteresis  
VBK_UV_HYS  
Rising to falling threshold, BUCK_SEL =  
10b  
Rising to falling threshold, BUCK_SEL  
=11b  
BUCK_CL = 0b  
BUCK_CL = 1b  
360  
80  
600  
150  
910  
250  
mA  
mA  
Buck regulator current limit threshold  
IBK_CL  
Buck regulator over current protection  
trip point  
IBK_OCP  
2
3
1
4
A
tBK_RETRY  
Over current protection retry time  
0.7  
1.3  
ms  
DRIVER OUTPUTS  
VVM > 6 V, IOUT = 1 A, TA = 25°C  
VVM < 6 V, IOUT = 1 A, TA = 25°C  
VVM > 6 V, IOUT = 1 A, TJ = 150 °C  
VVM < 6 V, IOUT = 1 A, TJ = 150 °C  
VVM = 24 V, SLEW_RATE = 00b  
VVM = 24 V, SLEW_RATE = 01b  
VVM = 24 V, SLEW_RATE = 10b  
VVM = 24 V, SLEW_RATE = 11b  
VVM = 24 V, SLEW_RATE = 00b  
VVM = 24 V, SLEW_RATE = 01b  
VVM = 24 V, SLEW_RATE = 10b  
VVM = 24 V, SLEW_RATE = 11b  
240  
250  
360  
370  
25  
260  
270  
400  
415  
45  
mΩ  
mΩ  
mΩ  
mΩ  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
Total MOSFET on resistance (High-side  
+ Low-side)  
RDS(ON)  
13  
30  
50  
80  
Phase pin slew rate switching low to high  
(Rising from 20 % to 80 %)  
SR  
SR  
80  
125  
200  
25  
185  
280  
45  
130  
14  
30  
50  
80  
Phase pin slew rate switching high to low  
(Falling from 80 % to 20 %)  
80  
125  
200  
185  
280  
110  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
8
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
TJ = 40°C to +150°C, VVM = 4.5 to 35 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
VVM = 24 V, SR = 25 V/µs  
VVM = 24 V, SR = 50 V/µs  
VVM = 24 V, SR = 125 V/µs  
VVM = 24 V, SR = 200 V/µs  
MIN  
TYP  
1800  
1100  
650  
MAX UNIT  
3000  
1400  
850  
ns  
ns  
ns  
ns  
Output dead time (high to low / low to  
high)  
tDEAD  
500  
550  
SPEED INPUT - PWM MODE  
PWM input frequency  
0.01  
11  
11  
11  
12  
11  
10  
9
100  
13  
kHz  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
ƒPWM  
fPWM = 0.01 to 0.35 kHz  
fPWM = 0.35 to 2 kHz  
fPWM = 2 to 3.5 kHz  
fPWM = 3.5 to 7 kHz  
fPWM = 7 to 14 kHz  
12  
13  
14  
11.5  
13  
12  
13.5  
12.5  
12  
ResPWM  
PWM input resolution  
12  
fPWM = 14 to 29.2 kHz  
fPWM = 29.3 to 60 kHz  
fPWM = 60 to 100 kHz  
11.5  
10.5  
9
11  
8
10  
SPEED INPUT - ANALOG MODE  
VANA_FS  
Analog full-speed voltage  
Analog voltage resolution  
2.95  
3
3.05  
V
VANA_RES  
732  
μV  
SPEED INPUT - FREQUENCY MODE  
PWM input frequency range  
SLEEP MODE  
Time needed to detect wake up signal on SPEED_MODE = 11b (I2C  
Duty cycle = 50%  
3
32767  
1.5  
Hz  
ƒPWM_FREQ  
tDET_PWM  
0.5  
1
μs  
SPEED pin  
mode), VSPEED > VIH  
STANDBY MODE  
SPEED_MODE = 00b (analog  
mode), VSPEED > VEX_SB, ISD detection  
disabled  
tEX_SB_DR_A Time taken to drive motor after exiting  
6
ms  
standby mode, analog mode  
NA  
tEX_SB_DR_P Time taken to drive motor after exiting  
SPEED_MODE = 01b (PWM mode)  
VSPEED > VIH, ISD detection disabled  
6
2
ms  
ms  
standby mode, PWM mode  
WM  
Time needed to detect standby mode,  
analog mode  
SPEED_MODE = 00b (analog mode),  
VSPEED < VEN_SB  
tDET_SB_ANA  
0.5  
1
SPEED_MODE = 01b (PWM mode)  
or SPEED_MODE = 11b (Freq mode),  
VSPEED < VIL, SLEEP_ENTRY_TIME =  
00b  
0.035  
0.05  
0.065  
0.26  
26  
ms  
ms  
ms  
ms  
SPEED_MODE = 01b (PWM mode)  
or SPEED_MODE = 11b (Freq mode),  
VSPEED < VIL, SLEEP_ENTRY_TIME =  
01b  
0.14  
14  
0.2  
20  
Time needed to detect standby  
tDET_SB_PWM  
command, PWM/Freq mode  
SPEED_MODE = 01b (PWM mode)  
or SPEED_MODE = 11b (Freq mode),  
VSPEED < VIL, SLEEP_ENTRY_TIME =  
10b  
SPEED_MODE = 01b (PWM mode)  
or SPEED_MODE = 11b (Freq mode),  
VSPEED < VIL, SLEEP_ENTRY_TIME =  
11b  
140  
200  
260  
Time needed to detect standby mode,  
SPEED_MODE = 10b (I2C mode),  
DIGITAL_SPEED_CTRL = 0b  
tDET_SB_DIG  
I2C mode  
1
1
2
2
ms  
ms  
Time needed to stop driving motor after  
detecting standby command  
tEN_SB  
All speed input modes  
LOGIC-LEVEL INPUTS (BRAKE, DIR, EXT_CLK, EXT_WD, SPEED)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
TJ = 40°C to +150°C, VVM = 4.5 to 35 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0.25*AV  
VIL  
VIH  
Input logic low voltage  
AVDD = 3 to 3.6 V  
V
V
DD  
0.65*AV  
DD  
Input logic high voltage  
AVDD = 3 to 3.6 V  
VHYS  
IIL  
Input hysteresis  
50  
-0.15  
-0.3  
500  
1
800  
0.15  
0
mV  
µA  
Input logic low current  
Input logic high current  
AVDD = 3 to 3.6 V  
AVDD = 3 to 3.6 V  
SPEED pin To GND  
IIH  
µA  
RPD_SPEED Input pulldown resistance  
0.6  
1.4  
MΩ  
OPEN-DRAIN OUTPUTS (nFAULT, FG)  
VOL  
Output logic low voltage  
IOD = -5 mA  
VOD = 3.3 V  
0.4  
0.5  
V
IOZ  
Output logic high current  
0
µA  
I2C Serial Interface  
0.3*AVD  
D
VI2C_L  
Input logic low voltage  
-0.5  
V
V
V
0.7*AVD  
D
VI2C_H  
Input logic high voltage  
Hysteresis  
5.5  
0.05*AV  
DD  
VI2C_HYS  
VI2C_OL  
II2C_OL  
II2C_IL  
Ci  
Output logic low voltage  
Open-drain at 2mA sink current  
VI2C_OL = 0.6V  
0
0.4  
6
V
mA  
µA  
pF  
ns  
Output logic low current  
Input current on SDA and SCL  
Capacitance for SDA and SCL  
-102  
102  
10  
Standard Mode  
Fast Mode  
2503  
2503  
Output fall time from VI2C_H(min) to  
VI2C_L(max)  
tof  
ns  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
Fast Mode  
0
504  
ns  
OSCILLATOR  
EXT_CLK_CONFIG = 000b  
EXT_CLK_CONFIG = 001b  
EXT_CLK_CONFIG = 010b  
EXT_CLK_CONFIG = 011b  
EXT_CLK_CONFIG = 100b  
EXT_CLK_CONFIG = 101b  
EXT_CLK_CONFIG = 110b  
EXT_CLK_CONFIG = 111b  
8
16  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
32  
64  
fOSCREF  
External clock reference  
128  
256  
512  
1024  
EEPROM  
EEProg  
Programming voltage  
Retention  
1.35  
1.5  
1.65  
V
100  
Years  
Years  
Cycles  
Cycles  
TA = 25 ℃  
EERET  
EEEND  
10  
1000  
TJ = -40 to 150 ℃  
TJ = -40 to 150 ℃  
TJ = -40 to 85 ℃  
Endurance  
20000  
PROTECTION CIRCUITS  
VUVLO Supply under voltage lockout (UVLO)  
VM rising  
VM falling  
4.3  
4.1  
110  
3
4.4  
4.2  
200  
5
4.51  
4.3  
350  
7
V
V
VUVLO_HYS Supply under voltage lockout hysteresis Rising to falling threshold  
tUVLO Supply under voltage deglitch time  
mV  
µs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
10  
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
TJ = 40°C to +150°C, VVM = 4.5 to 35 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Supply rising, OVP_EN = 1, OVP_SEL =  
0
32.5  
34  
35  
34.3  
23  
V
V
V
V
Supply falling, OVP_EN = 1, OVP_SEL  
= 0  
31.8  
20  
33  
22  
21  
Supply over voltage protection (OVP)  
threshold  
VOVP  
Supply rising, OVP_EN = 1, OVP_SEL =  
1
Supply falling, OVP_EN = 1, OVP_SEL  
= 1  
19  
22  
Rising to falling threshold, OVP_SEL = 1  
Rising to falling threshold, OVP_SEL = 0  
0.9  
0.7  
2.5  
2.25  
2.2  
65  
1
0.8  
5
1.1  
0.9  
7
V
V
Supply over voltage protection  
hysteresis  
VOVP_HYS  
tOVP  
Supply over voltage deglitch time  
µs  
V
Supply rising  
2.5  
2.4  
100  
2.85  
2.65  
2.75  
2.6  
150  
3
Charge pump under voltage lockout  
(above VM)  
VCPUV  
Supply falling  
V
VCPUV_HYS Charge pump UVLO hysteresis  
Rising to falling threshold  
Supply rising  
mV  
V
2.7  
2.5  
Analog regulator (AVDD) under voltage  
VAVDD_UV  
lockout  
Supply falling  
2.8  
V
VAVDD_  
Analog regulator under voltage lockout  
hysteresis  
Rising to falling threshold  
180  
200  
240  
mV  
UV_HYS  
OCP_LVL = 0b  
5.5  
9
9
13  
12  
18  
A
A
IOCP  
Over current protection trip point  
Over current protection deglitch time  
Over current protection retry time  
OCP_LVL = 1b  
OCP_DEG = 00b  
OCP_DEG = 01b  
OCP_DEG = 10b  
OCP_DEG = 11b  
OCP_RETRY = 0  
OCP_RETRY = 1  
Die temperature (TJ)  
Die temperature (TJ)  
Die temperature (TJ)  
0.02  
0.2  
0.5  
0.9  
4
0.2  
0.6  
1.2  
1.6  
5
0.4  
1.2  
1.8  
2.5  
6
µs  
µs  
µs  
µs  
ms  
ms  
°C  
°C  
°C  
tOCP  
tRETRY  
425  
135  
20  
500  
145  
25  
575  
155  
30  
TOTW  
Thermal warning temperature  
Thermal warning hysteresis  
TOTW_HYS  
TTSD_BUCK Thermal shutdown temperature (Buck)  
170  
180  
190  
TTSD_BUCK_  
Thermal shutdown hysteresis (Buck)  
Die temperature (TJ)  
20  
25  
30  
°C  
HYS  
TTSD  
Thermal shutdown temperature (FET)  
Thermal shutdown hysteresis (FET)  
Die temperature (TJ)  
Die temperature (TJ)  
165  
20  
175  
25  
185  
30  
°C  
°C  
TTSD_HYS  
(1) RLBK is resistance of inductor LBK  
.
(2) If AVDD is switched off, I/O pins must not obstruct the SDA and SCL lines.  
(3) The maximum tf for the SDA and SCL bus lines (300 ns) is longer than the specified maximum tof for the output stages (250 ns). This  
allows series protection resistors (Rs) to be connected between the SDA/SCL pins and the SDA/SCL bus lines without exceeding the  
maximum specified tf.  
(4) Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns.  
6.6 Characteristics of the SDA and SCL bus for Standard and Fast mode  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
Standard-mode  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
µs  
After this period, the first clock pulse is  
generated  
tHD_STA  
Hold time (repeated) START condition  
tLOW  
tHIGH  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4
µs  
µs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
Set-up time for a repeated START  
condition  
tSU_STA  
4.7  
µs  
(4)  
tHD_DAT  
tSU_DAT  
tr  
Data hold time (2)  
I2C bus devices  
0 (3)  
250  
µs  
ns  
ns  
Data set-up time  
Rise time for both SDA and SCL signals  
1000  
300  
Fall time of both SDA and SCL signals (3)  
tf  
ns  
µs  
µs  
(6) (7) (8)  
tSU_STO  
tBUF  
Set-up time for STOP condition  
4
Bus free time between STOP and START  
condition  
4.7  
Cb  
Capacitive load for each bus line (9)  
Data valid time (10)  
400  
3.45 (4)  
3.45 (4)  
pF  
µs  
µs  
tVD_DAT  
tVD_ACK  
Data valid acknowledge time (11)  
For each connected device (including  
hysteresis)  
0.1*AVD  
D
VnL  
Vnh  
Noise margin at the LOW level  
Noise margin at the HIGHlevel  
V
V
For each connected device (including  
hysteresis)  
0.2*AVD  
D
Fast-mode  
fSCL  
SCL clock frequency  
0
400  
KHz  
µs  
After this period, the first clock pulse is  
generated  
tHD_STA  
Hold time (repeated) START condition  
0.6  
tLOW  
tHIGH  
LOW period of the SCL clock  
HIGH period of the SCL clock  
1.3  
0.6  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU_STA  
0.6  
µs  
(4)  
tHD_DAT  
tSU_DAT  
tr  
Data hold time (2)  
0 (3)  
100 (5)  
20  
µs  
ns  
ns  
Data set-up time  
Rise time for both SDA and SCL signals  
300  
300  
20 x  
(AVDD/  
5.5V)  
Fall time of both SDA and SCL signals (3)  
tf  
ns  
(6) (7) (8)  
tSU_STO  
tBUF  
Set-up time for STOP condition  
0.6  
1.3  
µs  
µs  
Bus free time between STOP and START  
condition  
Cb  
Capacitive load for each bus line (9)  
Data valid time (10)  
400  
0.9 (4)  
0.9 (4)  
pF  
µs  
µs  
tVD_DAT  
tVD_ACK  
Data valid acknowledge time (11)  
For each connected device (including  
hysteresis)  
0.1*AVD  
D
VnL  
Vnh  
Noise margin at the LOW level  
Noise margin at the HIGHlevel  
V
V
For each connected device (including  
hysteresis)  
0.2*AVD  
D
(1) All values referred to VIH(min) (0.3VDD) and VIL(max) levels  
(2) tHD_DAT is the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge.  
(3) A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
(4) The maximum tHD_DAT could be 3.45 µs and .9 µs for Standard-mode and Fast-mode, but must be less than the maximum of tVD_DAT or  
tVD_ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If  
the clock stretched the SCL, the data must be valid by the set-up time before it releases the clock.  
(5) A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tSU_DAT 250 ns must then be met.  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the  
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU_DAT = 1000 + 250 = 1250 ns (according to  
the Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
12  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
(6) If mixed with HS-mode devices, faster fall times according to Table 10 are allowed.  
(7) The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines  
without exceeding the maximum specified tf.  
(8) In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should  
allow for this when considering bus timing.  
(9) The maximum bus capacitance allowable may vary from the value depending on the actual operating voltage and frequency of the  
application.  
(10) tVD_DAT = time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).  
(11) tVD_ACK = time for Acknowledgement signal from SCL LOW to SDA output (HIGH or LOW, dependging on which one is worse).  
6.7 Typical Characteristics  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
100  
97.5  
95  
TJ = -40 C  
TJ = 25 C  
TJ = -150 C  
92.5  
90  
87.5  
85  
Buck with Inductor (25C)  
Buck with Inductor (125C)  
Buck with Resistor (25C)  
Buck with Resistor (125C)  
82.5  
80  
77.5  
75  
4
8
12  
16  
20  
24  
28  
32  
36  
Supply Voltage (V)  
6-2. Buck regulator efficiency over supply  
voltage  
10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35  
Supply Voltage (V)  
6-1. Supply current over supply voltage  
5.75  
5.5  
5.25  
5
4.75  
4.5  
4.25  
4
BUCK_SEL = 00b  
BUCK_SEL = 01b  
BUCK_SEL = 10b  
BUCK_SEL = 11b  
3.75  
3.5  
3.25  
3
0
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2  
Buck Output Load Current (A)  
6-3. Buck regulator output voltage over load current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
 
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7 Detailed Description  
7.1 Overview  
The MCF8315A provides a single-chip, code-free sensorless FOC solution for customers driving speed-  
controlled 12- to 24-V brushless-DC motors requiring up to 4-A peak phase currents.  
The MCF8315A integrates three ½-bridges with 40-V absolute maximum capability and a low RDS(ON) of 240-mΩ  
(high-side + low-side) to enable high power drive capability. Current is sensed using an integrated current  
sensing circuit which eliminates the need for external sense resistors. Power management features of an  
adjustable buck regulator and LDO generate the necessary voltage rails for the device and can also be used to  
power external circuits.  
MCF8315A implements Sensorless FOC, and so an external microcontroller is not required to spin the  
brushless-DC motor. The algorithm is implemented in a fixed-function state machine, so no coding is needed.  
The algorithm is highly configurable through register settings ranging from motor start-up behavior to closed loop  
operation. Register settings can be stored in non-volatile EEPROM, which allows the device to operate stand-  
alone once it has been configured. The device receives a speed command through a PWM input, analog  
voltage, frequency input or I2C command.  
In-built protection features include power-supply under voltage lockout (UVLO), charge-pump under voltage  
lockout (CPUV), over current protection (OCP), AVDD under voltage lockout (AVDD_UV), buck regulator UVLO,  
motor lock detection and over temperature warning and shutdown (OTW and TSD). Fault events are indicated  
by the nFAULT pin with detailed fault information available in the registers.  
The MCF8315A device is available in a 0.5-mm pin pitch, VQFN surface-mount package. The VQFN package  
size is 7 mm × 5 mm with a height of 1 mm.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
14  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.2 Functional Block Diagram  
CAVDD 1µF  
CFLY 47nF  
VM  
LBK  
AVDD  
Out  
Buck  
- or -  
SW_BK  
AVDD AGND  
CPL  
CPH  
CP  
Out  
CCP  
1µF  
RBK  
CBK  
VM  
VM  
VM  
GND_BK  
Buck/LDO  
Regulator  
AVDD LDO  
Regulator  
Charge Pump  
Input: VM or  
Buck  
FB_BK  
DVDD  
CVM1  
+
CVM2  
0.1µF  
>10µF  
DVDD  
LDO  
Regulator  
Protection  
VCP  
CDVDD  
2.2µF  
DRVOFF  
VM  
DGND  
EEPROM  
OUTA  
OUTA  
PWM, Freq.  
or Analog  
Input  
SPEED/WAKE  
BRAKE  
Sensorless FOC  
VGLS  
Integrated  
current  
AVDD  
IO Interface  
AVDD  
sensing  
DIR  
ALARM  
FG  
PGND  
ISENA  
PGND  
VM  
Protection  
A
PGND  
Protection  
VCP  
DRVOFF  
nFAULT  
OUTB  
OUTB  
VGLS  
Speed profiles  
Speed loop  
SCL  
Integrated  
current  
sensing  
AVDD  
I2C  
SDA  
PGND  
ISENB  
Motor Parameter Extraction  
PGND  
VM  
Protection  
PGND  
Optional external  
clock reference  
EXT_WD  
EXT_CLK  
Protection  
VCP  
DRVOFF  
Built-in 60-MHz  
Oscillator  
12-bit  
DAC  
12-bit  
ADC  
OUTC  
OUTC  
Op onal external  
crystal oscillator  
or clock  
DACOUT1  
VGLS  
reference  
Integrated  
current  
sensing  
DACOUT2  
Variable  
monitoring on  
DACOUT1 &  
DACOUT2 pins,  
ISENx output  
VM  
ISENA  
ISENB  
ISENC  
OUTA  
OUTB  
OUTC  
PGND  
DACOUT2/SOx  
PGND  
ISENC  
PGND  
Protection  
7-1. MCF8315A Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3 Feature Description  
7.3.1 Output Stage  
The MCF8315A consists of integrated 240-mΩ (combined high-side and low-side FETs' on-state resistance)  
NMOS FETs connected in a three-phase bridge configuration. A doubler charge pump provides the proper gate-  
bias voltage to the high-side NMOS FETs across a wide operating voltage range in addition to providing 100%  
duty-cycle support. An internal linear regulator provides the gate-bias voltage for the low-side MOSFETs.  
7.3.2 Device Interface  
The MCF8315A supports I2C interface to provide end application design with adequate flexibility. MCF8315A  
allows controlling the motor operation and system through BRAKE, DRVOFF, DIR, EXT_CLK, EXT_WD and  
SPEED/WAKE pins. MCF8315A also provides different signals for monitoring system variables, speed, fault and  
phase current feedback through FG, nFAULT and SOX pins.  
7.3.2.1 Interface - Control and Monitoring  
Motor Control Signals  
When BRAKE pin is driven 'High', MCF8315A enters brake state. Brake state can be configured to either low  
side braking (see Low-Side Braking) or align brake (see Align Braking) through BRAKE_PIN_MODE.  
MCF8315A decreases output speed to value defined by BRAKE_SPEED_THRESHOLD before entering  
brake state. As long as BRAKE is driven 'High', MCF8315A stays in brake state. Brake pin input can be  
overwritten by configuring BRAKE_INPUT over the I2C interface.  
The DIR pin decides the direction of motor spin; when driven 'High', the sequence is OUT A OUT B →  
OUT C, and when driven 'Low', the sequence is OUT A OUT C OUT B. DIR pin input can be  
overwritten by configuring DIR_INPUT over the I2C interface.  
When DRVOFF pin is driven 'High', MCF8315A stops driving the motor by turning OFF all MOSFETs (coast  
state). When DRVOFF is driven 'Low', MCF8315A returns to normal state of operation, as if it was restarting  
the motor (see DRVOFF Functionality). DRVOFF does not cause the device to go to sleep or standby mode;  
the digital core is still active. Entry and exit from sleep or standby condition is controlled by SPEED pin.  
SPEED/WAKE pin is used to control motor speed and to wake up MCF8315A from sleep mode. SPEED pin  
can be configured to accept PWM, frequency or analog input signals. It is used to enter and exit from sleep  
and standby mode (see 7-6).  
External Oscillator and Watchdog Signals  
EXT_CLK pin can be used to provide an external clock reference (see External Clock Source).  
EXT_WD pin can be used to provide an external watchdog signal (see External Watchdog).  
Output Signals  
DACOUT1 outputs internal variable defined by address in register DACOUT1_VAR_ADDR. DACOUT1 is  
refreshed every PWM cycle (see DAC outputs).  
DACOUT2 outputs internal variable defined by address in register DACOUT2_VAR_ADDR. DACOUT2 is  
refreshed every PWM cycle (see DAC outputs).  
FG pin provides pulses which are proportional to motor speed (see FG Configuration).  
nFAULT (active low) pin provides fault status in device or motor operation.  
ALARM pin, if enabled using ALARM_PIN_EN, provides fault status in device or motor operation. When  
ALARM pin is enabled, report only faults are reported only on ALARM pin (as logic high) and not reported on  
nFAULT pin (as logic low). When ALARM pin is enabled, actionable faults are reported on ALARM pin (as  
logic high) as well as on nFAULT pin (as logic low). When ALARM pin is disabled, it is in Hi-Z state and all  
faults (actionable and report only) are reported on nFAULT as logic low. ALARM pin should be left floating  
when unused/disabled.  
SOX pin provides the output of one of the current sense amplifiers.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
16  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.2.2 I2C Interface  
The MCF8315A supports an I2C serial communication interface that allows an external controller to send and  
receive data. This I2C interface lets the external controller to configure the EEPROM and read detailed fault and  
motor state information. The I2C bus is a two-wire interface using the SCL and SDA pins which are described as  
follows :  
The SCL pin is the clock signal input.  
The SDA pin is the data input and output.  
7.3.3 Step-Down Mixed-Mode Buck Regulator  
The MCF8315A has an integrated mixed-mode buck regulator to supply regulated 3.3-V or 5-V power for an  
external controller or system voltage rail. Additionally, the buck output can also be configured to 4-V or 5.7-V for  
supporting the extra headroom for an external LDO for generating a 3.3-V or 5-V supplies. The output voltage of  
the buck is set by BUCK_SEL.  
The buck regulator has a low quiescent current of ~1-2 mA during light loads to prolong battery life. The device  
improves performance during line and load transients by implementing a pulse-frequency current-mode control  
scheme which requires less output capacitance and simplifies frequency compensation design.  
7-1. Recommended settings for Buck Regulator  
Buck Mode  
Buck output voltage Max output current Max output current Buck current limit  
AVDD power  
sequencing  
from AVDD  
from Buck (IBK_MAX  
170 mA - IAVDD  
170 mA - IAVDD  
20 mA - IAVDD  
20 mA - IAVDD  
10 mA - IAVDD  
10 mA - IAVDD  
)
(IAVDD_MAX  
)
3.3-V or 4-V  
5-V or 5.7-V  
5-V or 5.7-V  
3.3-V or 4-V  
5-V or 5.7-V  
3.3-V or 4-V  
20 mA  
600 mA (BUCK_CL = Not supported  
0b)  
Inductor - 47 μH  
Inductor - 47 μH  
Inductor - 22 μH  
Inductor - 22 μH  
Resistor - 22 Ω  
Resistor - 22 Ω  
(BUCK_PS_DIS = 1b)  
20 mA  
20 mA  
20 mA  
20 mA  
20 mA  
600 mA (BUCK_CL = Supported  
0b)  
(BUCK_PS_DIS = 0b)  
150 mA (BUCK_CL = Not supported  
1b)  
(BUCK_PS_DIS = 1b)  
150 mA (BUCK_CL = Supported  
1b)  
(BUCK_PS_DIS = 0b)  
150 mA (BUCK_CL = Not supported  
1b)  
(BUCK_PS_DIS = 1b)  
150 mA (BUCK_CL = Supported  
1b)  
(BUCK_PS_DIS = 0b)  
7.3.3.1 Buck in Inductor Mode  
The buck regulator in MCF8315A is primarily designed to support low inductance of 47-µH and 22-µH. A 47-µH  
inductor allows the buck regulator to operate up to 170-mA load current support, whereas applications requiring  
current up to 20-mA can use a 22-µH inductor which saves component size.  
7-2 shows the connection of buck regulator in inductor mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
VM  
SW_BK  
LBK  
Ext. Load  
VBK  
Control  
CBK  
GND_BK  
FB_BK  
7-2. Buck (Inductor Mode)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
18  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.3.2 Buck in Resistor mode  
If the external load requirement is less than 10-mA, the inductor can be replaced with a resistor. In resistor mode  
the power is dissipated across the external resistor and the efficiency is lower than buck in inductor mode.  
7-3 shows the connection of buck in resistor mode.  
VM  
SW_BK  
Ext. Load  
VBK  
Control  
RBK  
CBK  
GND_BK  
FB_BK  
7-3. Buck (Resistor Mode)  
7.3.3.3 Buck Regulator with External LDO  
The buck regulator also supports the voltage requirement to supply an external LDO to generate standard 3.3-V  
or 5-V output rail with higher accuracies. The buck output voltage should be configured to 4-V or 5.7-V to provide  
extra headroom to support the external LDO for generating 3.3-V or 5-V rail as shown in 7-4. This allows for a  
lower-voltage LDO design to save cost and better thermal management due to low drop-out voltage.  
VM  
VLDO  
(3.3V / 5V)  
VBK  
SW_BK  
(4V / 5.7V)  
VIN  
VLDO  
Ext. Load  
CLDO  
Control  
LBK  
3.3V / 5V  
LDO  
CBK  
GND_BK  
FB_BK  
GND  
External LDO  
GND  
7-4. Buck Regulator with External LDO  
7.3.3.4 AVDD Power Sequencing from Buck Regulator  
The AVDD LDO has an option of using the power supply from mixed mode buck regulator to reduce the device  
power dissipation. The power sequencing mode allows on-the-fly changeover of AVDD LDO input from DC  
mains (VM) to buck output (VBK) as shown in 7-5. This sequencing can be configured through the  
BUCK_PS_DIS bit . Power sequencing is supported only when buck output voltage is set to 5-V or 5.7-V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
VM  
SW_BK  
LBK  
Ext. Load  
VBK  
Control  
CBK  
GND_BK  
FB_BK  
BUCK_PS_DIS  
VBK  
VM  
AVDD LDO  
REF  
+
AVDD  
AGND  
External Load  
CAVDD  
7-5. AVDD Power Sequencing from Mixed Mode Buck Regulator  
7.3.3.5 Mixed Mode Buck Operation and Control  
The buck regulator implements a pulse frequency modulation (PFM) architecture with peak current mode control.  
The output voltage of the buck regulator is compared with the internal reference voltage (VBK_REF) which is  
internally generated depending on the buck output voltage setting (BUCK_SEL) which constitutes an outer  
voltage control loop. Depending on the comparator output going high (VBK < VBK_REF) or low (VBK > VBK_REF),  
the high-side power FET of the buck turns on and off respectively. An independent current control loop monitors  
the current in high-side power FET (IBK) and turns off the high-side FET when the current becomes higher than  
the buck current limit (IBK_CL set by BUCK_CL) - this implements a current limit control for the buck regulator. 图  
7-6 shows the architecture of the buck and various control/protection loops.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
20  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
SW_BK  
IBK  
Ext. Load  
VM  
VBK  
LBK  
PWM Control  
and Driver  
CBK  
GND_BK  
IBK  
+
Current Limit  
OC Protection  
UV Protection  
_
IBK_CL  
IBK  
+
_
IBK_OCP  
FB_BK  
VBK  
+
_
VBK_UVLO  
VBK  
+
_
Voltage Control  
VBK_REF  
Buck  
Reference  
Voltage  
BUCK_SEL  
Buck Control  
Generator  
7-6. Buck Operation and Control Loops  
7.3.3.6 Buck Under Voltage Protection  
If at any time the voltage on the FB_BK pin (buck regulator output) falls lower than the VBK_UV threshold, both  
the high-side and low-side MOSFETs of the buck regulator are disabled. MCF8315A goes into reset state  
whenever buck UV event occurs, since the internal circuitry in MCF8315A is powered from the buck regulator  
output.  
7.3.3.7 Buck Over Current Protection  
The buck over current event is sensed by monitoring the current flowing through high-side MOSFET of the buck  
regulator. If the current through the high-side MOSFET exceeds the IBK_OCP threshold for a time longer than the  
deglitch time (tOCP_DEG), a buck OCP event is recognized and both the high-side and low-side MOSFETs of the  
buck regulator are disabled. MCF8315A goes into reset state whenever buck OCP event occurs, since the  
internal circuitry in MCF8315A is powered from the buck regulator output.  
7.3.4 AVDD Linear Voltage Regulator  
A 3.3-V linear regulator is integrated into MCF8315A and is available for use by external circuitry. This AVDD  
LDO regulator is used for powering up the internal circuitry of the device and additionally, this regulator can also  
provide the supply voltage for a low-power MCU or other external circuitry supporting up to 20-mA. The output of  
the AVDD regulator should be bypassed near the AVDD pin with a X5R or X7R, 1-µF, 6.3-V ceramic capacitor  
routed directly back to the adjacent AGND ground pin.  
The AVDD nominal, no-load output voltage is 3.3-V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
FB_BK  
BUCK_PS_DIS  
VBK  
VM  
REF  
+
AVDD  
AGND  
External Load  
CAVDD  
7-7. AVDD Linear Regulator Block Diagram  
Use 方程式 1 to calculate the power dissipated in the device by the AVDD linear regulator with VM as supply  
(BUCK_PS_DIS = 1b)  
2 = (88/ F 8#8&&) × +#8&&  
(1)  
For example, at a VVM of 24-V, drawing 20-mA out of AVDD results in a power dissipation as shown in 方程2.  
P = 24 V - 3.3 V ì 20 mA = 414 mW  
(
)
(2)  
Use 方程式 3 to calculate the power dissipated in the device by the AVDD linear regulator with buck output as  
supply (BUCK_PS_DIS = 0b)  
P =  
V
− V  
× I  
AVDD  
(3)  
FB_BK  
AVDD  
7.3.5 Charge Pump  
Since the output stages use N-channel FETs, the device requires a gate-drive voltage higher than the VM power  
supply to turn-on the high-side FETs. The MCF8315A integrates a charge-pump circuit that generates a voltage  
above the VM supply for this purpose.  
The charge pump requires two external capacitors (CCP, CFLY) for operation. See 7-1 and 5-1 for details on  
these capacitors (value, connection, and so forth).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
22  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
VM  
VM  
CP  
CCP  
CPH  
VM  
Charge  
Pump  
Control  
CFLY  
CPL  
7-8. Charge Pump  
7.3.6 Slew Rate Control  
An adjustable gate-drive current control is provided for the output stage MOSFETs to achieve configurable slew  
rate for EMI mitigation. The MOSFET VDS slew rate is a critical factor for optimizing radiated emissions, total  
energy and duration of diode recovery spikes and switching voltage transients related to parasitic elements of  
the PCB. This slew rate is predominantly determined by the control of the internal MOSFET gate current as  
shown in 7-9.  
VM  
VCP (Internal)  
Slew Rate  
Control  
OUTx  
VCP (Internal)  
Slew Rate  
Control  
GND  
7-9. Slew Rate Circuit Implementation  
The slew rate of each half-bridge can be adjusted through SLEW_RATE settings. Slew rate can be configured as  
25-V/µs, 50-V/µs, 125-V/µs or 200-V/µs. The slew rate is calculated by the rise-time and fall-time of the voltage  
on OUTx pin as shown in 7-10.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
VOUTx  
VM  
VM  
80%  
80%  
20%  
20%  
0
Time  
tfall  
trise  
7-10. Slew Rate Timings  
7.3.7 Cross Conduction (Dead Time)  
The device is fully protected against any cross conduction of MOSFETs - during the switching of high-side and  
low-side MOSFETs, MCF8315A avoids shoot-through events by inserting a dead time (tdead). This is  
implemented by sensing the gate-source voltage (VGS) of the high-side and low-side MOSFETs and ensuring  
that VGS of high-side MOSFET has dropped below turn-off level before switching on the low-side MOSFET of  
same half-bridge (or vice-versa) as shown in 7-11and 7-12. The VGS of the high-side and low-side  
MOSFETs (VGS_HS and VGS_LS) shown in 7-12 are internal signals.  
VM  
HS Gate  
Control  
+
VGS_HS  
OUTx  
LS Gate  
Control  
+
GND  
VGS_LS  
7-11. Cross Conduction Protection  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
24  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
VGS_HS  
10%  
tDEAD  
VGS_LS  
10%  
Time  
7-12. Dead Time  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.8 Speed Control  
The MCF8315A offers four methods of directly controlling the speed of the motor. The speed control method is  
configured by SPEED_MODE. The speed command can be controlled in one of the following four ways.  
PWM input on SPEED pin by varying duty cycle of input signal  
Frequency input on SPEED pin by varying frequency of input signal  
Analog input on SPEED pin by varying amplitude of input signal  
Over I2C by configuring DIGITAL_SPEED_CTRL register  
The speed can also be indirectly controlled by varying the supply voltage (VM).  
The signal path from SPEED pin input (or I2C based speed input) to output duty cycle (DUTY_OUT) applied to  
FETs is shown in 7-13.  
Freq based  
Freq  
Duty  
Close  
Loop  
FOC  
PWM  
PWM Duty  
ADC  
SPEED Pin  
SPEED_REF  
DUTY_OUT  
DUTY_CMD  
Speed  
Profiles  
Analog  
PWM  
FETs  
I2C  
7-13. Multiplexing the Speed Command  
备注  
1. Analog, PWM and Frequency based speed input modes are available only when MCF8315A is  
configured as a standby device (DEV_MODE = 0b).  
2. I2C based speed input mode is available in both sleep (DEV_MODE = 1b) and standby devices  
(DEV_MODE = 0b).  
3. TI recommends adding a 200-ms delay after device power-up or wake-up from sleep mode before  
giving a speed command.  
4. If MAX_SPEED is set to 0, SPEED_REF is clamped to zero (irrespective of DUTY_CMD) and  
motor is in stopped state.  
7.3.8.1 Analog Mode Speed Control  
Analog input based speed control can be configured by setting SPEED_MODE to 00b. In this mode, the duty  
command (DUTY_CMD) varies with the analog voltage input on the SPEED pin (VSPEED). When 0 VSPEED  
VEN_SB, DUTY_CMD is set to zero and the motor is stopped. When VEX_SB VSPEED VANA_FS, DUTY_CMD  
varies linearly with VSPEED as shown in 7-14. VEX_SB and VEN_SB are the standby entry and exit thresholds -  
refer 7.4.1.2 for more information on VEX_SB and VEN_SB. When VSPEED > VANA_FS, DUTY_CMD is clamped to  
100%.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
26  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
DUTY_CMD  
100%  
SPEED pin voltage  
VANA_FS  
VEN_SB VEX_SB  
0
7-14. Analog Mode Speed Control  
7.3.8.2 PWM Mode Speed Control  
PWM based speed control can be configured by setting SPEED_MODE to 01b. In this mode, the PWM duty  
cycle applied to the SPEED pin can be varied from 0 to 100% and duty command (DUTY_CMD) varies linearly  
with the applied PWM duty cycle. When 0 DutySPEED DutyEN_SB, DUTY_CMD is set to zero and the motor  
is stopped. When DutyEX_SB DutySPEED 100%, DUTY_CMD varies linearly with DutySPEED as shown in 图  
7-15. DutyEX_SB and DutyEN_SB are the standby entry and exit thresholds - refer 7.4.1.2 for more information  
on DutyEX_SB and DutyEN_SB. The frequency of the PWM input signal applied to the SPEED pin is defined as  
fPWM and the range for this frequency can be configured through SPEED_RANGE_SEL.  
备注  
1. fPWM is the frequency of the PWM signal the device can accept at SPEED pin to control motor  
speed. It does not correspond to the PWM output frequency that is applied to the motor phases.  
The PWM output frequency can be configured through PWM_FREQ_OUT (see 7.3.15).  
2. SLEEP_ENTRY_TIME should be set longer than the off time in PWM signal (VSPEED < VIL) at  
lowest duty input. For example, if fPWM is 10 kHz and lowest duty input is 2%,  
SLEEP_ENTRY_TIME should be more than 98 µs to ensure there is no unintended sleep/standby  
entry.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
DUTY_CMD  
100%  
PWM Duty at SPEED pin  
DutyEN_SB DutyEX_SB  
100%  
0
7-15. PWM Mode Speed Control  
7.3.8.3 I2C based Speed Control  
I2C based serial interface can be used for speed control by setting SPEED_MODE to 10b. In this mode, the  
speed command can be written directly into DIGITAL_SPEED_CTRL register. The SPEED pin can be used to  
control the sleep entry and exit - if SPEED pin input is set to a value lower than VEN_SL after  
DIGITAL_SPEED_CTRL register has been set to 0b for a time longer than SLEEP_ENTRY_TIME, MCF8315A  
enters sleep state. When SPEED pin > VEX_SL, MCF8315A exits sleep state and speed is controlled through  
DIGITAL_SPEED_CTRL register. If 0 DIGITAL_SPEED_CTRL register DIGITAL_SPEED_CTRLEN_SB and  
SPEED pin > VEX_SL, MCF8315A is in standby state. The relationship between DUTY_CMD and  
DIGITAL_SPEED_CTRL register is shown in 7-16. Refer 7.4.1.2 for more information on  
DIGITAL_SPEED_CTRLEN_SB EX_SB and DIGITAL_SPEED_CTRLEN_SB EN_SB  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
28  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
DUTY_CMD  
100%  
DIGITAL_SPEED_CTRL  
32767  
DIGITAL_SPEED_  
CTRLEX_SB  
0
DIGITAL_SPEED  
_CTRLEN_SB  
7-16. I2C Mode Speed Control  
7.3.8.4 Frequency Mode Speed Control  
Frequency based speed control is configured by setting SPEED_MODE to 11b. In this mode, duty command  
varies linearly as a function of the frequency of the square wave input at SPEED pin. When 0 FreqSPEED  
FreqEN_SB, DUTY_CMD is set to zero and the motor is stopped. When FreqEX_SB FreqSPEED  
INPUT_MAXIMUM_FREQ, DUTY_CMD varies linearly with FreqSPEED as shown in 7-17. FreqEX_SB and  
FreqEN_SB are the standby entry and exit thresholds - refer 7.4.1.2 for more information on FreqEX_SB and  
FreqEN_SB. Input frequency greater than INPUT_MAXIMUM_FREQ clamps the DUTY_CMD to 100%.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
DUTY_CMD  
100%  
Frequency at SPEED pin  
INPUT_MAXIMUM_FREQ  
FreqEN_SB FreqEX_SB  
0
7-17. Frequency Mode Speed Control  
7.3.8.5 Speed Profiles  
MCF8315A supports three different kinds of speed profiles (linear, step, forward-reverse) to enable a variety of  
end-user applications. The different speed profiles can be configured through SPEED_PROFILE_CONFIG.  
When SPEED_PROFILE_CONFIG is set to 00b, the speed reference (SPEED_REF) is set by the duty  
command (DUTY_CMD) as shown in 7-18. When SPEED_PROFILE_CONFIG is set to 00b and DUTY_CMD  
> DUTY_HYST, any change in DUTY_CMD by a value less than DUTY_HYST does not produce a  
corresponding change in SPEED_REF; DUTY_HYST provides a hysteresis window around current DUTY_CMD  
for noise immunity.  
SPEED_REF (RPM)  
RPM_MAX  
1% x RPM_MAX  
DUTY_CMD (%)  
1%  
100%  
0
7-18. Speed reference (SPEED_PROFILE_CONFIG = 00b)  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.8.5.1 Linear Speed Profiles  
备注  
For all types of speed profiles, a zero speed command (0-V in analog mode, 0% duty in PWM mode,  
DIGITAL_SPEED_CTRL = 0b I2C mode or 0-Hz in frequency mode) stops the motor irrespective of  
the speed profile register settings.  
