MCR01MRTJ750 [TI]

Tiva™ C Series TM4C1294 Connected LaunchPad Evaluation Kit;
MCR01MRTJ750
型号: MCR01MRTJ750
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Tiva™ C Series TM4C1294 Connected LaunchPad Evaluation Kit

文件: 总42页 (文件大小:853K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Tiva™ C Series TM4C1294 Connected  
LaunchPad Evaluation Kit  
EK-TM4C1294XL  
User's Guide  
Literature Number: SPMU365C  
March 2014Revised October 2016  
Contents  
1
2
Board Overview ................................................................................................................... 4  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Kit Contents................................................................................................................... 5  
Using the Connected LaunchPad ......................................................................................... 5  
Features....................................................................................................................... 5  
BoosterPacks................................................................................................................. 6  
Energīa........................................................................................................................ 6  
Specifications................................................................................................................. 6  
Hardware Description ........................................................................................................... 7  
2.1  
Functional Description ...................................................................................................... 7  
2.1.1 Microcontroller....................................................................................................... 7  
2.1.2 Ethernet Connectivity............................................................................................... 8  
2.1.3 USB Connectivity ................................................................................................... 8  
2.1.4 Motion Control....................................................................................................... 8  
2.1.5 User Switches and LED's.......................................................................................... 8  
2.1.6 BoosterPacks and Headers ....................................................................................... 9  
Power Management........................................................................................................ 20  
2.2.1 Power Supplies .................................................................................................... 20  
2.2.2 Low Power Modes ................................................................................................ 21  
2.2.3 Clocking ............................................................................................................ 21  
2.2.4 Reset................................................................................................................ 21  
Debug Interface............................................................................................................. 21  
2.3.1 In-Circuit Debug Interface (ICDI)................................................................................ 21  
2.3.2 External Debugger ................................................................................................ 22  
2.3.3 Virtual COM Port .................................................................................................. 22  
2.2  
2.3  
3
Software Development ........................................................................................................ 23  
3.1  
3.2  
3.3  
3.4  
Software Description....................................................................................................... 23  
Source Code ................................................................................................................ 23  
Tool Options ................................................................................................................ 23  
Programming the Connected LaunchPad............................................................................... 24  
4
5
References, PCB Layout, and Bill of Materials ....................................................................... 25  
4.1  
4.2  
4.3  
References .................................................................................................................. 25  
Component Locations ..................................................................................................... 26  
Bill of Materials ............................................................................................................. 27  
Schematic ......................................................................................................................... 30  
Revision History.......................................................................................................................... 31  
2
Contents  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
www.ti.com  
List of Figures  
1-1. Tiva C Series Connected LaunchPad Evaluation Board ............................................................... 4  
2-1. Tiva Connected LaunchPad Evaluation Board Block Diagram ........................................................ 7  
2-2. Default Jumper Locations ................................................................................................. 20  
4-1. Connected LaunchPad Dimensions and Component Locations ..................................................... 26  
List of Tables  
1-1. EK-TM4C1294XL Specifications........................................................................................... 6  
2-1. BoosterPack 1 GPIO and Signal Muxing ................................................................................. 9  
2-2. BoosterPack 2 GPIO and Signal Muxing ............................................................................... 12  
2-3. X11 Breadboard Adapter Odd-Numbered Pad GPIO and Signal Muxing .......................................... 16  
2-4. X11 Breadboard Adapter Even-Numbered Pad GPIO and Signal Muxing ......................................... 17  
4-1. Connected LaunchPad Bill of Materials ................................................................................. 27  
3
SPMU365CMarch 2014Revised October 2016  
List of Figures  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Chapter 1  
SPMU365CMarch 2014Revised October 2016  
Board Overview  
The Tiva™ C Series TM4C1294 Connected LaunchPad Evaluation Board (EK-TM4C1294XL) is a low-cost  
evaluation platform for ARM® Cortex™-M4F-based microcontrollers. The Connected LaunchPad design  
highlights the TM4C1294NCPDT microcontroller with its on-chip 10/100 Ethernet MAC and PHY, USB 2.0,  
hibernation module, motion control pulse-width modulation and a multitude of simultaneous serial  
connectivity. The Connected LaunchPad also features two user switches, four user LEDs, dedicated reset  
and wake switches, a breadboard expansion option and two independent BoosterPack XL expansion  
connectors. The pre-programmed quickstart application on the Connected LaunchPad also enables  
remote monitoring and control of the evaluation board from an internet browser anywhere in the world.  
The web interface is provided by 3rd party, Exosite. Each Connected LaunchPad is enabled on the  
Exosite platform allowing users to create and customize their own Internet-of-Things applications.  
Figure 1-1 shows a photo of the Connected LaunchPad with key features highlighted.  
Figure 1-1. Tiva C Series Connected LaunchPad Evaluation Board  
Tiva is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
4
Board Overview  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
www.ti.com  
Kit Contents  
1.1 Kit Contents  
The Connected LaunchPad Evaluation Kit contains the following items:  
Tiva™ C Series TM4C1294 Evaluation Board (EK-TM4C1294XL)  
Retractable Ethernet cable  
USB Micro-B plug to USB-A plug cable  
README First document  
1.2 Using the Connected LaunchPad  
The recommended steps for using the Connected LaunchPad Evaluation Kit are:  
1. Follow the README First document included in the kit. The README First helps you get the  
Connected LaunchPad up and running in minutes. Within just a few minutes you can be controlling and  
monitoring the Connected LaunchPad through the internet using Exosite and the pre-programmed  
quickstart application.  
2. Experiment with BoosterPacks. This evaluation kit conforms to the latest revision of the BoosterPack  
pinout standard. It has two independent BoosterPack connections to enable a multitude of expansion  
opportunities.  
3. Take the first step towards developing your own applications. The Connected LaunchPad is  
supported by TivaWare for C Series. After installing TivaWare, look in the installation directory for  
examples\boards\ek-tm4c1294xl. You can find pre-configured example applications for this board as  
well as for this board with selected BoosterPacks. Alternately, use Energīa for a wiring framework-  
based cross-platform, fast-prototyping environment that works with this and other TI LaunchPads. See  
Chapter 3 of this document for more details about software development. TivaWare can be  
downloaded from the TI website at http://www.ti.com/tool/sw-tm4c. Energīa can be found at  
http://energia.nu.  
4. Customize and integrate the hardware to suit your end application. This evaluation kit can be  
used as a reference for building your own custom circuits based on Tiva C microcontrollers or as a  
foundation for expansion with your custom BoosterPack or other circuit. This manual can serve as a  
starting point for this endeavor.  
5. Get Trained. You can also download hours of written and video training materials on this and related  
LaunchPads. Visit the Tiva C Series LaunchPad Workshop Wiki for more information.  
6. More Resources. See the TI MCU LaunchPad web page for more information and available  
BoosterPacks. (http://www.ti.com/tiva-c-launchpad)  
1.3 Features  
Your Connected LaunchPad includes the following features:  
Tiva TM4C1294NCPDTI microcontroller  
Ethernet connectivity with fully integrated 10/100 Ethernet MAC and PHY Motion Control PWM  
USB 2.0 Micro A/B connector  
4 user LEDs  
2 user buttons  
1 independent hibernate wake switch  
1 independent microcontroller reset switch  
Jumper for selecting power source:  
ICDI USB  
USB Device  
BoosterPack  
Preloaded Internet-of-Things Exosite quickstart application  
I/O brought to board edge for breadboard expansion  
Two independent BoosterPack XL standard connectors featuring stackable headers to maximize  
expansion through BoosterPack ecosystem  
5
SPMU365CMarch 2014Revised October 2016  
Board Overview  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
BoosterPacks  
www.ti.com  
For a complete list of BoosterPacks, see the TI MCU LaunchPad web page:  
http://www.ti.com/launchpad  
1.4 BoosterPacks  
The Connected LaunchPad provides an easy and inexpensive way to develop applications with the  
TM4C1294NCPDTI microcontroller. BoosterPacks are add-on boards that follow a pin-out standard  
created by Texas Instruments. The TI and third-party ecosystem of BoosterPacks greatly expands the  
peripherals and potential applications that you can easily explore with the Connected LaunchPad.  
You can also build your own BoosterPack by following the design guidelines on TI’s website. Texas  
Instruments even helps you promote your BoosterPack to other members of the community. TI offers a  
variety of avenues for you to reach potential customers with your solutions.  
1.5 Energīa  
Energīa is an open-source electronics prototyping platform started in January of 2012 with the goal of  
bringing the Wiring and Arduino framework to the TI LaunchPad community. Energīa includes an  
integrated development environment (IDE) that is based on Processing.  
Together with Energīa, LaunchPads can be used to develop interactive objects, taking inputs from a  
variety of switches or sensors, and controlling a variety of lights, motors, and other physical outputs.  
LaunchPad projects can be stand-alone (only run on the target board, i.e. your LaunchPad), or they can  
communicate with software running on your computer (Host PC). Energīa projects are highly portable  
between supported LaunchPad platforms. Projects written for your Connected LaunchPad can be run on  
other LaunchPads with little or no modifications.  
More information is available at http://energia.nu.  
1.6 Specifications  
Table 1-1 summarizes the specifications for the Connected LaunchPad.  
Table 1-1. EK-TM4C1294XL Specifications  
Parameter  
Value  
4.75 VDC to 5.25 VDC from one of the following sources:  
Debug USB U22 (ICDI) USB Micro-B cable connected to PC or other compatible  
power source.  
Target USB (U7) USB Micro-B cable connected to PC or other compatible power  
source.  
Board Supply Voltage  
BoosterPack 1 (X8-4)  
BoosterPack 2 (X6-4)  
Breadboard expansion header (X11-2 or X11-97).  
See schematic symbol JP1 for power input selection.  
Dimensions  
Break-out Power Output  
RoHS Status  
4.9 in x 2.2 in x .425 in (12.45 cm x 5.59 cm x 10.8 mm) (L x W x H)  
5 VDC to BoosterPacks, current limited by TPS2052B. Nominal rating 1 Amp.  
Board input power supply limitations may also apply.  
3.3 VDC to BoosterPacks, limited by output of TPS73733 LDO. This 3.3-V plane is  
shared with on-board components. Total output power limit of TPS73733 is 1  
Amp.  
Compliant  
6
Board Overview  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
Chapter 2  
SPMU365CMarch 2014Revised October 2016  
Hardware Description  
The Connected LaunchPad includes a TM4C1294NCPDTI microcontroller with an integrated 10/100  
Ethernet MAC and PHY. This advanced ARM® Cortex™ M4F MCU has a wide range of peripherals that  
are made available to users via the on-board accessories and the BoosterPack connectors. This chapter  
explains how those peripherals operate and interface to the microcontroller.  
Figure 2-1 provides a high-level block diagram of the Connected LaunchPad.  
Figure 2-1. Tiva Connected LaunchPad Evaluation Board Block Diagram  
2.1 Functional Description  
2.1.1 Microcontroller  
The TM4C1294NCPDTI is a 32-bit ARM Cortex-M4F based microcontroller with 1024-kB Flash memory,  
256-kB SRAM, 6-kB EEPROM, and 120 MHz operation; integrated 10/100 Ethernet MAC and PHY;  
integrated USB 2.0 connectivity with external high-speed USB 3.0 PHY capability; a hibernation module, a  
multitude of serial connectivity and motion control PWM; as well as a wide range of other peripherals. See  
the TM4C1294NCPDTI microcontroller data sheet for more complete details.  
Most of the microcontroller’s signals are routed to 0.1-in (2.54-mm) pitch headers or through-hole solder  
pads. An internal multiplexor allows different peripheral functions to be assigned to each of these GPIO  
pads. When adding external circuitry, consider the additional load on the evaluation board power rails.  
The TM4C1294NCPDTI microcontroller is factory-programmed with a quickstart demo program. The  
quickstart program resides in on-chip Flash memory and runs each time power is applied, unless the  
quickstart application has been replaced with a user program. The quickstart application automatically  
connects to http://ti.exosite.com when an internet connection is provided through the RJ45 Ethernet jack  
on the evaluation board.  
7
SPMU365CMarch 2014Revised October 2016  
Hardware Description  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
Functional Description  
www.ti.com  
2.1.2 Ethernet Connectivity  
The Connected LaunchPad is designed to connect directly to an Ethernet network using RJ45 style  
connectors. The microcontroller contains a fully integrated Ethernet MAC and PHY. This integration  
creates a simple, elegant and cost-saving Ethernet circuit design. Example code is available for both the  
uIP and LwIP TCP/IP protocol stacks. The embedded Ethernet on this device can be programmed to act  
as an HTTP server, client or both. The design and integration of the circuit and microcontroller also enable  
users to synchronize events over the network using the IEEE1588 precision time protocol.  
When configured for Ethernet operation, it is recommended that the user configure LED D3 and D4 to be  
controlled by the Ethernet MAC to indicate connection and transmit/receive status.  
2.1.3 USB Connectivity  
The Connected LaunchPad is designed to be USB 2.0 ready. A TPS2052B load switch is connected to  
and controlled by the microcontroller USB peripheral, which manages power to the USB micro A/B  
connector when functioning in a USB host. When functioning as a USB device, the entire Connected  
LaunchPad can be powered directly from the USB micro A/B connector. Use JP1 to select the desired  
power source.  
USB 2.0 functionality is provided and supported directly out of the box with the target USB micro A/B  
connector. High-speed USB 3.0 functionality can be enabled by adding an external USB PHY. The USB  
external PHY control and data signals are provided on the breadboard expansion header X11.  
2.1.4 Motion Control  
The Connected LaunchPad includes the Tiva C Series Motion Control PWM technology, featuring a PWM  
module capable of generating eight PWM outputs. The PWM module provides a great deal of flexibility  
and can generate simple PWM signals – for example, those required by a simple charge pump – as well  
as paired PWM signals with dead-band delays, such as those required by a half-H bridge driver. Three  
generator blocks can also generate the full six channels of gate controls required by a 3-phase inverter  
bridge.  
A quadrature encoder interface (QEI) is also available to provide motion control feedback.  
See the BoosterPacks and Headers section of this document for details about the availability of these  
signals on the BoosterPack interfaces.  
2.1.5 User Switches and LED's  
Two user switches are provided for input and control of the TM4C1294NCPDTI software. The switches  
are connected to GPIO pins PJ0 and PJ1.  
A reset switch and a wake switch are also provided. The reset switch initiates a system reset of the  
microcontroller whenever it is pressed and released. Pressing the reset switch also asserts the reset  
signal to the BoosterPack and Breadboard headers. The wake switch is one way to bring the device out of  
hibernate mode.  
Four user LEDs are provided on the board. D1 and D2 are connected to GPIOs PN1 and PN0. These  
LEDs are dedicated for use by the software application. D3 and D4 are connected to GPIOs PF4 and  
PF0, which can be controlled by user’s software or the integrated Ethernet module of the microcontroller.  
A power LED is also provided to indicate that 3.3 volt power is present on the board.  
8
Hardware Description  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
www.ti.com  
Functional Description  
2.1.6 BoosterPacks and Headers  
2.1.6.1 BoosterPack 1  
The Connected LaunchPad features two fully independent BoosterPack XL connectors. BoosterPack 1, located around the ICDI portion of the  
board, is fully compliant with the BoosterPack standard with the single exception of GPIO pin PA6 (X8-16), which does not provide analog  
capability. PA6 is located near the bottom of the inner left BoosterPack XL header.  
I2C is provided in both the original BoosterPack standard configuration as well as the updated standard location. Use of I2C on the bottom left of  
the BoosterPack connections per the updated standard is highly encouraged whenever possible.  
Motion control advanced PWM connections are provided on the inner right connector for motion control applications.  
Table 2-1 provides a complete listing of the BoosterPack pins and the GPIO alternate functions available on each pin. The TM4C1294NCPDTI  
GPIO register GPIOPCTL values are shown for each configuration. The headers in this table are labeled from left to right in ten pin columns. ‘A’  
and ‘D’ make up the outer BoosterPack standard pins, ‘B’ and ‘C’ make up the inner BoosterPack XL standard pins.  
Table 2-1. BoosterPack 1 GPIO and Signal Muxing  
Digital Function (GPIOPCTL Bit Encoding)  
Standard  
Function  
MCU  
Pin  
Header Pin  
GPIO  
Analog  
1
2
3
5
6
7
8
11  
13  
14  
15  
A1  
A1  
A1  
A1  
A1  
A1  
A1  
A1  
A1  
A1  
B1  
B1  
B1  
B1  
B1  
B1  
B1  
B1  
B1  
B1  
1
2
+3.3 volts  
Analog  
UART RX  
UART TX  
GPIO  
3.3V  
PE4  
PC4  
PC5  
PC6  
PE5  
PD3  
PC7  
PB2  
PB3  
123  
25  
24  
23  
124  
4
AIN9  
C1-  
C1+  
C0+  
AIN8  
AIN12  
C0-  
-
U1RI  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SSI1XDAT0  
EPI0S7  
3
U7Rx  
-
-
4
U7Tx  
RTCCLK  
-
EPI0S6  
5
U5Rx  
-
-
-
-
-
-
-
EPI0S5  
6
Analog  
SPI CLK  
GPIO  
-
-
SSIXDAT1  
SSI2CLk  
EPI0S4  
7
-
I2C8SDA T1CCP1  
-
8
22  
91  
92  
U5Tx  
-
-
-
9
I2C SCL  
I2C SDA  
+5 volts  
ground  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
A out  
-
-
I2C0SCL T5CCP0  
I2C0SDA T5CCP1  
USB0STP  
USB0CLK  
EPI0S27  
EPI0S28  
10  
1
-
5V  
2
GND  
3
PE0  
PE1  
PE2  
PE3  
PD7  
PA6  
PM4  
PM5  
15  
14  
13  
12  
128  
40  
74  
73  
AIN3  
AIN2  
AIN1  
AIN0  
AIN4  
-
U1RTS  
U1DSR  
U1DCD  
U1DTR  
U2CTS  
U2Rx  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
5
-
-
-
6
-
-
-
7
T4CCP1 USB0PFLT  
NMI  
-
SSI2XDAT2  
8
I2C6SCL T3CCP0 USB0EPEN  
-
-
-
SSI0XDAT2  
EPI0S8  
9
TMPR3  
TMPR2  
U0CTS  
U0DCD  
-
-
T4CCP0  
T4CCP1  
-
-
-
-
-
-
10  
A out  
9
SPMU365CMarch 2014Revised October 2016  
Hardware Description  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
Functional Description  
www.ti.com  
Table 2-1. BoosterPack 1 GPIO and Signal Muxing (continued)  
Digital Function (GPIOPCTL Bit Encoding)  
Standard  
Function  
MCU  
Pin  
Header Pin  
GPIO  
Analog  
1
-
-
-
-
-
-
-
-
-
-
2
3
5
6
7
-
-
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
-
-
11  
-
13  
-
14  
15  
C1  
C1  
C1  
C1  
C1  
C1  
C1  
C1  
C1  
C1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
1
2
PWM  
PWM  
PF1  
PF2  
PF3  
PG0  
PL4  
PL5  
PL0  
PL1  
PL2  
PL3  
43  
44  
45  
49  
85  
86  
81  
82  
83  
84  
-
-
-
-
-
-
-
-
-
-
-
-
EN0LED2  
M0PWM1  
SSI3XDAT0  
SSI3Fss  
SSI3Clk  
-
TRD1  
-
-
-
M0PWM2  
-
-
TRD0  
3
PWM  
-
-
-
M0PWM3  
-
-
TRCLK  
EPI0S11  
EPI0S26  
EPI0S33  
EPI0S16  
EPI0S17  
EPI0S18  
EPI0S19  
4
PWM  
I2C1SCL  
-
EN0PPS  
M0PWM4  
-
-
5
Capture  
Capture  
GPIO  
-
T0CCP0  
-
-
-
-
USB0D4  
USB0D5  
USB0D0  
USB0D1  
USB0D2  
USB0D3  
6
-
T0CCP1  
-
-
-
-
-
7
I2C2SDA  
-
-
-
-
M0FAULT3  
-
-
8
GPIO  
I2C2SCL  
-
PhA0  
-
-
9
GPIO  
-
-
C0o  
C1o  
PhB0  
-
-
10  
1
GPIO  
IDX0  
-
-
ground  
PWM  
GND  
2
PM3  
PH2  
PH3  
75  
31  
32  
-
-
-
-
-
-
-
T3CCP1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EPI0S12  
EPI0S2  
EPI0S3  
3
GPIO  
U0DCD  
U0DSR  
-
-
-
4
GPIO  
-
5
reset  
RESET  
6
SPI MOSI  
SPI MISO  
GPIO  
PD1  
PD0  
PN2  
PN3  
PP2  
2
AIN14  
-
I2C7SDA T0CCP1  
I2C7SCL T0CCP0  
C1o  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SSI2XDAT0  
SSI2XDAT1  
EPI0S29  
7
1
AIN15  
-
C0o  
-
8
109  
110  
103  
-
-
-
U1DCD  
U1DSR  
U0DTR  
U2RTS  
U2CTS  
-
-
-
-
-
-
-
-
9
GPIO  
-
EPI0S30  
10  
GPIO  
USB0NXT  
EPI0S29  
10  
Hardware Description  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
www.ti.com  
Functional Description  
11  
SPMU365CMarch 2014Revised October 2016  
Hardware Description  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Functional Description  
www.ti.com  
2.1.6.2 BoosterPack 2  
The second BoosterPack XL interface is located near the middle of the board. This interface is fully compliant with the BoosterPack standard, and  
adds features not covered by the BoosterPack standard that enable operation with additional BoosterPacks.  
An additional analog signal is provided on the outer left header (X6-9). This signal can be used to monitor the touch panel on the popular Kentec  
EB-LM4F120-L35 BoosterPack.  
Using the jumpers JP4 and JP5, Controller Area Network (CAN) digital receive and transmit signals can be optionally routed to the BoosterPack 2  
interface. The location of these signals is consistent with the CAN interface on the Tiva C Series TM4C123G LaunchPad and the Stellaris  
LM4F120 LaunchPad. In the default configuration, UART0 is used for the ICDI virtual UART and CAN is not present on the BoosterPack headers.  
In this configuration, the ROM serial bootloader can be used over the ICDI virtual UART. When the jumpers are configured for CAN on the  
BoosterPack, then UART2 must be used for the ICDI virtual UART.  
To comply with both the original and the new BoosterPack standard, I2C is provided on both sides of the BoosterPack connection. Use of I2C on  
the bottom left of the BoosterPack connection is highly encouraged where possible, to be in compliance with the new BoosterPack standard. To  
provide I2C capability on the right side of the connector, per the original standard, two zero-ohm resistors (R19 and R20) are used to combine the  
SPI and I2C signals. These signals are not shared with any other pins on the LaunchPad and therefore removal of these zero-ohm resistors  
should not be required. Software should be certain that unused GPIO signals are configured as inputs.  
Table 2-2 provides a complete listing of the BoosterPack pins and the GPIO alternate functions available at each pin. The TM4C1294NCPDT  
GPIO register GPIOPCTL values are shown for each configuration. The headers in this table are labeled from left to right in ten pin columns. ‘A’  
and ‘D’ make up the outer BoosterPack standard pins, ‘B’ and ‘C’ make up the inner BoosterPack XL standard pins.  
Table 2-2. BoosterPack 2 GPIO and Signal Muxing  
Digital Function (FPIOPCTL Bit Encoding)  
Standard  
Function  
MCU  
Pin  
Header Pin  
GPIO  
Analog  
1
2
3
5
6
7
8
11  
13  
14  
15  
A2  
A2  
A2  
A2  
1
2
3
4
3.3V  
Analog  
PD2  
PP0  
PP1  
PD4  
PA0  
PD5  
PA1  
PQ0  
PP4  
PN5  
PN4  
3
AIN13  
-
I2C8SCL T1CCP0  
C2o  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SSI2Fss  
SSI3XDAT2  
SSI3XDAT3  
SSI1XDAT2  
-
UART RX  
UART TX  
118  
119  
125  
33  
C2+  
U6Rx  
U6Tx  
U2Rx  
U0Rx  
U2Tx  
U0Tx  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C2-  
-
-
-
AIN7  
T3CCP0  
-
-
GPIO  
(See JP4)  
A2  
A2  
5
6
-
I2C9SCL T0CCP0  
T3CCP1  
I2C9SDA T0CCP1  
CANORx  
-
126  
34  
AIN6  
-
-
-
SSI1XDAT3  
-
Analog  
(See JP5)  
-
-
-
-
-
CAN0Tx  
-
A2  
A2  
A2  
A2  
B2  
B2  
B2  
7
8
SPI CLK  
GPIO  
5
-
-
-
-
-
-
-
SSI3Clk  
EPI0S20  
-
105  
112  
111  
U3RTS  
U1RI  
U1DTR  
U0DSR  
USB0D7  
9
I2C SCL  
I2C SDA  
U3CTS I2C2SCL  
U3RTS I2C2SDA  
-
-
EPIO0S35  
EPIO0S34  
10  
1
5V  
2
GND  
3
Analog  
PB4  
121  
AIN10  
U0CTS I2C5SCL  
-
-
-
-
-
-
-
-
SSI1Fss  
12  
Hardware Description  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
www.ti.com  
Functional Description  
Table 2-2. BoosterPack 2 GPIO and Signal Muxing (continued)  
Digital Function (FPIOPCTL Bit Encoding)  
Standard  
Function  
MCU  
Pin  
Header Pin  
GPIO  
Analog  
1
2
3
-
5
6
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
11  
-
13  
-
14  
-
15  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
D2  
D2  
D2  
D2  
D2  
4
5
Analog  
Analog  
Analog  
Analog  
Analog  
A out  
PB5  
PK0  
PK1  
PK2  
PK3  
PA4  
PA5  
PG1  
PK4  
PK5  
PM0  
PM1  
PM2  
PH0  
PH1  
PK6  
PK7  
120  
18  
19  
20  
21  
37  
38  
50  
63  
62  
78  
77  
76  
29  
30  
61  
60  
AIN11  
U0RTS I2C5SDA  
-
-
SSI1Clk  
EPI0S0  
AIN16  
U4Rx  
-
-
-
-
-
-
-
-
-
-
6
AIN17  
U4Tx  
-
-
-
-
-
-
EPI0S1  
7
AIN18  
U4RTS  
-
-
-
-
-
-
EPI0S2  
8
AIN19  
u4CTS  
-
-
-
-
-
-
EPI0S3  
9
-
-
-
-
-
-
-
-
-
-
-
-
U3Rx  
I2C7SCL T2CCP0  
I2C7SDA T2CCP1  
-
-
-
-
-
SSI0XDAT0  
SSI0XDAT1  
EPI0S10  
EPI0S32  
EPI0S31  
EPI0S15  
EPI0S14  
EPI0S13  
EPI0S0  
10  
1
A out  
U3Tx  
-
-
-
-
-
PWM  
-
I2C1SDA  
-
-
M0PWM5  
-
-
-
2
PWM  
-
I2C3SCL  
-
EN0LED0  
M0PWM6  
-
-
-
3
PWM  
-
I2C3SDA  
-
EN0LED2  
M0PWM7  
-
-
-
4
PWM  
-
-
T2CCP0  
-
-
-
-
-
-
-
-
-
-
-
-
-
5
Capture  
Capture  
GPIO  
-
-
-
T2CCP1  
-
-
-
6
-
T3CCP0  
-
-
-
7
U0RTS  
U0CTS  
-
-
-
-
-
-
-
-
-
8
GPIO  
-
-
-
-
EPI0S1  
9
GPIO  
I2C4SCL  
I2C4SDA  
EN0LED1 M0FAULT1  
RTCCLK M0FAULT2  
GND  
-
-
-
EPI0S25  
EPI0S24  
10  
1
GPIO  
U0RI  
-
-
-
2
PWM  
GPIO  
GPIO  
PM7  
PP5  
PA7  
71  
106  
41  
TMPR0  
U0RI  
-
T5CCP1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
U3CTS I2C2SDL  
-
USB0D6  
-
-
4
U2Tx  
I2C6SDA T3CCP1 USB0PFLT  
-
USB0EPEN SSI0XDAT3  
EPI0S9  
5
RESET  
SPI MOSI PQ2  
I2C PA3  
SPI MISO PQ3  
11  
36  
27  
35  
104  
6
-
-
-
-
-
-
-
U4Tx  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SSI3XDAT0  
EPI0S22  
SSI0Fss  
EPI0S23  
SSI0Clk  
EPI0S30  
EPI0S21  
-
D2  
D2  
6
7
I2C8SDA T1CCP1  
-
-
-
SSI3XDAT1  
I2C  
PA2  
PP3  
PQ1  
PM6  
U4Rx  
U1CTS  
-
I2C8SCL T1CCP0  
-
D2  
D2  
D2  
8
9
GPIO  
GPIO  
GPIO  
U0DCD  
-
USB0DIR  
SSI3Fss  
-
-
-
-
10  
72  
TMPR1 U0DSR  
T5CCP0  
13  
SPMU365CMarch 2014Revised October 2016  
Hardware Description  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Functional Description  
www.ti.com  
14  
Hardware Description  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
www.ti.com  
Functional Description  
2.1.6.3 Breadboard Connection  
The breadboard adapter section of the board is a set of 98 holes on a 0.1 inch grid. Properly combined  
with a pair of right angle headers, the entire Connected LaunchPad can be plugged directly into a  
standard 300 mil (0.3 inch) wide solder-less breadboard. The right angle headers and breadboard are not  
provided with this kit. Suggested part numbers are Samtec TSW-149-09-L-S-RE and TSW-149-08-L-S-RA  
right angle pin headers and Twin industries TW-E40-1020 solder-less breadboard. Samtec TSW-149-09-  
F-S-RE and TSW-149-09-F-S-RA may be substituted.  
A detailed explanation of how to install the headers is available on the TI LaunchPad Wiki or at  
http://users.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/LM3S1968soldering.pdf.  
Nearly all microcontroller signals are made available at the breadboard adapter holes (X11). These signals  
are grouped by function where possible. For example, all EPI signals are grouped on one side of the  
connector. Many of the analog signals are grouped near VREF, and UART, SSI and I2C signals are  
grouped by peripheral to make expansion and customization simpler.  
Table 2-3 and Table 2-4 show the GPIO pin and signal muxing for the X11 breadboard adapter pads.  
15  
SPMU365CMarch 2014Revised October 2016  
Hardware Description  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Functional Description  
www.ti.com  
Table 2-3. X11 Breadboard Adapter Odd-Numbered Pad GPIO and Signal Muxing  
Digital Function (GPIOPCTL Bit Encoding)  
MCU  
PIN  
Pin  
Port  
Analog  
1
2
3
5
6
7
8
11  
13  
14  
15  
1
3V3  
3
GND  
5
PB4  
PB5  
PH0  
PH1  
PH2  
PH3  
PC7  
PC6  
PC5  
PC4  
PA6  
PA7  
PG1  
PG0  
PM3  
121  
120  
29  
30  
31  
32  
22  
23  
24  
25  
40  
41  
50  
49  
75  
AIN10  
U0CTS  
U0RTS  
U0RTS  
U0CTS  
U0DCD  
U0DSR  
U5Tx  
U5Rx  
U7Tx  
U7Rx  
U2Rx  
U2Tx  
-
I2C5SCL  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SSI1Fss  
SSI1Clk  
EPI0S0  
EPI0S1  
EPI0S2  
EPI0S3  
EPI0S4  
EPI0S5  
EPI0S6  
EPI0S7  
EPI0S8  
EPI0S9  
EPI0S10  
EPI0S11  
EPI0S12  
7
AIN11  
I2C5SDA  
-
-
-
-
-
9
-
-
-
-
-
-
-
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
65  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C0-  
-
-
-
-
-
-
C0+  
-
-
-
-
-
-
C1+  
-
-
-
-
RTCCLK  
-
C1-  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C6SCL  
I2C6SDA  
I2C1SDA  
I2C1SCL  
-
T3CCP0  
USB0EPEN  
-
SSI0XDAT2  
T3CCP1  
USB0PFLT  
-
USB0EPEN SSI0XDAT3  
-
-
M0PWM5  
-
-
-
-
-
-
-
-
EN0PPS  
-
M0PWM4  
-
T3CCP1  
-
GND  
PM2  
PM1  
PM0  
PL0  
PL1  
PL2  
PL3  
PQ0  
PQ1  
PQ2  
PQ3  
PK7  
76  
77  
78  
81  
82  
83  
84  
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
T3CCP0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EPI0S13  
EPI0S14  
EPI0S15  
EPI0S16  
EPI0S17  
EPI0S18  
EPI0S19  
EPI0S20  
EPI0S21  
EPI0S22  
EPI0S23  
EPI0S24  
-
-
T2CCP1  
-
-
-
-
T2CCP0  
-
-
-
-
I2C2SDA  
-
-
-
-
-
-
-
-
-
-
M0FAULT3  
USB0D0  
USB0D1  
USB0D2  
USB0D3  
SSI3Clk  
SSI3Fss  
SSI3XDAT0  
SSI3XDAT1  
-
-
I2C2SCL  
-
PhA0  
-
-
C0o  
PhB0  
-
-
C1o  
IDX0  
-
-
-
-
-
-
-
-
-
-
6
-
-
11  
27  
60  
-
-
-
-
U0RI  
I2C4SDA  
GND  
M0FAULT1  
-
PK6  
PL4  
61  
85  
-
-
-
-
I2C4SCL  
-
-
EN0LED1  
-
-
-
-
-
-
-
-
-
-
EPI0S25  
EPI0S26  
T0CCP0  
USB0D4  
16  
Hardware Description  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
www.ti.com  
Functional Description  
Table 2-3. X11 Breadboard Adapter Odd-Numbered Pad GPIO and Signal Muxing (continued)  
Digital Function (GPIOPCTL Bit Encoding)  
MCU  
PIN  
Pin  
Port  
Analog  
1
-
2
I2C0SCL  
I2C0SDA  
-
3
5
6
7
8
11  
-
13  
-
14  
15  
67  
69  
71  
73  
75  
77  
79  
81  
83  
85  
87  
89  
91  
93  
95  
97  
PB2  
PB3  
PP2  
PP3  
PK5  
PK4  
PL5  
PN4  
PN5  
PN0  
PN1  
PN2  
PN3  
PQ4  
91  
92  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
T5CCP0  
-
-
-
-
USB0STP  
EPI0S27  
EPI0S28  
EPI0S29  
EPI0S30  
EPI0S31  
EPI0S32  
EPI0S33  
EPI0S34  
EPI0S35  
-
-
T5CCP1  
-
-
-
-
-
-
USB0CLK  
103  
104  
62  
U0DTR  
U1CTS  
-
-
-
-
-
-
-
-
USB0NXT  
U0DCD  
I2C3SDA  
I2C3SCL  
-
-
-
-
RTCCLK  
-
-
-
USB0DIR  
-
EN0LED2  
M0PWM7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
63  
-
-
EN0LED0  
M0PWM6  
-
-
-
-
86  
-
T0CCP1  
-
-
-
-
-
-
-
-
-
-
-
-
USB0D5  
111  
112  
107  
108  
109  
110  
102  
U1DTR  
U1RI  
U1RTS  
U1CTS  
U1DCD  
U1DSR  
U1Rx  
U3RTS  
U3CTS  
-
I2C2SDA  
-
-
-
-
-
-
-
-
-
-
-
I2C2SCL  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
U2RTS  
U2CTS  
-
-
-
-
-
EPI0S29  
EPI0S30  
-
-
-
-
-
-
DIVSCLK  
-
-
WAKE  
5V  
Table 2-4. X11 Breadboard Adapter Even-Numbered Pad GPIO and Signal Muxing  
Digital Function (GPIOPCTL Bit Encoding)  
MCU  
PIN  
Pin  
Port  
Analog  
1
2
3
5
6
7
8
11  
13  
14  
15  
2
5V  
4
GND  
6
PA2  
PA3  
PA4  
PA5  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
35  
36  
-
U4Rx  
U4Tx  
I2C8SCL  
T1CCP0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SSI0Clk  
8
-
I2C8SDA  
T1CCP1  
SSI0Fss  
10  
12  
14  
16  
18  
20  
22  
24  
37  
-
U3Rx  
U3Tx  
I2C7SCL  
T2CCP0  
SSI0XDAT0  
38  
-
I2C7SDA  
T2CCP1  
SSI0XDAT1  
15  
AIN3  
AIN2  
AIN1  
AIN0  
AIN9  
AIN8  
U1RTS  
U1DSR  
U1DCD  
U1DTR  
U1RI  
-
-
-
-
-
-
-
-
-
-
-
-
-
14  
-
13  
-
12  
-
123  
124  
SSI1XDAT0  
SSI1XDAT1  
-
17  
SPMU365CMarch 2014Revised October 2016  
Hardware Description  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Functional Description  
www.ti.com  
Table 2-4. X11 Breadboard Adapter Even-Numbered Pad GPIO and Signal Muxing (continued)  
Digital Function (GPIOPCTL Bit Encoding)  
Analog  
MCU  
PIN  
Pin  
Port  
1
2
-
3
-
5
-
6
-
7
-
8
-
11  
-
13  
-
14  
-
15  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
PK0  
PK1  
PK2  
PK3  
18  
19  
20  
21  
AIN16  
AIN17  
AIN18  
AIN19  
U4Rx  
U4Tx  
EPI0S0  
EPI0S1  
EPI0S2  
EPI0S3  
-
-
-
-
-
-
-
-
-
U4RTS  
U4CTS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VREF  
GND  
PD5  
PD4  
PD7  
PD6  
PD3  
PD1  
PD0  
PD2  
PP0  
PP1  
PB0  
PB1  
126  
125  
128  
127  
4
AIN6  
AIN7  
U2Tx  
U2Rx  
U2CTS  
U2RTS  
-
-
T3CCP1  
T3CCP0  
T4CCP1  
T4CCP0  
T1CCP1  
T0CCP1  
T0CCP0  
T1CCP0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SSI1XDAT3  
SSI1XDAT2  
SSI2XDAT2  
SSI2XDAT3  
SSI2Clk  
-
-
-
AIN4  
-
USB0PFLT  
-
NMI  
AIN5  
-
USB0EPEN  
-
-
-
-
-
-
-
-
-
-
AIN12  
AIN14  
AIN15  
AIN13  
C2+  
I2C8SDA  
I2C7SDA  
I2C7SCL  
I2C8SCL  
-
-
-
2
-
C1o  
-
SSI2XDAT0  
SSI2XDAT1  
SSI2Fss  
1
-
C0o  
-
3
-
C2o  
-
118  
119  
95  
96  
U6Rx  
U6Tx  
U1Rx  
U1Tx  
-
-
-
-
-
SSI3XDAT2  
SSI3XDAT3  
-
C2-  
-
-
-
USB0ID  
USB0VBUS  
I2C5SCL  
I2C5SDA  
T4CCP0  
T4CCP1  
CAN1Rx  
CAN1Tx  
-
GND  
PF4  
PF0  
PF1  
PF2  
PF3  
PA0  
PA1  
PP4  
PP5  
PJ0  
PJ1  
PM7  
PM6  
PM5  
46  
42  
-
-
-
-
-
EN0LED1  
M0FAULT0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SSI3XDAT2  
TRD3  
-
-
-
EN0LED0  
M0PWM0  
-
SSI3XDAT1  
TRD2  
43  
-
-
-
-
EN0LED2  
M0PWM1  
-
SSI3XDAT0  
TRD1  
44  
-
-
-
-
-
-
-
-
-
-
M0PWM2  
-
SSI3Fss  
TRD0  
45  
-
-
-
-
M0PWM3  
-
SSI3Clk  
TRCLK  
33  
-
U0Rx  
U0Tx  
U3RTS  
U3CTS  
U3Rx  
U3Tx  
U0RI  
U0DSR  
U0DCD  
I2C9SCL  
T0CCP0  
-
-
-
-
-
-
-
-
-
CAN0Rx  
-
-
-
-
-
-
-
-
-
-
34  
-
I2C9SDA  
T0CCP1  
CAN0Tx  
-
105  
106  
116  
117  
71  
-
U0DSR  
-
-
-
-
-
-
-
-
USB0D7  
-
I2C2SCL  
-
USB0D6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TMPR0  
TMPR1  
TMPR2  
T5CCP1  
T5CCP0  
T4CCP1  
72  
73  
18  
Hardware Description  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
www.ti.com  
Functional Description  
Table 2-4. X11 Breadboard Adapter Even-Numbered Pad GPIO and Signal Muxing (continued)  
Digital Function (GPIOPCTL Bit Encoding)  
Analog  
MCU  
PIN  
Pin  
Port  
PM4  
1
2
3
5
6
7
8
11  
13  
14  
15  
92  
94  
96  
98  
74  
TMPR3  
U0CTS  
-
T4CCP0  
-
-
-
-
-
-
-
-
RESET  
GND  
3V3  
19  
SPMU365CMarch 2014Revised October 2016  
Hardware Description  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Power Management  
www.ti.com  
2.1.6.4 Other Headers and Jumpers  
JP1 is provided to select the power input source for the Connected LaunchPad. The top position is for  
BoosterPack power; this position also disconnects both USB voltages from the board’s primary 5-volt  
input. In the top position, the TPS2052B does not limit current so additional care should be exercised. The  
middle position draws power from the USB connector on the left side of the board near the Ethernet jack.  
The bottom position is the default, in which power is drawn from the ICDI (Debug) USB connection.  
JP2 separates the MCU 3.3-volt power domain from the rest of the 3.3-volt power on the board allowing  
an ammeter to be used to obtain more accurate measurements of microcontroller power consumption.  
JP3 isolates the output of the TPS73733 LDO from the board’s 3.3-V power domain.  
JP4 and JP5 are used to configure CAN signals to the BoosterPack 2 interface. In the default horizontal  
configuration, CAN is not present on the BoosterPack. UART2 goes to the BoosterPack and UART 0 goes  
to the ICDI virtual serial port to provide ROM serial bootloader capability. In the vertical CAN-enabled  
configuration, UART2 goes to the ICDI virtual serial port and CAN signals are available on the  
BoosterPack. The ROM serial bootloader is not available to the ICDI virtual serial port while the jumpers  
are in the CAN position.  
Figure 2-2 shows the default configuration and relative location of the jumpers on the board.  
Figure 2-2. Default Jumper Locations  
2.2 Power Management  
2.2.1 Power Supplies  
The Connected LaunchPad can be powered from three different input options:  
On-board ICDI USB cable (Debug, Default)  
Target USB cable  
BoosterPack or Breadboard adapter connection  
The JP1 power-select jumper is used to select one of the power sources.  
In addition, the JP3 power jumper can be used to isolate the 3.3-volt output of the TPS73733 from the  
board’s 3.3-volt rail.  
A TPS2052B load switch is used to regulate and control power to the Target USB connector when the  
microcontroller is acting in USB host mode. This load switch also limits current to the BoosterPack and  
Breadboard adapter headers when the JP1 jumper is in the ICDI position.  
20  
Hardware Description  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
www.ti.com  
Power Management  
2.2.2 Low Power Modes  
The Connected LaunchPad demonstrates several low power microcontroller modes. In run mode, the  
microcontroller can be clocked from several sources such as the internal precision oscillator or an external  
crystal oscillator. Either of these sources can then optionally drive an internal PLL to increase the effective  
frequency of the system up to 120 MHz. In this way, the run mode clock speed can be used to manage  
run mode current consumption.  
The microcontroller also provides sleep and deep sleep modes and internal voltage adjustments to the  
flash and SRAM to further refine power consumption when the processor is not in use but peripherals  
must remain active. Each peripheral can be individually clock gated in these modes so that current  
consumption by unused peripherals is minimized. A wide variety of conditions from internal and external  
sources can trigger a return to run mode.  
The lowest power setting of the microcontroller is hibernation, which requires a small amount of supporting  
external circuitry available on the Connected LaunchPad. The Connected LaunchPad can achieve  
microcontroller current consumption modes under 2 micro-Amps using hibernate VDD3ON mode.  
Hibernation with VDD3ON mode is not supported on this board. The Connected LaunchPad can be woken  
from hibernate by several triggers including the dedicated wake button, the reset button, an internal RTC  
timer and a subset of the device GPIO pins. The hibernation module provides a small area of internal  
SRAM that can preserve data through a hibernate cycle.  
2.2.3 Clocking  
The Connected LaunchPad uses a 25 MHz crystal (Y1) to drive the main TM4C1294NCPDTI internal  
clock circuit. Most software examples use the internal PLL to multiply this clock to higher frequencies up to  
120 MHz for core and peripheral timing. The 25-MHz crystal is required when using the integrated  
Ethernet MAC and PHY.  
The Hibernation module is clocked from an external 32.768-KHz crystal (Y3).  
2.2.4 Reset  
The RESET signal to the TM4C1294NCPDTI microcontroller connects to the RESET switch, BoosterPack  
connectors, Breadboard adapter and to the ICDI circuit for a debugger-controller reset.  
External reset is asserted (active low) under the following conditions:  
Power-on reset (filtered by and R-C network)  
RESET switch is held down.  
By the ICDI circuit when instructed by the debugger (this capability is optional, and may not be  
supported by all debuggers)  
By an external circuit attached to the BoosterPack or Breadboard connectors.  
2.3 Debug Interface  
2.3.1 In-Circuit Debug Interface (ICDI)  
The Connected LaunchPad comes with an on-board ICDI. The ICDI allows for the programming and  
debugging of the TM4C1294NCPDTI using LM Flash Programmer and/or any of the supported tool  
chains. Note that ICDI only supports JTAG debugging at this time. It is possible to use other JTAG  
emulators instead of the on board ICDI, by connecting to U6. When the ICDI detects an external debug  
adapter connection on the JTAG connector U6 and disables the ICDI outputs to allow the external debug  
adapter to drive the debug circuit. For more information, see Section 2.3.2.  
Debug out of the ICDI is possible by removing resistors R6, R7, R8, R10, R11, R15, R16 and R40 from  
the Connected LaunchPad and use the ICDI to drive JTAG signals out on U6 for the purpose of  
programming or debugging other boards. To restore the connection to the on-board TM4C1294NCPDTI  
microcontroller, install jumpers from the odd to even pins of X1 or re-install the resistors. Removal of R40  
disables the detection of an attached external debugger. R40 must be installed to use an external debug  
adapter to program or debug the Connected LaunchPad.  
21  
SPMU365CMarch 2014Revised October 2016  
Hardware Description  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Debug Interface  
www.ti.com  
2.3.2 External Debugger  
The connector U6 is provided for the attachment of an external debug adapter such as the IAR J-Link or  
Keil ULINK. This connector follows the ARM standard 10-pin JTAG pinout. This interface can use either  
JTAG or SWD if supported by the external debug adapter.  
2.3.3 Virtual COM Port  
When plugged into a USB host, the ICDI enumerates as both a debugger and a virtual COM port. JP4 and  
JP5 control the selection of which UART from the TM4C1294NCPDTI is connected to the virtual COM  
port. In the default configuration, UART0 maps to the virtual COM port of the ICDI. In the CAN jumper  
configuration, UART2 maps to the virtual COM port of the ICDI.  
22  
Hardware Description  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Chapter 3  
SPMU365CMarch 2014Revised October 2016  
Software Development  
This chapter provides general information on software development as well as instructions for flash  
memory programming.  
3.1 Software Description  
The TivaWare software provides drivers for all of the peripheral devices supplied in the design. The Tiva C  
Series Peripheral Driver Library is used to operate the on-chip peripherals as part of TivaWare.  
TivaWare includes a set of example applications that use the TivaWare Peripheral Driver Library. These  
applications demonstrate the capabilities of the TM4C1294NCPDTI microcontroller, as well as provide a  
starting point for the development of the final application for use on the Connected LaunchPad evaluation  
board. Example applications are also provided for the Connected LaunchPad when paired with selected  
BoosterPacks.  
3.2 Source Code  
The complete source code including the source code installation instructions are provided at  
http://www.ti.com/tool/sw-tm4c. The source code and binary files are installed in the TivaWare software  
tree.  
3.3 Tool Options  
The source code installation includes directories containing projects, makefiles, and binaries for the  
following tool-chains:  
Keil ARM RealView® Microcontroller Development System  
IAR Embedded Workbench for ARM  
Sourcery Codebench  
Generic GNU C Compiler  
Texas Instruments' Code Composer Studio™ IDE  
Download evaluation versions of these tools from the Tools & Software section of www.ti.com/tiva. Due to  
code size restrictions, the evaluation tools may not build all example programs. A full license is necessary  
to re-build or debug all examples.  
For detailed information on using the tools, see the documentation included in the tool chain installation or  
visit the website of the tools supplier.  
23  
SPMU365CMarch 2014Revised October 2016  
Software Development  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Programming the Connected LaunchPad  
www.ti.com  
3.4 Programming the Connected LaunchPad  
The Connected LaunchPad software package includes pre-built binaries for each of the example  
applications. If you installed the TivaWare™ software to the default installation path of  
C:\ti\TivaWare_C_Series_<version>, you can find the example applications in C:\ti\TivaWare_C_Series-  
<version>\examples\boards\ek-tm4c129xl. The on-board ICDI is used with the LM Flash Programmer tool  
to program applications on the Connected LaunchPad.  
Follow these steps to program example applications into the Connected LaunchPad evaulation board  
using the ICDI:  
1. Install LM Flash Programmer on a PC running Microsoft Windows.  
2. Place JP1 into the ICDI position on the Connected LaunchPad.  
3. Connect the USB-A cable plug in to an available USB port on the PC and plug the Micro-B plug to the  
Debug USB port (U22) on the Connected LaunchPad.  
4. Verify that LED D0 at the top of the board is illuminated.  
5. Install Windows ICDI and Virtual COM Port drivers if prompted. Installation instructions can be found at  
http://www.ti.com/lit/pdf/spmu287.  
6. Run the LM Flash Programmer application on the PC.  
7. In the Configuration tap, use the Quick Set control to select “TM4C1294XL LaunchPad”.  
8. Move to the Program tab and click the Browse button. Navigate to the example applications directory  
(the default location is C:\ti\TivaWare_C_Series_<version>\examples\boards\ek-tm4c1294xl\)  
9. Each example application has its own directory. Navigate to the example directory that you want to  
load and then into the sub-directory for one of the supported tool chains which contains the binary  
(*.bin) file. Select the binary file and click Open.  
10. Set the Erase Method to Erase Necessary Pages, check the Verify After Program box, and check  
Reset MCU After Program. The example program starts execution once the verify process is complete.  
24  
Software Development  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Chapter 4  
SPMU365CMarch 2014Revised October 2016  
References, PCB Layout, and Bill of Materials  
4.1 References  
In addition to this document the following references are available for download at www.ti.com.  
TivaWare for C Series (http://www.ti.com/tool/sw-tm4c)  
TivaWare Peripheral Driver Library Users' Guide (literature number SPMU298)  
EK-TM4C1294XL Getting Started Guide (literature number SPMZ858)  
LM Flash Programmer Tool (http://www.ti.com/lmflashprogrammer)  
TPS73733 Low-Dropout Regulator with Reverse Current Protection  
(http://www.ti.com/product/tps79733)  
Texas Instruments Code Composer Studio website (http://www.ti.com/ccs)  
Tiva C Series TM4C1294NCPDT Microcontroller Data Sheet (http://www.ti.com/lit/gpn/tm4c1294ncpdt)  
Build Your Own BoosterPack information regarding the BoosterPack standard (http://www.ti.com/byob)  
ICDI Driver Installation Guide (literature number SPMU287)  
Additional Support:  
Keil RealView MDK-ARM (http://www.keil.com/arm/mdk.asp)  
IAR Embedded Workbench for ARM (http://iar.com/ewarm/)  
Sourcery CodeBench development tools (http://www.mentor.com/embedded-software/sourcery-  
tools/sourcery-codebench/overview)  
Exosite (http://ti.exosite.com)  
25  
SPMU365CMarch 2014Revised October 2016  
References, PCB Layout, and Bill of Materials  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Component Locations  
www.ti.com  
4.2 Component Locations  
Figure 4-1 is a dimensioned drawing of the Connected LaunchPad. This figure shows the location of  
selected features of the board as well as the component locations.  
Figure 4-1. Connected LaunchPad Dimensions and Component Locations  
26  
References, PCB Layout, and Bill of Materials  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
www.ti.com  
Bill of Materials  
4.3 Bill of Materials  
Table 4-1 is the Connected LaunchPad bill of materials list.  
Table 4-1. Connected LaunchPad Bill of Materials  
Item  
Ref  
Qty  
Description  
Mfg  
Part Number  
Capacitor, 1000pF, 2kV,  
20%, X7R, 1210  
1
C1  
1
Kemet  
C1210C102MGRACTU  
C3, C4, C5, C10, C11, C12,  
C13, C16, C17, C18, C19,  
C21, C22, C23, C24, C25,  
C26, C27, C28, C29, C30,  
C40, C41, C42, C43, C46  
Capacitor, 0.1uF 16V,  
10%,0402 X7R  
2
26  
Taiyo Yuden  
EMK105B7104KV-F  
Capacitor, 4700pF, 2kV,  
10%,X7R, 1812  
3
4
5
6
C31  
1
2
2
3
AVX  
TDK  
1812GC472KAT1A  
C1608X7R1H332K  
Capacitor, 3300pF, 50V,  
10%, X7R, 0603  
C32, C33  
C6, C14  
Capacitor, 1uF , X5R, 10V,  
Low ESR, 0402  
Johanson  
Dielectrics Inc  
100R07X105KV4T  
Capacitor, 2.2uF, 16V,  
10%, 0603, X5R  
C7, C15, C20  
Murata  
Murata  
GRM188R61C225KE15D  
GRM1555C1H120JZ01D  
C8, C9, C44,  
C45, C47, C48  
Capacitor, 12pF, 50V,  
5%, 0402, COG  
7
8
6
5
D0, D1, D2, D3, D4  
Green LED 0603  
Everlight  
3M  
19-217/G7C-AL1M2B/3T  
969102-0000-DA  
151-8000-E  
J1, J2, J3,  
J4, J5, J6, J7  
Jumper, 0.100, Gold,  
Black, Open  
9
7
1
Kobiconn  
Header, 2x3, 0.100, T-Hole,  
Vertical Unshrouded,  
0.230 Mate, gold  
10  
JP1  
FCI  
67996-206HLF  
3M  
FCI  
961102-6404-AR  
68001-102HLF  
1x2-head  
Header, 1x2, 0.100, T-Hole,  
Vertical Unshrouded, 0.220  
Mate  
11  
JP2, JP3  
JP4, JP5  
2
Anyone  
FCI  
Header, 2x2, 0.100, T-Hole,  
Vertical Unshrouded, 0.230  
Mate  
67997-104HLF  
12  
13  
2
8
4UCON  
Yageo  
00998  
R1, R2, R3, R4,  
R5, R29, R35, R44  
Resistor, 10k ohm, 1/10W,  
5%, 0402 Thick Film  
RC0402FR-0710KL  
14  
15  
16  
17  
R17, R26, R36  
R18, R51  
3
2
4
1
100k 5% 0402 resistor smd  
Resistor 0402 100 ohm 5%  
Resistor 49.9 ohm 0402. 1 %  
Resistor 4.87k 1% 0402 smd  
Rohm  
Rohm  
Rohm  
Rohm  
MCR01MRTJ104  
MCR1MRTJ101  
R23, R21, R22, R24  
R25  
MCR01MRTF49R9  
MCR01MRTF4871  
Resistor, 5.6k ohm,  
1/10W, 5%, 0402  
18  
19  
20  
R28  
1
4
2
Panasonic  
Rohm  
ERJ-2GEJ562X  
MCR01MRTJ750  
ERJ-3GEYJ105V  
R32, R43, R45, R46  
R34, R52  
resistor 75 ohm 0402 5%  
Resistor, 1M OH,  
1/10W, 5% 0603 SMD  
Panasonic  
Resistor, 51 ohm,  
1/10W, 5%, 0402  
21  
R38  
1
Panasonic  
ERJ-2GEJ510X  
27  
SPMU365CMarch 2014Revised October 2016  
References, PCB Layout, and Bill of Materials  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
Bill of Materials  
www.ti.com  
Table 4-1. Connected LaunchPad Bill of Materials (continued)  
Item  
22  
Ref  
R42  
Qty  
Description  
Mfg  
Part Number  
Resistor, 1M Ohm,  
1/10W, 5%, 0402  
1
Rohm  
MCR01MRTF1004  
ERJ-8GEYJ105V  
ERJ-3GEYJ202V  
23  
R47  
1
RES 1M OHM 5% 1206 TF  
Panasonic  
Panasonic  
Resistor, 2.0k ohm,  
1/10W, 5%, 0402  
24  
R49, R50  
2
R6, R7, R8, R10, R11,  
R15, R16, R19, R20, R39,  
R40, R41  
Resistor, 0 ohm,  
1/10W, 5%, 0402  
25  
12  
Panasonic  
ERJ-2GE0R00X  
Resistor, 330 ohm,  
1/10W, 5%, 0402  
26  
27  
R9, R27, R30, R31, R33  
5
4
Yageo  
Omron  
RC0402FR-07330RL  
B3S-1000  
RESET, USR_SW1,  
USR_SW2, WAKE  
Switch, Tact 6mm SMT,  
160gf  
Tiva, MCU TM4C1294NCPDT Texas Instruments  
128 QFP with Ethernet MAC  
TM4C1294NCPDT  
XM4C1294NCPDT  
28  
U1  
1
Texas Instruments  
+ PHY  
Transformer, ethernet, 1 to 1.  
Pulse Electronics  
SOIC 16  
29  
30  
31  
32  
33  
34  
35  
36  
U10  
U13  
U14  
U2, U3  
U20  
U22  
U4  
1
1
1
2
1
1
1
1
HX1198FNL  
SLVU2.8-4.TBT  
1-406541-5  
Diode, 8 chan, +/-15KV, ESD  
Semtech  
Protection Array, SO-8  
Connector, RJ45 NO MAG,  
TE Connectivity  
shielded THRU HOLE  
IC 4CH ESD SOLUTION  
Texas Instruments  
W/CLAMP 6SON  
TPD4S012DRYR  
TM4C123GH6PMI  
10118194-0001LF  
TPS2052BDRBR  
Stellaris TIVA MCU  
Texas Instruments  
TM4C123GH6PMI  
USB Micro B receptacle  
FCI  
right angle with guides  
Fault protected power switch,  
Texas Instruments  
dual channel, 8-SON  
3.3V LDO TI TPS73733DRV  
Texas Instruments  
U5  
TPS73733DRV  
SHF-105-01-S-D-SM  
C44-10BSA1-G  
fixed out 5V in  
Samtec  
Header 2x5, 0.050, SM,  
37  
38  
39  
U6  
U7  
1
1
4
Don Connex  
Electronics  
Vertical Shrouded  
USB Micro AB receptacle.  
Right angle with through  
guides  
Hirose  
ZX62D-AB-5P8  
Samtec  
SSW-110-23-S-D  
SSHQ-110-D-08-F-LF  
Header, 2x10, T-Hole Vertical  
unshrouded stacking  
X6, X7, X8, X9  
Major League  
Electronics  
40  
41  
Y1  
Y2  
1
1
Crystal 25 MHz 3.2 x 2.5 mm  
NDK  
nx3225ga-25.000m-std-crg-2  
NX3225GA-16.000M-STD-CRG-2  
Crystal 16 MHz 3.2 x 2.5 mm  
4 pin  
NDK  
Crystal, 32.768 KHz Radial  
Can  
Citizen Finetech  
Miyota  
42  
Y3  
1
CMR200T-32.768KDZY-UT  
28  
References, PCB Layout, and Bill of Materials  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
www.ti.com  
Bill of Materials  
Table 4-1. Connected LaunchPad Bill of Materials (continued)  
Item  
Ref  
C2  
Qty  
Description  
Mfg  
Part Number  
PCB Do Not Populate List (Shown for information only)  
Capacitor, 0.1uF 16V,  
43  
44  
1
3
Taiyo Yuden  
McMaster  
EMK105B7104KV-F  
90077A112  
10%, 0402 X7R  
Screw, #4 x 0.625" Pan  
Head, Sheet Metal,  
Phillips/Slotted  
H1, H4, H6  
(for fan)  
Resistor, 5.6k ohm,  
1/10W, 5%, 0402  
45  
46  
R12, R13, R14  
R48  
3
1
Panasonic  
Rohm  
ERJ-2GEJ562X  
Resistor 0402 1% 52.3k  
TRR01MZPF5232  
TP1, TP2, TP3, TP4, TP5,  
TP6, TP7, TP8, TP9,  
TP10, TP11, TP12, TP13,  
TP14, TP15, TP16, TP17  
Terminal, Test Point Miniature  
Loop, Red, T-Hole  
47  
48  
17  
1
Keystone  
FCI  
5000  
Header, 2x7, 0.100, T-Hole,  
Vertical, Unshrouded, 0.230  
Mate  
X1  
67997-114HLF  
Valvano style bread board  
connect. Right Angle  
extended, 1 x 49 0.100 pitch.  
49  
50  
X11A  
X11B  
1
1
Samtec  
Samtec  
TSW-149-09-F-S-RE  
TSW-149-08-F-S-RA  
valvano style breadboard  
header.  
29  
SPMU365CMarch 2014Revised October 2016  
References, PCB Layout, and Bill of Materials  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
Chapter 5  
SPMU365CMarch 2014Revised October 2016  
Schematic  
This section contains the complete schematics for the Tiva C Series TM4C1294 Connected LaunchPad.  
Microcontroller, USB, Buttons, and LED's  
BoosterPack connectors  
Breadboard connector  
Ethernet and Ethernet LED's  
Power  
In-Circuit Debug Interface  
30  
Schematic  
SPMU365CMarch 2014Revised October 2016  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
1
2
3
4
5
6
TP4  
TP5  
TP6  
TP7  
TARGET_VBUS/3.2C  
USBD_N  
convienence test points for ground  
TP14  
GPIO  
U7G$1  
P1  
P2  
P3  
P4  
P5  
VBUS  
DM  
DP  
ID  
GND  
U1G$1  
P$33  
P$34  
P$35  
P$36  
P$37  
P$38  
P$40  
P$41  
P$95  
P$96  
P$91  
P$92  
P$121  
P$120  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PB0  
USBD_P  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
TP15  
TP16  
TP17  
TARGET_VBUS/3.2C  
A
B
C
D
E
A
B
C
D
E
PB2  
PB3  
PB4  
PB5  
TARGET_ID  
GND  
C32  
P$100  
P$99  
P$98  
P$97  
P$25  
P$24  
P$23  
P$22  
P$1  
P$2  
P$3  
P$4  
P$125  
P$126  
P$127  
P$128  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
3300pF  
TARGET_TCK/SWCLK/6.1A  
TARGET_TMS/SWDIO/6.1A  
TARGET_TDI/6.1E  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
USBD_N  
U2  
TPD4S012_DRY_6  
TARGET_TDO/SWO/6.1E  
TARGET_ID  
PC4  
PC5  
PC6  
PC7  
GND  
TARGET_VBUS/3.2C  
1
2
3
6
5
4
D+  
D-  
ID  
VBUS  
N.C.  
GND  
R18  
100  
PB0/3.2C  
GND  
P$15  
P$14  
P$13  
P$12  
P$123  
P$124  
P$42  
P$43  
P$44  
P$45  
P$46  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
PF0  
PF1  
PF2  
PF3  
PF4  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
PF0  
PF1  
PF2  
PF3  
PF4  
USBD_P  
GND  
NOTE: TPD4S012 all protection circuits are identical.  
Connections chosen for simple routing.  
P$49  
P$50  
P$29  
P$30  
P$31  
P$32  
PG0  
PG1  
PH0  
PH1  
PH2  
PH3  
PG0  
PG1  
PH0  
PH1  
PH2  
PH3  
P$116  
P$117  
PJ0  
PJ1  
PN0/3.4D  
PN1/3.4D  
PJ0  
PJ1  
P$18  
P$19  
P$20  
P$21  
P$63  
P$62  
P$61  
P$60  
P$81  
P$82  
P$83  
P$84  
P$85  
P$86  
P$94  
P$93  
PK0  
PK1  
PK2  
PK3  
PK4  
PK5  
PK6  
PK7  
PL0  
PL1  
PL2  
PL3  
PL4  
PL5  
PK0  
PK1  
PK2  
PK3  
PK4  
PK5  
PK6  
PK7  
PL0  
PL1  
PL2  
PL3  
PL4  
PL5  
PL6  
PL7  
USBD_P  
USBD_N  
P$78  
P$77  
P$76  
P$75  
P$74  
P$73  
P$72  
P$71  
P$107  
P$108  
P$109  
P$110  
P$111  
P$112  
PM0  
PM1  
PM2  
PM3  
PM4  
PM5  
PM6  
PM7  
PN0  
PN1  
PN2  
PN3  
PN4  
PN5  
PM0  
PM1  
PM2  
PM3  
PM4  
PM5  
PM6  
PM7  
PN0  
PN1  
PN2  
PN3  
PN4  
PN5  
GND  
GND  
See PF0 and PF4 for additional LED's used for  
Ethernet or user application  
USR_SW1  
P$118  
P$119  
P$103  
P$104  
P$105  
P$106  
P$5  
P$6  
P$11  
P$27  
P$102  
PP0  
PP1  
PP2  
PP3  
PP4  
PP5  
PQ0  
PQ1  
PQ2  
PQ3  
PQ4  
PJ0/3.2D  
PP0  
PP1  
PP2  
PP3  
PP4  
PP5  
PQ0  
PQ1  
PQ2  
PQ3  
PQ4  
SWITCH_TACTILE  
USR_SW2  
PJ1/3.2D  
TM4C1294NCPDT  
SWITCH_TACTILE  
GND  
1
2
3
4
5
6
+5V  
X8-2  
TSW-110-02-S-D  
X8-1  
GND/1.6B  
X9-2  
A
B
C
D
E
A
B
C
D
E
TSW-110-02-S-D  
X9-1  
PF1  
GND/1.6B  
X8-4  
X8-6  
X8-8  
X8-10  
X8-12  
X8-14  
X8-16  
X8-18  
X8-20  
PE4  
PC4  
PC5  
PC6  
PE5  
PD3  
PC7  
PB2  
PB3  
PF2  
PF3  
PG0  
PL4  
PL5  
PL0  
PL1  
PL2  
PL3  
PM3  
PH2  
PH3  
X8-3  
X8-5  
X8-7  
X9-3  
X9-5  
X9-7  
X9-9  
X9-11  
X9-13  
X9-15  
X9-17  
X9-19  
X9-4  
X9-6  
X9-8  
PE0  
PE1  
PE2  
PE3  
PD7  
PA6  
PM4  
PM5  
C23  
C24  
0.1uF  
TARGET_RESET/3.2D  
X8-9  
X9-10  
0.1uF  
X8-11  
X8-13  
X8-15  
X8-17  
X8-19  
PD1  
X9-12  
X9-14  
X9-16  
X9-18  
X9-20  
PD0  
PN2  
PN3  
PP2  
GND  
GND  
BoosterPack 1 Interface  
GND/1.6B  
X7-2  
+5V  
JP4 and JP5 CAN and ICDI UART Selection:  
Populate Jumpers from 1-2 and 3-4 for Default Mode  
This enables ROM UART boot loader. UART 0 to ICDI  
PM7  
PP5  
PA7  
X7-4  
X7-6  
X7-8  
Populate from 1-3 and 2-4 for controller area network  
on the boosterpack. UART2 is then availabe to ICDI.  
TSW-110-02-S-D  
X6-1  
X6-2  
TSW-110-02-S-D  
X7-1  
PG1  
PK4  
PK5  
PM0  
GND/1.6B  
TARGET_RESET/3.2D  
X6-4  
X7-10  
R19 and R20 can be populated to enable I2C on  
PD2  
X6-3  
X6-5  
X6-7  
X7-3  
X7-5  
X7-7  
0
C25  
JP4  
PP0  
PP1  
PB4  
PB5  
PK0  
PK1  
PK2  
PK3  
PA4  
PA5  
PA3  
X6-6  
X6-8  
X7-12  
X7-14  
Right side of BP2 interface. This is for legacy  
support and the Sensor Hub BoosterPack.  
C26  
1
3
2
4
TARGET_RXD/6.1D  
PD4/1.4B  
PA0/3.2C  
BP2_A2.5  
R19  
0
0.1uF  
PM1  
PM2  
PH0  
PQ2  
PA2  
BP2_A2.5  
BP2_A2.6  
X6-13  
X6-15  
X6-17  
X6-19  
X6-9  
X6-11  
X6-10  
X6-12  
X6-14  
X6-16  
X6-18  
X6-20  
X7-9  
I2C and SSI are available on the corresponding  
BoosterPack 1 interface pins without modification to  
the board.  
0.1uF  
X7-11  
X7-13  
X7-15  
X7-17  
X7-19  
PQ0  
PP4  
PN5  
PN4  
R20  
PH1  
PK6  
PK7  
PQ3  
PP3  
PQ1  
PM6  
GND  
PA6 and PA7 are also used by the onboard radio.  
Configure the radio to tri-state these GPIO before  
using them on the boosterpack interface.  
GND  
X7-16  
X7-18  
X7-20  
JP5  
1
3
2
4
TARGET_TXD/6.1D  
PD5/1.4B  
PA1/3.2C  
BP2_A2.6  
BoosterPack 2 Interface  
1
2
3
4
5
6
+5V  
This is the breadboard connection header.  
C28  
Samtec TSW-149-08-F-S-RA and TSW-149-09-F-S-RE  
can be used together to create a breadboard  
connector  
C27  
0.1uF  
0.1uF  
see the Users Manual for more information.  
A
B
C
D
E
A
B
C
D
E
TSW-149-02-S-D  
X11-2  
X11-4  
X11-1  
X11-3  
X11-5  
GND  
PA2  
GND  
PB4  
X11-6  
X11-8  
PA3  
PA4  
PA5  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
PK0  
PK1  
PK2  
PK3  
PB5  
PH0  
PH1  
PH2  
PH3  
PC7  
PC6  
PC5  
PC4  
PA6  
PA7  
PG1  
PG0  
PM3  
X11-7  
X11-9  
X11-10  
X11-12  
X11-14  
X11-16  
X11-18  
X11-20  
X11-22  
X11-24  
X11-26  
X11-28  
X11-30  
X11-32  
X11-34  
X11-36  
X11-38  
X11-40  
X11-42  
X11-44  
X11-46  
X11-48  
X11-50  
X11-52  
X11-54  
X11-56  
X11-58  
X11-60  
X11-62  
X11-64  
X11-66  
X11-68  
X11-70  
X11-72  
X11-74  
X11-76  
X11-78  
X11-80  
X11-82  
X11-84  
X11-86  
X11-88  
X11-90  
X11-92  
X11-94  
X11-96  
X11-98  
X11-11  
X11-13  
X11-15  
X11-17  
X11-19  
X11-21  
X11-23  
X11-25  
X11-27  
X11-29  
X11-31  
X11-33  
X11-35  
X11-37  
X11-39  
X11-41  
X11-43  
X11-45  
X11-47  
X11-49  
X11-51  
X11-53  
X11-55  
X11-57  
X11-59  
X11-61  
X11-63  
X11-65  
X11-67  
X11-69  
X11-71  
X11-73  
X11-75  
X11-77  
X11-79  
X11-81  
X11-83  
X11-85  
X11-87  
X11-89  
X11-91  
X11-93  
X11-95  
X11-97  
NOTE: PB0 and PB1 are used in some  
configurations with 5V signals especially in USB  
Host or OTG mode. Be aware the 5V may be  
present on these pins depending on system jumper  
configuration  
VREF+/5.5B  
GND/2.3C  
GND/4.1A  
PD5  
PD4  
PD7  
PD6  
PD3  
PD1  
PD0  
PD2  
PP0  
PP1  
PB0  
PM2  
PM1  
PM0  
PL0  
PL1  
PL2  
PL3  
PQ0  
PQ1  
PQ2  
PQ3  
PK7  
These pins are only 5V tolerant when configured for  
USB mode applications.  
TARGET_VBUS/1.6B  
GND/2.3C  
PF4  
GND/4.1A  
PK6  
PL4  
PB2  
PB3  
PP2  
PP3  
PK5  
PK4  
PL5  
PN4  
PN5  
PN0  
PN1  
PN2  
PN3  
PQ4  
PF0  
PF1  
PF2  
PF3  
PA0  
PA1  
PP4  
PP5  
PJ0  
PJ1  
PM7  
PM6  
PM5  
PM4  
TARGET_RESET/2.4D  
GND/2.3C  
WAKE/5.5A  
+5V  
C29  
C30  
0.1uF  
0.1uF  
GND  
GND  
1
2
Place pull up resistors and C16-C17 near TM4C MCU.  
3
4
5
6
MCU_3V3/5.2A  
C17  
C16  
0.1uF  
0.1uF  
A
B
C
D
E
A
B
C
D
E
GND  
GND  
Place C18 and C22 near pin 2 and pin 7 of U$10  
U10  
P$16  
P$16  
P$1  
P$2  
P$3  
EN0TXO_P/5.3B  
EN0TXO_N/5.3B  
P$1  
P$2  
P$3  
U13  
1
8
U14  
P$1  
P$8  
1
2
3
4
5
6
7
8
9
TX+  
TX-  
RX+  
TERM1A  
TERM1B  
RX-  
TERM2A  
TERM2B  
CHASSIS  
CHASSIS  
P$14  
P$14  
2
3
7
6
P$2  
P$3  
P$7  
P$6  
R32  
P$15  
P$15  
75  
P$11  
P$11  
P$6  
P$7  
P$8  
4
5
10  
EN0RXI_P/5.3B  
EN0RXI_N/5.3B  
P$6  
P$7  
P$8  
P$4  
P$5  
P$9  
P$9  
R43  
P$10  
P$10  
75  
C31  
4700pF  
U10 May be populated with either HX1188FNL or HX1198FNL.  
HX1198FNL preferred for best Ethernet performance.  
GND  
PF4/3.2C  
PF0/3.2C  
GND  
For Ethernet example Applications:  
LED4 is default configured as Ethernet Link OK  
LED3 is default configured as Ethernet TX/RX activity  
GND  
User may re-configure these pins / LED's for any  
application usage.  
1
2
3
4
5
6
JP2 can be used to measure MCU current  
consumption with a multi-meter.  
WAKE  
JP2  
1
2
A
B
C
D
E
A
B
C
D
E
MCU_3V3/4.1A  
SWITCH_TACTILE  
GND  
TP10  
C47  
C48  
TP11  
R39  
CRYATL_32K_SMD  
1M  
12pF  
12pF  
P$2  
P$1  
WAKE/3.3D  
PP$$12  
R42  
0
51  
TP9  
Power Control Jumper:  
Y3  
TARGET_RESET/3.2D  
C3  
0.1uF  
U1G$2  
1) To power from Debug install jumper on pins 5 - 6  
2) To power from Target USB install jumper on pins 3 - 4  
GND  
GND  
R38  
R38 and C3 Used to meet  
VBAT rise time requirements  
R51  
100  
P$66  
P$67  
P$65  
P$64  
P$68  
XOSC0  
XOSC1  
HIB  
WAKE  
VBAT  
C46  
3) To power from BoosterPack 5V install jumper on pins 1 - 2  
This is also the off position if BoosterPack does not  
supply power  
TP13  
R41  
0
P$70  
RESET  
0.1uF  
P$8  
P$9  
GND  
VDDA  
VREFA+  
P$88  
P$89  
When powered from BoosterPack TPS2052B does not  
provide current limit protection.  
OSC0  
OSC1  
R49  
2k  
P$7  
R41 may be removed and precision  
reference applied to TP13  
When powered by BoosterPack, USB host mode does not  
supply power to connected devices  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
P$53  
P$54  
P$56  
P$57  
P$59  
P$16  
P$26  
P$28  
P$39  
P$47  
P$51  
P$52  
P$69  
P$79  
P$90  
P$101  
P$113  
P$122  
EN0RXI_N  
EN0RXIN  
EN0RXIP  
EN0TXON  
EN0TXOP  
RBIAS  
EN0RXI_P  
EN0TXO_N  
EN0TXO_P  
RBIAS  
JP1  
GND  
1
3
5
2
4
6
VBUS  
MCU_3V3/6.2A  
TARGET_VBUS/3.2C  
DEBUG_VBUS/6.4A  
C44  
12pF  
C40  
C41  
C42  
C43  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
P$10  
GNDA  
P$17  
P$48  
P$55  
P$58  
P$80  
P$114  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
TP12  
GND  
C45  
H4  
MOUNT-HOLE3.2  
P$87  
P$115  
VDDC  
VDDC  
12pF  
H6  
MOUNT-HOLE3.2  
C4  
0.1uF  
C14  
C15  
GND  
1.0uF  
2.2uF  
GND  
H1  
MOUNT-HOLE3.2  
GND  
VBUS  
+5V  
TP8  
TPS2052B provides current limit for main 5V power.  
Also provides power switching for USB host/OTG modes  
U4  
TPS2052B_DRB_8  
For Host/OTG:  
PD6 configured as USB0EPEN peripheral function.  
2
3
7
8
IN  
*EN1  
OUT1  
*OC1  
R36  
100k  
VBUS  
PQ4 configure as individual pin interrupt. Indicates  
power fault on the USB bus. USB0PFLT peipheral pin  
not available due to pin mux and use on BoosterPacks.  
4
PD6/3.2B  
*EN2  
Primary 3.3V regulator  
Disconnect JP3 to power device from 3V3 BoosterPack  
USB Host mode does not supply power to devices  
when powered from a BoosterPack  
1
9
6
5
TARGET_VBUS/3.2C  
GND  
EPAD  
OUT2  
*OC2  
PQ4/3.4D  
For Applications that do not use USB:  
Configure PD6 as input with internal pull-down  
enabled. Turns off power to TARGET_VBUS  
+5V  
C20  
GND  
U5  
TPS73733_DRV_6  
2.2uF  
6
4
1
IN  
OUT  
TP3  
C21  
0.1uF  
EN  
2
5
NR/FB  
NC  
3
7
GND  
EPAD  
C19  
0.1uF  
GND  
GND  
GND  
1
2
3
4
5
6
Use this for JTAG IN from external debugger. See X1  
jumpers for information about debug out to an  
external target.  
R40 must be removed for debug out.  
R40 must be instaled for debug in.  
U6  
JTAG PULL-UPS  
5.6k  
R28  
10k  
DEBUG_VBUS/5.1B  
10k  
TARGET_TCK/SWCLK/1.2A  
R29  
MCU_3V3/5.6B  
GND  
R1  
10k  
TARGET_TMS/SWDIO/1.2B  
P1  
P3  
P5  
P7  
P9  
P2  
P4  
P6  
P8  
P10  
DEBUG_PC1/TMS/SWDIO  
DEBUG_PC0/TCK/SWCLK  
DEBUG_PC3/TDO/SWO  
DEBUG_PC2/TDI  
R2  
VTARGET  
EXTDBG  
GND  
P$7  
GND1  
TMS  
TCK  
TDO  
TDI  
RESET  
R40  
0
P$17  
P$18  
P$19  
P$20  
P$21  
P$22  
P$23  
P$24  
P$45  
VCP_RXD  
VCP_TXD  
EXTERNAL_DEBUG  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
A
B
C
D
E
A
B
C
D
E
P$46  
P$47  
P$48  
P$58  
P$57  
P$1  
U20  
TM4C123GH6PMI  
DEBUG_PC0/TCK/SWCLK  
DEBUG_PC1/TMS/SWDIO  
DEBUG_PC3/TDO/SWO  
DEBUG_PC2/TDI  
VERSION_1  
VERSION_2  
10k  
ICDI_TCK  
DEBUG_RESET_OUT  
R4  
10k  
JTAG_ARM_10PIN  
TP2  
ICDI_TMS  
DEBUG_RESET_OUT  
P$4  
EXTERNAL_DEBUG  
GND  
R5  
EXTERNAL_DEBUG pull low to use external debugger  
to debug the target. Causes ICDI chip to tri-state the JTAG lines  
P$52  
P$51  
P$50  
P$49  
P$16  
P$15  
P$14  
P$13  
P$61  
P$62  
P$63  
P$64  
P$43  
P$44  
P$53  
P$10  
VERSION_0  
PC0/TCK  
PC1/TMS  
PC2/TDI  
PC3/TDO  
PC4  
PC5  
PC6  
PC7  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
TP1  
U22G$1  
P1  
DEBUG_ACTIVE  
DEBUG_VBUS/5.1B  
VBUS  
DM  
DP  
ID  
GND  
5
P2  
P3  
P4  
P5  
ICDI_USBD_N  
ICDI_USBD_P  
NC  
GND  
ICDI_TCK  
ICDI_TMS  
ICDI_TDI  
3
DEBUG_PC3/TDO/SWO  
7
ICDI_TDO  
RTCK  
RESET  
VTREF  
TDO  
P$9  
P$8  
P$7  
P$6  
P$59  
P$60  
P$28  
P$29  
P$30  
P$31  
P$5  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
PF0  
PF1  
PF2  
PF3  
PF4  
10  
1
ICDI_RESET  
DEBUG_PC1/TMS/SWDIO  
DEBUG_PC0/TCK/SWCLK  
PE4 ETM_ENn Leave Open  
use GPIO Internal weak pullup.  
PE5 LS_PRESENTn Leave Open  
use GPIO internal weak pullup  
6
ICDI_TDO  
C33  
9
GND  
TRST  
TCK  
3300pF  
OMIT  
4
P$38  
P$32  
P$33  
P$37  
P$2  
RESET  
WAKE  
HIB  
2
GND  
GND  
TMS  
P$41  
P$40  
GND  
OSC1  
OSC0  
8
TDI  
VBAT  
VDDA  
P$34  
P$35  
P$36  
XOSC0  
GNDX  
XOSC1  
2k  
U21  
C10 C11 C12 C13  
P$11  
P$26  
P$42  
P$54  
R50  
VDD0  
VDD1  
VDD2  
VDD3  
GND  
0.1uF 0.1uF 0.1uF 0.1uF  
P$3  
GNDA  
C8  
P$12  
P$27  
P$39  
P$55  
GND0  
GND1  
GND2  
GND3  
12pF  
P$25  
P$56  
GND  
VDDC0  
VDDC1  
ICDI_VDDC  
ICDI_RESET  
OMIT  
GND  
C5  
C6  
C7  
TM4C123xH6PMI  
C2  
0.1uF  
0.1uF 1.0uF 2.2uF  
VERSION RESISTOR TABLE:  
*use internal GPIO weak pullups.  
ALL OMITTED: Legacy mode. (Stellaris ICDI)  
ALL POPULATED: Everything enabled  
Version 0 populated: UART CTS/RTS and Analog inputs  
GND  
U3  
TPD4S012_DRY_6  
C9  
GND  
GND  
R13  
Jumpers to bridge from ICDI to Target portion of LaunchPad  
OMIT  
VERSION_1  
12pF  
5.6k  
R14  
0
1
2
3
6
5
4
TARGET_TXD/2.5D  
VCP_RXD  
VCP_TXD  
ICDI_USBD_P  
ICDI_USBD_N  
DEBUG_VBUS/5.1B  
D+  
D-  
ID  
VBUS  
N.C.  
GND  
OMIT  
VERSION_2  
R6  
0
GND  
5.6k  
R12  
TARGET_RXD/2.5D  
OMIT  
VERSION_0  
R7  
0
GND  
5.6k  
TARGET_TCK/SWCLK/1.2A  
DEBUG_PC0/TCK/SWCLK  
DEBUG_PC1/TMS/SWDIO  
DEBUG_PC2/TDI  
OMIT  
GND  
R8  
0
TARGET_TXD/2.5D  
VCP_RXD  
VCP_TXD  
X1-14 X1-13  
X1-12 X1-11  
X1-10 X1-9  
TARGET_TMS/SWDIO/1.2B  
TARGET_RXD/2.5D  
TARGET_TCK/SWCLK/1.2A  
TARGET_TMS/SWDIO/1.2B  
TARGET_TDI/1.2B  
DEBUG_PC0/TCK/SWCLK  
DEBUG_PC1/TMS/SWDIO  
DEBUG_PC2/TDI  
R10  
0
X1-8  
X1-6  
X1-4  
X1-2  
X1-7  
X1-5  
X1-3  
X1-1  
TARGET_TDI/1.2B  
TARGET_TDO/SWO/1.2B  
TARGET_RESET/5.2A  
DEBUG_PC3/TDO/SWO  
DEBUG_RESET_OUT  
R11  
0
TSW-107-02-S-D  
TARGET_TDO/SWO/1.2B  
DEBUG_PC3/TDO/SWO  
DEBUG_RESET_OUT  
R15  
0
X1 omitted by default  
To debug out from ICDI to off board MCU remove  
0 ohm jumper resistors. To go back from debug  
out to debugging the target MCU install X1 and  
place jumpers on all pins.  
TARGET_RESET/5.2A  
R16  
www.ti.com  
Revision History  
Revision History  
Changes from B Revision (May 2015) to C Revision ...................................................................................................... Page  
GLOBAL: Updated/Changed all instances of "UART4" to "UART2"................................................................ 4  
31  
SPMU365CMarch 2014Revised October 2016  
Revision History  
Submit Documentation Feedback  
Copyright © 2014–2016, Texas Instruments Incorporated  
STANDARD TERMS FOR EVALUATION MODULES  
1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or  
documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance  
with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.  
1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility  
evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not  
finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For  
clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions  
set forth herein but rather shall be subject to the applicable terms that accompany such Software  
1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned,  
or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production  
system.  
2
Limited Warranty and Related Remedies/Disclaimers:  
2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License  
Agreement.  
2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM  
to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by  
neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have  
been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications  
or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control  
techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM.  
User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10)  
business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.  
2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit  
User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty  
period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or  
replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be  
warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day  
warranty period.  
3
Regulatory Notices:  
3.1 United States  
3.1.1 Notice applicable to EVMs not FCC-Approved:  
FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software  
associated with the kit to determine whether to incorporate such items in a finished product and software developers to write  
software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or  
otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition  
that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference.  
Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must  
operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.  
3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:  
CAUTION  
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not  
cause harmful interference, and (2) this device must accept any interference received, including interference that may cause  
undesired operation.  
Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to  
operate the equipment.  
FCC Interference Statement for Class A EVM devices  
NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of  
the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is  
operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not  
installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.  
Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to  
correct the interference at his own expense.  
FCC Interference Statement for Class B EVM devices  
NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of  
the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential  
installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance  
with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference  
will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which  
can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more  
of the following measures:  
Reorient or relocate the receiving antenna.  
Increase the separation between the equipment and receiver.  
Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.  
Consult the dealer or an experienced radio/TV technician for help.  
3.2 Canada  
3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247  
Concerning EVMs Including Radio Transmitters:  
This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:  
(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may  
cause undesired operation of the device.  
Concernant les EVMs avec appareils radio:  
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation  
est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit  
accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.  
Concerning EVMs Including Detachable Antennas:  
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser)  
gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type  
and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for  
successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types  
listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated.  
Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited  
for use with this device.  
Concernant les EVMs avec antennes détachables  
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et  
d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage  
radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope  
rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le  
présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le  
manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne  
non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de  
l'émetteur  
3.3 Japan  
3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に  
輸入される評価用キット、ボードについては、次のところをご覧ください。  
http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page  
3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified  
by TI as conforming to Technical Regulations of Radio Law of Japan.  
If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the  
instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs  
(which for the avoidance of doubt are stated strictly for convenience and should be verified by User):  
1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal  
Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for  
Enforcement of Radio Law of Japan,  
2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to  
EVMs, or  
3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan  
with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note  
that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.  
【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けて  
いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの  
措置を取っていただく必要がありますのでご注意ください。  
1. 電波法施行規則第6条第1項第1号に基づく平成18328日総務省告示第173号で定められた電波暗室等の試験設備でご使用  
いただく。  
2. 実験局の免許を取得後ご使用いただく。  
3. 技術基準適合証明を取得後ご使用いただく。  
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。  
上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ  
ンスツルメンツ株式会社  
東京都新宿区西新宿6丁目24番1号  
西新宿三井ビル  
3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page  
電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http:/  
/www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page  
3.4 European Union  
3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):  
This is a class A product intended for use in environments other than domestic environments that are connected to a  
low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this  
product may cause radio interference in which case the user may be required to take adequate measures.  
4
EVM Use Restrictions and Warnings:  
4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT  
LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.  
4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling  
or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information  
related to, for example, temperatures and voltages.  
4.3 Safety-Related Warnings and Restrictions:  
4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user  
guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and  
customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input  
and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or  
property damage. If there are questions concerning performance ratings and specifications, User should contact a TI  
field representative prior to connecting interface electronics including input power and intended loads. Any loads applied  
outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible  
permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any  
load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.  
During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit  
components may have elevated case temperatures. These components include but are not limited to linear regulators,  
switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the  
information in the associated documentation. When working with the EVM, please be aware that the EVM may become  
very warm.  
4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the  
dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.  
User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees,  
affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic  
and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely  
limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and  
liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or  
designees.  
4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal,  
state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all  
responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and  
liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local  
requirements.  
5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate  
as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as  
accurate, complete, reliable, current, or error-free.  
6. Disclaimers:  
6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT  
LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL  
FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT  
NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS  
FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE  
SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.  
6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE  
CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR  
INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE  
EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR  
IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.  
7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS  
LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES,  
EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY  
HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY  
WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL  
THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.  
8. Limitations on Damages and Liability:  
8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE,  
INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE  
TERMS OR THE USE OF THE EVMS , REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF  
SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR  
REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING,  
OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF  
USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI  
MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS  
OCCURRED.  
8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED  
HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN  
CONNECTION WITH THESE TERMS, , EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR  
EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE  
CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.  
9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s)  
will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in  
a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable  
order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s),  
excluding any postage or packaging costs.  
10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas,  
without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to  
these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas.  
Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief  
in any United States or foreign court.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2017, Texas Instruments Incorporated  
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES  
Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,  
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are  
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you  
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of  
this Notice.  
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI  
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,  
enhancements, improvements and other changes to its TI Resources.  
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your  
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications  
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You  
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)  
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that  
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you  
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any  
testing other than that specifically described in the published documentation for a particular TI Resource.  
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include  
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO  
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY  
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or  
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR  
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO  
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF  
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL  
PROPERTY RIGHTS.  
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT  
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF  
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,  
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR  
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES.  
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-  
compliance with the terms and provisions of this Notice.  
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.  
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation  
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2017, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY