MSC1202Y2RHHR [TI]

Precision Analog-to-Digital Converter (ADC) and Current-Output Digital Converter (DAC);
MSC1202Y2RHHR
型号: MSC1202Y2RHHR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Precision Analog-to-Digital Converter (ADC) and Current-Output Digital Converter (DAC)

时钟 微控制器 外围集成电路
文件: 总92页 (文件大小:1417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ ꢆꢇ ꢈ ꢇ ꢉꢊ ꢆꢋꢌ ꢍ ꢆꢌ ꢎ ꢄꢋ ꢄꢍ ꢉꢊ ꢏꢆ ꢇꢐꢂ ꢁ ꢍꢂ ꢁ ꢑ ꢈꢎ ꢏꢒ  
ꢉ ꢇꢓ ꢏ ꢔ ꢁꢁ ꢂ ꢇꢍ ꢌ ꢕꢔ ꢍ ꢖꢔꢍ ꢎ ꢄꢋꢄ ꢍ ꢉꢊ ꢌ ꢍ ꢆꢌ ꢈꢇ ꢉꢊ ꢆꢋ ꢏꢆ ꢇꢐꢂ ꢁ ꢍꢂ ꢁ ꢑ ꢎꢈ ꢏꢒ  
ꢗ ꢄꢍ ꢘ ꢙ ꢚꢛ ꢜ ꢝꢄ ꢃ ꢁ ꢆꢃꢆ ꢇꢍ ꢁꢆ ꢊꢊ ꢂ ꢁ ꢉꢇ ꢓ ꢞꢊ ꢉꢅ ꢘ ꢝ ꢂꢟ ꢆꢁ ꢠ  
Peripheral Features  
FEATURES  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
16 Digital I/O Pins  
ANALOG FEATURES  
Additional 32-Bit Accumulator  
Two 16-Bit Timer/Counters  
System Timers  
D
MSC1200 and MSC1201:  
− 24 Bits No Missing Codes  
− 22 Bits Effective Resolution At 10Hz  
− Low Noise: 75nV  
Programmable Watchdog Timer  
Full-Duplex USART  
D
MSC1202:  
− 16 Bits No Missing Codes  
− 16 Bits Effective Resolution At 200Hz  
− Noise: 600nV  
Basic SPI  
2
Basic I C  
Power Management Control  
D
D
D
D
D
D
D
D
D
D
D
PGA From 1 to 128  
Precision On-Chip Voltage Reference  
8 Diff/Single-Ended Channels (MSC1200)  
6 Diff/Single-Ended Channels (MSC1201/02)  
On-Chip Offset/Gain Calibration  
Offset Drift: 0.1ppm/°C  
Gain Drift: 0.5ppm/°C  
On-Chip Temperature Sensor  
Selectable Buffer Input  
Signal-Source Open-Circuit Detect  
8-Bit Current DAC  
Internal Clock Divider  
Idle Mode Current < 200mA  
Stop Mode Current < 100nA  
Digital Brownout Reset  
Analog Low-Voltage Detect  
20 Interrupt Sources  
GENERAL FEATURES  
D
D
Each Device Has Unique Serial Number  
Packages:  
− TQFP-48 (MSC1200)  
− QFN-36 (MSC1201/02)  
DIGITAL FEATURES  
Microcontroller Core  
D
D
D
Low Power: 3mW at 3.0V, 1MHz  
D
8051-Compatible  
High-Speed Core:  
− 4 Clocks per Instruction Cycle  
Industrial Temperature Range:  
−40°C to +125°C  
Power Supply: 2.7V to 5.25V  
D
D
D
D
D
D
DC to 33MHz  
On-Chip Oscillator  
PLL with 32kHz Capability  
Single Instruction 121ns  
Dual Data Pointer  
APPLICATIONS  
D
D
D
D
D
D
D
D
D
D
D
Industrial Process Control  
Instrumentation  
Memory  
Liquid/Gas Chromatography  
Blood Analysis  
D
D
D
D
D
D
D
4kB or 8kB of Flash Memory  
Flash Memory Partitioning  
Endurance 1M Erase/Write Cycles,  
100-Year Data Retention  
256 Bytes Data SRAM  
In-System Serially Programmable  
Flash Memory Security  
Smart Transmitters  
Portable Instruments  
Weigh Scales  
Pressure Transducers  
Intelligent Sensors  
Portable Applications  
DAS Systems  
1kB Boot ROM  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢣ ꢕ ꢎꢤ ꢏ ꢥꢦ ꢕꢧ ꢎ ꢈꢥꢈ ꢄꢇ ꢨꢆ ꢁ ꢟꢉ ꢍꢄꢆꢇ ꢄꢅ ꢃꢔ ꢁ ꢁ ꢂꢇꢍ ꢉꢅ ꢆꢨ ꢖꢔꢩ ꢊꢄꢃ ꢉꢍꢄ ꢆꢇ ꢓꢉ ꢍꢂꢪ ꢀꢁ ꢆꢓꢔ ꢃꢍꢅ  
ꢃ ꢆꢇ ꢨꢆꢁ ꢟ ꢍꢆ ꢅ ꢖꢂ ꢃ ꢄ ꢨꢄ ꢃ ꢉ ꢍꢄ ꢆꢇꢅ ꢖ ꢂꢁ ꢍꢘꢂ ꢍꢂ ꢁ ꢟꢅ ꢆꢨ ꢥꢂꢫ ꢉꢅ ꢦꢇꢅ ꢍꢁ ꢔꢟ ꢂꢇꢍ ꢅ ꢅꢍ ꢉꢇꢓ ꢉꢁ ꢓ ꢗ ꢉꢁ ꢁ ꢉ ꢇꢍꢠꢪ  
ꢀꢁ ꢆ ꢓꢔꢃ ꢍ ꢄꢆ ꢇ ꢖꢁ ꢆ ꢃ ꢂ ꢅ ꢅ ꢄꢇ ꢋ ꢓꢆ ꢂ ꢅ ꢇꢆꢍ ꢇꢂ ꢃꢂ ꢅꢅ ꢉꢁ ꢄꢊ ꢠ ꢄꢇꢃ ꢊꢔꢓ ꢂ ꢍꢂ ꢅꢍꢄ ꢇꢋ ꢆꢨ ꢉꢊ ꢊ ꢖꢉ ꢁ ꢉꢟ ꢂꢍꢂ ꢁ ꢅꢪ  
Copyright 2004−2006, Texas Instruments Incorporated  
www.ti.com  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
(1)  
PACKAGE/ORDERING INFORMATION  
FLASH MEMORY  
(BYTES)  
ADC RESOLUTION  
(BITS)  
PACKAGE  
MARKING  
PRODUCT  
MSC1200Y2  
MSC1200Y3  
MSC1201Y2  
MSC1201Y3  
MSC1202Y2  
MSC1202Y3  
4k  
8k  
4k  
8k  
4k  
8k  
24  
24  
24  
24  
16  
16  
MSC1200Y2  
MSC1200Y3  
MSC1201Y2  
MSC1201Y3  
MSC1202Y2  
MSC1202Y3  
(1)  
For the most current package and ordering information, see the Package Option Addendum located at the end of this datasheet, or refer to our  
web site at www.ti.com.  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
handledwith appropriate precautions. Failure to observe  
MSC120x FAMILY FEATURES  
(1)  
FEATURES  
(2)  
MSC120xY2  
(2)  
MSC120xY3  
proper handling and installation procedures can cause damage.  
Flash Program Memory (Bytes)  
Flash Data Memory (Bytes)  
Up to 4k  
Up to 2k  
256  
Up to 8k  
Up to 4k  
256  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
Internal Scratchpad RAM (Bytes)  
(1)  
(2)  
All peripheral features are the same on all devices; the flash memory size  
is the only difference.  
The last digit of the part number (N) represents the onboard flash size =  
N
(2 )kBytes.  
(1)  
ABSOLUTE MAXIMUM RATINGS  
MSC120x  
UNITS  
Analog Inputs  
Momentary  
100  
10  
mA  
mA  
V
Input current  
Continuous  
Input voltage  
AGND − 0.3 to AV + 0.3  
DD  
Power Supply  
DV  
to DGND  
to AGND  
−0.3 to +6  
−0.3 to +6  
−0.3 to +0.3  
V
V
DD  
DD  
AV  
AGND to DGND  
V
VREF to AGND  
−0.3 to AV  
DD  
+ 0.3  
+ 0.3  
V
Digital input voltage to DGND  
Digital output voltage to DGND  
−0.3 to DV  
V
DD  
DD  
−0.3 to DV  
+ 0.3  
V
Maximum junction temperature (T Max)  
J
+150  
°C  
°C  
°C  
W
Operating temperature range  
Storage temperature range  
Package power dissipation  
Output current, all pins  
−40 to +125  
−65 to +150  
(T Max − T  
)/q  
J
AMBIENT JA  
200  
mA  
s
Output pin short-circuit  
10  
High K (2s 2p)  
Low K (1s)  
21.9  
103.7  
21.9  
°C/W  
°C/W  
°C/W  
Junction to ambient (q  
)
JA  
Thermal resistance  
Junction to case (q  
)
JC  
Digital Outputs  
Output current  
Continuous  
100  
100  
300  
mA  
mA  
mA  
I/O source/sink current  
Power pin maximum  
(1)  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for  
extended periods may affect device reliability.  
2
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ELECTRICAL CHARACTERISTICS: AVDD = 5V  
All specifications from T  
to T  
, DV  
= +2.7V to +5.25V, f  
= 15.625kHz, PGA = 1, Buffer ON, f  
= 10Hz, ADC Bipolar Mode, and  
MIN  
MAX  
DD  
MOD  
DATA  
V
REF  
(REF IN+) − (REF IN−) = +2.5V, unless otherwise noted.  
MSC120x  
TYP  
PARAMETER  
CONDITION  
MIN  
MAX  
UNITS  
Analog Input (AIN0-AIN5, AINCOM)  
Buffer OFF  
Buffer ON  
AGND − 0.1  
AV + 0.1  
V
V
DD  
Analog Input Range  
AGND + 50mV  
AV − 1.5  
DD  
Full-Scale Input Voltage Range  
Differential Input Impedance  
Input Current  
(In+) − (In−), Bipolar Mode  
V /PGA  
REF  
V
(1)  
Buffer OFF  
7/PGA  
MΩ  
nA  
Buffer ON  
0.5  
Fast Settling Filter  
2
−3dB  
0.469 f  
DATA  
Sinc Filter  
−3dB  
0.318 f  
Bandwidth  
DATA  
DATA  
3
Sinc Filter  
−3dB  
0.262 f  
Programmable Gain Amplifier  
Input Capacitance  
User-Selectable Gain Range  
Buffer ON  
1
128  
7
0.5  
2
pF  
pA  
µA  
Input Leakage Current  
Multiplexer Channel OFF, T = +25°C  
Burnout Current Sources  
ADC Offset DAC  
Buffer ON  
Offset DAC Range  
V /(2 PGA)  
REF  
V
Offset DAC Resolution  
Offset DAC Full-Scale Gain Error  
Offset DAC Full-Scale Gain Error Drift  
System Performance  
8
Bits  
1.0  
0.6  
% of Range  
ppm/°C  
MSC1200, MSC1201  
MSC1202  
24  
16  
Bits  
Bits  
Bits  
Bits  
Resolution  
MSC1200, MSC1201  
MSC1202  
22  
16  
ENOB  
Output Noise  
See Typical Characteristics  
3
MSC1201, Sinc Filter, Decimation > 360  
24  
16  
Bits  
Bits  
No Missing Codes  
3
MSC1202, Sinc Filter  
Integral Nonlinearity  
Offset Error  
End Point Fit, Differential Input  
After Calibration  
0.0004  
1.5  
0.0015  
% of FSR  
ppm of FS  
ppm of FS/°C  
%
(2)  
Offset Drift  
Before Calibration  
After Calibration  
0.1  
(3)  
Gain Error  
0.005  
0.5  
(2)  
Gain Error Drift  
Before Calibration  
ppm/°C  
% of FS  
% of FS  
dB  
System Gain Calibration Range  
System Offset Calibration Range  
80  
120  
50  
−50  
At DC, V = 0V  
120  
130  
120  
120  
100  
100  
100  
IN  
f
f
f
f
f
= 60Hz, f  
= 50Hz, f  
= 60Hz, f  
= 50Hz, f  
= 60Hz, f  
= 10Hz  
= 50Hz  
= 60Hz  
= 50Hz  
= 60Hz  
dB  
CM  
CM  
CM  
CM  
CM  
DATA  
DATA  
DATA  
DATA  
DATA  
Common-Mode Rejection  
Normal-Mode Rejection  
dB  
dB  
dB  
dB  
(4)  
Power-Supply Rejection  
(1)  
At DC, dB = −20log(V /V  
OUT  
)
DD  
, V = 0V  
IN  
dB  
The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7M/64).  
Calibration can minimize these errors.  
The gain self-calibration cannot have a REF IN+ of more than AV −1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.  
(2)  
(3)  
(4)  
DD  
V  
OUT  
is change in digital result.  
3
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ELECTRICAL CHARACTERISTICS: AVDD = 5V (continued)  
All specifications from T  
to T  
, DV  
= +2.7V to +5.25V, f  
= 15.625kHz, PGA = 1, Buffer ON, f = 10Hz, ADC Bipolar Mode, and  
DATA  
MIN  
MAX  
DD  
MOD  
V
REF  
(REF IN+) − (REF IN−) = +2.5V, unless otherwise noted.  
MSC120x  
TYP  
PARAMETER  
CONDITION  
MIN  
MAX  
UNITS  
Voltage Reference Input  
(3)  
DD  
Reference Input Range  
REF IN+, REF IN−  
(REFIN+) − (REFIN−)  
AGND  
0.1  
AV  
V
V
ADC V  
REF  
V
REF  
2.5  
115  
1
AV  
DD  
V
REF  
Common-Mode Rejection  
At DC  
dB  
µA  
Input Current  
V
REF  
= 2.5V, PGA = 1  
On-Chip Voltage Reference  
VREFH = 1, T = +25°C  
2.49  
1.23  
2.5  
1.25  
8
2.51  
1.27  
V
V
Output Voltage  
VREFH = 0  
Short-Circuit Current Source  
Short-Circuit Current Sink  
Short-Circuit Duration  
mA  
µA  
65  
Sink or Source  
Indefinite  
0.4  
Startup Time from Power ON  
Temperature Sensor  
C
= 0.1µF  
ms  
REFOUT  
Temperature Sensor Voltage  
T = +25°C  
115  
375  
345  
mV  
MSC1200  
µV/°C  
µV/°C  
Temperature Sensor Coefficient  
MSC1201, MSC1202  
IDAC Output Characteristics  
IDAC Resolution  
8
1
Bits  
mA  
Full-Scale Output Current  
IDAC = 0FFh  
IDAC = 00h  
Maximum Short-Circuit Current Duration  
Compliance Voltage  
Indefinite  
AV − 1.5  
DD  
V
IDAC Zero Code Current  
IDAC INL  
0
µA  
1.3  
LSB  
Analog Power-Supply Requirements  
Analog Power-Supply Voltage  
AV  
DD  
4.75  
5.0  
< 1  
5.25  
V
BOR OFF, External Clock Mode, Analog OFF,  
ALVD OFF, PDADC = PDIDAC = 1  
Analog Current  
nA  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
PGA = 128, Buffer ON  
170  
430  
230  
770  
µA  
µA  
µA  
µA  
ADC Current  
Analog  
Power-Supply  
Current  
(I  
)
ADC  
V
Supply Current  
)
REF  
ADC ON  
360  
230  
µA  
µA  
(I  
VREF  
I
Supply Current  
)
DAC  
IDAC = 00h  
(I  
IDAC  
(1)  
The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7M/64).  
Calibration can minimize these errors.  
(2)  
(3)  
(4)  
The gain self-calibration cannot have a REF IN+ of more than AV −1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.  
DD  
V  
OUT  
is change in digital result.  
4
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ELECTRICAL CHARACTERISTICS: AVDD = 3V  
All specifications from T  
to T  
, DV  
= +2.7V to +5.25V,  
f
= 15.625kHz, PGA = 1, Buffer ON, f  
= 10Hz, ADC Bipolar Mode, and  
DATA  
MIN  
MAX  
DD  
MOD  
V
REF  
(REF IN+) − (REF IN−) = +1.25V, unless otherwise noted.  
MSC120x  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
Analog Input (AIN0-AIN5, AINCOM)  
Buffer OFF  
Buffer ON  
AGND − 0.1  
AV + 0.1  
V
V
DD  
Analog Input Range  
AGND + 50mV  
AV − 1.5  
DD  
Full-Scale Input Voltage Range  
Differential Input Impedance  
Input Current  
(In+) − (In−), Bipolar Mode  
V /PGA  
REF  
V
(1)  
Buffer OFF  
7/PGA  
MΩ  
nA  
Buffer ON  
0.5  
Fast Settling Filter  
2
−3dB  
0.469 f  
DATA  
Sinc Filter  
−3dB  
0.318 f  
Bandwidth  
DATA  
DATA  
3
Sinc Filter  
−3dB  
0.262 f  
Programmable Gain Amplifier  
Input Capacitance  
User-Selectable Gain Range  
Buffer ON  
1
128  
7
0.5  
2
pF  
pA  
µA  
Input Leakage Current  
Multiplexer Channel Off, T = +25°C  
Buffer ON  
Burnout Current Sources  
ADC Offset DAC  
Offset DAC Range  
V /(2PGA)  
REF  
V
Offset DAC Resolution  
Offset DAC Full-Scale Gain Error  
Offset DAC Full-Scale Gain Error Drift  
System Performance  
8
Bits  
1.5  
% of Range  
ppm/°C  
0.6  
MSC1200, MSC1201  
MSC1202  
24  
16  
Bits  
Bits  
Bits  
Bits  
Resolution  
MSC1200, MSC1201  
MSC1202  
22  
16  
ENOB  
Output Noise  
See Typical Characteristics  
3
MSC1200, MSC1201, Sinc Filter,  
Decimation > 360  
24  
16  
Bits  
No Missing Codes  
3
MSC1202, Sinc Filter  
Bits  
% of FSR  
ppm of FS  
ppm of FS/°C  
%
Integral Nonlinearity  
Offset Error  
End Point Fit, Differential Input  
After Calibration  
0.0004  
1.3  
0.0015  
(2)  
Offset Drift  
Before Calibration  
After Calibration  
0.1  
(3)  
Gain Error  
0.005  
0.5  
(2)  
Gain Error Drift  
Before Calibration  
ppm/°C  
% of FS  
% of FS  
dB  
System Gain Calibration Range  
System Offset Calibration Range  
80  
120  
50  
−50  
At DC, V = 0V  
130  
130  
120  
120  
100  
100  
88  
IN  
f
f
f
f
f
= 60Hz, f  
= 50Hz, f  
= 60Hz, f  
= 10Hz  
= 50Hz  
= 60Hz  
= 50Hz  
= 60Hz  
dB  
CM  
CM  
CM  
SIG  
SIG  
DATA  
DATA  
DATA  
Common-Mode Rejection  
Normal-Mode Rejection  
dB  
dB  
= 50Hz, f  
= 60Hz, f  
dB  
DATA  
dB  
DATA  
(4)  
Power-Supply Rejection  
(1)  
At DC, dB = −20log(V  
/V  
OUT  
)
DD  
, V = 0V  
IN  
dB  
The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7M/64).  
Calibration can minimize these errors.  
(2)  
(3)  
(4)  
The gain self-calibration cannot have a REF IN+ of more than AV −1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.  
DD  
V  
OUT  
is change in digital result.  
5
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ELECTRICAL CHARACTERISTICS: AVDD = 3V (continued)  
All specifications from T  
to T  
, DV  
= +2.7V to +5.25V,  
f
= 15.625kHz, PGA = 1, Buffer ON, f = 10Hz, ADC Bipolar Mode, and  
DATA  
MIN  
MAX  
DD  
MOD  
V
REF  
(REF IN+) − (REF IN−) = +1.25V, unless otherwise noted.  
MSC120x  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
Voltage Reference Input  
(3)  
DD  
Reference Input Range  
REF IN+, REF IN−  
(REFIN+) − (REFIN−)  
AGND  
0.1  
AV  
V
V
ADC V  
REF  
V
REF  
1.25  
110  
0.5  
AV  
DD  
V
REF  
Common-Mode Rejection  
At DC  
dB  
µA  
Input Current  
V
REF  
= 1.25V, PGA = 1  
On-Chip Voltage Reference  
Output Voltage  
VREFH = 0, T = +25°C  
1.23  
1.25  
2.9  
1.27  
V
Short-Circuit Current Source  
Short-Circuit Current Sink  
Short-Circuit Duration  
Startup Time from Power ON  
Temperature Sensor  
Temperature Sensor Voltage  
mA  
µA  
60  
Sink or Source  
Indefinite  
0.2  
C
= 0.1µF  
ms  
REFOUT  
T = +25°C  
115  
375  
345  
mV  
MSC1200  
µV/°C  
µV/°C  
Temperature Sensor Coefficient  
MSC1201, MSC1202  
IDAC Output Characteristics  
IDAC Resolution  
8
1
Bits  
mA  
Full-Scale Output Source Current  
Maximum Short-Circuit Current Duration  
Compliance Voltage  
Indefinite  
AV − 1.5  
DD  
V
IDAC Zero Code Current  
IDAC INL  
0
µA  
1.5  
LSB  
Analog Power-Supply Requirements  
Analog Power-Supply Voltage  
AV  
DD  
2.7  
3.3  
< 1  
3.6  
V
BOR OFF, External Clock Mode, Analog OFF,  
ALVD OFF, PDADC = PDIDAC = 1  
Analog Current  
nA  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
PGA = 128, Buffer ON  
150  
380  
200  
610  
µA  
µA  
µA  
µA  
ADC Current  
Analog  
Power-Supply  
Current  
(I  
)
ADC  
VREF Supply Current  
(I  
ADC ON  
330  
220  
µA  
µA  
)
VREF  
IDAC Supply Current  
(I  
IDAC = 00h  
)
IDAC  
(1)  
The input impedance for PGA = 128 is the same as that for PGA = 64 (that is, 7M/64).  
Calibration can minimize these errors.  
(2)  
(3)  
(4)  
The gain self-calibration cannot have a REF IN+ of more than AV −1.5V with Buffer ON. To calibrate gain, turn Buffer OFF.  
DD  
V  
OUT  
is change in digital result.  
6
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
DIGITAL CHARACTERISTICS: DVDD = 2.7V to 5.25V  
All specifications from T  
otherwise specified.  
to T  
, FMCON = 10h, all digital outputs high, and PDCON = 00h (all peripherals ON) or PDCON = FFh (all peripherals OFF), unless  
MIN  
MAX  
MSC120x  
MIN  
TYP  
MAX  
PARAMETER  
CONDITIONS  
UNITS  
Digital Power-Supply Requirements  
DV  
2.7  
3.3  
0.7  
0.6  
4.7  
4.3  
3.6  
V
DD  
Normal Mode, f  
Normal Mode, f  
Normal Mode, f  
Normal Mode, f  
= 1MHz, All Peripherals ON  
= 1MHz, All Peripherals OFF  
= 8MHz, All Peripherals ON  
= 8MHz, All Peripherals OFF  
mA  
mA  
mA  
mA  
OSC  
OSC  
OSC  
OSC  
Digital Power-Supply Current  
Internal Oscillator LF Mode (14.8MHz nominal),  
All Peripherals ON  
8.6  
7.9  
mA  
mA  
Internal Oscillator LF Mode (14.8MHz nominal),  
All Peripherals OFF  
Stop Mode, External Clock OFF  
100  
5.0  
1.4  
1.3  
9.3  
8.6  
nA  
V
DV  
DD  
4.75  
5.25  
Normal Mode, f  
Normal Mode, f  
= 1MHz, All Peripherals ON  
= 1MHz, All Peripherals OFF  
= 8MHz, All Peripherals ON  
= 8MHz, All Peripherals OFF  
mA  
mA  
mA  
mA  
OSC  
OSC  
OSC  
OSC  
Normal Mode, f  
Normal Mode, f  
Internal Oscillator LF Mode (14.8MHz nom), All  
Peripherals ON  
18  
16  
33  
mA  
mA  
mA  
Digital Power-Supply Current  
Internal Oscillator LF Mode (14.8MHz nom), All  
Peripherals OFF  
Internal Oscillator HF Mode (29.5MHz nom), All  
Peripherals ON  
Internal Oscillator HF Mode (29.5MHz nom), All  
Peripherals OFF  
31  
mA  
nA  
Stop Mode, External Clock OFF  
100  
Digital Input/Output (CMOS)  
V
IH  
V
IL  
(except XIN pin)  
0.6 DV  
DV  
DD  
V
V
DD  
Logic Level  
(except XIN pin)  
DGND  
0.2 DV  
DD  
Ports 1 and 3, Input Leakage Current, Input  
Mode  
V
= DV  
or V = 0V  
0
µA  
DD  
IH  
IH  
I/O Pin Hysteresis  
700  
mV  
V
I
I
I
I
= 1mA  
DGND  
0.4  
OL  
V
OL  
, Ports 1 and 3, All Output Modes  
= 30mA, 3V (20mA)  
= 1mA  
1.5  
V
OL  
OH  
OH  
DV − 0.4  
DD  
DV − 0.1  
DD  
DV  
DD  
V
V , Ports 1 and 3, Strong Drive Output  
OH  
= 30mA, 3V (20mA)  
DV − 1.5  
DD  
V
Ports 1 and 3, Pull-Up Resistors  
Tolerance = 25%  
13  
kΩ  
FLASH MEMORY CHARACTERISTICS: DV  
= 2.7V to 5.25V  
DD  
MSC120x  
TYP  
MIN  
100,000  
100  
MAX  
PARAMETER  
CONDITIONS  
UNITS  
Flash Memory Endurance  
Flash Memory Data Retention  
Mass and Page Erase Time  
Flash Memory Write Time  
1,000,000  
cycles  
Years  
ms  
Set with FER Value in FTCON, from T  
Set with FWR Value in FTCON  
to T  
10  
30  
MIN  
MAX  
40  
µs  
7
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
(1)  
AC ELECTRICAL CHARACTERISTICS : DV  
= 2.7V to 5.25V  
DD  
MSC120x  
TYP  
MIN  
MAX  
PARAMETER  
CONDITION  
UNITS  
PHASE LOCK LOOP (PLL)  
Input Frequency Range  
PLL LF Mode  
External Crystal/Clock Frequency (f  
PLLDIV = 449 (default)  
)
32.768  
14.8  
kHz  
MHz  
MHz  
ms  
OSC  
PLL HF Mode  
PLLDIV = 899 (must be set by user), DV  
Within 1%  
= 5V  
29.5  
DD  
PLL Lock Time  
2
1
INTERNAL OSCILLATOR (IO)  
IO LF Mode  
See Typical Characteristics  
DV  
DV  
= 5V  
= 5V  
14.8  
29.5  
MHz  
MHz  
ms  
DD  
DD  
IO HF Mode  
IO Settling Time  
Within 1%  
(1)  
Parameters are valid over operating temperature range, unless otherwise specified.  
EXTERNAL CLOCK DRIVE CLK TIMING: SEE FIGURE 1  
2.7V to 3.6V  
MIN  
4.75V to 5.25V  
MAX  
MIN  
MAX  
SYMBOL  
PARAMETER  
UNITS  
External Clock Mode  
(1)  
f
External Crystal Frequency (f  
)
1
0
20  
20  
12  
1
0
33  
33  
12  
MHz  
MHz  
MHz  
ns  
OSC  
OSC  
(1)  
1/t  
External Clock Frequency (f  
)
OSC  
OSC  
External Ceramic Resonator Frequency (f  
(1)  
f
t
t
t
t
)
1
1
OSC  
OSC  
(2)  
High Time  
15  
15  
10  
10  
HIGH  
LOW  
R
(2)  
Low Time  
Rise Time  
ns  
(2)  
(2)  
5
5
5
5
ns  
Fall Time  
= one oscillator clock period for clock divider = 1.  
ns  
F
(1)  
(2)  
t
= 1/f  
OSC  
CLK  
These values are characterized but not 100% production tested.  
tHIGH  
tR  
tF  
VIH  
0.8V  
VIH  
0.8V  
VIH  
0.8V  
VIH  
0.8V  
tLOW  
tOSC  
Figure 1. External Clock Drive CLK  
SERIAL FLASH PROGRAMMING TIMING: SEE FIGURE 2  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
t
t
t
t
t
RST width  
2 t  
5
ns  
µs  
ms  
RW  
RRD  
RFD  
RS  
OSC  
RST rise to P1.0 internal pull high  
RST falling to CPU start  
18  
Input signal to RST falling setup time  
RST falling to P1.0 hold time  
t
ns  
OSC  
18  
ms  
RH  
tRW  
RST  
tRRD  
tRS  
tRFD, tRH  
P1.0/PROG  
NOTE: P1.0 is internally pulledup with ~11k during RST high.  
Figure 2. Serial Flash Programming Timing  
8
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
PIN CONFIGURATIONS  
Top View  
TQFP  
48 47 46 45 44 43 42 41 40 39 38 37  
NC(1)  
DVDD  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
XIN  
XOUT  
DGND  
RST  
DVDD  
3
DGND  
4
DGND  
5
P1.6/INT4  
P1.5/INT3  
P1.4/INT2/SS  
P1.3/DIN  
P1.2/DOUT  
P1.1  
NC(1)  
6
MSC1200  
NC(1)  
7
NC(1)  
8
9
AVDD  
10  
11  
12  
AGND  
AGND  
AINCOM  
P1.0/PROG  
NC(1)  
13 14 15 16 17 18 19 20 21 22 23 24  
NOTE: (1) NC pins should be left unconnected.  
Top View  
QFN  
36 35 34 33 32 31 30 29 28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
9
DVDD  
XIN  
DGND  
XOUT  
DGND  
RST  
P1.6/INT4  
P1.5/INT3  
P1.4/INT2/SS  
P1.3/DIN  
P1.2/DOUT  
P1.1  
MSC1201  
MSC1202  
NC(1)  
AVDD  
AGND  
AGND  
AINCOM  
P1.0/PROG  
10 11 12 13 14 15 16 17 18  
NOTE: (1) NC pin should be left unconnected.  
9
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
PIN ASSIGNMENTS  
MSC1200  
PIN #  
MSC1201/1202  
NAME  
DESCRIPTION  
PIN #  
NC  
1, 6, 7, 8, 16,  
25, 47  
5
No Connection. Leave unconnected.  
XIN  
2
1
2
The crystal oscillator pin XIN supports parallel resonant AT-cut fundamental frequency crystals and  
ceramic resonators. XIN can also be an input if there is an external clock source instead of a crystal.  
XIN must not be left floating.  
XOUT  
3
The crystal oscillator pin XOUT supports parallel resonant AT-cut fundamental frequency crystals and  
ceramic resonators. XOUT serves as the output of the crystal amplifier.  
DGND  
RST  
4, 33, 34, 48  
3, 26  
Digital Ground  
5
9
4
Holding the reset input high for two t  
periods will reset the device.  
OSC  
AV  
DD  
6
7, 8  
9
Analog Power Supply  
AGND  
AINCOM  
IDAC  
10, 11  
12  
Analog Ground  
Analog Input (can be analog common for single-ended inputs or analog input for differential inputs)  
IDAC Output  
13  
10  
REFOUT/REF IN+  
REF IN−  
AIN7  
14  
11  
Internal Voltage Reference Output/Voltage Reference Positive Input (required C  
Voltage Reference Negative Input (tie to AGND for internal voltage reference)  
Analog Input Channel 7  
= 0.1µF)  
REF  
15  
12  
17  
AIN6  
18  
Analog Input Channel 6  
AIN5  
19  
13  
Analog Input Channel 5  
AIN4  
20  
14  
Analog Input Channel 4  
AIN3  
21  
15  
Analog Input Channel 3  
AIN2  
22  
16  
Analog Input Channel 2  
AIN1  
23  
17  
Analog Input Channel 1  
AIN0  
24  
18  
Analog Input Channel 0  
P1.0−P1.7  
26−32, 37  
19−25, 28  
Port 1 is a bidirectional I/O port (refer to P1DDRL, SFR AEh, and P1DDRH, SFR AFh, for port pin  
configuration control).  
The alternate functions for Port 1 are listed below.  
Port  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
Alternate Name(s)  
PROG  
N/A  
Alternate Use  
Serial programming mode (must be DGND on reset)  
DOUT  
DIN  
Serial data out  
Serial data in  
INT2/SS  
INT3  
External interrupt 2 / Slave Select  
External interrupt 3  
External interrupt 4  
External interrupt 5  
INT4  
INT5  
DV  
DD  
35, 36, 46  
38−45  
27  
Digital Power Supply  
P3.0−P3.7  
29−36  
Port 3 is a bidirectional I/O port (refer to P3DDRL, SFR B3h, and P3DDRH, SFR B4h, for port pin  
configuration control).  
The alternate functions for Port 3 are listed below.  
Port  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
Alternate Name(s)  
Alternate Use  
RxD0  
Serial port 0 input  
TxD0  
Serial port 0 output  
INT0  
External interrupt 0  
INT1  
External interrupt 1  
T0  
Timer 0 external input  
Timer 1 external input  
SCK / SCL / various clocks (refer to PASEL, SFR F2h)  
T1  
SCK/SCL/CLKS  
N/A  
10  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
TYPICAL CHARACTERISTICS: MSC1200 AND MSC1201 ONLY  
AV  
= +5V, DV  
= +5V, f  
OSC  
= 8MHz, PGA = 1, f  
MOD  
= 15.625kHz, ADC Bipolar Mode, Buffer ON, and V (REF IN+) − (REF IN−) = +2.5V, unless  
REF  
DD  
DD  
otherwise specified.  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS vs DATA RATE  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA8  
PGA2  
PGA4  
PGA1  
PGA1  
PGA8  
PGA32  
PGA64  
PGA128  
PGA32  
PGA64  
PGA128  
PGA16  
Sinc3 Filter, Buffer OFF  
Sinc3 Filter, Buffer OFF  
1
0
0
10  
100  
Data Rate (SPS)  
1000  
2000  
2000  
0
0
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA8  
PGA4  
PGA8  
PGA2  
PGA4  
PGA2  
PGA1  
PGA1  
PGA32  
PGA128  
PGA16  
PGA64  
PGA128  
PGA64  
PGA32  
PGA16  
Sinc3 Filter, Buffer ON  
AVDD = 3V, Sinc3 Filter,  
VREF = 1.25V, Buffer OFF  
500  
1000  
Decimation Ratio =  
1500  
2000  
500  
1000  
Decimation Ratio =  
1500  
fMOD  
fMOD  
fDATA  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA2 PGA4  
PGA1  
PGA8  
PGA4  
PGA8  
PGA2  
PGA1  
PGA16 PGA64  
PGA32  
PGA128  
PGA32  
PGA128  
PGA64  
PGA16  
Sinc2 Filter  
AVDD = 3V, Sinc3 Filter,  
VREF = 1.25V, Buffer ON  
500  
1000  
1500  
2000  
500  
1000  
Decimation Ratio =  
1500  
fMOD  
fMOD  
Decimation Ratio =  
fDATA  
fDATA  
11  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
TYPICAL CHARACTERISTICS: MSC1200 AND MSC1201 ONLY (Continued)  
AV  
= +5V, DV  
= +5V, f  
OSC  
= 8MHz, PGA = 1, f  
MOD  
= 15.625kHz, ADC Bipolar Mode, Buffer ON, and V (REF IN+) − (REF IN−) = +2.5V, unless  
REF  
DD  
DD  
otherwise specified.  
FAST SETTLING FILTER  
EFFECTIVE NUMBER OF BITS vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS vs fMOD  
(set with ACLK)  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
25  
20  
15  
10  
5
Gain 1  
fMOD = 203kHz  
fMOD = 15.6kHz  
fMOD = 31.25kHz  
fMOD = 110kHz  
Gain 16  
Gain 128  
fMOD = 62.5kHz  
0
0
500  
1000  
1500  
2000  
100k  
2.5  
1
10  
100  
1k  
10k  
100k  
Data Rate (SPS)  
Decimation Value  
EFFECTIVE NUMBER OF BITS vs fMOD (set with ACLK)  
WITH FIXED DECIMATION  
HISTOGRAM OF ADC OUTPUT DATA  
25  
20  
15  
10  
5
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
DEC = 2020  
DEC = 500  
DEC = 50  
DEC = 255  
DEC = 20  
DEC = 10  
0
0
0.5  
10  
100  
1k  
10k  
2
1.5  
1
0
0.5  
1
1.5  
2
Data Rate (SPS)  
ppm of FS  
EFFECTIVE NUMBER OF BITS vs INPUT SIGNAL  
(Internal and External VREF  
NOISE vs INPUT SIGNAL  
)
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
External  
Internal  
0.5  
2.5  
1.5  
0.5  
0.5  
1.5  
2.5  
1.5  
0.5  
1.5  
2.5  
VIN (V)  
VIN (V)  
12  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
TYPICAL CHARACTERISTICS: MSC1202 ONLY  
AV  
= +5V, DV  
= +5V, f  
OSC  
= 8MHz, PGA = 1, f  
MOD  
= 15.625kHz, ADC Bipolar Mode, Buffer ON, and V (REF IN+) − (REF IN−) = +2.5V, unless  
REF  
DD  
DD  
otherwise specified.  
EFFECTIVE NUMBER OF BITS  
vs DATA RATE  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PGA1  
PGA128  
PGA1  
Sinc3 Filter, Buffer OFF  
PGA128  
Sinc3 Filter, Buffer OFF  
10  
0
0
0
500  
1000  
1500  
2000  
1
0
0
10  
100  
Data Rate (SPS)  
1000  
2000  
2000  
fMOD  
Decimation Ratio =  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
PGA1  
PGA128  
PGA1  
PGA128  
Sinc3 Filter, Buffer ON  
AVDD = 3V, Sinc3 Filter,  
VREF = 1.25V, Buffer OFF  
500  
1000  
1500  
2000  
500  
1000  
Decimation Ratio =  
1500  
fMOD  
fMOD  
Decimation Ratio =  
fDATA  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
PGA1  
PGA1  
PGA128  
PGA128  
Sinc2 Filter  
AVDD = 3V, Sinc3 Filter,  
VREF = 1.25V, Buffer ON  
500  
1000  
1500  
fMOD  
2000  
500  
1000  
Decimation Ratio =  
1500  
fMOD  
Decimation Ratio =  
fDATA  
fDATA  
13  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
TYPICAL CHARACTERISTICS: MSC1202 ONLY (Continued)  
AV  
= +5V, DV  
= +5V, f  
OSC  
= 8MHz, PGA = 1, f  
MOD  
= 15.625kHz, ADC Bipolar Mode, Buffer ON, and V  
REF  
(REF IN+) − (REF IN−) = +2.5V, unless  
DD  
DD  
otherwise specified.  
FAST SETTLING FILTER  
EFFECTIVE NUMBER OF BITS vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS vs fMOD  
(set with ACLK)  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
20  
16  
12  
8
fMOD = 203kHz  
fMOD = 15.6kHz  
fMOD = 31.25kHz  
fMOD = 110kHz  
Fast Settling Filter  
fMOD = 62.5kHz  
1k  
4
0
500  
1000  
1500  
fMOD  
2000  
1
10  
100  
10k  
100k  
Data Rate (SPS)  
Decimation Ratio =  
fDATA  
EFFECTIVE NUMBER OF BITS vs fMOD (set with ACLK)  
WITH FIXED DECIMATION  
25  
20  
15  
10  
5
DEC > 100  
DEC = 50  
DEC = 20  
DEC = 10  
0
10  
100  
1k  
10k  
100k  
Data Rate (SPS)  
14  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
TYPICAL CHARACTERISTICS: ALL DEVICES  
AV  
= +5V, DV  
= +5V, f  
OSC  
= 8MHz, PGA = 1, f  
MOD  
= 15.625kHz, ADC Bipolar Mode, Buffer ON, and V (REF IN+) − (REF IN−) = +2.5V, unless  
REF  
DD  
DD  
otherwise specified.  
ADC INTEGRAL NONLINEARITY  
vs INPUT VOLTAGE  
ADC INTEGRAL NONLINEARITY  
vs INPUT VOLTAGE  
15  
15  
10  
5
AVDD = 5V  
VREF = 2.5V  
Buffer OFF  
AVDD = 5V  
VREF = 2.5V  
Buffer ON  
_
40 C  
_
40 C  
10  
5
_
+25 C  
_
+25 C  
_
55 C  
0
0
_
+85 C  
5
5
10  
10  
_
+125 C  
_
+85 C  
15  
15  
2.5 2.0 1.5 1.0 0.5  
0
0.5 1.0 1.5 2.0 2.5  
2.5 2.0 1.5 1.0 0.5  
0
0.5 1.0 1.5 2.0 2.5  
ADC Input Voltage (V)  
ADC Input Voltage (V)  
ADC INTEGRAL NONLINEARITY  
vs INPUT SIGNAL  
ADC INTEGRAL NONLINEARITY  
vs VREF  
15  
10  
5
30  
25  
20  
15  
10  
5
VIN = VREF  
Buffer OFF  
VREF = AVDD = 5V  
Buffer OFF  
0
AVDD = 3V  
5
10  
15  
AVDD = 5V  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VREF (V)  
VIN  
=
VREF  
0
VIN = +VREF  
VIN (V)  
ADC INTEGRAL NONLINEARITY ERROR  
vs PGA  
ADC OFFSET vs TEMPERATURE  
_
(Offset Calibration at 25 C Only)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
AVDD = 5V  
VREF = 2.5V  
AVDD = 3V  
AVDD = 5V  
0
5
10  
0
15  
1
2
4
8
16  
32  
64  
128  
60  
40 20  
0
20 40  
60  
80 100 120 140  
PGA Setting  
_
Temperature ( C)  
15  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
TYPICAL CHARACTERISTICS: ALL DEVICES (Continued)  
AV  
= +5V, DV  
= +5V, f  
OSC  
= 8MHz, PGA = 1, f  
MOD  
= 15.625kHz, ADC Bipolar Mode, Buffer ON, and V  
REF  
(REF IN+) − (REF IN−) = +2.5V, unless  
DD  
DD  
otherwise specified.  
ANALOG SUPPLY CURRENT  
vs ANALOG SUPPLY VOLTAGE  
ADC POWER−SUPPLY CURRENT  
vs PGA  
1.4  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
PGA = 128  
DVDD = AVDD  
VREF = 1.25V  
_
+125 C  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
_
+85 C  
AVDD = 5V, Buffer = ON  
_
+25 C  
AVDD = 3V, Buffer = ON  
AVDD = 5V, Buffer = OFF  
AVDD = 3V, Buffer = OFF  
_
40 C  
_
55 C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
2
4
8
16  
32  
64  
128  
Analog Supply Voltage (V)  
PGA Setting  
ADC OFFSET DAC:  
ADC OFFSET DAC:  
OFFSET vs TEMPERATURE  
GAIN vs TEMPERATURE  
14  
12  
10  
8
6
4
1.00008  
1.00006  
1.00004  
1.00002  
1
2
0
2
4
6
8
0.99998  
0.99996  
0.99994  
0.99992  
10  
12  
14  
16  
20  
60  
40 20  
0
+20 +40 +60 +80 +100 +120 +140  
60  
40  
0
+20 +40 +60 +80 +100 +120 +140  
_
_
Temperature ( C)  
Temperature ( C)  
DIGITAL SUPPLY CURRENT  
vs EXTERNAL CLOCK FREQUENCY  
DIGITAL SUPPLY CURRENT vs CLOCK DIVIDER  
100  
10  
1
100  
10  
1
Divider Values  
1
DVDD = 5V  
Normal Mode  
DVDD = 5V  
Idle Mode  
2
4
DVDD = 3V  
Normal Mode  
8
16  
32  
1024  
DVDD = 3V  
Idle Mode  
0.1  
0.1  
1
10  
100  
1
10  
Clock Frequency (MHz)  
100  
Clock Frequency (MHz)  
16  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
TYPICAL CHARACTERISTICS: ALL DEVICES (Continued)  
AV  
= +5V, DV  
= +5V, f  
OSC  
= 8MHz, PGA = 1, f  
MOD  
= 15.625kHz, ADC Bipolar Mode, Buffer ON, and V  
(REF IN+) − (REF IN−) = +2.5V, unless  
DD  
DD  
REF  
otherwise specified.  
DIGITAL SUPPLY CURRENT  
vs DIGITAL SUPPLY VOLTAGE  
ADC NORMALIZED GAIN  
vs PGA  
101  
100  
99  
11  
PGA = 128  
DVDD = AVDD  
VREF = 1.25V  
10  
9
_
+125 C  
External Reference  
Buffer OFF  
_
+85 C  
8
_
+25 C  
98  
7
_
55 C  
6
97  
96  
95  
_
40 C  
External Reference  
Buffer ON  
5
4
3
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
2
4
8
16  
32  
64  
128  
PGA Setting  
Digital Supply Voltage (V)  
VOLTAGE REFERENCE INPUT CURRENT  
vs PGA SETTING  
VOLTAGE REFERENCE CHANGE  
vs ANALOG SUPPLY VOLTAGE  
40  
35  
30  
25  
20  
15  
10  
5
101.0  
100.8  
100.6  
100.4  
100.2  
100.0  
99.8  
VREF = 2.5V  
fMOD = 62.5kHz  
VREF = 1.25V  
fMOD = 62.5kHz  
VREF = 2.5V  
fMOD = 15.6kHz  
1.25V  
VREF = 1.25V  
fMOD = 15.6kHz  
2.5V  
99.6  
99.4  
99.2  
0
99.0  
2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0 5.25  
Analog Supply Voltage (V)  
1
2
4
8
16  
32  
64  
128  
PGA Gain  
INTERNAL OSCILLATOR LOW−FREQUENCY MODE  
vs TEMPERATURE  
INTERNAL OSCILLATOR HIGH−FREQUENCY MODE  
vs TEMPERATURE  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
32  
31  
30  
29  
28  
27  
26  
5.25V  
4.75V  
5.25V  
4.75V  
3.3V  
2.7V  
40 20  
60  
40  
20  
0
20 40  
60  
80 100 120 140  
60  
0
20 40  
60  
80 100 120 140  
_
_
Temperature ( C)  
Temperature ( C)  
17  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
TYPICAL CHARACTERISTICS: ALL DEVICES (Continued)  
AV  
= +5V, DV  
= +5V, f  
OSC  
= 8MHz, PGA = 1, f  
MOD  
= 15.625kHz, ADC Bipolar Mode, Buffer ON, and V  
REF  
(REF IN+) − (REF IN−) = +2.5V, unless  
DD  
DD  
otherwise specified.  
IDAC OUTPUT CURRENT AT TEMPERATURE  
vs ANALOG SUPPLY VOLTAGE  
IDAC OUTPUT CURRENT  
vs IDAC OUTPUT VOLTAGE  
1020  
1010  
1000  
990  
980  
970  
960  
950  
940  
930  
920  
910  
900  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
_
55 C  
AVDD = 5V  
_
40 C  
_
+25 C  
AVDD = 3V  
_
+85 C  
_
+125 C  
IDAC = FFh  
0.1  
0
2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0 5.25  
Analog Supply Voltage (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
IDAC Output Votage (V)  
IDAC INTEGRAL NONLINEARITY  
vs IDAC CODE  
DIGITAL OUTPUT PIN VOLTAGE  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V  
Low  
Output  
3V  
Low  
Output  
5V  
3V  
0.5  
0
10  
20  
30  
40  
50  
60  
70  
Output Current (mA)  
IDAC Code  
HISTOGRAM OF  
TEMPERATURE SENSOR VALUES  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
Temperature Sensor Value (mV)  
18  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
programmable sample rate. The ADC also has a  
selectable filter that allows for high-resolution, single-cycle  
conversions.  
DESCRIPTION  
The MSC1200Yx, MSC1201Yx, and MSC1202Yx are  
completely integrated families of mixed-signal devices  
incorporating a high-resolution, delta-sigma ADC, 8-bit  
cuurent output DAC, input multiplexer, burnout detect  
current sources, selectable buffered input, offset DAC,  
programmable gain amplifier (PGA), temperature sensor,  
voltage reference, 8-bit 8051 microcontroller, Flash  
Program Memory, Flash Data Memory, and Data SRAM,  
as shown in Figure 3. The MSC1200, MSC1201, and  
MSC1202 will be referred to as the MSC120x in this  
document, unless otherwise noted.  
The microcontroller core is 8051 instruction set  
compatible. The microcontroller core is an optimized 8051  
core that executes up to three times faster than the  
standard 8051 core, given the same clock source. This  
design makes it possible to run the device at a lower  
external clock frequency and achieve the same  
performance at lower power than the standard 8051 core.  
The MSC120x allow users to uniquely configure the Flash  
Memory map to meet the needs of their applications. The  
Flash is programmable down to +2.7V using serial  
programming. Flash endurance is typically 1M  
Erase/Write cycles.  
On-chip peripherals include an additional 32-bit  
summation register, basic SPI, basic I2C, USART, two  
8-bit digital input/output ports,  
a watchdog timer,  
The parts have separate analog and digital supplies, which  
can be independently powered from +2.7V to +5.25V. At  
+3V operation, the power dissipation for the part is  
typically less than 3mW. The MSC1200 is available in a  
TQFP-48 package. The MSC1201 and MSC1202 are both  
available in a QFN-36 package.  
low-voltage detect, on-chip power-on reset, brownout  
reset, timer/counters, system clock divider, PLL, on-chip  
oscillator, and external or internal interrupts.  
The devices accept differential or single-ended signals  
directly from a transducer. The ADC provides 24 bits  
(MSC1200/01) or 16 bits (MSC1202) of resolution and 24  
bits (MSC1200/01) or 16 bits (MSC1202) of  
no-missing-code performance using a Sinc3 filter with a  
The MSC120x are designed for high-resolution  
measurement applications in smart transmitters, industrial  
process control, weigh scales, chromatography, and  
portable instrumentation.  
(1)  
REF IN  
AVDD AGND  
AVDD  
REFOUT/REFIN+  
DVDD DGND  
Burnout  
Detect  
Timers/  
Counters  
VREF  
ALVD  
DBOR  
POR  
Temperature  
Sensor  
8−Bit  
Offset DAC  
WDT  
AIN0  
AIN1  
Alternate  
Functions  
AIN2  
AIN3  
Digital  
Filter  
Modulator  
DIN  
DOUT  
SS  
EXT (4)  
BUF  
PGA  
AIN4  
MUX  
AIN5  
PORT1  
PORT3  
AIN6(2)  
AIN7(2)  
AINCOM  
4K or 8K  
FLASH  
32−Bit ACC  
PROG  
USART0  
EXT (2)  
T0  
256 Bytes  
SRAM  
8051  
SFR  
T1  
SCK/SCL/CLKS  
Burnout  
Detect  
128 Bytes  
System FLASH  
On−Chip  
Oscillator  
RST  
System  
Clock  
AGND  
Divider  
PLL  
8−Bit IDAC  
IDAC  
XIN XOUT  
NOTES: (1) REF IN must be tied to AGND when using internal VREF  
.
(2) AIN6 and AIN7 available only on MSC1200.  
Figure 3. Block Diagram  
19  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ENHANCED 8051 CORE  
Single−Byte, Single−Cycle  
Instruction  
All instructions in the MSC120x families perform exactly  
the same functions as they would in a standard 8051. The  
effects on bits, flags, and registers are the same; however,  
the timing is different. The MSC120x families use an  
efficient 8051 core that results in an improved instruction  
execution speed of between 1.5 and 3 times faster than the  
original core for the same external clock speed (4 clock  
cycles per instruction versus 12 clock cycles per  
instruction, as shown in Figure 4). This efficiency  
translates into an effective throughput improvement of  
more than 2.5 times, using the same code and same  
external clock speed. Therefore, a device frequency of  
33MHz for the MSC120x actually performs at an  
equivalent execution speed of 82.5MHz compared to the  
standard 8051 core. This increased performance allows  
the device to be tun at slower clock speeds, which reduces  
system noise and power consumption, but provides  
greater throughput. This performance difference can be  
seen in Figure 5. The timing of software loops will be faster  
with the MSC120x. However, the timer/counter operation  
of the MSC120x may be maintained at 12 clocks per  
increment or optionally run at 4 clocks per increment.  
Internal  
ALE  
Internal  
PSEN  
Internal  
AD0−AD7  
Internal  
A8−A15  
4 Cycles  
CLK  
12 Cycles  
ALE  
PSEN  
AD0−AD7  
PORT 2  
Single−Byte, Single−Cycle  
Instruction  
The MSC120x also provide dual data pointers (DPTRs).  
Figure 5. Comparison of MSC120x Timing to  
Standard 8051 Timing  
fCLK  
instr_cycle  
cpu_cycle  
n + 1  
n + 2  
C1  
C2  
C3  
C4  
C1  
C2  
C3  
C4  
C1  
Figure 4. Instruction Timing Cycle  
20  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Furthermore, improvements were made to peripheral  
features that off-load processing from the core, and the  
user, to further improve efficiency. These iprovements  
allow for 32-bit addition, subtraction and shifting to be  
accomplished in a few instruction cycles, compared to  
hundreds of instruction cycles executed through software  
implementation. For instance, 32-bit accumulation can be  
done through the summation register to significantly  
reduce the processing overhead for multiple-byte data  
from the ADC or other sources.  
differently than the MSC1200 or MSC1201.) This gives the  
user the ability to add or subtract software functions and to  
migrate between family members. Thus, the MSC120x  
can become a standard device used across several  
application platforms.  
Family Development Tools  
The MSC120x are fully compatible with the standard 8051  
instruction set. This compatibility means that users can  
develop software for the MSC120x with their existing 8051  
development tools. Additionally, a complete, integrated  
development environment is provided with each demo  
board, and third-party developers also provide support.  
Family Device Compatibility  
The hardware functionality and pin configuration across  
the MSC120x families are fully compatible. To the user, the  
only difference between family members is the memory  
configuration. This design makes migration between  
family members simple. Code written for the MSC1200Y2,  
MSC1201Y2, or MSC1202Y2 can be executed directly on an  
MSC1200Y3, MSC1201Y3, or MSC1202Y3, respectively.  
(However, the ADC registers for the MSC1202 are mapped  
Power-Down Modes  
The MSC120x can power several of the on-chip  
peripherals and put the CPU into Idle mode. This is  
accomplished by shutting off the clocks to those sections,  
as shown in Figure 6.  
fOSC  
fSYS  
SYSCLK  
fCLK  
STOP  
C7  
SCL/SCK  
SPICON/  
I2CCON  
9A  
PDCON.0  
µ
s
Flash Write  
FTCON  
[3:0]  
USEC  
µ
µ
(30 s to 40 s)  
EF Timing  
FB  
ms  
Flash Erase  
FTCON  
[7:4]  
MSECH  
MSECL  
(5ms to 11ms)  
Timing  
FC  
EF  
FD  
milliseconds  
interrupt  
MSINT  
FA  
SECINT  
seconds  
interrupt  
PDCON.1  
F9  
100ms  
HMSEC  
watchdog  
WDTCON  
FF  
FE  
PDCON.2  
ADCON2  
ADC Output Rate  
divide  
by 64  
fDATA  
fSAMP  
fMOD  
ADCON3  
ACLK  
F6  
ADC Power Down  
DF  
DE  
Decimation Ratio  
Modulator Clock  
ADCON0  
DC  
(see Figure 9)  
PDCON.3  
Timers 0/1  
CPU Clock  
USART0  
IDLE  
Figure 6. MSC120x Timing Chain and Clock Control  
21  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
OVERVIEW  
The MSC120x ADC structure is shown in Figure 7. The figure lists the components that make up the ADC, along with the  
corresponding special function register (SFR) associated with each component.  
AVDD  
AIN0  
AIN1  
Burnout  
Detect  
REFIN+  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
fSAMP  
Input  
Multiplexer  
MSC1200  
Only  
In+  
Sample  
and Hold  
Σ
Buffer  
PGA  
In  
AINCOM  
Temperature  
Sensor  
Burnout  
Detect  
Offset  
DAC  
REFIN  
D7h ADMUX  
DCh ADCON0  
F6h ACLK  
E6h ODAC  
AGND  
A4h AIPOL.5  
A4h AIPOL.6  
A6h AIE.6  
A7h AISTAT.6  
fDATA  
REFIN+ fMOD  
A6h AIE.5  
A7h AISTAT.5  
FAST  
VIN  
ADC  
Result Register  
∆Σ  
Modulator  
SINC2  
SINC3  
AUTO  
ADC  
Σ
X
Summation  
Block  
Offset  
Gain  
Calibration  
Register  
Calibration  
Register  
Σ
REFIN  
DDh ADCON1  
DEh ADCON2  
DFh ADCON3  
OCR  
GCR  
ADRES  
D3h D2h D1h  
D6h D5h D4h  
DBh(1) DAh D9h  
SUMR  
E5h E4h E3h E2h  
NOTE: (1) For the MSC1202, this register is sign−extended (Bipolar mode) or zero−padded  
(Unipolar mode) for the 16−bit result in registers DAh and D9h.  
E1h  
SSCON  
Figure 7. MSC120x ADC Structure  
22  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ADC INPUT MULTIPLEXER  
TEMPERATURE SENSOR  
The input multiplexer provides for any combination of  
differential inputs to be selected as the input channel, as  
shown in Figure 8. For example, if AIN0 is selected as the  
positive differential input channel, then any other channel  
can be selected as the negative differential input channel.  
With this method, it is possible to have up to six fully  
differential input channels. It is also possible to switch the  
polarity of the differential input pair to negate any offset  
voltages. In addition, current sources are supplied that will  
source or sink current to detect open or short circuits on the  
pins.  
On-chip diodes provide temperature sensing capability.  
When the configuration register for the input mux is set to  
all 1s, the diodes are connected to the inputs of the ADC.  
All other channels are open. The internal device power  
dissipation affects the temperature sensor reading. It is  
recommended that the internal buffer be enabled for  
temperature sensor measurements.  
BURNOUT DETECT  
When the Burnout Detect (BOD) bit is set in the ADC  
control configuration register (ADCON0, SFR DCh), two  
current sources are enabled. The current source on the  
positive input channel sources approximately 2µA of  
current. The current source on the negative input channel  
sinks approximately 2µA. These current sources allow for  
the detection of an open circuit (full-scale reading) or short  
circuit (small differential reading) on the selected input  
differential pair. The buffer should be on for sensor burnout  
detection.  
AIN0  
AIN1  
AVDD  
µ
Burnout Detect (2 A)  
AIN2  
AIN3  
AIN4  
ADC INPUT BUFFER  
The analog input impedance is always high, regardless of  
PGA setting (when the buffer is enabled). With the buffer  
enabled, the input voltage range is reduced and the analog  
power-supply current is higher. If the limitation of input  
voltage range is acceptable, then the buffer is always  
preferred.  
In+  
Buffer  
In  
The input impedance of the MSC120x without the buffer is  
7M/PGA. The buffer is controlled by the state of the BUF  
bit in the ADC control register (ADCON0, SFR DCh).  
AIN5  
AIN6(1)  
AIN7(1)  
µ
Burnout Detect (2 A)  
Temperature Sensor  
AVDD  
AVDD  
AGND  
80  
I
I
AINCOM  
NOTE: (1) For MSC1201/MSC1202, AIN6 and AIN7 are tied to REFIN .  
Figure 8. Input Multiplexer Configuration  
23  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Table 1. ENOB versus PGA (Bipolar Mode)  
ADC ANALOG INPUT  
RMS  
INPUT-REFERRED  
When the buffer is not selected, the input impedance of the  
analog input changes with ACLK clock frequency (ACLK,  
SFR F6h) and gain (PGA). The relationship is:  
MSC1200  
MSC1201  
ENOB  
AT 10HZ  
(BITS)  
MSC1202  
(1)  
NOISE  
ENOB  
FULL-  
SCALE  
RANGE  
(V)  
(1)  
MSC1200  
UP TO  
200HZ  
(BITS)  
MSC1202  
MSC1201  
(nV)  
PGA  
SETTING  
1
Impedance (W) +  
fSAMP @ CS  
(mV)  
1
2
2.5  
21.7  
21.5  
21.4  
21.2  
20.8  
20.4  
20  
16  
1468  
843  
76.3  
38.1  
19.1  
9.5  
1.25  
15.6  
15.5  
15.4  
15.4  
15.3  
15.2  
14.2  
1MHz  
ACLK Frequency  
7MW  
PGA  
@ ǒ Ǔ  
Impedance (W) + ǒ  
Ǔ
AIN  
4
0.625  
0.313  
0.156  
0.078  
0.039  
0.019  
452  
8
259  
fCLK  
ACLK ) 1  
16  
32  
64  
128  
(1)  
171  
4.8  
where ACLK frequency (fACLK) +  
113  
2.4  
74.5  
74.5  
24  
12  
fACLK  
64  
andfMOD  
+
.
19  
0.6  
ENOB = Log (FSR/RMS Noise) = Log (2 ) − Log (σ  
)
2
2
2
CODES  
NOTE: The input impedance for PGA = 128 is the same as  
= 24 − Log (σ  
)
2
CODES  
that for PGA = 64 (that is, 7M/64).  
ADC OFFSET DAC  
Figure 9 shows the basic input structure of the MSC120x.  
The analog output from the PGA can be offset by up to half  
the full-scale range of the ADC by using the ODAC register  
(SFR E6h). The ODAC (Offset DAC) register is an 8-bit  
value; the MSB is the sign and the seven LSBs provide the  
magnitude of the offset.  
RSWITCH  
(3k typical)  
High Impedance  
AIN  
> 1G  
ADC MODULATOR  
CS  
PGA  
CS  
Sampling Frequency = fSAMP  
The modulator is a single-loop, 2nd-order system. The  
modulator runs at a clock speed (fMOD) that is derived from  
CLK using the value in the Analog Clock register (ACLK,  
SFR F6h). The data output rate is:  
1
2
9pF  
PGA  
fSAMP  
fMOD  
18pF  
36pF  
AGND  
1, 2, 4  
8
4 to 128  
×
×
×
2
4
8
fMOD  
fMOD  
fMOD  
fACLK  
64  
16  
fMOD  
=
fMOD  
32  
Data Rate + fDATA  
+
Decimation Ratio  
×
64, 128 16 fMOD  
fCLK  
fACLK  
64  
where fMOD  
+
+
.
(ACLK ) 1) @ 64  
and Decimation Ratio is set in [ADCON3:ADCON2]  
Figure 9. Analog Input Structure (without Buffer)  
ADC PGA  
ADC CALIBRATION  
The PGA can be set to gains of 1, 2, 4, 8, 16, 32, 64, or 128.  
Using the PGA can actually improve the effective  
resolution of the ADC. For instance, with a PGA of 1 on a  
2.5V full-scale range (FSR), the ADC can resolve to  
1.5µV. With a PGA of 128 on a 19mV FSR, the ADC can  
resolve to 75nV. With a PGA of 1 on a 2.5V FSR, it would  
require a 26-bit ADC to resolve 75nV, as shown in Table 1.  
The offset and gain errors in the MSC120x, or the complete  
system, can be reduced with calibration. Calibration is  
controlled through the ADCON1 register (SFR DDh), bits  
CAL2:CAL0. Each calibration process takes seven tDATA  
periods (data conversion time) to complete. Therefore, it  
takes 14 tDATA periods to complete both an offset and gain  
calibration.  
24  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
For system calibration, the appropriate signal must be  
applied to the inputs. It then computes an offset that will  
nullify offset in the system. The system gain calibration  
requires a positive full-scale differential input signal. It then  
computes a gain value to nullify gain errors in the system.  
Each of these calibrations will take seven tDATA periods to  
complete.  
SINC3 FILTER RESPONSE  
0
20  
(3dB = 0.262 fDATA  
)
40  
Calibration should be performed after power on. It should  
also be done after a change in temperature, decimation  
ratio, buffer, power supply, voltage reference, or PGA. The  
offset DAC will affect offset calibration; therefore, the value  
of the offset should be zero before performing a calibration.  
60  
80  
100  
120  
At the completion of calibration, the ADC Interrupt bit goes  
high, which indicates the calibration is finished and valid  
data is available.  
0
1
2
3
4
5
fDATA  
ADC DIGITAL FILTER  
The Digital Filter can use either the Fast Settling, Sinc2, or  
Sinc3 filter, as shown in Figure 10. In addition, the Auto  
mode changes the Sinc filter after the input channel or  
PGA is changed. When switching to a new channel, it will  
use the Fast Settling filter for the next two conversions, the  
first of which should be discarded. It will then use the Sinc2  
followed by the Sinc3 filter to improve noise performance.  
This combines the low-noise advantage of the Sinc3 filter  
with the quick response of the Fast Settling Time filter. The  
frequency response of each filter is shown in Figure 11.  
SINC2 FILTER RESPONSE  
(3dB = 0.318 fDATA  
0
20  
)
40  
60  
80  
100  
120  
Adjustable Digital Filter  
Sinc3  
0
1
2
3
4
5
fDATA  
Sinc2  
Modulator  
Data Out  
FAST SETTLING FILTER RESPONSE  
(3dB = 0.469 fDATA  
0
20  
Fast Settling  
)
FILTER SETTLING TIME  
SETTLING TIME  
40  
(1)  
FILTER  
(Conversion Cycles)  
60  
3
2
Sinc  
Sinc  
Fast  
3
2
1
80  
(1)  
With synchronized channel changes.  
100  
120  
AUTO MODE FILTER SELECTION  
CONVERSION CYCLE  
0
1
2
3
4
5
fDATA  
1
2
3
4+  
2
3
Fast  
Fast  
Sinc  
Sinc  
NOTE: fDATA = Data Output Rate = 1/tDATA  
Figure 10. Filter Step Responses  
Figure 11. Filter Frequency Responses  
25  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
VOLTAGE REFERENCE  
RESET  
The MSC120x can use either an internal or external  
voltage reference. The voltage reference selection is  
controlled via ADC Control Register 0 (ADCON0, SFR  
DCh). The default power-up configuration for the voltage  
reference is 2.5V internal.  
DThe MSC120x can be reset from the following sources:  
Power-on reset  
D
D
D
D
External reset  
Software reset  
The internal voltage reference can be selected as either  
1.25V or 2.5V. The analog power supply (AVDD) must be  
within the specified range for the selected internal voltage  
reference. The valid ranges are: VREF = 2.5 internal  
(AVDD = 3.3V to 5.25V) and VREF = 1.25 internal  
(AVDD = 2.7V to 5.25V). If the internal VREF is selected,  
then AGND must be connected to REFIN−. The  
REFOUT/REFIN+ pin should also have a 0.1µF capacitor  
connected to AGND as close as possible to the pin. If the  
internal VREF is not used, then VREF should be disabled in  
ADCON0.  
Watchdog timer reset  
Brownout reset  
An external reset is accomplished by taking the RST pin  
high for two t  
periods, followed by taking the RST pin  
OSC  
low. A software reset is accomplished through the System  
Reset register (SRTST, 0F7h). A watchdog timer reset is  
enabled and controlled through Hardware Configuration  
Register 0 (HCR0) and the Watchdog Timer register  
(WDTCON, 0FFh). A brownout reset is enabled through  
Hardware Configuration Register 1 (HCR1). Power-on  
17  
reset and external reset complete after 2 clock cycles,  
If the external voltage reference is selected, it can be used  
as either a single-ended input or differential input, for  
ratiometric measures. When using an external reference,  
it is important to note that the input current will increase for  
using the internal oscillator in low-frequency mode.  
Brownout reset, watchdog timer reset, and software reset  
15  
complete after 2 clock cycles, using the active clock  
source.  
V
REF with higher PGA settings and with a higher modulator  
All sources of reset cause the digital pins to be pulled high  
from the initiation of the reset procedure. For an external  
reset, taking the RST pin high stops device operation  
(crystal oscillation, internal oscillator, or PLL circuit  
operation) and causes all digital pins to be pulled high from  
that point. Taking the RST pin low initiates the reset  
procedure.  
frequency. The external voltage reference can be used  
over the input range specified in the Electrical  
Characteristics section.  
IDAC  
The 8-bit IDAC in the MSC120x provides a current source  
that can be used for ratiometric measurements. The IDAC  
operates from its own voltage reference and is not  
dependent on the ADC voltage reference. The full-scale  
output current of the IDAC is approximately 1mA (within  
the compliance voltage range). The equation for the IDAC  
output current is:  
A recommended external reset circuit is shown in  
Figure 12. The serial 10kresistor is recommended for  
any external reset circuit configuration. For proper  
execution of the reset procedure, it is necessary to keep  
the AV  
supply above 2.0V during the reset procedure.  
DD  
DVDD  
0.1 F  
IDACOUT mA [ IDAC @ 3.9mA (at 25°C)  
MSC120x  
µ
10k  
4
RST  
The IDAC output voltage cannot exceed the compliance  
voltage of AVDD − 1.5V.  
1M  
Figure 12. Typical Reset Circuit  
Note that pin P1.0/PROG defines operation of the device  
after reset. If P1.0/PROG is not connected or pulled high  
during reset, the device will enter User Application mode  
(UAM). If P1.0/PROG is pulled low during reset, the device  
will enter Serial Flash Programming mode (SFPM). Refer  
to the Electrical Characteristics section for timing  
information.  
26  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
By configuring the device prior to entering Idle mode,  
further power reductions can be achieved (while in Idle  
mode). These power reductions include powering down  
peripherals not in use in the PDCON register (0F1h), and  
reducing the system clock frequency by using the System  
Clock Divider register (SYSCLK, 0C7h).  
POWER ON RESET  
The on-chip Power On Reset (POR) circuitry releases the  
device from reset when DV  
2.0V. The power supply  
DD  
ramp rate does not affect the POR. If the power supply falls  
below 1.0V for longer than 200ms, the POR will execute.  
If the power supply falls below 1.0V for less than 200ms,  
unexpected operation may occur. If these conditions are  
not met, the POR will not execute. For example, a negative  
STOP MODE  
spike on the DV supply that does not remain below 1.0V  
DD  
Stop mode is entered by setting the STOP bit in the Power  
Control register (PCON, 087h). In Stop mode, all internal  
clocks are halted. This mode has the lowest power  
consumption. The device can be returned to active mode  
only via an external reset or power-on reset (not a  
brownout reset).  
for at least 200ms, will not initiate a POR.  
If the Digital Brownout Reset circuit is on, the POR circuit  
has no effect.  
DIGITAL BROWNOUT RESET  
By configuring the device prior to entering Stop mode,  
further power reductions can be achieved (while in Stop  
mode). These power reductions include halting the  
external clock into the device, configuring all digital I/O  
pins as open drain with low output drive, disabling the ADC  
The Digital Brownout Reset (DBOR) is enabled through  
HCR1. If the conditions for proper POR are not met, the  
DBOR can be used to ensure proper device operation. The  
DBOR will hold the state of the device when the power  
supply drops below the threshold level programmed in  
HCR1, and then generate a reset when the supply rises  
above the threshold level. Note that as the device is  
released from reset and program execution begins, the  
device current consumption may increase, which can  
result in a power supply voltage drop, which may initiate  
another brownout condition. Also, the DBOR comparison  
is done against an analog reference; therefore, AVDD must  
be within its valid operating range for DBOR to function.  
buffer, disabling the internal V , and setting PDCON to  
REF  
0FFh to power down all peripherals.  
In Stop mode, all digital pins retain their values.  
POWER CONSUMPTION CONSIDERATIONS  
The following suggestions will reduce current  
consumption in the MSC120x devices:  
The DBOR level should be chosen to match closely with  
the application. That is, with a high external clock  
frequency, the DBOR level should match the minimum  
operating voltage range for the device or improper  
operation may still occur.  
1. Use the lowest supply voltage that will work in the  
application for both AV and DV  
.
DD  
DD  
2. Use the lowest clock frequency that will work in the  
application.  
3. Use Idle mode and the system clock divider  
whenever possible. Note that the system clock  
divider also affects the ADC clock.  
ANALOG LOW-VOLTAGE DETECT  
The MSC120x contain an analog low-voltage detect  
circuit. When the analog supply drops below the value  
programmed in LVDCON (SFR E7h), an interrupt is  
generated, and/or the flag is set.  
4. Avoid using 8051-compatible I/O mode on the I/O  
ports. The internal pull-up resistors will draw current  
when the outputs are low.  
5. Use the delay line for Flash Memory control by  
setting the FRCM bit in the FMCON register (SFR  
EEh).  
IDLE MODE  
Idle mode is entered by setting the IDLE bit in the Power  
Control register (PCON, 087h). In Idle mode, the CPU,  
Timer0, Timer1, and USART are stopped, but all other  
peripherals and digital pins remain active. The device can  
be returned to active mode via an active internal or external  
interrupt. This mode is typically used for reducing power  
consumption between ADC samples.  
6. Power down the internal oscillator in External Clock  
mode by setting the PDICLK bit in the PDCON  
register (SFR F1h).  
7. Power down peripherals when they are not needed.  
Refer to SFR PDCON, LVDCON, ADCON0, and  
IDAC.  
27  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Internal Oscillator  
CLOCKS  
In IOM, the CPU executes either in LF mode (if HCR2,  
CLKSEL = 111) or high-frequency (HF) mode (if HCR2,  
The MSC120x can operate in three separate clock modes:  
Internal Oscillator mode (IOM), External Clock mode  
(ECM), and Phase Lock Loop (PLL) mode. A block  
diagram is shown in Figure 13. The clock mode for the  
MSC120x is selected via the CLKSEL bits in HCR2. IO  
low-frequency (LF) mode is the default mode for the  
device.  
CLKSEL = 110 and DV = 5.0V). In this mode, XIN must  
DD  
be grounded or tied to supply.  
External Clock  
In ECM (HCR2, CLKSEL = 011), the CPU can execute  
from an external crystal, external ceramic resonator,  
external clock, or external oscillator. If an external clock is  
detected at startup, then the CPU will begin execution in  
ECM after startup. If an external clock is not detected at  
startup, then the device will revert to the mode shown in  
Table 2.  
Serial Flash Programming mode (SFPM) uses IO LF mode  
(the HCR2 and CLKSEL bits have no effect). Table 2  
shows the active clock mode for the various startup  
conditions during User Application mode.  
tOSC  
STOP  
100k  
t
PLL/tIOM  
tSYS  
tCLK  
Phase  
Detector  
XIN  
Charge  
Pump  
VCO  
SYSCLK  
(1)  
LF/HF  
Mode Oscillator  
Internal  
PLL DAC  
XOUT  
PLLDIV  
NOTE: (1) Disabled in PLL mode; therefore, an external resistor between XIN and XOUT is required.  
Figure 13. Clock Block Diagram  
Table 2. Active Clock Modes  
(1)  
STARTUP CONDITION  
SELECTED CLOCK MODE  
HCR2, CLKSEL2:0  
ACTIVE CLOCK MODE (f  
External Clock Mode  
IO LF Mode  
)
SYS  
Active clock present at XIN  
No clock present at XIN  
N/A  
External Clock Mode (ECM)  
010  
IO LF Mode  
IO HF Mode  
111  
110  
IO LF Mode  
(2)  
Internal Oscillator Mode (IOM)  
N/A  
IO HF Mode  
Active 32.768kHz clock at XIN  
No clock present at XIN  
Active 32.768kHz clock at XIN  
No clock present at XIN  
PLL LF Mode  
PLL LF Mode  
PLL HF Mode  
101  
100  
Nominal 50% of IO LF Mode  
PLL HF Mode  
(3)  
PLL  
Nominal 50% of IO HF Mode  
(1)  
(2)  
(3)  
Clock detection is only done at startup; refer to Serial Flash Programming Timing parameter t  
XIN must not be left floating; it must be tied high or low or parasitic oscillation may occur.  
in Figure 2.  
RFD  
PLL operation requires that both AV  
and DV  
are within their specified ranges.  
DD  
DD  
28  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
PLL  
XIN  
In PLL mode (HCR2, CLKSEL = 101 or HCR2,  
CLKSEL = 100), the CPU can execute from an external  
32.768kHz crystal. This mode enables the use of a PLL  
circuit that synthesizes the selected clock frequencies  
(PLL LF mode or PLL HF mode). If an external clock is  
detected at startup, then the CPU begins execution in PLL  
mode after startup. If an external clock is not detected at  
startup, then the device reverts to the mode shown in  
Table 2. The status of the PLL can be determined by first  
writing the PLLLOCK bit (enable) and then reading the  
PLLLOCK status bit in the PLLH SFR.  
C1  
C2  
XOUT  
NOTE: Refer to the crystal manufacturer’s specification  
for C1 and C2 values.  
Figure 14. External Crystal Connection  
The frequency of the PLL is preloaded with default  
trimmed values. However, the PLL frequency can be  
fine-tuned by writing to the PLLH and PLLL SFRs. The  
equation for the PLL frequency is:  
External Clock  
XIN  
PLL Frequency = ([PLLH:PLLL] + 1) fOSC  
where fOSC = 32.768kHz.  
Figure 15. External Clock Connection  
The default value for PLL LF mode is automatically loaded  
into the PLLH and PLLL SFRs.  
For different connections to external clocks, see Figure 14,  
Figure 15, and Figure 16.  
XIN  
32pF  
For PLL HF mode, the value of PLL[9:0] is automatically  
doubled in hardware; however, since PLL[9:0] is writable,  
it can also be modified by writing to the respective SFRs.  
32.768kHz  
XOUT  
32pF  
NOTE: Typical configuration is shown.  
Figure 16. PLL Connection  
29  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
D
D
Toggle SCK by setting and clearing the port pin.  
SPI  
Memory Write Pulse (WR) that is idle high.  
Whenever an external memory write command  
(MOVX) is executed, a pulse is seen on P3.6. This  
method can be used only if CPOL is set to ‘1’.  
The MSC120x implement a basic SPI interface that  
includes the hardware for simple serial data transfers.  
Figure 17 shows a block diagram of the SPI. The  
peripheral supports master and slave modes, full duplex  
data transfers, both clock polarities, both clock phases, bit  
order, and slave select.  
D
D
Memory Write Pulse toggle version. In this mode,  
SCK toggles whenever an external write command  
(MOVX) is executed.  
The timing diagram for supported SPI data transfers is  
shown in Figure 18.  
T0_Out signal can be used as a clock. A pulse is  
generated on SCK whenever Timer 0 expires. The  
idle state of the signal is low, so this can be used  
only if CPOL is cleared to ‘0’.  
The I/O pins needed for data transfer are Data In (DIN),  
Data Out (DOUT) and serial clock (SCK). The slave select  
(SS) pin can also be used to control the output of data on  
DOUT.  
D
D
T0_Out toggle. SCK toggles whenever Timer 0  
expires.  
The DIN pin is used for shifting data in for both master and  
slave modes.  
T1_Out signal can be used as a clock. A pulse is  
generated whenever Timer 1 expires. The idle state  
of the signal is low, so this can be used only if CPOL  
is cleared to ‘0’.  
The DOUT pin is used for shifting data out for both master  
and slave modes.  
The SCK pin is used to synchronize the transfer of data for  
both master and slave modes. SCK is always generated  
by the master. The generation of SCK in master mode can  
be done either in software (by simply toggling the port pin),  
or by configuring the output on the SCK pin via PASEL  
(SFR F2h). A list of the most common methods of  
generating SCK follows, but the complete list of clock  
sources can be found by referring to the PASEL SFR.  
D
T1_Out toggle. SCK toggles whenever Timer 1  
expires.  
DOUT  
SPI /I2C  
Data Write  
P1.2  
DOUT  
TX_CLK  
SPICON  
I2CCON  
SS  
P1.4  
P3.6  
SS  
CNT_CLK  
Logic  
CNT INT  
I2C INT  
Counter  
SCK/SCL  
Start/Stop  
Detect  
Pad Control  
SCK  
I2C  
Stretch  
Control  
P1.3  
RX_CLK  
DIN  
SPI /I2C  
Data Read  
DIN  
CLKS  
(refer to PASEL, SFR F2h)  
2
Figure 17. SPI/I C Block Diagram  
30  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
SCK Cycle #  
1
2
3
4
5
6
7
8
SCK (CPOL = 0)  
SCK (CPOL = 1)  
Sample Input  
MSB  
6
5
4
3
2
1
LSB  
(CPHA = 0) Data Out  
Sample Input  
MSB  
6
5
4
3
2
1
LSB  
(CPHA = 1) Data Out  
SS to Slave  
Slave CPHA = 1 Transfer in Progress  
Slave CPHA = 0 Transfer in Progress  
2
1) SS Asserted  
3
4
1
2) First SCK Edge  
3) CNTIF Set (dependent on CPHA bit)  
4) SS Negated  
Figure 18. SPI Timing Diagram  
The SS pin can be used to control the output of data on  
DOUT when the MSC120x is in slave mode. The SS  
function is enabled or disabled by the ESS bit of the  
SPICON SFR. When enabled, the SS input of a slave  
device must be externally asserted before a master device  
can exchange data with the slave device. SS must be low  
before data transactions and must stay low for the duration  
of the transaction. When SS is high, data will not be shifted  
into the shift register, nor will the counter increment. When  
SPI is enabled, SS also controls the drive of the line DOUT  
(P1.2). When SS is low in slave mode, the DOUT pin will  
be driven and when SS is high, DOUT will be high  
impedance.  
Application Flow  
This section explains the typical application usage flow of  
SPI in master and slave modes.  
Master Mode Application Flow  
1. Configure the port pins.  
2. Configure the SPI.  
3. Assert SS to enable slave communication (if  
applicable).  
4. Write data to SPIDATA.  
5. Generate eight SCKs.  
6. Read the received data from SPIDATA.  
The SPI generates interrupt ECNT (AIE.2) to indicate that  
the transfer/reception of the byte is complete. The interrupt  
goes high whenever the counter value is equal to 8  
(indicating that eight SCKs have occurred). The interrupt  
is cleared on reading or writing to the SPIDATA register.  
During the data transfer, the actual counter value can be  
read from the SPICON SFR.  
Slave Mode Application Flow  
1. Configure the ports pins.  
2. Enable SS (if applicable).  
3. Configure the SPI.  
4. Write data to SPIDATA.  
Power Down  
5. Wait for the Count Interrupt (eight SCKs).  
6. Read the data from SPIDATA.  
The SPI is powered down by the PDSPI bit in the power  
control register (PDCON). This bit needs to be cleared to  
enable the SPI function. When the SPI is powered down,  
pins P1.2, P1.3, P1.4, and P3.6 revert to general-purpose  
I/O pins.  
CAUTION:  
If SPIDATA is not read before the next SPI  
transaction, the ECNT interrupt will be removed  
and the previous data will be lost.  
31  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
2
(I2CCON.CNTSEL). This can be used for ACK/NACK  
interrupt generation. For instance, the I2C interrupt can be  
configured for 8-bit interrupt detection; on the eighth bit,  
the interrupt is generated. During this interrupt, the clock  
is stretched (SCL held low) if the DCS bit is set. The  
interrupt can then be configured for 1-bit detection (which  
terminates clock stretching). The ACK/NACK can be  
written by the software, which will terminate clock  
stretching. The next interrupt will be generated after the  
ACK/NACK has been latched by the receiving device. The  
interrupt is cleared on reading or writing to the I2CDATA  
register. If I2CDATA is not read before the next data  
transfer, the interrupt will be removed and the previous  
data will be lost.  
I C  
The I/O pins needed for I2C transfer are serial clock (SCL)  
and serial data (SDA—implemented by connecting DIN  
and DOUT externally). The I2C transfer timing is shown in  
Figure 19.  
The MSC120x I2C supports:  
2
1. Master or slave I C operation (control in software)  
2. Standard or fast modes of transfer  
3. Clock stretching  
4. General call  
When used in I2C mode, pins DIN (P1.3) and DOUT (P1.2)  
should be tied together externally. The DIN pin should be  
configured as an input pin and the DOUT pin should be  
configured as open drain or standard 8051 by setting the  
P1DDR (DOUT should be set high so that the bus is not  
pulled low).  
Master Operation  
The source for the SCL is controlled in the PASEL register  
or can be generated in software.  
Transmit  
The MSC120x I2C can generate two interrupts:  
The serial data must be stable on the bus while SCL is  
high. Therefore, the writing of serial data to I2CDATA must  
be coordinated with the generation of the SCL, since SDA  
transitions on the bus may be interpreted as a START or  
STOP while SCL is high. The START and STOP  
conditions on the bus must be generated in software. After  
the serial data has been transmitted, the generation of the  
ACK/NACK clock must be enabled by writing 0xFFh to  
I2CDATA. This allows the master to read the state of  
ACK/NACK.  
2
1. I C interrupt for START/STOP interrupt (AIE.3)  
2. CNT interrupt for bit counter interrupt (AIE.2)  
The START/STOP interrupt is generated when a START  
condition or STOP condition is detected on the bus. The bit  
counter generates an interrupt on a complete (8-bit) data  
transfer and also after the transfer of the ACK/NACK.  
The bit counter for serial transfer is always incremented on  
the falling edge of SCL and can be reset by reading or  
writing to I2CDATA (SFR 9Bh) or when a START/STOP  
condition is detected. The bit counter can be polled or used  
as an interrupt. The bit counter interrupt occurs when the  
bit counter value is equal to 8, indicating that eight bits of  
data have been transferred. I2C mode also allows for  
interrupt generation on one bit of data transfer  
Receive  
The serial data is latched into the receive buffer on the  
rising edge of SCL. After the serial data has been received,  
ACK/NACK is generated by writing 0x7Fh (for ACK) or  
0xFFh (for NACK) to I2CDATA.  
SDA  
17  
8
9
17  
8
9
17  
8
9
SCL  
S
P
START  
Condition(1)  
ADDRESS(2)  
R/W(2) ACK(3)  
DATA(2)  
ACK(3)  
DATA(2)  
ACK(3)  
STOP  
Condition(4)  
NOTES: (1) Generate in software; write 0x7F to I2CDATA.  
(2) I2CDATA register.  
(3) Generate in software. Can enable bit count = 1 interrupt prior to ACK/NACK for interrupt use.  
Generate ACK by writing 0x7F to I2CDATA; generate NACK by writing 0xFF to I2CDATA.  
(4) Generate in software; write 0xFF to I2CDATA.  
2
Figure 19. Timing Diagram for I C Transmission and Reception  
32  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
precaution, a lock feature can be activated through HCR0,  
which disables erase/write operation to 4kB of Program  
Flash Memory or the entire Program Flash Memory in  
UAM.  
Slave Operation  
Slave operation is supported, but address recognition,  
R/W determination, and ACK/NACK must be done under  
software control. The Disable Clock Stretch (DCS) bit can  
be set to disable clock stretching. When the DCS bit is set,  
the device will no longer stretch the clock and will not  
generate interrupts. This bit can be used to disable clock  
stretch interrupts when there is no address match. This bit  
is automatically cleared when a start or repeated start  
condition occurs.  
FLASH MEMORY  
The page size for Flash memory is 64 bytes. The  
respective page must be erased before it can be written to,  
regardless of whether it is mapped to Program memory or  
Data memory space. The MSC120x use a memory  
addressing scheme that separates Program Memory  
(FLASH/ROM) from Data Memory (FLASH/RAM).  
Addressing of program and data segments can overlap  
since they are accessed by different instructions.  
Transmit  
Once address recognition, R/W determination, and  
ACK/NACK are complete, the serial data to be transferred  
can be written to I2CDATA. The data is automatically  
shifted out based on the master SCL. After data  
transmission, CNTIF is generated and SCL is stretched by  
the MSC120x until the I2CDATA register is written with a  
0xFFh. The ACK/NACK from the master can then be read.  
The MSC120x have three hardware configuration  
registers (HCR0, HCR1, and HCR2) that are  
programmable only during Flash Memory Programming  
mode.  
The MSC120x allow the user to partition the Flash Memory  
between Program Memory and Data Memory. For  
instance, the MSC120xY3 contain 8kB of Flash Memory  
on-chip. Through the hardware configuration registers, the  
user can define the partition between Program Memory  
(PM) and Data Memory (DM), as shown in Table 3,  
Table 4, and Figure 20. The MSC120x families offer two  
memory configurations.  
Receive  
Once address recognition, R/W determination, and  
ACK/NACK are complete, I2CDATA must be written with  
0xFFh to enable data reception. Upon completion of the  
data shift, the MSC120x generates the CNT interrupt and  
stretches SCL. Received data can then be read from  
I2CDATA. After the serial data has been received,  
ACK/NACK is generated by writing 0x7Fh (for ACK) or  
0xFFh (for NACK) to I2CDATA. The write to I2CDATA  
clears the CNT interrupt and clock stretch.  
Table 3. Flash Memory Partitioning  
HCR0  
DFSEL  
00  
MSC120xY2  
DM  
MSC120xY3  
DM  
MEMORY MAP  
PM  
2kB  
2kB  
3kB  
PM  
4kB  
6kB  
7kB  
2kB  
2kB  
1kB  
4kB  
2kB  
1kB  
The MSC120x contain on-chip SFR, Flash Memory,  
Configuration Memory, Scratchpad SRAM Memory, and  
Boot ROM. The SFR registers are primarily used for  
control and status. The standard 8051 features and  
additional peripheral features of the MSC120x are  
controlled through the SFR. Reading from an undefined  
SFR returns zero. Writing to undefined SFR registers is not  
recommended and will have indeterminate effects.  
01  
10  
11  
(default)  
4kB  
0kB  
8kB  
0kB  
Table 4. Flash Memory Partitioning Addresses  
HCR0  
DFSEL  
00  
MSC120xY2  
MSC120xY3  
Flash Memory is used for both Program Memory and Data  
Memory; however, program execution can only occur from  
Program Memory. Program/Data Memory partition size is  
selectable. The partition size is set through HCR0 (in the  
Configuration Memory), which is programmed serially.  
Both Program and Data Flash Memory are erasable and  
writable (programmable) in UAM. Erase and write timing  
of Flash Memory is controlled in the Flash Memory Timing  
Control register (FTCON, SFR 0EFh). As an added  
PM  
DM  
PM  
DM  
0000−07FF  
0000−07FF  
0000−0BFF  
0400−0BFF  
0400−0BFF  
0400−07FF  
0000−0FFF  
0000−17FF  
0000−1BFF  
0400−13FF  
0400−0BFF  
0400−07FF  
01  
10  
11  
(default)  
0000−0FFF  
0000  
0000−1FFF  
0000  
33  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Program  
Memory  
Data  
Memory  
Serial Flash  
Programming  
Mode  
User  
Application  
Mode  
FFFFh  
FFFFh  
Unused  
Configuration  
Memory  
FC00h  
1K Internal Boot ROM  
F800h  
Address  
Address(1)  
807Fh  
8040h  
8000h  
7Fh  
40h  
00h  
UAM: Read Only  
SFPM: Read Only  
Unused  
Unused  
UAM: Read Only  
SFPM: Read/Write  
1FFFh, 8k (Y3)  
13FFh, 5k (Y3)  
On−Chip  
Flash  
On−Chip  
Flash  
0FFFh, 4k (Y2)  
0000h, 0k  
0BFFh, 3k (Y2)  
03FFh, 1k  
NOTE: (1) Can be accessed using CADDR  
or the faddr_data_read Boot ROM routine.  
Figure 20. Memory Map  
It is important to note that the Flash Memory is readable  
and writable (depending on the MXWS bit in the MWS  
SFR) through the MOVX instruction when configured as  
either Program or Data Memory. This flexibility means that  
the device can be partitioned for maximum Flash Program  
Memory size (no Flash Data Memory) and Flash Program  
Memory can be used as Flash Data Memory. However,  
this usage may lead to undesirable behavior if the PC  
points to an area of Flash Program Memory that is being  
used for data storage. Therefore, it is recommended to use  
Flash partitioning when Flash Memory is used for data  
storage. Flash partitioning prohibits execution of code  
from Data Flash Memory. Additionally, the Program  
Memory erase/write can be disabled through hardware  
configuration bits (HCR0), while still providing access  
(read/write/erase) to Data Flash Memory.  
CONFIGURATION MEMORY  
The MSC120x Configuration Memory consists of 128  
bytes of memory. In UAM, all Configuration Memory is  
readable using the faddr_data_read Boot ROM routine or  
CADDR register, but none of the Configuration Memory is  
writable. In SFPM, all Configuration Memory is readable,  
but only the lower 64 bytes (8000h−803Fh) are writable;  
the upper 64 bytes (8040h−807Fh) are not writable.  
Note that reading/writing configuration memory in SFPM  
requires  
16-bit  
addressing;  
whereas,  
reading  
configuration memory in UAM requires only 8-bit  
addressing.  
Lower 64 Bytes  
Note that the three hardware configuration registers  
(HCR0, HCR1, and HCR2) reside in the lower 64 bytes of  
Configuration Memory and are located in SFPM at  
addresses 0803Fh, 0803Eh, and 0803Dh, respectively.  
Therefore, care should be taken when writing to  
Configuration Memory so that user parameters are not  
written into these locations.  
The effect of memory mapping on Program and Data  
Memory is straightforward. The Program Memory is  
decreased in size from the top of Flash Memory. To  
maintain compatibility with the MSC121x, the Flash Data  
Memory maps to addresses 0400h. Therefore, access to  
Data Memory (through MOVX) will access Flash Memory  
for the addresses shown in Table 4.  
Also note that if the Enable Program Memory Access bit  
(HCR0.7) is cleared, Configuration Memory cannot be  
changed unless all memory has been cleared with the  
Mass Erase command.  
Data Memory  
The MSC120x has on-chip Flash Data Memory, which is  
readable and writable (depending on the Memory Write  
Select register) during normal operation (full VDD range).  
This memory is mapped into the external Data Memory  
space, which requires the use of the MOVX instruction to  
program.  
Upper 64 Bytes  
Information such as device trim values and device serial  
number are located in the upper 64 bytes of Configuration  
Memory. The locations 08050h through 08053h contain a  
unique 4-byte serial number. The location 8054h contains  
the temperature sensor correction value (refer to  
application note SBAA126, available for download from  
www.ti.com). None of these memory locations can be  
altered.  
34  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Program Status Word register (PSW; 0D0h) in the SFR  
area described below. The 16 bytes immediately above  
the R0−R7 registers are bit-addressable, so any of the 128  
bits in this area can be directly accessed using  
bit-addressable instructions.  
REGISTER MAP  
Figure 21 illustrates the Register Map. It is entirely  
separate from the Program and Data Memory areas  
discussed previously. A separate class of instructions is  
used to access the registers. There are 256 potential  
register locations. In practice, the MSC120x have 256  
bytes of Scratchpad RAM and up to 128 SFRs. This is  
possible since the upper 128 Scratchpad RAM locations  
can only be accessed indirectly. Thus, a direct reference  
to one of the upper 128 locations must be an SFR access.  
Direct RAM is reached at locations 0 to 7Fh (0 to 127).  
7Fh  
Direct  
RAM  
2Fh  
2Eh  
7F  
77  
7E  
76  
6E  
66  
5E  
56  
4E  
46  
3E  
36  
2E  
26  
1E  
16  
0E  
06  
7D 7C 7B  
75 74 73  
6D 6C 6B  
65 64 63  
5D 5C 5B  
55 54 53  
4D 4C 4B  
45 44 43  
3D 3C 3B  
35 34 33  
2D 2C 2B  
25 24 23  
1D 1C 1B  
15 14 13  
0D 0C 0B  
05 04 03  
7A  
72  
6A  
62  
5A  
52  
4A  
42  
3A  
32  
2A  
22  
1A  
12  
0A  
02  
79  
71  
69  
61  
59  
51  
49  
41  
39  
31  
29  
21  
19  
11  
09  
01  
78  
70  
68  
60  
58  
50  
48  
40  
38  
30  
28  
20  
18  
10  
08  
00  
255  
255  
128  
FFh  
80h  
FFh  
2Dh 6F  
Direct  
Special Function  
Registers  
Indirect  
RAM  
2Ch  
2Bh  
2Ah  
29h  
28h  
27h  
67  
5F  
57  
4F  
47  
3F  
128  
127  
80h  
7Fh  
SFR Registers  
Direct  
RAM  
0
00h  
Scratchpad  
RAM  
26h 37  
Figure 21. Register Map  
2F  
27  
1F  
17  
0F  
07  
25h  
24h  
23h  
22h  
21h  
SFRs are accessed directly between 80h and FFh (128 to  
255). The RAM locations between 128 and 255 can be  
reached through an indirect reference to those locations.  
Scratchpad RAM is available for general-purpose data  
storage. Within the 128 bytes of RAM, there are several  
special-purpose areas.  
20h  
1Fh  
Bank 3  
Bit Addressable Locations  
18h  
17h  
In addition to direct register access, some individual bits  
are also accessible. These are individually addressable  
bits in both the RAM and SFR area. In the Scratchpad  
RAM area, registers 20h to 2Fh are bit-addressable. This  
provides 128 (16 × 8) individual bits available to software.  
A bit access is distinguished from a full-register access by  
the type of instruction. In the SFR area, any register  
location ending in a 0h or 8h is bit-addressable. Figure 22  
shows details of the on-chip RAM addressing including the  
locations of individual RAM bits.  
Bank 2  
Bank 1  
Bank 0  
10h  
0Fh  
08h  
07h  
00h  
MSB  
LSB  
Working Registers  
Figure 22. Scratchpad Register Addressing  
As part of the lower 128 bytes of RAM, there are four banks  
of Working Registers, as shown in Figure 20. The Working  
Registers are general-purpose RAM locations that can be  
addressed in a special way. They are designated R0  
through R7. Since there are four banks, the currently  
selected bank will be used by any instruction using R0−R7.  
This design allows software to change context by simply  
switching banks. Bank access is controlled via the  
Thus, an instruction can designate the value stored in R0  
(for example) to address the upper RAM. The 16 bytes  
immediately  
above  
the  
these  
registers  
are  
bit-addressable, so any of the 128 bits in this area can be  
directly accessed using bit-addressable instructions.  
35  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Stack  
Program Memory  
Another use of the Scratchpad area is for the  
programmer’s stack. This area is selected using the Stack  
Pointer (SP, SFR 81h). Whenever a call or interrupt is  
invoked, the return address is placed on the Stack. It also  
is available to the programmer for variables, etc., since the  
Stack can be moved and there is no fixed location within  
the RAM designated as Stack. The Stack Pointer defaults  
to 07h on reset and the user can then move it as needed.  
The SP will point to the last used value. Therefore, the next  
value placed on the Stack is put at SP + 1. Each PUSH or  
CALL increments the SP by the appropriate value and  
each POP or RET decrements it.  
After reset, the CPU begins execution from Program  
Memory location 0000h. If enabled, the Boot ROM will  
appear from address F800h to FFFFh.  
Boot ROM  
There is a 1kB Boot ROM that controls operation during  
serial programming. Additionally, the Boot ROM routines  
shown in Table 5 can be accessed during the user mode,  
if it is enabled. When enabled, the Boot ROM routines will  
be located at memory addresses F800h−FBFFh during  
user mode.  
Table 5. MSC120x Boot ROM Routines  
HEX  
ADDRESS  
ROUTINE  
sfr_rd  
C DECLARATIONS  
char sfr_rd(void);  
DESCRIPTION  
(1)  
Return SFR value pointed to by CADDR  
F802  
F805  
FBD8  
(1)  
Write to SFR pointed to by CADDR  
sfr_wr  
void sfr_wr(char d);  
void monitor_isr() interrupt 6;  
monitor_isr  
Push registers and call cmd_parser  
See application note SBAA076, Programming the  
MSC1210, available at www.ti.com.  
FBDA  
cmd_parser  
void cmd_parser(void);  
FBDC  
FBDE  
FBE0  
FBE2  
FBE4  
FBE6  
FBE8  
FBEA  
FBEC  
FBEE  
FBF0  
FBF2  
FBF4  
FBF6  
FBF8  
FBFA  
FBFC  
FBFE  
put_string  
void put_string(char code *string);  
char page_erase(int faddr, char fdata, char fdm);  
Assembly only; DPTR = address, ACC = data  
char write_flash_chk(int faddr, char fdata, char fdm);  
void write_flash_byte(int faddr, char fdata);  
char faddr_data_read(char faddr);  
char data_x_c_read(int faddr, char fdm);  
void tx_byte(char);  
Output string  
page_erase  
write_flash  
write_flash_chk  
write_flash_byte  
faddr_data_read  
data_x_c_read  
tx_byte  
Erase flash page  
(2)  
Flash write  
Write flash byte, verify  
(2)  
Write flash byte  
Read byte from Configuration Memory  
Read xdata or code byte  
Send byte to USART0  
tx_hex  
void tx_hex(char);  
send hex value to USART0  
putx  
void putx(void);  
send “x” to USART0 on R7 = 1  
Read byte from USART0  
rx_byte  
char rx_byte(void);  
rx_byte_echo  
rx_hex_echo  
rx_hex_dbl_echo  
rx_hex_word_echo  
autobaud  
char rx_byte_echo(void);  
Read and echo byte on USART0  
Read and echo hex on USART0  
Read int as hex and echo: USART0  
Read int reversed as hex and echo: USART0  
char rx_hex_echo(void);  
int_rx_hex_dbl_echo(void);  
int_rx_hex_word_echo(void);  
void autobaud(void);  
(3)  
Set USART0 baud rate after CR  
Output 1 space to USART0  
Output CR, LF to USART0  
received  
putspace1  
void putspace1(void);  
putcr  
void putcr(void);  
(1)  
CADDR must be set prior to using these routines.  
(2)  
(3)  
MWS register (SFR 8Fh) defines Data Memory or Program Memory write.  
SFR registers CKCON and TCON must be initialized: CKCON = 0x10 and TCON = 0x00.  
36  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
The recommended baud rate range for SFPM is 2400 to  
19200. If communication errors occur, decreasing the  
baud rate may improve communication performance.  
Serial Flash Programming Mode  
Serial Flash Programming mode (SFPM) is used to  
download Program and Data Memory into the onboard  
Flash Memory on the MSC120x. It is initiated by holding  
the P1.0/PROG pin low during the reset cycle, as shown  
in Figure 23. After the reset cycle, the host can  
communicate with the MSC120x through USART0. Refer  
to application note SBAA076 (www.ti.com) for serial  
programming commands and protocol.  
Also note that in SFPM, the Brownout Detect circuit is  
disabled and AV  
must be > 2.0V.  
DD  
INTERRUPTS  
The MSC120x use a three-priority interrupt system. As  
shown in Table 6, each interrupt source has an  
independent priority bit, flag, interrupt vector, and enable  
(except that nine interrupts share the Auxiliary Interrupt,  
AI, at the highest priority). In addition, interrupts can be  
globally enabled or disabled. The interrupt structure is  
compatible with the original 8051 family. All of the standard  
interrupts are available.  
In SFPM, the MSC120x uses the internal oscillator in low  
frequency mode (that is, the external clock is disabled).  
The internal oscillator frequency is affected by the power  
supply voltage and device temperature. Therefore, in  
order to avoid losing communication during programming,  
it is important to have a stable power supply and  
temperature environment during serial communication.  
MSC120x  
Reset Circuit (or VDD  
)
RST  
AVDD  
DVDD  
P1.0/PROG  
P3.1 TXD  
Host PC  
RS232  
Serial  
Port 0  
or  
P3.0 RXD  
Transceiver  
Serial Terminal  
NOTE: Serial programming is selected when P1.0/PROG is low at reset.  
Figure 23. Serial Flash Programming Mode  
37  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Table 6. Interrupt Summary  
INTERRUPT  
PRIORITY  
CONTROL  
ADDR  
NUM  
INTERRUPT/EVENT  
PRIORITY  
FLAG  
ENABLE  
High  
0
AV  
DD  
Low Voltage Detect  
33h  
6
ALVDIP (AIPOL.1)(1)  
EALV (AIE.1)(1)  
N/A  
2
Count (SPI/I C)  
33h  
33h  
33h  
33h  
33h  
33h  
03h  
0Bh  
13h  
1Bh  
6
6
6
6
6
6
0
1
2
3
0
0
0
0
0
0
1
2
3
4
CNTIP (AIPOL.2)(1)  
I2CIP (AIPOL.3)(1)  
MSECIP (AIPOL.4)(1)  
ADCIP (AIPOL.5)(1)  
SUMIP (AIPOL.6)(1)  
SECIP (AIPOL.7)(1)  
IE0 (TCON.1)(2)  
ECNT (AIE.2)(1)  
EI2C (AIE.3)(1)  
EMSEC (AIE.4)(1)  
EADC (AIE.5)(1)  
ESUM (AIE.6)(1)  
ESEC (AIE.7)(1)  
EX0 (IE.0)(4)  
N/A  
N/A  
2
I C Start/Stop  
Milliseconds Timer  
ADC  
N/A  
N/A  
Summation Register  
Seconds Timer  
External Interrupt 0  
Timer 0 Overflow  
External Interrupt 1  
Timer 1 Overflow  
N/A  
N/A  
PX0 (IP.0)  
PT0 (IP.1)  
PX1 (IP.2)  
PT1 (IP.3)  
TF0 (TCON.5)(3)  
ET0 (IE.1)(4)  
IE1 (TCON.3)(2)  
EX1 (IE.2)(4)  
TF1 (TCON.7)(3)  
ET1 (IE.3)(4)  
RI_0 (SCON0.0)  
TI_0 (SCON0.1)  
Serial Port 0  
23h  
4
5
ES0 (IE.4)(4)  
PS0 (IP.4)  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
Watchdog  
43h  
4Bh  
53h  
5Bh  
63h  
8
6
7
8
9
IE2 (EXIF.4)  
IE3 (EXIF.5)  
EX2 (EIE.0)(4)  
EX3 (EIE.1)(4)  
EX4 (EIE.2)(4)  
EX5 (EIE.3)(4)  
EWDI (EIE.4)(4)  
PX2 (EIP.0)  
PX3 (EIP.1)  
PX4 (EIP.2)  
PX5 (EIP.3)  
PWDI (EIP.4)  
9
10  
11  
12  
IE4 (EXIF.6)  
IE5 (EXIF.7)  
10  
WDTI (EICON.3)  
Low  
(1)  
(2)  
(3)  
(4)  
These interrupts set the AI flag (EICON.4) and are enabled by EAI (EICON.5).  
If edge-triggered, cleared automatically by hardware when the service routine is vectored to. If level-triggered, the flag follows the state of the pin.  
Cleared automatically by hardware when interrupt vector occurs.  
Globally enabled by EA (IE.7).  
38  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Hardware Configuration Register 0 (HCR0)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CADDR 3Fh  
EPMA  
PML  
RSL  
EBR  
EWDR  
1
DFSEL1  
DFSEL0  
NOTE: HCR0 is programmable only in SFPM, but can be read in UAM using the faddr_data_read Boot ROM routine.  
EPMA  
Enable Program Memory Access (Security Bit).  
bit 7  
0: After reset in programming modes, Flash Memory can only be accessed in UAM until a mass erase is done.  
1: Fully Accessible (default)  
PML  
Program Memory Lock (PML has priority over RSL).  
0: Enable read and write for Program Memory in UAM.  
1: Enable Read-Only mode for Program Memory in UAM (default).  
bit 6  
RSL  
bit 5  
Reset Sector Lock. The reset sector can be used to provide another method of Flash Memory programming, which  
allows Program Memory updates without changing the jumpers for in-circuit code updates or program development.  
The code in this boot sector would then provide the monitor and programming routines with the ability to jump into  
the main Flash code when programming is finished.  
0: Enable Reset Sector Writing  
1: Enable Read-Only mode for reset sector (4kB) (default). Same effect as PML for the MSC120xY2.  
EBR  
Enable Boot ROM. Boot ROM is 1kB of code located in ROM, not to be confused with the 4kB Boot Sector located  
bit 4  
in Flash Memory.  
0: Disable Internal Boot ROM  
1: Enable Internal Boot ROM (default)  
EWDR  
Enable Watchdog Reset.  
bit 3  
0: Disable Watchdog Reset  
1: Enable Watchdog Reset (default)  
DFSEL1−0 Data Flash Memory Size (see Table 3).  
bits 1−0  
00: 4kB Data Flash Memory (MSC120xY3 only)  
01: 2kB Data Flash Memory  
10: 1kB Data Flash Memory  
11: No Data Flash Memory (default)  
39  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Hardware Configuration Register 1 (HCR1)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CADDR 3Eh  
DBSEL3  
DBSEL2  
DBSEL1  
DBSEL0  
1
DDB  
1
1
NOTE: HCR1 is programmable only in SFPM, but can be read in UAM using the faddr_data_read Boot ROM routine.  
DBSEL3−0 Digital Supply Brownout Level Select. The values listed are nominal. The actual value will vary depending on  
device clock frequency and supply voltage. For high clock frequencies, the variation could be on the order of 10%  
below the nominal value.  
bits 7−4  
0000: 4.6V  
0001: 4.2V  
0010: 3.8V  
0011: 3.6V  
0100: 3.3V  
0101: 3.1V  
0110: 2.9V  
0111: 2.7V  
1000: 2.6V  
1001: Reserved  
1010: Reserved  
1011: Reserved  
1100: Reserved  
1101: Reserved  
1110: Reserved  
1111: Reserved  
DDB  
Disable Digital Brownout Detection.  
0: Enable Digital Brownout Detection  
1: Disable Digital Brownout Detection (default)  
bit 2  
40  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Hardware Configuration Register 2 (HCR2)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CADDR 3Dh  
0
0
0
0
0
CLKSEL2  
CLKSEL1  
CLKSEL0  
NOTE: HCR2 is programmable only in SFPM, but can be read in UAM using the faddr_data_read Boot ROM routine.  
CLKSEL2−1 Clock Select.  
bits 2−0  
000: Reserved  
001: Reserved  
010: Reserved  
011: External Clock Mode  
100: PLL High-Frequency (HF) Mode  
101: PLL Low-Frequency (LF) Mode  
110: Internal Oscillator High-Frequency (HF) Mode  
111: Internal Oscillator Low-Frequency (LF) Mode  
NOTE: Clock status can be verified reading PLLH in UAM.  
Configuration Memory Programming  
Hardware Configuration Memory can be changed only in Serial Flash Programming mode (SFPM).  
41  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Table 7. Special Function Registers  
ADDRESS REGISTER BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RESET VALUE  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
SP  
07h  
00h  
00h  
00h  
00h  
00h  
30h  
00h  
DPL0  
DPH0  
DPL1  
DPH1  
DPS  
0
0
0
0
0
0
0
SEL  
IDLE  
IT0  
PCON  
TCON  
TMOD  
SMOD  
TF1  
0
1
1
GF1  
IE1  
GF0  
IT1  
STOP  
IE0  
TR1  
TF0  
TR0  
−−−−−−−−−−−−−−− Timer 1 −−−−−−−−−−−−−−−  
−−−−−−−−−−−−−−− Timer 0 −−−−−−−−−−−−−−−  
89h  
00h  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
TL0  
00h  
00h  
00h  
00h  
01h  
00h  
TL1  
TH0  
TH1  
CKCON  
MWS  
P1  
0
0
0
0
0
0
T1M  
0
T0M  
0
MD2  
0
MD1  
0
MD0  
MXWS  
P1.7  
INT5  
P1.6  
INT4  
P1.5  
INT3  
P1.4  
INT2/SS  
P1.3  
DIN  
P1.2  
DOUT  
P1.1  
P1.0  
PROG  
90h  
FFh  
08h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
EXIF  
IE5  
IE4  
IE3  
IE2  
1
0
0
0
CADDR  
CDATA  
00h  
00h  
SCON0  
SBUF0  
SM0_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00h  
00h  
SPICON  
I2CCON  
SBIT3  
SBIT3  
SBIT2  
SBIT2  
SBIT1  
SBIT1  
SBIT0  
SBIT0  
ORDER  
STOP  
CPHA  
START  
ESS  
DCS  
CPOL  
CNTSEL  
9Ah  
9Bh  
00h  
00h  
SPIDATA  
I2CDATA  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
A6h  
A7h  
A8h  
A9h  
AIPOL  
PAI  
SECIP  
0
SUMIP  
0
ADCIP  
0
MSECIP  
0
I2CIP  
PAI3  
EI2C  
I2C  
CNTIP  
PAI2  
ALVDIP  
PAI1  
0
00h  
00h  
00h  
00h  
00h  
PAI0  
0
AIE  
ESEC  
SEC  
EA  
ESUM  
SUM  
0
EADC  
ADC  
0
EMSEC  
MSEC  
ES0  
ECNT  
CNT  
EALV  
ALVD  
ET0  
AISTAT  
IE  
0
ET1  
EX1  
EX0  
42  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Table 7. Special Function Registers (continued)  
ADDRESS REGISTER BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RESET VALUE  
AAh  
ABh  
ACh  
ADh  
AEh  
AFh  
P1DDRL  
P1DDRH  
P3  
P13H  
P17H  
P3.7  
P13L  
P17L  
P3.6  
P12H  
P16H  
P3.5  
P12L  
P16L  
P11H  
P15H  
P11L  
P15L  
P10H  
P14H  
P10L  
P14L  
00h  
00h  
P3.4  
T0  
P3.3  
INT1  
P3.2  
INT0  
P3.1  
TXD0  
P3.0  
RXD0  
B0h  
FFh  
SCK/SCL/CLKS T1  
B1h  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
BBh  
BCh  
BDh  
BEh  
BFh  
C0h  
C1h  
C2h  
C3h  
C4h  
C5h  
C6h  
C7h  
C8h  
C9h  
CAh  
CBh  
CCh  
CDh  
CEh  
CFh  
D0h  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
P3DDRL  
P3DDRH  
IDAC  
P33H  
P37H  
P33L  
P37L  
P32H  
P36H  
P32L  
P36L  
P31H  
P35H  
P31L  
P35L  
P30H  
P34H  
P30L  
P34L  
00h  
00h  
00h  
IP  
1
0
0
PS0  
PT1  
PX1  
PT0  
PX0  
80h  
EWU  
EWUWDT  
DIV2  
EWUEX1  
DIV1  
EWUEX0  
DIV0  
00h  
00h  
SYSCLK  
0
0
DIVMOD1  
DIVMOD0  
0
PSW  
OCL  
OCM  
OCH  
GCL  
GCM  
GCH  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00h  
00h  
00h  
00h  
5Ah  
ECh  
5Fh  
LSB  
MSB  
MSB  
LSB  
43  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Table 7. Special Function Registers (continued)  
ADDRESS REGISTER BIT 7  
BIT 6  
INP2  
1
BIT 5  
INP1  
EAI  
BIT 4  
INP0  
AI  
BIT 3  
INN3  
WDTI  
BIT 2  
INN2  
0
BIT 1  
INN1  
0
BIT 0  
INN0  
0
RESET VALUE  
01h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
EAh  
EBh  
ECh  
EDh  
EEh  
EFh  
F0h  
F1h  
F2h  
F3h  
F4h  
F5h  
F6h  
F7h  
F8h  
F9h  
FAh  
FBh  
FCh  
FDh  
FEh  
FFh  
ADMUX  
EICON  
INP3  
0
40h  
(1)  
(1)  
ADRESL  
ADRESM  
ADRESH  
LSB  
00h  
(1)  
(1)  
(1)  
MSB  
00h  
(1)  
MSB  
00h  
ADCON0  
ADCON1  
ADCON2  
ADCON3  
ACC  
BOD  
POL  
EVREF  
SM1  
VREFH  
SM0  
EBUF  
PGA2  
CAL2  
DR2  
PGA1  
CAL1  
DR1  
PGA0  
CAL0  
DR0  
30h  
OF_UF  
DR7  
00h  
DR6  
DR5  
DR4  
DR3  
0
1Bh  
0
0
0
0
DR10  
ACC.2  
SHF2  
DR9  
DR8  
06h  
ACC.7  
SSCON1  
ACC.6  
SSCON0  
ACC.5  
SCNT2  
ACC.4  
SCNT1  
ACC.3  
SCNT0  
ACC.1  
SHF1  
ACC.0  
SHF0  
LSB  
00h  
SSCON  
SUMR0  
SUMR1  
SUMR2  
SUMR3  
ODAC  
00h  
00h  
00h  
00h  
MSB  
00h  
00h  
LVDCON  
EIE  
ALVDIS  
0
1
0
0
0
1
0
1
0
ALVD3  
ALVD2  
ALVD1  
EX3  
ALVD0  
EX2  
8Fh  
1
0
0
EWDI  
EX5  
0
EX4  
0
E0h  
HWPC0  
HWPC1  
HWVER  
0
0
DEVICE  
0
MEMORY  
0
0000_00xxb  
20h  
0
0
FMCON  
FTCON  
B
0
PGERA  
FER2  
0
FRCM  
FER0  
0
BUSY  
FWR2  
SPM  
FPM  
02h  
A5h  
00h  
6Fh  
00h  
FER3  
FER1  
FWR3  
FWR1  
FWR0  
PDCON  
PASEL  
PDICLK  
PSEN4  
PDIDAC  
PSEN3  
PDI2C  
0
PDADC  
PSEN0  
PDWDT  
0
PDST  
0
PDSPI  
0
PSEN2  
PSEN1  
(2)  
(2)  
PLLL  
PLL7  
CKSTAT2  
0
PLL6  
PLL5  
PLL4  
PLL3  
PLL2  
PLL1  
PLL0  
xxh  
xxh  
PLLH  
CKSTAT1  
FREQ6  
0
CKSTAT0  
FREQ5  
0
PLLLOCK  
FREQ4  
0
0
0
PLL9  
PLL8  
ACLK  
FREQ3  
0
FREQ2  
0
FREQ1  
0
FREQ0  
RSTREQ  
PX2  
03h  
SRST  
0
00h  
E0h  
7Fh  
7Fh  
03h  
9Fh  
0Fh  
63h  
00h  
EIP  
1
1
1
PWDI  
PX5  
PX4  
PX3  
SECINT  
MSINT  
USEC  
MSECL  
MSECH  
HMSEC  
WDTCON  
WRT  
WRT  
0
SECINT6  
MSINT6  
0
SECINT5  
MSINT5  
FREQ5  
MSECL5  
MSECH5  
HMSEC5  
RWDT  
SECINT4  
MSINT4  
FREQ4  
MSECL4  
MSECH4  
HMSEC4  
WDCNT4  
SECINT3  
MSINT3  
FREQ3  
MSECL3  
MSECH3  
HMSEC3  
WDCNT3  
SECINT2  
MSINT2  
FREQ2  
MSECL2  
MSECH2  
HMSEC2  
WDCNT2  
SECINT1  
MSINT1  
FREQ1  
MSECL1  
MSECH1  
HMSEC1  
WDCNT1  
SECINT0  
MSINT0  
FREQ0  
MSECL0  
MSECH0  
HMSEC0  
WDCNT0  
MSECL7  
MSECH7  
HMSEC7  
EWDT  
MSECL6  
MSECH6  
HMSEC6  
DWDT  
(1)  
For the MSC1200/01, the ADC result is contained in ADRESH, ADRESM, and ADRESL. For the MSC1202, the ADC result is contained in  
ADRESM and ADRESL (that is, shifted right one byte) and the MSB is sign-extended (Bipolar mode) or zero-padded (Unipolar mode) in  
ADRESH. Therefore, when migrating between the MSC1200/01 and MSC1202, the ADC result calculation must be adjusted accordingly. For  
all devices, the ADC interrupt is cleared by reading ADRESL.  
(2)  
Dependent on active clock mode.  
44  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Table 8. Special Function Register Cross Reference  
POWER  
AND  
CLOCKS  
SERIAL  
COMM.  
TIMER  
FLASH  
ADC  
COUNTERS MEMORY DACS  
SFR  
ADDRESS FUNCTIONS  
CPU  
X
INTERRUPTS PORTS  
SP  
81h  
Stack Pointer  
DPL0  
DPH0  
DPL1  
DPH1  
DPS  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
93h  
94h  
98h  
99h  
Data Pointer Low 0  
Data Pointer High 0  
Data Pointer Low 1  
Data Pointer High 1  
Data Pointer Select  
Power Control  
X
X
X
X
X
PCON  
TCON  
TMOD  
TL0  
X
Timer/Counter Control  
Timer Mode Control  
Timer0 LSB  
X
X
X
X
X
X
X
X
X
X
TL1  
Timer1 LSB  
TH0  
Timer0 MSB  
TH1  
Timer1 MSB  
CKCON  
MWS  
P1  
Clock Control  
X
X
Memory Write Select  
Port 1  
X
EXIF  
External Interrupt Flag  
Configuration Address  
Configuration Data  
Serial Port 0 Control  
Serial Data Buffer 0  
SPI Control  
X
CADDR  
CDATA  
SCON0  
SBUF0  
SPICON  
I2CCON  
SPIDATA  
I2CDATA  
AIPOL  
PAI  
X
X
X
X
X
X
X
X
X
X
X
X
9Ah  
9Bh  
2
I C Control  
SPI Data  
2
I C Data  
A4h  
A5h  
A6h  
A7h  
A8h  
AEh  
AFh  
B0h  
B3h  
B4h  
B5h  
B8h  
C6h  
C7h  
D0h  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
Auxiliary Interrupt Poll  
Pending Auxiliary Interrupt  
Auxiliary Interrupt Enable  
Auxiliary Interrupt Status  
Interrupt Enable  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
AIE  
AISTAT  
IE  
P1DDRL  
P1DDRH  
P3  
Port 1 Data Direction Low  
Port 1 Data Direction High  
Port 3  
P3DDRL  
P3DDRH  
IDAC  
Port 3 Data Direction Low  
Port 3 Data Direction High  
Current DAC  
X
X
IP  
Interrupt Priority  
X
X
EWU  
Enable Wake Up  
X
X
SYSCLK  
PSW  
System Clock Divider  
X
X
X
Program Status Word  
X
OCL  
ADC Offset Calibration Low Byte  
ADC Offset Calibration Mid Byte  
ADC Offset Calibration High Byte  
ADC Gain Calibration Low Byte  
ADC Gain Calibration Mid Byte  
ADC Gain Calibration High Byte  
ADC Input Multiplexer  
Enable Interrupt Control  
X
X
X
X
X
X
X
X
OCM  
OCH  
GCL  
GCM  
GCH  
ADMUX  
EICON  
X
X
X
45  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Table 8. Special Function Register Cross Reference (continued)  
POWER  
AND  
CLOCKS  
SERIAL  
COMM.  
TIMER  
FLASH  
ADC  
COUNTERS MEMORY DACS  
SFR  
ADDRESS FUNCTIONS  
ADC Results Low Byte  
CPU  
INTERRUPTS PORTS  
ADRESL  
ADRESM  
ADRESH  
ADCON0  
ADCON1  
ADCON2  
ADCON3  
ACC  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
EAh  
EBh  
EEh  
EFh  
F0h  
F1h  
F2h  
F4h  
F5h  
F6h  
F7h  
F8h  
F9h  
FAh  
FBh  
FCh  
FDh  
FEh  
FFh  
X
X
X
X
X
X
X
ADC Results Middle Byte  
ADC Results High Byte  
ADC Control 0  
ADC Control 1  
ADC Control 2  
ADC Control 3  
Accumulator  
X
X
X
X
X
X
SSCON  
SUMR0  
SUMR1  
SUMR2  
SUMR3  
ODAC  
Summation/Shifter Control  
Summation 0  
X
X
X
X
X
X
Summation 1  
Summation 2  
Summation 3  
Offset DAC  
LVDCON  
EIE  
Low Voltage Detect Control  
Extended Interrupt Enable  
Hardware Product Code 0  
Hardware Product Code 1  
Hardware Version  
Flash Memory Control  
Flash Memory Timing Control  
Second Accumulator  
Power Down Control  
PSEN/ALE Select  
Phase Lock Loop Low  
Phase Lock Loop High  
Analog Clock  
X
X
HWPC0  
HWPC1  
HWVER  
FMCON  
FTCON  
B
X
X
X
X
X
X
PDCON  
PASEL  
PLLL  
X
X
X
X
X
X
X
X
X
X
X
PLLH  
ACLK  
SRST  
System Reset  
X
EIP  
Extended Interrupt Priority  
Seconds Interrupt  
Milliseconds Interrupt  
One Microsecond  
One Millisecond Low  
One Millisecond High  
One Hundred Millisecond  
Watchdog Timer  
X
X
X
SECINT  
MSINT  
USEC  
X
X
X
X
X
X
X
X
X
X
MSECL  
MSECH  
HMSEC  
WDTCON  
X
HCR0  
HCR1  
HCR2  
3Fh  
3Eh  
3Dh  
Hardware Configuration Reg. 0  
Hardware Configuration Reg. 1  
Hardware Configuration Reg. 2  
X
X
X
46  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Stack Pointer (SP)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 81h  
SP.7  
SP.6  
SP.5  
SP.4  
SP.3  
SP.2  
SP.1  
SP.0  
07h  
SP.7−0  
Stack Pointer. The stack pointer identifies the location where the stack will begin. The stack pointer is incremented before  
bits 7−0 every PUSH or CALL operation and decremented after each POP or RET/RETI. This register defaults to 07h after reset.  
Data Pointer Low 0 (DPL0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 82h  
DPL0.7  
DPL0.6  
DPL0.5  
DPL0.4  
DPL0.3  
DPL0.2  
DPL0.1  
DPL0.0  
00h  
DPL0.7−0 Data Pointer Low 0. This register is the low byte of the standard 8051 16-bit data pointer. DPL0 and DPH0 are used  
bits 7−0 to point to non-scratchpad data RAM. The current data pointer is selected by DPS (SFR 86h).  
Data Pointer High 0 (DPH0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 83h  
DPH0.7  
DPH0.6  
DPH0.5  
DPH0.4  
DPH0.3  
DPH0.2  
DPH0.1  
DPH0.0  
00h  
DPH0.7−0 Data Pointer High 0. This register is the high byte of the standard 8051 16-bit data pointer. DPL0 and DPH0 are used  
bits 7−0 to point to non-scratchpad data RAM. The current data pointer is selected by DPS (SFR 86h).  
Data Pointer Low 1 (DPL1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 84h  
DPL1.7  
DPL1.6  
DPL1.5  
DPL1.4  
DPL1.3  
DPL1.2  
DPL1.1  
DPL1.0  
00h  
DPL1.7−0 Data Pointer Low 1. This register is the low byte of the auxiliary 16-bit data pointer. When the SEL bit (DPS.0)  
bits 7−0 (SFR 86h) is set, DPL1 and DPH1 are used in place of DPL0 and DPH0 during DPTR operations.  
Data Pointer High 1 (DPH1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 85h  
DPH1.7  
DPH1.6  
DPH1.5  
DPH1.4  
DPH1.3  
DPH1.2  
DPH1.1  
DPH1.0  
00h  
DPH1.7−0 Data Pointer High. This register is the high byte of the auxiliary 16-bit data pointer. When the SEL bit (DPS.0)  
bits 7−0 (SFR 86h) is set, DPL1 and DPH1 are used in place of DPL0 and DPH0 during DPTR operations.  
Data Pointer Select (DPS)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 86h  
0
0
0
0
0
0
0
SEL  
00h  
SEL  
bit 0  
Data Pointer Select. This bit selects the active data pointer.  
0: Instructions that use the DPTR will use DPL0 and DPH0.  
1: Instructions that use the DPTR will use DPL1 and DPH1.  
47  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Power Control (PCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 87h  
SMOD  
0
1
1
GF1  
GF0  
STOP  
IDLE  
30h  
SMOD  
Serial Port 0 Baud Rate Doubler Enable. The serial baud rate doubling function for Serial Port 0.  
0: Serial Port 0 baud rate will be a standard baud rate.  
bit 7  
1: Serial Port 0 baud rate will be double that defined by baud rate generation equation.  
GF1  
General-Purpose User Flag 1. This is a general-purpose flag for software control.  
bit 3  
GF0  
General-Purpose User Flag 0. This is a general-purpose flag for software control.  
bit 2  
STOP  
bit 1  
Stop Mode Select. Setting this bit halts the internal oscillator and blocks external clocks. This bit always reads as 0.  
Exit with RESET. In this mode, internal peripherals are frozen and I/O pins are held in their current state. The ADC is  
frozen, but IDAC and VREF remain active.  
IDLE  
bit 0  
Idle Mode Select. Setting this bit freezes the CPU, Timer 0 and 1, and the USART; other peripherals remain active.  
This bit will always be read as a 0. Exit with AIE (A6h) and EWU (C6h) interrupts (refer to Figure 6 for clocks affected  
during Idle mode).  
Timer/Counter Control (TCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 88h  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00h  
TF1  
Timer 1 Overflow Flag. This bit indicates when Timer 1 overflows its maximum count as defined by the current mode.  
bit 7  
This bit can be cleared by software and is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.  
0: No Timer 1 overflow has been detected.  
1: Timer 1 has overflowed its maximum count.  
TR1  
Timer 1 Run Control. This bit enables/disables the operation of Timer 1. Halting this timer preserves the current  
bit 6  
count in TH1, TL1.  
0: Timer is halted.  
1: Timer is enabled.  
TF0  
Timer 0 Overflow Flag. This bit indicates when Timer 0 overflows its maximum count as defined by the current mode.  
bit 5  
This bit can be cleared by software and is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.  
0: No Timer 0 overflow has been detected.  
1: Timer 0 has overflowed its maximum count.  
TR0  
Timer 0 Run Control. This bit enables/disables the operation of Timer 0. Halting this timer preserves the current  
bit 4  
count in TH0, TL0.  
0: Timer is halted.  
1: Timer is enabled.  
IE1  
bit 3  
Interrupt 1 Edge Detect. This bit is set when an edge/level of the type defined by IT1 is detected. If IT1 = 1, this bit  
will remain set until cleared in software or the start of the External Interrupt 1 service routine. If IT1 = 0, this bit will inversely  
reflect the state of the INT1 pin.  
IT1  
Interrupt 1 Type Select. This bit selects whether the INT1 pin will detect edge- or level-triggered interrupts.  
bit 2  
0: INT1 is level-triggered.  
1: INT1 is edge-triggered.  
IE0  
bit 1  
Interrupt 0 Edge Detect. This bit is set when an edge/level of the type defined by IT0 is detected. If IT0 = 1, this bit  
will remain set until cleared in software or the start of the External Interrupt 0 service routine. If IT0 = 0, this bit will inversely  
reflect the state of the INT0 pin.  
IT0  
Interrupt 0 Type Select. This bit selects whether the INT0 pin will detect edge- or level-triggered interrupts.  
bit 0  
0: INT0 is level-triggered.  
1: INT0 is edge-triggered.  
48  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Timer Mode Control (TMOD)  
7
6
5
4
3
2
1
0
Reset Value  
TIMER 1  
TIMER 0  
SFR 89h  
00h  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
GATE  
Timer 1 Gate Control. This bit enables/disables the ability of Timer 1 to increment.  
0: Timer 1 will clock when TR1 = 1, regardless of the state of pin INT1.  
1: Timer 1 will clock only when TR1 = 1 and pin INT1 = 1.  
bit 7  
C/T  
Timer 1 Counter/Timer Select.  
bit 6  
0: Timer is incremented by internal clocks.  
1: Timer is incremented by pulses on T1 pin when TR1 (TCON.6, SFR 88h) is 1.  
M1, M0  
Timer 1 Mode Select. These bits select the operating mode of Timer 1.  
bits 5−4  
M1  
0
M0  
0
MODE  
Mode 0: 8-bit counter with 5-bit prescale.  
Mode 1: 16 bits.  
0
1
1
0
Mode 2: 8-bit counter with auto reload.  
Mode 3: Timer 1 is halted, but holds its count.  
1
1
GATE  
Timer 0 Gate Control. This bit enables/disables the ability of Timer 0 to increment.  
0: Timer 0 will clock when TR0 = 1, regardless of the state of pin INT0 (software control).  
1: Timer 0 will clock only when TR0 = 1 and pin INT0 = 1 (hardware control).  
bit 3  
C/T  
Timer 0 Counter/Timer Select.  
bit 2  
0: Timer is incremented by internal clocks.  
1: Timer is incremented by pulses on pin T0 when TR0 (TCON.4, SFR 88h) is 1.  
M1, M0  
Timer 0 Mode Select. These bits select the operating mode of Timer 0.  
bits 1−0  
M1  
0
M0  
0
MODE  
Mode 0: 8-bit counter with 5-bit prescale.  
Mode 1: 16 bits.  
0
1
1
0
Mode 2: 8-bit counter with auto reload.  
Mode 3: Two 8-bit counters.  
1
1
Timer 0 LSB (TL0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Ah  
TL0.7  
TL0.6  
TL0.5  
TL0.4  
TL0.3  
TL0.2  
TL0.1  
TL0.0  
00h  
TL0.7−0  
Timer 0 LSB. This register contains the least significant byte of Timer 0.  
bits 7−0  
Timer 1 LSB (TL1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Bh  
TL1.7  
TL1.6  
TL1.5  
TL1.4  
TL1.3  
TL1.2  
TL1.1  
TL1.0  
00h  
TL1.7−0  
Timer 1 LSB. This register contains the least significant byte of Timer 1.  
bits 7−0  
49  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Timer 0 MSB (TH0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Ch  
TH0.7  
TH0.6  
TH0.5  
TH0.4  
TH0.3  
TH0.2  
TH0.1  
TH0.0  
00h  
TH0.7−0  
Timer 0 MSB. This register contains the most significant byte of Timer 0.  
bits 7−0  
Timer 1 MSB (TH1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Dh  
TH1.7  
TH1.6  
TH1.5  
TH1.4  
TH1.3  
TH1.2  
TH1.1  
TH1.0  
00h  
TH1.7−0  
Timer 1 MSB. This register contains the most significant byte of Timer 1.  
bits 7−0  
Clock Control (CKCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Eh  
0
0
0
T1M  
T0M  
MD2  
MD1  
MD0  
01h  
T1M  
Timer 1 Clock Select. This bit controls the division of the system clock that drives Timer 1. Clearing this bit to 0  
bit 4  
maintains 8051 compatibility. This bit has no effect on instruction cycle timing.  
0: Timer 1 uses a divide-by-12 of the crystal frequency.  
1: Timer 1 uses a divide-by-4 of the crystal frequency.  
T0M  
Timer 0 Clock Select. This bit controls the division of the system clock that drives Timer 0. Clearing this bit to 0  
bit 3  
maintains 8051 compatibility. This bit has no effect on instruction cycle timing.  
0: Timer 0 uses a divide-by-12 of the crystal frequency.  
1: Timer 0 uses a divide-by-4 of the crystal frequency.  
MD2, MD1, MD0 Stretch MOVX Select. These bits select the time by which external MOVX cycles are to be stretched in the  
bits 2−0  
standard 8051 core. Since the MSC120x does not allow external memory access, these bits should be set to  
000b to allow for the fastest Flash Data Memory access.  
Memory Write Select (MWS)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8Fh  
0
0
0
0
0
0
0
MXWS  
00h  
MXWS  
MOVX Write Select. This allows writing to the internal Flash Program Memory.  
bit 0  
0: No writes are allowed to the internal Flash Program Memory.  
1: Writing is allowed to the internal Flash Program Memory, unless PML or RSL (HCR0, CADDR 3Fh) are set.  
50  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Port 1 (P1)  
7
6
5
4
3
2
1
0
Reset Value  
P1.7  
INT5  
P1.6  
INT4  
P1.5  
INT3  
P1.4  
INT2/SS  
P1.3  
DIN  
P1.2  
DOUT  
P1.1  
P1.0  
PROG  
SFR 90h  
FFh  
P1.7−0  
bits 7−0  
General-Purpose I/O Port 1. This register functions as a general-purpose I/O port. In addition, all the pins have an  
alternative function listed below. Each of the functions is controlled by several other SFRs. The associated Port 1  
latch bit must contain a logic ‘1’ before the pin can be used in its alternate function capacity. To use the alternate  
function, set the appropriate mode in P1DDRL (SFR AEh), P1DDRH (SFR AFh).  
INT5  
bit 7  
External Interrupt 5. A falling edge on this pin will cause an external interrupt 5 if enabled.  
External Interrupt 4. A rising edge on this pin will cause an external interrupt 4 if enabled.  
External Interrupt 3. A falling edge on this pin will cause an external interrupt 3 if enabled.  
INT4  
bit 6  
INT3  
bit 5  
INT2/SS  
External Interrupt 2. A rising edge on this pin will cause an external interrupt 2 if enabled. This pin can be used as  
bit 4  
slave select (SS) in SPI slave mode.  
2
2
DIN  
Serial Data In. This pin receives serial data in SPI and I C modes (in I C mode, this pin should be configured as an  
bit 3  
input) or standard 8051.  
2
2
DOUT  
Serial Data Out. This pin transmits serial data in SPI and I C modes (in I C mode, this pin should be configured as  
bit 2  
an open drain) or standard 8051.  
PROG  
Program Mode. When this pin is pulled low at power-up, the device enters Serial Programming mode (refer to  
bit 0  
Figure 2).  
External Interrupt Flag (EXIF)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 91h  
IE5  
IE4  
IE3  
IE2  
1
0
0
0
08h  
IE5  
External Interrupt 5 Flag. This bit will be set when a falling edge is detected on INT5. This bit must be cleared  
bit 7  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE4  
External Interrupt 4 Flag. This bit will be set when a rising edge is detected on INT4. This bit must be cleared  
bit 6  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE3  
External Interrupt 3 Flag. This bit will be set when a falling edge is detected on INT3. This bit must be cleared  
bit 5  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE2  
External Interrupt 2 Flag. This bit will be set when a rising edge is detected on INT2. This bit must be cleared  
bit 4  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
51  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Configuration Address (CADDR) (write-only)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 93h  
00h  
CADDR  
bits 7−0  
Configuration Address. This register supplies the address for reading bytes in the 128 bytes of Flash Configuration  
Memory. It is recommended that faddr_data_read be used when accessing Configuration memory.This register is  
also used as the address for the sfr_read and sfr_write routines, so it must be set prior to their use.  
CAUTION: If this register is written to while executing from Flash Memory, the CDATA register will be incorrect.  
Configuration Data (CDATA) (read-only)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 94h  
00h  
CDATA  
bits 7−0  
Configuration Data. This register will contain the data in the 128 bytes of Flash Configuration Memory that  
is located at the last written address in the CADDR register. This is a read-only register.  
Serial Port 0 Control (SCON0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 98h  
SM0_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00h  
SM0−2  
Serial Port 0 Mode. These bits control the mode of serial Port 0. Modes 1, 2, and 3 have 1 start and 1 stop bit in  
bits 7−5  
addition to the 8 or 9 data bits.  
MODE SM0  
SM1  
SM2 FUNCTION  
LENGTH  
8 bits  
PERIOD  
(1)  
0
0
1
1
2
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
Synchronous  
12 p  
4 p  
CLK  
(1)  
CLK  
Synchronous  
8 bits  
Asynchronous  
10 bits  
10 bits  
11 bits  
Timer 1 Baud Rate Equation  
Timer 1 Baud Rate Equation  
(2)  
Asynchronous−Valid Stop Required  
Asynchronous  
(1)  
(1)  
64 p  
32 p  
(SMOD = 0)  
(SMOD = 1)  
CLK  
CLK  
(1)  
(1)  
2
1
0
1
Asynchronous with Multiprocessor Communication  
11 bits  
64 p  
32 p  
(SMOD = 0)  
(SMOD = 1)  
CLK  
CLK  
3
3
1
1
1
1
0
1
Asynchronous  
11 bits  
11 bits  
Timer 1 Baud Rate Equation  
Timer 1 Baud Rate Equation  
(3)  
Asynchronous with Multiprocessor Communication  
(1)  
(2)  
(3)  
pCLK will be equal to tCLK, except that pCLK will stop for Idle mode.  
RI_0 will only be activated when a valid STOP is received.  
RI_0 will not be activated if bit 9 = 0.  
REN_0  
Receive Enable. This bit enables/disables the serial Port 0 received shift register.  
bit 4  
0: Serial Port 0 reception disabled.  
1: Serial Port 0 received enabled (modes 1, 2, and 3). Initiate synchronous reception (mode 0).  
TB8_0  
9th Transmission Bit State. This bit defines the state of the 9th transmission bit in serial Port 0 modes 2 and 3.  
bit 3  
RB8_0  
9th Received Bit State. This bit identifies the state of the 9th reception bit of received data in serial Port 0 modes  
bit 2  
2 and 3. In serial port mode 1, when SM2_0 = 0, RB8_0 is the state of the stop bit. RB8_0 is not used in mode 0.  
TI_0  
bit 1  
Transmitter Interrupt Flag. This bit indicates that data in the serial Port 0 buffer has been completely shifted out. In serial  
port mode 0, TI_0 is set at the end of the 8th data bit. In all other modes, this bit is set at the end of the last data bit.  
This bit must be manually cleared by software.  
RI_0  
bit 0  
Receiver Interrupt Flag. This bit indicates that a byte of data has been received in the serial Port 0 buffer. In serial  
port mode 0, RI_0 is set at the end of the 8th bit. In serial port mode 1, RI_0 is set after the last sample of the incoming  
stop bit subject to the state of SM2_0. In modes 2 and 3, RI_0 is set after the last sample of RB8_0. This bit must  
be manually cleared by software.  
52  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Serial Data Buffer 0 (SBUF0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 99h  
00h  
SBUF0  
bits 7−0  
Serial Data Buffer 0. Data for Serial Port 0 is read from or written to this location. The serial transmit and receive  
buffers are separate registers, but both are addressed at this location.  
SPI Control (SPICON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9Ah  
SBIT3  
SBIT2  
SBIT1  
SBIT0  
ORDER  
CPHA  
ESS  
CPOL  
00h  
SBIT3−0  
Serial Bit Count. Number of bits transferred (read-only).  
bits 7−4  
SBIT3:0  
0x00  
0x01  
0x03  
0x02  
0x06  
0x07  
0x05  
0x04  
0x0C  
COUNT  
0
1
2
3
4
5
6
7
8
ORDER  
Set Bit Order for Transmit and Receive.  
0: Most significant bits first  
bit 3  
1: Least significant bBits first  
CPHA  
Serial Clock Phase Control.  
bit 2  
0: Valid data starting from half SCK period before the first edge of SCK  
1: Valid data starting from the first edge of SCK  
ESS  
Enable Slave Select.  
bit 1  
0: SS (P1.4) is configured as a general-purpose I/O (default).  
1: SS (P1.4) is configured as SS for SPI mode. DOUT (P1.2) drives when SS is low, and DOUT (P1.2) is  
high-impedance when SS is high.  
CPOL  
Serial Clock Polarity.  
0: SCK idle at logic low  
1: SCK idle at logic high  
bit 0  
53  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
2
I C Control (I2CCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9Ah  
SBIT3  
SBIT2  
SBIT1  
SBIT0  
STOP  
START  
DCS  
CNTSEL  
00h  
SBIT3−0  
Serial Bit Count. Number of bits transferred (read-only).  
bits 7−4  
SBIT3:0  
0x00  
0x01  
0x03  
0x02  
0x06  
0x07  
0x05  
0x04  
0x0C  
COUNT  
0
1
2
3
4
5
6
7
8
STOP  
Stop-Bit Status.  
bit 3  
0: No stop  
1: Stop condition received and I2C (bit 3, SFR A7h) set (cleared on write to I2CDATA)  
START  
Start-Bit Status.  
bit 2  
0: No stop  
1: Start or repeated start condition received and I2C (bit 3, SFR A7h) set (cleared on write to I2CDATA)  
DCS  
Disable Serial Clock Stretch.  
bit 1  
0: Enable SCL stretch (cleared by firmware or START condition)  
1: Disable SCL stretch  
CNTSEL  
Counter Select.  
bit 0  
0: Counter IRQ set for bit counter = 8 (default)  
1: Counter IRQ set for bit counter = 1  
2
SPI Data (SPIDATA) / I C Data (I2CDATA)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9Bh  
00h  
SPIDATA  
SPI Data. Data for SPI is read from or written to this location. The SPI transmit and receive buffers are  
bits 7−0  
separate registers, but both are addressed at this location. Read to clear the receive interrupt and write to clear the  
transmit interrupt.  
2
2
I2CDATA  
I2C Data. Data for I C is read from or written to this location. The I C transmit and receive buffers are  
bits 7−0  
separate registers, but both are addressed at this location.  
54  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Auxiliary Interrupt Poll (AIPOL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A4h  
SECIP  
SUMIP  
ADCIP  
MSECIP  
I2CIP  
CNTIP  
ALVDIP  
0
00h  
Interrupts are enabled by EICON.4 (SFR D8h). The other interrupts are controlled by the IE and EIE registers.  
SECIP  
Second System Timer Interrupt Poll (before IRQ masking).  
0 = Second system timer interrupt poll inactive  
bit 7  
1 = Second system timer interrupt poll active  
SUMIP  
Summation Interrupt Poll (before IRQ masking).  
0 = Summation interrupt poll inactive  
bit 6  
1 = Summation interrupt poll active  
ADCIP  
ADC Interrupt Poll (before IRQ masking).  
0 = ADC interrupt poll inactive  
bit 5  
1 = ADC interrupt poll active  
MSECIP  
Millisecond System Timer Interrupt Poll (before IRQ masking).  
0 = Millisecond system timer interrupt poll inactive  
1 = Millisecond system timer interrupt poll active  
bit 4  
2
I2CIP  
I C Start/Stop Interrupt Poll (before IRQ masking).  
2
bit 3  
0 = I C start/stop interrupt poll inactive  
2
1 = I C start/stop interrupt poll active  
CNTIP  
Serial Bit Count Interrupt Poll (before IRQ masking).  
0 = Serial bit count interrupt poll inactive  
bit 2  
1 = Serial bit count interrupt poll active  
ALVDIP  
Analog Low Voltage Detect Interrupt Poll (before IRQ masking).  
bit 1  
0 = Analog low voltage detect interrupt poll inactive (AV  
> ALVD threshold; ALVD threshold set in LVDCON, E7h)  
< ALVD threshold; ALVD threshold set in LVDCON, E7h)  
DD  
1 = Analog low voltage detect interrupt poll active (AV  
DD  
Pending Auxiliary Interrupt (PAI)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A5h  
0
0
0
0
PAI3  
PAI2  
PAI1  
PAI0  
00h  
PAI  
bits 3−0  
Pending Auxiliary Interrupt Register. The results of this register can be used as an index to vector to the  
appropriate interrupt routine. All of these interrupts vector through address 0033h.  
PAI3  
PAI2  
PAI1  
PAI0  
AUXILIARY INTERRUPT STATUS  
No Pending Auxiliary IRQ.  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Reserved.  
Analog Low Voltage Detect IRQ and Possible Lower Priority Pending.  
2
I C IRQ and Possible Lower Priority Pending.  
Serial Bit Count Interrupt and Possible Lower Priority Pending.  
Millisecond System Timer IRQ and Possible Lower Priority Pending.  
ADC IRQ and Possible Lower Priority Pending.  
Summation IRQ and Possible Lower Priority Pending.  
Second System Timer IRQ.  
55  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Auxiliary Interrupt Enable (AIE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A6h  
ESEC  
ESUM  
EADC  
EMSEC  
EI2C  
ECNT  
EALV  
0
00h  
Interrupts are enabled by EICON.4 (SFR D8h). The other interrupts are controlled by the IE and EIE registers.  
ESEC  
Enable Second System Timer Interrupt (lowest priority auxiliary interrupt).  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: Second Timer Interrupt mask.  
bit 7  
ESUM  
Enable Summation Interrupt.  
bit 6  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: Summation Interrupt mask.  
EADC  
Enable ADC Interrupt.  
bit 5  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: ADC Interrupt mask.  
EMSEC  
Enable Millisecond System Timer Interrupt.  
bit 4  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: Millisecond System Timer Interrupt mask.  
2
EI2C  
Enable I C Start/Stop Bit.  
bit 3  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
2
Read: I C Start/Stop Bit mask.  
ECNT  
Enable Serial Bit Count Interrupt.  
bit 2  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: Serial Bit Count Interrupt mask.  
EALV  
Enable Analog Low Voltage Interrupt.  
bit 1  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: Analog Low Voltage Detect Interrupt mask.  
56  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Auxiliary Interrupt Status (AISTAT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A7h  
SEC  
SUM  
ADC  
MSEC  
I2C  
CNT  
ALVD  
0
00h  
SEC  
Second System Timer Interrupt Status Flag (lowest priority AI).  
0: SEC interrupt cleared or masked.  
bit 7  
1: SEC Interrupt active (it is cleared by reading SECINT, SFR F9h).  
SUM  
Summation Register Interrupt Status Flag.  
bit 6  
0: SUM interrupt cleared or masked.  
1: SUM interrupt active (it is cleared by reading the lowest byte of SUMR0, SFR E2h).  
ADC  
ADC Interrupt Status Flag.  
bit 5  
0: ADC interrupt cleared or masked.  
1: ADC interrupt active (it is cleared by reading the lowest byte of ADRESL, SFR D9h; if active, no new data will be  
written to the ADC Results registers).  
MSEC  
Millisecond System Timer Interrupt Status Flag.  
0: MSEC interrupt cleared or masked.  
bit 4  
1: MSEC interrupt active (it is cleared by reading MSINT, SFR FAh).  
2
I2C  
I C Start/Stop Interrupt Status Flag.  
2
bit 3  
0: I C start/stop interrupt cleared or masked.  
2
1: I C start/stop interrupt active (it is cleared by writing to I2CDATA, SFR 9Bh).  
CNT  
CNT Interrupt Status Flag.  
bit 2  
0: CNT Interrupt cleared or masked.  
1: CNT Interrupt active (it is cleared by reading from or writing to SPIDATA/I2CDATA, SFR 9Bh).  
ALVD  
Analog Low Voltage Detect Interrupt Status Flag.  
bit 1  
0: ALVD Interrupt cleared or masked.  
1: ALVD Interrupt active (cleared in hardware if AV  
exceeds ALVD threshold).  
DD  
NOTE: If an interrupt is masked, the status can be read in AIPOL (SFR A4h).  
57  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Interrupt Enable (IE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A8h  
EA  
0
0
ES0  
ET1  
EX1  
ET0  
EX0  
00h  
EA  
Global Interrupt Enable. This bit controls the global masking of all interrupts except those in AIE (SFR A6h).  
0: Disable interrupt sources. This bit overrides individual interrupt mask settings for this register.  
1: Enable all individual interrupt masks. Individual interrupts in this register will occur if enabled.  
bit 7  
ES0  
Enable Serial Port 0 Interrupt. This bit controls the masking of the serial Port 0 interrupt.  
0: Disable all serial Port 0 interrupts.  
bit 4  
1: Enable interrupt requests generated by the RI_0 (SCON0.0, SFR 98h) or TI_0 (SCON0.1, SFR 98h) flags.  
ET1  
Enable Timer 1 Interrupt. This bit controls the masking of the Timer 1 interrupt.  
0: Disable Timer 1 interrupt.  
bit 3  
1: Enable interrupt requests generated by the TF1 flag (TCON.7, SFR 88h).  
EX1  
Enable External Interrupt 1. This bit controls the masking of external interrupt 1.  
0: Disable external interrupt 1.  
bit 2  
1: Enable interrupt requests generated by the INT1 pin.  
ET0  
Enable Timer 0 Interrupt. This bit controls the masking of the Timer 0 interrupt.  
0: Disable all Timer 0 interrupts.  
bit 1  
1: Enable interrupt requests generated by the TF0 flag (TCON.5, SFR 88h).  
EX0  
Enable External Interrupt 0. This bit controls the masking of external interrupt 0.  
0: Disable external interrupt 0.  
bit 0  
1: Enable interrupt requests generated by the INT0 pin.  
58  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Port 1 Data Direction Low (P1DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR AEh  
P13H  
P13L  
P12H  
P12L  
P11H  
P11L  
P10H  
P10L  
00h  
P1.3  
Port 1 bit 3 control.  
bits 7−6  
P13H  
P13L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.2  
Port 1 bit 2 control.  
bits 5−4  
P12H  
P12L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.1  
Port 1 bit 1 control.  
bits 3−2  
P11H  
P11L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.0  
Port 1 bit 0 control.  
bits 1−0  
P10H  
P10L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
59  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Port 1 Data Direction High (P1DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR AFh  
P17H  
P17L  
P16H  
P16L  
P15H  
P15L  
P14H  
P14L  
00h  
P1.7  
Port 1 bit 7 control.  
bits 7−6  
P17H  
P17L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.6  
Port 1 bit 6 control.  
bits 5−4  
P16H  
P16L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.5  
Port 1 bit 5 control.  
bits 3−2  
P15H  
P15L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.4  
Port 1 bit 4 control.  
bits 1−0  
P14H  
P14L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
60  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Port 3 (P3)  
7
6
5
4
3
2
1
0
Reset Value  
P3.7  
P3.6  
SCK/SCL/CLKS  
P3.5  
T1  
P3.4  
T0  
P3.3  
INT1  
P3.2  
INT0  
P3.1  
TXD0  
P3.0  
RXD0  
SFR B0h  
FFh  
P3.7−0  
bits 7−0  
General-Purpose I/O Port 3. This register functions as a general-purpose I/O port. In addition, all the pins have an  
alternative function listed below. Each of the functions is controlled by several other SFRs. The associated Port 3  
latch bit must contain a logic ‘1’ before the pin can be used in its alternate function capacity.  
SCK/SCL/CLKS Clock Source Select. Refer to PASEL (SFR F2h).  
bit 6  
T1  
Timer/Counter 1 External Input. A 1 to 0 transition on this pin will increment Timer 1.  
Timer/Counter 0 External Input. A 1 to 0 transition on this pin will increment Timer 0.  
External Interrupt 1. A falling edge/low level on this pin will cause an external interrupt 1 if enabled.  
External Interrupt 0. A falling edge/low level on this pin will cause an external interrupt 0 if enabled.  
bit 5  
T0  
bit 4  
INT1  
bit 3  
INT0  
bit 2  
TXD0  
Serial Port 0 Transmit. This pin transmits the serial Port 0 data in serial port modes 1, 2, 3, and emits the  
bit 1  
synchronizing clock in serial port mode 0.  
RXD0  
Serial Port 0 Receive. This pin receives the serial Port 0 data in serial port modes 1, 2, 3, and is a bidirectional data  
bit 0  
transfer pin in serial port mode 0.  
61  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Port 3 Data Direction Low (P3DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B3h  
P33H  
P33L  
P32H  
P32L  
P31H  
P31L  
P30H  
P30L  
00h  
P3.3  
Port 3 bit 3 control.  
bits 7−6  
P33H  
P33L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.2  
Port 3 bit 2 control.  
bits 5−4  
P32H  
P32L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.1  
Port 3 bit 1 control.  
bits 3−2  
P31H  
P31L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.0  
Port 3 bit 0 control.  
bits 1−0  
P30H  
P30L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
62  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Port 3 Data Direction High (P3DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B4h  
P37H  
P37L  
P36H  
P36L  
P35H  
P35L  
P34H  
P34L  
00h  
P3.7  
bits 7−6  
Port 3 bit 7 control.  
P37H  
P37L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
:
NOTE Port 3.7 also controlled by EA and Memory Access Control HCR1.1.  
P3.6  
Port 3 bit 6 control.  
bits 5−4  
P36H  
P36L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
:
NOTE Port 3.6 also controlled by EA and Memory Access Control HCR1.1.  
P3.5  
Port 3 bit 5 control.  
bits 3−2  
P35H  
P35L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.4  
Port 3 bit 4 control.  
bits 1−0  
P34H  
P34L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
63  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
IDAC  
7
6
5
4
3
2
1
0
Reset Value  
SFR B5h  
MSB  
LSB  
00h  
IDAC  
bits 7−0  
Current DAC.  
IDAC  
= IDAC 3.9µA (1mA full-scale). Setting (PDCON.PDIDAC) will shut down IDAC and float the IDAC pin.  
OUT  
Interrupt Priority (IP)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B8h  
1
0
0
PS0  
PT1  
PX1  
PT0  
PX0  
80h  
PS0  
Serial Port 0 Interrupt. This bit controls the priority of the serial Port 0 interrupt.  
0 = Serial Port 0 priority is determined by the natural priority order.  
1 = Serial Port 0 is a high-priority interrupt.  
bit 4  
PT1  
Timer 1 Interrupt. This bit controls the priority of the Timer 1 interrupt.  
0 = Timer 1 priority is determined by the natural priority order.  
1 = Timer 1 priority is a high-priority interrupt.  
bit 3  
PX1  
External Interrupt 1. This bit controls the priority of external interrupt 1.  
0 = External interrupt 1 priority is determined by the natural priority order.  
1 = External interrupt 1 is a high-priority interrupt.  
bit 2  
PT0  
Timer 0 Interrupt. This bit controls the priority of the Timer 0 interrupt.  
0 = Timer 0 priority is determined by the natural priority order.  
1 = Timer 0 priority is a high-priority interrupt.  
bit 1  
PX0  
External Interrupt 0. This bit controls the priority of external interrupt 0.  
0 = External interrupt 0 priority is determined by the natural priority order.  
1 = External interrupt 0 is a high-priority interrupt.  
bit 0  
Enable Wake Up (EWU) (Waking Up from Idle Mode)  
7
6
5
4
3
2
1
0
Reset Value  
SFR C6h  
EWUWDT  
EWUEX1  
EWUEX0  
00h  
Auxiliary interrupts will wake up from Idle mode. They are enabled with EAI (EICON.5).  
EWUWDT Enable Wake Up Watchdog Timer. Wake using watchdog timer interrupt.  
bit 2  
0 = Do not wake up on watchdog timer interrupt.  
1 = Wake up on watchdog timer interrupt.  
EWUEX1  
Enable Wake Up External 1. Wake using external interrupt source 1.  
0 = Do not wake up on external interrupt source 1.  
1 = Wake up on external interrupt source 1.  
bit 1  
EWUEX0  
Enable Wake Up External 0. Wake using external interrupt source 0.  
0 = Do not wake up on external interrupt source 0.  
1 = Wake up on external interrupt source 0.  
bit 0  
64  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
System Clock Divider (SYSCLK)  
7
6
5
4
3
2
1
0
Reset Value  
SFR C7h  
0
0
DIVMOD1  
DIVMOD0  
0
DIV2  
DIV1  
DIV0  
00h  
NOTE: Changing the SYSCLK registers affects all internal clocks, including the ADC clock.  
DIVMOD1−0 Clock Divide Mode  
bits 5−4  
Write:  
DIVMOD DIVIDE MODE  
00  
01  
10  
Normal mode (default, no divide).  
Immediate mode: start divide immediately; return to Normal mode on Idle mode wakeup condition, or by direct write to SFR.  
Delay mode: same as Immediate mode, except that the mode changes with the millisecond interrupt (MSINT). If MSINT is  
enabled, the divide will start on the next MSINT and return to normal mode on the following MSINT. If MSINT is not enabled,  
the divide will start on the next MSINT condition (even if masked) but will not leave the divide mode until the MSINT counter  
overflows, which follows a wakeup condition. Can exit by directly writing to SFR.  
11  
Manual mode: start divide immediately; exit mode only by directly writing to SFR. Same as immediate mode, but cannot  
return to Normal mode on Idle mode wakeup condition; only by directly writing to SFR.  
Read:  
DIVMOD  
DIVIDE MODE STATUS  
No divide  
00  
01  
10  
11  
Divider is in Immediate mode  
Divider is in Delay mode  
Manual mode  
DIV2−0  
Divide Mode  
bit 2−0  
DIV  
000  
001  
010  
011  
100  
101  
110  
111  
DIVISOR  
f
FREQUENCY  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
Divide by 2 (default)  
Divide by 4  
f
f
f
f
f
f
f
f
= f  
SYS  
= f  
SYS  
= f  
SYS  
= f  
SYS  
= f  
SYS  
= f  
SYS  
= f  
SYS  
= f  
SYS  
/2  
/4  
Divide by 8  
/8  
Divide by 16  
/16  
Divide by 32  
/32  
Divide by 1024  
Divide by 2048  
Divide by 4096  
/1024  
/2048  
/4096  
65  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Program Status Word (PSW)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D0h  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00h  
CY  
Carry Flag. This bit is set when the last arithmetic operation resulted in a carry (during addition) or a borrow (during  
bit 7  
subtraction). Otherwise, it is cleared to ‘0’ by all arithmetic operations.  
AC  
Auxiliary Carry Flag. This bit is set to ‘1’ if the last arithmetic operation resulted in a carry into (during addition), or  
bit 6  
a borrow (during subtraction) from the high order nibble. Otherwise, it is cleared to ‘0’ by all arithmetic operations.  
F0  
User Flag 0. This is a bit-addressable, general-purpose flag for software control.  
bit 5  
RS1, RS0  
Register Bank Select 1−0. These bits select which register bank is addressed during register accesses.  
bits 4−3  
RS1  
RS0  
REGISTER BANK  
ADDRESS  
00h − 07h  
08h − 0Fh  
10h − 17h  
18h − 1Fh  
0
0
1
1
0
1
0
1
0
1
2
3
OV  
Overflow Flag. This bit is set to ‘1’ if the last arithmetic operation resulted in a carry (addition), borrow (subtraction),  
bit 2  
or overflow (multiply or divide). Otherwise, it is cleared to ‘0’ by all arithmetic operations.  
F1  
User Flag 1. This is a bit-addressable, general-purpose flag for software control.  
bit 1  
P
Parity Flag. This bit is set to ‘1’ if the modulo-2 sum of the 8 bits of the accumulator is 1 (odd parity), and cleared to  
bit 0  
‘0’ on even parity.  
66  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ADC Offset Calibration Low Byte (OCL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D1h  
LSB  
00h  
All MSC120x devices support 24-bit calibration values.  
OCL  
ADC Offset Calibration Low Byte. This is the low byte of the 24-bit word that contains the ADC offset  
bits 7−0  
calibration. This value is written by the device after performing a calibration. This register is read/writable, so it can  
be used for setting calibration values independent of the hardware-generated calibration values.  
ADC Offset Calibration Middle Byte (OCM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D2h  
00h  
All MSC120x devices support 24-bit calibration values.  
OCM  
bits 7−0  
ADC Offset Calibration Middle Byte. This is the middle byte of the 24-bit word that contains the ADC offset  
calibration. This value is written by the device after performing a calibration. This register is read/writable, so it can  
be used for setting calibration values independent of the hardware-generated calibration values.  
ADC Offset Calibration High Byte (OCH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D3h  
MSB  
00h  
All MSC120x devices support 24-bit calibration values.  
OCH  
bits 7−0  
ADC Offset Calibration High Byte. This is the high byte of the 24-bit word that contains the ADC offset  
calibration. This value is written by the device after performing a calibration. This register is read/writable, so it can  
be used for setting calibration values independent of the hardware-generated calibration values.  
ADC Gain Calibration Low Byte (GCL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D4h  
LSB  
5Ah  
All MSC120x devices support 24-bit calibration values.  
GCL  
ADC Gain Calibration Low Byte. This is the low byte of the 24-bit word that contains the ADC gain  
bits 7−0  
calibration. This value is written by the device after performing a calibration. This register is read/writable, so it can  
be used for setting calibration values independent of the hardware-generated calibration values.  
ADC Gain Calibration Middle Byte (GCM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D5h  
ECh  
All MSC120x devices support 24-bit calibration values.  
GCM  
bits 7−0  
ADC Gain Calibration Middle Byte. This is the middle byte of the 24-bit word that contains the ADC gain  
calibration. This value is written by the device after performing a calibration. This register is read/writable, so it can  
be used for setting calibration values independent of the hardware-generated calibration values.  
67  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ADC Gain Calibration High Byte (GCH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D6h  
MSB  
5Fh  
All MSC120x devices support 24-bit calibration values.  
GCH  
bits 7−0  
ADC Gain Calibration High Byte. This is the high byte of the 24-bit word that contains the ADC gain  
calibration. This value is written by the device after performing a calibration. This register is read/writable, so it can  
be used for setting calibration values independent of the hardware-generated calibration values.  
ADC Input Multiplexer (ADMUX)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D7h  
INP3  
INP2  
INP1  
INP0  
INN3  
INN2  
INN1  
INN0  
01h  
INP3−0  
Input Multiplexer Positive Input. This selects the positive signal input.  
bits 7−4  
INP3  
INP2  
INP1  
INP0  
POSITIVE INPUT  
AIN0 (default)  
AIN1  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN2  
AIN3  
AIN4  
AIN5  
AIN6 (MSC1200 only; for the MSC1201/02, this pin is internally tied to REFIN−)  
AIN7 (MSC1200 only; for the MSC1201/02, this pin is internally tied to REFIN−)  
AINCOM  
Temperature Sensor (requires ADMUX = FFh)  
INN3−0  
Input Multiplexer Negative Input. This selects the negative signal input.  
bits 3−0  
INN3  
INN2  
INN1  
INN0  
NEGATIVE INPUT  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0  
AIN1 (default)  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6 (MSC1200 Only)  
AIN7 (MSC1200 Only)  
AINCOM  
Temperature Sensor (requires ADMUX = FFh)  
68  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Enable Interrupt Control (EICON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D8h  
0
1
EAI  
AI  
WDTI  
0
0
0
40h  
EAI  
Enable Auxiliary Interrupt. The Auxiliary Interrupt accesses nine different interrupts which are masked and  
bit 5  
identified by SFR registers PAI (SFR A5h), AIE (SFR A6h), and AISTAT (SFR A7h).  
0 = Auxiliary Interrupt disabled (default).  
1 = Auxiliary Interrupt enabled.  
AI  
bit 4  
Auxiliary Interrupt Flag. AI must be cleared by software before exiting the interrupt service routine, after the source  
of the interrupt is cleared. Otherwise, the interrupt occurs again. Setting AI in software generates an Auxiliary  
Interrupt, if enabled.  
0 = No Auxiliary Interrupt detected (default).  
1 = Auxiliary Interrupt detected.  
WDTI  
bit 3  
Watchdog Timer Interrupt Flag. WDTI must be cleared by software before exiting the interrupt service routine.  
Otherwise, the interrupt occurs again. Setting WDTI in software generates a watchdog time interrupt, if enabled. The  
Watchdog timer can generate an interrupt or reset. The interrupt is available only if the reset action is disabled in  
HCR0.  
0 = No Watchdog Timer Interrupt Detected (default).  
1 = Watchdog Timer Interrupt Detected.  
ADC Results Low Byte (ADRESL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D9h  
LSB  
00h  
ADRESL  
bits 7−0  
ADC Results Low Byte. This is the low byte of the ADC results.  
Reading from this register clears the ADC interrupt; however, AI in EICON (SFR D8) must also be cleared.  
ADC Results Middle Byte (ADRESM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DAh  
00h  
ADRESM  
ADC Results Middle Byte. This is the middle byte of the ADC results for the MSC1200/01 and the most significant  
byte for the MSC1202.  
bits 7−0  
ADC Results High Byte (ADRESH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DBh  
MSB  
00h  
ADRESH  
bits 7−0  
ADC Results High Byte. This is the high byte and most significant byte of the ADC results for the MSC1200/01.  
This is a sign-extended (Bipolar mode) or zero-padded (Unipolar mode) byte for the MSC1202 (that is, all 0s for  
positive ADC or unipolar results and all 1s for negative ADC results).  
69  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ADC Control 0 (ADCON0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DCh  
BOD  
EVREF  
VREFH  
EBUF  
PGA2  
PGA1  
PGA0  
30h  
BOD  
bit 6  
Burnout Detect. When enabled, this connects a positive current source to the positive channel and a negative  
current source to the negative channel. If the channel is open circuit, then the ADC results will be full-scale (buffer  
must be enabled).  
0 = Burnout Current Sources Off (default).  
1 = Burnout Current Sources On.  
EVREF  
Enable Internal Voltage Reference. If an external voltage is used, the internal voltage reference should be disabled.  
0 = Internal Voltage Reference Off for external reference.  
bit 5  
1 = Internal Voltage Reference On (default). Note that in this mode, REFIN− must be connected to AGND.  
VREFH  
Voltage Reference High Select. The internal voltage reference can be selected to be 2.5V or 1.25V.  
0 = REFOUT/REF IN+ is 1.25V.  
bit 4  
1 = REFOUT/REF IN+ is 2.5V (default).  
EBUF  
Enable Buffer. Enables the input buffer to provide higher input impedance but limits the input voltage range and  
bit 3  
dissipates more power.  
0 = Buffer disabled (default).  
1 = Buffer enabled. Input signal limited to AV  
− 1.5V.  
DD  
PGA2−0  
Programmable Gain Amplifier. Sets the gain for the PGA from 1 to 128.  
bits 2−0  
PGA2  
PGA1  
PGA0  
GAIN  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 (default)  
2
4
8
16  
32  
64  
128  
70  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ADC Control 1 (ADCON1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DDh  
OF_UF  
POL  
SM1  
SM0  
CAL2  
CAL1  
CAL0  
00h  
OF_UF  
Overflow/Underflow. If this bit is set, the data in the Summation register is invalid; either an overflow or underflow  
bit 6  
occurred. This bit is cleared by writing a ‘0’ to it.  
POL  
Polarity. Polarity of the ADC result and Summation register.  
bit 6  
0 = Bipolar.  
1 = Unipolar.  
DIGITAL OUTPUT  
(ADRESH:ADRESM:ADRESL)  
MSC1200  
(1)  
MSC1202  
MSC1201  
7FFFFFh  
000000h  
800000h  
FFFFFFh  
000000h  
000000h  
POL  
ANALOG INPUT  
+FSR  
007FFFh  
000000h  
FF8000h  
00FFFFh  
000000h  
000000h  
ZERO  
0
−FSR  
+FSR  
ZERO  
1
−FSR  
(1)  
The MSC1202 ADC result is sign-extended into ADRESH.  
SM1−0  
Settling Mode. Selects the type of filter or auto-select which defines the digital filter settling characteristics.  
bits 5−4  
SM1  
SM0  
SETTLING MODE  
0
0
1
1
0
1
0
1
Auto  
Fast Settling Filter  
2
Sinc Filter  
3
Sinc Filter  
CAL2−0  
Calibration Mode Control Bits. Writing to this register initiates calibration.  
bits 2−0  
CAL2  
CAL1  
CAL0  
CALIBRATION MODE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No Calibration (default)  
Self-Calibration, Offset and Gain  
Self-Calibration, Offset only  
Self-Calibration, Gain only  
System Calibration, Offset only (requires external signal)  
System Calibration, Gain only (requires external signal)  
Reserved  
Reserved  
:
NOTE Read value—000b.  
71  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
ADC Control 2 (ADCON2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DEh  
DR7  
DR6  
DR5  
DR4  
DR3  
DR2  
DR1  
DR0  
1Bh  
DR7−0  
bits 7−0  
Decimation Ratio LSB (refer to ADCON3, SFR DFh).  
ADC Control 3 (ADCON3)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DFh  
DR10  
DR9  
DR8  
06h  
DR10−8  
Decimation Ratio Most Significant 3 Bits.  
fMOD  
fCLK  
bits 2−0  
The ADC output data rate is:  
where fMOD  
+
.
Decimation Ratio  
(
)
ACLK)1 @ 64  
Accumulator (A or ACC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E0h  
ACC.7  
ACC.6  
ACC.5  
ACC.4  
ACC.3  
ACC.2  
ACC.1  
ACC.0  
00h  
ACC.7−0  
Accumulator. This register serves as the accumulator for arithmetic and logic operations.  
bits 7−0  
72  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Summation/Shifter Control (SSCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E1h  
SSCON1  
SSCON0  
SCNT2  
SCNT1  
SCNT0  
SHF2  
SHF1  
SHF0  
00h  
The Summation register is powered down when the ADC is powered down. If all zeroes are written to this register, the 32-bit  
SUMR3−0 registers will be cleared. The Summation registers will do sign-extend if Bipolar Mode is selected in ADCON1.  
SSCON1−0 Summation/Shift Count.  
bits 7−6  
SSCON1 SSCON0  
SCNT2  
SCNT1  
SCNT0  
SHF2  
SHF1  
SHF0  
DESCRIPTION  
0
0
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
0
Clear Summation Register  
0
1
0
0
0
0
CPU Summation on Write to SUMR0 (sum count/shift ignored)  
CPU Subtraction on Write to SUMR0 (sum count/shift ignored)  
CPU Shift only  
1
0
0
0
0
0
x
x
x
Note (1)  
x
Note (1)  
x
Note (1)  
x
Note (1)  
Note (1)  
Note (1)  
Note (1)  
Note (1)  
Note (1)  
ADC Summation only  
Note (1)  
Note (1)  
Note (1)  
ADC Summation completes, then shift completes  
(1)  
Refer to register bit definition.  
SCNT2−0  
Summation Count. When the summation is complete an interrupt will be generated unless masked. Reading the  
bits 5−3  
SUMR0 register clears the interrupt.  
SCNT2  
SCNT1  
SCNT0  
SUMMATION COUNT  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
4
8
16  
32  
64  
128  
256  
SHF2−0  
Shift Count.  
bits 2−0  
SHF2  
SHF1  
SHF0  
SHIFT  
DIVIDE  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
4
8
16  
32  
64  
128  
256  
73  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Summation 0 (SUMR0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E2h  
LSB  
00h  
SUMR0  
bits 7−0  
Summation 0. This is the least significant byte of the 32-bit summation register, or bits 0 to 7.  
Write: Will cause values in SUMR3−0 to be added to the summation register.  
Read: Will clear the Summation Interrupt.  
Summation 1 (SUMR1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E3h  
00h  
SUMR1  
Summation 1. This is the most significant byte of the lowest 16 bits of the summation register, or bits 8−15.  
bits 7−0  
Summation 2 (SUMR2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E4h  
00h  
SUMR2  
Summation 2. This is the most significant byte of the lowest 24 bits of the summation register, or bits 16−23.  
bits 7−0  
Summation 3 (SUMR3)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E5h  
MSB  
00h  
SUMR3  
bits 7−0  
Summation 3. This is the most significant byte of the 32-bit summation register, or bits 24−31.  
Offset DAC (ODAC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E6h  
00h  
ODAC  
bits 7−0  
Offset DAC. This register will shift the input by up to half of the ADC full-scale input range. The Offset DAC  
value is summed into the ADC prior to conversion. Writing 00h or 80h to ODAC turns off the Offset DAC. The offset  
DAC should be cleared prior to calibration, since the offset DAC analog output is applied directly to the ADC input.  
bit 7  
Offset DAC Sign Bit.  
0 = Positive  
1 = Negative  
*VREF  
2 @ PGA  
ODAC [6 : 0]  
127  
bit7  
@ ǒ  
Ǔ@ *1  
(
)
bit 6−0  
Offset +  
NOTE: ODAC cannot be used to offset the analog inputs so that the buffer can be used for signals within 50mV of AGND.  
74  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Low Voltage Detect Control (LVDCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E7h  
ALVDIS  
0
0
0
ALVD3  
ALVD2  
ALVD1  
ALVD0  
8Fh  
ALVDIS  
Analog Low Voltage Detect Disable.  
bit 7  
0 = Enable Detection of Low Analog Supply Voltage (ALVD flag and interrupt are set when AV  
< ALVD threshold)  
DD  
1 = Disable Detection of Low Analog Supply Voltage  
ALVD3−0  
Analog Low Voltage Detect. Sets ALVD threshold.  
0000: 4.6V  
bits 7−4  
0001: 4.2V  
0010: 3.8V  
0011: 3.6V  
0100: 3.3V  
0101: 3.1V  
0110: 2.9V  
0111: 2.7V  
1000: Reserved  
1001: Reserved  
1010: Reserved  
1011: Reserved  
1100: Reserved  
1101: Reserved  
1110: Reserved  
1111: Reserved  
Extended Interrupt Enable (EIE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E8h  
1
1
1
EWDI  
EX5  
EX4  
EX3  
EX2  
E0h  
EWDI  
Enable Watchdog Interrupt. This bit enables/disables the watchdog interrupt. The Watchdog timer is enabled by  
bit 4  
the WDTCON (SFR FFh) and PDCON (SFR F1h) registers.  
0 = Disable the Watchdog Interrupt  
1 = Enable Interrupt Request Generated by the Watchdog Timer  
EX5  
External Interrupt 5 Enable. This bit enables/disables external interrupt 5.  
0 = Disable External Interrupt 5  
bit 3  
1 = Enable External Interrupt 5  
EX4  
External Interrupt 4 Enable. This bit enables/disables external interrupt 4.  
0 = Disable External Interrupt 4  
bit 2  
1 = Enable External Interrupt 4  
EX3  
External Interrupt 3 Enable. This bit enables/disables external interrupt 3.  
0 = Disable External Interrupt 3  
bit 1  
1 = Enable External Interrupt 3  
EX2  
External Interrupt 2 Enable. This bit enables/disables external interrupt 2.  
0 = Disable External Interrupt 2  
bit 0  
1 = Enable External Interrupt 2  
75  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Hardware Product Code 0 (HWPC0) (read-only)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E9h  
0
0
0
0
0
0
DEVICE  
MEMORY  
0000_00xxb  
HWPC0.7−0 Hardware Product Code LSB. Read-only.  
bits 7−0  
FLASH  
MEMORY  
DEVICE  
MEMORY  
MODEL  
0
0
1
1
0
1
0
1
MSC1200Y2, MSC1201Y2  
MSC1200Y3, MSC1201Y3  
MSC1202Y2  
4kB  
8kB  
4kB  
8kB  
MSC1202Y3  
Hardware Product Code 1 (HWPC1) (read-only)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EAh  
0
0
1
0
0
0
0
0
20h  
HWPC1.7−0 Hardware Product Code MSB. Read-only.  
bits 7−0  
Hardware Version (HWVER)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EBh  
76  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Flash Memory Control (FMCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EEh  
0
PGERA  
0
FRCM  
0
BUSY  
SPM  
FPM  
02h  
PGERA  
Page Erase. Available in both user and program modes.  
bit 6  
0 = Disable Page Erase Mode  
1 = Enable Page Erase Mode (automatically set by page_erase Boot ROM routine)  
FRCM  
Frequency Control Mode.  
bit 4  
0 = Bypass (default)  
1 = Use Delay Line. Recommended for saving power.  
BUSY  
Write/Erase BUSY Signal.  
0 = Idle or Available  
1 = Busy  
bit 2  
SPM  
Serial Programming Mode. Read-only.  
bit 1  
0 = Indicates the device is not in serial programming mode.  
1 = Indicates the device is in serial programming mode (if FPM also = 1).  
FPM  
Flash Programming Mode. Read-only.  
bit 0  
0 = Indicates the device is operating in UAM.  
1 = Indicates the device is operating in programming mode.  
Flash Memory Timing Control (FTCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EFh  
FER3  
FER2  
FER1  
FER0  
FWR3  
FWR2  
FWR1  
FWR0  
A5h  
Refer to Flash Memory Characteristics.  
FER3−0  
bits 7−4  
Set Erase. Flash Erase Time = (1 + FER) (MSEC + 1) tCLK. This can be broken into multiple, shorter erase times.  
For more Information, see Application Report SBAA137, Incremental Flash Memory Page Erase, available for  
download from www.ti.com.  
Industrial temperature range: 11ms  
Commercial temperature range: 5ms  
FWR3−0  
bits 3−0  
Set Write. Set Flash Write Time = (1 + FWR) (USEC + 1) 5 tCLK. Total writing time will be longer. For more  
Information, see Application Report SBAA087, In-Application Flash Programming, available for download from  
www.ti.com.  
Range: 30µs to 40µs.  
B Register (B)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F0h  
00h  
B.7−0  
B Register. This register serves as a second accumulator for certain arithmetic operations.  
bits 7−0  
77  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Power-Down Control (PDCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F1h  
PDICLK  
PDIDAC  
PDI2C  
0
PDADC  
PDWDT  
PDST  
PDSPI  
6Fh  
Turning peripheral modules off puts the MSC120x in the lowest power mode.  
PDICLK  
Internal Clock Control.  
bit 7  
0 = Internal Oscillator and PLL On (Internal Oscillator or PLL mode)  
1 = Internal Oscillator and PLL Power Down (External Clock mode). Bit is not active on IOM or PLL mode.  
PDIDAC  
IDAC Control.  
bit 6  
0 = IDAC On  
1 = IDAC Power Down (default)  
PDI2C  
I2C Control.  
2
bit 5  
0 = I C On (only when PDSPI = 1)  
2
1 = I C Power Down (default)  
PDADC  
ADC Control.  
bit 3  
0 = ADC On  
1 = ADC, VREF, and Summation registers are powered down (default).  
PDWDT  
Watchdog Timer Control.  
bit 2  
0 = Watchdog Timer On  
1 = Watchdog Timer Power Down (default)  
PDST  
System Timer Control.  
bit 1  
0 = System Timer On  
1 = System Timer Power Down (default)  
PDSPI  
SPI System Control.  
bit 0  
0 = SPI System On  
1 = SPI System Power Down (default)  
78  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
PSEN/ALE Select (PASEL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F2h  
PSEN4  
PSEN3  
PSEN2  
PSEN1  
PSEN0  
0
0
0
00h  
PSEN2−0  
PSEN Mode Select. Defines the output on P3.6 in UAM or SFPM.  
00000: General-purpose I/O (default)  
bits 7−3  
00001: SYSCLK  
00011: Internal PSEN (refer to Figure 5 for timing)  
00101: Internal ALE (refer to Figure 5 for timing)  
00111: f  
(buffered XIN oscillator clock)  
OSC  
01001: Memory WR (MOVX write)  
(1)  
01011: T0 Out (overflow)  
(1)  
01101: T1 Out (overflow)  
(2)  
01111: f  
MOD  
(2)  
10001: SYSCLK/2 (toggles on rising edge)  
(2)  
10011: Internal PSEN/2  
(2)  
10101: Internal ALE/2  
(2)  
10111: f  
OSC  
(2)  
11001: Memory WR/2 (MOVX write)  
(2)  
11011: T0 Out/2 (overflow)  
(2)  
11101: T1 Out/2 (overflow)  
(2)  
11111: f  
/2  
MOD  
(1)  
(2)  
One period of these signals equal to t  
Duty cycle is 50%.  
.
CLK  
Phase Lock Loop Low (PLLL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F4h  
PLL7  
PLL6  
PLL5  
PLL4  
PLL3  
PLL2  
PLL1  
PLL0  
xxh  
PLL7−0  
bits 7−0  
PLL Counter Value Least Significant Bit.  
PLL Frequency = External Crystal Frequency (PLL9:0 + 1).  
79  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Phase Lock Loop High (PLLH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F5h  
CLKSTAT2  
CLKSTAT1  
CLKSTAT0  
PLLLOCK  
0
0
PLL9  
PLL8  
xxh  
CLKSTAT2−0 Active Clock Status (read-only). Derived from HCR2 setting; refer to Table 3.  
bits 7−5  
000: Reserved  
001: Reserved  
010: Reserved  
011: External Clock Mode  
100: PLL High-Frequency (HF) Mode (must read PLLLOCK to determine active clock status)  
101: PLL Low-Frequency (LF) Mode (must read PLLLOCK to determine active clock status)  
110: Internal Oscillator High-Frequency (HF) Mode  
111: Internal Oscillator Low-Frequency (LF) Mode  
PLLLOCK PLL Lock Status and Status Enable.  
bit 4  
For Write (PLL Lock Status Enable):  
0 = No Effect  
1 = Enable PLL Lock Detection (must wait 20ms before PLLLOCK read status is valid).  
For Read (PLL Lock Status):  
0 = PLL Not Locked (PLL may be inactive; refer to Table 3 for active clock mode)  
1 = PLL Locked (PLL is active clock).  
PLL9−8  
PLL Counter Value Most Significant 2 Bits (refer to PLLL, SFR F4h).  
bits 1−0  
Analog Clock (ACLK)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F6h  
0
FREQ6  
FREQ5  
FREQ4  
FREQ3  
FREQ2  
FREQ1  
FREQ0  
03h  
FREQ6−0 Clock Frequency − 1. This value + 1 divides the system clock to create the ADC clock.  
bits 6−0  
.
fCLK  
ACLK ) 1  
fACLK  
fOSC  
fACLK  
fMOD  
+
+
, where fCLK +  
SYSCLK divider  
64  
fMOD  
ADC Data Rate + fDATA  
+
Decimation Ratio  
System Reset (SRST)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F7h  
0
0
0
0
0
0
0
RSTREQ  
00h  
RSTREQ  
Reset Request. Setting this bit to ‘1’ and then clearing to ‘0’ will generate a system reset.  
bit 0  
80  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Extended Interrupt Priority (EIP)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F8h  
1
1
1
PWDI  
PX5  
PX4  
PX3  
PX2  
E0h  
PWDI  
Watchdog Interrupt Priority. This bit controls the priority of the watchdog interrupt.  
0 = The watchdog interrupt is low priority.  
bit 4  
1 = The watchdog interrupt is high priority.  
PX5  
External Interrupt 5 Priority. This bit controls the priority of external interrupt 5.  
0 = External interrupt 5 is low priority.  
bit 3  
1 = External interrupt 5 is high priority.  
PX4  
External Interrupt 4 Priority. This bit controls the priority of external interrupt 4.  
0 = External interrupt 4 is low priority.  
bit 2  
1 = External interrupt 4 is high priority.  
PX3  
External Interrupt 3 Priority. This bit controls the priority of external interrupt 3.  
0 = External interrupt 3 is low priority.  
bit 1  
1 = External interrupt 3 is high priority.  
PX2  
External Interrupt 2 Priority. This bit controls the priority of external interrupt 2.  
0 = External interrupt 2 is low priority.  
bit 0  
1 = External interrupt 2 is high priority.  
Seconds Timer Interrupt (SECINT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F9h  
WRT  
SECINT6  
SECINT5  
SECINT4  
SECINT3  
SECINT2  
SECINT1  
SECINT0  
7Fh  
This system clock is divided by the value of the 16-bit register MSECH:MSECL. Then, that 1ms timer tick is divided by the  
register HMSEC which provides the 100ms signal used by this seconds timer. Therefore, this seconds timer can generate  
an interrupt which occurs from 100ms to 12.8 seconds. Reading this register will clear the Seconds Interrupt. This Interrupt  
can be monitored in the AIE register.  
WRT  
Write Control. Determines whether to write the value immediately or wait until the current count is finished.  
Read = 0.  
bit 7  
0 = Delay Write Operation. The SEC value is loaded when the current count expires.  
1 = Write Immediately. The counter is loaded once the CPU completes the write operation.  
SECINT6−0 Seconds Count. Normal operation would use 100ms as the clock interval.  
bits 6−0 Seconds Interrupt = (1 + SEC) (HMSEC + 1) (MSEC + 1) tCLK  
.
81  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Milliseconds TImer Interrupt (MSINT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FAh  
WRT  
MSINT6  
MSINT5  
MSINT4  
MSINT3  
MSINT2  
MSINT1  
MSINT0  
7Fh  
The clock used for this timer is the 1ms clock, which results from dividing the system clock by the values in registers  
MSECH:MSECL. Reading this register is necessary for clearing the interrupt; however, AI in EICON (SFR D8h) must also  
be cleared.  
WRT  
Write Control. Determines whether to write the value immediately or wait until the current count is finished.  
Read = 0.  
bit 7  
0 = Delay Write Operation. The MSINT value is loaded when the current count expires.  
1 = Write Immediately. The MSINT counter is loaded once the CPU completes the write operation.  
MSINT6−0 Milliseconds Count. Normal operation would use 1ms as the clock interval.  
bits 6−0 MS Interrupt Interval = (1 + MSINT) (MSEC + 1) tCLK  
One Microsecond Timer (USEC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FBh  
0
0
FREQ5  
FREQ4  
FREQ3  
FREQ2  
FREQ1  
FREQ0  
03h  
FREQ5−0 Clock Frequency − 1. This value + 1 divides the system clock to create a 1µs Clock.  
bits 5−0 USEC = CLK/(FREQ + 1). This clock is used to set Flash write time. See FTCON (SFR EFh).  
One Millisecond TImer Low Byte (MSECL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FCh  
MSECL7  
MSECL6  
MSECL5  
MSECL4  
MSECL3  
MSECL2  
MSECL1  
MSECL0  
9Fh  
MSECL7−0 One Millisecond Timer Low Byte. This value in combination with the next register is used to create a 1ms clock.  
bits 7−0 1ms = (MSECH 256 + MSECL + 1) tCLK. This clock is used to set Flash erase time. See FTCON (SFR EFh).  
One Millisecond Timer High Byte (MSECH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FDh  
MSECH7  
MSECH6  
MSECH5  
MSECH4  
MSECH3  
MSECH2  
MSECH1  
MSECH0  
0Fh  
MSECH7−0 One Millisecond Timer High Byte. This value in combination with the previous register is used to create a 1ms clock.  
bits 7−0 1ms = (MSECH 256 + MSECL + 1) tCLK  
.
One Hundred Millisecond Timer (HMSEC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FEh  
HMSEC7  
HMSEC6  
HMSEC5  
HMSEC4  
HMSEC3  
HMSEC2  
HMSEC1  
HMSEC0  
63h  
WRT  
Write Control. Determines whether to write the value immediately or wait until the current count is finished.  
Read = 0.  
HMSEC7−0 One Hundred Millisecond Timer. This clock divides the 1ms clock to create a 100ms clock.  
bits 7−0  
100ms = (MSECH 256 + MSECL + 1) (HMSEC + 1) t  
.
CLK  
82  
ꢡꢏ  
ꢡꢏ  
ꢡꢏ  
www.ti.com  
SBAS317E − APRIL 2004 − REVISED MAY 2006  
Watchdog Timer (WDTCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FFh  
EWDT  
DWDT  
RWDT  
WDCNT4  
WDCNT3  
WDCNT2  
WDCNT1  
WDCNT0  
00h  
EWDT  
Enable Watchdog (R/W).  
bit 7  
Write 1/Write 0 sequence sets the Watchdog Enable Counting bit.  
DWDT  
Disable Watchdog (R/W).  
bit 6  
Write 1/Write 0 sequence clears the Watchdog Enable Counting bit.  
RWDT  
Reset Watchdog (R/W).  
bit 5  
Write 1/Write 0 sequence restarts the Watchdog Counter.  
WDCNT4−0 Watchdog Count (R/W).  
bits 4−0  
Watchdog expires in (WDCNT + 1) HMSEC to (WDCNT + 2) HMSEC, if the sequence is not asserted. There is  
an uncertainty of 1 count.  
NOTE: If HCR0.3 (EWDR) is set and the watchdog timer expires, a system reset is generated. If HCR0.3 (EWDR) is  
cleared and the watchdog timer expires, an interrupt is generated (see Table 6).  
83  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
MSC1200Y2PFBR  
MSC1200Y2PFBRG4  
MSC1200Y2PFBT  
OBSOLETE  
OBSOLETE  
ACTIVE  
TQFP  
TQFP  
TQFP  
PFB  
48  
48  
48  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
MSC1200Y2  
PFB  
PFB  
250  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
MSC1200Y2  
MSC1200Y2  
MSC1200Y3  
MSC1200Y2PFBTG4  
ACTIVE  
TQFP  
PFB  
48  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
MSC1200Y3PFBR  
MSC1200Y3PFBRG4  
MSC1200Y3PFBT  
OBSOLETE  
OBSOLETE  
ACTIVE  
TQFP  
TQFP  
TQFP  
PFB  
PFB  
PFB  
48  
48  
48  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
250  
250  
250  
250  
250  
250  
2500  
2500  
250  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
MSC1200Y3  
MSC1200Y3  
MSC1200Y3PFBTG4  
MSC1201Y3RHHT  
MSC1201Y3RHHTG4  
MSC1202Y2RHHT  
MSC1202Y2RHHTG4  
MSC1202Y3RHHR  
MSC1202Y3RHHRG4  
MSC1202Y3RHHT  
MSC1202Y3RHHTG4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TQFP  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
PFB  
RHH  
RHH  
RHH  
RHH  
RHH  
RHH  
RHH  
RHH  
48  
36  
36  
36  
36  
36  
36  
36  
36  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Green (RoHS  
& no Sb/Br)  
MSC  
1201Y3  
Green (RoHS  
& no Sb/Br)  
MSC  
1201Y3  
Green (RoHS  
& no Sb/Br)  
MSC  
1202Y2  
Green (RoHS  
& no Sb/Br)  
MSC  
1202Y2  
Green (RoHS  
& no Sb/Br)  
MSC  
1202Y3  
Green (RoHS  
& no Sb/Br)  
MSC  
1202Y3  
Green (RoHS  
& no Sb/Br)  
MSC  
1202Y3  
Green (RoHS  
& no Sb/Br)  
MSC  
1202Y3  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jul-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSC1200Y2PFBT  
MSC1200Y3PFBT  
MSC1201Y3RHHT  
MSC1202Y2RHHT  
MSC1202Y3RHHR  
MSC1202Y3RHHT  
TQFP  
TQFP  
VQFN  
VQFN  
VQFN  
VQFN  
PFB  
PFB  
RHH  
RHH  
RHH  
RHH  
48  
48  
36  
36  
36  
36  
250  
250  
250  
250  
2500  
250  
177.8  
177.8  
180.0  
180.0  
330.0  
180.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
9.6  
9.6  
6.3  
6.3  
6.3  
6.3  
9.6  
9.6  
6.3  
6.3  
6.3  
6.3  
1.5  
1.5  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jul-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSC1200Y2PFBT  
MSC1200Y3PFBT  
MSC1201Y3RHHT  
MSC1202Y2RHHT  
MSC1202Y3RHHR  
MSC1202Y3RHHT  
TQFP  
TQFP  
VQFN  
VQFN  
VQFN  
VQFN  
PFB  
PFB  
RHH  
RHH  
RHH  
RHH  
48  
48  
36  
36  
36  
36  
250  
250  
250  
250  
2500  
250  
210.0  
210.0  
210.0  
210.0  
367.0  
210.0  
185.0  
185.0  
185.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
38.0  
35.0  
Pack Materials-Page 2  
MECHANICAL DATA  
MTQF019A – JANUARY 1995 – REVISED JANUARY 1998  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

MSC1202Y2RHHT

Precision, Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter (DAC) with 8051 Microcontroller and Flash Memory
BB

MSC1202Y2RHHT

Precision Analog -to-Digital Converter
TI

MSC1202Y2RHHTG4

Precision Analog -to-Digital Converter
TI

MSC1202Y3

MSC1200 and MSC1201: 24 Bits No Missing Codes 22 Bits Effective Resolution At 10Hz
TI

MSC1202Y3

Precision, Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter (DAC) with 8051 Microcontroller and Flash Memory
BB

MSC1202Y3RHHR

Precision, Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter (DAC) with 8051 Microcontroller and Flash Memory
BB

MSC1202Y3RHHR

Precision Analog -to-Digital Converter
TI

MSC1202Y3RHHRG4

Precision Analog -to-Digital Converter
TI

MSC1202Y3RHHT

Precision, Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter (DAC) with 8051 Microcontroller and Flash Memory
BB

MSC1202Y3RHHT

Precision Analog -to-Digital Converter
TI

MSC1202Y3RHHTG4

Precision Analog -to-Digital Converter
TI

MSC1205

32-Bit Duplex Controller/Driver with Digital Dimming Function
OKI