SPEED_REF (RPM)  
SPEED_CLAMP2  
SPEED_E  
SPEED_D  
SPEED_C  
SPEED_B  
SPEED_A  
SPEED_CLAMP1  
SPEED_OFF1  
SPEED_OFF2  
DUTY_CMD (%)  
DUTY_A  
DUTY_E DUTY_CLAMP2 DUTY_ON2  
DUTY_OFF2  
DUTY_OFF1 DUTY_ON1 DUTY_CLAMP1  
DUTY_B  
DUTY_C DUTY_D  
7-19. Linear Speed Profile  
Linear speed profile can be configured by setting SPEED_PROFILE_CONFIG to 01b. Linear speed profile  
features speed references which change linearly between SPEED_CLAMP1 and SPEED_CLAMP2 with different  
slopes which can be set by configuring DUTY_x and SPEED_x combination.  
DUTY_ON1 configures the duty command above which MCF8315A starts driving the motor (to speed  
reference set by SPEED_CLAMP1) when the current speed reference is zero. When current speed reference  
is zero and duty command is below DUTY_ON1, MCF8315A continues to be in off state and motor is  
stationary.  
DUTY_OFF1 configures the duty command below which the speed reference changes to SPEED_OFF1.  
DUTY_CLAMP1 configures the duty command till which speed reference will be constant. SPEED_CLAMP1  
configures this constant speed reference between between DUTY_OFF1 and DUTY_CLAMP1.  
DUTY_A configures the duty command for speed reference SPEED_A. The speed reference changes  
linearly between DUTY_CLAMP1 and DUTY_A.  
DUTY_B configures the duty command for speed reference SPEED_B. The speed reference changes  
linearly between DUTY_A and DUTY_B.  
DUTY_C configures the duty command for speed reference SPEED_C. The speed reference changes  
linearly between DUTY_B and DUTY_C.  
DUTY_D configures the duty command for speed reference SPEED_D. The speed reference changes  
linearly between DUTY_C and DUTY_D.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
DUTY_E configures the duty command for speed reference SPEED_E. The speed reference changes  
linearly between DUTY_D and DUTY_E.  
DUTY_CLAMP2 configures the duty command above which the speed reference will be constant at  
SPEED_CLAMP2. SPEED_CLAMP2 configures this constant speed reference between DUTY_CLAMP2 and  
DUTY_OFF2 . The speed reference changes linearly between DUTY_E and DUTY_CLAMP2.  
DUTY_ON2 configures the duty command below which MCF8315A starts driving the motor (to speed  
reference set by SPEED_CLAMP2) when the current speed reference is zero. When current speed reference  
is zero and duty command is above DUTY_ON2, MCF8315A continues to be in off state and motor is  
stationary.  
DUTY_OFF2 configures the duty command above which the speed reference will change from  
SPEED_CLAMP2 to SPEED_OFF2.  
7.3.8.5.2 Staircase Speed Profile  
SPEED_REF (RPM)  
SPEED_CLAMP2  
SPEED_E  
SPEED_D  
SPEED_C  
SPEED_B  
SPEED_A  
SPEED_CLAMP1  
SPEED_OFF2  
DUTY_CMD (%)  
SPEED_OFF1  
DUTY_A  
DUTY_E  
DUTY_CLAMP2 DUTY_ON2 DUTY_OFF2  
DUTY_OFF1 DUTY_ON1 DUTY_CLAMP1  
DUTY_B  
DUTY_C DUTY_D  
7-20. Staircase Speed Profile  
Staircase speed profiles can be configured by setting SPEED_PROFILE_CONFIG to 10b. Staircase speed  
profiles feature speed changes in steps between SPEED_CLAMP1 and SPEED_CLAMP2. DUTY_x and  
SPEED_x configures the speed and duty command at which the step is increased  
DUTY_ON1 configures the duty command above which MCF8315A starts driving the motor (to speed  
reference set by SPEED_CLAMP1) when the current speed reference is zero. When current speed reference  
is zero and duty command is below DUTY_ON1, MCF8315A continues to be in off state and motor is  
stationary.  
DUTY_OFF1 configures the duty command below which the speed reference changes from  
SPEED_CLAMP1 to SPEED_OFF1.  
DUTY_CLAMP1 configures the duty command till which speed reference will be constant. SPEED_CLAMP1  
configures this constant speed reference between DUTY_OFF1 and DUTY_CLAMP1.  
DUTY_A configures the duty command for speed reference SPEED_A. There is a step change in speed  
reference from SPEED_CLAMP1 to SPEED_A at DUTY_CLAMP1.  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
DUTY_B configures the duty command for speed reference SPEED_B. There is a step change in speed  
reference from SPEED_A to SPEED_B at DUTY_A.  
DUTY_C configures the duty command for speed reference SPEED_C. There is a step change in speed  
reference from SPEED_B to SPEED_C at DUTY_B.  
DUTY_D configures the duty command for speed reference SPEED_D. There is a step change in speed  
reference from SPEED_C to SPEED_D at DUTY_C.  
DUTY_E configures the duty command for speed reference SPEED_E. There is a step change in speed  
reference from SPEED_D to SPEED_E at DUTY_D.  
DUTY_CLAMP2 configures the duty command above which the speed reference will be constant at  
SPEED_CLAMP2. SPEED_CLAMP2 configures this constant speed reference between DUTY_CLAMP2 and  
DUTY_OFF2. There is a step change in speed reference from SPEED_E to SPEED_CLAMP2 at DUTY_E.  
DUTY_ON2 configures the duty command below which MCF8315A starts driving the motor (to speed  
reference set by SPEED_CLAMP2) when the current speed reference is zero. When current speed reference  
is zero and duty command is above DUTY_ON2, MCF8315A continues to be in off state and motor is  
stationary.  
DUTY_OFF2 configures the duty command above which the speed reference will change from  
SPEED_CLAMP2 to SPEED_OFF2.  
7.3.8.5.3 Forward-Reverse Speed Profile  
SPEED_REF (RPM)  
Forward Direction  
OUT B OUT C  
Reverse Direction  
OUT C OUT B  
OUT A  
OUT A  
SPEED_CLAMP2  
SPEED_CLAMP1  
SPEED_D  
SPEED_A  
SPEED_OFF2  
DUTY_CMD (%)  
SPEED_OFF1  
DUTY_C  
DUTY_E  
DUTY_CLAMP2 DUTY_ON2 DUTY_OFF2  
DUTY_OFF1 DUTY_ON1 DUTY_CLAMP1  
DUTY_A DUTY_B  
DUTY_D  
7-21. Forward-Reverse Speed Profile  
Forward-Reverse speed profile can be configured by setting SPEED_PROFILE_CONFIG to 11b. Forward-  
Reverse speed profile features direction change through adjusting the duty command. DUTY_C configures duty  
command at which the direction will be changed. The Forward-Reverse speed profile can be used to eliminate  
the separate signal used to control the motor direction.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
DUTY_ON1 configures the duty command above which MCF8315A starts driving the motor in the forward  
direction (to speed reference set by SPEED_CLAMP1) when the current speed reference is zero. When  
current speed reference is zero and duty command is below DUTY_ON1, MCF8315A continues to be in off  
state and motor is stationary.  
DUTY_OFF1 configures the duty command below which the speed reference changes in the forward  
direction from SPEED_CLAMP1 to SPEED_OFF1.  
DUTY_CLAMP1 configures the duty command below which speed reference will be the constant in forward  
direction. SPEED_CLAMP1 configures constant speed reference between DUTY_CLAMP1 and  
DUTY_OFF1.  
DUTY_A configures the duty command for speed reference SPEED_A. The speed reference changes  
linearly between DUTY_CLAMP1 and DUTY_A.  
DUTY_B configures the duty command above which MCF8315A will be in off state. The speed reference  
remains constant at SPEED_A between DUTY_A and DUTY_B.  
DUTY_C configures the duty command at which the direction is changed  
DUTY_D configures the duty command above which the MCF8315A will be in running state in the reverse  
direction. SPEED_D configures constant speed reference between DUTY_D and DUTY_E.  
DUTY_CLAMP2 configures the duty command above which speed reference will be constant at  
SPEED_CLAMP2 in reverse direction. The speed reference changes linearly between DUTY_E and  
DUTY_CLAMP2.  
DUTY_ON2 configures the duty command below which MCF8315A starts driving the motor in the reverse  
direction (to speed reference set by SPEED_CLAMP2) when the current speed reference is zero. When  
current speed reference is zero and duty command is above DUTY_ON2, MCF8315A continues to be in off  
state and motor is stationary.  
DUTY_OFF2 configures the duty command above which the speed reference changes in the reverse  
direction from SPEED_CLAMP2 to SPEED_OFF2.  
7.3.9 Starting the Motor Under Different Initial Conditions  
The motor can be in one of three states when MCF8315A begins the start-up process. The motor may be  
stationary, spinning in the forward direction, or spinning in the reverse direction. The MCF8315A includes a  
number of features to allow for reliable motor start-up under all of these conditions. 7-22 shows the motor  
start-up flow for each of the three initial motor states.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
34  
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
Brake  
Align  
Double Align  
IPD  
Sta onary  
Slow rst cycle  
Open Loop  
Closed Loop  
Coast (Hi-Z)  
Brake  
Spinning in forward  
direc on  
Spinning in reverse  
direc on  
Reverse Drive  
7-22. Starting the motor under different initial conditions  
备注  
"Forward" means "spinning in the same direction as the commanded direction", and "Reverse" means  
"spinning in the opposite direction as the commanded direction".  
7.3.9.1 Case 1 Motor is Stationary  
If the motor is stationary, the commutation must be initialized to be in phase with the position of the motor. The  
MCF8315A provides various options to initialize the commutation logic to the motor position and reliably start the  
motor.  
The align and double align techniques force the motor into alignment by applying a voltage across particular  
motor phases to force the motor to rotate in alignment with this phase.  
Initial position detect (IPD) determines the position of the motor based on the deterministic inductance  
variation, which is often present in BLDC motors.  
The slow first cycle method starts the motor by applying a low frequency cycle to align the rotor position to  
the applied commutation by the end of one electrical rotation.  
MCF8315A also provides a configurable brake option to ensure the motor is stationary before initiating one of  
the above start-up methods. Device enters open loop acceleration after going through the configured start-up  
method.  
7.3.9.2 Case 2 Motor is Spinning in the Forward Direction  
If the motor is spinning forward (same direction as the commanded direction) with sufficient speed (BEMF), the  
MCF8315A resynchronizes with the spinning motor and continues commutation by going directly to closed loop  
operation. If the motor speed is too low for closed loop operation, MCF8315A enters open loop operation to  
accelerate the motor till it reaches sufficient speed to enter closed loop operation. By resynchronizing to the  
spinning motor, the user achieves the fastest possible start-up time for this initial condition. This  
resynchronization feature can be enabled or disabled through RESYNC_EN. If resynchronization is disabled, the  
MCF8315A can be configured to wait for the motor to coast to a stop and/or apply a brake. After the motor has  
stopped spinning, the motor start-up sequence proceeds as in Case 1, considering the motor is stationary.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.9.3 Case 3 Motor is Spinning in the Reverse Direction  
If the motor is spinning in the reverse direction (the opposite direction as the commanded direction), the  
MCF8315A provides several methods to change the direction and drive the motor to the target speed reference  
in the commanded direction.  
The reverse drive method allows the motor to be driven so that it decelerates through zero speed. The motor  
achieves the shortest possible spin-up time when spinning in the reverse direction.  
If reverse drive is not enabled, then the MCF8315A can be configured to wait for the motor to coast to a stop  
and/or apply a brake. After the motor has stopped spinning, the motor start-up sequence proceeds as in Case 1,  
considering the motor is stationary.  
备注  
Take care when using the reverse drive or brake feature to ensure that the current is limited to an  
acceptable level and that the supply voltage does not surge as a result of energy being returned to the  
power supply.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
36  
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.10 Motor Start Sequence (MSS)  
7-23 shows the motor-start sequence implemented in the MCF8315A device.  
Power On  
Motor driven at  
SPEED_REF  
Sleep/Standby  
(SPEED_REF = 0)  
Direc on  
N
Change  
Command  
N
Y
SPEED_REF > 0  
0b  
DIR_CHANGE_  
MODE  
Y
0b  
ISD_EN  
1b  
1b  
Y
Motor BEMF <  
STAT_DETECT_THR  
N
Reverse  
0b  
Forward  
0b  
Direc on of Spin  
RVS_DR_EN  
1b  
RESYNC_EN  
0b  
HIZ_EN  
1b  
1b  
Hi-Z  
N
Speed >  
N
Time >  
HIZ_TIME  
OPN_CL_HANDOFF_THR  
Speed >  
FW_DRV_RESYN_THR  
Y
0b  
BRAKE_EN  
Y
1b  
Open Loop  
Decelera on  
Brake_Rou ne  
Y
N
Closed Loop  
Decelera on  
Motor Start-up  
Open loop  
Direc on  
Reversal : Zero  
Speed  
Crossover  
Closed Loop  
7-23. Motor Start Sequence  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
Brake_Rou ne  
BRK_CONFIG  
BRK_TIME  
BRK_CURR  
Brake  
Brake  
N
N
(Current < BRK_CURR_THR for  
BRAKE_CURRENT_PERSIST) || Time  
> BRK_TIME  
Time >  
BRK_TIME  
Y
Y
Brake_Rou ne_End  
7-24. Brake Routine  
Power-On State  
Sleep/Standby  
This is the initial state of the Motor Start Sequence (MSS) when MCF8315A is  
powered on. In this state, MCF8315A configures the peripherals, initializes the  
algorithm parameters from EEPROM and prepares for driving the motor.  
In this state, SPEED_REF is set to zero and MCF8315A is either in sleep or  
standby mode depending on DEV_MODE and SPEED/WAKE pin voltage.  
SPEED_REF > 0 Judgement When SPEED_REF is set to greater than zero, MCF8315A exits the sleep/  
standby state and proceeds to ISD_EN judgement. As long as SPEED_REF is  
set to zero, MCF8315A stays in sleep/standby state.  
Direction Change Command When a direction change command is received, MCF8315A proceeds to  
Judgement  
DIR_CHANGE_MODE judgement.  
DIR_CHANGE_MODE  
Judgement  
If DIR_CHANGE_MODE is set to 0b, MCF8315A initiates direction change by  
proceeding to ISD_EN judgement. Instead, if DIR_CHANGE_MODE is set to  
1b, MCF8315A initiates direction change by proceeding to Speed >  
OPN_CL_HANDOFF_THR judgement.  
ISD_EN Judgement  
MCF8315A checks to see if the initial speed detect (ISD) function is enabled  
(ISD_EN = 1b). If ISD is enabled, MSS proceeds to the BEMF <  
STAT_DETECT_THR judgement. Instead, if ISD is disabled, the MSS  
proceeds directly to the BRAKE_EN judgement.  
BEMF < STAT_DETECT_THR ISD determines the initial condition (speed, angle, direction of spin) of the  
or BEMF < FG_BEMF_THR  
Judgement  
motor (see 7.3.10.1). If motor is deemed to be stationary (BEMF <  
STAT_DETECT_THR or BEMF < FG_BEMF_THR), the MSS proceeds to  
BRAKE_EN judgement. If the motor is not stationary, MSS proceeds to verify  
the direction of spin.  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
Direction of spin Judgement The MSS determines whether the motor is spinning in the forward or the  
reverse direction. If the motor is spinning in the forward direction, the  
MCF8315A proceeds to the RESYNC_EN judgement. If the motor is spinning  
in the reverse direction, the MSS proceeds to the RVS_DR_EN judgement.  
RESYNC_EN Judgement  
If RESYNC_EN is set to 1b, MCF8315A proceeds to Speed > Open to Closed  
Loop Handoff (Resync) judgement. If RESYNC_EN is set to 0b, MSS proceeds  
to HIZ_EN judgement.  
Speed >  
FW_DRV_RESYN_THR  
Judgement  
If motor speed > FW_DRV_RESYN_THR, MCF8315A uses the speed and  
position information from the ISD to transition to the closed loop state (see 节  
7.3.10.2 ) directly. If motor speed < FW_DRV_RESYN_THR, MCF8315A  
transitions to open loop state.  
RVS_DR_EN Judgement  
The MSS checks to see if the reverse drive function is enabled (RVS_DR_EN  
= 1b). If it is enabled, the MSS transitions to check speed of the motor in  
reverse direction. If the reverse drive function is not enabled (RVS_DR_EN =  
0b), the MSS advances to the HIZ_EN judgement.  
Speed >  
OPN_CL_HANDOFF_THR  
Judgement  
The MSS checks to see if the reverse speed is high enough for MCF8315A to  
decelerate in closed loop. Till the speed (in reverse direction) is above  
OL_CL_HANDOFF_THR, MSS stays in closed loop deceleration. If speed is  
below OPN_CL_HANDOFF_THR, then the MSS transitions to open loop  
deceleration.  
Reverse Closed Loop, Open The MCF8315A resynchronizes in the reverse direction, decelerates the motor  
Loop Deceleration and Zero in closed loop till motor speed falls below the handoff threshold. (see Reverse  
Speed Crossover  
Drive). When motor speed in reverse direction is too low, the MCF8315A  
switches to open-loop, decelerates the motor in open-loop, crosses zero  
speed, and accelerates in the forward direction in open-loop before entering  
closed loop operation after motor speed is sufficiently high.  
HIZ_EN Judgement  
The MSS checks to determine whether the coast (Hi-Z) function is enabled  
(HIZ_EN = 1b). If the coast function is enabled (HIZ_EN = 1b), the MSS  
advances to the coast routine. If the coast function is disabled (HIZ_EN = 0b),  
the MSS advances to the BRAKE_EN judgement.  
Coast (Hi-Z) Routine  
The device coasts the motor by turning OFF all six MOSFETs for a certain time  
configured by HIZ_TIME.  
BRAKE_EN Judgement  
The MSS checks to determine whether the brake function is enabled  
(BRAKE_EN = 1b). If the brake function is enabled (BRAKE_EN = 1b), the  
MSS advances to the brake routine. If the brake function is disabled  
(BRAKE_EN = 0b), the MSS advances to the motor start-up state (see 节  
7.3.10.4).  
Brake Routine  
MCF8315A implements either a time based brake (duration configured by  
BRK_TIME) or a current based brake (brake applied till phase currents <  
BRK_CURR_THR for BRAKE_CURRENT_PERSIST) based on  
BRK_CONFIG. Current based brake has a timeout to ensure brake state ends  
in case phase currents do not drop below BRK_CURR_THR within  
BRK_TIME. Time based brake can be applied either using high-side or low-  
side MOSFETs based on BRK_MODE configuration. Current based brake is  
applied using low-side MOSFETs only.  
Closed Loop State  
In this state, the MCF8315A drives the motor with sensorless FOC based on  
rotor angle estimation.  
7.3.10.1 Initial Speed Detect (ISD)  
The ISD function is used to identify the initial condition of the motor and is enabled by setting ISD_EN to 1b. The  
initial speed, position and direction is determined by sensing the three phase voltages. ISD can be disabled by  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
setting ISD_EN to 0b. If the function is disabled (ISD_EN set to 0b), the MCF8315A does not perform the initial  
speed detect function and proceeds to check if the brake routine (BRAKE_EN) is enabled.  
7.3.10.2 Motor Resynchronization  
The motor resynchronization function works when the ISD and resynchronization functions are both enabled and  
the device determines that the initial state of the motor is spinning in the forward direction (same direction as the  
commanded direction). The speed and position information measured during ISD are used to initialize the drive  
state of the MCF8315A, which can transition directly into closed loop (or open loop if motor speed is not  
sufficient for closed loop operation) state without needing to stop the motor. In the MCF8315A, motor  
resynchronization can be enabled/disabled through RESYNC_EN bit. If motor resynchronization is disabled, the  
device proceeds to check if the motor coast (Hi-Z) routine is enabled.  
7.3.10.3 Reverse Drive  
The MCF8315A uses the reverse drive function to change the direction of the motor rotation when ISD_EN and  
RVS_DR_EN are both set to 1b and the ISD determines the motor spin direction to be opposite to that of the  
commanded direction. Reverse drive includes synchronizing with the motor speed in the reverse direction,  
reverse decelerating the motor through zero speed, changing direction, and accelerating in open loop in forward  
(or commanded) direction until the device transitions into closed loop in forward direction (see 7-25). .  
MCF8315A provides the option of using the forward direction parameters or a separate set of reverse drive  
parameters by configuring REV_DRV_CONFIG.  
Speed  
Close loop  
Handoff to close loop  
Open loop  
Time  
Handoff to open loop  
Open Loop  
Reverse Deceleration  
7-25. Reverse Drive Function  
7.3.10.3.1 Reverse Drive Tuning  
MCF8315A provides the option of tuning the open to closed loop handoff threshold, open loop acceleration (and  
deceleration) rates and open loop current limit in reverse drive to values different to those used in forward drive  
operation; the reverse drive specific parameters can be used by setting REV_DRV_CONFIG to 1b. If  
REV_DRV_CONFIG is set to 0b, MCF8315A uses the equivalent parameters configured for forward drive  
operation during the reverse drive operation too.  
The speed at which motor would enter the open loop in reverse direction can be configured using  
REV_DRV_HANDOFF_THR. For a smooth transition without jerks or loss of synchronism, user can configure an  
appropriate current limit when the motor is spinning in open loop during speed reversal using  
REV_DRV_OPEN_LOOP_CURRENT. The open loop acceleration rates for the forward direction during speed  
reversal are defined using REV_DRV_OPEN_LOOP_ACCEL_A1 and REV_DRV_OPEN_LOOP_ACCEL_A2.  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
The reverse drive open loop deceleration rate, when the motor is decelerating in the opposite direction to zero  
speed, can be configured as  
REV_DRV_OPEN_LOOP_DEC.  
a
percentage of reverse drive open loop acceleration using  
7.3.10.4 Motor Start-up  
There are different options available for motor start-up from a stationary position and these options can be  
configured by MTR_STARTUP. In align and double align mode, the motor is aligned to a known position by  
injecting a DC current. In IPD mode, the rotor position is estimated by applying 6 different high-frequency pulses.  
In slow first cycle mode, the motor is started by applying a low frequency cycle.  
7.3.10.4.1 Align  
Align is enabled by configuring MTR_STARTUP to 00b. The MCF8315A aligns the motor by injecting a DC  
current through a particular phase pattern for a certain time configured by ALIGN_TIME. The phase pattern  
during align is generated based on ALIGN_ANGLE. In the MCF8315A, the current limit during align is configured  
through ALIGN_OR_SLOW_CURRENT LIMIT.  
A fast change in the phase current may result in a sudden change in the driving torque and this could result in  
acoustic noise. To avoid this, the MCF8315A ramps up the current from 0 to the current limit at a configurable  
ramp rate set by ALIGN_SLOW_RAMP_RATE. At the end of align routine the motor, will be aligned at the known  
position.  
7.3.10.4.2 Double Align  
Double align is enabled by configuring MTR_STARTUP to 01b. Single align is not reliable when the initial  
position of the rotor is 180o out of phase with the applied phase pattern. In this case, it is possible to have start-  
up failures using single align. In order to improve the reliabilty of align based start-up, the MCF8315A provides  
the option of double align start-up. In double align start-up, MCF8315A uses a phase pattern for the second align  
that is 90o ahead of the first align phase pattern. In double align, relevant parameters like align time, current limit,  
ramp rate are the same as in the case of single align - two different phase patterns are applied in succession  
with the same parameters to ensure that the motor will be aligned to a known position irrespective of initial rotor  
position.  
7.3.10.4.3 Initial Position Detection (IPD)  
Initial Position Detection (IPD) can be enabled by configuring MTR_STARTUP to 10b. In IPD, inductive sense  
method is used to determine the initial position of the motor using the spatial variation in the motor inductance.  
Align or double align may result in the motor spinning in the reverse direction before starting open loop  
acceleration. IPD can be used in such applications where reverse rotation of the motor is unacceptable. IPD  
does not wait for the motor to align with the commutation and therefore can allow for a faster motor start-up  
sequence. IPD works well when the inductance of the motor varies as a function of position. IPD works by  
pulsing current in to the motor and hence can generate acoustics which must be taken into account when  
determining the best start-up method for a particular application.  
7.3.10.4.3.1 IPD Operation  
IPD operates by sequentially applying six different phase patterns according to the following sequence: BC->  
CB-> AB-> BA-> CA-> AC (see 7-26). When the current reaches the threshold configured by  
IPD_CURR_THR, the MCF8315A stops driving the particular phase pattern and measures the time taken to  
reach the current threshold from when the particular phase pattern was applied. Thus, the time taken to reach  
IPD_CURR_THR is measured for all six phase patterns - this time varies as a function of the inductance in the  
motor windings. The state with the shortest time represents the state with the minimum inductance. The  
minimum inductance is because of the alignment of the north pole of the motor with this particular driving state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
IPD_CLK  
Clock  
C
Drive  
B C  
C B  
A B  
B A  
C A  
A C  
IPD_CURR_THR  
Current  
Search the Minimum Time  
Minimum  
Time  
Smallest  
Inductance  
Saturation Position of  
the Magnetic Field  
Permanent  
Magnet Position  
7-26. IPD Function  
7.3.10.4.3.2 IPD Release Mode  
Two modes are available for configuring the way the MCF8315A stops driving the motor when the current  
threshold is reached. The recirculate (or brake) mode is selected if IPD_RLS_MODE = 0b. In this configuration,  
the low-side (LSC) MOSFET remains ON to allow the current to recirculate between the MOSFET (LSC) and  
body diode (LSA) (see 7-27). Hi-Z mode is selected if IPD_RLS_MODE = 1b. In Hi-Z mode, both the high-  
side (HSA) and low-side (LSC) MOSFETs are turned OFF and the current recirculates through the body diodes  
back to the power supply (see 7-28).  
In the Hi-Z mode, the phase current has a faster settle-down time, but that can result in a voltage increase on  
VM. The user must manage this with an appropriate selection of either a clamp circuit or by providing sufficient  
capacitance between VM and PGND to absorb the energy. If the voltage surge cannot be contained or if it is  
unacceptable for the application, recirculate mode must be used. When using the recirculate mode, select the  
IPD_CLK_FREQ appropriately to give the current in the motor windings enough time to decay to 0-A before the  
next IPD phase pattern is applied.  
HSB  
HSC  
LSC  
HSA  
VM  
LSA  
HSB  
LSB  
HSC  
LSC  
HSA  
VM  
LSA  
M
M
LSB  
Driving  
Brake (Recirculate)  
7-27. IPD Release Mode - Brake (0b)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
42  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
HSB  
HSC  
LSC  
HSA  
VM  
LSA  
HSB  
HSC  
LSC  
HSA  
VM  
LSA  
M
M
LSB  
LSB  
Driving  
Hi-Z (Tri-State)  
7-28. IPD Release Mode - Tristate (1b)  
7.3.10.4.3.3 IPD Advance Angle  
After the initial position is detected, the MCF8315A begins driving the motor in open loop at an angle specified  
by IPD_ADV_ANGLE.  
Advancing the drive angle anywhere from 0° to 180° results in positive torque. Advancing the drive angle by 90°  
results in maximum initial torque. Applying maximum initial torque could result in uneven acceleration to the  
rotor. Select the IPD_ADV_ANGLE to allow for smooth acceleration in the application (see 7-29).  
Motor spinning direction  
C
B
A
B
A
B
A
A
B
C
C
C
C
30 advance  
90 advance  
120 advance  
60 advance  
7-29. IPD Advance Angle  
7.3.10.4.4 Slow First Cycle Startup  
Slow First Cycle start-up is enabled by configuring MTR_STARTUP to 11b. In slow first cycle start-up, the  
MCF8315A starts motor commutation at a frequency defined by SLOW_FIRST_CYCLE_FREQ. The frequency  
configured is used only for first cycle, and then the motor commutation follows acceleration profile configured by  
open loop acceleration coefficients A1 and A2. The slow first cycle frequency has to be configured to be slow  
enough to allow motor to synchronize with the commutation sequence. This mode is useful when fast startup is  
desired as it significantly reduces the align time.  
7.3.10.4.5 Open loop  
Upon completing the motor position initialization with either align, double align, IPD or slow first cycle, the  
MCF8315A begins to accelerate the motor in open loop. During open loop, the speed is increased with a fixed  
current limit. In open loop, the control PI loops for Iq and Id actively control the currents. The angle during open  
loop is provided from the ramp generator as shown in 7-30  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
User Set  
Current  
Ilimit  
Accelera on  
Control and  
Limit  
Speed Pro les  
SW1  
Ilimit  
Iq_ref  
SPEED_REF  
DUTY_CMD  
VM  
VM  
0
Torque  
Controller  
Vq  
Vd  
Va  
Vb  
Vc  
Speed  
Loop  
V
V
Inverse  
Clarke/  
SVM  
0
0
Inverse  
Park  
Speed_meas  
Id_ref = 0  
Flux  
Controller  
Open Loop Ramp  
gen  
SW2  
Generator (Coe  
A1 and A2)  
Ia  
Id  
Iq  
I
I
Ib  
Ic  
Park  
Clarke  
est  
I
I
Back-EMF  
Observer  
V
V
7-30. Open Loop  
In MCF8315A, the current limit threshold is configured through OL_ILIMIT_CONFIG and is set by ILIMIT or  
OL_ILIMIT based on configuration of OL_ILIMIT_CONFIG. The function of the open-loop operation is to drive  
the motor to a speed at which the motor generates sufficient BEMF to allow the back-EMF observer to  
accurately detect the position of the rotor. The motor is accelerated in open loop and speed at any given time is  
determined by 方程式 4. In MCF8315A, open loop acceleration coefficients, A1 and A2 are configured through  
OL_ACC_A1 and OL_ACC_A2 respectively.  
Speed(t) = A1 * t + 0.5 * A2 * t2  
(4)  
7.3.10.4.6 Transition from Open to Closed Loop  
Once the motor has reached a sufficient speed for the back-EMF observer to estimate the angle and speed of  
the motor, the MCF8315A transitions into closed loop state. This handoff speed is automatically determined  
based on the measured back-EMF and motor speed. Users also have an option to manually set the handoff  
speed by configuring OPN_CL_HANDOFF_THR and setting AUTO_HANDOFF_EN to 0b. In order to have  
smooth transition and avoid speed transients, the theta_error (Ɵgen - Ɵest) is decreased linearly after transition.  
The ramp rate of theta_error reduction can be configured using THETA_ERROR_RAMP_RATE. If the current  
limit set during the open loop is high and if it is not reduced before transition to closed loop, the motor speed  
may momentarily rise to higher values than SPEED_REF after transition into closed loop. In order to avoid such  
speed variations, configure the IQ_RAMP_EN to 1b, so that iq_ref decreases prior to transition into closed loop.  
However if the final speed reference (SPEED_REF) is more than two times the open loop to closed loop hand off  
speed (OPN_CL_HANDOFF_THR), then iq_ref is not decreased independent of the IQ_RAMP_EN setting, to  
enable faster motor acceleration.  
After hand off to closed loop at a sufficient speed, there could be still some theta error, as the estimators may not  
be fully aligned. A slow acceleration can be used after the open loop to closed loop transition, ensuring that the  
theta error reduces to zero. The slow acceleration can be configured using CL_SLOW_ACC.  
7-31 shows the control sequence in open to closed loop transition. The current iq_ref reduces to a lower value  
in current decay region, if IQ_RAMP_EN is set to 1b. If IQ_RAMP_EN is set to 0b, then the current decay region  
will not be present in the transition sequence.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
44  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
iqref  
THETA_ERROR_RAMP_RATE  
Theta_error  
SPEED  
SPEED_REF  
OPN_CL_HANDOFF_THR  
II  
III  
IV  
V
I
I. Open Loop Accelera on, II. Current Decay, III. Closed loop slow accelera on  
IV. Closed loop accelera on, V. Closed loop steady state  
7-31. Control Sequence in Open to Closed Loop Transition  
User Set  
Ilimit  
Accelera on  
Control and  
Speed Pro les  
Current  
Limit  
SW1  
Ilimit  
Iq_ref  
DUTY_CMD  
SPEED_REF  
Speed_meas  
VM  
VM  
0
Torque  
Controller  
Vq  
Vd  
V
V
Va  
Vb  
Vc  
Speed  
Loop  
Inverse  
Clarke/  
SVM  
0
0
Inverse  
Park  
Id_ref = 0  
Flux  
Controller  
Open Loop Ramp  
gen  
SW2  
Generator (Coe  
A1 and A2)  
Ia  
Id  
Iq  
I
I
Ib  
Ic  
Park  
Clarke  
est  
I
I
Back-EMF  
Observer  
V
V
7-32. Open to Closed Loop Transition Control Block Diagram  
7.3.11 Closed Loop Operation  
The MCF8315A drives the motor using Field Oriented Control (FOC) as shown in 7-33. In closed loop  
operation, the motor angle (Ɵest) and speed (Speed_meas) are estimated using the back-EMF observer. The  
speed and current regulation are achieved using PI control loop. In order to achieve maximum efficiency, the  
direct axis current is set to zero (Id_ref = 0), which will ensure that stator and rotor field are orthogonal (90o out of  
phase) to each other.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
Accelera on  
Control and  
Speed Pro les  
DUTY_CMD  
SPEED_REF  
Speed  
Loop  
Ilimit  
Iq_ref  
0
VM  
VM  
Torque  
Controller  
Speed_meas  
V
V
Vq  
Vd  
Va  
Vb  
Vc  
Inverse  
Clarke/  
SVM  
0
0
Inverse  
Park  
Id_ref = 0  
Flux  
Controller  
Ia  
Id  
Iq  
I
I
Ib  
Ic  
Park  
Clarke  
est  
I
I
BEMF Observer  
V
V
7-33. Closed Loop FOC Control  
7.3.11.1 Closed loop accelerate  
To prevent sudden changes in the torque applied to the motor which could result in acoustic noise, the  
MCF8315A device provides the option of limiting the maximum rate at which the speed command can change.  
The closed loop acceleration rate parameter sets the maximum rate at which the speed command changes  
(shown in 7-34). In the MCF8315A, closed loop acceleration rate is configured through CL_ACC.  
y%  
Speed command  
input  
x%  
y%  
Speed command  
after closed loop  
accelerate buffer  
x%  
Closed loop  
accelerate settings  
7-34. Closed loop accelerate  
7.3.11.2 Speed PI Control  
The integrated speed control loop helps maintain a constant speed over varying operating conditions. The Kp  
and Ki coefficients are configured through SPD_LOOP_KP and SPD_LOOP_KI. The output of the speed loop is  
used to generate the current reference for torque control (Iq_ref). The output of the speed loop is limited to  
implement a current limit. The current limit is set by configuring ILIMIT. When output of the speed loop saturates,  
the integrator is disabled to prevent integral wind-up.  
SPEED_REF is derived from the duty command input and speed profiles configured by the user and  
SPEED_MEAS is the estimated speed from the back-EMF observer.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
46  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
ILIMIT  
OUT  
Kp  
Ki  
SPEED_REF  
+
+
Iq_ref  
-
+
-ILIMIT  
+
+
SPEED_MEAS  
Z-1  
Switch close,  
if -ILIMIT < OUT < ILIMIT  
7-35. Speed PI Control  
7.3.11.3 Current PI Control  
The MCF8315A has two PI controllers, one each for Id and Iq to control flux and torque separately. Kp and Ki  
coefficients are the same for both PI controllers and are configured through CURR_LOOP_KP and  
CURR_LOOP_KI. The outputs of the current control loops are used to generate voltage signals Vd and Vq to be  
applied to the motor. The outputs of the current loops are clamped to supply voltage VM. Id current PI loop is  
executed first and output of Id current PI loop Vd is checked for saturation. When the output of the current loop  
saturates, the integration is disabled to prevent integral wind-up.  
VM  
OUT  
Id_ref  
Kp  
Ki  
+
Vd  
+
-
+
-VM  
+
+
Id  
Z-1  
**Switch close,  
if -VM < Vd < VM  
** Priority is given to Vd;  
Vd is calculated rst for  
saturaon detecon  
7-36. Id Current PI Control  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
VM  
OUT  
Kp  
Ki  
Iq_ref  
+
Vq  
+
-
+
-VM  
+
+
Iq  
**Switch close,  
if Vd2 + Vq2 < VM2 when  
overmodula on is  
Z-1  
disabled; when enabled,  
switch close if -VM < Vq <  
VM  
** Priority is given to Vd;  
Vd is calculated rst for  
satura
on detec
on  
7-37. Iq Current PI Control  
7.3.11.4 Overmodulation  
MCF8315A provides an overmodulation option to operate the motor at a higher speed at the same VM voltage  
by increasing the applied fundamental phase voltage by suitably modifying the applied PWM pattern - the higher  
fundamental phase voltage is accompanied by an increase in higher order harmonics. This feature can be  
enabled by setting OVERMODULATION_ENABLE to 1b.  
7.3.12 Motor Parameters  
The MCF8315A uses the motor resistance, motor inductance and motor back-EMF constant to estimate motor  
position when operating in closed loop. The MCF8315A has the capability of measuring these motor parameters  
in the offline state (see Motor Parameter Extraction Tool (MPET)). Offline measurement of parameters, when  
enabled, takes place before normal motor operation. The user can also disable the offline measurement and  
configure motor parameters through EEPROM. This feature of offline motor parameter measurement is useful to  
account for motor to motor variation during manufacturing.  
7.3.12.1 Motor Resistance  
For a wye-connected motor, the motor phase resistance refers to the resistance from the phase output to the  
center tap, RPH (denoted as RPH in 7-38). For a delta-connected motor, the motor phase resistance refers to  
the equivalent phase to center tap in the wye configuration in 7-38.  
Phase A  
R
PH  
PH  
_
_
PH  
PH  
R
CT  
R
PH  
RPH  
RPH_PH  
Phase C  
Phase B  
7-38. Motor Resistance  
For both the delta-connected and the wye-connected motor, the easy way to get the equivalent RPH is to  
measure the resistance between two phase terminals (RPH_PH), and then divide this value by two, RPH = ½  
RPH_PH. In wye-connected motor, if user has access to center tap (CT), RPH can also be measured between  
center tap (CT) and phase terminal.  
Configure the motor resistance (RPH) to a nearest value from 7-2.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
48  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-2. Motor Resistance Look-Up Table  
MOTOR_RES  
(HEX)  
MOTOR_RES  
(HEX)  
MOTOR_RES  
(HEX)  
MOTOR_RES  
(HEX)  
RPH (Ω)  
Self  
RPH (Ω)  
0.145  
RPH (Ω)  
0.465  
RPH (Ω)  
0x00  
0x40  
0x80  
0xC0  
2.1  
Measurement  
(see Motor  
Parameter  
Extraction Tool  
(MPET))  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0.006  
0.007  
0.008  
0.009  
0.010  
0.011  
0.012  
0.013  
0.014  
0.015  
0.016  
0.017  
0.018  
0.019  
0.020  
0.022  
0.024  
0.026  
0.028  
0.030  
0.032  
0.034  
0.036  
0.038  
0.040  
0.042  
0.044  
0.046  
0.048  
0.050  
0.052  
0.054  
0.056  
0.058  
0.060  
0.062  
0.064  
0.066  
0.068  
0.070  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0.150  
0.155  
0.160  
0.165  
0.170  
0.175  
0.180  
0.185  
0.190  
0.195  
0.200  
0.205  
0.210  
0.215  
0.220  
0.225  
0.230  
0.235  
0.240  
0.245  
0.250  
0.255  
0.260  
0.265  
0.270  
0.275  
0.280  
0.285  
0.290  
0.295  
0.300  
0.305  
0.310  
0.315  
0.320  
0.325  
0.330  
0.335  
0.340  
0.345  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xA8  
0.470  
0.475  
0.480  
0.485  
0.490  
0.495  
0.50  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
0.58  
0.59  
0.60  
0.61  
0.62  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.69  
0.70  
0.72  
0.74  
0.76  
0.78  
0.80  
0.82  
0.84  
0.86  
0.88  
0.90  
0.92  
0.94  
0.96  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
0xC7  
0xC8  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0xD5  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.4  
6.6  
6.8  
7.0  
7.2  
7.4  
7.6  
7.8  
8.0  
8.2  
8.4  
8.6  
8.8  
9
9.2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-2. Motor Resistance Look-Up Table (continued)  
MOTOR_RES  
(HEX)  
MOTOR_RES  
(HEX)  
MOTOR_RES  
(HEX)  
MOTOR_RES  
(HEX)  
RPH (Ω)  
0.072  
RPH (Ω)  
0.350  
RPH (Ω)  
0.98  
RPH (Ω)  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
0xBC  
0xBD  
0xBE  
0xBF  
0xE9  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
0xEF  
0xF0  
0xF1  
0xF2  
0xF3  
0xF4  
0xF5  
0xF6  
0xF7  
0xF8  
0xF9  
0xFA  
0xFB  
0xFC  
0xFD  
0xFE  
0xFF  
9.4  
0.074  
0.076  
0.078  
0.080  
0.082  
0.084  
0.086  
0.088  
0.090  
0.092  
0.094  
0.096  
0.098  
0.100  
0.105  
0.110  
0.115  
0.120  
0.125  
0.130  
0.135  
0.140  
0.355  
0.360  
0.365  
0.370  
0.375  
0.380  
0.385  
0.390  
0.395  
0.400  
0.405  
0.410  
0.415  
0.420  
0.425  
0.430  
0.435  
0.440  
0.445  
0.450  
0.455  
0.460  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
9.6  
9.8  
10.0  
10.5  
11.0  
11.5  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
17.0  
17.5  
18.0  
18.5  
19.0  
20.0  
7.3.12.2 Motor Inductance  
For a wye-connected motor, the motor phase inductance refers to the inductance from the phase output to the  
center tap, LPH (denoted as LPH in 7-39). For a delta-connected motor, the motor phase inductance refers to  
the equivalent phase to center tap in the wye configuration in 7-39.  
Phase A  
L
PH  
PH  
_
_
P
PH  
H
L
CT  
L
PH  
LPH  
LPH_PH  
Phase C  
Phase B  
7-39. Motor Inductance  
For both the delta-connected motor and the wye-connected motor, the easy way to get the equivalent LPH is to  
measure the inductance between two phase terminals (LPH_PH), and then divide this value by two, LPH = ½  
LPH_PH. In wye-connected motor, if user has access to center tap (CT), LPH can also be measured between  
center tap (CT) and phase terminal.  
Configure the motor inductance (LPH) to a nearest value from 7-3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
50  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-3. Motor Inductance Look-Up Table  
MOTOR_IND  
(HEX)  
MOTOR_IND  
(HEX)  
MOTOR_IND  
(HEX)  
MOTOR_IND  
(HEX)  
LPH (mH)  
LPH (mH)  
LPH (mH)  
LPH (mH)  
0x00  
Self  
0x40  
0.145  
0x80  
0.465  
0xC0  
2.1  
Measurement  
(see Motor  
Parameter  
Extraction Tool  
(MPET))  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0.006  
0.007  
0.008  
0.009  
0.010  
0.011  
0.012  
0.013  
0.014  
0.015  
0.016  
0.017  
0.018  
0.019  
0.020  
0.022  
0.024  
0.026  
0.028  
0.030  
0.032  
0.034  
0.036  
0.038  
0.040  
0.042  
0.044  
0.046  
0.048  
0.050  
0.052  
0.054  
0.056  
0.058  
0.060  
0.062  
0.064  
0.066  
0.068  
0.070  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0.150  
0.155  
0.160  
0.165  
0.170  
0.175  
0.180  
0.185  
0.190  
0.195  
0.200  
0.205  
0.210  
0.215  
0.220  
0.225  
0.230  
0.235  
0.240  
0.245  
0.250  
0.255  
0.260  
0.265  
0.270  
0.275  
0.280  
0.285  
0.290  
0.295  
0.300  
0.305  
0.310  
0.315  
0.320  
0.325  
0.330  
0.335  
0.340  
0.345  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xA8  
0.470  
0.475  
0.480  
0.485  
0.490  
0.495  
0.50  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
0.58  
0.59  
0.60  
0.61  
0.62  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.69  
0.70  
0.72  
0.74  
0.76  
0.78  
0.80  
0.82  
0.84  
0.86  
0.88  
0.90  
0.92  
0.94  
0.96  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
0xC7  
0xC8  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0xD5  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.4  
6.6  
6.8  
7.0  
7.2  
7.4  
7.6  
7.8  
8.0  
8.2  
8.4  
8.6  
8.8  
9
9.2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
LPH (mH)  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-3. Motor Inductance Look-Up Table (continued)  
MOTOR_IND  
(HEX)  
MOTOR_IND  
(HEX)  
MOTOR_IND  
(HEX)  
MOTOR_IND  
(HEX)  
LPH (mH)  
LPH (mH)  
LPH (mH)  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0.072  
0.074  
0.076  
0.078  
0.080  
0.082  
0.084  
0.086  
0.088  
0.090  
0.092  
0.094  
0.096  
0.098  
0.100  
0.105  
0.110  
0.115  
0.120  
0.125  
0.130  
0.135  
0.140  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0.350  
0.355  
0.360  
0.365  
0.370  
0.375  
0.380  
0.385  
0.390  
0.395  
0.400  
0.405  
0.410  
0.415  
0.420  
0.425  
0.430  
0.435  
0.440  
0.445  
0.450  
0.455  
0.460  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
0xBC  
0xBD  
0xBE  
0xBF  
0.98  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
0xE9  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
0xEF  
0xF0  
0xF1  
0xF2  
0xF3  
0xF4  
0xF5  
0xF6  
0xF7  
0xF8  
0xF9  
0xFA  
0xFB  
0xFC  
0xFD  
0xFE  
0xFF  
9.4  
9.6  
9.8  
10.0  
10.5  
11.0  
11.5  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
17.0  
17.5  
18.0  
18.5  
19.0  
20.0  
7.3.12.3 Motor Back-EMF constant  
The back-EMF constant describes the motor phase-to-neutral back-EMF voltage as a function of the motor  
speed. For a wye-connected motor, the motor BEMF constant refers to the BEMF as a function of time from the  
phase output to the center tap, KtPH_N (denoted as KtPH_N in 7-40). For a delta-connected motor, the motor  
BEMF constant refers to the equivalent phase to center tap in the wye configuration in 7-40.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
52  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
Phase A  
EPH  
tE  
CT  
KtPH_N = (1/sqrt(3)) *EPH * tE  
EPH_B  
LPH  
RPH  
Phase B  
Phase C  
7-40. Motor back-EMF constant  
For both the delta-connected motor and the wye-connected motor, the easy way to get the equivalent KtPH_N is  
to measure the peak value of BEMF on scope for one electrical cycle between two phase terminals (EPH), and  
then multiply by time duration of one electrical cycle and in order to convert from phase-to-phase to phase-to-  
neutral divide by sqrt(3) as shown in 方程5 .  
1
Kt  
=
× E × t  
E
(5)  
PH_N  
3
PH  
Configure the motor BEMF constant (KtPH_N) to a nearest value from 7-4.  
7-4. Motor BEMF constant Look-Up Table  
MOTOR_BEM  
F_CONST  
(HEX)  
MOTOR_BEMF_ KtPH_N  
MOTOR_BEMF_ KtPH_N  
MOTOR_BEMF_ KtPH_N  
KtPH_N  
(mV/Hz)  
CONST (HEX)  
(mV/Hz)  
CONST (HEX)  
(mV/Hz)  
CONST (HEX)  
(mV/Hz)  
0x00  
Self  
0x40  
14.5  
0x80  
46.5  
0xC0  
210  
Measurement  
(see Motor  
Parameter  
Extraction Tool  
(MPET))  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
15.0  
15.5  
16.0  
16.5  
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
20.5  
21.0  
21.5  
22.0  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
47.0  
47.5  
48.0  
48.5  
49.0  
49.5  
50.0  
51  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
0xC7  
0xC8  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
220  
230  
240  
250  
260  
270  
280  
290  
300  
320  
340  
360  
380  
400  
420  
52  
53  
54  
55  
56  
57  
58  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-4. Motor BEMF constant Look-Up Table (continued)  
MOTOR_BEM  
F_CONST  
(HEX)  
MOTOR_BEMF_ KtPH_N  
MOTOR_BEMF_ KtPH_N  
MOTOR_BEMF_ KtPH_N  
KtPH_N  
(mV/Hz)  
CONST (HEX)  
(mV/Hz)  
CONST (HEX)  
(mV/Hz)  
CONST (HEX)  
(mV/Hz)  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
2.2  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
22.5  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
59  
60  
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0xD5  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
0xEF  
0xF0  
0xF1  
0xF2  
0xF3  
0xF4  
0xF5  
0xF6  
0xF7  
0xF8  
0xF9  
0xFA  
0xFB  
440  
460  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.4  
6.6  
6.8  
7.0  
7.2  
7.4  
7.6  
7.8  
8.0  
8.2  
8.4  
8.6  
8.8  
9.0  
9.2  
9.4  
9.6  
9.8  
10.0  
10.5  
11.0  
11.5  
12.0  
23.0  
23.5  
24.0  
24.5  
25.0  
25.5  
26.0  
26.5  
27.0  
27.5  
28.0  
28.5  
29.0  
29.5  
30.0  
30.5  
31.0  
31.5  
32.0  
32.5  
33.0  
33.5  
34.0  
34.5  
35.0  
35.5  
36.0  
36.5  
37.0  
37.5  
38.0  
38.5  
39.0  
39.5  
40.0  
40.5  
41.0  
41.5  
42.0  
42.5  
43.0  
43.5  
44.0  
61  
480  
62  
500  
63  
520  
64  
540  
65  
560  
66  
580  
67  
600  
68  
620  
69  
640  
70  
660  
72  
680  
74  
700  
76  
720  
78  
740  
80  
760  
82  
780  
84  
800  
86  
820  
88  
840  
90  
860  
92  
880  
94  
900  
96  
920  
98  
940  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
155  
160  
165  
170  
175  
180  
185  
960  
980  
1000  
1050  
1100  
1150  
1200  
1250  
1300  
1350  
1400  
1450  
1500  
1550  
1600  
1650  
1700  
1750  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
54  
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-4. Motor BEMF constant Look-Up Table (continued)  
MOTOR_BEM  
F_CONST  
(HEX)  
MOTOR_BEMF_ KtPH_N  
MOTOR_BEMF_ KtPH_N  
MOTOR_BEMF_ KtPH_N  
KtPH_N  
(mV/Hz)  
CONST (HEX)  
(mV/Hz)  
CONST (HEX)  
(mV/Hz)  
CONST (HEX)  
(mV/Hz)  
0x3C  
0x3D  
0x3E  
0x3F  
12.5  
0x7C  
0x7D  
0x7E  
0x7F  
44.5  
0xBC  
0xBD  
0xBE  
0xBF  
190  
0xFC  
0xFD  
0xFE  
0xFF  
1800  
13.0  
13.5  
14.0  
45.0  
45.5  
46.0  
195  
200  
205  
1850  
1900  
2000  
7.3.13 Motor Parameter Extraction Tool (MPET)  
The MCF8315A uses motor winding resistance, motor winding inductance and Back-EMF constant to estimate  
motor position in closed loop operation. The MCF8315A has capability of automatically measuring motor  
parameters in offline state, rather than having the user enter the values themselves. The MPET routine  
measures motor winding resistance, inductance, back EMF constant and mechanical load inertia and frictional  
coefficients. Offline measurement of parameters takes place before normal motor operation. TI recommends to  
estimate the motor parameters before motor startup to minimize the impact caused due to possible parameter  
variations.  
7-41 shows the sequence of operation in the MPET routine. The MPET routine is entered when either the  
MPET_CMD bit is set to 1b or a non-zero target speed is set. The MPET routine consists of four steps namely,  
IPD, Open Loop Acceleration, Current Ramp Down and Coasting. Each one of these steps are executed if the  
condition shown below the step evaluates to TRUE; if the condition evaluates to FALSE, the algorithm bypasses  
that particular step and moves on to the next step in the sequence. Once all the 4 steps are completed (or  
bypassed), the algorithm exits the MPET routine. If target speed is set to a non-zero value, the algorithm begins  
the start-up and acceleration sequence (to target speed reference) once MPET routine is exited.  
BEMF Constant and  
Mechanical Parameter  
Motor Winding R and  
L Measurement  
Measurement  
BEMF constant estimated,  
initial speed PI loop  
constants tuned  
Motor R and L  
estimated;  
MPET_CMD = 1b ||  
Target_speed is non-  
zero  
Open Loop  
Acceleration  
Current Ramp  
Down  
IPD  
Coasting  
End of MPET  
MPET_KE = 1b ||  
MPET_MECH = 1b ||  
MPET_KE = 1b ||  
MPET_MECH = 1b ||  
MPET_MECH = 1b ||  
SPD_LOOP_KP = 0 ||  
SPD_LOOP_KI = 0  
MPET_R = 1b ||  
MPET_L = 1b ||  
MOTOR_BEMF_CONST = 0 ||  
SPD_LOOP_KP = 0 ||  
SPD_LOOP_KI = 0  
MOTOR_BEMF_CONST = 0 ||  
SPD_LOOP_KP = 0 ||  
SPD_LOOP_KI = 0  
MOTOR_RES = 0 ||  
MOTOR_IND = 0  
7-41. MPET Sequence  
TI proprietary MPET routine includes following sequence of operation.  
IPD: The MPET routine starts with IPD, if the user enables motor winding resistance or inductance  
measurement by setting MPET_R = 1b and MPET_L = 1b or if the user defines MOTOR_RES = 0 or  
MOTOR_IND = 0. The IPD during MPET can be configured using MPET specific configuration parameters or  
using the normal motor operation IPD configuration parameters. The IPD configuration selection is done  
using MPET_IPD_SELECT. With MPET_IPD_SELECT = 1b, the IPD current limit is configured using  
MPET_IPD_CURRENT_LIMIT and the IPD repeat number is configured using MPET_IPD_FREQ. With  
MPET_IPD_SELECT = 0b, the IPD current limit and the repeat number is configured using IPD_CURR_THR  
and IPD_REPEAT. The IPD timer over flow or the IPD current decay time more than three times the current  
ramp up time can result in MPET_IPD_FAULT. TI recommends to run the MPET multiple times to observe for  
consistent resistance and inductance reading.  
Open loop Acceleration:  
After IPD, the MPET routine run align and then open loop acceleration if the back-EMF constant or  
mechanical parameter measurement are enabled by setting MPET_KE = 1b and MPET_MECH = 1b. The  
MPET routine incorporates the sequences for mechanical parameter measurement, if the speed loop PI  
constants are defined as zero, even if MPET_MECH = 0b. User can configure MPET specific open loop  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
configuration parameters or use normal motor operation open loop configuration parameters. The open loop  
configuration selection is done using MPET_KE_MEAS_PARAMETER_SELECT. With  
MPET_KE_MEAS_PARAMETER_SELECT = 1b, the speed slew rate is defined using  
MPET_OPEN_LOOP_SLEW_RATE, the open loop current reference is defined using  
MPET_OPEN_LOOP_CURR_REF and the open loop speed reference is defined using  
MPET_OPEN_LOOP_SPEED_REF. With MPET_KE_MEAS_PARAMETER_SELECT = 0b, the speed slew  
rate is defined using OL_ACC_A1 and OL_ACC_A2, 80% of ILIMIT for current reference and 50% of  
MAX_SPEED for speed reference.  
Current Ramp Down: After open loop acceleration, if the mechanical parameter measurement is enabled,  
then the MPET routine optimizes the motor current to lower value sufficient to support the load. If mechanical  
parameter measurement is disabled (MPET_MECH = 0b, or non-zero speed loop PI parameters) then the  
MPET will not have the current ramp down sequence.  
Coasting: MPET routine completes the sequence by allowing the motor to coast by enabling Hi-Z. The motor  
back EMF and indicative values of mechanical parameters are measured during the motor coasting period. If  
the motor back EMF is lower than the threshold defined in STAT_DETECT_THR, the MPET_BEMF_FAULT is  
generated.  
Selecting the parameters from EEPROM or MPET  
The MPET estimated values are available in the MTR_PARAMS Register. Setting the MPET_WRITE_SHADOW  
bit to 1, writes the MPET estimated values to the shadow registers and the user-configured (from EEPROM)  
values in MOTOR_RES, MOTOR_IND, MOTOR_BEMF_CONST, CURR_LOOP_KP, CURR_LOOP_KI,  
SPD_LOOP_KP and SPD_LOOP_KI shadow registers will be overwritten by the estimated values from MPET. If  
any of the shadow registers are initialized to zero (from EEPROM registers), the MPET estimated values are  
used for those registers independent of the MPET_WRITE_SHADOW setting. The MPET calculates the current  
loop KP and KI by using the measured resistance and inductance. The MPET does an estimation of the  
mechanical parameters including the inertia and frictional coefficient at the shaft (includes both motor and shaft  
coupled load). These values are used to set an initial values speed loop KP and KI. The estimated speed loop  
KP and KI setting can be used as an initial setting only and TI recommends to tune these parameters on  
application by the user based on the performance requirement.  
7.3.14 Anti-Voltage Surge (AVS)  
When a motor is driven, energy is transferred from the power supply into the motor. Some of this energy is  
stored in the form of inductive and mechanical energy. If the speed command suddenly drops such that the  
BEMF voltage generated by the motor is greater than the voltage that is applied to the motor, then the  
mechanical energy of the motor is returned to the power supply and the VM voltage surges. The AVS feature  
works to prevent this voltage surge on VM and can be enabled by setting AVS_EN to 1b. AVS can be disabled by  
setting AVS_EN to 0b. When AVS is disabled, the deceleration rate is configured through CL_DEC_CONFIG  
7.3.15 Output PWM Switching Frequency  
The MCF8315A provides the option to configure the output PWM switching frequency of the MOSFETs through  
PWM_FREQ_OUT. PWM_FREQ_OUT has range of 10-75 kHz. In order to select optimal output PWM switching  
frequency, user has to make tradeoff between the current ripple and the switching losses. Generally, motors  
having lower L/R ratio require higher PWM switching frequency to reduce current ripple.  
7.3.16 Active Braking  
Decelerating the motor quickly requires motor mechanical energy to be extracted and disposed - input DC  
voltage increases if this energy is returned to the DC input supply. When active braking is enabled, energy taken  
from DC power supply is used to brake the motor - this prevents DC voltage spike during fast deceleration. The  
mechanical energy of the motor and energy taken from DC source, both are dissipated within the motor itself.  
ACTIVE_BRAKE_EN should be set to 1b to enable active braking and avoid DC bus voltage spike during fast  
motor deceleration. Active braking can also be used during reverse drive (see Reverse Drive) or motor stop (see  
Active Spin-Down) to reduce the motor speed quickly without DC voltage spike.  
The maximum limit on the current sourced from the DC bus (idc_ref) during active braking can be configured  
using ACTIVE_BRAKE_CURRENT_LIMIT. The power flow control during active braking is achieved by using  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
56  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
both Q-axis (iq) and D-axis (id) components of current. The D-axis current reference (id_ref) is generated from the  
error between DC bus current limit (idc_ref) and the estimated DC bus current (idc) using a PI controller. The idc  
value is estimated from the measured phase currents, phase voltage and DC bus voltage, using power balance  
equation (equating the instantaneous DC bus power to sum of all three instantaneous phase power assuming  
100% efficiency). During active braking, the DC bus current limit (idc_ref) starts from zero and linearly increases to  
ACTIVE_BRAKE_CURRENT_LIMIT  
with  
current  
slew  
rate  
as  
defined  
by  
ACTIVE_BRAKE_BUS_CURRENT_SLEW_RATE. The gain constants of PI controller can be configured using  
ACTIVE_BRAKE_KP and ACTIVE_BRAKE_KI. 7-42 shows the active braking id current control loop.  
id_ref  
idc_ref  
+
PI  
-
ACTIVE_BRAKE_KP  
ACTIVE_BRAKE_KI  
idc  
7-42. Active Braking Current Control Loop for id_ref  
7.3.17 PWM Modulation Schemes  
The MCF8315 supports two different modulation schemes, namely, continuous and discontinuous space vector  
PWM modulation schemes. In continuous PWM modulation, all the three phases switch all the time as per the  
defined switching frequency. In discontinuous PWM modulation, one of the phases is clamped to ground for 120o  
electrical period, and the other two phases are pulse width modulated. The modulation scheme is configured  
using PWM_MODE. 7-43 shows the modulated average phase voltages for different modulation schemes.  
OUTA  
OUTB  
OUTC  
OUTA - OUTB  
Voltage from Phase to GND - Con nuous PWM modula on  
OUTB - OUTC  
OUTA  
OUTC - OUTA  
OUTB  
Sinusoidal voltage from phase to phase  
OUTC  
Voltage from Phase to GND - Discon nuous PWM modula on  
7-43. Continuous and Discontinuous PWM Modulation Phase Voltages  
Continuous modulation helps in reducing current ripple for motors having low inductance but it results in higher  
switching losses because all three phases are switching. Discontinuous modulation has lower switching losses  
due to only two phases switching at a time, but higher current ripple.  
7.3.18 Dead Time Compensation  
Dead time is inserted between the switching instants of high-side and low-side MOSFET in a half bridge leg to  
avoid shoot-through condition. Due to dead time insertion, the expected voltage and applied voltage at the  
phase node differ based on the phase current direction. The phase node voltage distortion introduces undesired  
distortion in the phase current causing audible noise. The distortion in current waveform due to dead time  
appear as sixth harmonic of fundamental frequency in the dq reference frame. The MCF8315 integrates a  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
proprietary dead time compensation using a resonant controller to control the sixth harmonic component in  
phase current to zero, ensuring that the current distortion due to dead time is alleviated. The resonant controller  
is employed in both iq and id control paths. The dead time compensation can be enabled or disabled by  
configuring DEADTIME_COMP_EN.  
7.3.19 Motor Stop Options  
The MCF8315A provides different options for stopping the motor which can be configured by MTR_STOP.  
7.3.19.1 Coast (Hi-Z) Mode  
Coast (Hi-Z) mode is configured by setting MTR_STOP to 000b. When motor stop command is received, the  
MCF8315A will transition into a high impedance (Hi-Z) state by turning off all MOSFETs. When the MCF8315A  
transitions from driving the motor into a Hi-Z state, the inductive current in the motor windings continues to flow  
and the energy returns to the power supply through the body diodes in the MOSFET output stage (see example  
7-44).  
HSC  
LSC  
HSA  
LSA  
HSB  
HSC  
LSC  
HSA  
LSA  
HSB  
LSB  
VM  
M
VM  
M
LSB  
Driving State  
High-Impedance State  
7-44. Coast (Hi-Z) Mode  
In this example, current is applied to the motor through the high-side phase-A MOSFET (HSA), high-side phase-  
B MOSFET(HSB) and returned through the low-side phase-C MOSFET (LSC). When motor stop command is  
received all 6 MOSFETs transition to Hi-Z state and the inductive energy returns to supply through body diodes  
of MOSFETs LSA, LSB and HSC.  
7.3.19.2 Recirculation Mode  
Recirculation mode is configured by setting MTR_STOP to 001b. In order to prevent the inductive energy from  
returning to DC input supply during motor stop, the MCF8315A allows current to circulate within the MOSFETs  
by selectively turning OFF some of the active (ON) MOSFETs for a certain time (auto calculated recirculation  
time to allow the inductive current to decay to zero) before transitioning into Hi-Z by turning OFF the remaining  
MOSFETs.  
Depending on the phase voltage pattern at the time of receiving the stop command, either low-side (see 7-45)  
or high-side recirculation (see 7-46) will be used to stop the motor without sending the inductive energy back  
to the DC input supply.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
58  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
HSB  
HSC  
LSC  
HSA  
LSA  
HSB  
LSB  
HSC  
LSC  
HSA  
LSA  
VM  
M
VM  
M
LSB  
Low-Side Recirculaon Mode  
Driving State  
7-45. Low-Side Recirculation  
HSC  
LSC  
HSB  
HSA  
LSA  
HSB  
LSB  
HSC  
LSC  
HSA  
VM  
M
VM  
M
LSB  
LSA  
High-Side Recircula on Mode  
Driving State  
7-46. High-Side Recirculation  
7.3.19.3 Low-Side Braking  
Low-side braking mode is configured by setting MTR_STOP to 010b. When a motor stop command is received,  
the output speed is reduced to a value defined by BRAKE_SPEED_THRESHOLD prior to turning all low-side  
MOSFETs ON (see example 7-47) for a time configured by MTR_STOP_BRK_TIME. If the motor speed is  
below BRAKE_SPEED_THRESHOLD prior to receiving stop command, then the MCF8315A transitions directly  
into the brake state. After applying the brake for MTR_STOP_BRK_TIME, the MCF8315A transitions into the Hi-  
Z state by turning OFF all MOSFETs.  
HSC  
LSC  
HSA  
LSA  
HSB  
HSC  
LSC  
HSA  
LSA  
HSB  
LSB  
VM  
M
VM  
M
LSB  
Low-Side Braking  
Driving State  
7-47. Low-Side Braking  
The MCF8315A can also enter low-side braking through BRAKE pin input. When BRAKE pin is pulled to HIGH  
state, the output speed is reduced to a value defined by BRAKE_SPEED_THRESHOLD prior to turning all low-  
side MOSFETs ON. In this case, MCF8315A stays in low-side brake state till BRAKE pin changes to LOW state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.19.4 High-Side Braking  
High-side braking mode is configured by setting MTR_STOP to 011b. When a motor stop command is received,  
the output speed is reduced to a value defined by BRAKE_SPEED_THRESHOLD prior to turning all high-side  
MOSFETs ON (see example 7-48) for a time configured by MTR_STOP_BRK_TIME. If the motor speed is  
below BRAKE_SPEED_THRESHOLD prior to receiving stop command, then the MCF8315A transitions directly  
into the brake state. After applying the brake for MTR_STOP_BRK_TIME, the MCF8315A transitions into Hi-Z  
state by turning OFF all MOSFETs.  
HSC  
LSC  
HSC  
LSC  
HSA  
LSA  
HSB  
HSA  
LSA  
HSB  
LSB  
VM  
M
VM  
M
LSB  
High-Side Braking  
Driving State  
7-48. High-Side Braking  
7.3.19.5 Active Spin-Down  
Active spin down mode is configured by setting MTR_STOP to 100b. When a motor stop command is received,  
the MCF8315A reduces SPEED_REF to ACT_SPIN_THR and then transitions to Hi-Z state by turning all  
MOSFETs OFF. The advantage of this mode is that by reducing SPEED_REF, the motor is decelerated to lower  
speed thereby reducing the phase currents before entering Hi-Z. Now, when the motor transitions into Hi-Z state,  
the energy transfer to the power supply is reduced. The threshold ACT_SPIN_THR needs to configured high  
enough for MCF8315A to not lose synchronization with the motor.  
7.3.19.6 Align Braking  
Align braking based stop mode is configured by setting MTR_STOP to 101b. In this mode, on receiving the  
motor stop command, MCF8315A reduces the motor speed to a value defined by BRAKE_SPEED_THRSHOLD  
before bringing the motor to align stop by injecting a DC current through a particular phase pattern for a time  
configured by MTR_STOP_BRK_TIME. The phase pattern during align stop is generated based on the angle at  
which align needs to be performed and this angle can be configured through ALIGN_ANGLE or the last  
commutation angle. ALIGN_BRAKE_ANGLE_SEL can be configured to decide which align angle is to be used  
by MCF8315A. The current limit threshold during align braking is configured through  
ALIGN_OR_SLOW_CURRENT LIMIT.  
7.3.20 FG Configuration  
The MCF8315A provides information about the motor speed through the Frequency Generate (FG) pin. In  
MCF8315A, the FG pin output is configured through FG_CONFIG. When FG_CONFIG is configured to 0b, the  
FG output is active as long as the MCF8315A is driving the motor. When FG_CONFIG is configured to 1b, the  
MCF8315A provides an FG output until the motor back-EMF falls below FG_BEMF_THR.  
7.3.20.1 FG Output Frequency  
The FG output frequency can be configured by FG_DIV. Many applications require the FG output to provide a  
pulse for every mechanical rotation of the motor Different FG_DIV configurations can accomplish this for 2-pole  
up to 30-pole motors.  
7-49 shows the FG output when MCF8315A has been configured to provide FG pulses once every electrical  
cycle (2 poles), once every two electrical cycle (4 poles), once every three electrical cycles (6 poles), once every  
four electrical cycles (8 poles), and so on.  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
Phase Voltage  
FG_DIV = 0000b  
or 0001b  
(Elec cycle)  
FG_DIV = 0010b  
(Elec cycle*2)  
FG_DIV = 0011b  
(Elec cycle*3)  
FG_DIV = 0100b  
(Elec cycle*4)  
7-49. FG Frequency Divider  
7.3.20.2 FG Open-Loop and Lock Behavior  
During closed loop operation, the driving speed (FG output frequency) and the actual motor speed are  
synchronized. During open-loop operation, however, FG may not reflect the actual motor speed. During motor-  
lock condition, the FG output is driven high.  
The MCF8315A provides three options for controlling the FG output during open loop, as shown in 7-50. The  
selection of these options is configured through FG_SEL.  
If FG_SEL is set to,  
00b: When in open loop, the FG output is based on the driving frequency.  
01b: When in open loop, the FG output will be driven high.  
10b: The FG output will reflect the driving frequency during open loop operation in the first motor start-up  
cycle after power-on, sleep/standby; FG will be held high during open loop operation in subsequent start-up  
cycles.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
Open Loop  
Close Loop  
Phase  
Voltage  
FG_SEL = 00b  
FG_SEL = 01b  
Close Loop  
Open Loop  
Open Loop  
Close Loop  
Phase  
Voltage  
FG_SEL  
= 10b  
Any subsequent startup without  
power down, sleep, or standby.  
Startup a er power on or wake up  
from sleep or standby mode  
7-50. FG Behavior During Open Loop  
7.3.21 DC Bus Current Limit  
The DC bus current limit feature can be used in applications to limit the current supplied by source without  
entering the constant current mode. The DC bus current limit feature can be enabled by setting  
BUS_CURRENT_LIMIT_ENABLE to 1b. The DC bus current limit threshold can be configured using  
BUS_CURRENT_LIMIT. The DC bus current limit limits the speed reference and a functional diagram is shown  
in 7-51. Enabling this feature may restrict the speed of the motor so that current drawn from source is limited.  
The algorithm estimates the bus current using the measured phase currents, phase voltage and DC bus voltage.  
The current limit status is reported on BUS_CURRENT_LIMIT_STATUS.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
62  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
Accelera on  
Control and  
Speed Proles  
SPEED_REF  
DUTY_CMD  
Speed Loop  
Speed_meas  
BUS_CURRENT_LIMIT  
7-51. DC Bus Current Limit Functional Block Diagram  
7.3.22 Protections  
The MCF8315A is protected from a host of fault events including motor lock, VM undervoltage, AVDD  
undervoltage, buck undervoltage, charge pump undervoltage, overtemperature and overcurrent events. 7-5  
summarizes the response, recovery modes, power stage status, reporting mechanism for different faults.  
备注  
1. Actionable faults (latched or retry) are always reported on nFAULT pin (as logic low).  
2. Actionable faults (latched or retry) are reported on ALARM pin (as logic high) when  
ALARM_PIN_EN is set to 1b.  
3. Report only faults are reported on nFAULT (as logic low) only when ALARM_PIN_EN is set to 0b.  
When ALARM_PIN_EN is set to 1b, report only faults are reported only on ALARM pin (as logic  
high) while nFAULT stays high (external pull-up).  
4. Priority order for multi-fault scenarios is latched > slower retry time fault > faster retry time fault >  
report only fault. For example, if a latched and retry fault happen simultaneously, the device stays  
latched in fault mode until user issues clear fault command by writing 1b to CLR_FLT. If two retry  
faults with different retry times happen simultaneously, the device retries only after the longer  
(slower) retry time lapses.  
5. Recovery refers only to state of FETs (Hi-Z or active) after the fault condition is removed.  
Automatic indicates that the device automatically recovers (and FETs are active) when retry time  
lapses after the fault condition is removed. Latched indicates that the device waits for clearing of  
fault condition (by writing 1b to CLR_FLT bit) to make the FETs active again.  
6. Actionable (latched or retry) faults can take up to 200-ms after fault response (FETs in Hi-Z) to be  
reported on nFAULT pin (as logic low), ALARM pin (as logic high) and fault status registers.  
7. Latched faults can take up to 200-ms after CLR_FLT command is issued (over I2C) to be cleared.  
7-5. Fault Action and Response  
FAULT  
CONDITION  
CONFIGURATION  
REPORT  
FETs  
DIGITAL  
RECOVERY  
Automatic:  
VVM > VUVLO  
VM undervoltage  
VVM < VUVLO  
Hi-Z  
Disabled  
Automatic:  
VAVDD > VAVDD_UV  
AVDD undervoltage  
VAVDD < VAVDD_UV  
Hi-Z  
Disabled  
Buck undervoltage  
(BUCK_UV)  
Automatic:  
VFB_BK > VBK_UV  
VFB_BK < VBK_UV  
Active/Hi-Z  
Active/Disabled  
nFAULT and  
GATE_DRIVER_FA  
ULT_STATUS  
register  
Charge pump  
undervoltage  
(VCP_UV)  
Automatic:  
VVCP > VCPUV  
VCP < VCPUV  
Hi-Z  
Active  
Hi-Z  
Active  
Active  
Active  
OVP_EN = 0b  
OVP_EN = 1b  
None  
No action  
Over Voltage  
Protection  
(OVP)  
nFAULT and  
GATE_DRIVER_FA  
ULT_STATUS  
register  
VVM > VOVP  
Automatic:  
VVM < VOVP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-5. Fault Action and Response (continued)  
FAULT  
CONDITION  
CONFIGURATION  
REPORT  
FETs  
DIGITAL  
RECOVERY  
nFAULT and  
GATE_DRIVER_FA  
ULT_STATUS  
register  
Latched:  
CLR_FLT  
OCP_MODE = 00b  
Hi-Z  
Active  
nFAULT and  
GATE_DRIVER_FA  
ULT_STATUS  
register  
Retry:  
tRETRY  
Over Current  
Protection  
(OCP)  
OCP_MODE = 01b  
OCP_MODE = 10b  
Hi-Z  
Active  
Active  
IPHASE > IOCP  
nFAULT and  
GATE_DRIVER_FA  
ULT_STATUS  
register  
Active  
No action  
OCP_MODE = 11b  
None  
Active  
Hi-Z  
Active  
No action  
Automatic  
Buck Overcurrent  
Protection  
IBK > IBK_OCP  
Disabled  
(BUCK_OCP)  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
MTR_LCK_MODE =  
0000b or 0001b  
Latched:  
CLR_FLT  
Hi-Z  
Active  
Active  
Active  
Active  
Active  
Active  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
MTR_LCK_MODE =  
0010b  
Latched:  
CLR_FLT  
High side brake  
Low side brake  
Hi-Z  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
MTR_LCK_MODE =  
0011b  
Latched:  
CLR_FLT  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
MTR_LCK_MODE =  
0100b or 0101b  
Retry:  
tLCK_RETRY  
Motor lock: Abnormal  
Speed; No Motor Lock;  
Abnormal BEMF  
Motor Lock  
(MTR_LCK )  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
MTR_LCK_MODE =  
0110b  
Retry:  
tLCK_RETRY  
High side brake  
Low side brake  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
MTR_LCK_MODE =  
0111b  
Retry:  
tLCK_RETRY  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
MTR_LCK_MODE =  
1000b  
Active  
Active  
Active  
Active  
No action  
No action  
MTR_LCK_MODE =  
1xx1b  
None  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
64  
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-5. Fault Action and Response (continued)  
FAULT  
CONDITION  
CONFIGURATION  
REPORT  
FETs  
DIGITAL  
RECOVERY  
nFAULT and  
HW_LOCK_ILIMIT_MOD CONTROLLER_FA  
Latched:  
CLR_FLT  
Hi-Z  
Active  
E = 0000b  
ULT_STATUS  
register  
nFAULT and  
HW_LOCK_ILIMIT_MOD CONTROLLER_FA  
Latched:  
CLR_FLT  
High-side brake  
Low-side brake  
Hi-Z  
Active  
Active  
Active  
Active  
Active  
E = 0010b  
ULT_STATUS  
register  
nFAULT and  
HW_LOCK_ILIMIT_MOD CONTROLLER_FA  
Latched:  
CLR_FLT  
E = 0011b  
ULT_STATUS  
register  
nFAULT and  
HW_LOCK_ILIMIT_MOD CONTROLLER_FA  
Retry:  
tLCK_RETRY  
Hardware Lock-  
Detection Current  
Limit  
E = 0100b  
ULT_STATUS  
register  
VSOX > HW_LOCK_ILIMIT  
(HW_LOCK_LIMIT)  
nFAULT and  
HW_LOCK_ILIMIT_MOD CONTROLLER_FA  
Retry:  
tLCK_RETRY  
High-side brake  
Low-side brake  
E = 0110b  
ULT_STATUS  
register  
nFAULT and  
HW_LOCK_ILIMIT_MOD CONTROLLER_FA  
Retry:  
tLCK_RETRY  
E = 0111b  
ULT_STATUS  
register  
nFAULT and  
HW_LOCK_ILIMIT_MOD CONTROLLER_FA  
Active  
Active  
Hi-Z  
Active  
Active  
Active  
No action  
No action  
E= 1000b  
ULT_STATUS  
register  
HW_LOCK_ILIMIT_MOD  
E = 1xx1b  
None  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
LOCK_ILIMIT_MODE =  
0000b  
Latched:  
CLR_FLT  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
LOCK_ILIMIT_MODE =  
0010b  
Latched:  
CLR_FLT  
High-side brake  
Low-side brake  
Hi-Z  
Active  
Active  
Active  
Active  
Active  
Active  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
LOCK_ILIMIT_MODE =  
0011b  
Latched:  
CLR_FLT  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
LOCK_ILIMIT_MODE =  
0100b  
Retry:  
tLCK_RETRY  
Software Lock-  
Detection Current  
Limit  
VSOX > LOCK_ILIMIT  
(LOCK_LIMIT)  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
LOCK_ILIMIT_MODE =  
0110b  
Retry:  
tLCK_RETRY  
High-side brake  
Low-side brake  
Active  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
LOCK_ILIMIT_MODE =  
0111b  
Retry:  
tLCK_RETRY  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
LOCK_ILIMIT_MODE=  
1000b  
No action  
LOCK_ILIMIT_MODE =  
1xx1b  
None  
Active  
Active  
Active  
Active  
No action  
No action  
IPD_TIMEOUT_FAULT_E  
N = 0b  
IPD Timeout Fault  
(IPD_T1_FAULT  
and  
IPD TIME > 500ms  
(approx.), during IPD  
current ramp up or ramp  
down  
nFAULT and  
IPD_TIMEOUT_FAULT_E CONTROLLER_FA  
Hi-Z  
Active  
Hi-Z  
Active  
Active  
Active  
Retry: tLCK_RETRY  
IPD_T2_FAULT)  
N = 1b  
ULT_STATUS  
register  
IPD_FREQ_FAULT_EN =  
0b  
No action  
IPD Frequency  
IPD pulse before the  
current decay in previous  
IPD pulse  
Fault  
nFAULT and  
IPD_FREQ_FAULT_EN = CONTROLLER_FA  
(IPD_FREQ_FAULT  
)
Retry: tLCK_RETRY  
1b  
ULT_STATUS  
register  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-5. Fault Action and Response (continued)  
FAULT  
CONDITION  
CONFIGURATION  
REPORT  
FETs  
DIGITAL  
RECOVERY  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
MPET IPD Fault  
(MPET_IPD_FAULT  
)
Same as IPD Timeout  
Fault.  
MPET_CMD = 1b or  
MPET_R or MPET_L = 1b  
Latched:  
CLR_FLT  
Hi-Z  
Active  
MPET Back-EMF  
Fault  
(MPET_BEMF_FA  
ULT)  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
Motor Back EMF <  
STAT_DETECT_THR  
MPET_CMD = 1b or  
MPET_KE = 1b  
Latched:  
CLR_FLT  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Active  
Hi-Z  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
Latched:  
CLR_FLT  
MAX_VM_MODE = 0b  
MAX_VM_MODE = 1b  
MIN_VM_MODE = 0b  
MIN_VM_MODE = 1b  
VVM > MAX_VM_MOTOR,  
if MAX_VM_MOTOR ≠  
000b  
Maximum VM  
(overvoltage) fault  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
Automatic:  
(VVM < MAX_VM_MOTOR - 1)-V  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
Latched:  
CLR_FLT  
VVM < MIN_VM_MOTOR,  
if MIN_VM_MOTOR ≠  
000b  
Minimum VM  
(undervoltage) fault  
nFAULT and  
CONTROLLER_FA  
ULT_STATUS  
register  
Automatic:  
(VVM > MIN_VM_MOTOR + 0.5)-V  
nFAULT and  
EXT_WDT_FAULT_MOD CONTROLLER_FA  
No action  
Watchdog tickle does not  
arrive before configured  
time interval when  
E = 0b  
ULT_STATUS  
register  
External Watchdog  
Bus Current Limit  
nFAULT and  
EXT_WDT_FAULT_MOD CONTROLLER_FA  
EXT_WDT_EN =1b. Refer  
Latched:  
CLR_FLT  
7.5.5  
E = 1b  
ULT_STATUS  
register  
nFAULT and  
BUS_CURRENT_LIMIT_E CONTROLLER_FA  
IVM  
>
Active; motor speed  
will be restricted to  
limit DC bus current  
Automatic: Speed restriction is removed  
when IVM < BUS_CURRENT_LIMIT  
BUS_CURRENT_LIMIT.  
NABLE = 1b  
ULT_STATUS  
register  
Refer 7.3.21  
nFAULT and  
SATURATION_FLAGS_E CONTROLLER_FA  
Indication of current loop  
saturation due to lower  
VVM  
Active; motor speed  
may not reach  
speed reference  
Current Loop  
Saturation  
Automatic: motor will reach reference  
operating point upon exiting saturation  
N = 1b  
ULT_STATUS  
register  
Indication of speed loop  
saturation due to lower  
VVM, lower ILIMIT setting  
etc.,  
nFAULT and  
SATURATION_FLAGS_E CONTROLLER_FA  
Active; motor speed  
may not reach  
speed reference  
Speed Loop  
Saturation  
Automatic: motor will reach reference  
operating point upon exiting saturation  
Active  
Active  
Active  
N = 1b  
ULT_STATUS  
register  
OTW_REP = 0b  
Active  
Active  
No action  
nFAULT and  
GATE_DRIVER_FA  
ULT_STATUS  
register  
Thermal warning  
(OTW)  
TJ > TOTW  
Automatic:  
TJ < TOTW TOTW_HYS  
OTW_REP = 1b  
nFAULT and  
GATE_DRIVER_FA  
ULT_STATUS  
register  
Automatic:  
TJ < TTSD TTSD_HYS  
Thermal shutdown  
(TSD)  
TJ > TTSD  
Hi-Z  
Active  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
66  
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.22.1 VM Supply Undervoltage Lockout  
If at any time the input supply voltage on the VM pin falls lower than the VUVLO threshold (VM UVLO falling  
threshold), all the integrated FETs, driver charge-pump and digital logic are disabled as shown in 7-52.  
MCF8315A goes into reset state whenever VM UVLO event occurs.  
VUVLO (max) rising  
VUVLO (min) rising  
VUVLO (max) falling  
VUVLO (min) falling  
VVM  
DEVICE ON  
DEVICE OFF  
DEVICE ON  
Time  
7-52. VM Supply Undervoltage Lockout  
7.3.22.2 AVDD Undervoltage Lockout (AVDD_UV)  
If at any time the voltage on the AVDD pin falls lower than the VAVDD_UV threshold, all the integrated FETs, driver  
charge-pump and digital logic controller are disabled. Since internal circuitry in MCF8315A is powered through  
the AVDD regulator, MCF8315A goes into reset state whenever AVDD UV event occurs.  
7.3.22.3 BUCK Undervoltage Lockout (BUCK_UV)  
If at any time the input supply voltage on the FB_BK pin falls lower than the VBK_UVLO threshold, both the high-  
side and low-side MOSFETs of the buck regulator are disabled . Since internal circuitry in MCF8315A is powered  
through the buck regulator, MCF8315A goes into reset state whenever buck UV event occurs.  
7.3.22.4 VCP Charge Pump Undervoltage Lockout (CPUV)  
If at any time the voltage on the VCP pin (charge pump) falls lower than the VCPUV threshold, all the integrated  
FETs are disabled and the nFAULT pin is driven low. The DRIVER_FAULT and VCP_UV bits are set to 1b in the  
status registers. Normal operation resumes (driver operation and the nFAULT pin is released) when the VCP  
undervoltage condition clears. The VCP_UV bit stays set until cleared through the CLR_FLT bit.  
7.3.22.5 Overvoltage Protection (OVP)  
If at any time input supply voltage on the VM pins rises higher than VOVP, all the integrated FETs are disabled  
and the nFAULT pin is driven low. The DRIVER_FAULT and OVP bits are set to 1b in the status registers.  
Normal operation resumes (driver operation and the nFAULT pin is released) when the OVP condition clears.  
The OVP bit stays set until cleared through the CLR_FLT bit. Setting the OVP_EN to 0b disables this protection  
feature.  
The OVP threshold can be set to 22-V or 34-V based on the OVP_SEL bit.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
VVM  
VOVP (max) rising  
VOVP (min) rising  
VOVP (max) falling  
VOVP (min) falling  
DEVICE ON  
DEVICE OFF  
DEVICE ON  
nFAULT  
Time  
7-53. Over Voltage Protection  
7.3.22.6 Overcurrent Protection (OCP)  
MOSFET overcurrent event is sensed by monitoring the current flowing through the FETs. If the current across a  
FET exceeds the IOCP threshold for longer than the deglitch time tOCP, an OCP event is recognized and action is  
taken according to OCP_MODE. The IOCP threshold is set through the OCP_LVL, tOCP is set through OCP_DEG  
and the OCP_MODE can be configured in four different modes: latched shutdown, automatic retry, report only  
and disabled.  
7.3.22.6.1 OCP Latched Shutdown (OCP_MODE = 00b)  
When an OCP event happens in this mode, all MOSFETs are disabled and the nFAULT pin is driven low. The  
DRIVER_FAULT, OCP and corresponding FET's OCP bits are set to 1b in the status registers. Normal operation  
resumes (driver operation and the nFAULT pin is released) when the OCP condition clears and a clear fault  
command is issued through the CLR_FLT bit.  
Peak Current due  
to deglitch time  
IOCP  
IOUTx  
tOCP  
nFAULT Released  
nFAULT Pulled High  
Fault Condition  
nFAULT  
Clear Fault  
Time  
7-54. Overcurrent Protection - Latched Shutdown Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
68  
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.22.6.2 OCP Automatic Retry (OCP_MODE = 01b)  
When an OCP event happens in this mode, all the FETs are disabled and the nFAULT pin is driven low. The  
DRIVER_FAULT, OCP and corresponding FET's OCP bits are set to 1b in the fault status registers. Normal  
operation resumes automatically (gate driver operation and the nFAULT pin is released) after the tRETRY  
(TRETRY) time elapses. The DRIVER_FAULT bit is reset to 0b after the tRETRY period expires. The OCP and  
corresponding FET's OCP bits are set to 1b until cleared through the CLR_FLT bit.  
Peak Current due  
to deglitch time  
IOCP  
IOUTx  
tRETRY  
tOCP  
nFAULT Released  
nFAULT Pulled High  
Fault Condition  
nFAULT  
Time  
7-55. Overcurrent Protection - Automatic Retry Mode  
7.3.22.6.3 OCP Report Only (OCP_MODE = 10b)  
No protective action is taken when an OCP event happens in this mode. The overcurrent event is reported by  
setting the DRIVER_FAULT, OCP, and corresponding FET's OCP bits to 1b in the fault status registers. The  
device continues to operate as usual. The external controller manages the overcurrent condition by acting  
appropriately. The reporting clears when the OCP condition clears and a clear fault command is issued through  
the CLR_FLT bit.  
7.3.22.6.4 OCP Disabled (OCP_MODE = 11b)  
No action is taken when an OCP event happens in this mode.  
7.3.22.7 Buck Overcurrent Protection  
The buck overcurrent event is sensed by monitoring the current flowing through high-side MOSFET of the buck  
regulator. If the current through the high-side MOSFET exceeds the IBK_OCP threshold for a time longer than the  
deglitch time (tOCP), a buck OCP event is recognized and the buck regulator MOSFETs are disabled (Hi-Z).  
MCF8315A goes into reset state whenever buck OCP event occurs, since the internal circuitry in MCF8315A is  
powered from the buck regulator output.  
7.3.22.8 Hardware Lock Detection Current Limit (HW_LOCK_ILIMIT)  
The hardware lock detection current limit function provides a configurable threshold for limiting the current to  
prevent damage to the system. The output of current sense amplifier is connected to hardware comparator. If at  
any time, the voltage on the output of CSA exceeds HW_LOCK_ILIMIT threshold for a time longer than  
tHW_LOCK_ILIMIT  
,
a
HW_LOCK_ILIMIT event is recognized and action is taken according to the  
HW_LOCK_ILIMIT_MODE. The threshold is set through HW_LOCK_ILIMIT, the tHW_LCK_ILIMIT is set through the  
HW_LOCK_ILIMIT_DEG. HW_LOCK_ILIMIT_MODE bit can operate in four different modes: HW_LOCK_ILIMIT  
latched shutdown, HW_LOCK_ILIMIT automatic retry, HW_LOCK_ILIMIT report only, and HW_LOCK_ILIMIT  
disabled.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.22.8.1 HW_LOCK_ILIMIT Latched Shutdown (HW_LOCK_ILIMIT_MODE = 00xxb)  
When a HW_LOCK_ILIMIT event happens in this mode, the status of MOSFET will be configured by  
HW_LOCK_ILIMIT_MODE and nFAULT is driven low. Status of MOSFETs during HW_LOCK_ILIMIT:  
HW_ LOCK_ILIMIT_MODE = 0000b: All MOSFETs are turned OFF.  
HW_ LOCK_ILIMIT_MODE = 0001b: Some of the MOSFETs which are switching are turned OFF while the  
rest stay ON till inductive energy is completely recirculated.  
HW_LOCK_ILIMIT_MODE = 0010b: All-high side MOSFETs are turned ON.  
HW_LOCK_ILIMIT_MODE = 0011b: All-low side MOSFETs are turned ON.  
The CONTROLLER_FAULT and HW_LOCK_ILIMIT bits are set to 1b in the fault status registers. Normal  
operation resumes (gate driver operation and the nFAULT pin is released) when the HW_LOCK_ILIMIT condition  
clears and a clear fault command is issued through the CLR_FLT bit.  
7.3.22.8.2 HW_LOCK_ILIMIT Automatic recovery (HW_LOCK_ILIMIT_MODE = 01xxb)  
When a HW_LOCK_ILIMIT event happens in this mode, the status of MOSFET will be configured by  
HW_LOCK_ILIMIT_MODE and nFAULT is driven low. Status of MOSFET during HW_LOCK_ILIMIT:  
HW_LOCK_ILIMIT_MODE = 0100b: All MOSFETs are turned OFF.  
HW_LOCK_ILIMIT_MODE = 0101b: Some of the MOSFETs which are switching are turned OFF while the  
rest stay ON till inductive energy is completely recirculated.  
HW_LOCK_ILIMIT_MODE = 0110b: All high-side MOSFETs are turned ON  
HW_LOCK_ILIMIT_MODE = 0111b: All low-side MOSFETs are turned ON  
The CONTROLLER_FAULT and HW_LOCK_ILIMIT bits are set to 1b in the fault status registers. Normal  
operation resumes automatically (gate driver operation and the nFAULT pin is released) after the tLCK_RETRY  
(configured by LCK_RETRY) time lapses. The CONTROLLER_FAULT and HW_LOCK_ILIMIT bits are reset to  
0b after the tLCK_RETRY period expires.  
7.3.22.8.3 HW_LOCK_ILIMIT Report Only (HW_LOCK_ILIMIT_MODE = 1000b)  
No protective action is taken when a HW_ LOCK_ILIMIT event happens in this mode. The hardware lock  
detection current limit event is reported by setting the CONTROLLER_FAULT and HW_LOCK_ILIMIT bits to 1b  
in the fault status registers. The gate drivers continue to operate. The external controller manages this condition  
by acting appropriately. The reporting clears when the HW_LOCK_ILIMIT condition clears and a clear fault  
command is issued through the CLR_FLT bit.  
7.3.22.8.4 HW_LOCK_ILIMIT Disabled (HW_LOCK_ILIMIT_MODE= 1xx1b)  
No action is taken when a HW_LOCK_ILIMIT event happens in this mode.  
7.3.22.9 Thermal Warning (OTW)  
If the die temperature exceeds the thermal warning limit (TOTW), nFAULT is pulled low and the OT and OTW bits  
in the gate driver status register are set to 1b. The reporting of OTW (on nFAULT and status bits) can be enabled  
by setting OTW_REP to 1b. The device performs no additional action and continues to function. In this case, the  
nFAULT pin is released when the die temperature decreases below the hysteresis point of the thermal warning  
limit (TOTW - TOTW_HYS). The OTW bit remains set until cleared through the CLR_FLT bit and the die temperature  
is lower than thermal warning limit. (TOTW - TOTW_HYS).  
7.3.22.10 Thermal Shutdown (TSD)  
If the die temperature exceeds the thermal shutdown limit (TTSD), all the FETs are disabled, the charge pump is  
shut down, and the nFAULT pin is driven low. In addition, the DRIVER_FAULT, OT and OTS bit in the status  
register are set to 1b. Normal operation resumes (driver operation and the nFAULT pin is released) when the die  
temperature decreases below the hysteresis point of the thermal shutdown limit (TTSD - TTSD_HYS). The OTS bit  
stays latched high indicating that a thermal event occurred until a clear fault command is issued through the  
CLR_FLT bit. This protection feature cannot be disabled.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
70  
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.22.11 Motor Lock (MTR_LCK)  
The MCF8315A continuously checks for different motor lock conditions (see Motor Lock Detection) during motor  
operation. When one of the enabled lock condition happens, a MTR_LCK event is recognized and action is  
taken according to the MTR_LCK_MODE.  
All locks can be enabled or disabled individually and retry times can be configured through LCK_RETRY.  
MTR_LCK_MODE bit can operate in four different modes: MTR_LCK latched shutdown, MTR_LCK automatic  
retry, MTR_LCK report only and MTR_LCK disabled.  
7.3.22.11.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xxb)  
When a MTR_LCK event happens in this mode, the status of MOSFETs will be configured by MTR_LCK_MODE  
and nFAULT is driven low. Status of MOSFETs during MTR_LCK:  
MTR_LCK_MODE = 0000b: All MOSFETs are turned OFF.  
MTR_LCK_MODE = 0001b: Some of the MOSFETs which are switching are turned OFF while the rest stay  
ON till inductive energy is completely recirculated.  
MTR_LCK_MODE = 0010b: All high-side MOSFETs are turned ON.  
MTR_LCK_MODE = 0011b: All low-side MOSFETs are turned ON.  
The CONTROLLER_FAULT, MTR_LCK and respective motor lock condition bits are set to 1b in the fault status  
registers. Normal operation resumes (gate driver operation and the nFAULT pin is released) when the MTR_LCK  
condition clears and a clear fault command is issued through the CLR_FLT bit.  
7.3.22.11.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE= 01xxb)  
When a MTR_LCK event happens in this mode, the status of MOSFETs will be configured by MTR_LCK_MODE  
and nFAULT is driven low. Status of MOSFETs during MTR_LCK:  
MTR_LCK_MODE = 0100b: All MOSFETs are turned OFF.  
MTR_LCK_MODE = 0101b: Some of the MOSFETs which are switching are turned OFF while the rest stay  
ON till inductive energy is completely recirculated.  
MTR_LCK_MODE = 0110b: All high-side MOSFETs are turned ON.  
MTR_LCK_MODE = 0111b: All low-side MOSFETs are turned ON.  
The CONTROLLER_FAULT, MTR_LCK and respective motor lock condition bits are set to 1b in the fault status  
registers. Normal operation resumes automatically (gate driver operation and the nFAULT pin is released) after  
the tLCK_RETRY (configured by LCK_RETRY) time lapses. The CONTROLLER_FAULT, MTR_LCK and respective  
motor lock condition bits are reset to 0b after the tLCK_RETRY period expires.  
7.3.22.11.3 MTR_LCK Report Only (MTR_LCK_MODE = 1000b)  
No protective action is taken when a MTR_LCK event happens in this mode. The motor lock event is reported by  
setting the CONTROLLER_FAULT, MTR_LCK and respective motor lock condition bits to 1b in the fault status  
registers. The gate drivers continue to operate. The external controller manages this condition by acting  
appropriately. The reporting clears when the MTR_LCK condition clears and a clear fault command is issued  
through the CLR_FLT bit.  
7.3.22.11.4 MTR_LCK Disabled (MTR_LCK_MODE = 1xx1b)  
No action is taken when a MTR_LCK event happens in this mode.  
7.3.22.12 Motor Lock Detection  
The MCF8315A provides different lock detect mechanisms to determine if the motor is in a locked state. Multiple  
detection mechanisms work together to ensure the lock condition is detected quickly and reliably. In addition to  
detecting if there is a locked motor condition, the MCF8315A can also identify and take action if there is no motor  
connected to the system. Each of the lock detect mechanisms and the no-motor detection can be disabled by  
their respective register bits (LOCK1/2/3_EN).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.3.22.12.1 Lock 1: Abnormal Speed (ABN_SPEED)  
MCF8315A monitors the speed continuously and at any time the speed exceeds LOCK_ABN_SPEED, an  
ABN_SPEED lock event is recognized and action is taken according to the MTR_LCK_MODE. The threshold is  
set through the LOCK_ABN_SPEED register. ABN_SPEED lock can be enabled/disabled by LOCK1_EN.  
7.3.22.12.2 Lock 2: Abnormal BEMF (ABN_BEMF)  
MCF8315A estimates back-EMF in order to run motor optimally in closed loop. This estimated back-EMF is  
compared against the expected back-EMF calculated using the estimated speed and the BEMF constant.  
Whenever motor is stalled the estimated back-EMF is inaccurate due to lower back-EMF at low speed. When the  
difference between estimated and expected back-EMF exceeds ABNORMAL_BEMF_THR, an abnormal BEMF  
fault is triggered and action is taken according to the MTR_LCK_MODE.  
ABN_BEMF lock can be enabled/disabled by LOCK2_EN.  
7.3.22.12.3 Lock3: No-Motor Fault (NO_MTR)  
The MCF8315A continuously monitors phase currents on all three phases; if any phase current stays below  
NO_MTR_THR for 500ms, a NO_MTR event is recognized. The response to the NO_MTR event is configured  
through MTR_LCK_MODE. NO_MTR lock can be enabled/disabled by LOCK3_EN.  
7.3.22.13 MPET Faults  
An error during resistance and inductance measurement is reported using MPET_IPD_FAULT. The  
MPET_IPD_FAULT gets triggered when the IPD timer overflows due to unsuccessful attempt to ramp up the  
current to the threshold value, same as explained in 7.3.22.14. The fault typically gets triggered when there is  
no motor connected to MCF8315 or when the MPET IPD current threshold is set high for motors with high  
resistance.  
An error during BEMF constant measurement is reported using MPET_BEMF_FAULT. This fault gets triggered  
when the measured back EMF is less than the threshold set in STAT_DETECT_THR. One example of such fault  
scenario can be the motor stall while running in open loop due to incorrect open loop configuration used.  
7.3.22.14 IPD Faults  
The MCF8315A uses 12-bit timers to estimate the time during the current ramp up and ramp down during IPD,  
when the motor start-up is configured as IPD (MTR_STARTUP is set to 10b). During IPD, the algorithm checks  
for a successful current ramp-up to IPD_CURR_THR, starting with an IPD clock of 10MHz; if unsuccessful (timer  
overflow before current reaches IPD_CURR_THR), IPD is repeated with lower frequency clocks of 1MHz,  
100kHz, and 10kHz sequentially. If the IPD timer overflows (current does not reach IPD_CURR_THR) with all  
the four clock frequencies, then the IPD_T1_FAULT gets triggered. Similarly the algorithm checks for a  
successful current decay to zero during IPD current ramp down using all the mentioned IPD clock frequencies. If  
the IPD timer overflows (current does not ramp down to zero) in all the four attempts, then the IPD_T2_FAULT  
gets triggered. The user can enable IPD timeout (IPD timer overflow) by setting IPD_TIMEOUT_FAULT_EN to  
1b.  
IPD gives incorrect results if the next IPD pulse is commanded before the complete decay of current due to  
present IPD pulse. The MCF8315A can generate a fault called IPD_FREQ_FAULT during such a scenario by  
setting IPD_FREQ_FAULT_EN to 1b. The IPD_FREQ_FAULT maybe triggered if the IPD frequency is too high  
for the IPD current limit and the IPD release mode or if the motor inductance is too high for the IPD frequency,  
IPD current limit and IPD release mode.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
72  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.4 Device Functional Modes  
7.4.1 Functional Modes  
7.4.1.1 Sleep Mode  
In sleep mode, the MOSFETs, sense amplifiers, buck regulator, charge pump, AVDD LDO regulator and the I2C  
bus are disabled. The device can be configured to enter sleep (instead of standby) mode by configuring  
DEV_MODE to 1b. SPEED pin and I2C speed command determine entry and exit from sleep state as described  
in 7-6.  
7.4.1.2 Standby Mode  
The device can be configured to operate as a standby device by setting DEV_MODE to 0b. In standby mode,  
the charge pump, AVDD LDO, buck regulator and I2C bus are active while the motor is in stopped state waiting  
for a suitable non-zero speed command. SPEED pin (analog, PWM or frequency based speed input) or I2C  
speed command (I2C based speed input) determines entry and exit from standby state as described in 7-6.  
The thresholds for entering and exiting standby mode in different speed input modes are as follows,  
1. Analog : VEN_SB/EX_SB = (1% x VANA_FS) if DUTY_HYST 10b, VEN_SB/EX_SB = (2% x VANA_FS) if  
DUTY_HYST =11b  
2. PWM : DutyEN_SB/EX_SB = 1% if DUTY_HYST 10b, DutyEN_SB/EX_SB = 2% if DUTY_HYST =11b  
3. I2C : SPEED_CTRLEN_SBEX_SB = 328 if DUTY_HYST 10b, SPEED_CTRLEN_SB/EX_SB = 656 if  
DUTY_HYST =11b  
4. Frequency : FreqEN_SB/EX_SB = 1% x INPUT_MAXIMUM_FREQ if DUTY_HYST 10b, FreqEN_SB/EX_SB  
=
2% x INPUT_MAXIMUM_FREQ if DUTY_HYST = 11b  
7-6. Conditions to Enter or Exit Sleep or Standby Modes  
SPEED  
COMMAND  
MODE  
ENTER STANDBY  
CONDITION  
EXIT FROM STANDBY  
CONDITION  
EXIT FROM SLEEP  
CONDITION  
ENTER SLEEP CONDITION  
Analog  
PWM  
VSPEED < VEN_SB  
VSPEED > VEX_SB  
Not Available  
Not Available  
Not Available  
Not Available  
DutySPEED < DutyEN_SB  
DutySPEED > DutyEX_SB  
DIGITAL_SPEED_CTRL is  
set to 0b for  
SLEEP_ENTRY_TIME and  
VSPEED < VIL  
DIGITAL_SPEED_CTRL >  
DIGITAL_SPEED_CTRLEX_S  
DIGITAL_SPEED_CTRL <  
DIGITAL_SPEED_CTRLEN_SB  
I2C  
VSPEED > VIH for tDET_PWM  
B
Frequency  
FreqSPEED < FreqEN_SB  
FreqSPEED > FreqEX_SB  
Not Available  
Not Available  
备注  
VSPEED : SPEED pin input voltage, DutySPEED : SPEED pin input PWM duty, FreqSPEED : SPEED pin  
input frequency  
7.4.1.3 Fault Reset (CLR_FLT)  
In the case of latched faults, the device goes into a partial shutdown state to help protect the power MOSFETs  
and system. When the fault condition clears, the device can go to the operating state again by setting the  
CLR_FLT to 1b.  
7.5 External Interface  
7.5.1 DRVOFF Functionality  
When DRVOFF pin is driven high, all six MOSFETs are put in Hi-Z state, irrespective of speed command. If  
motor speed command is non-zero when DRVOFF is driven high, device may encounter a fault like no motor or  
abnormal BEMF.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.5.2 DAC outputs  
MCF8315A has two 12-bit DACs which output analog voltage equivalent of digital variables on the DACOUT1  
and DACOUT2 pins. The maximum DAC output voltage is 3-V. Signals available on DACOUT pins are useful in  
tracking internal variables in real-time and can be used for tuning speed controller or motor acceleration time.  
The address for variables to be tracked on DACOUT1 and DACOUT2 are configured using  
DACOUT1_VAR_ADDR and DACOUT2_VAR_ADDR respectively. DACOUT1 is available on pin 36 and  
DACOUT2 can be configured on pin 38 by setting PIN_38_CONFIG to 00b. DACOUT2 is also available on pin  
37. PIN_36_37_CONFIG should be configured to 1b for pins 36, 37 to function as DAC outputs.  
7.5.3 Current Sense Output  
MCF8315A can provide the built-in current sense amplifiers' output on the SOX pin. SOX output is available on  
pin 38 and can be configured by PIN_38_CONFIG.  
7.5.4 Oscillator Source  
MCF8315A has a built-in oscillator that is used as the clock source for all digital peripherals and timing  
measurements. Default configuration for MCF8315A is to use the internal oscillator and it is sufficient to drive the  
motor without need for any external crystal or clock sources.  
In case MCF8315A does not meet accuracy requirements of timing measurement or speed loop, then  
MCF8315A has an option to support an external clock reference.  
In order to improve EMI performance, MCF8315A provides the option of modulating the clock frequency by  
enabling Spread Spectrum Modulation (SSM) through SPREAD_SPECTRUM_MODULATION_DIS.  
7.5.4.1 External Clock Source  
Speed loop accuracy of MCF8315A over the operating temperature range can be improved by providing a more  
accurate clock reference on EXT_CLK pin as shown in 7-56. EXT_CLK will be used to calibrate the internal  
clock oscillator - this will help match the accuracy of the internal clock oscillator to that of the external clock.  
External clock source can be selected by configuring CLK_SEL to 11b and setting EXT_CLK_EN to 1b. The  
external clock source frequency can be configured through EXT_CLK_CONFIG.  
Internal  
Oscillator  
(60 MHz)  
EXT_CLK  
Calibrate  
7-56. External Clock Reference  
备注  
External clock is optional and can be used when higher clock accuracy is needed. MCF8315A will  
always power up using the internal oscillator in all modes.  
7.5.5 External Watchdog  
MCF8315A provides an external watchdog feature - EXT_WDT_EN bit should be set to 1b to enable the external  
watchdog. When this feature is enabled, the device waits for a tickle (low to high transition in EXT_WD pin,  
WATCHDOG_TICKLE set to 1b in I2C mode) from the external watchdog input for a configured time interval; if  
the time interval between two consecutive tickles is higher than the configured time, a watchdog fault is  
triggered. This fault can be configured using EXT_WDT_FAULT_MODE either as a report only fault or as a  
latched fault with outputs in Hi-Z state. The latched fault can be cleared by writing 1b to CLR_FLT. When a  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
74  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
watchdog timeout occurs, WATCHDOG_FAULT bit is set to 1b. In case, the next tickle arrives before the  
configured time interval elapses, the watchdog timer is reset and it begins to wait for the next tickle. This can be  
used to continuously monitor the health of an external MCU (which is the external watchdog input) and put the  
MCF8315A outputs in Hi-Z in case the external MCU is in an erroneous state.  
The external watchdog input is selected using EXT_WDT_INPUT_MODE and can either be the EXT_WD pin or  
the I2C interface. The time interval between two tickles to trigger a watchdog fault is configured by  
EXT_WDT_CONFIG; there are 4 time settings - 100, 200, 500 and 1000ms for the EXT_WD pin based  
watchdog and 4 time settings - 1, 2, 5 and 10s for the I2C based watchdog.  
备注  
Watchdog should be disabled by setting EXT_WDT_EN to 0b before changing EXT_WDT_CONFIG  
configuration.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.6 EEPROM access and I2C interface  
7.6.1 EEPROM Access  
MCF8315A has 1024 bits (16 rows of 64 bits each) of EEPROM, which are used to store the motor configuration  
parameters. Erase operations are row-wise (all 64 bits are erased in a single erase operation), but 32-bit write  
and read operations are supported. EEPROM can be written and read using the I2C serial interface but erase  
cannot be performed using I2C serial interface. The shadow registers corresponding to the EEPROM are located  
at addresses 0x000080-0x0000AE.  
备注  
MCF8315A allows EEPROM write and read operations only when the motor is not spinning.  
7.6.1.1 EEPROM Write  
In MCF8315A, EEPROM write procedure is as follows,  
1. Write register 0x000080 (ISD_CONFIG) with ISD and reverse drive configuration like resync enable, reverse  
drive enable, stationary detect threshold, reverse drive handoff threshold etc.  
2. Write register 0x000082 (REV_DRIVE_CONFIG) with reverse drive and active brake configuration like  
reverse drive open loop acceleration, active brake current limit, Kp, Ki values etc.  
3. Write register 0x000084 (MOTOR_STARTUP1) with motor start-up configuration like start-up method, IPD  
parameters, align parameters etc.  
4. Write register 0x000086 (MOTOR_STARTUP2) with motor start-up configuration like open loop acceleration,  
open loop current limit, first cycle frequency etc.  
5. Write register 0x000088 (CLOSED_LOOP1) with motor control configuration like closed loop acceleration,  
overmodulation enable, PWM frequency, FG signal parameters etc.  
6. Write register 0x00008A (CLOSED_LOOP2) with motor control configuration like motor winding resistance  
and inductance, motor stop options, brake speed threshold etc.  
7. Write register 0x00008C (CLOSED_LOOP3) with motor control configuration like motor BEMF constant,  
current loop Kp, Ki etc.  
8. Write register 0x00008E (CLOSED_LOOP4) with motor control configuration like speed loop Kp, Ki and  
maximum speed.  
9. Write register 0x000090 (FAULT_CONFIG1) with fault control configuration software and hardware current  
limits, lock current limit and actions, retry times etc.  
10. Write register 0x000092 (FAULT_CONFIG2) with fault control configuration like hardware current limit  
actions, OV, UV limits and actions, abnormal speed level, no motor threshold etc.  
11. Write registers 0x000094 0x00009E (SPEED_PROFILES1-6) with speed profile configuration like profile  
type, duty cycle, speed clamp level, duty cycle clamp level etc.  
12. Write register 0x0000A0 (INT_ALGO_1) with miscellaneous configuration like ISD run time and timeout,  
MPET parameters etc.  
13. Write register 0x0000A2 (INT_ALGO_2) with miscellaneous configuration like additional MPET parameters,  
IPD high resolution enable, active brake current slew rate, closed loop slow acceleration etc.  
14. Write registers 0x0000A4 (PIN_CONFIG1) with pin configuration for speed input mode (analog or PWM),  
BRAKE pin mode etc.  
15. Write registers 0x0000A6 and 0x0000A8 (DEVICE_CONFIG1 and DEVICE_CONFIG2) with device  
configuration like pins 36, 37 configuration, pin 38 configuration, dynamic CSA gain enable, dynamic voltage  
gain enable, clock source select, speed range select etc.  
16. Write register 0x0000AA (PERI_CONFIG1) with peripheral configuration like dead time, bus current limit,  
DIR input, SSM enable etc.  
17. Write registers 0x0000AC and 0x0000AE (GD_CONFIG1 and GD_CONFIG2) with gate driver configuration  
like slew rate, CSA gain, OCP level, mode, OVP enable, level, buck voltage level, buck current limit etc.  
18. Write 0x8A500000 into register 0x0000EA to write the shadow register(0x000080-0x0000AE) values into the  
EEPROM.  
19. Wait for 300ms for the EEPROM write operation to complete  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
76  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
Steps 1-17 can be selectively executed based on registers/parameters that need to be modified. After all  
shadow registers have been updated with the required values, step 18 should be executed to copy the contents  
of the shadow registers into the EEPROM.  
7.6.1.2 EEPROM Read  
In MCF8315A, EEPROM read procedure is as follows,  
1. Write 0x40000000 into register 0x0000EA to read the EEPROM data into the shadow registers  
(0x000080-0x0000AE).  
2. Wait for 100ms for the EEPROM read operation to complete.  
3. Read the shadow register values,1 or 2 registers at a time, using the I2C read command as explained in 节  
7.6.2. Shadow register addresses are in the range of 0x000080-0x0000AE. Register address increases in  
steps of 2 for 32-bit read operation (since each address is a 16-bit location).  
7.6.2 I2C Serial Interface  
MCF8315A interfaces with an external MCU over an I2C serial interface. MCF8315A is an I2C target to be  
interfaced with a controller. External MCU can use this interface to read/write from/to any non-reserved register  
in MCF8315A  
备注  
For reliable communication, a 100-µs delay should be used between every byte transferred over the  
I2C bus.  
7.6.2.1 I2C Data Word  
The I2C data word format is shown in 7-7.  
7-7. I2C Data Word Format  
TARGET_ID  
R/W  
CONTROL WORD  
DATA  
CRC-8  
A6 - A0  
W0  
CW23 - CW0  
D15 / D31/ D63 - D0  
C7 - C0  
Target ID and R/W Bit: The first byte includes the 7-bit I2C target ID (default 0x01, but can be modified by  
setting I2C_SLAVE_ADDR), followed by the read/write command bit. Every packet in MCF8315A the  
communication protocol starts with writing a 24-bit control word and hence the R/W bit is always 0.  
24-bit Control Word: The Target Address is followed by a 24-bit control bit. The control word format is shown in  
7-8.  
7-8. 24-bit Control Word Format  
OP_R/W  
CRC_EN  
DLEN  
MEM_SEC  
MEM_PAGE  
MEM_ADDR  
CW23  
CW22  
CW21- CW20  
CW19 - CW16  
CW15 - CW12  
CW11 - CW0  
Each field in the control word is explained in detail below.  
OP_R/W Read/Write: R/W bit gives information on whether this is a read (1b) operation or write (0b)  
operation. For write operation, MCF8315A will expect data bytes to be sent after the 24-bit control word. For  
read operation, MCF8315A will expect an I2C read request with repeated start or normal start after the 24-bit  
control word.  
CRC_EN Cyclic Redundancy Check(CRC) Enable: MCF8315A supports CRC to verify the data integrity.  
This bit controls whether the CRC feature is enabled or not.  
DLEN Data Length: DLEN field determines the length of the data that will be sent by external MCU to  
MCF8315A. MCF8315A protocol supports three data lengths: 16-bit, 32-bit and 64-bit.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-9. Data Length Configuration  
DLEN Value  
00b  
Data Length  
16-bit  
01b  
32-bit  
10b  
64-bit  
11b  
Reserved  
MEM_SEC Memory Section: Each memory location in MCF8315A is addressed using three separate entities  
in the control word Memory Section, Memory Page, Memory Address. Memory Section is a 4-bit field which  
denotes the memory section to which the memory location belongs like RAM, ROM etc.  
MEM_PAGE Memory Page: Memory page is a 4-bit field which denotes the memory page to which the  
memory location belongs.  
MEM_ADDR Memory Address: Memory address is the last 12-bits of the address. The complete 22-bit  
address is constructed internally by MCF8315A using all three fields Memory Section, Memory Page, Memory  
Address. For memory locations 0x000000-0x000800, memory section is 0x0, memory page is 0x0 and memory  
address is the lowest 12 bits(0x000 for 0x000000, 0x080 for 0x000080 and 0x800 for 0x000800). All relevant  
memory locations (EEPROM and RAM variables) have MEM_SEC and MEM_PAGE values both corresponding  
to 0x0. All other MEM_SEC, MEM_PAGE values are reserved and not for external use.  
Data Bytes: For a write operation to MCF8315A, the 24-bit control word is followed by data bytes. The DLEN  
field in the control word should correspond with the number of bytes sent in this section. In case of mismatch  
between number of data bytes and DLEN, the write operation is discarded.  
CRC Byte: If the CRC feature is enabled in the control word, CRC byte has to be sent at the end of a write  
transaction. Refer to 7.6.2.6 for detailed information on CRC byte calculation.  
7.6.2.2 I2C Write Transaction  
MCF8315A write transaction over I2C involves the following sequence (see 7-57).  
1. I2C start condition.  
2. Start is followed by the I2C target ID byte, made up of 7-bit target ID along with the R/W bit set to 0b. ACK in  
yellow box indicates that MCF8315A has processed the received target ID which has matched with it's I2C  
target ID and therefore will proceed with this transaction. If target ID received does not match with the I2C ID  
of MCF8315A, then the transaction is ignored. and no ACK is sent by MCF8315A.  
3. The target ID byte is followed by the 24-bit control word sent one byte at a time. Bit 23 in the control word is  
0b as it is a write transaction. ACK in blue boxes correspond to acknowledgements sent by MCF8315A to  
the controller that the previous byte (of control word) has been received and next byte can be sent.  
4. The 24-bit control word is then followed by the data bytes. The number of data bytes sent by the controller  
depends on the DLEN field in the control word.  
a. While sending data bytes, the LSB byte is sent first. Refer to 7.6.2.4 for more details.  
b. 16-bit/32-bit write The data sent is written to the address mentioned in control word.  
c. 64-bit Write 64-bit is treated as two successive 32-bit writes. The address mentioned in control word  
is taken as Addr_1. Addr_2 is internally calculated by MCF8315A by incrementing Addr_1 by 0x2. A total  
of 8 data bytes are sent. The first 4 bytes (sent in LSB first) are written to Addr_1 and the next 4 bytes  
are written to Addr_2.  
d. ACK in blue boxes (after every data byte) correspond to the acknowledgement sent by MCF8315A to the  
controller that the previous data byte has been received and next data byte can be sent.  
5. If CRC is enabled, the packet ends with a CRC byte. CRC is calculated for the entire packet (Target ID + W  
bit, Control Word, Data Bytes). MCF8315A will send an ACK on receiving the CRC byte.  
6. I2C Stop condition from the controller to terminate the transaction.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
78  
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
2 / 4 / 8 DATA BYTES  
Write – without CRC  
TARGET  
ID [6:0]  
CONTROL  
WORD [23:16]  
CONTROL  
WORD [15:8]  
CONTROL  
WORD [7:0]  
DATA  
BYTE  
DATA  
BYTE  
S
0
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
P
2 / 4 / 8 DATA BYTES  
Write – with CRC  
TARGET  
CONTROL  
WORD [23:16]  
CONTROL  
WORD [15:8]  
CONTROL  
WORD [7:0]  
DATA  
BYTE  
DATA  
S
0
ACK  
ACK  
ACK  
ACK  
ACK  
ACK CRC ACK  
P
ID [6:0]  
BYTE  
CRC includes {TARGET ID,0}, CONTROL WORD[23:0], DATA BYTES  
7-57. I2C Write Transaction Sequence  
7.6.2.3 I2C Read Transaction  
MCF8315A read transaction over I2C involves the following sequence (see 7-58).  
1. I2C Start condition from the controller to initiate the transaction.  
2. Start is followed by the I2C target ID byte, made up of 7-bit target ID along with the R/W bit set to 0b. ACK (in  
yellow box) indicates that MCF8315A has processed the received target ID which has matched with it's I2C  
target ID and therefore will proceed with this transaction. If target ID received does not match with the I2C ID  
of MCF8315A, then the transaction is ignored and no ACK is sent by MCF8315A.  
3. The target ID byte is followed by the 24-bit control word sent one byte at a time. Bit 23 in the control word is  
set to 1b as it is a read transaction. ACK (in blue boxes) correspond to acknowledgements sent by  
MCF8315A to the controller that the previous byte (of control word) has been received and next byte can be  
sent.  
4. The control word is followed by a Repeated Start (RS, start without a preceding stop) or normal Start (P  
followed by S) to initiate the data (to be read back) transfer from MCF8315A to I2C controller. RS or S is  
followed by the 7-bit target ID along with R/W bit set to 1b to initiate the read transaction. MCF8315A sends  
an ACK (in grey box after RS) to the controller to acknowledge the receipt of read transaction request.  
5. Post acknowledgement of read transaction request, MCF8315A sends the data bytes on SDA one byte at a  
time. The number of data bytes sent by MCF8315A depends on the DLEN field in the control word.  
a. While sending data bytes, the LSB byte is sent first. Refer the examples in 7.6.2.4 for more details.  
b. 16-bit/32-bit Read The data from the address mentioned in control word is sent back to the controller.  
c. 64-bit Read 64-bit is treated as two successive 32-bit reads. The address mentioned in control word  
is taken as Addr_1. Addr_2 is internally calculated by MCF8315A by incrementing Addr_1 by 0x2. A total  
of 8 data bytes are sent by MCF8315A. The first 4 bytes (sent in LSB first) are read from Addr_1 and the  
next 4 bytes are read from Addr_2.  
d. ACK in orange boxes correspond to acknowledgements sent by the controller to MCF8315A that the  
previous byte has been received and next byte can be sent.  
6. If CRC is enabled in the control word, then MCF8315A sends an additional CRC byte at the end. Controller  
has to read the CRC byte and then send the last ACK (in orange). CRC is calculated for the entire packet  
(Target ID + W bit, Control Word, Target ID + R bit, Data Bytes).  
7. I2C Stop condition from the controller to terminate the transaction.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
2 / 4 / 8 DATA BYTES  
Read – without CRC  
TARGET  
ID [6:0]  
CONTROL  
WORD [23:16]  
CONTROL  
WORD [15:8]  
CONTROL  
WORD [7:0]  
TARGET  
ID [6:0]  
DATA  
BYTE  
DATA  
BYTE  
S
0
ACK  
ACK  
ACK  
ACK RS  
1
ACK  
ACK  
ACK  
P
Read – with CRC  
TARGET  
2 / 4 / 8 DATA BYTES  
CONTROL  
WORD [23:16]  
CONTROL  
WORD [15:8]  
CONTROL  
WORD [7:0]  
TARGET  
ID [6:0]  
DATA  
BYTE  
DATA  
S
0
ACK  
ACK  
ACK  
ACK RS  
1
ACK  
ACK  
ACK CRC ACK  
P
ID [6:0]  
BYTE  
CRC includes {TARGET ID,0}, CONTROL WORD[23:0], {TARGET ID,1}, DATA BYTES  
7-58. I2C Read Transaction Sequence  
7.6.2.4 I2C Communication Protocol Packet Examples  
All values used in this example section are in hex format. I2C target ID used in the examples is 0x60.  
Example for 32-bit Write Operation: Address 0x00000080, Data 0x1234ABCD, CRC Byte 0x45  
(Sample value; does not match with the actual CRC calculation)  
7-10. Example for 32-bit Write Operation Packet  
Start Byte  
Control Word 0  
Control Word 1  
Control Data Bytes  
Word 2  
CRC  
Target  
ID  
I2C  
Write  
OP_R/ CRC_E DLEN  
MEM_S MEM_P MEM_A MEM_A DB0  
EC AGE DDR DDR  
DB1  
DB2  
DB3  
CRC  
Byte  
W
N
A6-A0  
W0  
CW23  
CW22  
CW21- CW19- CW15- CW11- CW7-  
D7-D0  
D7-D0  
D7-D0  
D7-D0  
C7-C0  
CW20  
CW16  
CW12  
CW8  
CW0  
0x80  
0x80  
0x60  
0xC0  
0x0  
0x0  
0x1  
0x1  
0x0  
0x0  
0x0  
0xCD  
0xCD  
0xAB  
0xAB  
0x34  
0x34  
0x12  
0x12  
0x45  
0x45  
0x50  
0x00  
Example for 64-bit Write Operation: Address - 0x00000080, Data Address 0x00000080 - Data 0x01234567,  
Data Address 0x00000082 Data 0x89ABCDEF, CRC Byte 0x45 (Sample value; does not match with the  
actual CRC calculation)  
7-11. Example for 64-bit Write Operation Packet  
Start Byte  
Control Word 0  
Control Word 1  
Control Word Data Bytes  
2
CRC  
Target I2C  
OP_R/W CRC_EN DLEN MEM_SEC MEM_PAGE MEM_ADDR MEM_ADDR DB0 - DB7  
CRC  
Byte  
ID  
Write  
A6-A0 W0  
CW23  
CW22  
0x1  
CW21- CW19-  
CW20 CW16  
CW15-  
CW12  
CW11-CW8  
0x0  
CW7-CW0  
[D7-D0] x 8  
C7-C0  
0x60  
0xC0  
0x0  
0x0  
0x2  
0x0  
0x0  
0x80  
0x80  
0x67452301EFCDAB89  
0x67452301EFCDAB89  
0x45  
0x45  
0x60  
0x00  
Example for 32-bit Read Operation: Address 0x00000080, Data 0x1234ABCD, CRC Byte 0x56  
(Sample value; does not match with the actual CRC calculation)  
7-12. Example for 32-bit Read Operation Packet  
Start Byte  
Control Word 0  
Control Word 1 Control Start Byte  
Word 2  
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4  
Target I2C  
R/W  
CRC_ DLEN MEM_ MEM_ MEM_ MEM_ Target I2C  
EN SEC PAGE ADDR ADDR ID Read  
DB0  
DB1  
DB2  
DB3  
CRC  
Byte  
ID  
Write  
A6-A0 W0  
CW23 CW22 CW21- CW19- CW15- CW11- CW7- A6-A0 W0  
D7-D0 D7-D0 D7-D0 D7-D0 C7-C0  
CW20 CW16 CW12 CW8  
CW0  
0x60  
0x0  
0x1  
0x1  
0x1 0x0 0x0 0x0  
0x80  
0x60  
0x1  
0xCD 0xAB 0x34 0x12 0x56  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
80  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-12. Example for 32-bit Read Operation Packet (continued)  
0xC0  
0xD0  
0x00  
0x80  
0xC1  
0xCD 0xAB  
0x34  
0x12  
0x56  
7.6.2.5 I2C Clock Stretching  
The I2C peripheral in MCF8315A implements clock stretching under certain conditions when there are pending  
I2C interrupts waiting to be processed. During clock stretching, MCF8315A pulls SCL low and the I2C bus is  
unavailable for use by other devices. The following is a list of conditions under which clock stretching can occur:  
1. Start interrupt pending: There are two scenarios when a start interrupt can result in clock stretching,  
a. When target ID is a match, I2C peripheral in MCF8315A raises a start interrupt request. Until this start  
interrupt request is processed, clock is stretched. Upon processing this request, clock is released and an  
ACK (marked in yellow or grey in 7-57 and 7-58) is sent to the controller for continuing with the  
transaction.  
b. If Start (followed by target ID match) for a new transaction is received when a receive interrupt from  
previous transaction is yet to be processed, clock is stretched until both the receive interrupt and start  
interrupt are processed in chronological order. This process ensures that previous transaction is  
executed correctly before initiating the next transaction.  
2. Receive interrupt pending: When a receive interrupt is waiting to be processed and the receive register is  
full which occurs when two successive bytes (data or control) have been received by MCF8315A (separated  
by one ACK shown as blue boxes in 7-57 and 7-58) without the receive interrupt generated by the first  
byte being processed. Upon receive of second byte, clock is stretched until receive interrupt generated by  
the first byte is processed.  
3. Transmit buffer is empty: In case of a transmit interrupt pending (to send data back to controller), if the  
transmit buffer is waiting to be populated with data to be read back to the controller, clock stretching is done  
until the transmit buffer is populated with requested data. After the buffer is populated, clock is released and  
data is sent to controller.  
备注  
I2C clock stretching is timed out after 5 ms by MCF8315A to allow I2C bus access for other devices on  
the same bus.  
7.6.2.6 CRC Byte Calculation  
An 8-bit CCIT polynomial (x8 + x2+ x + 1) and CRC initial value 0xFF is used for CRC computation.  
CRC Calculation in Write Operation: When the external MCU writes to MCF8315A, if the CRC is enabled, the  
external MCU has to compute an 8-bit CRC byte and add the CRC byte at the end of the data. MCF8315A will  
compute CRC using the same polynomial internally and if there is a mismatch, the write request is discarded.  
Input data for CRC calculation by external MCU for write operation are listed below:  
1. Target ID + write bit.  
2. Control word 3 bytes  
3. Data bytes 2/4/8 bytes  
CRC Calculation in Read Operation: When the external MCU reads from MCF8315A, if the CRC is enabled,  
MCF8315A sends the CRC byte at the end of the data. The CRC computation in read operation involves the  
start byte, control words sent by external MCU along with data bytes sent by MCF8315A. Input data for CRC  
calculation by external MCU to verify the data sent by MCF8315A are listed below :  
1. Target ID + write bit  
2. Control word 3 bytes  
3. Target ID + read bit  
4. Data bytes 2/4/8 bytes  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7 EEPROM (Non-Volatile) Register Map  
7.7.1 Algorithm_Configuration Registers  
7-13 lists the memory-mapped registers for the Algorithm_Configuration registers. All register offset  
addresses not listed in 7-13 should be considered as reserved locations and the register contents should not  
be modified.  
7-13. ALGORITHM_CONFIGURATION Registers  
Offset Acronym  
ISD_CONFIG  
Register Name  
Section  
80h  
82h  
84h  
86h  
88h  
8Ah  
8Ch  
8Eh  
94h  
96h  
98h  
9Ah  
9Ch  
9Eh  
ISD Configuration  
ISD_CONFIG Register (Offset = 80h) [Reset  
= 00000000h]  
REV_DRIVE_CONFIG  
MOTOR_STARTUP1  
MOTOR_STARTUP2  
CLOSED_LOOP1  
Reverse Drive Configuration  
Motor Startup Configuration1  
Motor Startup Configuration2  
Close Loop Configuration1  
Close Loop Configuration2  
Close Loop Configuration3  
Close Loop Configuration4  
Speed Profile Configuration1  
Speed Profile Configuration2  
Speed Profile Configuration3  
Speed Profile Configuration4  
Speed Profile Configuration5  
Speed Profile Configuration6  
REV_DRIVE_CONFIG Register (Offset =  
82h) [Reset = 00000000h]  
MOTOR_STARTUP1 Register (Offset = 84h)  
[Reset = 00000000h]  
MOTOR_STARTUP2 Register (Offset = 86h)  
[Reset = 00000000h]  
CLOSED_LOOP1 Register (Offset = 88h)  
[Reset = 00000000h]  
CLOSED_LOOP2  
CLOSED_LOOP2 Register (Offset = 8Ah)  
[Reset = X]  
CLOSED_LOOP3  
CLOSED_LOOP3 Register (Offset = 8Ch)  
[Reset = X]  
CLOSED_LOOP4  
CLOSED_LOOP4 Register (Offset = 8Eh)  
[Reset = X]  
SPEED_PROFILES1  
SPEED_PROFILES2  
SPEED_PROFILES3  
SPEED_PROFILES4  
SPEED_PROFILES5  
SPEED_PROFILES6  
SPEED_PROFILES1 Register (Offset = 94h)  
[Reset = X]  
SPEED_PROFILES2 Register (Offset = 96h)  
[Reset = X]  
SPEED_PROFILES3 Register (Offset = 98h)  
[Reset = X]  
SPEED_PROFILES4 Register (Offset = 9Ah)  
[Reset = X]  
SPEED_PROFILES5 Register (Offset = 9Ch)  
[Reset = X]  
SPEED_PROFILES6 Register (Offset = 9Eh)  
[Reset = X]  
Complex bit access types are encoded to fit into small table cells. 7-14 shows the codes that are used for  
access types in this section.  
7-14. Algorithm_Configuration Access Type  
Codes  
Access Type  
Read Type  
R
Code  
R
Description  
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.1 ISD_CONFIG Register (Offset = 80h) [Reset = 00000000h]  
ISD_CONFIG is shown in 7-59 and described in 7-15.  
Return to the Summary Table.  
Register to configure initial speed detect settings  
7-59. ISD_CONFIG Register  
31  
30  
29  
28  
27  
26  
25  
24  
RESERVED  
R/W-0h  
ISD_EN  
R/W-0h  
BRAKE_EN  
R/W-0h  
HIZ_EN  
R/W-0h  
RVS_DR_EN  
R/W-0h  
RESYNC_EN  
R/W-0h  
FW_DRV_RESYN_THR  
R/W-0h  
23  
22  
21  
20  
19  
18  
17  
16  
FW_DRV_RESYN_THR  
R/W-0h  
BRK_MODE  
R/W-0h  
BRK_CONFIG  
R/W-0h  
BRK_CURR_THR  
R/W-0h  
BRK_TIME  
R/W-0h  
15  
14  
13  
12  
11  
10  
9
8
BRK_TIME  
HIZ_TIME  
R/W-0h  
STAT_DETECT  
_THR  
R/W-0h  
6
R/W-0h  
0
7
5
4
3
2
1
STAT_DETECT_THR  
REV_DRV_HANDOFF_THR  
REV_DRV_OPEN_LOOP_CURR  
ENT  
R/W-0h  
R/W-0h  
R/W-0h  
7-15. ISD_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
31  
30  
RESERVED  
ISD_EN  
0h  
Reserved  
0h  
ISD Enable  
0h = Disable  
1h = Enable  
29  
28  
27  
26  
BRAKE_EN  
HIZ_EN  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Brake enable  
0h = Disable  
1h = Enable  
Hi-Z enable  
0h = Disable  
1h = Enable  
RVS_DR_EN  
RESYNC_EN  
Reverse Drive Enable  
0h = Disable  
1h = Enable  
Resynchronization Enable  
0h = Disable  
1h = Enable  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-15. ISD_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
25-22  
FW_DRV_RESYN_THR  
R/W  
0h  
Minimum Speed threshold to resynchronize to close loop (% of  
MAX_SPEED)  
0h = 5%  
1h = 10%  
2h = 15%  
3h = 20%  
4h = 25%  
5h = 30%  
6h = 35%  
7h = 40%  
8h = 45%  
9h = 50%  
Ah = 55%  
Bh = 60%  
Ch = 70%  
Dh = 80%  
Eh = 90%  
Fh = 100%  
21  
20  
BRK_MODE  
R/W  
R/W  
0h  
0h  
Brake mode  
0h = All three high side FETs turned ON  
1h = All three low side FETs turned ON  
BRK_CONFIG  
Brake configuration  
0h = Brake time is used to come out of Brake state  
1h = Brake current threshold and Brake time is used to come out of  
Brake state  
19-17  
BRK_CURR_THR  
R/W  
0h  
Brake current threshold (A)  
0h = 0.0625 A  
1h = 0.125 A  
2h = 0.1875 A  
3h = 0.3125 A  
4h = 0.625 A  
5h = 1.25 A  
6h = 2.5 A  
7h = 5.0 A  
16-13  
BRK_TIME  
R/W  
0h  
Brake time  
0h = 10 ms  
1h = 50 ms  
2h = 100 ms  
3h = 200 ms  
4h = 300 ms  
5h = 400 ms  
6h = 500 ms  
7h = 750 ms  
8h = 1 S  
9h = 2 S  
Ah = 3 S  
Bh = 4 S  
Ch = 5 S  
Dh = 7.5 S  
Eh = 10 S  
Fh = 15 S  
Copyright © 2023 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-15. ISD_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
12-9  
HIZ_TIME  
R/W  
0h  
Hi-Z time  
0h = 10 ms  
1h = 50 ms  
2h = 100 ms  
3h = 200 ms  
4h = 300 ms  
5h = 400 ms  
6h = 500 ms  
7h = 750 ms  
8h = 1 s  
9h = 2 s  
Ah = 3 s  
Bh = 4 s  
Ch = 5 s  
Dh = 7.5 s  
Eh = 10 s  
Fh = 15 s  
8-6  
STAT_DETECT_THR  
R/W  
0h  
BEMF threshold to detect if motor is stationary  
0h = 50 mV  
1h = 75 mV  
2h = 100 mV  
3h = 250 mV  
4h = 500 mV  
5h = 750 mV  
6h = 1000 mV  
7h = 1500 mV  
5-2  
REV_DRV_HANDOFF_T R/W  
HR  
0h  
Speed threshold used to transition to open loop during reverse  
deceleration (% of MAX_SPEED)  
0h = 2.5%  
1h = 5%  
2h = 7.5%  
3h = 10%  
4h = 12.5%  
5h = 15%  
6h = 20%  
7h = 25%  
8h = 30%  
9h = 40%  
Ah = 50%  
Bh = 60%  
Ch = 70%  
Dh = 80%  
Eh = 90%  
Fh = 100%  
1-0  
REV_DRV_OPEN_LOOP R/W  
_CURRENT  
0h  
Open loop current limit during speed reversal (A)  
0h = 0.9375 A  
1h = 1.5625 A  
2h = 2.1875 A  
3h = 3.125 A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.2 REV_DRIVE_CONFIG Register (Offset = 82h) [Reset = 00000000h]  
REV_DRIVE_CONFIG is shown in 7-60 and described in 7-16.  
Return to the Summary Table.  
Register to configure reverse drive settings  
7-60. REV_DRIVE_CONFIG Register  
31  
30  
29  
28  
27  
26  
25  
24  
RESERVED  
R/W-0h  
REV_DRV_OPEN_LOOP_ACCEL_A1  
R/W-0h  
REV_DRV_OPEN_LOOP_ACCEL_A2  
R/W-0h  
23  
22  
21  
20  
19  
18  
17  
16  
REV_DRV_OP  
EN_LOOP_AC  
CEL_A2  
ACTIVE_BRAKE_CURRENT_LIMIT  
ACTIVE_BRAKE_KP  
R/W-0h  
15  
R/W-0h  
R/W-0h  
14  
13  
12  
11  
3
10  
2
9
8
ACTIVE_BRAKE_KP  
R/W-0h  
ACTIVE_BRAKE_KI  
R/W-0h  
7
6
5
4
1
0
ACTIVE_BRAKE_KI  
R/W-0h  
7-16. REV_DRIVE_CONFIG Register Field Descriptions  
Bit  
31  
Field  
Type  
Reset  
Description  
RESERVED  
R/W  
0h  
Reserved  
30-27  
REV_DRV_OPEN_LOOP R/W  
_ACCEL_A1  
0h  
Open loop acceleration coefficient A1 during reverse drive  
0h = 0.01 Hz/s  
1h = 0.05 Hz/s  
2h = 1 Hz/s  
3h = 2.5 Hz/s  
4h = 5 Hz/s  
5h = 10 Hz/s  
6h = 25 Hz/s  
7h = 50 Hz/s  
8h = 75 Hz/s  
9h = 100 Hz/s  
Ah = 250 Hz/s  
Bh = 500 Hz/s  
Ch = 750 Hz/s  
Dh = 1000 Hz/s  
Eh = 5000 Hz/s  
Fh = 10000 Hz/s  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
86  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-16. REV_DRIVE_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
26-23  
REV_DRV_OPEN_LOOP R/W  
_ACCEL_A2  
0h  
Open loop acceleration coefficient A2 during reverse drive  
0h = 0.0 Hz/s2  
1h = 0.05 Hz/s2  
2h = 1 Hz/s2  
3h = 2.5 Hz/s2  
4h = 5 Hz/s2  
5h = 10 Hz/s2  
6h = 25 Hz/s2  
7h = 50 Hz/s2  
8h = 75 Hz/s2  
9h = 100 Hz/s2  
Ah = 250 Hz/s2  
Bh = 500 Hz/s2  
Ch = 750 Hz/s2  
Dh = 1000 Hz/s2  
Eh = 5000 Hz/s2  
Fh = 10000 Hz/s2  
22-20  
ACTIVE_BRAKE_CURRE R/W  
NT_LIMIT  
0h  
Bus current limit during active braking (A)  
0h = 0.3125 A  
1h = 0.625 A  
2h = 1.25 A  
3h = 1.875 A  
4h = 2.5 A  
5h = 3.125 A  
6h = 3.75 A  
7h = Reserved  
19-10  
9-0  
ACTIVE_BRAKE_KP  
ACTIVE_BRAKE_KI  
R/W  
R/W  
0h  
0h  
10-bit value for active braking loop Kp. Kp = ACTIVE_BRAKE_KP /  
27  
10-bit value for active braking loop Ki. Ki = ACTIVE_BRAKE_KI / 29  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.3 MOTOR_STARTUP1 Register (Offset = 84h) [Reset = 00000000h]  
MOTOR_STARTUP1 is shown in 7-61 and described in 7-17.  
Return to the Summary Table.  
Register to configure motor startup settings1  
7-61. MOTOR_STARTUP1 Register  
31  
30  
MTR_STARTUP  
R/W-0h  
29  
28  
27  
26  
25  
17  
24  
RESERVED  
R/W-0h  
ALIGN_SLOW_RAMP_RATE  
R/W-0h  
ALIGN_TIME  
R/W-0h  
23  
22  
21  
13  
5
20  
19  
18  
16  
ALIGN_TIME  
ALIGN_OR_SLOW_CURRENT_ILIMIT  
IPD_CLK_FRE  
Q
R/W-0h  
14  
R/W-0h  
R/W-0h  
8
15  
12  
4
11  
10  
2
9
1
IPD_CLK_FREQ  
IPD_CURR_THR  
IPD_RLS_MOD  
E
R/W-0h  
R/W-0h  
3
R/W-0h  
0
7
6
IPD_ADV_ANGLE  
IPD_REPEAT  
R/W-0h  
OL_ILIMIT_CO IQ_RAMP_EN ACTIVE_BRAK REV_DRV_CO  
NFIG  
E_EN  
NFIG  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-17. MOTOR_STARTUP1 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
31  
RESERVED  
MTR_STARTUP  
0h  
Reserved  
30-29  
0h  
Motor start-up options  
0h = Align  
1h = Double Align  
2h = IPD  
3h = Slow first cycle  
28-25  
ALIGN_SLOW_RAMP_RA R/W  
TE  
0h  
Align, slow first cycle and open loop current ramp rate  
0h = 0.1 A/s  
1h = 1 A/s  
2h = 5 A/s  
3h = 10 A/s  
4h = 15 A/s  
5h = 25 A/s  
6h = 50 A/s  
7h = 100 A/s  
8h = 150 A/s  
9h = 200 A/s  
Ah = 250 A/s  
Bh = 500 A/s  
Ch = 1000 A/s  
Dh = 2000 A/s  
Eh = 5000 A/s  
Fh = No Limit A/s  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
88  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-17. MOTOR_STARTUP1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
24-21  
ALIGN_TIME  
R/W  
0h  
Align time  
0h = 10 ms  
1h = 50 ms  
2h = 100 ms  
3h = 200 ms  
4h = 300 ms  
5h = 400 ms  
6h = 500 ms  
7h = 750 ms  
8h = 1 S  
9h = 1.5 S  
Ah = 2 S  
Bh = 3 S  
Ch = 4 S  
Dh = 5 S  
Eh = 7.5 S  
Fh = 10 S  
20-17  
ALIGN_OR_SLOW_CUR R/W  
RENT_ILIMIT  
0h  
Align or slow first cycle current limit (A)  
0h = 0.078125 A  
1h = 0.15625 A  
2h = 0.3125 A  
3h = 0.625 A  
4h = 0.9375 A  
5h = 1.25 A  
6h = 1.5625 A  
7h = 1.875 A  
8h = 2.1875 A  
9h = 2.5 A  
Ah = 2.8125 A  
Bh = 3.125 A  
Ch = 3.4375 A  
Dh = 3.75 A  
Eh = Reserved  
Fh = Reserved  
16-14  
IPD_CLK_FREQ  
R/W  
0h  
IPD Clock Frequency  
0h = 50 Hz  
1h = 100 Hz  
2h = 250 Hz  
3h = 500 Hz  
4h = 1000 Hz  
5h = 2000 Hz  
6h = 5000 Hz  
7h = 10000 Hz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-17. MOTOR_STARTUP1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
13-9  
IPD_CURR_THR  
R/W  
0h  
IPD Current Threshold (A)  
0h = 0.15625 A  
1h = 0.3125 A  
2h = 0.468 A  
3h = 00.625 A  
4h = 0.78125 A  
5h = 0.9375 A  
6h = 1.25 A  
7h = 1.5625 A  
8h = 1.875 A  
9h = 2.291 A  
Ah = 2.5 A  
Bh = 2.916 A  
Ch = 3.125 A  
Dh = 3.333 A  
Eh = 3.75 A  
Fh = 4.166 A  
10h = 4.583 A  
11h = 5 A  
12h = Reserved  
13h = Reserved  
14h = Reserved  
15h = Reserved  
16h = Reserved  
17h = Reserved  
18h = Reserved  
19h = Reserved  
1Ah = Reserved  
1Bh = Reserved  
1Ch = Reserved  
1Dh = Reserved  
1Eh = Reserved  
1Fh = Reserved  
8
IPD_RLS_MODE  
IPD_ADV_ANGLE  
R/W  
R/W  
0h  
0h  
IPD release mode  
0h = Brake  
1h = Tristate  
7-6  
IPD advance angle  
0h = 0 deg  
1h = 30 deg  
2h = 60 deg  
3h = 90 deg  
5-4  
IPD_REPEAT  
R/W  
0h  
Number of times IPD is executed  
0h = 1 time  
1h = average of 2 times  
2h = average of 3 times  
3h = average of 4 times  
3
2
1
0
OL_ILIMIT_CONFIG  
IQ_RAMP_EN  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Open loop current limit configuration  
0h = Open loop current limit defined by OL_ILIMIT  
1h = Open loop current limit defined by ILIMIT  
Iq ramp down after transition to close loop enable  
0h = Disable Iq ramp down  
1h = Enable Iq ramp down  
ACTIVE_BRAKE_EN  
REV_DRV_CONFIG  
Enables active braking during deceleration  
0h = Disable Active Brake Reverse Drive  
1h = Enable Active Brake Reverse Drive  
Chooses between forward and reverse drive setting for reverse drive  
0h = Open loop current, A1, A2 based on forward drive  
1h = Open loop current, A1, A2 based on reverse drive  
Copyright © 2023 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.4 MOTOR_STARTUP2 Register (Offset = 86h) [Reset = 00000000h]  
MOTOR_STARTUP2 is shown in 7-62 and described in 7-18.  
Return to the Summary Table.  
Register to configure motor startup settings2  
7-62. MOTOR_STARTUP2 Register  
31  
30  
22  
29  
21  
28  
27  
26  
18  
25  
24  
16  
RESERVED  
R/W-0h  
OL_ILIMIT  
R/W-0h  
OL_ACC_A1  
R/W-0h  
23  
20  
19  
17  
OL_ACC_A1  
OL_ACC_A2  
R/W-0h  
AUTO_HANDO  
FF_EN  
OPN_CL_HANDOFF_THR  
R/W-0h  
15  
R/W-0h  
R/W-0h  
14  
13  
5
12  
4
11  
3
10  
9
1
8
0
OPN_CL_HANDOFF_THR  
R/W-0h  
ALIGN_ANGLE  
R/W-0h  
7
6
2
SLOW_FIRST_CYC_FREQ  
FIRST_CYCLE  
_FREQ_SEL  
THETA_ERROR_RAMP_RATE  
R/W-0h  
R/W-0h  
R/W-0h  
7-18. MOTOR_STARTUP2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
31  
RESERVED  
OL_ILIMIT  
0h  
Reserved  
30-27  
0h  
Open Loop current limit (A)  
0h = 0.078125 A  
1h = 0.15625 A  
2h = 0.3125 A  
3h = 0.625 A  
4h = 0.9375 A  
5h = 1.25 A  
6h = 1.5625 A  
7h = 1.875 A  
8h = 2.1875 A  
9h = 2.5 A  
Ah = 2.8125 A  
Bh = 3.125 A  
Ch = 3.4375 A  
Dh = 3.75 A  
Eh = Reserved  
Fh = Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-18. MOTOR_STARTUP2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
26-23  
OL_ACC_A1  
R/W  
0h  
Open loop acceleration coefficient A1  
0h = 0.01 Hz/s  
1h = 0.05 Hz/s  
2h = 1 Hz/s  
3h = 2.5 Hz/s  
4h = 5 Hz/s  
5h = 10 Hz/s  
6h = 25 Hz/s  
7h = 50 Hz/s  
8h = 75 Hz/s  
9h = 100 Hz/s  
Ah = 250 Hz/s  
Bh = 500 Hz/s  
Ch = 750 Hz/s  
Dh = 1000 Hz/s  
Eh = 5000 Hz/s  
Fh = 10000 Hz/s  
22-19  
OL_ACC_A2  
R/W  
0h  
Open loop acceleration coefficient A2  
0h = 0.0 Hz/s2  
1h = 0.05 Hz/s2  
2h = 1 Hz/s2  
3h = 2.5 Hz/s2  
4h = 5 Hz/s2  
5h = 10 Hz/s2  
6h = 25 Hz/s2  
7h = 50 Hz/s2  
8h = 75 Hz/s2  
9h = 100 Hz/s2  
Ah = 250 Hz/s2  
Bh = 500 Hz/s2  
Ch = 750 Hz/s2  
Dh = 1000 Hz/s2  
Eh = 5000 Hz/s2  
Fh = 10000 Hz/s2  
18  
AUTO_HANDOFF_EN  
R/W  
0h  
Auto Handoff Enable  
0h = Disable Auto Handoff (and use OPN_CL_HANDOFF_THR)  
1h = Enable Auto Handoff  
Copyright © 2023 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-18. MOTOR_STARTUP2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
17-13  
OPN_CL_HANDOFF_TH R/W  
R
0h  
Open to Close loop Handoff Threshold (% of MAX_SPEED)  
0h = 1%  
1h = 2%  
2h = 3%  
3h = 4%  
4h = 5%  
5h = 6%  
6h = 7%  
7h = 8%  
8h = 9%  
9h = 10%  
Ah = 11%  
Bh = 12%  
Ch = 13%  
Dh = 14%  
Eh = 15%  
Fh = 16%  
10h = 17%  
11h = 18%  
12h = 19%  
13h = 20%  
14h = 22.5%  
15h = 25%  
16h = 27.5%  
17h = 30%  
18h = 32.5%  
19h = 35%  
1Ah = 37.5%  
1Bh = 40%  
1Ch = 42.5%  
1Dh = 45%  
1Eh = 47.5%  
1Fh = 50%  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-18. MOTOR_STARTUP2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
12-8  
ALIGN_ANGLE  
R/W  
0h  
Align Angle  
0h = 0 deg  
1h = 10 deg  
2h = 20 deg  
3h = 30 deg  
4h = 45 deg  
5h = 60 deg  
6h = 70 deg  
7h = 80 deg  
8h = 90 deg  
9h = 110 deg  
Ah = 120 deg  
Bh = 135 deg  
Ch = 150 deg  
Dh = 160 deg  
Eh = 170 deg  
Fh = 180 deg  
10h = 190 deg  
11h = 210 deg  
12h = 225 deg  
13h = 240 deg  
14h = 250 deg  
15h = 260 deg  
16h = 270 deg  
17h = 280 deg  
18h = 290 deg  
19h = 315 deg  
1Ah = 330 deg  
1Bh = 340 deg  
1Ch = 350 deg  
1Dh = Reserved  
1Eh = Reserved  
1Fh = Reserved  
7-4  
SLOW_FIRST_CYC_FRE R/W  
Q
0h  
Frequency of first cycle in close loop start-up (% of MAX_SPEED)  
0h = 1%  
1h = 2%  
2h = 3%  
3h = 5%  
4h = 7.5%  
5h = 10%  
6h = 12.5%  
7h = 15%  
8h = 17.5%  
9h = 20%  
Ah = 25%  
Bh = 30%  
Ch = 35%  
Dh = 40%  
Eh = 45%  
Fh = 50%  
3
FIRST_CYCLE_FREQ_S R/W  
EL  
0h  
First cycle frequency in open loop for align, double align and IPD  
start-up options  
0h = 0 Hz  
1h = Defined by SLOW_FIRST_CYC_FREQ  
Copyright © 2023 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-18. MOTOR_STARTUP2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
THETA_ERROR_RAMP_ R/W  
RATE  
0h  
Ramp rate for reducing difference between estimated theta and open  
loop theta (deg/ms)  
0h = 0.01 deg/ms  
1h = 0.05 deg/ms  
2h = 0.1 deg/ms  
3h = 0.15 deg/ms  
4h = 0.2 deg/ms  
5h = 0.5 deg/ms  
6h = 1 deg/ms  
7h = 2 deg/ms  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.5 CLOSED_LOOP1 Register (Offset = 88h) [Reset = 00000000h]  
CLOSED_LOOP1 is shown in 7-63 and described in 7-19.  
Return to the Summary Table.  
Register to configure close loop settings1  
7-63. CLOSED_LOOP1 Register  
31  
30  
29  
28  
27  
26  
25  
24  
RESERVED OVERMODULA  
TION_ENABLE  
CL_ACC  
CL_DEC_CON  
FIG  
R/W-0h  
23  
R/W-0h  
22  
R/W-0h  
19  
R/W-0h  
16  
21  
20  
12  
18  
10  
17  
CL_DEC  
R/W-0h  
PWM_FREQ_OUT  
R/W-0h  
15  
14  
13  
11  
9
8
PWM_FREQ_O PWM_MODE  
UT  
FG_SEL  
R/W-0h  
FG_DIV  
R/W-0h  
R/W-0h  
R/W-0h  
6
7
5
4
3
2
1
0
FG_CONFIG  
FG_BEMF_THR  
R/W-0h  
AVS_EN  
DEADTIME_CO SPEED_LOOP LOW_SPEED_  
MP_EN  
_DIS  
RECIRC_BRAK  
E_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-19. CLOSED_LOOP1 Register Field Descriptions  
Bit  
31  
30  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0h  
Reserved  
OVERMODULATION_EN R/W  
ABLE  
0h  
Enables Over modulation  
0h = Disable Over Modulation  
1h = Enable Over Modulation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
96  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-19. CLOSED_LOOP1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
29-25  
CL_ACC  
R/W  
0h  
Closed loop acceleration ( Hz / sec)  
0h = 0.5 Hz/s  
1h = 1 Hz/s  
2h = 2.5 Hz/s  
3h = 5 Hz/s  
4h = 7.5 Hz/s  
5h = 10 Hz/s  
6h = 20 Hz/s  
7h = 40 Hz/s  
8h = 60 Hz/s  
9h = 80 Hz/s  
Ah = 100 Hz/s  
Bh = 200 Hz/s  
Ch = 300 Hz/s  
Dh = 400 Hz/s  
Eh = 500 Hz/s  
Fh = 600 Hz/s  
10h = 700 Hz/s  
11h = 800 Hz/s  
12h = 900 Hz/s  
13h = 1000 Hz/s  
14h = 2000 Hz/s  
15h = 4000 Hz/s  
16h = 6000 Hz/s  
17h = 8000 Hz/s  
18h = 10000 Hz/s  
19h = 20000 Hz/s  
1Ah = 30000 Hz/s  
1Bh = 40000 Hz/s  
1Ch = 50000 Hz/s  
1Dh = 60000 Hz/s  
1Eh = 70000 Hz/s  
1Fh = No limit  
24  
CL_DEC_CONFIG  
R/W  
0h  
Closed loop deceleration configuration  
0h = Closed loop deceleration defined by CL_DEC  
1h = Closed loop deceleration defined by CL_ACC  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-19. CLOSED_LOOP1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
23-19  
CL_DEC  
R/W  
0h  
Closed loop deceleration. This register is used only if AVS is disabled  
and CL_DEC_CONFIG is set to '0'  
0h = 0.5 Hz/s  
1h = 1 Hz/s  
2h = 2.5 Hz/s  
3h = 5 Hz/s  
4h = 7.5 Hz/s  
5h = 10 Hz/s  
6h = 20 Hz/s  
7h = 40 Hz/s  
8h = 60 Hz/s  
9h = 80 Hz/s  
Ah = 100 Hz/s  
Bh = 200 Hz/s  
Ch = 300 Hz/s  
Dh = 400 Hz/s  
Eh = 500 Hz/s  
Fh = 600 Hz/s  
10h = 700 Hz/s  
11h = 800 Hz/s  
12h = 900 Hz/s  
13h = 1000 Hz/s  
14h = 2000 Hz/s  
15h = 4000 Hz/s  
16h = 6000 Hz/s  
17h = 8000 Hz/s  
18h = 10000 Hz/s  
19h = 20000 Hz/s  
1Ah = 30000 Hz/s  
1Bh = 40000 Hz/s  
1Ch = 50000 Hz/s  
1Dh = 60000 Hz/s  
1Eh = 70000 Hz/s  
1Fh = No limit  
18-15  
PWM_FREQ_OUT  
R/W  
0h  
PWM output frequency  
0h = 10 kHz  
1h = 15 kHz  
2h = 20 kHz  
3h = 25 kHz  
4h = 30 kHz  
5h = 35 kHz  
6h = 40 kHz  
7h = 45 kHz  
8h = 50 kHz  
9h = 55 kHz  
Ah = 60 kHz  
Bh = 65 kHz  
Ch = 70 kHz  
Dh = 75 kHz  
Eh = Reserved  
Fh = Reserved  
14  
PWM_MODE  
FG_SEL  
R/W  
R/W  
0h  
0h  
PWM modulation  
0h = Continuous Space Vector Modulation  
1h = Discontinuous Space Vector Modulation  
13-12  
FG select  
0h = Output FG in open loop and closed loop  
1h = Output FG in only closed loop  
2h = Output FG in open loop for the first try.  
3h = Not Defined  
Copyright © 2023 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-19. CLOSED_LOOP1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
11-8  
FG_DIV  
R/W  
0h  
FG Division factor  
0h = Divide by 1 (2-pole motor mechanical speed)  
1h = Divide by 1 (2-pole motor mechanical speed)  
2h = Divide by 2 (4-pole motor mechanical speed)  
3h = Divide by 3 (6-pole motor mechanical speed)  
4h = Divide by 4 (8-pole motor mechanical speed) ...  
Fh = Divide by 15 (30-pole motor mechanical speed)  
7
FG_CONFIG  
R/W  
R/W  
0h  
0h  
FG output configuration  
0h = FG active as long as motor is driven  
1h = FG active till BEMF drops below BEMF threshold defined by  
FG_BEMF_THR  
6-4  
FG_BEMF_THR  
FG output BEMF threshold  
0h = +/- 1mV  
1h = +/- 2mV  
2h = +/- 5mV  
3h = +/- 10mV  
4h = +/- 20mV  
5h = +/- 30mV  
6h = Reserved  
7h = Reserved  
3
2
1
0
AVS_EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
AVS enable  
0h = Disable  
1h = Enable  
DEADTIME_COMP_EN  
SPEED_LOOP_DIS  
Deadtime compensation enable  
0h = Disable  
1h = Enable  
Speed Loop Disable  
0h = Enable  
1h = Disable  
LOW_SPEED_RECIRC_B R/W  
RAKE_EN  
Stop mode applied when stop mode is recirculation brake and motor  
running in align or open loop  
0h = Hi-Z  
1h = Low Side Brake  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.6 CLOSED_LOOP2 Register (Offset = 8Ah) [Reset = X]  
CLOSED_LOOP2 is shown in 7-64 and described in 7-20.  
Return to the Summary Table.  
Register to configure close loop settings2  
7-64. CLOSED_LOOP2 Register  
31  
30  
22  
29  
28  
20  
12  
4
27  
19  
11  
3
26  
25  
24  
16  
8
RESERVED  
R/W-0h  
MTR_STOP  
R/W-0h  
MTR_STOP_BRK_TIME  
R/W-0h  
23  
15  
7
21  
18  
17  
ACT_SPIN_THR  
R/W-0h  
BRAKE_SPEED_THRESHOLD  
R/W-0h  
14  
13  
10  
9
MOTOR_RES  
R/W-X  
6
5
2
1
0
MOTOR_IND  
R/W-X  
7-20. CLOSED_LOOP2 Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
MTR_STOP  
0h  
Reserved  
30-28  
0h  
Motor stop options  
0h = Hi-z  
1h = Reserved  
2h = Low side braking  
3h = High side braking  
4h = Active spin down  
5h = Align braking  
6h = Not Defined  
7h = Not Defined  
27-24  
MTR_STOP_BRK_TIME R/W  
0h  
Brake time during motor stop  
0h = 1 ms  
1h = 1 ms  
2h = 1 ms  
3h = 1 ms  
4h = 1 ms  
5h = 5 ms  
6h = 10 ms  
7h = 50 ms  
8h = 100 ms  
9h = 250 ms  
Ah = 500 ms  
Bh = 1000 ms  
Ch = 2500 ms  
Dh = 5000 ms  
Eh = 10000 ms  
Fh = 15000 ms  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
100 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-20. CLOSED_LOOP2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
23-20  
ACT_SPIN_THR  
R/W  
0h  
Speed threshold for active spin down (% of MAX_SPEED)  
0h = 100 %  
1h = 90 %  
2h = 80 %  
3h = 70 %  
4h = 60%  
5h = 50 %  
6h = 45 %  
7h = 40 %  
8h = 35 %  
9h = 30 %  
Ah = 25 %  
Bh = 20 %  
Ch = 15 %  
Dh = 10 %  
Eh = 5 %  
Fh = 2.5 %  
19-16  
BRAKE_SPEED_THRES R/W  
HOLD  
0h  
Speed threshold for BRAKE pin and Motor stop options (Low side  
Braking or High Side Braking or Align Braking) (% of MAX_SPEED)  
0h = 100 %  
1h = 90 %  
2h = 80 %  
3h = 70 %  
4h = 60%  
5h = 50 %  
6h = 45 %  
7h = 40 %  
8h = 35 %  
9h = 30 %  
Ah = 25 %  
Bh = 20 %  
Ch = 15 %  
Dh = 10 %  
Eh = 5 %  
Fh = 2.5 %  
15-8  
7-0  
MOTOR_RES  
MOTOR_IND  
R/W  
R/W  
X
X
8-bit values for motor phase resistance. See 7-2 for values of  
phase resistance  
8-bit values for motor phase inductance. See Table 7-3 for values of  
phase inductance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.7 CLOSED_LOOP3 Register (Offset = 8Ch) [Reset = X]  
CLOSED_LOOP3 is shown in 7-65 and described in 7-21.  
Return to the Summary Table.  
Register to configure close loop settings3  
7-65. CLOSED_LOOP3 Register  
31  
30  
22  
29  
21  
28  
27  
MOTOR_BEMF_CONST  
R/W-X  
26  
18  
25  
17  
24  
16  
RESERVED  
R/W-0h  
23  
20  
19  
MOTOR_BEMF  
_CONST  
CURR_LOOP_KP  
R/W-X  
15  
R/W-0h  
11  
14  
13  
12  
4
10  
9
8
0
CURR_LOOP_KP  
R/W-0h  
CURR_LOOP_KI  
R/W-0h  
7
6
5
3
2
1
CURR_LOOP_KI  
R/W-0h  
SPD_LOOP_KP  
R/W-0h  
7-21. CLOSED_LOOP3 Register Field Descriptions  
Bit  
31  
Field  
Type  
Reset  
Description  
RESERVED  
R/W  
0h  
Reserved  
30-23  
MOTOR_BEMF_CONST R/W  
X
8-bit values for motor BEMF Constant. See Table 7-4 for values of  
BEMF constant  
22-13  
12-3  
2-0  
CURR_LOOP_KP  
CURR_LOOP_KI  
SPD_LOOP_KP  
R/W  
R/W  
R/W  
0h  
0h  
0h  
10-bit value for current Iq and Id loop Kp. Kp = 8LSB of  
CURR_LOOP_KP / 10^2MSB of CURR_LOOP_KP. Please make 0  
for auto calculation of current Kp and Ki  
10-bit value for current Iq and Id loop Ki. Ki = 1000 * 8LSB of  
CURR_LOOP_KI / 10^2MSB of CURR_LOOP_KI. Please make 0 for  
auto calculation of current Kp and Ki  
3 MSB bits for speed loop Kp. Kp = 0.01 * 8LSB of SPD_LOOP_KP /  
10^2MSB of SPD_LOOP_KP  
Copyright © 2023 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.8 CLOSED_LOOP4 Register (Offset = 8Eh) [Reset = X]  
CLOSED_LOOP4 is shown in 7-66 and described in 7-22.  
Return to the Summary Table.  
Register to configure close loop settings4  
7-66. CLOSED_LOOP4 Register  
31  
30  
22  
14  
29  
21  
13  
5
28  
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
RESERVED  
R/W-0h  
SPD_LOOP_KP  
R/W-0h  
23  
20  
19  
SPD_LOOP_KI  
R/W-0h  
15  
12  
4
11  
3
SPD_LOOP_KI  
MAX_SPEED  
R/W-X  
R/W-0h  
7
6
1
0
MAX_SPEED  
R/W-X  
7-22. CLOSED_LOOP4 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
31  
RESERVED  
0h  
Reserved  
30-24  
SPD_LOOP_KP  
0h  
7 LSB bits for speed loop Kp. Kp = 0.01 * 8LSB of SPD_LOOP_KP /  
10^2MSB of SPD_LOOP_KP  
23-14  
13-0  
SPD_LOOP_KI  
MAX_SPEED  
R/W  
R/W  
0h  
X
10 bit value for speed loop Ki. Ki = 0.1 * 8LSB of SPD_LOOP_KI /  
10^2MSB of SPD_LOOP_KI  
14-bit value for setting maximum value of Speed in electrical Hz  
Maximum motor electrical speed (Hz): {MOTOR_SPEED/6} For  
example: if MOTOR_SPEED is 0x2710, then maximum motor speed  
(Hz) = 10000(0x2710)/6 = 1666 Hz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.9 SPEED_PROFILES1 Register (Offset = 94h) [Reset = X]  
SPEED_PROFILES1 is shown in 7-67 and described in 7-23.  
Return to the Summary Table.  
Register to configure speed profile1  
7-67. SPEED_PROFILES1 Register  
31  
30  
29  
28  
20  
12  
4
27  
19  
11  
3
26  
25  
17  
9
24  
16  
8
RESERVED  
R/W-0h  
SPEED_PROFILE_CONFIG  
R/W-0h  
DUTY_ON1  
R/W-X  
23  
15  
7
22  
21  
13  
5
18  
DUTY_ON1  
R/W-X  
DUTY_OFF1  
R/W-X  
14  
10  
DUTY_OFF1  
R/W-X  
DUTY_CLAMP1  
R/W-X  
6
2
1
0
DUTY_CLAMP1  
R/W-X  
DUTY_A  
R/W-X  
7-23. SPEED_PROFILES1 Register Field Descriptions  
Bit  
31  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0h  
Reserved  
30-29  
SPEED_PROFILE_CONFI R/W  
G
0h  
Configuration for speed profiles  
0h = Speed Reference Mode  
1h = Linear Mode  
2h = Staircase Mode  
3h = Forward Reverse Mode  
28-21  
20-13  
12-5  
4-0  
DUTY_ON1  
DUTY_OFF1  
DUTY_CLAMP1  
DUTY_A  
R/W  
R/W  
R/W  
R/W  
X
X
X
X
Duty_ON1 Configuration Turn On Duty Cycle (%) =  
{(DUTY_ON1/255)*100}  
Duty_OFF1 Configuration Turn Off Duty Cycle (%) =  
{(DUTY_OFF1/255)*100}  
Duty_CLAMP1 Configuration Duty Cycle for clamping speed (%) =  
{(DUTY_CLAMP1/255)*100}  
5 MSB bits for Duty Cycle A  
Copyright © 2023 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.10 SPEED_PROFILES2 Register (Offset = 96h) [Reset = X]  
SPEED_PROFILES2 is shown in 7-68 and described in 7-24.  
Return to the Summary Table.  
Register to configure speed profile2  
7-68. SPEED_PROFILES2 Register  
31  
30  
22  
14  
6
29  
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RESERVED  
R/W-0h  
DUTY_A  
R/W-X  
DUTY_B  
R/W-X  
23  
15  
7
21  
13  
5
DUTY_B  
R/W-X  
DUTY_C  
R/W-X  
DUTY_C  
R/W-X  
DUTY_D  
R/W-X  
1
0
DUTY_D  
R/W-X  
DUTY_E  
R/W-0h  
7-24. SPEED_PROFILES2 Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
DUTY_A  
0h  
Reserved  
30-28  
X
3 LSB bits for Duty Cycle A Duty_A Configuration Duty Cycle A (%) =  
{(DUTY_A/255)*100}  
27-20  
19-12  
11-4  
DUTY_B  
DUTY_C  
DUTY_D  
DUTY_E  
R/W  
R/W  
R/W  
R/W  
X
Duty_B Configuration Duty Cycle B (%) = {(DUTY_B/255)*100}  
Duty_C Configuration Duty Cycle C (%) = {(DUTY_C/255)*100}  
Duty_D Configuration Duty Cycle D (%) = {(DUTY_D/255)*100}  
4 MSB bits for Duty Cycle E  
X
X
3-0  
0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.11 SPEED_PROFILES3 Register (Offset = 98h) [Reset = X]  
SPEED_PROFILES3 is shown in 7-69 and described in 7-25.  
Return to the Summary Table.  
Register to configure speed profile3  
7-69. SPEED_PROFILES3 Register  
31  
30  
22  
14  
6
29  
21  
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
24  
16  
8
RESERVED  
R/W-0h  
DUTY_E  
R/W-X  
DUTY_ON2  
R/W-X  
23  
15  
7
17  
DUTY_ON2  
R/W-X  
DUTY_OFF2  
R/W-X  
13  
9
DUTY_OFF2  
R/W-X  
DUTY_CLAMP2  
R/W-X  
5
1
0
DUTY_CLAMP2  
R/W-X  
DUTY_HYST  
R/W-0h  
RESERVED  
R/W-0h  
7-25. SPEED_PROFILES3 Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
DUTY_E  
0h  
Reserved  
30-27  
X
4 LSB bits for Duty Cycle E Duty_E Configuration Duty Cycle E (%) =  
{(DUTY_E/255)*100}  
26-19  
18-11  
10-3  
2-1  
DUTY_ON2  
R/W  
R/W  
R/W  
R/W  
X
Duty_ON2 Configuration Turn On Duty Cycle (%) =  
{(DUTY_ON2/255)*100}  
DUTY_OFF2  
DUTY_CLAMP2  
DUTY_HYST  
X
Duty_OFF2 Configuration Turn Off Duty Cycle (%) =  
{(DUTY_OFF2/255)*100}  
X
Duty_CLAMP2 Configuration Duty Cycle for clamping speed (%) =  
{(DUTY_CLAMP1/255)*100}  
0h  
Duty hysteresis for speed reference mode  
0h = 0%  
1h = 0.5%  
2h = 1%  
3h = 2%  
0
RESERVED  
R/W  
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.12 SPEED_PROFILES4 Register (Offset = 9Ah) [Reset = X]  
SPEED_PROFILES4 is shown in 7-70 and described in 7-26.  
Return to the Summary Table.  
Register to configure speed profile4  
7-70. SPEED_PROFILES4 Register  
31  
30  
22  
14  
29  
21  
13  
28  
20  
12  
27  
26  
18  
10  
25  
17  
9
24  
16  
8
RESERVED  
R/W-0h  
SPEED_OFF1  
R/W-X  
23  
19  
SPEED_OFF1  
R/W-X  
SPEED_CLAMP1  
R/W-X  
15  
11  
SPEED_CLAM  
P1  
SPEED_A  
R/W-X  
R/W-X  
7
6
5
4
3
2
1
0
SPEED_A  
R/W-X  
SPEED_B  
R/W-X  
7-26. SPEED_PROFILES4 Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0h  
Reserved  
30-23  
SPEED_OFF1  
X
Turn off speed Configuration Turn off speed (% of MAX_SPEED) =  
{(SPEED_OFF1/255)*100}  
22-15  
14-7  
6-0  
SPEED_CLAMP1  
SPEED_A  
R/W  
R/W  
R/W  
X
X
X
Clamp Speed Configuration Clamp Speed (% of MAX_SPEED) =  
{(SPEED_CLAMP1/255)*100}  
Speed A configuration SPEED A (% of MAX_SPEED) = {(SPEED_A/  
255)*100}  
SPEED_B  
7 MSB of SPEED_B configuration  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.13 SPEED_PROFILES5 Register (Offset = 9Ch) [Reset = X]  
SPEED_PROFILES5 is shown in 7-71 and described in 7-27.  
Return to the Summary Table.  
Register to configure speed profile5  
7-71. SPEED_PROFILES5 Register  
31  
30  
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RESERVED  
R/W-0h  
SPEED_B  
R/W-X  
SPEED_C  
R/W-X  
23  
22  
SPEED_C  
SPEED_D  
R/W-X  
R/W-X  
15  
7
14  
6
SPEED_D  
R/W-X  
SPEED_E  
R/W-X  
1
0
SPEED_E  
R/W-X  
RESERVED  
R/W-0h  
7-27. SPEED_PROFILES5 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
31  
30  
RESERVED  
SPEED_B  
0h  
Reserved  
X
1 LSB of SPEED_B configuration Speed B Configuration SPEED  
B(% of MAX_SPEED) = {(SPEED_B/255)*100}  
29-22  
21-14  
13-6  
5-0  
SPEED_C  
SPEED_D  
SPEED_E  
RESERVED  
R/W  
R/W  
R/W  
R/W  
X
Speed C configuration SPEED C (% of MAX_SPEED) = {(SPEED_A/  
255)*100}  
X
Speed D configuration SPEED D (% of MAX_SPEED) =  
{(SPEED_D/255)*100}  
X
Speed E Configuration SPEED E(% of MAX_SPEED) = {(SPEED_E/  
255)*100}  
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.1.14 SPEED_PROFILES6 Register (Offset = 9Eh) [Reset = X]  
SPEED_PROFILES6 is shown in 7-72 and described in 7-28.  
Return to the Summary Table.  
Register to configure speed profile6  
7-72. SPEED_PROFILES6 Register  
31  
30  
22  
14  
29  
21  
13  
28  
20  
12  
27  
26  
18  
10  
25  
17  
9
24  
16  
8
RESERVED  
R/W-0h  
SPEED_OFF2  
R/W-X  
23  
19  
SPEED_OFF2  
R/W-X  
SPEED_CLAMP2  
R/W-X  
15  
11  
SPEED_CLAM  
P2  
RESERVED  
R/W-X  
7
R/W-X  
3
6
5
4
2
1
0
RESERVED  
R/W-X  
7-28. SPEED_PROFILES6 Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0h  
Reserved  
30-23  
SPEED_OFF2  
X
Turn off speed Configuration Turn off speed (% of MAX_SPEED) =  
{(SPEED_OFF2/255)*100}  
22-15  
14-0  
SPEED_CLAMP2  
RESERVED  
R/W  
R/W  
X
X
Clamp Speed Configuration Clamp Speed (% of MAX_SPEED) =  
{(SPEED_CLAMP2/255)*100}  
Reserved  
7.7.2 Fault_Configuration Registers  
7-29 lists the memory-mapped registers for the Fault_Configuration registers. All register offset addresses not  
listed in 7-29 should be considered as reserved locations and the register contents should not be modified.  
7-29. FAULT_CONFIGURATION Registers  
Offset Acronym  
Register Name  
Section  
90h  
FAULT_CONFIG1  
Fault Configuration1  
FAULT_CONFIG1 Register (Offset = 90h)  
[Reset = 00000000h]  
92h  
FAULT_CONFIG2  
Fault Configuration2  
FAULT_CONFIG2 Register (Offset = 92h)  
[Reset = 00000000h]  
Complex bit access types are encoded to fit into small table cells. 7-30 shows the codes that are used for  
access types in this section.  
7-30. Fault_Configuration Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-30. Fault_Configuration Access Type Codes  
(continued)  
Access Type  
Code  
Description  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
110  
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.2.1 FAULT_CONFIG1 Register (Offset = 90h) [Reset = 00000000h]  
FAULT_CONFIG1 is shown in 7-73 and described in 7-31.  
Return to the Summary Table.  
Register to configure fault settings1  
7-73. FAULT_CONFIG1 Register  
31  
30  
22  
29  
21  
28  
27  
26  
18  
25  
24  
16  
RESERVED  
R/W-0h  
ILIMIT  
HW_LOCK_ILIMIT  
R/W-0h  
R/W-0h  
23  
20  
19  
17  
HW_LOCK_ILI  
MIT  
LOCK_ILIMIT  
R/W-0h  
LOCK_ILIMIT_MODE  
R/W-0h  
15  
R/W-0h  
14  
6
13  
12  
11  
3
10  
2
9
8
0
LOCK_ILIMIT_  
MODE  
LOCK_ILIMIT_DEG  
LCK_RETRY  
R/W-0h  
R/W-0h  
R/W-0h  
1
7
5
4
LCK_RETRY  
MTR_LCK_MODE  
IPD_TIMEOUT IPD_FREQ_FA SATURATION_  
_FAULT_EN  
ULT_EN  
FLAGS_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-31. FAULT_CONFIG1 Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
ILIMIT  
0h  
Reserved  
30-27  
0h  
Reference for Torque PI Loop (A)  
0h = 0.078125 A  
1h = 0.15625 A  
2h = 0.3125 A  
3h = 0.625 A  
4h = 0.9375 A  
5h = 1.25 A  
6h = 1.5625 A  
7h = 1.875 A  
8h = 2.1875 A  
9h = 2.5 A  
Ah = 2.8125 A  
Bh = 3.125 A  
Ch = 3.4375 A  
Dh = 3.75 A  
Eh = Reserved  
Fh = Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-31. FAULT_CONFIG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
26-23  
HW_LOCK_ILIMIT  
R/W  
0h  
Comparator based lock detection current limit (A)  
0h = 0.078125 A  
1h = 0.15625 A  
2h = 0.3125 A  
3h = 0.625 A  
4h = 0.9375 A  
5h = 1.25 A  
6h = 1.5625 A  
7h = 1.875 A  
8h = 2.1875 A  
9h = 2.5 A  
Ah = 2.8125 A  
Bh = 3.125 A  
Ch = 3.4375 A  
Dh = 3.75 A  
Eh = Reserved  
Fh = Reserved  
22-19  
LOCK_ILIMIT  
R/W  
0h  
ADC based lock detection current threshold (A)  
0h = 0.078125 A  
1h = 0.15625 A  
2h = 0.3125 A  
3h = 0.625 A  
4h = 0.9375 A  
5h = 1.25 A  
6h = 1.5625 A  
7h = 1.875 A  
8h = 2.1875 A  
9h = 2.5 A  
Ah = 2.8125 A  
Bh = 3.125 A  
Ch = 3.4375 A  
Dh = 3.75 A  
Eh = Reserved  
Fh = Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
112  
Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-31. FAULT_CONFIG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
18-15  
LOCK_ILIMIT_MODE  
R/W  
0h  
Lock current Limit Mode  
0h = Ilimit lock detection causes latched fault; nFAULT active; Gate  
driver is tristated  
1h = Ilimit lock detection causes latched fault; nFAULT active; Gate  
driver is in recirculation mode  
2h = Ilimit lock detection causes latched fault; nFAULT active; Gate  
driver is in high side brake mode (All high side FETs are turned ON)  
3h = Ilimit lock detection causes latched fault; nFAULT active; Gate  
driver is in low side brake mode (All low side FETs are turned ON)  
4h = Fault automatically cleared after LCK_RETRY time. Number of  
retries limited to AUTO_RETRY_TIMES. If number of retries exceed  
AUTO_RETRY_TIMES, fault is latched; Gate driver is tristated;  
nFault active  
5h = Fault automatically cleared after LCK_RETRY time. Number of  
retries limited to AUTO_RETRY_TIMES. If number of retries exceed  
AUTO_RETRY_TIMES, fault is latched; Gate driver is in recirculation  
mode; nFault active  
6h = Fault automatically cleared for AUTO_RETRY_TIMES after  
LCK_RETRY time; Gate driver is in high side brake mode (All high  
side FETs are turned ON); nFault active  
7h = Fault automatically cleared after LCK_RETRY time. Number of  
retries limited to AUTO_RETRY_TIMES. If number of retries exceed  
AUTO_RETRY_TIMES, fault is latched; Gate driver is in low side  
brake mode (All low side FETs are turned ON); nFault active  
8h = Ilimit lock detection current limit is in report only but no action is  
taken; nFault active  
9h = ILIMIT LOCK is disabled  
Ah = ILIMIT LOCK is disabled  
Bh = ILIMIT LOCK is disabled  
Ch = ILIMIT LOCK is disabled  
Dh = ILIMIT LOCK is disabled  
Eh = ILIMIT LOCK is disabled  
Fh = ILIMIT LOCK is disabled  
14-11  
LOCK_ILIMIT_DEG  
R/W  
0h  
Lock Detection current limit deglitch time  
0h = 0.05 ms  
1h = 0.1 ms  
2h = 0.2 ms  
3h = 0.5 ms  
4h = 1 ms  
5h = 2.5 ms  
6h = 5 ms  
7h = 7.5 ms  
8h = 10 ms  
9h = 25 ms  
Ah = 50 ms  
Bh = 75 ms  
Ch = 100 ms  
Dh = 200 ms  
Eh = 500 ms  
Fh = 1000 ms  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-31. FAULT_CONFIG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
10-7  
LCK_RETRY  
R/W  
0h  
Lock detection retry time  
0h = Reserved  
1h = 500 ms  
2h = 1 s  
3h = 2 s  
4h = 3 s  
5h = 4 s  
6h = 5 s  
7h = 6 s  
8h = 7 s  
9h = 8 s  
Ah = 9 s  
Bh = 10 s  
Ch = 11 s  
Dh = 12 s  
Eh = 13 s  
Fh = 14 s  
6-3  
MTR_LCK_MODE  
R/W  
0h  
Motor Lock Mode  
0h = Motor lock detection causes latched fault; nFAULT active; Gate  
driver is tristated  
1h = Motor lock detection causes latched fault; nFAULT active; Gate  
driver is in recirculation mode  
2h = Motor lock detection causes latched fault; nFAULT active; Gate  
driver is in high side brake mode (All high side FETs are turned ON)  
3h = Motor lock detection causes latched fault; nFAULT active; Gate  
driver is in low side brake mode (All low side FETs are turned ON)  
4h = Fault automatically cleared after LCK_RETRY time. Number of  
retries limited to AUTO_RETRY_TIMES. If number of retries exceed  
AUTO_RETRY_TIMES, fault is latched; Gate driver is tristated;  
nFault active  
5h = Fault automatically cleared after LCK_RETRY time. Number of  
retries limited to AUTO_RETRY_TIMES. If number of retries exceed  
AUTO_RETRY_TIMES, fault is latched; Gate driver is in recirculation  
mode; nFault active  
6h = Fault automatically cleared for AUTO_RETRY_TIMES after  
LCK_RETRY time; Gate driver is in high side brake mode (All high  
side FETs are turned ON); nFault active  
7h = Fault automatically cleared after LCK_RETRY time. Number of  
retries limited to AUTO_RETRY_TIMES. If number of retries exceed  
AUTO_RETRY_TIMES, fault is latched; Gate driver is in low side  
brake mode (All low side FETs are turned ON); nFault active  
8h = Motor lock detection current limit is in report only but no action  
is taken; nFault active  
9h = Motor lock detection is disabled  
Ah = Motor lock detection is disabled  
Bh = Motor lock detection is disabled  
Ch = Motor lock detection is disabled  
Dh = Motor lock detection is disabled  
Eh = Motor lock detection is disabled  
Fh = Motor lock detection is disabled  
2
1
0
IPD_TIMEOUT_FAULT_E R/W  
N
0h  
0h  
0h  
IPD timeout fault Enable  
0h = Disable  
1h = Enable  
IPD_FREQ_FAULT_EN  
R/W  
IPD frequency fault Enable  
0h = Disable  
1h = Enable  
SATURATION_FLAGS_E R/W  
N
Enables indication of current loop and speed loop saturation  
0h = Disable  
1h = Enable  
Copyright © 2023 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.2.2 FAULT_CONFIG2 Register (Offset = 92h) [Reset = 00000000h]  
FAULT_CONFIG2 is shown in 7-74 and described in 7-32.  
Return to the Summary Table.  
Register to configure fault settings2  
7-74. FAULT_CONFIG2 Register  
31  
30  
29  
28  
27  
26  
25  
17  
24  
RESERVED  
LOCK1_EN  
LOCK2_EN  
LOCK3_EN  
LOCK_ABN_SPEED  
ABNORMAL_B  
EMF_THR  
R/W-0h  
23  
R/W-0h  
22  
R/W-0h  
21  
R/W-0h  
R/W-0h  
18  
R/W-0h  
16  
20  
19  
ABNORMAL_BEMF_THR  
R/W-0h  
NO_MTR_THR  
R/W-0h  
HW_LOCK_ILIMIT_MODE  
R/W-0h  
15  
14  
13  
12  
11  
10  
2
9
8
0
HW_LOCK_ILI  
MIT_MODE  
HW_LOCK_ILIMIT_DEG  
RESERVED  
MIN_VM_MOTOR  
R/W-0h  
7
R/W-0h  
R/W-0h  
3
R/W-0h  
6
5
4
1
MIN_VM_MOD  
E
MAX_VM_MOTOR  
MAX_VM_MOD  
E
AUTO_RETRY_TIMES  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-32. FAULT_CONFIG2 Register Field Descriptions  
Bit  
31  
30  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
LOCK1_EN  
0h  
Reserved  
0h  
Lock 1 (Abnormal Speed) Enable  
0h = Disable  
1h = Enable  
29  
28  
LOCK2_EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Lock 2 (Abnormal BEMF) Enable  
0h = Disable  
1h = Enable  
LOCK3_EN  
Lock 3 (No Motor) Enable  
0h = Disable  
1h = Enable  
27-25  
LOCK_ABN_SPEED  
Abnormal speed lock threshold (% of MAX_SPEED)  
0h = 130%  
1h = 140%  
2h = 150%  
3h = 160%  
4h = 170%  
5h = 180%  
6h = 190%  
7h = 200%  
24-22  
ABNORMAL_BEMF_THR R/W  
0h  
Abnormal BEMF lock threshold (% of expected BEMF)  
0h = 40%  
1h = 45%  
2h = 50%  
3h = 55%  
4h = 60%  
5h = 65%  
6h = 67.5%  
7h = 70%  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-32. FAULT_CONFIG2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
21-19  
NO_MTR_THR  
R/W  
0h  
No motor lock threshold (A)  
0h = 0.03125 A  
1h = 0.0468 A  
2h = 0.0625A  
3h = 0.078 A  
4h = 0.156 A  
5h = 0.312 A  
6h = 0.468 A  
7h = 0.625 A  
18-15  
HW_LOCK_ILIMIT_MODE R/W  
0h  
Hardware Lock Detection current mode  
0h = Hardware Ilimit lock detection causes latched fault; nFAULT  
active; Gate driver is tristated  
1h = Hardware Ilimit lock detection causes latched fault; nFAULT  
active; Gate driver is in recirculation mode  
2h = Hardware Ilimit lock detection causes latched fault; nFAULT  
active; Gate driver is in high side brake mode (All high side FETs are  
turned ON)  
3h = Hardware Ilimit lock detection causes latched fault; nFAULT  
active; Gate driver is in low side brake mode (All low side FETs are  
turned ON)  
4h = Fault automatically cleared after LCK_RETRY time. Number of  
retries limited to AUTO_RETRY_TIMES. If number of retries exceed  
AUTO_RETRY_TIMES, fault is latched; Gate driver is tristated  
5h = Fault automatically cleared after LCK_RETRY time. Number of  
retries limited to AUTO_RETRY_TIMES. If number of retries exceed  
AUTO_RETRY_TIMES, fault is latched; Gate driver is in recirculation  
mode  
6h = Fault automatically cleared after LCK_RETRY time. Number of  
retries limited to AUTO_RETRY_TIMES. If number of retries exceed  
AUTO_RETRY_TIMES, fault is latched; Gate driver is in high side  
brake mode (All high side FETs are turned ON)  
7h = Fault automatically cleared after LCK_RETRY time. Number of  
retries limited to AUTO_RETRY_TIMES. If number of retries exceed  
AUTO_RETRY_TIMES, fault is latched; Gate driver is in low side  
brake mode (All low side FETs are turned ON)  
8h = Hardware ILIMIT lock detection is in report only but no action is  
taken  
9h = Hardware ILIMIT lock detection is disabled  
Ah = Hardware ILIMIT lock detection is disabled  
Bh = Hardware ILIMIT lock detection is disabled  
Ch = Hardware ILIMIT lock detection is disabled  
Dh = Hardware ILIMIT lock detection is disabled  
Eh = Hardware ILIMIT lock detection is disabled  
Fh = Hardware ILIMIT lock detection is disabled  
14-12  
HW_LOCK_ILIMIT_DEG R/W  
0h  
Hardware Lock Detection current limit deglitch time (Bit Number 11 is  
reserved  
0h = No Deglitch  
1h = 1 us  
2h = 2 us  
3h = 3 us  
4h = 4 us  
5h = 5 us  
6h = 6 us  
7h = 7 us  
11  
RESERVED  
R/W  
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-32. FAULT_CONFIG2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
10-8  
MIN_VM_MOTOR  
R/W  
0h  
Minimum voltage for running motor (V)  
0h = No Limit  
1h = 4.5 V  
2h = 5 V  
3h = 5.5 V  
4h = 6 V  
5h = 7.5 V  
6h = 10 V  
7h = 12.5 V  
7
MIN_VM_MODE  
R/W  
R/W  
0h  
0h  
Undervoltage Fault Recovery Mode  
0h = Latch on Undervoltage  
1h = Automatic clear if voltage in bounds  
6-4  
MAX_VM_MOTOR  
Maximum voltage for running motor  
0h = No Limit  
1h = 20 V  
2h = 22.5 V  
3h = 25 V  
4h = 27.5 V  
5h = 30 V  
6h = 32.5 V  
7h = 35 V  
3
MAX_VM_MODE  
R/W  
R/W  
0h  
0h  
Overvoltage Fault Recovery Mode  
0h = Latch on Overvoltage  
1h = Automatic clear if voltage in bounds  
2-0  
AUTO_RETRY_TIMES  
Automatic retry attempts  
0h = No Limit  
1h = 2  
2h = 3  
3h = 5  
4h = 7  
5h = 10  
6h = 15  
7h = 20  
7.7.3 Hardware_Configuration Registers  
7-33 lists the memory-mapped registers for the Hardware_Configuration registers. All register offset  
addresses not listed in 7-33 should be considered as reserved locations and the register contents should not  
be modified.  
7-33. HARDWARE_CONFIGURATION Registers  
Offset Acronym  
Register Name  
Section  
A4h  
A6h  
A8h  
AAh  
ACh  
AEh  
PIN_CONFIG  
Hardware Pin Configuration  
PIN_CONFIG Register (Offset = A4h) [Reset  
= X]  
DEVICE_CONFIG1  
DEVICE_CONFIG2  
PERI_CONFIG1  
GD_CONFIG1  
Device configuration1  
DEVICE_CONFIG1 Register (Offset = A6h)  
[Reset = X]  
Device configuration2  
DEVICE_CONFIG2 Register (Offset = A8h)  
[Reset = 00000000h]  
Peripheral Configuration1  
Gate Driver Configuration1  
Gate Driver Configuration2  
PERI_CONFIG1 Register (Offset = AAh)  
[Reset = 40000000h]  
GD_CONFIG1 Register (Offset = ACh)  
[Reset = 10228100h]  
GD_CONFIG2  
GD_CONFIG2 Register (Offset = AEh)  
[Reset = 01200000h]  
Complex bit access types are encoded to fit into small table cells. 7-34 shows the codes that are used for  
access types in this section.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-34. Hardware_Configuration Access Type  
Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write  
Write Type  
W
W
W1C  
W
Write  
1C  
1 to clear  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
118  
Submit Document Feedback  
Product Folder Links: MCF8315A  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.3.1 PIN_CONFIG Register (Offset = A4h) [Reset = X]  
PIN_CONFIG is shown in 7-75 and described in 7-35.  
Return to the Summary Table.  
Register to configure hardware pins  
7-75. PIN_CONFIG Register  
31  
30  
22  
29  
28  
20  
12  
27  
26  
18  
10  
25  
24  
16  
8
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
VDC_FILT_DIS  
R/W-0h  
RESERVED  
R/W-X  
23  
21  
19  
17  
RESERVED  
R/W-X  
15  
14  
13  
11  
9
RESERVED  
RESERVED  
R/W-0h  
FG_IDLE_CONFIG  
FG_FAULT_CO  
NFIG  
R/W-X  
6
R/W-0h  
R/W-0h  
0
7
5
4
3
2
1
FG_FAULT_CO ALARM_PIN_E BRAKE_PIN_M ALIGN_BRAKE  
BRAKE_INPUT  
R/W-0h  
SPEED_MODE  
NFIG  
N
ODE  
_ANGLE_SEL  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-35. PIN_CONFIG Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
Reserved  
RESERVED  
RESERVED  
VDC_FILT_DIS  
0h  
30-28  
27  
0h  
0h  
Vdc filter disable  
0h = Enable  
1h = Disable  
26-13  
12-11  
10-9  
RESERVED  
R/W  
R/W  
R/W  
X
Reserved  
RESERVED  
0h  
0h  
Reserved  
FG_IDLE_CONFIG  
FG Configuration During Stop  
0h = FG continues and end state not defined, provided FG_CONFIG  
(defining FG during coasting)  
1h = FG is pulled High  
2h = FG is pulled Low  
3h = FG is pulled High  
8-7  
FG_FAULT_CONFIG  
R/W  
0h  
FG Configuration During Fault  
0h = Use last FG state when motor was driven  
1h = FG is pulled High  
2h = FG is pulled Low  
3h = FG active till BEMF drops below BEMF threshold defined by  
FG_BEMF_THR if FG_CONFIG set to 1b  
6
5
4
ALARM_PIN_EN  
R/W  
R/W  
0h  
0h  
0h  
Alarm Pin Enable  
0h = Disable  
1h = Enable  
BRAKE_PIN_MODE  
Brake Pin Mode  
0h = Low side Brake  
1h = Align Brake  
ALIGN_BRAKE_ANGLE_ R/W  
SEL  
Align Brake Angle Select  
0h = Use last commutation angle before entering align braking  
1h = Use ALIGN_ANGLE configuration for align braking  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-35. PIN_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-2  
BRAKE_INPUT  
R/W  
0h  
Brake pin override  
0h = Hardware Pin BRAKE  
1h = Override pin and brake / align according to BRAKE_PIN_MODE  
2h = Override pin and do not brake / align  
3h = Hardware Pin BRAKE  
1-0  
SPEED_MODE  
R/W  
0h  
Configure Speed Ctrl mode from Speed pin  
0h = Analog mode  
1h = PWM mode  
2h = 0x2  
3h = Frequency mode  
Copyright © 2023 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.3.2 DEVICE_CONFIG1 Register (Offset = A6h) [Reset = X]  
DEVICE_CONFIG1 is shown in 7-76 and described in 7-36.  
Return to the Summary Table.  
Register to configure device  
7-76. DEVICE_CONFIG1 Register  
31  
30  
29  
28  
27  
26  
25  
24  
RESERVED  
RESERVED  
PIN_38_CONFIG  
PIN_36_37_CO  
I2C_SLAVE_ADDR  
NFIG  
R/W-0h  
23  
R/W-0h  
22  
R/W-0h  
R/W-0h  
R/W-X  
17  
21  
20  
12  
4
19  
18  
10  
2
16  
8
I2C_SLAVE_ADDR  
R/W-X  
RESERVED  
R/W-X  
15  
7
14  
13  
11  
9
1
RESERVED  
R/W-X  
6
5
3
0
RESERVED  
R/W-X  
RESERVED  
R/W-0h  
BUS_VOLT  
R/W-0h  
7-36. DEVICE_CONFIG1 Register Field Descriptions  
Bit  
31  
Field  
RESERVED  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
Reserved  
0h  
30  
RESERVED  
0h  
29-28  
PIN_38_CONFIG  
0h  
Pin 38 configuration  
0h = DACOUT2  
1h = SOA  
2h = SOB  
3h = SOC  
27  
PIN_36_37_CONFIG  
R/W  
0h  
Pin 36 and Pin 37 configuration  
0h = Reserved  
1h = Pin 36 as DACOUT1 and Pin 37 as DACOUT2  
26-20  
19-5  
4-2  
I2C_SLAVE_ADDR  
RESERVED  
R/W  
R/W  
R/W  
R/W  
X
I2C slave address  
Reserved  
X
RESERVED  
0h  
0h  
Reserved  
1-0  
BUS_VOLT  
Maximum Bus Voltage Configuration  
0h = 15 V  
1h = 30 V  
2h = 60 V  
3h = Not defined  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.3.3 DEVICE_CONFIG2 Register (Offset = A8h) [Reset = 00000000h]  
DEVICE_CONFIG2 is shown in 7-77 and described in 7-37.  
Return to the Summary Table.  
Register to configure device  
7-77. DEVICE_CONFIG2 Register  
31  
30  
22  
14  
29  
21  
13  
28  
27  
26  
18  
10  
25  
17  
9
24  
16  
RESERVED  
R/W-0h  
INPUT_MAXIMUM_FREQ  
R/W-0h  
23  
20  
19  
INPUT_MAXIMUM_FREQ  
R/W-0h  
15  
12  
11  
8
SLEEP_ENTRY_TIME  
DYNAMIC_CSA DYNAMIC_VOL DEV_MODE  
CLK_SEL  
R/W-0h  
EXT_CLK_EN  
_GAIN_EN  
TAGE_GAIN_E  
N
R/W-0h  
R/W-0h  
5
R/W-0h  
R/W-0h  
3
R/W-0h  
0
7
6
4
2
1
EXT_CLK_CONFIG  
EXT_WDT_EN  
EXT_WDT_CONFIG  
EXT_WDT_INP EXT_WDT_FA  
UT_MODE  
ULT_MODE  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-37. DEVICE_CONFIG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31  
RESERVED  
R/W  
0h  
Reserved  
30-16  
INPUT_MAXIMUM_FREQ R/W  
0h  
Input frequency on speed pin for speed control mode as "controlled  
by frequency speed pin input" that corresponds to 100% duty cycle.  
Input duty cycle = Input frequency / INPUT_MAXIMUM_FREQ  
15-14  
SLEEP_ENTRY_TIME  
R/W  
0h  
Device enters sleep mode when speed input is held continuously  
below the speed threshold for SLEEP_ENTRY_TIME  
0h = Sleep Entry when SPEED pin remains low for 50µs  
1h = Sleep Entry when SPEED pin remains low for 200µs  
2h = Sleep Entry when SPEED pin remains low for 20ms  
3h = Sleep Entry when SPEED pin remains low for 200ms  
13  
12  
DYNAMIC_CSA_GAIN_E R/W  
N
0h  
0h  
Adjust CSA gain at 1ms rate for optimal current resolution at all  
current levels  
0h = Disable  
1h = Enable  
DYNAMIC_VOLTAGE_GA R/W  
IN_EN  
Adjust voltage gain at 1ms rate for optimal voltage resolution at all  
voltage levels  
0h = Dynamic Voltage Gain is Disabled  
1h = Dynamic Voltage Gain is Enabled  
11  
DEV_MODE  
CLK_SEL  
R/W  
R/W  
0h  
0h  
Device mode select  
0h = Standby Mode  
1h = Sleep Mode  
10-9  
Clock Source  
0h = Internal Oscillator  
1h = Crude Oscillator -- WDT  
2h = Reserved  
3h = External Clock input  
8
EXT_CLK_EN  
R/W  
0h  
Enable External Clock mode  
0h = Disable  
1h = Enable  
Copyright © 2023 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-37. DEVICE_CONFIG2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7-5  
EXT_CLK_CONFIG  
R/W  
0h  
External Clock Configuration  
0h = 8 kHz  
1h = 16 kHz  
2h = 32 kHz  
3h = 64 kHz  
4h = 128 kHz  
5h = 256 kHz  
6h = 512 kHz  
7h = 1024 kHz  
4
EXT_WDT_EN  
R/W  
R/W  
0h  
0h  
Enable external Watch Dog  
0h = Disable  
1h = Enable  
3-2  
EXT_WDT_CONFIG  
Time between watchdog tickles  
0h = 100ms (GPIO), 1s (I2C)  
1h = 200ms (GPIO), 2s (I2C)  
2h = 500ms (GPIO), 5s (I2C)  
3h = 1000ms (GPIO), 10s (I2C)  
1
0
EXT_WDT_INPUT_MODE R/W  
0h  
0h  
External Watchdog input mode  
0h = Watchdog tickle over I2C  
1h = Watchdog tickle over GPIO  
EXT_WDT_FAULT_MOD R/W  
E
External Watchdog fault mode  
0h = Report Only  
1h = Latch with Hi-z  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.3.4 PERI_CONFIG1 Register (Offset = AAh) [Reset = 40000000h]  
PERI_CONFIG1 is shown in 7-78 and described in 7-38.  
Return to the Summary Table.  
Register to peripheral1  
7-78. PERI_CONFIG1 Register  
31  
30  
29  
28  
27  
26  
18  
25  
24  
RESERVED  
SPREAD_SPE  
CTRUM_MODU  
LATION_DIS  
RESERVED  
BUS_CURRENT_LIMIT  
R/W-0h  
23  
R/W-1h  
22  
R/W-0h  
R/W-0h  
21  
20  
19  
17  
16  
BUS_CURRENT_LIMIT  
BUS_CURREN  
T_LIMIT_ENAB  
LE  
DIR_INPUT  
DIR_CHANGE_ SELF_TEST_E ACTIVE_BRAK  
MODE  
NABLE  
E_SPEED_DEL  
TA_LIMIT_ENT  
RY  
R/W-0h  
R/W-0h  
13  
R/W-0h  
R/W-0h  
10  
R/W-0h  
9
R/W-0h  
15  
14  
12  
11  
8
ACTIVE_BRAKE_SPEED_DELTA_LIMIT_ENTRY  
ACTIVE_BRAKE_MOD_INDEX_LIMIT  
SPEED_RANG  
E_SEL  
RESERVED  
R/W-0h  
R/W-0h  
R/W-0h  
1
R/W-0h  
0
7
6
5
4
3
2
RESERVED  
R/W-0h  
7-38. PERI_CONFIG1 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
31  
30  
R/W  
0h  
Reserved  
SPREAD_SPECTRUM_M R/W  
ODULATION_DIS  
1h  
Spread Spectrum Modulation Disable  
0h = SSM is Enabled  
1h = SSM is Disabled  
29-26  
25-22  
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
BUS_CURRENT_LIMIT  
Bus Current Limit (A)  
0h = 0.078125 A  
1h = 0.15625 A  
2h = 0.3125 A  
3h = 0.625 A  
4h = 0.9375 A  
5h = 1.25 A  
6h = 1.5625 A  
7h = 1.875 A  
8h = 2.1875 A  
9h = 2.5 A  
Ah = 2.8125 A  
Bh = 3.125 A  
Ch = 3.4375 A  
Dh = 3.75 A  
Eh = Reserved  
Fh = Reserved  
21  
BUS_CURRENT_LIMIT_E R/W  
NABLE  
0h  
Bus Current Limit Enable  
0h = Disable  
1h = Enable  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
124 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-38. PERI_CONFIG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
20-19  
DIR_INPUT  
R/W  
0h  
DIR pin override  
0h = Hardware Pin DIR  
1h = Override DIR pin with clockwise rotation OUTA-OUTB-OUTC  
2h = Override DIR pin with counter clockwise rotation OUTA-OUTC-  
OUTB  
3h = Hardware Pin DIR  
18  
DIR_CHANGE_MODE  
SELF_TEST_ENABLE  
R/W  
R/W  
0h  
Response to change of DIR pin status  
0h = Follow motor stop options and ISD routine on detecting DIR  
change  
1h = Change the direction through Reverse Drive while continuously  
driving the motor  
17  
0h  
0h  
Enables self test on power up  
0h = STL is disabled  
1h = STL is enabled  
16-13  
ACTIVE_BRAKE_SPEED R/W  
_DELTA_LIMIT_ENTRY  
Difference between final speed and present speed below which  
active braking will be applied  
0h = reserved  
1h = 5%  
2h = 10%  
3h = 15%  
4h = 20%  
5h = 25%  
6h = 30%  
7h = 35%  
8h = 40%  
9h = 45%  
Ah = 50%  
Bh = 60%  
Ch = 70%  
Dh = 80%  
Eh = 90%  
Fh = 100%  
12-10  
ACTIVE_BRAKE_MOD_I R/W  
NDEX_LIMIT  
0h  
Modulation Index limit beyond which active braking will be applied  
0h = 0%  
1h = 40%  
2h = 50%  
3h = 60%  
4h = 70%  
5h = 80%  
6h = 90%  
7h = 100%  
9
SPEED_RANGE_SEL  
R/W  
0h  
Speed range selection for digital speed (PWM Duty or Frequency to  
speed mode)  
0h = 325Hz to 100kHz  
1h = 10Hz to 325Hz  
8
RESERVED  
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
Reserved  
7-0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.3.5 GD_CONFIG1 Register (Offset = ACh) [Reset = 10228100h]  
GD_CONFIG1 is shown in 7-79 and described in 7-39.  
Return to the Summary Table.  
Register to configure gated driver settings1  
7-79. GD_CONFIG1 Register  
31  
30  
29  
28  
27  
26  
25  
17  
24  
PARITY  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-1h  
SLEW_RATE  
R/W-0h  
RESERVED  
R/W-0h  
23  
22  
21  
20  
19  
18  
16  
CLR_FLT  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-1h  
RESERVED  
R/W-0h  
OVP_SEL  
R/W-0h  
OVP_EN  
R/W-0h  
RESERVED  
R/W-1h  
OTW_REP  
R/W-0h  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-1h  
RESERVED  
R/W-0h  
OCP_DEG  
R/W-0h  
TRETRY  
R/W-0h  
OCP_LVL  
R/W-0h  
OCP_MODE  
R/W-1h  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
CSA_GAIN  
R/W-0h  
7-39. GD_CONFIG1 Register Field Descriptions  
Bit  
31  
Field  
PARITY  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0h  
Parity bit  
30-29  
28  
RESERVED  
RESERVED  
SLEW_RATE  
0h  
Reserved  
Reserved  
1h  
27-26  
0h  
Slew Rate Settings  
0h = Slew rate is 25 V/µs  
1h = Slew rate is 50 V/µs  
2h = Slew rate is 125 V/µs  
3h = Slew rate is 200 V/µs  
25-24  
23  
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
CLR_FLT  
Clear Fault  
0h = No clear faualt command is issued  
1h = To clear the latched fault bits. This bit automatically resets after  
being written.  
22  
21  
20  
19  
RESERVED  
RESERVED  
RESERVED  
OVP_SEL  
R/W  
R/W  
R/W  
R/W  
0h  
1h  
0h  
0h  
Reserved  
Reserved  
Reserved  
Overvoltage Level Setting  
0h = VM overvoltage level is 32-V  
1h = VM overvoltage level is 20-V  
18  
OVP_EN  
R/W  
0h  
Overvoltage Enable Bit  
0h = Overvoltage protection is disabled  
1h = Overvoltage protection is enabled  
17  
16  
RESERVED  
OTW_REP  
R/W  
R/W  
1h  
0h  
Reserved  
Overtemperature Warning Reporting Bit  
0h = Over temperature reporting on nFAULT is disabled  
1h = Over temperature reporting on nFAULT is enabled  
15  
14  
RESERVED  
RESERVED  
R/W  
R/W  
1h  
0h  
Reserved  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-39. GD_CONFIG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
13-12  
OCP_DEG  
R/W  
0h  
OCP Deglitch Time Settings  
0h = OCP deglitch time is 0.2 µs  
1h = OCP deglitch time is 0.6 µs  
2h = OCP deglitch time is 1.2 µs  
3h = OCP deglitch time is 1.6 µs  
11  
10  
TRETRY  
R/W  
R/W  
R/W  
0h  
0h  
1h  
OCP Retry Time Settings  
0h = OCP retry time is 5 ms  
1h = OCP retry time is 500 ms  
OCP_LVL  
OCP_MODE  
Overcurrent Level Setting  
0h = OCP level is 9 A (Typical)  
1h = OCP level is 13 A (Typical)  
9-8  
OCP Fault Options  
0h = Overcurrent causes a latched fault  
1h = Overcurrent causes an automatic retrying fault  
2h = Overcurrent is report only but no action is taken  
3h = Overcurrent is not reported and no action is taken  
7
6
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CSA_GAIN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
5
4
3
2
1-0  
Current Sense Amplifier's Gain Settings (Used only if  
DYNAMIC_CSA_GAIN_EN = 0)  
0h = CSA gain is 0.24 V/A  
1h = CSA gain is 0.48 V/A  
2h = CSA gain is 0.96 V/A  
3h = CSA gain is 1.92 V/A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.3.6 GD_CONFIG2 Register (Offset = AEh) [Reset = 01200000h]  
GD_CONFIG2 is shown in 7-80 and described in 7-40.  
Return to the Summary Table.  
Register to configure gated driver settings2  
7-80. GD_CONFIG2 Register  
31  
30  
29  
28  
27  
26  
25  
24  
PARITY  
DELAY_COMP  
_EN  
TARGET_DELAY  
RESERVED  
BUCK_PS_DIS  
R/W-0h  
R/W-0h  
22  
R/W-0h  
R/W-0h  
17  
R/W1C-1h  
16  
23  
21  
13  
5
20  
19  
11  
3
18  
10  
2
BUCK_CL  
R/W-0h  
BUCK_SEL  
R/W-1h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
15  
14  
6
12  
9
1
8
0
RESERVED  
R/W-0h  
7
4
RESERVED  
R/W-0h  
7-40. GD_CONFIG2 Register Field Descriptions  
Bit  
31  
30  
Field  
Type  
R/W  
R/W  
Reset  
Description  
PARITY  
0h  
Parity bit  
DELAY_COMP_EN  
0h  
Driver Delay Compensation enable  
0h = Disable  
1h = Enable  
29-26  
TARGET_DELAY  
R/W  
0h  
0h = Automatic based on slew rate  
1h = 0.4 us  
2h = 0.6 us  
3h = 0.8 us  
4h = 1 us  
5h = 1.2 us  
6h = 1.4 us  
7h = 1.6 us  
8h = 1.8 us  
9h = 2 us  
Ah = 2.2 us  
Bh = 2.4 us  
Ch = 2.6 us  
Dh = 2.8 us  
Eh = 3 us  
Fh = 3.2 us  
25  
24  
RESERVED  
R/W  
0h  
1h  
Reserved  
BUCK_PS_DIS  
R/W1C  
Buck Power Sequencing Disable Bit  
0h = Buck power sequencing is enabled  
1h = Buck power sequencing is disabled  
23  
BUCK_CL  
R/W  
R/W  
0h  
1h  
Buck Current Limit Setting  
0h = Buck regulator current limit is set to 600 mA  
1h = Buck regulator current limit is set to 150 mA  
22-21  
BUCK_SEL  
Buck Voltage Selection  
0h = Buck voltage is 3.3 V  
1h = Buck voltage is 5.0 V  
2h = Buck voltage is 4.0 V  
3h = Buck voltage is 5.7 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
128 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-40. GD_CONFIG2 Register Field Descriptions (continued)  
Bit  
20  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
Reserved  
RESERVED  
RESERVED  
0h  
19-0  
0h  
7.7.4 Internal_Algorithm_Configuration Registers  
7-41 lists the memory-mapped registers for the Internal_Algorithm_Configuration registers. All register offset  
addresses not listed in 7-41 should be considered as reserved locations and the register contents should not  
be modified.  
7-41. INTERNAL_ALGORITHM_CONFIGURATION Registers  
Offset Acronym  
Register Name  
Section  
A0h  
INT_ALGO_1  
Internal Algorithm Configuration1  
INT_ALGO_1 Register (Offset = A0h) [Reset  
= 00000000h]  
A2h  
INT_ALGO_2  
Internal Algorithm Configuration2  
INT_ALGO_2 Register (Offset = A2h) [Reset  
= 00000000h]  
Complex bit access types are encoded to fit into small table cells. 7-42 shows the codes that are used for  
access types in this section.  
7-42. Internal_Algorithm_Configuration Access  
Type Codes  
Access Type  
Read Type  
R
Code  
R
Description  
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.4.1 INT_ALGO_1 Register (Offset = A0h) [Reset = 00000000h]  
INT_ALGO_1 is shown in 7-81 and described in 7-43.  
Return to the Summary Table.  
Register to configure internal algorithm parameters1  
7-81. INT_ALGO_1 Register  
31  
30  
29  
28  
27  
26  
25  
24  
RESERVED  
ACTIVE_BRAKE_SPEED__DEL SPEED_PIN_GLITCH_FILTER FAST_ISD_EN  
TA_LIMIT_EXIT  
ISD_STOP_TIME  
R/W-0h  
23  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
22  
21  
20  
19  
18  
17  
9
16  
ISD_RUN_TIME  
ISD_TIMEOUT  
R/W-0h  
AUTO_HANDOFF_MIN_BEMF  
BRAKE_CURR  
ENT_PERSIST  
R/W-0h  
R/W-0h  
10  
R/W-0h  
8
15  
14  
13  
12  
11  
BRAKE_CURR MPET_IPD_CURRENT_LIMIT  
ENT_PERSIST  
MPET_IPD_FREQ  
R/W-0h  
MPET_OPEN_LOOP_CURRENT_REF  
R/W-0h  
7
R/W-0h  
R/W-0h  
6
5
4
3
2
1
0
MPET_OPEN_LOOP_SPEED_R  
EF  
MPET_OPEN_LOOP_SLEW_RATE  
REV_DRV_OPEN_LOOP_DEC  
R/W-0h  
R/W-0h  
R/W-0h  
7-43. INT_ALGO_1 Register Field Descriptions  
Bit  
31  
Field  
Type  
Reset  
Description  
RESERVED  
R/W  
0h  
Reserved  
30-29  
ACTIVE_BRAKE_SPEED R/W  
__DELTA_LIMIT_EXIT  
0h  
Difference between final speed and present speed below which  
active braking will be stopped  
0h = 2.5%  
1h = 5%  
2h = 7.5%  
3h = 10%  
28-27  
SPEED_PIN_GLITCH_FIL R/W  
TER  
0h  
Glitch filter applied on speed pin input  
0h = No Glitch Filter  
1h = 0.2 µs  
2h = 0.5 µs  
3h = 1.0 µs  
26  
FAST_ISD_EN  
R/W  
R/W  
0h  
0h  
Enable fast speed detection  
0h = Disable Fast ISD  
1h = Enable Fast ISD  
25-24  
ISD_STOP_TIME  
Persistence time for declaring motor has stopped  
0h = 1 ms  
1h = 5 ms  
2h = 50 ms  
3h = 100 ms  
23-22  
ISD_RUN_TIME  
R/W  
0h  
Persistence time for declaring motor is running  
0h = 1 ms  
1h = 5 ms  
2h = 50 ms  
3h = 100 ms  
Copyright © 2023 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-43. INT_ALGO_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
21-20  
ISD_TIMEOUT  
R/W  
0h  
Timeout in case ISD is unable to reliably detect speed or direction  
0h = 500ms  
1h = 750 ms  
2h = 1000 ms  
3h = 2000 ms  
19-17  
AUTO_HANDOFF_MIN_B R/W  
EMF  
0h  
Minimum BEMF for handoff (V)  
0h = 0 mV  
1h = 50 mV  
2h = 100 mV  
3h = 250 mV  
4h = 500 mV  
5h = 1000 mV  
6h = 1250 mV  
7h = 1500 mV  
16-15  
14-13  
12-11  
10-8  
BRAKE_CURRENT_PER R/W  
SIST  
0h  
0h  
0h  
0h  
Persistence time for current below threshold during low side brake  
0h = 50 ms  
1h = 100 ms  
2h = 250 ms  
3h = 500 ms  
MPET_IPD_CURRENT_LI R/W  
MIT  
IPD current limit for MPET (A)  
0h = 0.0625 A  
1h = 0.3125 A  
2h = 0.625 A  
3h = 1.25 A  
MPET_IPD_FREQ  
R/W  
Number of times IPD is executed for MPET  
0h = 1  
1h = 2  
2h = 4  
3h = 8  
MPET_OPEN_LOOP_CU R/W  
RRENT_REF  
Open Loop Current Reference (A)  
0h = 0.625 A  
1h = 1.25 A  
2h = 1.875 A  
3h = 2.5 A  
4h = 3.125 A  
5h = 3.75 A  
6h = Reserved  
7h = Reserved  
7-6  
5-3  
MPET_OPEN_LOOP_SP R/W  
EED_REF  
0h  
0h  
Open Loop Speed Reference for MPET (% of MAXIMUM_SPEED)  
0h = 15%  
1h = 25%  
2h = 35%  
3h = 50%  
MPET_OPEN_LOOP_SL R/W  
EW_RATE  
Open Loop Slew Rate for MPET (Hz/s)  
0h = 0.1 Hz/s  
1h = 0.5 Hz/s  
2h = 1 Hz/s  
3h = 2 Hz/s  
4h = 3 Hz/s  
5h = 5 Hz/s  
6h = 10 Hz/s  
7h = 20 Hz/s  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-43. INT_ALGO_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
REV_DRV_OPEN_LOOP R/W  
_DEC  
0h  
% of open loop acceleration to be applied during open loop  
deceleration in reverse drive  
0h = 50%  
1h = 60%  
2h = 70%  
3h = 80%  
4h = 90%  
5h = 100%  
6h = 125%  
7h = 150%  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
132 Submit Document Feedback  
Product Folder Links: MCF8315A  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.7.4.2 INT_ALGO_2 Register (Offset = A2h) [Reset = 00000000h]  
INT_ALGO_2 is shown in 7-82 and described in 7-44.  
Return to the Summary Table.  
Register to configure internal algorithm parameters2  
7-82. INT_ALGO_2 Register  
31  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
23  
15  
7
19  
RESERVED  
R/W-0h  
11  
3
RESERVED  
R/W-0h  
CL_SLOW_ACC  
R/W-0h  
1
0
CL_SLOW_ACC  
ACTIVE_BRAKE_BUS_CURRENT_SLEW_RATE MPET_IPD_SE MPET_KE_ME IPD_HIGH_RE  
LECT  
AS_PARAMET SOLUTION_EN  
ER_SELECT  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-44. INT_ALGO_2 Register Field Descriptions  
Bit  
31  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
Reserved  
RESERVED  
RESERVED  
CL_SLOW_ACC  
0h  
30-10  
9-6  
0h  
0h  
Close loop acceleration when estimator is not yet fully aligned ( Hz /  
sec)  
0h = 0.1 Hz/s  
1h = 1 Hz/s  
2h = 2 Hz/s  
3h = 3 Hz/s  
4h = 5 Hz/s  
5h = 10 Hz/s  
6h = 20 Hz/s  
7h = 30 Hz/s  
8h = 40 Hz/s  
9h = 50 Hz/s  
Ah = 100 Hz/s  
Bh = 200 Hz/s  
Ch = 500 Hz/s  
Dh = 750 Hz/s  
Eh = 1000 Hz/s  
Fh = 2000 Hz/s  
5-3  
ACTIVE_BRAKE_BUS_C R/W  
URRENT_SLEW_RATE  
0h  
Bus Current slew rate during active braking (A/s)  
0h = 10 A/s  
1h = 50 A/s  
2h = 100 A/s  
3h = 250 A/s  
4h = 500 A/s  
5h = 1000 A/s  
6h = 5000 A/s  
7h = No Limit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-44. INT_ALGO_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
MPET_IPD_SELECT  
R/W  
0h  
Selection between MPET_IPD_CURRENT_LIMIT for IPD current  
limit, MPET_IPD_FREQ for IPD Repeat OR IPD_CURR_THR for  
IPD current limit, IPD_REPEAT for IPD Repeat  
0h = Configured parameters for normal motor operation  
1h = MPET specific parameters  
1
MPET_KE_MEAS_PARA R/W  
METER_SELECT  
0h  
Selection between MPET_OPEN_LOOP_SLEW_RATE for slew rate,  
MPET_OPEN_LOOP_CURR_REF for current reference,  
MPET_OPEN_LOOP_SPEED_REF for speed reference OR  
OL_ACC_A1, OL_ACC_A2 for slew rate, open loop current  
reference for current reference and open to closed loop speed  
threshold for speed reference  
0h = Configured parameters for normal motor operation  
1h = MPET specific parameters  
0
IPD_HIGH_RESOLUTION R/W  
_EN  
0h  
IPD high resolution enable  
0h = Disable  
1h = Enable  
Copyright © 2023 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8 RAM (Volatile) Register Map  
7.8.1 Fault_Status Registers  
7-45 lists the memory-mapped registers for the Fault_Status registers. All register offset addresses not listed  
in 7-45 should be considered as reserved locations and the register contents should not be modified.  
7-45. FAULT_STATUS Registers  
Offset Acronym  
Register Name  
Section  
E0h  
GATE_DRIVER_FAULT_STATUS Fault Status Register  
CONTROLLER_FAULT_STATUS Fault Status Register  
GATE_DRIVER_FAULT_STATUS Register  
(Offset = E0h) [Reset = 00000000h]  
E2h  
CONTROLLER_FAULT_STATUS Register  
(Offset = E2h) [Reset = 00000000h]  
Complex bit access types are encoded to fit into small table cells. 7-46 shows the codes that are used for  
access types in this section.  
7-46. Fault_Status Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.1.1 GATE_DRIVER_FAULT_STATUS Register (Offset = E0h) [Reset = 00000000h]  
GATE_DRIVER_FAULT_STATUS is shown in 7-83 and described in 7-47.  
Return to the Summary Table.  
Status of various gate driver faults  
7-83. GATE_DRIVER_FAULT_STATUS Register  
31  
30  
29  
28  
27  
26  
25  
24  
DRIVER_FAUL  
T
BK_FLT  
RESERVED  
OCP  
NPOR  
OVP  
OT  
RESERVED  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
23  
22  
21  
20  
19  
18  
17  
16  
OTW  
R-0h  
OTS  
R-0h  
OCP_HC  
R-0h  
OCP_LC  
R-0h  
OCP_HB  
R-0h  
OCP_LB  
R-0h  
OCP_HA  
R-0h  
OCP_LA  
R-0h  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-0h  
OTP_ERR  
R-0h  
BUCK_OCP  
R-0h  
BUCK_UV  
R-0h  
VCP_UV  
R-0h  
RESERVED  
R-0h  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
7-47. GATE_DRIVER_FAULT_STATUS Register Field Descriptions  
Bit  
31  
30  
Field  
Type  
Reset  
Description  
DRIVER_FAULT  
BK_FLT  
R
0h  
Logic OR of FAULT status registers. Mirrors nFAULT pin.  
R
0h  
Buck Fault Bit  
0h = No buck regulator fault condition is detected  
1h = Buck regulator fault condition is detected  
29  
28  
RESERVED  
OCP  
R
R
0h  
0h  
Reserved  
Over Current Protection Status Bit  
0h = No overcurrent condition is detected  
1h = Overcurrent condition is detected  
27  
26  
25  
NPOR  
OVP  
OT  
R
R
R
0h  
0h  
0h  
Supply Power On Reset Bit  
0h = Power on reset condition is detected on VM  
1h = No power-on-reset condition is detected on VM  
Supply Overvoltage Protection Status Bit  
0h = No overvoltage condition is detected on VM  
1h = Overvoltage condition is detected on VM  
Overtemperature Fault Status Bit  
0h = No overtemperature warning / shutdown is detected  
1h = Overtemperature warning / shutdown is detected  
24  
23  
RESERVED  
OTW  
R
R
0h  
0h  
Reserved  
Overtemperature Warning Status Bit  
0h = No overtemperature warning is detected  
1h = Overtemperature warning is detected  
22  
21  
20  
OTS  
R
R
R
0h  
0h  
0h  
Overtemperature Shutdown Status Bit  
0h = No overtemperature shutdown is detected  
1h = Overtemperature shutdown is detected  
OCP_HC  
OCP_LC  
Overcurrent Status on High-side switch of OUTC  
0h = No overcurrent detected on high-side switch of OUTC  
1h = Overcurrent detected on high-side switch of OUTC  
Overcurrent Status on Low-side switch of OUTC  
0h = No overcurrent detected on low-side switch of OUTC  
1h = Overcurrent detected on low-side switch of OUTC  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
136 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-47. GATE_DRIVER_FAULT_STATUS Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
19  
OCP_HB  
OCP_LB  
OCP_HA  
OCP_LA  
R
0h  
Overcurrent Status on High-side switch of OUTB  
0h = No overcurrent detected on high-side switch of OUTB  
1h = Overcurrent detected on high-side switch of OUTB  
18  
17  
16  
R
R
R
0h  
0h  
0h  
Overcurrent Status on Low-side switch of OUTB  
0h = No overcurrent detected on low-side switch of OUTB  
1h = Overcurrent detected on low-side switch of OUTB  
Overcurrent Status on High-side switch of OUTA  
0h = No overcurrent detected on high-side switch of OUTA  
1h = Overcurrent detected on high-side switch of OUTA  
Overcurrent Status on Low-side switch of OUTA  
0h = No overcurrent detected on low-side switch of OUTA  
1h = Overcurrent detected on low-side switch of OUTA  
15  
14  
RESERVED  
OTP_ERR  
R
R
0h  
0h  
Reserved  
OTP Error  
0h = No OTP error is detected  
1h = OTP Error is detected  
13  
12  
BUCK_OCP  
BUCK_UV  
VCP_UV  
R
R
R
R
0h  
0h  
0h  
0h  
Buck Regulator Overcurrent Status Bit  
0h = No buck regulator overcurrent is detected  
1h = Buck regulator overcurrent is detected  
Buck Regulator Undervoltage Status Bit  
0h = No buck regulator undervoltage is detected  
1h = Buck regulator undervoltage is detected  
11  
Charge Pump Undervoltage Status Bit  
0h = No charge pump undervoltage is detected  
1h = Charge pump undervoltage is detected  
10-0  
RESERVED  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.1.2 CONTROLLER_FAULT_STATUS Register (Offset = E2h) [Reset = 00000000h]  
CONTROLLER_FAULT_STATUS is shown in 7-84 and described in 7-48.  
Return to the Summary Table.  
Status of various controller faults  
7-84. CONTROLLER_FAULT_STATUS Register  
31  
30  
29  
28  
27  
26  
25  
24  
CONTROLLER  
_FAULT  
OTW_MCE  
IPD_FREQ_FA IPD_T1_FAULT IPD_T2_FAULT BUS_CURREN MPET_IPD_FA MPET_BEMF_  
ULT  
T_LIMIT_STAT  
US  
ULT  
FAULT  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
19  
R-0h  
18  
R-0h  
17  
R-0h  
16  
23  
22  
21  
20  
ABN_SPEED  
ABN_BEMF  
NO_MTR  
MTR_LCK  
LOCK_LIMIT HW_LOCK_LIM MTR_UNDER_ MTR_OVER_V  
IT  
VOLTAGE  
OLTAGE  
R-0h  
15  
R-0h  
14  
R-0h  
13  
R-0h  
12  
R-0h  
11  
R-0h  
R-0h  
R-0h  
10  
9
8
SPEED_LOOP CURRENT_LO  
_SATURATION OP_SATURATI  
ON  
RESERVED  
R-0h  
R-0h  
7
R-0h  
6
5
4
3
2
1
0
RESERVED  
R-0h  
WATCHDOG_F STL_ENABLE_ STL_STATUS  
APP_RESET  
AULT  
STATUS  
R-0h  
R-0h  
R-0h  
R-0h  
7-48. CONTROLLER_FAULT_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31  
30  
29  
28  
27  
26  
CONTROLLER_FAULT  
OTW_MCE  
R
0h  
Logic OR of Controller FAULT status registers  
Indicates overtemperature MCE  
Indicates IPD frequency fault  
Indicates IPD T1 fault  
R
0h  
IPD_FREQ_FAULT  
IPD_T1_FAULT  
IPD_T2_FAULT  
R
0h  
R
0h  
R
0h  
Indicates IPD T2 fault  
BUS_CURRENT_LIMIT_S R  
TATUS  
0h  
Indicates status of Bus Current limit  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MPET_IPD_FAULT  
MPET_BEMF_FAULT  
ABN_SPEED  
R
R
R
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Indicates error during resistance and inductance measurement  
Indicates error during BEMF constant measurement  
Indicates Abnormal speed motor lock condition  
Indicates Abnormal BEMF motor lock condition  
Indicates No Motor fault  
ABN_BEMF  
NO_MTR  
MTR_LCK  
Indicates when one of the motor lock is triggered  
Indicates Lock Ilimit fault  
LOCK_LIMIT  
HW_LOCK_LIMIT  
MTR_UNDER_VOLTAGE  
MTR_OVER_VOLTAGE  
Indicates Hardware Lock Ilimit fault  
Indicates Motor Undervoltage fault  
Indicates Motor Over voltage fault  
SPEED_LOOP_SATURAT R  
ION  
Indicates speed loop saturation  
14  
CURRENT_LOOP_SATU  
RATION  
R
0h  
0h  
Indicates current loop saturation  
Reserved  
13-4  
RESERVED  
R
Copyright © 2023 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-48. CONTROLLER_FAULT_STATUS Register Field Descriptions (continued)  
Bit  
3
Field  
Type  
Reset  
Description  
WATCHDOG_FAULT  
STL_ENABLE_STATUS  
STL_STATUS  
R
0h  
indicates Watchdog fault  
STL Enable Status  
STL Status  
2
R
0h  
1
R
0h  
0
APP_RESET  
R
0h  
App Reset  
7.8.2 System_Status Registers  
7-49 lists the memory-mapped registers for the System_Status registers. All register offset addresses not  
listed in 7-49 should be considered as reserved locations and the register contents should not be modified.  
7-49. SYSTEM_STATUS Registers  
Offset Acronym  
Register Name  
Section  
E4h  
E6h  
E8h  
ALGO_STATUS  
System Status Register  
ALGO_STATUS Register (Offset = E4h)  
[Reset = 00000000h]  
MTR_PARAMS  
System Status Register  
System Status Register  
MTR_PARAMS Register (Offset = E6h)  
[Reset = 00000000h]  
ALGO_STATUS_MPET  
ALGO_STATUS_MPET Register (Offset =  
E8h) [Reset = 00000000h]  
Complex bit access types are encoded to fit into small table cells. 7-50 shows the codes that are used for  
access types in this section.  
7-50. System_Status Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.2.1 ALGO_STATUS Register (Offset = E4h) [Reset = 00000000h]  
ALGO_STATUS is shown in 7-85 and described in 7-51.  
Return to the Summary Table.  
Status of various system and algorithm parameters  
7-85. ALGO_STATUS Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
VOLT_MAG  
R-0h  
VOLT_MAG  
R-0h  
DUTY_CMD  
R-0h  
1
0
DUTY_CMD  
R-0h  
SYS_INIT_DON SYS_ENABLE_  
RESERVED  
R-0h  
E
FLAG  
R-0h  
R-0h  
7-51. ALGO_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-16  
15-4  
3
VOLT_MAG  
R
0h  
16-bit value indicating applied voltage magnitude. Voltage magnitude  
applied = VOLT_MAG * 100 / 32768 %  
DUTY_CMD  
R
R
R
R
0h  
0h  
0h  
0h  
12-bit value indicating decoded speed command in PWM/Analog  
mode DUTY_CMD (%) = DUTY_CMD/4096 * 100%.  
SYS_INIT_DONE  
SYS_ENABLE_FLAG  
RESERVED  
1 indicates device is ready for GUI control 0 indicates firmware is still  
copying EEPROM to shadow memory  
2
1 indicates GUI can control the register 0 indicates GUI is still  
copying default parameters from shadow memory  
1-0  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.2.2 MTR_PARAMS Register (Offset = E6h) [Reset = 00000000h]  
MTR_PARAMS is shown in 7-86 and described in 7-52.  
Return to the Summary Table.  
Status of various motor parameters  
7-86. MTR_PARAMS Register  
31  
15  
30  
14  
29  
13  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
16  
0
MOTOR_R  
R-0h  
MOTOR_BEMF_CONST  
R-0h  
12  
11  
10  
9
8
7
6
5
4
3
2
MOTOR_L  
R-0h  
RESERVED  
R-0h  
7-52. MTR_PARAMS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-24  
23-16  
15-8  
7-0  
MOTOR_R  
R
0h  
8-bit value indicating measured Motor Resistance  
8-bit value indicating measured BEMF constant  
8-bit value indicating measured Motor Inductance  
Reserved  
MOTOR_BEMF_CONST  
MOTOR_L  
R
0h  
R
0h  
RESERVED  
R
0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.2.3 ALGO_STATUS_MPET Register (Offset = E8h) [Reset = 00000000h]  
ALGO_STATUS_MPET is shown in 7-87 and described in 7-53.  
Return to the Summary Table.  
Status of various MPET parameters  
7-87. ALGO_STATUS_MPET Register  
31  
30  
29  
28  
27  
26  
25  
24  
MPET_R_STAT MPET_L_STAT MPET_KE_STA MPET_MECH_  
MPET_PWM_FREQ  
R-0h  
US  
US  
TUS  
R-0h  
STATUS  
R-0h  
R-0h  
R-0h  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
11  
3
18  
10  
2
17  
16  
8
RESERVED  
R-0h  
12  
4
9
RESERVED  
R-0h  
1
0
RESERVED  
R-0h  
7-53. ALGO_STATUS_MPET Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31  
30  
MPET_R_STATUS  
MPET_L_STATUS  
R
0h  
Indicates status of Resistance measurement  
Indicates status of Inductance measurement  
Indicates status of BEMF constant measurement  
R
0h  
29  
MPET_KE_STATUS  
MPET_MECH_STATUS  
MPET_PWM_FREQ  
R
0h  
28  
R
0h  
Indicates status of mechanical parameter measurement  
27-24  
R
0h  
4-bit value indicating PWM frequency used during BEMF constant  
measurement  
23-0  
RESERVED  
R
0h  
Reserved  
7.8.3 Device_Control Registers  
7-54 lists the memory-mapped registers for the Device_Control registers. All register offset addresses not  
listed in 7-54 should be considered as reserved locations and the register contents should not be modified.  
7-54. DEVICE_CONTROL Registers  
Offset Acronym  
EAh ALGO_CTRL1  
Register Name  
Section  
Device Control Register  
ALGO_CTRL1 Register (Offset = EAh)  
[Reset = 00000000h]  
Complex bit access types are encoded to fit into small table cells. 7-55 shows the codes that are used for  
access types in this section.  
7-55. Device_Control Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
142 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-55. Device_Control Access Type Codes  
(continued)  
Access Type  
Code  
Description  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.3.1 ALGO_CTRL1 Register (Offset = EAh) [Reset = 00000000h]  
ALGO_CTRL1 is shown in 7-88 and described in 7-56.  
Return to the Summary Table.  
Control settings  
7-88. ALGO_CTRL1 Register  
31  
30  
29  
28  
27  
26  
18  
25  
17  
24  
EEPROM_WRT EEPROM_REA  
D
CLR_FLT  
CLR_FLT_RET  
RY_COUNT  
RESERVED  
W-0h  
R/W-0h  
23  
R/W-0h  
22  
W-0h  
21  
W-0h  
20  
19  
11  
16  
8
RESERVED  
W-0h  
FORCED_ALIGN_ANGLE  
W-0h  
15  
7
14  
6
13  
12  
10  
9
FORCED_ALIGN_ANGLE  
WATCHDOG_T  
ICKLE  
RESERVED  
W-0h  
W-0h  
5
R/W-0h  
2
4
3
1
0
RESERVED  
W-0h  
7-56. ALGO_CTRL1 Register Field Descriptions  
Bit  
31  
30  
29  
28  
Field  
Type  
R/W  
R/W  
W
Reset  
Description  
EEPROM_WRT  
EEPROM_READ  
CLR_FLT  
0h  
Write the configuration to EEPROM  
0h  
Read the default configuration from EEPROM  
Clears all faults  
0h  
CLR_FLT_RETRY_COUN  
T
W
0h  
Clears fault retry count  
27-20  
19-11  
RESERVED  
W
0h  
0h  
Reserved  
FORCED_ALIGN_ANGLE W  
9-bit value (in degrees) used during forced Align state  
( FORCE_ALIGN_EN = 1) Angle applied =  
FORCED_ALIGN_ANGLE % 360deg  
10  
WATCHDOG_TICKLE  
RESERVED  
R/W  
0h  
0h  
RAM bit to tickle watchdog in I2C mode. This bit should be written 1  
by external controller every EXT_WDT_CFG. The MCF will reset this  
bit  
9-0  
W
Reserved  
7.8.4 Algorithm_Control Registers  
7-57 lists the memory-mapped registers for the Algorithm_Control registers. All register offset addresses not  
listed in 7-57 should be considered as reserved locations and the register contents should not be modified.  
7-57. ALGORITHM_CONTROL Registers  
Offset Acronym  
Register Name  
Section  
ECh  
EEh  
F0h  
ALGO_DEBUG1  
Algorithm Control Register  
ALGO_DEBUG1 Register (Offset = ECh)  
[Reset = 00000000h]  
ALGO_DEBUG2  
CURRENT_PI  
Algorithm Control Register  
Current PI Controller used  
ALGO_DEBUG2 Register (Offset = EEh)  
[Reset = 00000000h]  
CURRENT_PI Register (Offset = F0h) [Reset  
= 00000000h]  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
144 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-57. ALGORITHM_CONTROL Registers (continued)  
Offset Acronym  
Register Name  
Section  
F2h  
F4h  
F6h  
SPEED_PI  
Speed PI controller used  
SPEED_PI Register (Offset = F2h) [Reset =  
00000000h]  
DAC_1  
DAC1 Control Register  
DAC2 Control Register  
DAC_1 Register (Offset = F4h) [Reset =  
00110000h]  
DAC_2  
DAC_2 Register (Offset = F6h) [Reset = X]  
Complex bit access types are encoded to fit into small table cells. 7-58 shows the codes that are used for  
access types in this section.  
7-58. Algorithm_Control Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.4.1 ALGO_DEBUG1 Register (Offset = ECh) [Reset = 00000000h]  
ALGO_DEBUG1 is shown in 7-89 and described in 7-59.  
Return to the Summary Table.  
Algorithm control register for debug  
7-89. ALGO_DEBUG1 Register  
31  
30  
22  
14  
29  
21  
13  
28  
27  
DIGITAL_SPEED_CTRL  
W-0h  
26  
18  
10  
25  
17  
9
24  
16  
8
OVERRIDE  
W-0h  
23  
20  
19  
DIGITAL_SPEED_CTRL  
W-0h  
15  
12  
11  
CLOSED_LOO FORCE_ALIGN FORCE_SLOW FORCE_IPD_E FORCE_ISD_E FORCE_ALIGN FORCE_IQ_REF_SPEED_LOOP  
P_DIS  
_EN  
_FIRST_CYCL  
E_EN  
N
N
_ANGLE_SRC_  
SEL  
_DIS  
W-0h  
7
W-0h  
6
W-0h  
5
W-0h  
4
W-0h  
3
W-0h  
2
W-0h  
1
0
FORCE_IQ_REF_SPEED_LOOP_DIS  
W-0h  
7-59. ALGO_DEBUG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31  
OVERRIDE  
W
0h  
Use to control the SPD_CTRL bits. If OVERRIDE = '1', speed  
command can be written by the user through serial interface.  
0h = SPEED_CMD using Analog/PWM mode  
1h = SPEED_CMD using SPD_CTRL[11:0]  
30-16  
15  
DIGITAL_SPEED_CTRL  
CLOSED_LOOP_DIS  
W
W
0h  
0h  
Digital Speed Control If OVERRIDE = 0b1, then SPEED_CMD is  
control using DIGITAL_SPEED_CTRL  
Use to disable Closed loop  
0h = Enable Closed Loop  
1h = Disable Closed loop, motor commutation in open loop  
14  
13  
FORCE_ALIGN_EN  
W
0h  
0h  
Force Align State Enable  
0h = Disable Force Align state, device comes out of align state if  
MTR_STARTUP is selected as ALIGN or DOUBLE ALIGN  
1h = Enable Force Align state, device stays in align state if  
MTR_STARTUP is selected as ALIGN or DOUBLE ALIGN  
FORCE_SLOW_FIRST_C W  
YCLE_EN  
Force Slow First Cycle Enable  
0h = Disable Force Slow First Cycle state, device comes out of slow  
first cycle state if MTR_STARTUP is selected as SLOW FIRST  
CYCLE  
1h = Enable Force Slow First Cycle state, device stays in slow first  
cycle state if MTR_STARTUP is selected as SLOW FIRST CYCLE  
12  
11  
FORCE_IPD_EN  
FORCE_ISD_EN  
W
W
0h  
0h  
Force IPD Enable  
0h = Disable Force IPD state, device comes out of IPD state if  
MTR_STARTUP is selected as IPD  
1h = Enable Force IPD state, device stays in IPD state if  
MTR_STARTUP is selected as IPD  
Force ISD enable  
0h = Disable Force ISD state, device comes out of ISD state if  
ISD_EN is set  
1h = Enable Force ISD state, device stays in ISD state if ISD_EN is  
set  
Copyright © 2023 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-59. ALGO_DEBUG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
10  
FORCE_ALIGN_ANGLE_  
SRC_SEL  
W
0h  
Force Align Angle State Source Select  
0h = Force Align Angle defined by ALIGN_ANGLE  
1h = Force Align Angle defined by FORCED_ALIGN_ANGLE  
9-0  
FORCE_IQ_REF_SPEED  
_LOOP_DIS  
W
0h  
Sets IQ Ref (% of BASE_CURRENT) when speed loop is disabled If  
SPEED_LOOP_DIS = 0b1, then Iq_ref is control using  
IQ_REF_SPEED_LOOP_DIS iqRef =  
(FORCE_IQ_REF_SPEED_LOOP_DIS /500) * BASE_CURRENT if  
FORCE_IQ_REF_SPEED_LOOP_DIS < 500  
(FORCE_IQ_REF_SPEED_LOOP_DIS - 1024)/500 *  
BASE_CURRENT if FORCE_IQ_REF_SPEED_LOOP_DIS > 512  
Valid values are 0 to 500 and 512 to 1000  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.4.2 ALGO_DEBUG2 Register (Offset = EEh) [Reset = 00000000h]  
ALGO_DEBUG2 is shown in 7-90 and described in 7-60.  
Return to the Summary Table.  
Algorithm control register for debug  
7-90. ALGO_DEBUG2 Register  
31  
30  
29  
28  
27  
26  
25  
24  
RESERVED  
FORCE_RECIRCULATE_STOP_SECTOR  
FORCE_RECIR CURRENT_LO FORCE_VD_CURRENT_LOOP_  
CULATE_STOP  
_EN  
OP_DIS  
DIS  
W-0h  
23  
W-0h  
W-0h  
19  
W-0h  
18  
W-0h  
22  
14  
6
21  
13  
5
20  
17  
9
16  
8
FORCE_VD_CURRENT_LOOP_DIS  
W-0h  
15  
7
12  
11  
10  
FORCE_VQ_CURRENT_LOOP_DIS  
W-0h  
4
3
2
1
0
FORCE_VQ_CURRENT_LOOP_ MPET_CMD  
DIS  
MPET_R  
MPET_L  
MPET_KE  
MPET_MECH MPET_WRITE_  
SHADOW  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
7-60. ALGO_DEBUG2 Register Field Descriptions  
Bit  
31  
Field  
Type  
Reset  
Description  
RESERVED  
W
0h  
Reserved  
30-28  
FORCE_RECIRCULATE_  
STOP_SECTOR  
W
0h  
use to do the recirculation at specific sector during force motor stop  
condition  
0h = The last sector before stop condition  
1h = Sector1  
2h = Sector2  
3h = Sector3  
4h = Sector4  
5h = Sector5  
6h = Sector6  
7h = The last sector before stop condition  
27  
26  
FORCE_RECIRCULATE_  
STOP_EN  
W
W
0h  
0h  
Force recirculate stop Enable  
0h = Enable Force recirculate stop  
1h = Disable Force recirculate stop  
CURRENT_LOOP_DIS  
Use to control the FORCE_VD_CURRENT_LOOP_DIS and  
FORCE_VQ_CURRENT_LOOP_DIS. If CURRENT_LOOP_DIS =  
'1', Current loop and speed loop is disabled  
0h = Enable Current Loop  
1h = Disable Current Loop  
25-16  
FORCE_VD_CURRENT_  
LOOP_DIS  
W
0h  
Sets Vd when current loop speed loop are disabled If  
CURRENT_LOOP_DIS = 0b1, then Vd is control using  
FORCE_VD_CURRENT_LOOP_DIS mdRef =  
(FORCE_VD_CURRENT_LOOP_DIS /500) if  
FORCE_VD_CURRENT_LOOP_DIS < 500 -  
(FORCE_VD_CURRENT_LOOP_DIS - 512)/500 if  
FORCE_VD_CURRENT_LOOP_DIS > 512 Valid values: 0 to 500  
and 512 to 1000  
Copyright © 2023 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-60. ALGO_DEBUG2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
15-6  
FORCE_VQ_CURRENT_  
LOOP_DIS  
W
0h  
Sets Vq when current loop speed loop are disabled If  
CURRENT_LOOP_DIS = 0b1, then Vq is control using  
FORCE_VQ_CURRENT_LOOP_DIS mqRef =  
(FORCE_VQ_CURRENT_LOOP_DIS /500) if  
FORCE_VQ_CURRENT_LOOP_DIS < 500 -  
(FORCE_VQ_CURRENT_LOOP_DIS - 512)/500 if  
FORCE_VQ_CURRENT_LOOP_DIS > 512 Valid values: 0 to 500  
and 512 to 1000  
5
4
MPET_CMD  
MPET_R  
W
W
0h  
0h  
Initiates motor parameter measurement routine when set to 1  
Enables motor resistance measurement during motor parameter  
measurement routine  
0h = Disables Motor Resistance measurement during motor  
parameter measurement routine  
1h = Enable Motor Resistance measurement during motor parameter  
measurement routine  
3
2
1
0
MPET_L  
W
W
W
W
0h  
0h  
0h  
0h  
Enables motor inductance measurement during motor parameter  
measurement routine  
0h = Disables Motor Inductance measurement during motor  
parameter measurement routine  
1h = Enable Motor Inductance measurement during motor parameter  
measurement routine  
MPET_KE  
Enables motor BEMF constant measurement during motor  
parameter measurement routine  
0h = Disables Motor BEMF constant measurement during motor  
parameter measurement routine  
1h = Enable Motor BEMF constant measurement during motor  
parameter measurement routine  
MPET_MECH  
Enables motor mechanical parameter measurement during motor  
parameter measurement routine  
0h = Disables Motor mechanical parameter measurement during  
motor parameter measurement routine  
1h = Enable Motor mechanical parameter measurement during  
motor parameter measurement routine  
MPET_WRITE_SHADOW  
Write measured parameters to shadow register when set to 1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.4.3 CURRENT_PI Register (Offset = F0h) [Reset = 00000000h]  
CURRENT_PI is shown in 7-91 and described in 7-61.  
Return to the Summary Table.  
Current PI controller used  
7-91. CURRENT_PI Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
CURRENT_LOOP_KI  
R-0h  
CURRENT_LOOP_KP  
R-0h  
7-61. CURRENT_PI Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-16  
15-0  
CURRENT_LOOP_KI  
CURRENT_LOOP_KP  
R
R
0h  
10 bit for current loop ki Same Scaling as CURR_LOOP_KI  
10 bit for current loop kp Same Scaling as CURR_LOOP_KP  
0h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
150 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.4.4 SPEED_PI Register (Offset = F2h) [Reset = 00000000h]  
SPEED_PI is shown in 7-92 and described in 7-62.  
Return to the Summary Table.  
Speed PI controller used  
7-92. SPEED_PI Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPEED_LOOP_KI  
R-0h  
SPEED_LOOP_KP  
R-0h  
7-62. SPEED_PI Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
10 bit for current loop ki Same Scaling as SPD_LOOP_KI  
10 bit for current loop kp Same Scaling as SPD_LOOP_KP  
31-16  
15-0  
SPEED_LOOP_KI  
SPEED_LOOP_KP  
R
0h  
R
0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.4.5 DAC_1 Register (Offset = F4h) [Reset = 00110000h]  
DAC_1 is shown in 7-93 and described in 7-63.  
Return to the Summary Table.  
DAC1 Control Register  
7-93. DAC_1 Register  
31  
23  
30  
29  
21  
28  
27  
26  
18  
25  
17  
24  
16  
RESERVED  
R-0h  
22  
20  
19  
RESERVED  
DACOUT1_ENUM_SCALING  
DACOUT1_SC  
ALING  
R-0h  
W-8h  
W-8h  
8
15  
7
14  
13  
5
12  
11  
3
10  
9
DACOUT1_SCALING  
DACOUT1_UNI  
POLAR  
DACOUT1_VAR_ADDR  
W-8h  
6
W-0h  
4
R/W-0h  
2
1
0
DACOUT1_VAR_ADDR  
R/W-0h  
7-63. DAC_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-21  
20-17  
RESERVED  
R
0h  
Reserved  
DACOUT1_ENUM_SCALI W  
NG  
8h  
Multiplication Factor for DACOUT1 Algorithm Variable extracted from  
the address contained in DACOUT1_VAR_ADDR multiplied with  
2DACOUT1_ENUM_SCALING. DACOUT1_ENUM_SCALING comes into  
effect only if DACOUT1_SCALING is zero  
16-13  
DACOUT1_SCALING  
W
8h  
Scaling factor for DACOUT1 Algorithm Variable extracted from the  
address contained in DACOUT1_VAR_ADDR scaled with  
DACOUT1_SCALING / 8. Actual voltage depends on  
DACOUT1_UNIPOLAR. If DACOUT1_UNIPOLAR = 1, 0V == 0pu of  
algorithmVariable * DACOUT1_SCALING / 8, 3V == 1pu of  
algorithmVariable * DACOUT1_SCALING / 8 If  
DACOUT1_UNIPOLAR = 0, 0V == -1pu of algorithmVariable *  
DACOUT1_SCALING / 8, 3V == 1pu of algorithmVariable *  
DACOUT1_SCALING / 8  
0h = Treated s Enum with max value being 31  
1h = 1 / 8  
2h = 2 / 8  
3h = 3 / 8  
4h = 4 / 8  
5h = 5 / 8  
6h = 6 / 8  
7h = 7 / 8  
8h = 8 / 8  
9h = 9 / 8  
Ah = 10 / 8  
Bh = 11 / 8  
Ch = 12 / 8  
Dh = 13 / 8  
Eh = 14 / 8  
Fh = 15 / 8  
Copyright © 2023 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-63. DAC_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
12  
DACOUT1_UNIPOLAR  
W
0h  
Configures output of DACOUT1 If DACOUT1_UNIPOLAR = 1, 0V ==  
0pu of algorithmVariable * DACOUT1_SCALING / 16, 3V == 1pu of  
algorithmVariable * DACOUT1_SCALING / 16 If  
DACOUT1_UNIPOLAR = 0, 0V == -1pu of algorithmVariable *  
DACOUT1_SCALING / 16, 3V == 1pu of algorithmVariable *  
DACOUT1_SCALING / 16  
0h = Bipolar (Offset of 1.5 V)  
1h = Unipolar (No Offset)  
11-0  
DACOUT1_VAR_ADDR  
R/W  
0h  
12-bit address of variable to be monitored  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.4.6 DAC_2 Register (Offset = F6h) [Reset = X]  
DAC_2 is shown in 7-94 and described in 7-64.  
Return to the Summary Table.  
DAC2 Control Register  
7-94. DAC_2 Register  
31  
30  
22  
14  
29  
28  
27  
19  
11  
26  
18  
10  
25  
24  
16  
8
RESERVED  
R-0h  
23  
21  
20  
17  
DACOUT2_SCALING  
W-8h  
RESERVED  
R-0h  
DACOUT2_ENUM_SCALING  
W-X  
15  
13  
12  
9
DACOUT2_SC DACOUT2_UNI  
DACOUT2_VAR_ADDR  
ALING  
POLAR  
W-8h  
W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
DACOUT2_VAR_ADDR  
R/W-0h  
7-64. DAC_2 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
31-23  
22-19  
R
0h  
Reserved  
DACOUT2_ENUM_SCALI W  
NG  
X
Multiplication Factor for DACOUT2 Algorithm Variable extracted from  
the address contained in DACOUT2_VAR_ADDR multiplied with  
2DACOUT2_ENUM_SCALING. DACOUT2_ENUM_SCALING comes into  
effect only if DACOUT2_SCALING is zero  
18-15  
DACOUT2_SCALING  
W
8h  
Scaling factor for DACOUT2 Algorithm Variable extracted from the  
address contained in DACOUT2_VAR_ADDR scaled with  
DACOUT2_SCALING / 8. Actual voltage depends on  
DACOUT2_UNIPOLAR. If DACOUT2_UNIPOLAR = 1, 0V == 0pu of  
algorithmVariable * DACOUT2_SCALING / 8, 3V == 1pu of  
algorithmVariable * DACOUT2_SCALING / 8 If  
DACOUT2_UNIPOLAR = 0, 0V == -1pu of algorithmVariable *  
DACOUT2_SCALING / 8, 3V == 1pu of algorithmVariable *  
DACOUT2_SCALING / 8  
0h = Treated s Enum with max value being 31  
1h = 1 / 8  
2h = 2 / 8  
3h = 3 / 8  
4h = 4 / 8  
5h = 5 / 8  
6h = 6 / 8  
7h = 7 / 8  
8h = 8 / 8  
9h = 9 / 8  
Ah = 10 / 8  
Bh = 11 / 8  
Ch = 12 / 8  
Dh = 13 / 8  
Eh = 14 / 8  
Fh = 15 / 8  
Copyright © 2023 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-64. DAC_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
14  
DACOUT2_UNIPOLAR  
W
0h  
Configures output of DACOUT2 If DACOUT2_UNIPOLAR = 1, 0V ==  
0pu of algorithmVariable * DACOUT2_SCALING / 16, 3V == 1pu of  
algorithmVariable * DACOUT2_SCALING / 16 If  
DACOUT2_UNIPOLAR = 0, 0V == -1pu of algorithmVariable *  
DACOUT2_SCALING / 16, 3V == 1pu of algorithmVariable *  
DACOUT2_SCALING / 16  
0h = Bipolar (Offset of 1.5 V)  
1h = Unipolar (No Offset)  
13-0  
DACOUT2_VAR_ADDR  
R/W  
0h  
14-bit address of variable to be monitored  
7.8.5 Algorithm_Variables Registers  
7-65 lists the memory-mapped registers for the Algorithm_Variables registers. All register offset addresses not  
listed in 7-65 should be considered as reserved locations and the register contents should not be modified.  
7-65. ALGORITHM_VARIABLES Registers  
Offset Acronym  
ALGORITHM_STATE  
Register Name  
Section  
190h  
196h  
410h  
440h  
442h  
444h  
468h  
472h  
474h  
47Ah  
47Ch  
47Eh  
4B6h  
4B8h  
4D2h  
4D4h  
4D6h  
4D8h  
4E2h  
Current Algorithm State Register  
ALGORITHM_STATE Register (Offset =  
190h) [Reset = 0000h]  
FG_SPEED_FDBK  
BUS_CURRENT  
FG Speed Feedback Register  
Calculated DC Bus Current Register  
Measured Current on Phase A Register  
Measured Current on Phase B Register  
Measured Current on Phase C Register  
CSA Gain Register  
FG_SPEED_FDBK Register (Offset = 196h)  
[Reset = 00000000h]  
BUS_CURRENT Register (Offset = 410h)  
[Reset = 00000000h]  
PHASE_CURRENT_A  
PHASE_CURRENT_B  
PHASE_CURRENT_C  
CSA_GAIN_FEEDBACK  
VOLTAGE_GAIN_FEEDBACK  
VM_VOLTAGE  
PHASE_CURRENT_A Register (Offset =  
440h) [Reset = 00000000h]  
PHASE_CURRENT_B Register (Offset =  
442h) [Reset = 00000000h]  
PHASE_CURRENT_C Register (Offset =  
444h) [Reset = 00000000h]  
CSA_GAIN_FEEDBACK Register (Offset =  
468h) [Reset = 0000h]  
Voltage Gain Register  
VOLTAGE_GAIN_FEEDBACK Register  
(Offset = 472h) [Reset = 0000h]  
VM Voltage Register  
VM_VOLTAGE Register (Offset = 474h)  
[Reset = 00000000h]  
PHASE_VOLTAGE_VA  
PHASE_VOLTAGE_VB  
PHASE_VOLTAGE_VC  
SIN_COMMUTATION_ANGLE  
COS_COMMUTATION_ANGLE  
IALPHA  
Phase A Voltage Register  
PHASE_VOLTAGE_VA Register (Offset =  
47Ah) [Reset = 00000000h]  
Phase B Voltage Register  
PHASE_VOLTAGE_VB Register (Offset =  
47Ch) [Reset = 00000000h]  
Phase C Voltage Register  
PHASE_VOLTAGE_VC Register (Offset =  
47Eh) [Reset = 00000000h]  
Sine of Commutation Angle  
Cosine of Commutation Angle  
IALPHA Current Register  
SIN_COMMUTATION_ANGLE Register  
(Offset = 4B6h) [Reset = 00000000h]  
COS_COMMUTATION_ANGLE Register  
(Offset = 4B8h) [Reset = 00000000h]  
IALPHA Register (Offset = 4D2h) [Reset =  
00000000h]  
IBETA  
IBETA Current Register  
IBETA Register (Offset = 4D4h) [Reset =  
00000000h]  
VALPHA  
VALPHA Voltage Register  
VALPHA Register (Offset = 4D6h) [Reset =  
00000000h]  
VBETA  
VBETA Voltage Register  
VBETA Register (Offset = 4D8h) [Reset =  
00000000h]  
ID  
Measured d-axis Current Register  
ID Register (Offset = 4E2h) [Reset =  
00000000h]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7-65. ALGORITHM_VARIABLES Registers (continued)  
Offset Acronym  
Register Name  
Section  
4E4h  
4E6h  
4E8h  
524h  
53Ch  
54Ch  
5D2h  
604h  
606h  
680h  
68Ah  
6BEh  
702h  
748h  
74Ah  
758h  
75Ch  
IQ  
Measured q-axis Current Register  
IQ Register (Offset = 4E4h) [Reset =  
00000000h]  
VD  
VD Voltage Register  
VD Register (Offset = 4E6h) [Reset =  
00000000h]  
VQ  
VQ Voltage Register  
VQ Register (Offset = 4E8h) [Reset =  
00000000h]  
IQ_REF_ROTOR_ALIGN  
SPEED_REF_OPEN_LOOP  
IQ_REF_OPEN_LOOP  
SPEED_REF_CLOSED_LOOP  
ID_REF_CLOSED_LOOP  
IQ_REF_CLOSED_LOOP  
ISD_STATE  
Align Current Reference  
IQ_REF_ROTOR_ALIGN Register (Offset =  
524h) [Reset = 00000000h]  
Open Loop Speed Register  
Open Loop Current Reference  
Speed Reference Register  
Reference for Current Loop Register  
Reference for Current Loop Register  
ISD State Register  
SPEED_REF_OPEN_LOOP Register (Offset  
= 53Ch) [Reset = 00000000h]  
IQ_REF_OPEN_LOOP Register (Offset =  
54Ch) [Reset = 00000000h]  
SPEED_REF_CLOSED_LOOP Register  
(Offset = 5D2h) [Reset = 00000000h]  
ID_REF_CLOSED_LOOP Register (Offset =  
604h) [Reset = 00000000h]  
IQ_REF_CLOSED_LOOP Register (Offset =  
606h) [Reset = 00000000h]  
ISD_STATE Register (Offset = 680h) [Reset  
= 0000h]  
ISD_SPEED  
ISD Speed Register  
ISD_SPEED Register (Offset = 68Ah) [Reset  
= 00000000h]  
IPD_STATE  
IPD State Register  
IPD_STATE Register (Offset = 6BEh) [Reset  
= 0000h]  
IPD_ANGLE  
Calculated IPD Angle Register  
Estimated BEMF EQ Register  
Estimated BEMF ED Register  
Speed Feedback Register  
Estimated rotor Position Register  
IPD_ANGLE Register (Offset = 702h) [Reset  
= 00000000h]  
ED  
ED Register (Offset = 748h) [Reset =  
00000000h]  
EQ  
EQ Register (Offset = 74Ah) [Reset =  
00000000h]  
SPEED_FDBK  
THETA_EST  
SPEED_FDBK Register (Offset = 758h)  
[Reset = 00000000h]  
THETA_EST Register (Offset = 75Ch) [Reset  
= 00000000h]  
Complex bit access types are encoded to fit into small table cells. 7-66 shows the codes that are used for  
access types in this section.  
7-66. Algorithm_Variables Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.1 ALGORITHM_STATE Register (Offset = 190h) [Reset = 0000h]  
ALGORITHM_STATE is shown in 7-95 and described in 7-67.  
Return to the Summary Table.  
Current Algorithm State Register  
7-95. ALGORITHM_STATE Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
ALGORITHM_STATE  
R-0h  
5
4
3
2
ALGORITHM_STATE  
R-0h  
7-67. ALGORITHM_STATE Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
ALGORITHM_STATE  
R
0h  
16-bit value indicating current state of device  
0h = MOTOR_IDLE  
1h = MOTOR_ISD  
2h = MOTOR_TRISTATE  
3h = MOTOR_BRAKE_ON_START  
4h = MOTOR_IPD  
5h = MOTOR_SLOW_FIRST_CYCLE  
6h = MOTOR_ALIGN  
7h = MOTOR_OPEN_LOOP  
8h = MOTOR_CLOSED_LOOP_UNALIGNED  
9h = MOTOR_CLOSED_LOOP_ALIGNED  
Ah = MOTOR_CLOSED_LOOP_ACTIVE_BRAKING  
Bh = MOTOR_SOFT_STOP  
Ch = MOTOR_RECIRCULATE_STOP  
Dh = MOTOR_BRAKE_ON_STOP  
Eh = MOTOR_FAULT  
Fh = MOTOR_MPET_MOTOR_STOP_CHECK  
10h = MOTOR_MPET_MOTOR_STOP_WAIT  
11h = MOTOR_MPET_MOTOR_BRAKE  
12h = MOTOR_MPET_ALGORITHM_PARAMETERS_INIT  
13h = MOTOR_MPET_RL_MEASURE  
14h = MOTOR_MPET_KE_MEASURE  
15h = MOTOR_MPET_STALL_CURRENT_MEASURE  
16h = MOTOR_MPET_TORQUE_MODE  
17h = MOTOR_MPET_DONE  
18h = MOTOR_MPET_FAULT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.2 FG_SPEED_FDBK Register (Offset = 196h) [Reset = 00000000h]  
FG_SPEED_FDBK is shown in 7-96 and described in 7-68.  
Return to the Summary Table.  
Speed Feedback from FG  
7-96. FG_SPEED_FDBK Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
FG_SPEED_FDBK  
R-0h  
7-68. FG_SPEED_FDBK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
FG_SPEED_FDBK  
R
0h  
32-bit value indicating estimated rotor speed estimatedSpeed =  
(FG_SPEED_FDBK / 227)*MAXIMUM_SPEED_HZ  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
158 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.3 BUS_CURRENT Register (Offset = 410h) [Reset = 00000000h]  
BUS_CURRENT is shown in 7-97 and described in 7-69.  
Return to the Summary Table.  
Calculated Supply Current Register  
7-97. BUS_CURRENT Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
BUS_CURRENT  
R-0h  
7-69. BUS_CURRENT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
BUS_CURRENT  
R
0h  
32-bit value indicating bus current iBus = (BUS_CURRENT / 227) *  
Base_Current/8  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.4 PHASE_CURRENT_A Register (Offset = 440h) [Reset = 00000000h]  
PHASE_CURRENT_A is shown in 7-98 and described in 7-70.  
Return to the Summary Table.  
Measured current on Phase A Register  
7-98. PHASE_CURRENT_A Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
PHASE_CURRENT_A  
R-0h  
7-70. PHASE_CURRENT_A Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
PHASE_CURRENT_A  
R
0h  
32-bit value indicating measured current on Phase A iA =  
(PHASE_CURRENT_A / 227) * Base_Current/8  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
160 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.5 PHASE_CURRENT_B Register (Offset = 442h) [Reset = 00000000h]  
PHASE_CURRENT_B is shown in 7-99 and described in 7-71.  
Return to the Summary Table.  
Measured current on Phase B Register  
7-99. PHASE_CURRENT_B Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
PHASE_CURRENT_B  
R-0h  
7-71. PHASE_CURRENT_B Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
PHASE_CURRENT_B  
R
0h  
32-bit value indicating measured current on Phase B iB =  
(PHASE_CURRENT_B / 227) * Base_Current/8  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.6 PHASE_CURRENT_C Register (Offset = 444h) [Reset = 00000000h]  
PHASE_CURRENT_C is shown in 7-100 and described in 7-72.  
Return to the Summary Table.  
Measured current on Phase C Register  
7-100. PHASE_CURRENT_C Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
PHASE_CURRENT_C  
R-0h  
7-72. PHASE_CURRENT_C Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
PHASE_CURRENT_C  
R
0h  
32-bit value indicating measured current on Phase C iC =  
(PHASE_CURRENT_C / 227) * Base_Current/8  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
162 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.7 CSA_GAIN_FEEDBACK Register (Offset = 468h) [Reset = 0000h]  
CSA_GAIN_FEEDBACK is shown in 7-101 and described in 7-73.  
Return to the Summary Table.  
VM Voltage Register  
7-101. CSA_GAIN_FEEDBACK Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
CSA_GAIN_FEEDBACK  
R-0h  
5
4
3
2
CSA_GAIN_FEEDBACK  
R-0h  
7-73. CSA_GAIN_FEEDBACK Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
CSA_GAIN_FEEDBACK  
R
0h  
16-bit value indicating current sense gain  
0h = MAX_CSA_GAIN * 8  
1h = MAX_CSA_GAIN * 4  
2h = MAX_CSA_GAIN * 2  
3h = MAX_CSA_GAIN * 1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.8 VOLTAGE_GAIN_FEEDBACK Register (Offset = 472h) [Reset = 0000h]  
VOLTAGE_GAIN_FEEDBACK is shown in 7-102 and described in 7-74.  
Return to the Summary Table.  
Voltage Gain Register  
7-102. VOLTAGE_GAIN_FEEDBACK Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
VOLTAGE_GAIN_FEEDBACK  
R-0h  
5
4
3
2
VOLTAGE_GAIN_FEEDBACK  
R-0h  
7-74. VOLTAGE_GAIN_FEEDBACK Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
VOLTAGE_GAIN_FEEDB  
ACK  
R
0h  
16-bit value indicating voltage gain  
0h = 60V  
1h = 30V  
2h = 15V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
164 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.9 VM_VOLTAGE Register (Offset = 474h) [Reset = 00000000h]  
VM_VOLTAGE is shown in 7-103 and described in 7-75.  
Return to the Summary Table.  
Supply voltage register  
7-103. VM_VOLTAGE Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
VM_VOLTAGE  
R-0h  
7-75. VM_VOLTAGE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
VM_VOLTAGE  
R
0h  
32-bit value indicating dc bus voltage DC Bus Voltage =  
VM_VOLTAGE * 60 / 227  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.10 PHASE_VOLTAGE_VA Register (Offset = 47Ah) [Reset = 00000000h]  
PHASE_VOLTAGE_VA is shown in 7-104 and described in 7-76.  
Return to the Summary Table.  
Phase A Voltage Register  
7-104. PHASE_VOLTAGE_VA Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
PHASE_VOLTAGE_VA  
R-0h  
7-76. PHASE_VOLTAGE_VA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating Phase Voltage Va during ISD Phase A voltage  
= PHASE_VOLTAGE_VA * 60 / (sqrt(3) * 227  
31-0  
PHASE_VOLTAGE_VA  
R
0h  
)
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
166 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.11 PHASE_VOLTAGE_VB Register (Offset = 47Ch) [Reset = 00000000h]  
PHASE_VOLTAGE_VB is shown in 7-105 and described in 7-77.  
Return to the Summary Table.  
Phase B Voltage Register  
7-105. PHASE_VOLTAGE_VB Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
PHASE_VOLTAGE_VB  
R-0h  
7-77. PHASE_VOLTAGE_VB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating Phase Voltage Vb during ISD Phase B voltage  
= PHASE_VOLTAGE_VB * 60 / (sqrt(3) * 227  
31-0  
PHASE_VOLTAGE_VB  
R
0h  
)
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.12 PHASE_VOLTAGE_VC Register (Offset = 47Eh) [Reset = 00000000h]  
PHASE_VOLTAGE_VC is shown in 7-106 and described in 7-78.  
Return to the Summary Table.  
Phase C Voltage Register  
7-106. PHASE_VOLTAGE_VC Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
PHASE_VOLTAGE_VC  
R-0h  
7-78. PHASE_VOLTAGE_VC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating Phase Voltage Vc during ISD Phase C voltage  
= PHASE_VOLTAGE_VC * 60 / (sqrt(3) * 227  
31-0  
PHASE_VOLTAGE_VC  
R
0h  
)
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
168 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.13 SIN_COMMUTATION_ANGLE Register (Offset = 4B6h) [Reset = 00000000h]  
SIN_COMMUTATION_ANGLE is shown in 7-107 and described in 7-79.  
Return to the Summary Table.  
Sine of Commutation Angle  
7-107. SIN_COMMUTATION_ANGLE Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SIN_COMMUTATION_ANGLE  
R-0h  
7-79. SIN_COMMUTATION_ANGLE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating sine of commutation Angle  
sinCommutationAngle = (SIN_COMMUTATION_ANGLE / 227  
31-0  
SIN_COMMUTATION_AN  
GLE  
R
0h  
)
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.14 COS_COMMUTATION_ANGLE Register (Offset = 4B8h) [Reset = 00000000h]  
COS_COMMUTATION_ANGLE is shown in 7-108 and described in 7-80.  
Return to the Summary Table.  
Cosine of Commutation Angle  
7-108. COS_COMMUTATION_ANGLE Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
COS_COMMUTATION_ANGLE  
R-0h  
7-80. COS_COMMUTATION_ANGLE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating cosine of commutation Angle  
cosCommutationAngle = (COS_COMMUTATION_ANGLE / 227  
31-0  
COS_COMMUTATION_A  
NGLE  
R
0h  
)
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
170 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.15 IALPHA Register (Offset = 4D2h) [Reset = 00000000h]  
IALPHA is shown in 7-109 and described in 7-81.  
Return to the Summary Table.  
IALPHA Current Register  
7-109. IALPHA Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
IALPHA  
R-0h  
7-81. IALPHA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
IALPHA  
R
0h  
32-bit value indicating calculated IALPHA iAlpha = (IALPHA / 227) *  
Base_Current/8  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.16 IBETA Register (Offset = 4D4h) [Reset = 00000000h]  
IBETA is shown in 7-110 and described in 7-82.  
Return to the Summary Table.  
IBETA Current Register  
7-110. IBETA Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
IBETA  
R-0h  
7-82. IBETA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
IBETA  
R
0h  
32-bit value indicating calculated IBETA iBeta = (IBETA / 227) *  
Base_Current/8  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
172 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.17 VALPHA Register (Offset = 4D6h) [Reset = 00000000h]  
VALPHA is shown in 7-111 and described in 7-83.  
Return to the Summary Table.  
VALPHA Voltage Register  
7-111. VALPHA Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
VALPHA  
R-0h  
7-83. VALPHA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
VALPHA  
R
0h  
32-bit value indicating calculated VALPHA vAlpha = (VALPHA / 227) *  
60 / sqrt(3)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.18 VBETA Register (Offset = 4D8h) [Reset = 00000000h]  
VBETA is shown in 7-112 and described in 7-84.  
Return to the Summary Table.  
VBETA Voltage Register  
7-112. VBETA Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
VBETA  
R-0h  
7-84. VBETA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
VBETA  
R
0h  
32-bit value indicating calculated VBETA vBeta = (VBETA / 227) * 60 /  
sqrt(3)  
Copyright © 2023 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.19 ID Register (Offset = 4E2h) [Reset = 00000000h]  
ID is shown in 7-113 and described in 7-85.  
Return to the Summary Table.  
Measured d-axis Current Register  
7-113. ID Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
ID  
R-0h  
7-85. ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating estimated Id id = (ID / 227) * Base_Current/8  
31-0  
ID  
R
0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.20 IQ Register (Offset = 4E4h) [Reset = 00000000h]  
IQ is shown in 7-114 and described in 7-86.  
Return to the Summary Table.  
Measured q-axis Current Register  
7-114. IQ Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
IQ  
R-0h  
7-86. IQ Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating estimated Iq iq = (IQ / 227) * Base_Current/8  
31-0  
IQ  
R
0h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
176 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.21 VD Register (Offset = 4E6h) [Reset = 00000000h]  
VD is shown in 7-115 and described in 7-87.  
Return to the Summary Table.  
VD Voltage Register  
7-115. VD Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
VD  
R-0h  
7-87. VD Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating applied Vd vd = (VD / 227) * 60 / sqrt(3)  
31-0  
VD  
R
0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.22 VQ Register (Offset = 4E8h) [Reset = 00000000h]  
VQ is shown in 7-116 and described in 7-88.  
Return to the Summary Table.  
VQ Voltage Register  
7-116. VQ Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
VQ  
R-0h  
7-88. VQ Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating applied Vq vq = (VQ / 227) * 60 / sqrt(3)  
31-0  
VQ  
R
0h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
178 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.23 IQ_REF_ROTOR_ALIGN Register (Offset = 524h) [Reset = 00000000h]  
IQ_REF_ROTOR_ALIGN is shown in 7-117 and described in 7-89.  
Return to the Summary Table.  
Align Current Reference  
7-117. IQ_REF_ROTOR_ALIGN Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
IQ_REF_ROTOR_ALIGN  
R-0h  
7-89. IQ_REF_ROTOR_ALIGN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
IQ_REF_ROTOR_ALIGN  
R
0h  
32-bit value indicating Align Current Reference iqRefRotorAlign =  
(IQ_REF_ROTOR_ALIGN / 227) * Base_Current/8  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.24 SPEED_REF_OPEN_LOOP Register (Offset = 53Ch) [Reset = 00000000h]  
SPEED_REF_OPEN_LOOP is shown in 7-118 and described in 7-90.  
Return to the Summary Table.  
Speed at which motor transitions to close loop  
7-118. SPEED_REF_OPEN_LOOP Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPEED_REF_OPEN_LOOP  
R-0h  
7-90. SPEED_REF_OPEN_LOOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
SPEED_REF_OPEN_LO  
OP  
R
0h  
32-bit value indicating Open Loop Speed openLoopSpeedRef =  
(SPEED_REF_OPEN_LOOP / 227) * max_Speed- In Hz  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
180 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.25 IQ_REF_OPEN_LOOP Register (Offset = 54Ch) [Reset = 00000000h]  
IQ_REF_OPEN_LOOP is shown in 7-119 and described in 7-91.  
Return to the Summary Table.  
Open Loop Current Reference  
7-119. IQ_REF_OPEN_LOOP Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
IQ_REF_OPEN_LOOP  
R-0h  
7-91. IQ_REF_OPEN_LOOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating Open Loop Current Reference  
iqRefOpenLoop = (IQ_REF_OPEN_LOOP / 227) * Base_Current/8  
31-0  
IQ_REF_OPEN_LOOP  
R
0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.26 SPEED_REF_CLOSED_LOOP Register (Offset = 5D2h) [Reset = 00000000h]  
SPEED_REF_CLOSED_LOOP is shown in 7-120 and described in 7-92.  
Return to the Summary Table.  
Speed Reference Register  
7-120. SPEED_REF_CLOSED_LOOP Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPEED_REF_CLOSED_LOOP  
R-0h  
7-92. SPEED_REF_CLOSED_LOOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
SPEED_REF_CLOSED_L R  
OOP  
0h  
32-bit value indicating reference for speed loop Speed Reference in  
closed loop (Hz) = (SPEED_REF_CLOSED_LOOP/ 227) *  
max_Speed- In Hz  
Copyright © 2023 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.27 ID_REF_CLOSED_LOOP Register (Offset = 604h) [Reset = 00000000h]  
ID_REF_CLOSED_LOOP is shown in 7-121 and described in 7-93.  
Return to the Summary Table.  
Reference for Current Loop Register  
7-121. ID_REF_CLOSED_LOOP Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
ID_REF_CLOSED_LOOP  
R-0h  
7-93. ID_REF_CLOSED_LOOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
ID_REF_CLOSED_LOOP  
R
0h  
32-bit value indicating Id_ref for flux loop idRefClosedLoop =  
(ID_REF_CLOSED_LOOP / 227) * Base_Current/8  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.28 IQ_REF_CLOSED_LOOP Register (Offset = 606h) [Reset = 00000000h]  
IQ_REF_CLOSED_LOOP is shown in 7-122 and described in 7-94.  
Return to the Summary Table.  
Reference for Current Loop Register  
7-122. IQ_REF_CLOSED_LOOP Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
IQ_REF_CLOSED_LOOP  
R-0h  
7-94. IQ_REF_CLOSED_LOOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
IQ_REF_CLOSED_LOOP  
R
0h  
32-bit value indicating Iq_ref for torque loop iqRefClosedLoop =  
(IQ_REF_CLOSED_LOOP / 227) * Base_Current/8  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
184 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.29 ISD_STATE Register (Offset = 680h) [Reset = 0000h]  
ISD_STATE is shown in 7-123 and described in 7-95.  
Return to the Summary Table.  
ISD state Register  
7-123. ISD_STATE Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
ISD_STATE  
R-0h  
4
3
ISD_STATE  
R-0h  
7-95. ISD_STATE Register Field Descriptions  
Bit  
15-0  
Field  
ISD_STATE  
Type  
Reset  
Description  
R
0h  
16-bit value indicating current ISD state  
0h = ISD_INIT  
1h = ISD_MOTOR_STOP_CHECK  
2h = ISD_MOTOR_DIRECTION_CHECK  
3h = ISD_COMPLETE  
4h = ISD_FAULT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.30 ISD_SPEED Register (Offset = 68Ah) [Reset = 00000000h]  
ISD_SPEED is shown in 7-124 and described in 7-96.  
Return to the Summary Table.  
ISD Speed Register  
7-124. ISD_SPEED Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
ISD_SPEED  
R-0h  
7-96. ISD_SPEED Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
ISD_SPEED  
R
0h  
32-bit value indicating calculated speed during ISD state isdSpeed =  
(ISD_SPEED / 227) * max_Speed- In Hz  
Copyright © 2023 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.31 IPD_STATE Register (Offset = 6BEh) [Reset = 0000h]  
IPD_STATE is shown in 7-125 and described in 7-97.  
Return to the Summary Table.  
IPD state Register  
7-125. IPD_STATE Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
IPD_STATE  
R-0h  
4
3
IPD_STATE  
R-0h  
7-97. IPD_STATE Register Field Descriptions  
Bit  
15-0  
Field  
IPD_STATE  
Type  
Reset  
Description  
R
0h  
16-bit value indicating current IPD state  
0h = IPD_INIT  
1h = IPD_VECTOR_CONFIG  
2h = IPD_RUN  
3h = IPD_SLOW_RISE_CLOCK  
4h = IPD_SLOW_FALL_CLOCK  
5h = IPD_WAIT_CURRENT_DECAY  
6h = IPD_GET_TIMES  
7h = IPD_SET_NEXT_VECTOR  
8h = IPD_CALC_SECTOR_RISE  
9h = IPD_CALC_ROTOR_POSITION  
Ah = IPD_CALC_ANGLE  
Bh = IPD_COMPLETE  
Ch = IPD_FAULT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.32 IPD_ANGLE Register (Offset = 702h) [Reset = 00000000h]  
IPD_ANGLE is shown in 7-126 and described in 7-98.  
Return to the Summary Table.  
Calculated IPD Angle Register  
7-126. IPD_ANGLE Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
IPD_ANGLE  
R-0h  
7-98. IPD_ANGLE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
IPD_ANGLE  
R
0h  
32-bit value indicating measured IPD angle ipdAngle =  
(IPD_ANGLE / 227) * 360 (Degree)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
188 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.33 ED Register (Offset = 748h) [Reset = 00000000h]  
ED is shown in 7-127 and described in 7-99.  
Return to the Summary Table.  
Estimated BEMF EQ Register  
7-127. ED Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
ED  
R-0h  
7-99. ED Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating estimated ED Ed = (ED / 227) * 60 / sqrt(3)  
31-0  
ED  
R
0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.34 EQ Register (Offset = 74Ah) [Reset = 00000000h]  
EQ is shown in 7-128 and described in 7-100.  
Return to the Summary Table.  
Estimated BEMF ED Register  
7-128. EQ Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
EQ  
R-0h  
7-100. EQ Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
32-bit value indicating estimated EQ Eq = (EQ / 227) * 60 / sqrt(3)  
31-0  
EQ  
R
0h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
190 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.35 SPEED_FDBK Register (Offset = 758h) [Reset = 00000000h]  
SPEED_FDBK is shown in 7-129 and described in 7-101.  
Return to the Summary Table.  
Speed Feedback Register  
7-129. SPEED_FDBK Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPEED_FDBK  
R-0h  
7-101. SPEED_FDBK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
SPEED_FDBK  
R
0h  
32-bit value indicating estimated rotor speed estimatedSpeed =  
(SPEED_FDBK / 227)*MAXIMUM_SPEED_HZ  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
7.8.5.36 THETA_EST Register (Offset = 75Ch) [Reset = 00000000h]  
THETA_EST is shown in 7-130 and described in 7-102.  
Return to the Summary Table.  
Estimated rotor Position Register  
7-130. THETA_EST Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
THETA_EST  
R-0h  
7-102. THETA_EST Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
THETA_EST  
R
0h  
32-bit value indicating estimated rotor angle estimatedAngle =  
(THETA_EST / 227)*360 (Degree)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
192 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The MCF8315A device is used in sensorless 3-phase BLDC motor control. The driver provides a high  
performance, high-reliability, flexible solution for appliances, fans, pumps, residential and living fans, seat cooling  
fans, automotive fans and blowers. The following section shows a common application of the MCF8315A device.  
8.2 Typical Applications  
8-1 shows the typical schematic of MCF8315A  
VVM  
+
47 nF  
CPL  
1 µF  
VM  
0.1 µF  
>10 µF  
CPH  
CP  
AVDD  
AGND  
SPEED/WAKE (PWM/Analog/Freq)  
CAVDD  
1 µF  
DRVOFF  
BRAKE  
DVDD  
AGND  
CDVDD  
2.2 µF  
DIR  
EXT_CLK  
EXT_WD  
Optional  
Control  
Interface  
Replace resistor (RBK) with  
inductor (LBK) for larger  
external load or to reduce  
power dissipaon  
LBK  
SOX  
SW_BK  
DACOUT1  
External  
Load  
RBK  
CBK  
MCF8315A  
DACOUT2  
GND_BK  
ALARM  
FB_BK  
OUTA  
AVDD or EXT SUPPLY  
RFG  
RnFAULT  
FG  
nFAULT  
OUTB  
AVDD or EXT SUPPLY  
RSDA  
RSCL  
OUTC  
PGND  
Optional  
Serial  
Interface  
SDA  
I2C  
SCL  
8-1. Example Application Schematic  
8-1 lists the recommended values of the external components for MCF8315A.  
8-1. MCF8315A External Components  
COMPONENTS  
PIN 1  
PIN 2  
RECOMMENDED  
X5R or X7R, 0.1-µF, TI recommends a capacitor  
voltage rating at least twice the normal operating  
voltage of the device  
CVM1  
VM  
PGND  
10-µF, TI recommends a capacitor voltage rating at  
least twice the normal operating voltage of the device  
CVM2  
VM  
PGND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
 
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
8-1. MCF8315A External Components (continued)  
COMPONENTS  
PIN 1  
PIN 2  
RECOMMENDED  
CCP  
CP  
VM  
X5R or X7R, 16-V, 1-µF capacitor  
X5R or X7R, 47-nF, TI recommends a capacitor  
voltage rating at least twice the normal operating  
voltage of the pin  
CFLY  
CPH  
CPL  
X5R or X7R, 1-µF, 6.3-V. In order for AVDD to  
accurately regulate output voltage, capacitor should  
have effective capacitance between 0.7-µF to 1.3-µF  
at 3.3-V across operating temperature.  
CAVDD  
AVDD  
AGND  
X5R or X7R, 2.2-µF, 6.3-V. In order for DVDD to  
accurately regulate output voltage, capacitor should  
have effective capacitance between 1.1-µF to 2.5-µF  
at 1.5-V across operating temperature.  
CDVDD  
DVDD  
DGND  
CBK  
LBK  
FB_BK  
GND_BK  
FB_BK  
FG  
X5R or X7R, buck-output rated capacitor  
Buck-output inductor  
SW_BK  
RFG  
1.8 to 5-V Supply  
1.8 to 5-V Supply  
1.8 to 3.3-V Supply  
1.8 to 3.3-V Supply  
5.1-kΩ, Pull-up resistor  
RnFAULT  
RSDA  
RSCL  
nFAULT  
SDA  
5.1-kΩ, Pull-up resistor  
5.1-kΩ, Pull-up resistor  
SCL  
5.1-kΩ, Pull-up resistor  
Recommended application range for MCF8315A is shown in 8-2.  
8-2. Recommended Application Range  
Parameter  
Min  
4.5  
0.6  
0.006  
0.006  
-
Max  
Unit  
V
Motor voltage  
35  
2000  
20  
mV/Hz  
Back-EMF constant (see 7.3.12.3)  
Motor resistance (see 7.3.12.1)  
Motor inductance (see 7.3.12.2)  
Motor electrical speed  
Ω
20  
mH  
Hz  
A
1500  
4
Peak motor phase current  
-
Default EEPROM configuration for MCF8315A is listed in 8-3. Default values are chosen for reliable motor  
start-up and closed loop operation. Refer to MCF8315A tuning guide which provides step by step procedure to  
tune a 3-phase BLDC motor in closed loop, conform to use-case and explore features in the device.  
8-3. Recommended Default Values  
Address Name  
Address  
Recommended Value  
ISD_CONFIG  
0x00000080  
0x00000082  
0x00000084  
0x00000086  
0x00000088  
0x0000008A  
0x0000008C  
0x0000008E  
0x00000094  
0x00000096  
0x00000098  
0x0000009A  
0x0000009C  
0x64738C20  
0x28200000  
0x0B6807D0  
0x2306600C  
0x0D3201B4  
0x0BAD0000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x000D0000  
0x00000000  
REV_DRIVE_CONFIG  
MOTOR_STARTUP1  
MOTOR_STARTUP2  
CLOSED_LOOP1  
CLOSED_LOOP2  
CLOSED_LOOP3  
CLOSED_LOOP4  
SPEED_PROFILES1  
SPEED_PROFILES2  
SPEED_PROFILES3  
SPEED_PROFILES4  
SPEED_PROFILES5  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
194 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
Address Name  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
8-3. Recommended Default Values (continued)  
Address  
Recommended Value  
SPEED_PROFILES6  
FAULT_CONFIG1  
FAULT_CONFIG2  
PIN_CONFIG  
0x0000009E  
0x00000090  
0x00000092  
0x000000A4  
0x000000A6  
0x000000A8  
0x000000AA  
0x000000AC  
0x000000AE  
0x000000A0  
0x000000A2  
0x00000000  
0x3EC80106  
0x70D00888  
0x00000000  
0x00101462  
0x4000F00F  
0x41C05F00  
0x1C450100  
0x00200000  
0x2433407D  
0x000001A7  
DEVICE_CONFIG1  
DEVICE_CONFIG2  
PERI_CONFIG1  
GD_CONFIG1  
GD_CONFIG2  
INT_ALGO_1  
INT_ALGO_2  
Once the device EEPROM is programmed with the desired configuration, device can be operated stand-alone  
and I2C serial interface is not required anymore. Speed can be commanded using SPEED pin.  
Below are the two essential parameters that are required to spin the motor in closed loop.  
1. Maximum motor speed.  
2. Current limit for torque PI loop.  
8.2.1 Speed Input before VM Power-up  
TI recommends adding a 200-ms delay after VM power-up or device wake-up (from sleep mode) before giving a  
speed command over SPEED pin or I2C interface. In applications wherein a non-zero speed command is applied  
before VM is powered up, adding a circuit (red box in 8-2) to introduce a 200-ms delay will ensure optimal  
motor start-up performance.  
VM = 24V  
470-k  
2.2-µF  
47-k  
VM  
VCC (powered  
by AVDD)  
PGND  
SPEED  
Speed input  
(PWM/Freq)  
3-phase  
BLDC  
SN74LVC1G08  
MCF8315A  
motor  
AGND/  
DGND  
8-2. Delay circuit when speed command applied before VM power-up  
R, C values in the delay circuit (470-kΩ, 47-kΩ, 2.2-µF) are designed to ensure the divided down voltage at the  
AND gate input is > VIH at lowest operating value of VM while also ensuring the divided down voltage does not  
exceed the maximum allowable voltage at the AND gate input at highest operating VM. R, C values should also  
be designed to provide at least 200-ms delay to reach VIH at lowest operating value of VM.  
8.2.2 Application Curves  
8.2.2.1 Motor startup  
8-3 shows the FG waveform and the phase current waveform at different motor operations.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
8-3. Motor Startup - FG and Phase current  
8.2.2.2 MPET  
8-4 shows the phase current waveform during motor parameter measurement. 8-5 shows the IPD current  
waveform during R, L and Ke measurement. Bottom half of 8-5 shows the IPD current waveform during R and  
L measurement. R is measured during the rising of phase current and L is measured during the falling of phase  
current. After R and L measurement, motor spins in open loop. Once the speed reaches MPET open loop speed  
reference [MPET_OPEN_LOOP_SPEED_REF], motor is coasted. BEMF voltage of all three phases are  
measured and Ke is calculated.  
8-4. MPET - Phase current  
8-5. IPD current waveform during Rand L  
measurement  
8.2.2.3 Dead time compensation  
8-6 shows the phase current waveform when dead time compensation is disabled. Fundamental frequency of  
phase current is 40 Hz. Fast Fourier transform (FFT) of phase current plot shows harmonics at 160 Hz and 220  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
196 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
Hz. 8-7 shows the phase current waveform when dead time compensation is enabled. Phase current looks  
more sinusoidal and the FFT of phase current plot does not have any harmonics.  
8-6. Phase current and FFT - Dead time  
8-7. Phase current and FFT - Dead time  
compensation disabled  
compensation enabled  
8.2.2.4 Auto handoff  
8-8 shows the auto handoff feature in MCF8315A where the motor transitions seamlessly from open loop to  
closed loop.  
8-8. Auto-handoff  
8.2.2.5 Motor stop recirculation mode  
8-9 shows the supply voltage and phase current waveform after stopping the motor. Recirculation mode in  
MCF8315A prevents the supply voltage from overshoots.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
8-9. Motor stop - recirculation mode  
8.2.2.6 Anti voltage surge (AVS)  
When motor speed decelerates at a very high deceleration rate, mechanical energy from the motor returns to the  
power supply which could result in pumping up the supply voltage, VM. 8-10 shows overshoot in power  
supply voltage when AVS is disabled. Motor decelerates from 100% duty cycle to 10% duty cycle at a  
deceleration rate of 70,000 Hz/sec. 8-11 shows no overshoot in power supply voltage when AVS is enabled.  
8-10. Power supply voltage and phase current  
8-11. Power supply voltage and phase current  
waveform when AVS is disabled  
waveform when AVS is enabled  
8.2.2.7 Real time variable tracking using DACOUT  
MCF8315A has two 12-bit DAC which outputs analog voltage equivalent of digital variables on DACOUT1 and  
DACOUT2 pins with resolution of 12 bits and max voltage of 3V. Signals available on DACOUT pins can be used  
for tuning speed controller or other driver configuration or bus current monitoring. Check algorithm variable  
registers in datasheet for list of all algorithm variables.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
198 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
The addresses for variables for DACOUT1 and DACOUT2 are configured using register bits  
DACOUT1_VAR_ADDR and DACOUT2_VAR_ADDR. This is useful in applications which require tracking  
algorithm variables in real time without having any delay from the communication bus. Pin 37 and 38 should be  
configured as DACOUT1 and DACOUT2.  
For example, if the user wants to read phase A current from pin 37, configure pin 37 as DACOUT1 and program  
the phase A current register address (0x00000440) in Hex in [DACOUT1_VAR_ADDR]. If the user wants to read  
estimated rotor angle from pin 38, configure pin 38 as DACOUT2 and program the estimated rotor angle register  
address (0x00000736) in Hex in [DACOUT2_VAR_ADDR].  
8-12 shows the outputs of DACOUT1 and DACOUT2. DACOUT1 is configured to read phase A current and  
DACOUT2 is configured to read estimated rotor angle.  
8-12. DACOUT1 and DACOUT2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
9 Power Supply Recommendations  
9.1 Bulk Capacitance  
Having an appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors, including:  
The highest current required by the motor system  
The capacitance and current capability of the power supply  
The amount of parasitic inductance between the power supply and motor system  
The acceptable voltage ripple  
The type of motor used (brushed DC, brushless DC, stepper)  
The motor braking method  
The inductance between the power supply and the motor drive system limits the rate at which current can  
change from the power supply. If the local bulk capacitance is too small, the system responds to excessive  
current demands or dumps from the motor with a change in VM voltage. When adequate bulk capacitance is  
used, the VM voltage remains stable and high current can be quickly supplied.  
The data sheet generally provides a recommended value, but system-level testing is required to determine the  
appropriate bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
9-1. Example Setup of Motor Drive System With External Power Supply  
The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases  
when the motor transfers energy to the supply.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
200 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
10 Layout  
10.1 Layout Guidelines  
The bulk capacitor should be placed to minimize the distance of the high-current path through the motor driver  
device. The connecting metal trace widths should be as wide as possible, and numerous vias should be used  
when connecting PCB layers. These practices minimize parasitic inductance and allow the bulk capacitor to  
deliver high current.  
Small-value capacitors should be ceramic, and placed closely to device pins.  
The high-current device outputs should use wide metal traces.  
To reduce noise coupling and EMI interference from large transient currents into small-current signal paths,  
grounding should be partitioned between PGND and AGND. TI recommends connecting all non-power stage  
circuitry (including the thermal pad) to AGND to reduce parasitic effects and improve power dissipation from the  
device. Optionally, GND_BK can be split. Ensure grounds are connected through net-ties or wide resistors to  
reduce voltage offsets and maintain gate driver performance.  
The device thermal pad should be soldered to the PCB top-layer ground plane. Multiple vias should be used to  
connect to a large bottom-layer ground plane. The use of large metal planes and multiple vias helps dissipate  
the I2 × RDS(on) heat that is generated in the device.  
To improve thermal performance, maximize the ground area that is connected to the thermal pad ground across  
all possible layers of the PCB. Using thick copper pours can lower the junction-to-air thermal resistance and  
improve thermal dissipation from the die surface.  
Separate the SW_BK and FB_BK traces with ground separation to reduce buck switching from coupling as noise  
into the buck outer feedback loop. Widen the FB_BK trace as much as possible to allow for faster load switching.  
10-1 shows a layout example for the MCF8315A. Also, for layout example, refer to MCF8315A EVM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
10.2 Layout Example  
10-1. Recommended Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
202 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
10.3 Thermal Considerations  
The MCF8315A has thermal shutdown (TSD) as previously described. A die temperature in excess of 150°C  
(minimally) disables the device until the temperature drops to a safe level.  
Any tendency of the device to enter thermal shutdown is an indication of excessive power dissipation, insufficient  
heatsinking, or too high an ambient temperature.  
10.3.1 Power Dissipation  
The power dissipated in the output FET resistance (RDS(on)) dominates power dissipation in MCF8315A.  
At start-up and fault conditions, the FET current is much higher than normal operating FET current; remember to  
take these peak currents and their duration into consideration.  
The total device power dissipation is the power dissipated in each of the three half-bridges added together along  
with standby power, LDO and buck regulator losses.  
The maximum amount of power that the device can dissipate depends on ambient temperature and heatsinking.  
Note that RDS(on) increases with temperature, so as the device heats, the power dissipation increases. Take this  
into consideration when sizing the heatsink.  
A summary of equations for calculating each loss is shown below in 10-1.  
10-1. Power Losses for MCF8315A  
Loss type  
MCF8315A  
Pstandby = VM x IVM_TA  
Standby power  
LDO  
PLDO = (VM-VAVDD) x IAVDD, if BUCK_PS_DIS = 1b  
PLDO = (VBK-VAVDD) x IAVDD, if BUCK_PS_DIS = 0b  
PCON = 3 x (IRMS(FOC))2 x Rds,on(TA)  
PSW = 3 x IPK(FOC) x VPK(FOC) x trise/fall x fPWM  
Pdiode = 3 x IPK(FOC) x Vdiode x tdead x fPWM  
PBK = 0.11 x VBK x IBK (ηBK = 90%)  
FET conduction  
FET switching  
Diode  
Buck  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: MCF8315A  
English Data Sheet: SLLSFP6  
 
 
MCF8315A  
www.ti.com.cn  
ZHCSPQ3A DECEMBER 2022 REVISED APRIL 2023  
11 Device and Documentation Support  
11.1 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.2 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.3 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.4 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated device. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFP6  
204 Submit Document Feedback  
Product Folder Links: MCF8315A  
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MCF8315A1VRGFR  
ACTIVE  
VQFN  
RGF  
40  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
MCF83  
15A1V  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MCF8315A1VRGFR  
VQFN  
RGF  
40  
3000  
330.0  
16.4  
5.25  
7.25  
1.45  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGF 40  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
MCF8315A1VRGFR  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGF 40  
5 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225115/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
A
RGF0040E  
5.1  
4.9  
B
PIN 1 INDEX AREA  
7.1  
6.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
3.8  
3.6  
3.5  
0.05  
0.00  
(0.1) TYP  
20  
13  
36X 0.5  
21  
12  
SYMM  
41  
5.8  
5.6  
5.5  
1
32  
0.3  
40X  
PIN 1 ID  
(OPTIONAL)  
0.2  
33  
40  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
40X  
0.05  
4224999/B 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGF0040E  
PLASTIC QUAD FLAT PACK- NO LEAD  
(4.8)  
(3.7)  
(3.5)  
40  
33  
40X (0.6)  
40X (0.25)  
1
32  
(Ø0.2) TYP  
VIA  
SYMM  
41  
(5.7) (5.5)  
(6.8)  
(1.35)  
(1.25)  
21  
12  
13  
20  
(R0.05) TYP  
36x (0.5)  
(0.625)  
(0.975)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224999/B 06/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGF0040E  
PLASTIC QUAD FLAT PACK- NO LEAD  
(4.8)  
(3.5)  
36X (0.5)  
40  
33  
40X (0.6)  
40X (0.25)  
41  
1
32  
12X  
(1.15)  
SYMM  
(5.5)  
(6.8)  
(0.675)  
(1.35)  
12  
21  
(R0.05) TYP  
13  
20  
(1.25)  
12X (1.05)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
69% PRINTED COVERAGE BY AREA  
SCALE: 12X  
4224999/B 06/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY