MSC1202Y3 [TI]

MSC1200 and MSC1201: 24 Bits No Missing Codes 22 Bits Effective Resolution At 10Hz;
MSC1202Y3
型号: MSC1202Y3
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MSC1200 and MSC1201: 24 Bits No Missing Codes 22 Bits Effective Resolution At 10Hz

文件: 总60页 (文件大小:798K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSC1200  
M
S
C
1
2
0
0
SBAS289E – JUNE 2003 – REVISED NOVEMBER 2004  
Precision Analog-to-Digital Converter (ADC)  
and Digital-to-Analog Converter (DAC)  
with 8051 Microcontroller and Flash Memory  
Peripheral Features  
FEATURES  
ANALOG FEATURES  
16 DIGITAL I/O PINS  
ADDITIONAL 32-BIT ACCUMULATOR  
TWO 16-BIT TIMER/COUNTERS  
SYSTEM TIMERS  
PROGRAMMABLE WATCHDOG TIMER  
FULL DUPLEX USART  
BASIC SPI™  
BASIC I2C™  
POWER MANAGEMENT CONTROL  
INTERNAL CLOCK DIVIDER  
IDLE MODE CURRENT < 200µA  
STOP MODE CURRENT < 100nA  
DIGITAL BROWNOUT RESET  
ANALOG LOW VOLTAGE DETECT  
20 INTERRUPT SOURCES  
24-BITS NO MISSING CODES  
22-BITS EFFECTIVE RESOLUTION AT 10Hz  
Low Noise: 75nV  
PGA FROM 1 TO 128  
PRECISION ON-CHIP VOLTAGE REFERENCE  
8 DIFFERENTIAL/SINGLE-ENDED CHANNELS  
ON-CHIP OFFSET/GAIN CALIBRATION  
OFFSET DRIFT: 0.02ppm/°C  
GAIN DRIFT: 0.5ppm/°C  
ON-CHIP TEMPERATURE SENSOR  
SELECTABLE BUFFER INPUT  
BURNOUT DETECT  
8-BIT CURRENT DAC  
DIGITAL FEATURES  
Microcontroller Core  
GENERAL FEATURES  
8051-COMPATIBLE  
HIGH-SPEED CORE:  
4 Clocks per Instruction Cycle  
DC TO 33MHz  
ON-CHIP OSCILLATOR  
PLL WITH 32kHz CAPABILITY  
SINGLE INSTRUCTION 121ns  
DUAL DATA POINTER  
PACKAGE: TQFP-48  
LOW POWER: 3mW  
INDUSTRIAL TEMPERATURE RANGE:  
–40°C to +85°C  
POWER SUPPLY: 2.7V to 5.25V  
APPLICATIONS  
INDUSTRIAL PROCESS CONTROL  
INSTRUMENTATION  
Memory  
4kB OR 8kB OF FLASH MEMORY  
FLASH MEMORY PARTITIONING  
ENDURANCE 1M ERASE/WRITE CYCLES,  
100 YEAR DATA RETENTION  
LIQUID/GAS CHROMATOGRAPHY  
BLOOD ANALYSIS  
SMART TRANSMITTERS  
PORTABLE INSTRUMENTS  
WEIGH SCALES  
PRESSURE TRANSDUCERS  
INTELLIGENT SENSORS  
PORTABLE APPLICATIONS  
DAS SYSTEMS  
128 BYTES DATA SRAM  
IN-SYSTEM SERIALLY PROGRAMMABLE  
FLASH MEMORY SECURITY  
1kB BOOT ROM  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 2003-2004, Texas Instruments Incorporated  
www.ti.com  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
TEMPERATURE  
RANGE  
FLASH  
MEMORY  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
PRODUCT  
PACKAGE-LEAD  
MSC1200Y2  
MSC1200Y2  
4k  
4k  
TQFP-48  
PFB  
"
–40°C to +85°C  
MSC1200Y2  
"
"
"
MSC1200Y3  
MSC1200Y3  
8k  
8k  
TQFP-48  
PFB  
"
–40°C to +85°C  
MSC1200Y3  
"
"
"
NOTE: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or refer to our web site at  
www.ti.com/msc.  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
Analog Inputs  
DISCHARGE SENSITIVITY  
Input Current ............................................................ 100mA, Momentary  
Input Current .............................................................. 10mA, Continuous  
This integrated circuit can be damaged by ESD. Texas Instru-  
ments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Input Voltage .............................................AGND – 0.3V to AVDD + 0.3V  
Power Supply  
DVDD to DGND......................................................................0.3V to 6V  
AVDD to AGND ......................................................................0.3V to 6V  
AGND to DGND .............................................................. –0.3V to +0.3V  
V
REF to AGND ....................................................... –0.3V to AVDD + 0.3V  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
Digital Input Voltage to DGND .............................. –0.3V to DVDD + 0.3V  
Digital Output Voltage to DGND ........................... –0.3V to DVDD + 0.3V  
Maximum Junction Temperature ................................................ +150°C  
Operating Temperature Range ...................................... –40°C to +85°C  
Storage Temperature Range ....................................... –65°C to +150°C  
Lead Temperature (soldering, 10s) ............................................ +235°C  
Package Power Dissipation ............................... (TJ Max – TAMBIENT)/θJA  
Output Current All Pins ................................................................ 200mA  
Output Pin Short Circuit .....................................................................10s  
Thermal Resistance, Junction-to-Ambient (θJA)....................... 56.5°C/W  
Thermal Resistance, Junction-to-Case (θJC) ........................... 12.8°C/W  
Digital Outputs  
MSC1200Yx FAMILY FEATURES  
FEATURES(1)  
MSC1200Y2(2)  
MSC1200Y3(2)  
Flash Program Memory (Bytes)  
Flash Data Memory (Bytes)  
Internal Scratchpad RAM (Bytes)  
Up to 4k  
Up to 2k  
128  
Up to 8k  
Up to 4k  
128  
Output Current ......................................................... 100mA, Continuous  
I/O Source/Sink Current ............................................................... 100mA  
Power Pin Maximum .................................................................... 300mA  
NOTES: (1) All peripheral features are the same on all devices; the flash  
memory size is the only difference. (2) The last digit of the part number (N)  
represents the onboard flash size = (2N)kBytes.  
NOTE: (1) Stresses beyond those listed under Absolute Maximum Ratings”  
may cause permanent damage to the device. Exposure to absolute-maximum-  
rated conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS: AVDD = 5V  
All specifications from TMIN to TMAX, DVDD = +2.7V to 5.25V, fMOD = 15.625kHz, PGA = 1, Buffer ON, fDATA = 10Hz, Bipolar, and VREF (REF IN+) (REF IN) = +2.5V,  
unless otherwise noted.  
MSC1200Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (AIN0-AIN7, AINCOM)  
Analog Input Range  
Buffer OFF  
Buffer ON  
(In+) (In)  
Buffer OFF  
Buffer ON  
AGND 0.1  
AGND + 50mV  
AVDD + 0.1  
AVDD 1.5  
±VREF/PGA  
V
V
V
MΩ  
nA  
Full-Scale Input Voltage Range  
Differential Input Impedance  
Input Current  
7/PGA  
0.5  
Bandwidth  
Fast Settling Filter  
Sinc2 Filter  
Sinc3 Filter  
3dB  
3dB  
3dB  
0.469 fDATA  
0.318 fDATA  
0.262 fDATA  
Programmable Gain Amplifier  
Input Capacitance  
Input Leakage Current  
Burnout Current Sources  
User-Selectable Gain Ranges  
Buffer ON  
Multiplexer Channel Off, T = +25°C  
Buffer ON  
1
8
128  
7
0.5  
±2  
pF  
pA  
µA  
ADC OFFSET DAC  
Offset DAC Range  
Offset DAC Monotonicity  
Offset DAC Gain Error  
Offset DAC Gain Error Drift  
±VREF/(2 PGA)  
V
Bits  
% of Range  
ppm/°C  
±1.0  
0.6  
MSC1200  
2
SBAS289E  
www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 5V (Cont.)  
All specifications from TMIN to TMAX, DVDD = +2.7V to 5.25V, fMOD = 15.625kHz, PGA = 1, Buffer ON, fDATA = 10Hz, Bipolar, and VREF (REF IN+) (REF IN) = +2.5V,  
unless otherwise noted.  
MSC1200Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
SYSTEM PERFORMANCE  
Resolution  
ENOB  
24  
Bits  
Bits  
22  
Output Noise  
See Typical Characteristics  
No Missing Codes  
Integral Nonlinearity  
Offset Error  
Offset Drift(1)  
Gain Error(2)  
Gain Error Drift(1)  
System Gain Calibration Range  
System Offset Calibration Range  
Common-Mode Rejection  
Sinc3 Filter  
End Point Fit, Differential Input  
After Calibration  
24  
Bits  
%FSR  
ppm of FS  
ppm of FS/°C  
%
ppm/°C  
% of FS  
% of FS  
dB  
±0.0004  
1.5  
±0.0015  
Before Calibration  
After Calibration  
Before Calibration  
0.02  
0.005  
0.5  
80  
50  
100  
120  
50  
At DC  
120  
130  
120  
120  
100  
100  
100  
fCM = 60Hz, fDATA = 10Hz  
fCM = 50Hz, fDATA = 50Hz  
fCM = 60Hz, fDATA = 60Hz  
dB  
dB  
dB  
dB  
dB  
dB  
Normal Mode Rejection  
Power-Supply Rejection  
f
f
SIG = 50Hz, fDATA = 50Hz  
SIG = 60Hz, fDATA = 60Hz  
(3)  
At DC, dB = 20log(VOUT/VDD  
)
VOLTAGE REFERENCE INPUTS  
Reference Input Range  
VREF  
Common-Mode Rejection  
Input Current  
(2)  
REF IN+, REF IN–  
VREF (REF IN+) (REF IN)  
At DC  
AGND  
0.3  
AVDD  
V
V
dB  
µA  
2.5  
115  
1
AVDD  
VREF = 2.5V, PGA = 1  
ON-CHIP VOLTAGE REFERENCE  
Output Voltage  
VREFH = 1 at +25°C  
2.5  
1.25  
9
10  
Indefinite  
0.4  
V
V
mA  
mA  
VREFH = 0  
Short-Circuit Current Source  
Short-Circuit Current Sink  
Short-Circuit Duration  
Startup Time from Power ON  
Temperature Sensor  
Sink or Source  
ms  
Temperature Sensor Voltage  
Temperature Sensor Coefficient  
T = +25°C  
115  
375  
mV  
µV/°C  
IDAC OUTPUT CHARACTERISTICS  
Full-Scale Output Current  
Maximum Short-Circuit Current Duration  
Compliance Voltage  
1
mA  
V
Indefinite  
AVDD 1.5  
ANALOG POWER-SUPPLY REQUIREMENTS  
Power-Supply Voltage  
Analog Current  
AVDD  
4.75  
5.0  
< 1  
170  
430  
230  
770  
360  
230  
5.25  
V
Analog OFF, ALVD OFF, PDADC = PDIDAC = 1  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
PGA = 128, Buffer ON  
ADC ON  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
ADC Current  
IADC  
VREF Supply Current  
IDAC Supply Current  
IVREF  
IIDAC  
IDAC = 00H  
NOTES: (1) Calibration can minimize these errors. (2) The gain calibration cannot have a REF IN+ of more than AVDD 1.5V with buffer ON. To calibrate gain,  
turn buffer off. (3) DVOUT is change in digital result.  
MSC1200  
SBAS289E  
3
www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 3V  
All specifications from TMIN to TMAX, AVDD = +3V, DVDD = +2.7V to 5.25V, fMOD = 15.625kHz, PGA = 1, Buffer ON, fDATA = 10Hz, Bipolar, and VREF (REF IN+) (REF IN) = +1.25V,  
unless otherwise noted.  
MSC1200Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (AIN0-AIN7, AINCOM)  
Analog Input Range  
Buffer OFF  
Buffer ON  
(In+) (In)  
Buffer OFF  
Buffer ON  
AGND 0.1  
AGND + 50mV  
AVDD + 0.1  
AVDD 1.5  
±VREF/PGA  
V
V
V
MΩ  
nA  
Full-Scale Input Voltage Range  
Differential Input Impedance  
Input Current  
7/PGA  
0.5  
Bandwidth  
Fast Settling Filter  
Sinc2 Filter  
Sinc3 Filter  
3dB  
3dB  
3dB  
0.469 fDATA  
0.318 fDATA  
0.262 fDATA  
Programmable Gain Amplifier  
Input Capacitance  
Input Leakage Current  
Burnout Current Sources  
User-Selectable Gain Ranges  
Buffer On  
Multiplexer Channel Off, T = +25°C  
Buffer ON  
1
128  
7
0.5  
±2  
pF  
pA  
µA  
ADC OFFSET DAC  
Offset DAC Range  
±VREF/(2 PGA)  
V
Offset DAC Monotonicity  
Offset DAC Gain Error  
Offset DAC Gain Error Drift  
8
Bits  
% of Range  
ppm/°C  
±1.5  
0.6  
SYSTEM PERFORMANCE  
Resolution  
ENOB  
24  
Bits  
Bits  
22  
Output Noise  
See Typical Characteristics  
No Missing Codes  
Integral Nonlinearity  
Offset Error  
Offset Drift(1)  
Gain Error(2)  
Gain Error Drift(1)  
System Gain Calibration Range  
System Offset Calibration Range  
Common-Mode Rejection  
Sinc3 Filter  
End Point Fit, Differential Input  
After Calibration  
24  
Bits  
%FSR  
ppm of FS  
ppm of FS/°C  
%
ppm/°C  
% of FS  
% of FS  
dB  
±0.0004  
1.3  
±0.0015  
Before Calibration  
After Calibration  
Before Calibration  
0.02  
0.005  
0.5  
80  
50  
100  
120  
50  
At DC  
130  
130  
120  
120  
100  
100  
88  
fCM = 60Hz, fDATA = 10Hz  
fCM = 50Hz, fDATA = 50Hz  
fCM = 60Hz, fDATA = 60Hz  
dB  
dB  
dB  
dB  
dB  
dB  
Normal Mode Rejection  
Power-Supply Rejection  
f
f
SIG = 50Hz, fDATA = 50Hz  
SIG = 60Hz, fDATA = 60Hz  
(3)  
At DC, dB = 20log(DVOUT/DVDD  
)
VOLTAGE REFERENCE INPUTS  
Reference Input Range  
VREF  
Common-Mode Rejection  
Input Current  
(2)  
REF IN+, REF IN–  
VREF (REF IN+) (REF IN)  
At DC  
AGND  
0.3  
AVDD  
AVDD  
V
V
dB  
µA  
1.25  
110  
0.5  
VREF = 1.25V, PGA = 1  
ON-CHIP VOLTAGE REFERENCE  
Output Voltage  
Short-Circuit Current Source  
Short-Circuit Current Sink  
Short-Circuit Duration  
Startup Time from Power ON  
Temperature Sensor  
Temperature Sensor Voltage  
Temperature Sensor Coefficient  
VREFH = 0 at +25°C  
Sink or Source  
T = +25°C  
1.25  
4
5
Indefinite  
0.2  
V
mA  
µA  
ms  
115  
375  
mV  
µV/°C  
IDAC OUTPUT CHARACTERISTICS  
Full-Scale Output Current  
Maximum Short-Circuit Current Duration  
Compliance Voltage  
1
mA  
V
Indefinite  
AVDD 1.5  
POWER-SUPPLY REQUIREMENTS  
Power-Supply Voltage  
Analog Current  
AVDD  
2.7  
3.0  
< 1  
150  
380  
200  
610  
330  
220  
3.6  
V
Analog OFF, ALVD OFF, PDADC = PDIDAC = 1  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
PGA = 128, Buffer ON  
ADC ON  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
ADC Current  
IADC  
VREF Supply Current  
IDAC Supply Current  
IVREF  
IIDAC  
IDAC = 00H  
NOTES: (1) Calibration can minimize these errors. (2) The gain calibration cannot have a REF IN+ of more than AVDD 1.5V with buffer ON. To calibrate gain,  
turn buffer off. (3) DVOUT is change in digital result.  
MSC1200  
4
SBAS289E  
www.ti.com  
DIGITAL CHARACTERISTICS: DVDD = 2.7V to 5.25V  
All specifications from TMIN to TMAX, unless otherwise specified.  
MSC1200Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
POWER-SUPPLY REQUIREMENTS  
Digital Supply Current  
DVDD  
2.7  
3.0  
0.6  
5
7.1  
100  
3.6  
V
Normal Mode, fOSC = 1MHz  
mA  
mA  
mA  
nA  
Normal Mode, fOSC = 8MHz, All Peripherals ON  
Internal Oscillator LF Mode (12.8MHz nominal)  
Stop Mode, DBOR OFF  
DVDD  
4.75  
5.0  
1.2  
9
15  
29  
5.25  
V
Normal Mode, fOSC = 1MHz  
mA  
mA  
mA  
mA  
nA  
Normal Mode, fOSC = 8MHz, All Peripherals ON  
Internal Oscillator LF Mode (12.8MHz nominal)  
Internal Oscillator HF Mode (25.6MHz nominal)  
Stop Mode, DBOR OFF  
100  
DIGITAL INPUT/OUTPUT (CMOS)  
Logic Level: VIH (except XIN pin)  
VIL (except XIN pin)  
0.6 DVDD  
DGND  
DVDD  
0.2 DVDD  
V
V
Ports 1 and 3, Input Leakage Current, Input Mode  
Pin XIN Input Leakage Current  
I/O Pin Hysteresis  
VIH = DVDD or VIH = 0V  
0
0
700  
µA  
µA  
mV  
V
V
V
V
V
V
V
OL, Ports 1 and 3, All Output Modes  
OL, Ports 1 and 3, All Output Modes  
OH, Ports 1 and 3, Strong Drive Output  
OH, Ports 1 and 3, Strong Drive Output  
IOL = 1mA  
IOL = 30mA, 3V (20mA)  
IOH = 1mA  
DGND  
0.4  
1.5  
DVDD 0.4 DVDD 0.1  
DVDD  
IOH = 30mA, 3V (20mA)  
DVDD 1.5  
V
Ports 1 and 3 Pull-Up Resistors  
11  
kΩ  
FLASH MEMORY CHARACTERISTICS: DVDD = 2.7V to 5.25V  
tUSEC = 1µs, tMSEC = 1ms  
MSC1200Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
Flash Memory Endurance  
Flash Memory Data Retention  
Mass and Page Erase Time  
Flash Memory Write Time  
100,000  
100  
10  
1,000,000  
cycles  
Years  
ms  
Set with FER Value in FTCON  
Set with FWR Value in FTCON  
30  
40  
µs  
MSC1200  
SBAS289E  
5
www.ti.com  
AC ELECTRICAL CHARACTERISTICS(1): DVDD = 2.7V to 5.25V  
MSC1200Yx  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
PHASE LOCK LOOP (PLL)  
Input Frequency Range  
PLL LF Mode  
PLL HF Mode  
PLL Lock Time  
External Crystal/Clock Frequency (fOSC  
)
32.768  
14.7456  
29.4912  
kHz  
MHz  
MHz  
ms  
PLLDIV = 449 (default)  
PLLDIV = 899 (must be set by user)  
Within 1%  
2
1
INTERNAL OSCILLATOR (IO)  
IO LF Mode  
IO HF Mode  
See Typical Characteristics  
12.8  
25.6  
MHz  
MHz  
ms  
Internal Oscillator Settling Time  
Within 1%  
NOTE: (1) Parameters are valid over operating temperature range, unless otherwise specified.  
EXTERNAL CLOCK DRIVE CLK TIMING  
2.7V to 3.6V  
MIN MAX  
4.75V to 5.25V  
SYMBOL  
FIGURE  
PARAMETER  
MIN  
MAX  
UNITS  
External Clock Mode  
(1)  
fOSC  
A
A
A
A
A
A
A
External Crystal Frequency (fOSC  
)
1
0
20  
20  
12  
1
0
33  
33  
12  
MHz  
MHz  
MHz  
ns  
(1)  
1/tOSC  
External Clock Frequency (fOSC)  
(1)  
fOSC  
External Ceramic Resonator Frequency (fOSC  
)
1
1
tHIGH  
tLOW  
tR  
HIGH Time(2)  
LOW Time(2)  
Rise Time(2)  
Fall Time(2)  
15  
15  
10  
10  
ns  
5
5
5
5
ns  
tF  
ns  
NOTES: (1) tCLK = 1/fOSC = one oscillator clock period for clock divider = 1. (2) These values are characterized but not 100% production tested.  
tHIGH  
tR  
tF  
VIH  
0.8V  
VIH  
0.8V  
VIH  
0.8V  
VIH  
0.8V  
tLOW  
tOSC  
FIGURE A. External Clock Drive CLK.  
SERIAL FLASH PROGRAMMING TIMING  
SYMBOL  
FIGURE  
PARAMETER  
MIN  
MAX  
UNIT  
tRW  
tRRD  
tRFD  
tRS  
B
B
B
B
B
RST width  
2 tOSC  
5
ns  
µs  
RST rise to P1.0 internal pull high  
RST falling to CPU start  
18  
ms  
ns  
Input signal to RST falling setup time  
RST falling to P1.0 hold time  
tOSC  
18  
tRH  
ms  
tRW  
RST  
tRRD  
tRS  
tRFD, tRH  
P1.0/PROG  
NOTE: P1.0 is internally pulled-up with ~11kduring RST high.  
FIGURE B. Serial Flash Programming Power-On Timing.  
MSC1200  
6
SBAS289E  
www.ti.com  
PIN CONFIGURATION  
Top View  
TQFP  
48 47 46 45 44 43 42 41 40 39 38 37  
NC  
XIN  
1
2
3
4
5
6
7
8
9
36 DVDD  
35 DVDD  
XOUT  
DGND  
RST  
NC  
34 DGND  
33 DGND  
32 P1.6/INT4  
31 P1.5/INT3  
30 P1.4/INT2/SS  
29 P1.3/DIN  
28 P1.2/DOUT  
27 P1.1  
MSC1200  
NC  
CAP  
AVDD  
AGND 10  
AGND 11  
26 P1.0/PROG  
25 NC  
AINCOM 12  
13 14 15 16 17 18 19 20 21 22 23 24  
MSC1200  
SBAS289E  
7
www.ti.com  
PIN DESCRIPTIONS  
PIN #  
NAME  
DESCRIPTION  
1,6,7,16,25,47  
2
NC  
No Connection  
XIN  
The crystal oscillator pin XIN supports parallel resonant AT cut fundamental frequency crystals and ceramic resonators.  
XIN can also be an input if there is an external clock source instead of a crystal.  
3
XOUT  
DGND  
The crystal oscillator pin XOUT supports parallel resonant AT cut fundamental frequency crystals and ceramic resonators.  
XOUT serves as the output of the crystal amplifier.  
4, 33, 34, 48  
Digital Ground  
5
8
RST  
CAP  
A HIGH on the reset input for two tOSC periods will reset the device.  
Capacitor (220pF ceramic)  
9
AVDD  
AGND  
Analog Power Supply  
10, 11  
12  
Analog Ground  
AINCOM  
Analog Input (can be analog common for single-ended inputs or analog input for differential inputs)  
13  
14  
IDAC  
IDAC Output  
REFOUT/REF IN+ Internal Voltage Reference Output/Voltage Reference Positive Input  
15  
17  
REF IN–  
AIN7  
Voltage Reference Negative Input (tie to AGND for internal voltage reference)  
Analog Input Channel 7  
18  
AIN6  
Analog Input Channel 6  
19  
AIN5  
Analog Input Channel 5  
20  
AIN4  
Analog Input Channel 4  
21  
AIN3  
Analog Input Channel 3  
22  
AIN2  
Analog Input Channel 2  
23  
AIN1  
Analog Input Channel 1  
24  
AIN0  
Analog Input Channel 0  
26-32, 37  
P1.0-P1.7  
Port 1 is a bidirectional I/O port (refer to P1DDRL, SFR AEH, and P1DDRH, SFR AFH, for port pin configuration control).  
Port 1Alternate Functions:  
PORT  
ALTERNATE  
MODE  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
PROG  
N/A  
DOUT  
DIN  
INT2/SS  
INT3  
INT4  
Serial Programming Mode  
Serial Data Out  
Serial Data In  
External Interrupt 2/Slave Select  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
INT5  
38-45  
P3.0-P3.7  
Port 3 is a bidirectional I/O port (refer to P3DDRL, SFR B3H, and P3DDRH, SFR B4H, for port pin configuration control).  
Port 3Alternate Functions:  
PORT  
ALTERNATE  
MODE  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
RxD0  
Serial Port 0 Input  
TxD0  
Serial Port 0 Output  
INT0  
External Interrupt 0  
INT1  
External Interrupt 1  
T0  
Timer 0 External Input  
T1  
SCK/SCL/CLKS  
N/A  
Timer 1 External Input  
SCK/SCL/Various Clocks (refer to PASEL, SFR F2H)  
35, 36, 46  
DVDD  
Digital Power Supply  
MSC1200  
8
SBAS289E  
www.ti.com  
TYPICAL CHARACTERISTICS  
AVDD = +5V, DVDD = +5V, fOSC = 8MHz, PGA = 1, fMOD = 15.625kHz, Bipolar, Buffer ON, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
EFFECTIVE NUMBER OF BITS  
EFFECTIVE NUMBER OF BITS vs DATA RATE  
vs DECIMATION RATIO  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA8  
PGA2  
PGA4  
PGA1  
PGA1  
PGA8  
PGA32  
PGA64  
PGA128  
PGA32  
PGA64  
PGA128  
PGA16  
Sinc3 Filter, Buffer OFF  
Sinc3 Filter, Buffer OFF  
1
10  
100  
Data Rate (SPS)  
1000  
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA8  
PGA4  
PGA2  
PGA8  
PGA2  
PGA4  
PGA1  
PGA1  
PGA32  
PGA128  
PGA128  
PGA16  
PGA64  
PGA64  
PGA32  
PGA16  
Sinc3 Filter, Buffer ON  
AVDD = 3V, Sinc3 Filter,  
REF = 1.25V, Buffer OFF  
V
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
0
500  
1000  
Decimation Ratio =  
1500  
2000  
fMOD  
fDATA  
fDATA  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
EFFECTIVE NUMBER OF BITS  
vs DECIMATION RATIO  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PGA4  
PGA2 PGA4  
PGA1  
PGA8  
PGA8  
PGA2  
PGA1  
PGA16 PGA64  
PGA32  
PGA128  
PGA32  
PGA128  
PGA64  
PGA16  
Sinc2 Filter  
AVDD = 3V, Sinc3 Filter,  
VREF = 1.25V, Buffer ON  
0
500  
1000  
Decimation Ratio =  
1500  
fMOD  
2000  
0
500  
1000  
1500  
2000  
fMOD  
Decimation Ratio =  
fDATA  
fDATA  
MSC1200  
SBAS289E  
9
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 8MHz, PGA = 1, fMOD = 15.625kHz, Bipolar, Buffer ON, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
EFFECTIVE NUMBER OF BITS vs fMOD  
(set with ACLK)  
FAST SETTLING FILTER  
EFFECTIVE NUMBER OF BITS vs DECIMATION RATIO  
25  
20  
15  
10  
5
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
fMOD = 203kHz  
fMOD = 15.6kHz  
fMOD = 31.25kHz  
fMOD = 110kHz  
Fast Settling Filter  
fMOD = 62.5kHz  
0
1
10  
100  
1k  
10k  
100k  
0
500  
1000  
1500  
fMOD  
2000  
Data Rate (SPS)  
Decimation Ratio =  
fDATA  
EFFECTIVE NUMBER OF BITS vs fMOD (set with ACLK)  
WITH FIXED DECIMATION  
NOISE vs INPUT SIGNAL  
25  
20  
15  
10  
5
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
DEC = 2020  
DEC = 500  
DEC = 50  
DEC = 255  
DEC = 20  
DEC = 10  
0
10  
100  
1k  
10k  
100k  
2.5  
1.5  
0.5  
0.5  
1.5  
2.5  
Data Rate (SPS)  
VIN (V)  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
VREF = 2.5V  
15  
10  
8
VREF = AVDD = 5V  
Buffer OFF  
10  
5
6
4
40°C  
+85°C  
2
0
0
2  
4  
6  
8  
10  
5  
10  
+25°C  
15  
2.5 2.0 1.5 1.0 0.5  
0
0.5 1.0 1.5 2.0 2.5  
VIN = VREF  
0
VIN = +VREF  
VIN (V)  
V
IN (V)  
MSC1200  
10  
SBAS289E  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 8MHz, PGA = 1, fMOD = 15.625kHz, Bipolar, Buffer ON, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
INL ERROR vs PGA  
ADC INTEGRAL NONLINEARITY vs VREF  
VIN = VREF  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
AVDD = 5V  
REF = 2.5V  
Buffer OFF  
V
AVDD = 3V  
AVDD = 5V  
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VREF (V)  
1
2
4
8
16  
32  
64  
128  
PGA Setting  
ADC CURRENT vs PGA  
AVDD = 5V, Buffer = ON  
ANALOG SUPPLY CURRENT  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
1.3  
1.3  
1.2  
1.2  
1.1  
1.1  
1.0  
1.0  
0.9  
+85°C  
PGA = 128, ADC = ON  
REF = ON, DBOR = ON  
ALVD = ON, IDAC = ON  
AVDD = 3V, Buffer = ON  
AVDD = 5V, Buffer = OFF  
V
+25°C  
40°C  
AVDD = 3V, Buffer = OFF  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
2
4
8
16  
32  
64  
128  
Analog Supply Voltage (V)  
PGA Setting  
HISTOGRAM OF OUTPUT DATA  
OFFSET DAC: OFFSET vs TEMPERATURE  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
10  
8
6
4
2
0
2  
4  
6  
8  
10  
12  
0
40  
+25  
+85  
2  
1.5  
1  
0.5  
0
0.5  
1
1.5  
2
Temperature (°C)  
ppm of FS  
MSC1200  
SBAS289E  
11  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 8MHz, PGA = 1, fMOD = 15.625kHz, Bipolar, Buffer ON, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
DIGITAL SUPPLY CURRENT vs FREQUENCY  
OFFSET DAC: GAIN vs TEMPERATURE  
1.00006  
1.00004  
1.00002  
1
100  
10  
1
0.99998  
0.99996  
0.99994  
DVDD = 5V  
0.1  
40  
+25  
+85  
1
10  
100  
Temperature (°C)  
Clock Frequency (MHz)  
DIGITAL SUPPLY CURRENT vs CLOCK DIVIDER  
DIGITAL SUPPLY CURRENT vs SUPPLY VOLTAGE  
100  
10  
1
10  
8
Divider Values  
1
+85°C  
+25°C  
2
4
6
8
16  
40°C  
32  
4
1024  
2
0.1  
0
1
10  
100  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
Clock Frequency (MHz)  
Supply Voltage (V)  
NORMALIZED GAIN vs PGA  
CMOS DIGITAL OUTPUT  
101  
100  
99  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Buffer ON  
5V  
Low  
Output  
3V  
Low  
Output  
98  
97  
5V  
96  
3V  
95  
1
2
4
8
16  
32  
64  
128  
0
10  
20  
30  
40  
50  
60  
70  
PGA Setting  
Output Current (mA)  
MSC1200  
12  
SBAS289E  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
AVDD = +5V, DVDD = +5V, fOSC = 8MHz, PGA = 1, fMOD = 15.625kHz, Bipolar, Buffer ON, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
IO LF MODE vs TEMPERATURE  
IO HF MODE vs FREQUENCY  
AVDD = DVDD  
14  
13  
12  
11  
10  
28  
27  
26  
25  
24  
23  
AVDD = DVDD  
5.25V  
3.3V  
5.25V  
4.75V  
4.75V  
2.7V  
40  
25  
Temperature (°C)  
85  
40  
25  
85  
Temperature (°C)  
MSC1200  
SBAS289E  
13  
www.ti.com  
The MSC1200Yx allows the user to uniquely configure the  
Flash memory map to meet the needs of their application.  
The Flash is programmable down to 2.7V using serial pro-  
gramming. Flash endurance is typically 1M Erase/Write cycles.  
DESCRIPTION  
The MSC1200Yx is a completely integrated family of mixed-  
signal devices incorporating a high-resolution delta-sigma  
ADC, 8-bit IDAC, 8-channel multiplexer, burnout detect cur-  
rent sources, selectable buffered input, offset DAC, program-  
mable gain amplifier (PGA), temperature sensor, voltage  
reference, 8-bit microcontroller, Flash Program Memory, Flash  
Data Memory, and Data SRAM, as shown in Figure 1.  
The part has separate analog and digital supplies, which can  
be independently powered from 2.7V to +5.25V. At +3V  
operation, the power dissipation for the part is typically less  
than 4mW. The MSC1200Yx is packaged in a TQFP-48  
package.  
On-chip peripherals include an additional 32-bit accumulator,  
basic SPI, basic I2C, USART, multiple digital input/output  
ports, watchdog timer, low-voltage detect, on-chip power-on  
reset, brownout reset, timer/counters, system clock divider,  
PLL, on-chip oscillator, and external interrupts.  
The MSC1200Yx is designed for high-resolution measurement  
applications in smart transmitters, industrial process control,  
weigh scales, chromatography, and portable instrumentation.  
ENHANCED 8051 CORE  
The device accepts low-level differential or single-ended  
signals directly from a transducer. The ADC provides 24 bits  
of resolution and 24 bits of no-missing-code performance  
using a Sinc3 filter with a programmable sample rate. The  
ADC also has a selectable filter that allows for high-resolu-  
tion single-cycle conversion.  
All instructions in the MSC1200 family perform exactly the same  
functions as they would in a standard 8051. The effect on bits,  
flags, and registers is the same. However, the timing is different.  
The MSC1200 family utilizes an efficient 8051 core which results  
in an improved instruction execution speed of between 1.5 and  
3 times faster than the original core for the same external clock  
speed (4 clock cycles per instruction versus 12 clock cycles per  
instruction, as shown in Figure 2). This translates into an effective  
throughput improvement of more than 2.5 times, using the same  
code and same external clock speed. Therefore, a device  
frequency of 33MHz for the MSC1200Yx actually performs at an  
equivalent execution speed of 82.5MHz compared to the  
The microcontroller core is 8051 instruction set compatible. The  
microcontroller core is an optimized 8051 core that executes up  
to three times faster than the standard 8051 core, given the  
same clock source. This makes it possible to run the device at  
a lower external clock frequency and achieve the same perfor-  
mance at lower power than the standard 8051 core.  
AVDD AGND  
AVDD  
REFOUT/REFIN+ REFIN(1)  
DVDD DGND  
Burnout  
Detect  
Timers/  
Counters  
VREF  
ALVD  
DBOR  
Temperature  
Sensor  
8-Bit  
Offset DAC  
WDT  
AIN0  
AIN1  
AIN2  
AIN3  
Alternate  
Functions  
AIN4  
AIN5  
AIN6  
AIN7  
AINCOM  
Digital  
Filter  
MUX  
Modulator  
DIN  
BUFFER  
PGA  
DOUT  
PORT1  
PORT3  
SS  
EXT (4)  
PROG  
4K or 8K  
FLASH  
ACC  
8051  
128 Bytes  
SRAM  
USART  
EXT (2)  
T0  
Burnout  
Detect  
T1  
SCK/SCL/CLKS  
SFR  
On-Chip  
Oscillator  
RST  
CAP  
System  
Clock  
Divider  
AGND  
POR  
8-Bit IDAC  
PLL  
IDAC  
220pF Ceramic  
XIN XOUT  
NOTE (1) REF INmust be tied to AGND when using internal V  
REF  
.
FIGURE 1. Block Diagram.  
CLK  
instr_cycle  
cpu_cycle  
n + 1  
n + 2  
C1  
C2  
C3  
C4  
C1  
C2  
C3  
C4  
C1  
FIGURE 2. Instruction Cycle Timing.  
14  
MSC1200  
SBAS289E  
www.ti.com  
standard 8051 core. This allows the user to run the device at  
slower clock speeds, which reduces system noise and power  
consumption, but provides greater throughput. This performance  
difference can be seen in Figure 3. The timing of software loops  
will be faster with the MSC1200. However, the timer/counter  
operation of the MSC1200 may be maintained at 12 clocks per  
increment or optionally run at 4 clocks per increment.  
The MSC1200 also provides dual data pointers (DPTRs).  
Furthermore, improvements were made to peripheral fea-  
tures that off-load processing from the core and the user, to  
further improve efficiency. For instance, a 32-bit accumulator  
was added to significantly reduce the processing overhead  
for the multiple byte data from the ADC or other sources. This  
allows for 24-bit addition and shifting to be accomplished in  
a few instruction cycles, compared to hundreds of instruction  
cycles through software implementation.  
Single-Byte, Single-Cycle  
Instruction  
Family Device Compatibility  
The hardware functionality and pin configuration across the  
MSC1200 family is fully compatible. To the user, the only  
difference between family members is the memory configuration.  
This makes migration between family members simple. Code  
written for the MSC1200Y2 can be executed directly on an  
MSC1200Y3. This gives the user the ability to add or subtract  
software functions and to freely migrate between family mem-  
bers. Thus, the MSC1200 can become a standard device used  
across several application platforms.  
ALE  
PSEN  
Internal  
AD0-AD7  
Internal  
A8-A15  
4 Cycles  
CLK  
12 Cycles  
Family Development Tools  
ALE  
PSEN  
The MSC1200 is fully compatible with the standard 8051  
instruction set. This means that the user can develop soft-  
ware for the MSC1200 with existing 8051 development tools.  
Additionally, a complete, integrated development environ-  
ment is provided with each demo board, and third-party  
developers also provide support.  
AD0-AD7  
PORT 2  
Power Down Modes  
Single-Byte, Single-Cycle  
Instruction  
The MSC1200 can power several of the peripherals and put  
the CPU into IDLE. This is accomplished by shutting off the  
clocks to those sections, as shown in Figure 4.  
FIGURE 3. Comparison of MSC1200 Timing to Standard  
8051 Timing.  
tSYS  
SYSCLK  
C7  
tCLK  
SCL/SCK  
SPICON/  
I2CCON  
9A  
PDCON.0  
µs  
FTCON  
[3:0]  
Flash Write  
Timing  
USEC  
(30µs to 40µs)  
EF  
FB  
ms  
Flash Erase  
FTCON  
[7:4] Timing  
EF  
MSECH  
MSECL  
(5ms to 11ms)  
FD  
FC  
milliseconds  
interrupt  
MSINT  
FA  
seconds  
interrupt  
PDCON.1  
SECINT  
F9  
100ms  
HMSEC  
watchdog  
WDTCON  
FF  
FE  
PDCON.2  
ADCON2  
divide  
by 64  
ADC Output Rate  
ADCON3  
ACLK  
F6  
ADC Power Down  
DF  
DE  
Decimation Ratio  
Modulator Clock  
PDCON.3  
Timers 0/1  
CPU Clock  
USART  
IDLE  
FIGURE 4. MSC1200 Timing Chain and Clock Control.  
MSC1200  
SBAS289E  
15  
www.ti.com  
OVERVIEW  
The MSC1200 ADC structure is shown in Figure 5. The figure lists the components that make up the ADC, along with the  
corresponding special function register (SFR) associated with each component.  
AVDD  
Burnout  
Detect  
AIN0  
AIN1  
REFIN+  
AIN2  
fSAMP  
AIN3  
AIN4  
Input  
Multiplexer  
AIN5  
In+  
AIN6  
AIN7  
Sample  
and Hold  
Buffer  
PGA  
Σ
In−  
AINCOM  
Temperature  
Sensor  
Burnout  
Detect  
Offset  
DAC  
REFIN−  
D7H ADMUX  
DCH ADCON0  
F6H ACLK  
E6H ODAC  
AGND  
fDATA  
REFIN+ fMOD  
FAST  
VIN  
ADC  
Result Register  
SINC2  
SINC3  
AUTO  
∆Σ ADC  
Modulator  
Σ
X
Summation  
Block  
Offset  
Gain  
Calibration  
Register  
Calibration  
Register  
Σ
REFIN−  
DDH ADCON1  
DEH ADCON2  
DFH ADCON3  
OCR  
GCR  
ADRES  
D3H D2H D1H  
D6H D5H D4H  
DBH DAH D9H  
SUMR  
E5H E4H E3H E2H  
E1H  
SSCON  
FIGURE 5. MSC1200 ADC Structure.  
MSC1200  
16  
SBAS289E  
www.ti.com  
INPUT MULTIPLEXER  
BURNOUT DETECT  
The input multiplexer provides for any combination of differential  
inputs to be selected as the input channel, as shown in Figure 6.  
If AIN0 is selected as the positive differential input channel, any  
other channel can be selected as the negative differential input  
channel. With this method, it is possible to have up to eight fully  
differential input channels. It is also possible to switch the polarity  
of the differential input pair to negate any offset voltages.  
When the Burnout Detect (BOD) bit is set in the ADC control  
configuration register (ADCON0 DCH), two current sources are  
enabled. The current source on the positive input channel sources  
approximately 2µA of current. The current source on the negative  
input channel sinks approximately 2µA. This allows for the  
detection of an open circuit (full-scale reading) or short circuit  
(small differential reading) on the selected input differential pair.  
Enabling the buffer is recommended when BOD is enabled.  
INPUT BUFFER  
The analog input impedance is always high, regardless of  
PGA setting (when the buffer is enabled). With the buffer  
enabled, the input voltage range is reduced and the analog  
power-supply current is higher. If the limitation of input  
voltage range is acceptable, then the buffer is always pre-  
ferred.  
AIN0  
AIN1  
AVDD  
The input impedance of the MSC1200 without the buffer  
is 7M/PGA. The buffer is controlled by the state of the BUF  
bit in the ADC control register (ADCON0 DCH).  
Burnout Detect (2µA)  
AIN2  
AIN3  
ANALOG INPUT  
In+  
When the buffer is not selected, the input impedance of the  
analog input changes with ACLK clock frequency (ACLK  
F6H) and gain (PGA). The relationship is:  
Buffer  
AIN4  
In–  
1MHz  
ACLK Frequency  
fCLK  
7MΩ  
AIN Impedance () =  
PGA  
AIN5  
where ACLK frequency (fACLK) =  
Burnout Detect (2µA)  
ACLK +1  
Temperature Sensor  
fACLK  
AIN6  
and fMOD  
=
.
AVDD  
AVDD  
64  
AGND  
80 I  
Figure 7 shows the basic input structure of the MSC1200.  
I
AIN7  
AINCOM  
RSWITCH  
(3ktypical)  
High Impedance  
AIN  
> 1GΩ  
CS  
PGA  
CS  
Sampling Frequency = fSAMP  
1
2
9pF  
18pF  
36pF  
FIGURE 6. Input Multiplexer Configuration.  
PGA  
fSAMP  
AGND  
1, 2, 4  
8
fMOD  
4 to 128  
In addition, current sources are supplied that will source or  
sink current to detect open or short circuits on the pins.  
2 × fMOD  
4 × fMOD  
8 × fMOD  
16  
32  
64, 128 16 × fMOD  
TEMPERATURE SENSOR  
On-chip diodes provide temperature sensing capability. When  
the configuration register for the input MUX is set to all 1s,  
the diodes are connected to the input of the ADC. All other  
channels are open.  
FIGURE 7. Analog Input Structure (without buffer).  
MSC1200  
SBAS289E  
17  
www.ti.com  
PGA  
requires a positive full-scale differential input signal. It then  
computes a gain value to nullify gain errors in the system.  
Each of these calibrations will take seven tDATA periods to  
complete.  
The PGA can be set to gains of 1, 2, 4, 8, 16, 32, 64, or 128.  
Using the PGA can actually improve the effective resolution  
of the ADC. For instance, with a PGA of 1 on a ±2.5V full-  
scale range, the ADC can resolve to 1.5µV. With a PGA of  
128 on a ±19mV full-scale range, the ADC can resolve to  
75nV. With a PGA of 1 on a ±2.5V full-scale range, it would  
require a 26-bit ADC to resolve 75nV, as shown in Table I.  
Calibration should be performed after power on, a change in  
temperature, power supply, voltage reference, decimation  
ratio, buffer, or a change of the PGA. Calibration will remove  
the effects of the Offset DAC; therefore, changes to the  
Offset DAC register should be done after calibration.  
RMS  
At the completion of calibration, the ADC Interrupt bit goes  
high, which indicates the calibration is finished and valid data  
is available.  
FULL-SCALE  
RANGE  
(V)  
ENOB  
AT 10Hz  
(BITS)  
MEASUREMENT  
RESOLUTION  
(nV)  
PGA  
SETTING  
1
2
±2.5  
±1.25  
21.7  
21.5  
21.4  
21.2  
20.8  
20.4  
20  
1468  
843  
452  
259  
171  
113  
74.5  
74.5  
DIGITAL FILTER  
4
±0.625  
±0.313  
±0.156  
±0.0781  
±0.039  
±0.019  
The Digital Filter can use either the Fast Settling, Sinc2, or  
Sinc3 filter, as shown in Figure 8. In addition, the Auto mode  
changes the Sinc filter after the input channel or PGA is  
changed. When switching to a new channel, it will use the  
Fast Settling filter, for the next two conversions the first of  
which should be discarded. It will then use the Sinc2 followed  
by the Sinc3 filter to improve noise performance. This com-  
bines the low-noise advantage of the Sinc3 filter with the  
quick response of the Fast Settling Time filter. The frequency  
response of each filter is shown in Figure 9.  
8
16  
32  
64  
128  
19  
TABLE I. ENOB Versus PGA.  
OFFSET DAC  
The analog output from the PGA can be offset by up to half  
the full-scale input range of the PGA by using the ODAC  
register (SFR E6H). The ODAC (Offset DAC) register is an 8-  
bit value; the MSB is the sign and the seven LSBs provide  
the magnitude of the offset. Since the ODAC introduces an  
analog (instead of digital) offset to the PGA, using the ODAC  
does not reduce the range of the ADC.  
Adjustable Digital Filter  
Sinc3  
MODULATOR  
The modulator is a single-loop 2nd-order system. The modu-  
lator runs at a clock speed (fMOD) that is derived from the CLK  
using the value in the Analog Clock register (ACLK, F6H).  
The data output rate is:  
Sinc2  
Modulator  
Data Out  
Fast Settling  
fMOD  
Data Rate = fDATA  
=
DecimationRatio  
FILTER SETTLING TIME  
FILTER  
fCLK  
fACLK  
=
where fMOD  
=
SETTLING TIME  
(ACLK +1)64  
64  
(Conversion Cycles)  
Sinc3  
Sinc2  
Fast  
3(1)  
2(1)  
1(1)  
CALIBRATION  
The offset and gain errors in the MSC1200, or the complete  
system, can be reduced with calibration. Calibration is con-  
trolled through the ADCON1 register (SFR DDH), bits  
CAL2:CAL0. Each calibration process takes seven tDATA  
periods (data conversion time) to complete. Therefore, it  
takes 14 tDATA periods to complete both an offset and gain  
calibration.  
NOTE: (1) With Synchronized Channel Changes.  
AUTO MODE FILTER SELECTION  
CONVERSION CYCLE  
1
2
3
4+  
Discard  
Fast  
Sinc2  
Sinc3  
For system calibration, the appropriate signal must be  
applied to the inputs. The system offset calibration requires a  
zero-differential input signal. It then computes an offset value  
that will nullify offset in the system. The system gain calibration  
FIGURE 8. Filter Step Responses.  
MSC1200  
18  
SBAS289E  
www.ti.com  
If the internal VREF is not used, then VREF should be disabled  
in ADCON0.  
SINC3 FILTER RESPONSE  
(3dB = 0.262 fDATA  
0
20  
)
If the external voltage reference is selected it can be used as  
either a single-ended input of differential input, for ratiometric  
measures. When using an external reference, it is important  
to note that the input current will increase for VREF with higher  
PGA settings and with a higher modulator frequency. The  
external voltage reference can be used over the input range  
specified in the electrical characteristics section.  
40  
60  
80  
100  
120  
IDAC  
0
1
2
3
4
5
The 8-bit IDAC in the MSC1200 can be used to provide a  
current source that can be used for ratiometric measure-  
ments. The IDAC operates from its own voltage reference  
and is not dependent on the ADC voltage reference. The full-  
scale output current of the IDAC is approximately 1mA. The  
equation for the IDAC output current is:  
fDATA  
SINC2 FILTER RESPONSE  
0
20  
(3dB = 0.318 fDATA  
)
40  
IDACOUT = IDAC 3.6µA  
60  
80  
RESET  
Taking the RST pin HIGH will stop the operation of the  
device, and taking the RST pin LOW will initiate a reset. The  
device can also be reset by the power on reset circuitry,  
digital brownout Reset, or software reset. The timing of the  
reset operation is shown in the Electrical Characteristics  
section.  
100  
120  
0
1
2
3
4
5
fDATA  
FAST SETTLING FILTER RESPONSE  
(3dB = 0.469 fDATA  
0
20  
If the P1.0/PROG pin is unconnected or tied HIGH, the  
device will enter User Application mode on reset. If P1.0/  
PROG is tied LOW during reset, the device will enter Serial  
Programming mode.  
)
40  
60  
POWER ON RESET  
80  
The on-chip Power On Reset (POR) circuitry releases the  
device from reset at approximately DVDD = 2.0V. The POR  
accommodates power-supply ramp rates as slow as  
1V/10ms. To ensure proper operation, the power supply  
should ramp monotonically. Note that, as the device is  
released from reset and program execution begins, the  
device current consumption may increase, which may result  
in a power-supply voltage drop. If the power supply ramps at  
a slower rate, is not monotonic, or a brownout condition  
occurs (where the supply does not drop below the 2.0V  
threshold), then improper device operation may occur. The  
on-chip Brownout Reset (BOR) may provide benefit in these  
conditions. A POR circuit is shown in Figure 10.  
100  
120  
0
1
2
3
4
5
fDATA  
NOTE: fDATA = Data Output Rate = 1/tDATA  
FIGURE 9. Filter Frequency Responses.  
VOLTAGE REFERENCE  
The MSC1200 can use either an internal or external voltage  
reference. The voltage reference selection is controlled via  
ADC Control Register 0 (ADCON0, SFR DCH). The default  
power-up configuration for the voltage reference is 2.5V  
internal.  
DVDD  
MSC1200  
0.1µF  
10kΩ  
The internal voltage reference can be selected as either 1.25V  
or 2.5V. The analog power supply (AVDD) must be within the  
specified range for the selected internal voltage reference.  
The valid ranges are: VREF = 2.5 internal (AVDD = 4.1V to  
5.25V) and VREF = 1.25 internal (AVDD = 2.7V to 5.25V). If the  
internal VREF is selected then AGND must be connected to  
REFIN. The REFOUT/REFIN+ pin should also have a 0.1µF  
capacitor connected to AGND as close as possible to the pin.  
5
RST  
1MΩ  
FIGURE 10. Typical Reset Circuit.  
MSC1200  
SBAS289E  
19  
www.ti.com  
DIGITAL BROWNOUT RESET  
POWER-UPSUPPLY VOLTAGE RAMP RATE  
The Digital Brownout Reset (DBOR) is enabled through  
Hardware Configuration Register 1 (HCR1). If the conditions  
for proper POR are not met or the device encounters a  
brownout condition which does not generate a POR, DBOR  
can be used to ensure proper device operation. The DBOR  
will hold the state of the device when the power supply drops  
below the threshold level programmed in HCR1 and then  
generate a reset when the supply rises above the threshold  
level. Note that, as the device is released from reset and  
program execution begins, the device current consumption  
may increase, which can result in a power-supply voltage  
drop, which may initiate another brownout condition. Addi-  
tionally, the DBOR comparison is done against an analog  
reference; therefore, AVDD must be within its valid operating  
range for DBOR to function.  
The built-in (on-chip) power-on reset circuitry was designed  
to accommodate analog or digital supply ramp rates as slow  
as 1V/10ms. To ensure proper operation, the power supply  
should ramp monotonically at the specified rate. If DBOR is  
enabled, the ramp rate can be slower.  
CLOCKS  
The MSC1200 can operate in three separate clock modes:  
internal oscillator mode (IOM), external clock mode (ECM),  
and PLL mode. A block diagram is shown in Figure 11. The  
clock mode for the MSC1200 is selected via the CLKSEL bits  
in HCR2. IOM is the default mode for the device.  
Serial Flash Programming mode uses IO LF mode (the  
HCR2 and CLKSEL bits have no effect). Table II shows the  
active clock mode for the various startup conditions.  
The DBOR level should be chosen to match closely with the  
application. That is, with a high external clock frequency, the  
BOR level should match the minimum operating voltage  
range for the device, or improper operation may still occur.  
Internal Oscillator  
In IOM, the CPU executes either in LF mode (if HCR2,  
CLKSEL = 111) or HF mode (if HCR2, CLKSEL = 110).  
ANALOG LOW VOLTAGE DETECT  
External Clock  
The MSC1200 contains an analog low-voltage detect. When  
the analog supply drops below the value programmed in  
LVDCON (SFR E7H), an interrupt is generated.  
In ECM (HCR2, CLKSEL = 011), the CPU can execute from  
an external crystal, external ceramic resonator, external  
tOSC  
STOP  
100kΩ  
tPLL/tIOM  
tSYS  
tCLK  
XIN  
Phase  
Detector  
Charge  
Pump  
SYSDIV  
VCO  
CAP(1)  
220pF  
Ceramic  
XOUT  
PLL DAC  
PLLDIV  
NOTE: (1) The trace length connecting the CAP pin to the 220pF ceramic capacitor should be as short as possible.  
FIGURE 11. Clock Block Diagram.  
SELECTED CLOCK MODE (HCR2, CLKCON2:0)  
External Clock Mode (ECM)  
STARTUP CONDITION(1)  
ACTIVE CLOCK MODE (fSYS)  
Active Clock Present at XIN  
No Clock Present at XIN  
External Clock Mode  
IO LF Mode  
Internal Oscillator Mode (IOM)  
IO LF Mode  
N/A  
N/A  
IO LF Mode  
IO HF Mode  
IO HF Mode  
PLL(2)  
PLL LF Mode  
Active 32.768kHz Clock at XIN  
No Clock Present at XIN  
PLL LF Mode  
Nominal: 50% of IO LF Mode Rate  
PLL HF Mode  
Active 32.768kHz Clock at XIN  
No Clock Present at XIN  
PLL HF Mode  
Nominal: 50% of IO HF Mode Rate  
NOTES: (1) Clock detection is only done at startup; refer to Electrical Characteristics parameter tRFD in Figure B.  
(2) PLL operation requires that both AVDD and DVDD are within their specified operating range.  
TABLE II. Active Clock Modes.  
MSC1200  
20  
SBAS289E  
www.ti.com  
clock, or external oscillator. If an external clock is detected at  
startup, then the CPU will begin execution in ECM after  
startup. If an external clock is not detected at startup, then  
the device will revert to the mode shown in Table II.  
XIN  
C1  
XOUT  
PLL  
C2  
In Phase Lock Loop (PLL) mode (HCR2, CLKSEL = 101 or  
HCR2, CLKSEL = 100), the CPU can execute from an  
external 32.768 kHz crystal. This mode enables the use of a  
phase-lock loop (PLL) circuit that synthesizes the selected  
clock frequencies (PLL LF mode or PLL HF mode). If an  
external clock is detected at startup, then the CPU will begin  
execution in PLL mode after startup. If an external clock is  
not detected at startup, then the device will revert to the  
mode shown in Table II. The status of the PLL can be  
determined by first writing the PLLLOCK bit (enable) and  
then reading the PLLLOCK status bit in the PLLH SFR.  
NOTE: Refer to the crystal manufacturer's specification  
for C1 and C2 values.  
FIGURE 12. External Crystal Connection.  
The frequency of the PLL is preloaded with default trimmed  
values. However, the PLL frequency can be fine-tuned by  
writing to the PLLDIV1 and PLLDIV0 SFRs. The equation for  
the PLL frequency is:  
External Clock  
XIN  
PLL Frequency = ((PLLDIV9:PLLDIV0) + 1) fOSC  
FIGURE 13. External Clock Connection.  
where fOSC = 32.768kHz.  
The default value for PLL LF mode is automatically loaded  
into the PLLDIV SFR. For PLL HF mode, the user must load  
PLLDIV with the appropriate value (0383H).  
XIN  
C1  
For different connections to external clocks, see Figures 12,  
13, and 14.  
32.768kHz  
RS  
XOUT  
C2  
SPI  
The MSC1200 implements a basic SPI interface which in-  
cludes the hardware for simple serial data transfers. Figure 15  
shows a block digram of the SPI. The peripheral supports  
master and slave mode, full duplex data transfers, both clock  
polarities, both clock phases, bit order, and slave select.  
NOTE: Typical configuration is shown.  
FIGURE 14. PLL Connection.  
DOUT  
SPI /I2C  
Data Write  
P1.2  
P1.4  
P3.6  
DOUT  
SS  
TX_CLK  
SPICON  
I2CCON  
SS  
CNT_CLK  
Logic  
CNT INT  
I2C INT  
Counter  
SCK/SCL  
Start/Stop  
Detect  
Pad Control  
SCK  
I2C  
Stretch  
Control  
P1.3  
RX_CLK  
DIN  
SPI /I2C  
Data Read  
DIN  
CLKS  
(refer to PASEL, SFR F2H)  
FIGURE 15. SPI/I2C Block Diagram.  
MSC1200  
SBAS289E  
21  
www.ti.com  
The timing diagram for supported SPI data transfers is  
shown in Figure 16.  
The SS pin can be used to control the output of data on  
DOUT when the MSC1200 is in slave mode. The SS function  
is enabled or disabled by the ESS bit of the SPICON SFR.  
When enabled, the SS input of a slave device must be  
externally asserted before a master device can exchange  
data with the slave device. SS must be low before data  
transactions and must stay low for the duration of the  
transaction. When SS is high then data will not be shifted into  
the shift register nor will the counter increment. When SPI is  
enabled, SS also controls the drive of the line DOUT (P1.2).  
When SS is low in slave mode, the DOUT pin will be driven  
and when SS is high then DOUT will be high impedance.  
The I/O pins needed for data transfer are Data In (DIN), Data  
Out (DOUT) and serial clock (SCK). The slave select (SS  
)
pin can also be used to control the output of data on DOUT.  
The DIN pin is used for shifting data in for both master and  
slave modes.  
The DOUT pin is used for shifting data out for both master  
and slave modes.  
The SCK pin is used to synchronize the transfer of data for  
both master and slave modes. SCK is always generated by  
the master. The generation of SCK in master mode can be  
done in SW by simply toggling the port pin, or the generation  
of SCK can be accomplished by configuring the output on the  
SCK pin via PASEL (SFR F2H). A list of the most common  
methods of generating SCK follows, but the complete list of  
clock sources can be found by referring to the PASEL SFR.  
The SPI generates an interrupt ECNT (AIE.2) to indicate that  
the transfer/reception of the byte is complete. The interrupt  
goes high whenever the counter value is equal to 8 (indicat-  
ing that 8 SCKs have occurred). The interrupt is cleared on  
reading or writing to the SPIDATA register. During the data  
transfer, the actual counter value can be read from the  
SPICON SFR.  
Toggle SCK by setting and clearing the port pin.  
Memory Write Pulse (WR) which is idle high. Whenever a  
external memory write command (MOVX) is executed then a  
pulse is seen on P3.6. This method can be used only if CPOL  
is set to 1.  
Power Down  
The SPI is powered down by the PDSPI bit in the power  
control register (PDCON). This bit needs to be cleared to  
enable the SPI function. When the SPI is powered down the  
pins P1.2, P1.3, P1.4, and P3.6 revert to general-purpose  
I/O pins.  
Memory Write Pulse toggle version: In this mode, SCK  
toggles whenever an external write command (MOVX) is  
executed.  
Application Flow  
T0_Out signal can be used as a clock. A pulse is generated  
on SCK whenever Timer 0 expires. The idle state of the  
signal is low, so this can be used only if CPOL is cleared to  
0.  
Explained below are the steps of the typical application  
usage flow of SPI in master and slave mode:  
Master Mode Application Flow  
1. Configure the port pins.  
T0_Out Toggle: SCK toggles whenever Timer 0 expires.  
2. Configure the SPI.  
T1_Out signal can be used as a clock. A pulse is generated  
whenever Timer 1 expires. The idle state of the signal is low,  
so this can be used only if CPOL is cleared to 0.  
3. Assert SS to enable slave communications (if applicable).  
4. Write data to SPIDATA.  
T1_Out Toggle: SCK toggles whenever Timer 1 expires.  
5. Generate 8 SCKs.  
6. Read the received data from SPIDATA.  
SCK Cycle #  
1
2
3
4
5
6
7
8
SCK (CPOL = 0)  
SCK (CPOL = 1)  
Sample Input  
MSB  
6
5
4
3
2
1
LSB  
(CPHA = 0) Data Out  
Sample Input  
MSB  
6
5
4
3
2
1
LSB  
(CPHA = 1) Data Out  
SS to Slave  
Slave CPHA = 1 Transfer in Progress  
Slave CPHA = 0 Transfer in Progress  
2
1) SS Asserted  
3
4
1
2) First SCK Edge  
3) CNTIF Set (dependent on CPHA bit)  
4) SS Negated  
FIGURE 16. SPI Timing Diagram.  
22  
MSC1200  
SBAS289E  
www.ti.com  
Slave Mode Application Flow  
1. Configure the ports pins.  
2. Enable SS (if applicable).  
3. Configure the SPI.  
transferred. I2C mode also allows for interrupt generation on  
one bit of data transfer (I2CCON.CNTSEL). This can be used  
for ACK/NACK interrupt generation. For instance, the I2C  
interrupt can be configured for 8-bit interrupt detection, on the  
eighth bit the interrupt is generated. Following this interrupt,  
the clock will be stretched (SCL held low). The interrupt can  
then be configured for 1-bit detection. The ACK/NACK can be  
written by the software, which will terminate clock stretching.  
The next interrupt will be generated after the ACK/NACK has  
been latched by the receiving device. The interrupt is cleared  
on reading or writing to the I2CDATA register. If I2CDATA is  
not read before the next data transfer, the interrupt will be  
removed and the previous data will be lost.  
4. Write data to SPIDATA.  
5. Wait for the Count Interrupt (8 SCKs).  
6. Read the data from SPIDATA.  
Caution: If SPIDATA is not read before the next SPI trans-  
action the ECNT interrupt will be removed and the previous  
data will be lost.  
I2C  
Master Operation  
The I/O pins needed for I2C transfer are: serial clock (SCL)  
and serial data (SDAimplemented by connecting DIN and  
DOUT externally).  
The source for the SCL is controlled in the PASEL register or  
can be generated in software.  
Transmit  
The MSC1200 I2C supports:  
1) Master or slave I2C operation (control in software)  
2) Standard or fast modes of transfer  
3) Clock stretching  
The serial data must be stable on the bus while SCL is high.  
Therefore, the writing of serial data to I2CDATA must be  
coordinated with the generation of the SCL, since SDA  
transitions on the bus may be interpreted as a START or  
STOP while SCL is high. The START and STOP conditions  
on the bus must be generated in software. After the serial  
data has been transmitted, the generation of the ACK/NACK  
clock must be enabled by writing 0xFFH to I2CDATA. This  
allows the master to read the state of ACK/NACK.  
4) General call  
When used in I2C mode, pins DIN (P1.3) and DOUT (P1.2)  
should be tied together externally. The DIN pin should be  
configured as an input pin and the DOUT pin should be config-  
ured as open drain or standard 8051 by setting the P1DDR  
(DOUT should be set high so that the bus is not pulled low).  
Receive  
The serial data is latched into the receive buffer on the rising  
edge of SCL. After the serial data has been received,  
ACK/NACK is generated by writing 0x7FH (for ACK) or 0xFFH  
(for NACK) to I2CDATA.  
The MSC1200 I2C can generate two interrupts:  
1) I2C interrupt for START/STOP interrupt (AIE.3)  
2) CNT interrupt for bit counter interrupt (AIE.2)  
The START/STOP interrupt is generated when a START  
condition or STOP condition is detected on the bus. The bit  
counter generates an interrupt on a complete (8-bit) data  
transfer and also after the transfer of the ACK/NACK.  
Slave Operation  
Slave operation is supported, but address recognition, R/W  
determination, and ACK/NACK must be done under software  
control.  
The bit counter for serial transfer is always incremented on the  
falling edge of SCL and can be reset by reading or writing to  
I2CDATA (SFR 9BH) or when a START/STOP condition is  
detected. The bit counter can be polled or used as an interrupt.  
The bit counter interrupt occurs when the bit counter value is  
equal to 8, indicating that eight bits of data have been  
Transmit  
Once address recognition, R/W determination, and  
ACK/NACK are complete, the serial data to be transferred  
can be written to I2CDATA. The data is automatically shifted  
out based on the master SCL. After data transmission,  
SDA  
1-7  
8
9
1-7  
8
9
1-7  
8
9
SCL  
S
P
START  
Condition(1)  
ADDRESS(2)  
R/W(2) ACK(3)  
DATA(2)  
ACK(3)  
DATA(2)  
ACK(3)  
STOP  
Condition(4)  
(1) Generate in software; write 0x7F to I2CDATA.  
(2) I2CDATA register.  
NOTES:  
(3) Generate in software. Can enable bit count = 1 interrupt prior to ACK/NACK for interrupt use.  
Generate ACK by writing 0x7F to I2CDATA; generate NACK by writing 0xFF to I2CDATA.  
(4) Generate in software; write 0xFF to I2CDATA.  
FIGURE 17. Timing Diagram for I2C Transmission and Reception.  
MSC1200  
SBAS289E  
23  
www.ti.com  
CNTIF is generated and SCL is stretched by the MSC1200  
until the I2CDATA register is written with a 0xFFH. The  
ACK/NACK from the master can then be read.  
FLASH MEMORY  
The MSC1200 uses a memory addressing scheme that  
separates Program Memory from Data Memory. The program  
and data segments can overlap since they are accessed by  
different instructions. Program Memory is fetched by the  
microcontroller automatically. There is one instruction (MOVC)  
that is used to explicitly read the program area. This is commonly  
used to read lookup tables.  
Receive  
Once address recognition, R/W determination, and  
ACK/NACK are complete, I2CDATA must be written with  
0xFFH to enable data reception. Upon completion of the data  
shift, the MSC1200 generates the CNT interrupt and stretches  
SCL. Received data can then be read from I2CDATA. After  
the serial data has been received, ACK/NACK is generated  
by writing 0x7FH (for ACK) or 0xFFH (for NACK) to I2CDATA.  
The write to I2CDATA clears the CNT interrupt and clock  
stretch.  
The MSC1200 has three Hardware (HW) Configuration  
registers (HCR0, HCR1, and HCR2) that are programmable  
only during Flash Memory Programming mode.  
The MSC1200 allows the user to partition the Flash Memory  
between Program Memory and Data Memory. For instance,  
the MSC1200Y3 contains 8kB of Flash Memory on-chip.  
Through the HW configuration registers, the user can define  
the partition between Program Memory (PM) and Data  
Memory (DM), as shown in Tables III and IV and Figure 18.  
The MSC1200 family offers two memory configurations.  
MEMORY MAP  
The MSC1200 contains on-chip SFR, Flash Memory,  
Scratchpad RAM Memory, and Boot ROM. The SFR regis-  
ters are primarily used for control and status. The standard  
8051 features and additional peripheral features of the  
MSC1200 are controlled through the SFR. Reading from  
undefined SFR will return zero; writing to undefined SFR  
registers is not recommended and may have indeterminate  
effects.  
HCR0  
MSC1200Y2  
PM  
MSC1200Y3  
PM  
DFSEL  
DM  
2kB  
2kB  
1kB  
0kB  
DM  
4kB  
2kB  
1kB  
0kB  
00  
2kB  
2kB  
3kB  
4kB  
4kB  
6kB  
7kB  
8kB  
01  
Flash Memory is used for both Program Memory and Data  
Memory. The user has the ability to select the partition size  
of Program and Data Memories. The partition size is set  
through hardware configuration bits, which are programmed  
through serial programming. Both Program and Data Flash  
Memories are erasable and writable (programmable) in user  
application mode. However, program execution can only  
occur from Program Memory. As an added precaution, a lock  
feature can be activated through the hardware configuration  
bits, which disables erase and writes to the first 4kB of  
Program Flash Memory or the entire Program Flash Memory  
in user application mode.  
10  
11 (default)  
TABLE III. MSC1200Y Flash Partitioning.  
HCR0  
MSC1200Y2  
PM DM  
MSC1200Y3  
DFSEL  
PM  
DM  
00  
0000-07FF 0400-0BFF  
0000-07FF 0400-0BFF  
0000-0BFF 0400-07FF  
0000-0FFF  
0400-13FF  
01  
0000-17FF 0400-0BFF  
0000-1BFF 0400-07FF  
10  
11 (default)  
0000-0FFF  
0000  
0000-1FFF  
0000  
TABLE IV. Flash Memory Partitioning Addresses.  
Program  
Memory  
Data  
Memory  
FFFFH  
FFFFH  
Unused  
FC00H  
1K Internal Boot ROM  
F800H  
Unused  
Unused  
2000H, 8k (Y3)  
On-Chip Flash  
1400H, 5k (Y3)  
1000H, 4k (Y2)  
0000H, 0k  
0C00H, 3k (Y2)  
0400H, 1k  
FIGURE 18. Memory Map.  
MSC1200  
24  
SBAS289E  
www.ti.com  
It is important to note that the Flash Memory is readable and  
writable (depending on the MXWS bit in the MWS SFR) by  
the user through the MOVX instruction when configured as  
either Program or Data Memory. This means that the user  
may partition the device for maximum Flash Program Memory  
size (no Flash Data Memory) and use Flash Program Memory  
as Flash Data Memory. This may lead to undesirable behav-  
ior if the PC points to an area of Flash Program Memory that  
is being used for data storage. Therefore, it is recommended  
to use Flash partitioning when Flash Memory is used for data  
storage. Flash partitioning prohibits execution of code from  
Data Flash Memory. Additionally, the Program Memory erase/  
write can be disabled through hardware configuration bits  
(HCR0), while still providing access (read/write/erase) to  
Data Flash Memory.  
SFRs are accessed directly between 80H and FFH (128 to  
255). Scratchpad RAM is available for general-purpose data  
storage. It is commonly used in place of off-chip RAM when  
the total data contents are small. Within the 128 bytes of  
RAM, there are several special-purpose areas.  
Bit Addressable Locations  
In addition to direct register access, some individual bits are  
also accessible. These are individually addressable bits in  
both the RAM and SFR area. In the Scratchpad RAM area,  
registers 20H to 2FH are bit addressable. This provides 128  
(16 8) individual bits available to software. A bit access is  
distinguished from a full-register access by the type of  
instruction. In the SFR area, any register location ending in  
a 0H or 8H is bit addressable. Figure 20 shows details of the  
on-chip RAM addressing including the locations of individual  
RAM bits.  
The effect of memory mapping on Program and Data Memory  
is straightforward. The Program Memory is decreased in size  
from the top of Flash Memory. To maintain compatibility with  
the MSC121x, the Flash Data Memory maps to addresses  
0400H. Therefore, access to Data Memory (through MOVX)  
will access Flash Memory for the addresses shown in  
Table IV.  
7FH  
Direct  
RAM  
Data Memory  
2FH  
2EH  
2DH  
2CH  
2BH  
2AH  
29H  
28H  
27H  
26H  
25H  
24H  
23H  
22H  
21H  
7F 7E 7D 7C 7B 7A 79 78  
77 76 75 74 73 72 71 70  
6F 6E 6D 6C 6B 6A 69 68  
67 66 65 64 63 62 61 60  
5F 5E 5D 5C 5B 5A 59 58  
57 56 55 54 53 52 51 50  
4F 4E 4D 4C 4B 4A 49 48  
47 46 45 44 43 42 41 40  
3F 3E 3D 3C 3B 3A 39 38  
37 36 35 34 33 32 31 30  
2F 2E 2D 2C 2B 2A 29 28  
27 26 25 24 23 22 21 20  
1F 1E 1D 1C 1B 1A 19 18  
17 16 15 14 13 12 11 10  
0F 0E 0D 0C 0B 0A 09 08  
07 06 05 04 03 02 01 00  
The MSC1200 has on-chip Flash Data Memory, which is  
readable and writable (depending on Memory Write Select  
register) during normal operation (full VDD range). This memory  
is mapped into the external Data Memory space, which  
requires the use of the MOVX instruction to program. Note  
that the page size is 64 bytes for both Program and Data  
Memory and the page must be erased before it can be  
written.  
REGISTER MAP  
The Register Map is illustrated in Figure 19. It is entirely  
separate from the Program and Data Memory areas men-  
tioned before. A separate class of instructions is used to  
access the registers. There are 128 register locations. In  
practice, the MSC1200 has 128 bytes of Scratchpad RAM  
and up to 128 SFRs. Thus, a direct reference to one of the  
upper 128 locations will be an SFR access. Direct RAM is  
reached at locations 0 to 7FH (0 to 127).  
20H  
1FH  
Bank 3  
18H  
17H  
255  
FFH  
Bank 2  
Bank 1  
Bank 0  
10H  
0FH  
Direct  
Special Function  
Registers  
80H  
7FH  
128  
127  
08H  
07H  
Direct  
Scratchpad  
RAM  
00H  
00H  
0
MSB  
LSB  
FIGURE 19. Register Map.  
FIGURE 20. Scratchpad Register Addressing.  
MSC1200  
SBAS289E  
25  
www.ti.com  
last used value. Therefore, the next value placed on the  
Stack is put at SP + 1. Each PUSH or CALL will increment  
the SP by the appropriate value. Each POP or RET will  
decrement as well.  
Working Registers  
As part of the lower 128 bytes of RAM, there are four banks  
of Working Registers, as shown in Figure 20. The Working  
Registers are general-purpose RAM locations that can be  
addressed in a special way. They are designated R0 through  
R7. Since there are four banks, the currently selected bank will  
be used by any instruction using R0-R7. This allows software  
to change context by simply switching banks. This is controlled  
via the Program Status Word register (PSW; 0D0H) in the SFR  
area described below. The 16 bytes immediately above the  
R0-R7 registers are bit addressable. So any of the 128 bits in  
this area can be directly accessed using bit addressable  
instructions.  
Program Memory  
After reset, the CPU begins execution from Program Memory  
location 0000H. The standard internal Program Memory size for  
MSC1200 family members is shown in Table V. If enabled the  
Boot ROM will appear from address F800H to FBFFH.  
STANDARD INTERNAL  
MODEL NUMBER  
PROGRAM MEMORY SIZE (BYTES)  
MSC1200Y3  
MSC1200Y2  
8k  
4k  
Stack  
Another use of the Scratchpad area is for the programmers  
stack. This area is selected using the Stack Pointer (SP; 81H)  
SFR. Whenever a call or interrupt is invoked, the return  
address is placed on the Stack. It also is available to the  
programmer for variables, etc., since the Stack can be  
moved and there is no fixed location within the RAM desig-  
nated as Stack. The Stack Pointer will default to 07H on reset.  
The user can then move it as needed. The SP will point to the  
TABLE V. MSC1200 Maximum Internal Program Memory Sizes.  
Boot ROM  
There is a 1kB Boot ROM that controls operation during serial  
programming. Additionally, the Boot ROM routines shown in  
Table VI can be accessed during the user mode if it is enabled.  
When enabled, the Boot ROM routines will be located at  
memory addresses F800H-FBFFH during user mode.  
HEX ADDRESS ROUTINE  
C DECLARATIONS  
DESCRIPTION  
F802  
sfr_rd  
char sfr_rd(void);  
Return SFR value pointed to by CADDR(1)  
Write to SFR pointed to by CADDR(1)  
Push registers and call cmd_parser  
See SBAA076B.pdf  
F805  
sfr_wr  
void sfr_wr(char d);  
FBD8  
FBDA  
FBDC  
FBDE  
FBE0  
FBE2  
FBE4  
FBE6  
FBE8  
FBEA  
FBEC  
FBEE  
FBF0  
FBF2  
FBF4  
FBF6  
FBF8  
FBFA  
FBFC  
FBFE  
monitor_isr  
cmd_parser  
put_string  
void monitor_isr() interrupt 6;  
void cmd_parser(void);  
void put_string(char code *string);  
Output string  
page_erase  
write_flash  
write_flash_chk  
write_flash_byte  
faddr_data_read  
data_x_c_read  
tx_byte  
char page_erase (int faddr, char fdata, char fdm);  
Assembly only; DPTR = address, ACC = data  
char write_flash_chk (int faddr, char fdata, char fdm);  
void write_flash_byte (int faddr, char fdata);  
char faddr_data_read(char faddr);  
char data_x_c_read(int faddr, char fdm);  
void tx_byte(char);  
Erase flash page  
Flash write(2)  
Write flash byte, verify  
Write flash byte(2)  
Read HW config byte from faddr  
Read xdata or code byte  
Send byte to USART0  
tx_hex  
void tx_hex(char);  
Send hex value to USART0  
Send xto USART0 on R7 = 1  
Read byte from USART0  
Read and echo byte on USART0  
Read and echo hex on USART0  
Read int as hex and echo: USART0  
Read int reversed as hex and echo: USART0  
Set baud with received CR(3)  
Output 1 space to USART0  
Output CR, LF to USART0  
putx  
void putx(char);  
rx_byte  
char rx_byte(void);  
rx_byte_echo  
rx_hex_echo  
rx_hex_dbl_echo  
rx_hex_word_echo  
autobaud  
char rx_byte_echo(void);  
char rx_hex_echo(void);  
int rx_hex_dbl_echo(void);  
int rx_hex_word_echo(void);  
void autobaud(void);  
putspace1  
putcr  
void putspace1(void);  
void putcr(void);  
NOTES: (1) CADDR must be set using the faddr_data_read routine.  
(2) MWS register (SFR 8FH) defines Data Memory or Program Memory write.  
(3) SFR registers CKCON and TCON must be initialized: CKCON = 0x10 and TCON = 0x00.  
TABLE VI. MSC1200 Boot ROM Routines.  
MSC1200  
26  
SBAS289E  
www.ti.com  
Serial Flash Programming Mode  
INTERRUPTS  
Two methods of programming are available: serial program-  
ming mode and user application mode. Serial programming  
mode is initiated by holding the P1.0/PROG pin low during  
POR, as shown in Figure 21. User Application mode also  
allows for Flash programming. Code execution from Flash  
Memory cannot occur in this mode while programming, but  
code execution can occur from Boot ROM while programming.  
The MSC1200 uses a three-priority interrupt system. As  
shown in Table VII, each interrupt source has an indepen-  
dent priority bit, flag, interrupt vector, and enable (except that  
nine interrupts share the Auxiliary Interrupt (AI) at the highest  
priority). In addition, interrupts can be globally enabled or  
disabled. The interrupt structure is compatible with the origi-  
nal 8051 family. All of the standard interrupts are available.  
MSC1200  
HARDWARE CONFIGURATION MEMORY  
P3.0/RxD0  
Programmer  
P3.1/TxD0  
The 64 configuration bytes can only be written during the  
program mode. The bytes are accessed through SFR regis-  
ters CADDR (SFR 93H) and CDATA (SFR 94H). Three of the  
configuration bytes control Flash partitioning and system  
control. If the security bit is set, these bits cannot be changed  
except with a Mass Erase command that erases all of the  
Flash Memory including the 64 configuration bytes.  
P1.0/PROG  
NOTE: For user application mode, avoid heavy loading on  
P1.0/PROG, which may result in erroneously entering serial  
programming mode on power-up.  
FIGURE 21. Serial Programming Mode.  
INTERRUPT  
INTERRUPT  
INTERRUPT/EVENT  
ADDR  
NUM  
PRIORITY  
FLAG  
ENABLE  
CONTROL  
HIGH  
0
AVDD Low Voltage Detect  
Count (SPI/ I2C)  
I2C Start/Stop  
33H  
33H  
33H  
33H  
33H  
33H  
33H  
03H  
0BH  
13H  
1BH  
23H  
6
6
6
6
6
6
6
0
1
2
3
4
ALVDIP (AIPOL.1)(1)  
CNTIP (AIPOL.2)(1)  
I2CIP (AIPOL.3)(1)  
MSECIP (AAIPOLIE.4)(1)  
ADCIP (AIPOL.5)(1)  
SUMIP (AIPOL.6)(1)  
SECIP (AIPOL.7)(1)  
IE0 (TCON.1)(2)  
EALV (AIE.1)(1)  
ECNT (AIE.2)(1)  
EI2C (AIE.3)(1)  
EMSEC (AIE.4)(1)  
EADC (AIE .5)(1)  
ESUM (AIE.6)(1)  
ESEC (AIE.7)(1)  
EX0 (IE.0)(4)  
ET0 (IE.1)(4)  
EX1 (IE.2)(4)  
ET1 (IE.3)(4)  
ES0 (IE.4)(4)  
N/A  
N/A  
0
0
0
0
0
0
1
2
3
4
5
N/A  
Milliseconds Timer  
ADC  
N/A  
N/A  
Summation Register  
Seconds Timer  
N/A  
N/A  
External Interrupt 0  
Timer 0 Overflow  
External Interrupt 1  
Timer 1 Overflow  
Serial Port 0  
PX0 (IP.0)  
PT0 (IP.1)  
PX1 (IP.2)  
PT1 (IP.3)  
PS0 (IP.4)  
TF0 (TCON.5)(3)  
IE1 (TCON.3)(2)  
TF1 (TCON.7)(3)  
RI_0 (SCON0.0)  
TI_0 (SCON0.1)  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
Watchdog  
43H  
4BH  
53H  
5BH  
63H  
8
6
7
8
9
IE2 (EXIF.4)  
IE3 (EXIF.5)  
EX2 (EIE.0)(4)  
EX3 (EIE.1)(4)  
EX4 (EIE.2)(4)  
EX5 (EIE.3)(4)  
EWDI (EIE.4)(4)  
PX2 (EIP.0)  
PX3 (EIP.1)  
PX4 (EIP.2)  
PX5 (EIP.3)  
PWDI (EIP.4)  
9
10  
11  
12  
IE4 (EXIF.6)  
IE5 (EXIF.7)  
10  
WDTI (EICON.3)  
LOW  
NOTES: (1) These interrupts set the AI flag (EICON.4) and are enabled by EAI (EICON.5). (2) If edge triggered, cleared automatically by hardware when the  
service routine is vectored to. If level triggered, the flag follows the state of the pin. (3) Cleared automatically by hardware when interrupt vector occurs.  
(4) Globally enabled by EA (IE.7).  
TABLE VII. Interrupt Summary.  
MSC1200  
SBAS289E  
27  
www.ti.com  
Hardware Configuration Register 0 (HCR0)Accessed Using SFR Registers CADDR and CDATA.  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CADDR 3FH  
EPMA  
PML  
RSL  
EBR  
EWDR  
1
DFSEL1  
DFSEL0  
To read this register during normal operation, refer to the register descriptions for CADDR and CDATA.  
EPMA  
Enable Programming Memory Access (Security Bit).  
bit 7  
0: After reset in programming modes, Flash Memory can only be accessed in UAM mode until a mass erase is done.  
1: Fully Accessible (default)  
PML  
Program Memory Lock (PML has Priority Over RSL).  
bit 6  
0: Enable all Flash Programming Modes in Program Memory; can be written in UAM.  
1: Enable read only for Program Memory; cannot be written in UAM (default).  
RSL  
bit 5  
Reset Sector Lock. The reset sector can be used to provide another method of Flash Memory programming. This  
will allow Program Memory updates without changing the jumpers for in-circuit code updates or program  
development. The code in this boot sector would then provide the monitor and programming routines with the ability  
to jump into the main Flash code when programming is finished.  
0: Enable Reset Sector Writing  
1: Enable Read Only Mode for Reset Sector (4kB) (default)  
EBR  
Enable Boot ROM. Boot ROM is 1kB of code located in ROM, not to be confused with the 4kB Boot Sector located  
bit 4  
in Flash Memory.  
0: Disable Internal Boot ROM  
1: Enable Internal Boot ROM (default)  
EWDR  
Enable Watchdog Reset.  
bit 3  
0: Disable Watchdog Reset  
1: Enable Watchdog Reset (default)  
DFSEL1-0 Data Flash Memory Size (see Table II).  
bits 1-0  
00: 4kB Data Flash Memory (MSC1200Y3 Only)  
01: 2kB Data Flash Memory  
10: 1kB Data Flash Memory  
11: No Data Flash Memory (default)  
MSC1200  
28  
SBAS289E  
www.ti.com  
Hardware Configuration Register 1 (HCR1)  
7
6
5
4
3
2
1
0
CADDR 3EH  
1
1
1
1
1
DDB  
1
1
To read this register during normal operation, refer to the register descriptions for CADDR and CDATA.  
DDB  
Disable Digital Brownout Detection  
bit 2  
0: Enable Digital Brownout Detection (2.7V)  
1: Disable Digital Brownout Detection (default)  
Hardware Configuration Register 2 (HCR2)  
7
6
5
4
3
2
1
0
CADDR 3DH  
0
0
0
0
0
CLKSEL2  
CLKSEL1  
CLKSEL0  
To read this register during normal operation, refer to the register descriptions for CADDR and CDATA.  
CLKSEL2-0 Clock Select  
bits 2-0  
000: Reserved  
001: Reserved  
010: Reserved  
011: External Clock Mode  
100: PLL High-Frequency (HF) Mode  
101: PLL Low-Frequency (LF) Mode  
110: Internal Oscillator High-Frequency (HF) Mode  
111: Internal Oscillator Low-Frequency (LF) Mode  
Configuration Memory Programming  
Certain key functions such as Brownout Reset and Watchdog Timer are controlled by the hardware configuration bits. These  
bits are nonvolatile and can only be changed through serial flash programming. Other peripheral control and status functions,  
such as ADC configuration timer setup, and Flash control are controlled through the SFRs.  
MSC1200  
SBAS289E  
29  
www.ti.com  
SFR Definitions  
ADDRESS  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RESET VALUES  
80H  
81H  
82H  
83H  
84H  
85H  
86H  
87H  
88H  
89H  
SP  
07H  
00H  
00H  
00H  
00H  
00H  
30H  
00H  
00H  
DPL0  
DPH0  
DPL1  
DPH1  
DPS  
0
0
0
0
0
0
0
SEL  
IDLE  
IT0  
PCON  
TCON  
TMOD  
SMOD  
TF1  
0
1
1
GF1  
IE1  
GF0  
IT1  
STOP  
IE0  
TR1  
TF0  
TR0  
|---------------------------Timer 1 --------------------------|  
|--------------------------Timer 0 ---------------------------|  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
8AH  
8BH  
8CH  
8DH  
8EH  
8FH  
90H  
TL0  
00H  
00H  
00H  
00H  
01H  
00H  
FFH  
TL1  
TH0  
TH1  
CKCON  
MWS  
P1  
0
0
0
T1M  
0
T0M  
0
MD2  
0
MD1  
0
MD0  
0
0
0
MXWS  
P1.0  
P1.7  
INT5  
IE5  
P1.6  
INT4  
IE4  
P1.5  
INT3  
IE3  
P1.4  
INT2/SS  
IE2  
P1.3  
DIN  
1
P1.2  
DOUT  
0
P1.1  
91H  
92H  
93H  
94H  
95H  
96H  
97H  
98H  
99H  
9AH  
EXIF  
0
0
08H  
CADDR  
CDATA  
00H  
00H  
SCON0  
SBUF0  
SM0_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00H  
00H  
00H  
SPICON  
I2CCON  
SPIDATA  
I2CDATA  
SBIT3  
SBIT3  
SBIT2  
SBIT2  
SBIT1  
SBIT1  
SBIT0  
SBIT0  
ORDER  
STOP  
CPHA  
START  
ESS  
DCS  
CPOL  
CNTSEL  
9BH  
00H  
9CH  
9DH  
9EH  
9FH  
A0H  
A1H  
A2H  
A3H  
A4H  
A5H  
A6H  
A7H  
A8H  
A9H  
AAH  
ABH  
ACH  
ADH  
AEH  
AFH  
B0H  
AIPOL  
PAI  
SECIP  
0
SUMIP  
0
ADCIP  
0
MSECIP  
0
I2CIP  
PAI3  
EI2C  
I2C  
CNTIP  
PAI2  
ECNT  
CNT  
ALVDIP  
PAI1  
0
00H  
00H  
00H  
00H  
00H  
PAI0  
0
AIE  
ESEC  
SEC  
EA  
ESUM  
SUM  
0
EADC  
ADC  
0
EMSEC  
MSEC  
ES0  
EALV  
ALVD  
ET0  
AISTAT  
IE  
0
ET1  
EX1  
EX0  
P1DDRL  
P1DDRH  
P3  
P13H  
P17H  
P3.7  
P13L  
P17L  
P3.6  
P12H  
P16H  
P3.5  
P12L  
P16L  
P3.4  
T0  
P11H  
P15H  
P3.3  
P11L  
P15L  
P3.2  
INT0  
P10H  
P14H  
P3.1  
P10L  
P14L  
P3.0  
00H  
00H  
FFH  
SCK/SCL/CLKS T1  
INT1  
TXD0  
RXD0  
B1H  
B2H  
B3H  
B4H  
B5H  
B6H  
B7H  
P3DDRL  
P3DDRH  
IDAC  
P33H  
P37H  
P33L  
P37L  
P32H  
P36H  
P32L  
P36L  
P31H  
P35H  
P31L  
P35L  
P30H  
P34H  
P30L  
P34L  
00H  
00H  
00H  
B8H  
B9H  
BAH  
BBH  
BCH  
BDH  
BEH  
IP  
1
0
0
PS0  
PT1  
PX1  
PT0  
PX0  
80H  
MSC1200  
30  
SBAS289E  
www.ti.com  
SFR Definitions (Cont.)  
ADDRESS  
BFH  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RESET VALUES  
C0H  
C1H  
C2H  
C3H  
C4H  
C5H  
C6H  
C7H  
EWU  
EWUWDT EWUEX1  
DIV2 DIV1  
EWUEX0  
DIV0  
00H  
00H  
SYSCLK  
0
0
DIVMOD1 DIVMOD0  
0
C8H  
C9H  
CAH  
CBH  
CCH  
CDH  
CEH  
CFH  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
D8H  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
F0H  
F1H  
F2H  
PSW  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00H  
00H  
OCL  
LSB  
OCM  
00H  
OCH  
MSB  
00H  
GCL  
LSB  
5AH  
ECH  
5FH  
GCM  
GCH  
MSB  
INP3  
0
ADMUX  
EICON  
ADRESL  
ADRESM  
ADRESH  
ADCON0  
ADCON1  
ADCON2  
ADCON3  
ACC  
INP2  
1
INP1  
EAI  
INP0  
AI  
INN3  
INN2  
0
INN1  
0
INN0  
0
01H  
WDTI  
40H  
LSB  
00H  
00H  
MSB  
00H  
BOD  
POL  
DR6  
0
EVREF  
SM1  
DR5  
0
VREFH  
SM0  
DR4  
0
EBUF  
PGA2  
CAL2  
DR2  
PGA1  
CAL1  
DR1  
PGA0  
CAL0  
DR0  
30H  
OF_UF  
DR7  
0
00H  
DR3  
0
1BH  
06H  
DR10  
DR9  
DR8  
00H  
SSCON  
SUMR0  
SUMR1  
SUMR2  
SUMR3  
ODAC  
SSCON1  
SSCON0  
SCNT2  
SCNT1  
SCNT0  
SHF2  
SHF1  
SHF0  
LSB  
00H  
00H  
00H  
00H  
MSB  
00H  
00H  
LVDCON  
EIE  
ALVDIS  
0
1
0
0
0
1
0
1
0
1
1
1
1
8FH  
1
0
0
EWDI  
EX5  
0
EX4  
0
EX3  
0
EX2  
E0H  
0000_000xB  
20H  
HWPC0  
HWPC1  
HWVER  
Reserved  
Reserved  
FMCON  
FTCON  
B
0
0
MEMORY  
0
0
0
0
0
PGERA  
FER2  
0
FRCM  
FER0  
0
BUSY  
FWR2  
1
0
02H  
A5H  
00H  
6FH  
00H  
FER3  
FER1  
FWR3  
FWR1  
FWR0  
PDCON  
PASEL  
PDICLK  
PSEN4  
PDIDAC  
PSEN3  
PDI2C  
0
PDADC  
PSEN0  
PDWDT  
0
PDST  
0
PDSPI  
0
PSEN2  
PSEN1  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
Reserved  
PLLL  
PLLH  
ACLK  
SRST  
EIP  
PLL7  
CLKSTAT2  
0
0
1
PLL6  
CLKSTAT1  
FREQ6  
PLL5  
PLL4  
PLL3  
0
FREQ3  
0
PLL2  
0
FREQ2  
0
PLL1  
PLL9  
FREQ1  
0
PLL0  
PLL8  
FREQ0  
RSTREQ  
PX2  
C1H  
x1H  
03H  
00H  
E0H  
CLKSTAT0 PLLLOCK  
FREQ5  
0
FREQ4  
0
0
1
1
PWDI  
PX5  
PX4  
PX3  
F9H  
FAH  
FBH  
FCH  
FDH  
FEH  
FFH  
SECINT  
MSINT  
WRT  
SECINT6  
MSINT6  
0
SECINT5  
MSINT5  
FREQ5  
MSECL5  
MSECH5  
HMSEC5  
RWDT  
SECINT4  
MSINT4  
FREQ4  
MSECL4  
MSECH4  
HMSEC4  
WDCNT4  
SECINT3  
MSINT3  
FREQ3  
SECINT2  
MSINT2  
FREQ2  
SECINT1  
MSINT1  
FREQ1  
SECINT0  
MSINT0  
FREQ0  
7FH  
7FH  
03H  
9FH  
0FH  
63H  
00H  
WRT  
USEC  
0
MSECL  
MSECH  
HMSEC  
WDTCON  
MSECL7  
MSECH7  
HMSEC7  
EWDT  
MSECL6  
MSECH6  
HMSEC6  
DWDT  
MSECL3  
MSECH3  
HMSEC3  
WDCNT3  
MSECL2  
MSECH2  
HMSEC2  
WDCNT2  
MSECL1  
MSECH1  
HMSEC1  
WDCNT1  
MSECL0  
MSECH0  
HMSEC0  
WDCNT0  
MSC1200  
SBAS289E  
31  
www.ti.com  
Stack Pointer (SP)  
7
6
5
4
3
2
1
0
Reset Value  
07  
SFR 81H  
SP.7  
SP.6  
SP.5  
SP.4  
SP.3  
SP.2  
SP.1  
SP.0  
H
SP.7-0  
Stack Pointer. The stack pointer identifies the location where the stack will begin. The stack pointer is incremented before  
bits 7-0  
every PUSH or CALL operation and decremented after each POP or RET/RETI. This register defaults to 07H after reset.  
Data Pointer Low 0 (DPL0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 82H  
DPL0.7  
DPL0.6  
DPL0.5  
DPL0.4  
DPL0.3  
DPL0.2  
DPL0.1  
DPL0.0  
00H  
DPL0.7-0 Data Pointer Low 0. This register is the low byte of the standard 8051 16-bit data pointer. DPL0 and DPH0  
bits 7-0 are used to point to non-scratchpad data RAM. The current data pointer is selected by DPS (SFR 86H).  
Data Pointer High 0 (DPH0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 83H  
DPH0.7  
DPH0.6  
DPH0.5  
DPH0.4  
DPH0.3  
DPH0.2  
DPH0.1  
DPH0.0  
00H  
DPH0.7-0 Data Pointer High 0. This register is the high byte of the standard 8051 16-bit data pointer. DPL0 and DPH0  
bits 7-0 are used to point to non-scratchpad data RAM. The current data pointer is selected by DPS (SFR 86H).  
Data Pointer Low 1 (DPL1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 84H  
DPL1.7  
DPL1.6  
DPL1.5  
DPL1.4  
DPL1.3  
DPL1.2  
DPL1.1  
DPL1.0  
00H  
DPL1.7-0 Data Pointer Low 1. This register is the low byte of the auxiliary 16-bit data pointer. When the SEL bit (DPS.0)  
bits 7-0 (SFR 86H) is set, DPL1 and DPH1 are used in place of DPL0 and DPH0 during DPTR operations.  
Data Pointer High 1 (DPH1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 85H  
DPH1.7  
DPH1.6  
DPH1.5  
DPH1.4  
DPH1.3  
DPH1.2  
DPH1.1  
DPH1.0  
00H  
DPH1.7-0 Data Pointer High. This register is the high byte of the auxiliary 16-bit data pointer. When the SEL bit (DPS.0)  
bits 7-0 (SFR 86H) is set, DPL1 and DPH1 are used in place of DPL0 and DPH0 during DPTR operations.  
Data Pointer Select (DPS)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 86H  
0
0
0
0
0
0
0
SEL  
00H  
SEL  
Data Pointer Select. This bit selects the active data pointer.  
0: Instructions that use the DPTR will use DPL0 and DPH0.  
1: Instructions that use the DPTR will use DPL1 and DPH1.  
bit 0  
MSC1200  
32  
SBAS289E  
www.ti.com  
Power Control (PCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 87H  
SMOD  
0
1
1
GF1  
GF0  
STOP  
IDLE  
30H  
SMOD  
bit 7  
Serial Port 0 Baud Rate Doubler Enable. The serial baud rate doubling function for Serial Port 0.  
0: Serial Port 0 baud rate will be a standard baud rate.  
1: Serial Port 0 baud rate will be double that defined by baud rate generation equation.  
GF1  
General-Purpose User Flag 1. This is a general-purpose flag for software control.  
bit 3  
GF0  
General-Purpose User Flag 0. This is a general-purpose flag for software control.  
bit 2  
STOP  
bit 1  
Stop Mode Select. Setting this bit will halt the oscillator and block external clocks. This bit will always read as a 0.  
Exit with RESET. In this mode, internal peripherals are frozen and I/O pins are held in their current state. The ADC  
is frozen, but IDAC and VREF remain active.  
IDLE  
bit 0  
Idle Mode Select. Setting this bit will freeze the CPU, Timer 0 and 1, and the USART; other peripherals remain  
active. This bit will always be read as a 0. Exit with AIE (A6H) and EWU (C6H) interrupts (refer to Figure 4 for clocks  
affected during IDLE).  
Timer/Counter Control (TCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 88H  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00H  
TF1  
bit 7  
Timer 1 Overflow Flag. This bit indicates when Timer 1 overflows its maximum count as defined by the current  
mode. This bit can be cleared by software and is automatically cleared when the CPU vectors to the Timer 1  
interrupt service routine.  
0: No Timer 1 overflow has been detected.  
1: Timer 1 has overflowed its maximum count.  
TR1  
Timer 1 Run Control. This bit enables/disables the operation of Timer 1. Halting this timer will preserve the  
current bit 6 count in TH1, TL1.  
0: Timer is halted.  
1: Timer is enabled.  
TF0  
bit 5  
Timer 0 Overflow Flag. This bit indicates when Timer 0 overflows its maximum count as defined by the current  
mode. This bit can be cleared by software and is automatically cleared when the CPU vectors to the Timer 0  
interrupt service routine.  
0: No Timer 0 overflow has been detected.  
1: Timer 0 has overflowed its maximum count.  
TR0  
Timer 0 Run Control. This bit enables/disables the operation of Timer 0. Halting this timer will preserve the  
bit 4  
current count in TH0, TL0.  
0: Timer is halted.  
1: Timer is enabled.  
IE1  
bit 3  
Interrupt 1 Edge Detect. This bit is set when an edge/level of the type defined by IT1 is detected. If IT1 = 1, this  
bit will remain set until cleared in software or the start of the External Interrupt 1 service routine. If IT1 = 0, this  
bit will inversely reflect the state of the INT1 pin.  
IT1  
Interrupt 1 Type Select. This bit selects whether the INT1 pin will detect edge or level triggered interrupts.  
bit 2  
0: INT1 is level triggered.  
1: INT1 is edge triggered.  
IE0  
bit 3  
Interrupt 0 Edge Detect. This bit is set when an edge/level of the type defined by IT0 is detected. If IT0 = 1, this  
bit will remain set until cleared in software or the start of the External Interrupt 0 service routine. If IT0 = 0, this  
bit will inversely reflect the state of the INT0 pin.  
IT0  
Interrupt 0 Type Select. This bit selects whether the INT0 pin will detect edge or level triggered interrupts.  
bit 2  
0: INT0 is level triggered.  
1: INT0 is edge triggered.  
MSC1200  
SBAS289E  
33  
www.ti.com  
Timer Mode Control (TMOD)  
7
6
5
4
3
2
1
0
TIMER 1  
TIMER 0  
Reset Value  
SFR 89H  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
00H  
GATE  
Timer 1 Gate Control. This bit enables/disables the ability of Timer 1 to increment.  
bit 7  
0: Timer 1 will clock when TR1 = 1, regardless of the state of pin INT1  
1: Timer 1 will clock only when TR1 = 1 and pin INT1 = 1.  
.
C/T  
Timer 1 Counter/Timer Select.  
bit 6  
0: Timer is incremented by internal clocks.  
1: Timer is incremented by pulses on T1 pin when TR1 (TCON.6, SFR 88H) is 1.  
M1, M0  
Timer 1 Mode Select. These bits select the operating mode of Timer 1.  
bits 5-4  
M1  
M0  
MODE  
0
0
1
1
0
1
0
1
Mode 0: 8-bit counter with 5-bit prescale.  
Mode 1: 16 bits.  
Mode 2: 8-bit counter with auto reload.  
Mode 3: Two 8-bit counters.  
GATE  
Timer 0 Gate Control. This bit enables/disables the ability of Timer 0 to increment.  
bit 3  
0: Timer 0 will clock when TR0 = 1, regardless of the state of pin INT0 (software control).  
1: Timer 0 will clock only when TR0 = 1 and pin INT0 = 1 (hardware control).  
C/T  
Timer 0 Counter/Timer Select.  
bit 2  
0: Timer is incremented by internal clocks.  
1: Timer is incremented by pulses on pin T0 when TR0 (TCON.4, SFR 88H) is 1.  
M1, M0  
Timer 0 Mode Select. These bits select the operating mode of Timer 0.  
M1  
M0  
MODE  
bits 1-0  
0
0
1
1
0
1
0
1
Mode 0: 8-bit counter with 5-bit prescale.  
Mode 1: 16 bits.  
Mode 2: 8-bit counter with auto reload.  
Mode 3: Two 8-bit counters.  
Timer 0 LSB (TL0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8AH  
TL0.7  
TL0.6  
TL0.5  
TL0.4  
TL0.3  
TL0.2  
TL0.1  
TL0.0  
00H  
TL0.7-0  
bits 7-0  
Timer 0 LSB. This register contains the least significant byte of Timer 0.  
Timer 1 LSB (TL1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8BH  
TL1.7  
TL1.6  
TL1.5  
TL1.4  
TL1.3  
TL1.2  
TL1.1  
TL1.0  
00H  
TL1.7-0  
bits 7-0  
Timer 1 LSB. This register contains the least significant byte of Timer 1.  
Timer 0 MSB (TH0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8CH  
TH0.7  
TH0.6  
TH0.5  
TH0.4  
TH0.3  
TH0.2  
TH0.1  
TH0.0  
00H  
TH0.7-0  
Timer 0 MSB. This register contains the most significant byte of Timer 0.  
bits 7-0  
MSC1200  
34  
SBAS289E  
www.ti.com  
Timer 1 MSB (TH1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8DH  
TH1.7  
TH1.6  
TH1.5  
TH1.4  
TH1.3  
TH1.2  
TH1.1  
TH1.0  
00H  
TH1.7-0  
Timer 1 MSB. This register contains the most significant byte of Timer 1.  
bits 7-0  
Clock Control (CKCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8EH  
0
0
0
T1M  
T0M  
MD2  
MD1  
MD0  
01H  
T1M  
bit 4  
Timer 1 Clock Select. This bit controls the division of the system clock that drives Timer 1. Clearing this bit to 0  
maintains 8051 compatibility. This bit has no effect on instruction cycle timing.  
0: Timer 1 uses a divide by 12 of the crystal frequency.  
1: Timer 1 uses a divide by 4 of the crystal frequency.  
T0M  
bit 3  
Timer 0 Clock Select. This bit controls the division of the system clock that drives Timer 0. Clearing this bit to 0  
maintains 8051 compatibility. This bit has no effect on instruction cycle timing.  
0: Timer 0 uses a divide by 12 of the crystal frequency.  
1: Timer 0 uses a divide by 4 of the crystal frequency.  
MD2, MD1, MD0 Stretch MOVX Select. These bits select the time by which MOVX cycles are to be stretched. Since the MSC1200  
bit 3  
does not allow external memory access, these bits should be set to 000B to allow for the fastest flash data memory  
access.  
7
6
5
4
3
2
1
0
Reset Value  
SFR 8FH  
0
0
0
0
0
0
0
MXWS  
00H  
Memory Write Select (MWS)  
MXWS  
MOVX Write Select. This allows writing to the internal Flash program memory.  
bit 0  
0: No writes are allowed to the internal Flash program memory.  
1: Writing is allowed to the internal Flash program memory, unless PML (HCR0) or RSL (HCR0) are on.  
Port 1 (P1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 90H  
P1.7  
INT5  
P1.6  
INT4  
P1.5  
INT3  
P1.4  
INT2/SS  
P1.3  
DIN  
P1.2  
DOUT  
P1.1  
P1.0  
PROG  
FFH  
P1.7-0  
bits 7-0  
General-Purpose I/O Port 1. This register functions as a general-purpose I/O port. In addition, all the pins have  
an alternative function listed below. Each of the functions is controlled by several other SFRs. The associated Port  
1 latch bit must contain a logic 1before the pin can be used in its alternate function capacity. To use the alternate  
function, set the appropriate mode in P1DDRL (SFR AEH), P1DDRH (SFR AFH).  
INT5  
bit 7  
External Interrupt 5.A falling edge on this pin will cause an external interrupt 5 if enabled.  
External Interrupt 4. A rising edge on this pin will cause an external interrupt 4 if enabled.  
External Interrupt 3. A falling edge on this pin will cause an external interrupt 3 if enabled.  
INT4  
bit 6  
INT3  
bit 5  
INT2/  
External Interrupt 2. A rising edge on this pin will cause an external interrupt 2 if enabled. This pin can be used  
SS  
bit 4  
as slave select (SS) in SPI slave mode.  
DIN  
Serial Data In. This pin receives serial data in SPI and I2C modes (in I2C mode, this pin should be configured  
bit 3  
as an input) or standard 8051.  
DOUT  
Serial Data Out. This pin transmits serial data in SPI and I2C modes (in I2C mode, this pin should be configured  
bit 2  
as an open drain) or standard 8051.  
PROG  
Program Mode. When this pin is pulled low at power-up, the device enters Serial Programming mode (refer to  
bit 0  
Figure B).  
MSC1200  
SBAS289E  
35  
www.ti.com  
External Interrupt Flag (EXIF)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 91H  
IE5  
IE4  
IE3  
IE2  
1
0
0
0
08H  
IE5  
External Interrupt 5 Flag. This bit will be set when a falling edge is detected on INT5. This bit must be  
bit 7  
cleared manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE4  
External Interrupt 4 Flag. This bit will be set when a rising edge is detected on INT4. This bit must be cleared  
bit 6  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE3  
External Interrupt 3 Flag. This bit will be set when a falling edge is detected on INT3. This bit must be cleared  
bit 5  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
IE2  
External Interrupt 2 Flag. This bit will be set when a rising edge is detected on INT2. This bit must be cleared  
bit 4  
manually by software. Setting this bit in software will cause an interrupt if enabled.  
Configuration Address Register (CADDR) (write only)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 93H  
00H  
CADDR  
bits 7-0  
Configuration Address Register. This register supplies the address for reading bytes in the 64 bytes of Flash Configuration  
Memory. Always use the Boot ROM CADDR access routine. This register is also used for SFR read and write  
routines.  
WARNING: If this register is written to while executing from Flash Memory, the CDATA register will be incorrect.  
Configuration Data Register (CDATA)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 94H  
00H  
CDATA  
Configuration Data Register. This register will contain the data in the 64 bytes of Flash Configuration Memory  
bits 7-0  
that is located at the last written address in the CADDR register. This is a read-only register.  
MSC1200  
36  
SBAS289E  
www.ti.com  
Serial Port 0 Control (SCON0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 98H  
SM0_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00H  
SM0-2  
bits 7-5  
Serial Port 0 Mode. These bits control the mode of serial Port 0. Modes 1, 2, and 3 have 1 start and 1 stop bit  
in addition to the 8 or 9 data bits.  
MODE SM0 SM1 SM2 FUNCTION  
LENGTH PERIOD  
(1)  
0
0
0
0
0
0
0
1
Synchronous  
Synchronous  
8 bits  
8 bits  
12 pCLK  
4 pCLK  
(1)  
1
1
0
0
1
1
0
1
Asynchronous  
AsynchronousValid Stop Required(2)  
10 bits Timer 1 Baud Rate Equation  
10 bits Timer 1 Baud Rate Equation  
(1)  
2
1
0
0
Asynchronous  
11 bits 64 pCLK (SMOD = 0)  
(1)  
32 pCLK (SMOD = 1)  
(1)  
2
1
0
1
Asynchronous with Multiprocessor Communication  
11 bits 64 pCLK (SMOD = 0)  
(1)  
32 pCLK (SMOD = 1)  
3
3
1
1
1
1
0
1
Asynchronous  
11 bits Timer 1 Baud Rate Equation  
Asynchronous with Multiprocessor Communication(3) 11 bits Timer 1 Baud Rate Equation  
NOTES: (1) pCLK will be equal to tCLK, except that pCLK will stop for IDLE. (2) RI_0 will only be activated when a valid stop  
is received. (3) RI_0 will not be activated if bit 9 = 0.  
REN_0  
bit 4  
Receive Enable. This bit enables/disables the serial Port 0 received shift register.  
0: Serial Port 0 reception disabled.  
1: Serial Port 0 received enabled (modes 1, 2, and 3). Initiate synchronous reception (mode 0).  
TB8_0  
9th Transmission Bit State. This bit defines the state of the 9th transmission bit in serial Port 0 modes 2 and 3.  
bit 3  
RB8_0  
9th Received Bit State. This bit identifies the state of the 9th reception bit of received data in serial Port 0 modes  
bit 2  
2 and 3. In serial port mode 1, when SM2_0 = 0, RB8_0 is the state of the stop bit. RB8_0 is not used in mode 0.  
TI_0  
bit 1  
Transmitter Interrupt Flag. This bit indicates that data in the serial Port 0 buffer has been completely shifted  
out. In serial port mode 0, TI_0 is set at the end of the 8th data bit. In all other modes, this bit is set at the end  
of the last data bit. This bit must be manually cleared by software.  
RI_0  
bit 0  
Receiver Interrupt Flag. This bit indicates that a byte of data has been received in the serial Port 0 buffer. In  
serial port mode 0, RI_0 is set at the end of the 8th bit. In serial port mode 1, RI_0 is set after the last sample  
of the incoming stop bit subject to the state of SM2_0. In modes 2 and 3, RI_0 is set after the last sample of  
RB8_0. This bit must be manually cleared by software.  
Serial Data Buffer 0 (SBUF0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 99H  
00H  
SBUF0  
Serial Data Buffer 0. Data for Serial Port 0 is read from or written to this location. The serial transmit and  
bits 7-0  
receive buffers are separate registers, but both are addressed at this location.  
MSC1200  
SBAS289E  
37  
www.ti.com  
SPI Control (SPICON) (SERSEL bit determines SPICON control)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9AH  
SBIT3  
SBIT2  
SBIT1  
SBIT0  
ORDER  
CPHA  
ESS  
CPOL  
00H  
SBIT3-0  
Serial Bit Count. Number of bits transferred (read only).  
bits 7-4  
SBIT3:0  
COUNT  
0x00  
0x01  
0x03  
0x02  
0x06  
0x07  
0x05  
0x04  
0x0C  
0
1
2
3
4
5
6
7
8
ORDER  
bit 3  
Set Bit Order for Transmit and Receive.  
0: Most Significant Bits First  
1: Least Significant Bits First  
CPHA  
Serial Clock Phase Control.  
bit 2  
0: Valid data starting from half SCK period before the first edge of SCK  
1: Valid data starting from the first edge of SCK  
ESS  
Enable Slave Select.  
bit 1  
0: SS (P1.4) is configured as a general-purpose I/O (default).  
1: SS (P1.4) is configured as SS for SPI mode. DOUT (P1.2) drives when SS is low, and DOUT (P1.2) is high-  
impedance when SS is high.  
CPOL  
bit 0  
Serial Clock Polarity.  
0: SCK idle at logic LOW  
1: SCK idle at logic HIGH  
I2C Control (I2CCON) (SERSEL bit determines I2CCON control)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9AH  
SBIT3  
SBIT2  
SBIT1  
SBIT0  
STOP  
START  
DCS  
CNTSEL  
00H  
SBIT3-0  
Serial Bit Count. Number of bits transferred (read only).  
bits 7-4  
SBIT3:0  
COUNT  
0x00  
0x01  
0x03  
0x02  
0x06  
0x07  
0x05  
0x04  
0x0C  
0
1
2
3
4
5
6
7
8
STOP  
Stop-Bit Status.  
bit 3  
0: No Stop  
1: Stop Condition Received and I2CCNT set (cleared on write to I2CDATA)  
START  
Start-Bit Status.  
bit 2  
0: No Stop  
1: Start or Repeated Start Condition Received and I2CCNT set (cleared on write to I2CDATA)  
MSC1200  
38  
SBAS289E  
www.ti.com  
DCS  
Disable Serial Clock Stretch.  
bit 1  
0: Enable SCL Stretch (cleared by firmware or START condition)  
1: Disable SCL Stretch  
CNTSEL  
Counter Select.  
bit 0  
0: Counter IRQ Set for Bit Counter = 8 (default)  
1: Counter IRQ Set for Bit Counter = 1  
SPI Data Register (SPIDATA) / I2C Data Register (I2CDATA)  
7
6
5
4
3
2
1
0
Reset Value  
SFR 9BH  
00H  
SPIDATA  
SPI Data Register. Data for SPI is read from or written to this location. The SPI transmit and receive buffers  
bits 7-0  
are separate registers, but both are addressed at this location.  
I2CDATA  
I2C Data Register. Data for I2C is read from or written to this location. The I2C transmit and receive buffers  
bits 7-0  
are separate registers, but both are addressed at this location.  
Auxilliary Interrupt Poll (AIPOL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A4H  
SECIP  
SUMIP  
ADCIP  
MSECIP  
I2CIP  
CNTIP  
ALVDIP  
Unused  
00H  
SECIP  
bit 7  
Second System Timer Interrupt Poll (before IRQ masking).  
0 = Seconds System Timer Interrupt Poll Inactive  
1 = Seconds System Timer Interrupt Poll Active  
SUMIP  
bits 6  
Accumulator Interrupt Poll (before IRQ masking).  
0 = Accumulator Interrupt Poll Inactive  
1 = Accumulator Interrupt Poll Active  
ADCIP  
bits 5  
ADC Interrupt Poll (before IRQ masking).  
0 = ADC Interrupt Poll Inactive  
1 = ADC Interrupt Poll Active  
MSECIP  
bits 4  
Millisecond System Timer Interrupt Poll (before IRQ masking).  
0 = Millisecond System Timer Interrupt Poll Inactive  
1 = Millisecond System Timer Interrupt Poll Active  
I2CIP  
bits 3  
I2C Interrupt Poll (before IRQ masking).  
0 = I2C Interrupt Poll Inactive  
1 = I2C Interrupt Poll Active  
CNTIP  
bits 2  
Serial Bit Count Interrupt Poll (before IRQ masking).  
0 = Serial Bit Count Interrupt Poll Inactive  
1 = Serial Bit Count Interrupt Poll Active  
ALVDIP  
bits 1  
Analog Low Voltage Detect Interrupt Poll (before IRQ masking).  
0 = Analog Low Voltage Detect Interrupt Poll Inactive  
1 = Analog Low Voltage Detect Interrupt Poll Active  
MSC1200  
SBAS289E  
39  
www.ti.com  
Pending Auxiliary Interrupt (PAI)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A5H  
0
0
0
0
PAI3  
PAI2  
PAI1  
PAI0  
00H  
PAI  
bits 3-0  
Pending Auxiliary Interrupt Register. The results of this register can be used as an index to vector to the appropriate  
interrupt routine. All of these interrupts vector through address 0033H.  
PAI3  
PAI2  
PAI1  
PAI0  
AUXILIARY INTERRUPT STATUS  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No Pending Auxiliary IRQ  
Reserved  
Analog Low Voltage Detect IRQ and Possible Lower Priority Pending  
I2C IRQ and Possible Lower Priority Pending  
Serial Bit Count Interrupt and Possible Lower Priority Pending  
Millisecond System Timer IRQ and Possible Lower Priority Pending  
ADC IRQ and Possible Lower Priority Pending  
Accumulator IRQ and Possible Lower Priority Pending  
Second System Timer IRQ and Possible Lower Priority Pending  
Auxiliary Interrupt Enable (AIE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A6H  
ESEC  
ESUM  
EADC  
EMSEC  
EI2C  
ECNT  
EALV  
0
00H  
Interrupts are enabled by EICON.4 (SFR D8H). The other interrupts are controlled by the IE and EIE registers.  
ESEC  
bit 7  
Enable Second System Timer Interrupt (lowest priority auxiliary interrupt).  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: Second Timer Interrupt mask.  
ESUM  
Enable Summation Interrupt.  
bit 6  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: Summation Interrupt mask.  
EADC  
Enable ADC Interrupt.  
bit 5  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: ADC Interrupt mask.  
EMSEC  
Enable Millisecond System Timer Interrupt.  
bit 4  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: Millisecond System Timer Interrupt mask.  
EI2C  
Enable I2C Start/Stop Bit.  
bit 3  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: I2C Start/Stop Bit mask.  
ECNT  
Enable Serial Bit Count Interrupt.  
bit 2  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: Serial Bit Count Interrupt mask.  
EALV  
Enable Analog Low Voltage Interrupt.  
bit 1  
Write: Set mask bit for this interrupt; 0 = masked, 1 = enabled.  
Read: Analog Low Voltage Detect Interrupt mask.  
MSC1200  
40  
SBAS289E  
www.ti.com  
Auxiliary Interrupt Status Register (AISTAT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR A7H  
SEC  
SUM  
ADC  
MSEC  
I2C  
CNT  
ALVD  
0
00H  
SEC  
bit 7  
Second System Timer Interrupt Status Flag (lowest priority AI).  
0: SEC Interrupt cleared or masked.  
1: SEC Interrupt active (it is cleared by reading SECINT, SFR F9H).  
SUM  
Summation Register Interrupt Status Flag.  
bit 6  
0: SUM Interrupt cleared or masked.  
1: SUM Interrupt active (it is cleared by reading the lowest byte of SUMR0, SFR E2H).  
ADC  
ADC Interrupt Status Flag.  
bit 5  
0: ADC Interrupt cleared or masked.  
1: ADC Interrupt active (it is cleared by reading the lowest byte of ADRESL, SFR D9H; if active, no new data will be  
written to the ADC Results registers).  
MSEC  
bit 4  
Millisecond System Timer Interrupt Status Flag.  
0: MSEC Interrupt cleared or masked.  
1: MSEC Interrupt active (it is cleared by reading MSINT, SFR FAH).  
I2C  
bit 3  
I2C Start/Stop Interrupt Status Flag.  
0: I2C Start/stop Interrupt cleared or masked.  
1: I2C Start/stop Interrupt active (it is cleared by writing to I2CDATA, SFR 9BH).  
CNT  
CNT Interrupt Status Flag.  
bit 2  
0: CNT Interrupt cleared or masked.  
1: CNT Interrupt active (it is cleared by reading from or writing to SPIDATA/I2CDATA, SFR 9BH).  
ALVD  
bit 1  
Analog Low Voltage Detect Interrupt Status Flag.  
0: ALVD Interrupt cleared or masked.  
1: ALVD Interrupt active (cleared in HW if AVDD exceeds ALVD threshold).  
NOTE: If an interrupt is masked, the status can be read in AIPOL, SFR A4H.  
7
6
5
4
3
2
1
0
Reset Value  
SFR A8H  
EA  
0
0
ES0  
ET1  
EX1  
ET0  
EX0  
00H  
Interrupt Enable (IE)  
EA  
bit 7  
Global Interrupt Enable. This bit controls the global masking of all interrupts except those in AIE (SFR A6H).  
0: Disable interrupt sources. This bit overrides individual interrupt mask settings for this register.  
1: Enable all individual interrupt masks. Individual interrupts in this register will occur if enabled.  
ES0  
bit 4  
Enable Serial port 0 interrupt. This bit controls the masking of the serial Port 0 interrupt.  
0: Disable all serial Port 0 interrupts.  
1: Enable interrupt requests generated by the RI_0 (SCON0.0, SFR 98H) or TI_0 (SCON0.1, SFR 98H) flags.  
ET1  
bit 3  
Enable Timer 1 Interrupt. This bit controls the masking of the Timer 1 interrupt.  
0: Disable Timer 1 interrupt.  
1: Enable interrupt requests generated by the TF1 flag (TCON.7, SFR 88H).  
EX1  
bit 2  
Enable External Interrupt 1. This bit controls the masking of external interrupt 1.  
0: Disable external interrupt 1.  
1: Enable interrupt requests generated by the INT1 pin.  
ET0  
bit 1  
Enable Timer 0 Interrupt. This bit controls the masking of the Timer 0 interrupt.  
0: Disable all Timer 0 interrupts.  
1: Enable interrupt requests generated by the TF0 flag (TCON.5, SFR 88H).  
EX0  
bit 0  
Enable External Interrupt 0. This bit controls the masking of external interrupt 0.  
0: Disable external interrupt 0.  
1: Enable interrupt requests generated by the INT0 pin.  
MSC1200  
SBAS289E  
41  
www.ti.com  
Port 1 Data Direction Low Register (P1DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR AEH  
P13H  
P13L  
P12H  
P12L  
P11H  
P11L  
P10H  
P10L  
00H  
P1.3  
Port 1 bit 3 control.  
bits 7-6  
P13H  
P13L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.2  
Port 1 bit 2 control.  
bits 5-4  
P12H  
P12L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.1  
Port 1 bit 1 control.  
bits 3-2  
P11H  
P11L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.0  
Port 1 bit 0 control.  
bits 1-0  
P10H  
P10L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
Port 1 Data Direction High Register (P1DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR AFH  
P17H  
P17L  
P16H  
P16L  
P15H  
P15L  
P14H  
P14L  
00H  
P1.7  
Port 1 bit 7 control.  
bits 7-6  
P17H  
P17L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.6  
Port 1 bit 6 control.  
bits 5-4  
P16H  
P16L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.5  
Port 1 bit 5 control.  
bits 3-2  
P15H  
P15L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P1.4  
Port 1 bit 4 control.  
bits 1-0  
P14H  
P14L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
MSC1200  
42  
SBAS289E  
www.ti.com  
Port 3 (P3)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B0H  
P3.7  
P3.6  
P3.5  
T1  
P3.4  
T0  
P3.3  
INT1  
P3.2  
INT0  
P3.1  
P3.0  
FFH  
SCK/SCL/CLKS  
TXD0  
RXD0  
P3.7-0  
bits 7-0  
General-Purpose I/O Port 3. This register functions as a general-purpose I/O port. In addition, all the pins have  
an alternative function listed below. Each of the functions is controlled by several other SFRs. The associated  
Port 3 latch bit must contain a logic 1before the pin can be used in its alternate function capacity.  
SCK/SCL/CLKS  
Clock Source Select. Refer to PASEL (SFR F2H).  
bit 6  
T1  
bit 5  
Timer/Counter 1 External Input. A 1 to 0 transition on this pin will increment Timer 1.  
Timer/Counter 0 External Input. A 1 to 0 transition on this pin will increment Timer 0.  
External Interrupt 1. A falling edge/low level on this pin will cause an external interrupt 1 if enabled.  
External Interrupt 0. A falling edge/low level on this pin will cause an external interrupt 0 if enabled.  
T0  
bit 4  
INT1  
bit 3  
INT0  
bit 2  
TXD0  
Serial Port 0 Transmit. This pin transmits the serial Port 0 data in serial port modes 1, 2, 3, and emits the  
bit 1  
synchronizing clock in serial port mode 0.  
RXD0  
Serial Port 0 Receive. This pin receives the serial Port 0 data in serial port modes 1, 2, 3, and is a bidirectional  
bit 0  
data transfer pin in serial port mode 0.  
Port 3 Data Direction Low Register (P3DDRL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B3H  
P33H  
P33L  
P32H  
P32L  
P31H  
P31L  
P30H  
P30L  
00H  
P3.3  
Port 3 bit 3 control.  
bits 7-6  
P33H  
P33L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.2  
Port 3 bit 2 control.  
bits 5-4  
P32H  
P32L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.1  
Port 3 bit 1 control.  
bits 3-2  
P31H  
P31L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.0  
Port 3 bit 0 control.  
bits 1-0  
P30H  
P30L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
MSC1200  
SBAS289E  
43  
www.ti.com  
Port 3 Data Direction High Register (P3DDRH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B4H  
P37H  
P37L  
P36H  
P36L  
P35H  
P35L  
P34H  
P34L  
00H  
P3.7  
Port 3 bit 7 control.  
bits 7-6  
P37H  
P37L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 3.7 also controlled by EA and Memory Access Control HCR1.1.  
P3.6  
Port 3 bit 6 control.  
bits 5-4  
P36H  
P36L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
NOTE: Port 3.6 also controlled by EA and Memory Access Control HCR1.1.  
P3.5  
Port 3 bit 5 control.  
bits 3-2  
P35H  
P35L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
P3.4  
Port 3 bit 4 control.  
bits 1-0  
P34H  
P34L  
0
0
1
1
0
1
0
1
Standard 8051  
CMOS Output  
Open Drain Output  
Input  
IDAC Register  
7
6
5
4
3
2
1
0
Reset Value  
SFR B5H  
00H  
IDAC  
IDAC Register.  
bits 7-0  
IDACOUT = IDAC 3.8µA (~1mA full-scale). Setting (PDCON.PDIDAC) will shut down IDAC and float the IDAC pin.  
Interrupt Priority (IP)  
7
6
5
4
3
2
1
0
Reset Value  
SFR B8H  
1
0
0
PS0  
PT1  
PX1  
PT0  
PX0  
80H  
PS0  
bit 4  
Serial Port 0 Interrupt. This bit controls the priority of the serial Port 0 interrupt.  
0 = Serial Port 0 priority is determined by the natural priority order.  
1 = Serial Port 0 is a high priority interrupt.  
PT1  
bit 3  
Timer 1 Interrupt. This bit controls the priority of the Timer 1 interrupt.  
0 = Timer 1 priority is determined by the natural priority order.  
1 = Timer 1 priority is a high priority interrupt.  
PX1  
bit 2  
External Interrupt 1. This bit controls the priority of external interrupt 1.  
0 = External interrupt 1 priority is determined by the natural priority order.  
1 = External interrupt 1 is a high priority interrupt.  
PT0  
bit 1  
Timer 0 Interrupt. This bit controls the priority of the Timer 0 interrupt.  
0 = Timer 0 priority is determined by the natural priority order.  
1 = Timer 0 priority is a high priority interrupt.  
PX0  
bit 0  
External Interrupt 0. This bit controls the priority of external interrupt 0.  
0 = External interrupt 0 priority is determined by the natural priority order.  
1 = External interrupt 0 is a high priority interrupt.  
MSC1200  
44  
SBAS289E  
www.ti.com  
Enable Wake Up (EWU) Waking Up from IDLE Mode  
7
6
5
4
3
2
1
0
Reset Value  
SFR C6H  
EWUWDT  
EWUEX1  
EWUEX0  
00H  
Auxiliary interrupts will wake up from IDLE. They are enabled with EAI (EICON.5).  
EWUWDT Enable Wake Up Watchdog Timer. Wake up using watchdog timer interrupt.  
bit 2  
0 = Dont wake up on watchdog timer interrupt.  
1 = Wake up on watchdog timer interrupt.  
EWUEX1  
bit 1  
Enable Wake Up External 1. Wake up using external interrupt source 1.  
0 = Dont wake up on external interrupt source 1.  
1 = Wake up on external interrupt source 1.  
EWUEX0  
bit 0  
Enable Wake Up External 0. Wake up using external interrupt source 0.  
0 = Dont wake up on external interrupt source 0.  
1 = Wake up on external interrupt source 0.  
System Clock Divider Register (SYSCLK)  
7
6
5
4
3
2
1
0
Reset Value  
SFR C7H  
0
0
DIVMOD1  
DIVMOD0  
0
DIV2  
DIV1  
DIV0  
00H  
DIVMOD1-0 Clock Divide Mode  
bits 5-4  
Write:  
DIVMOD  
DIVIDE MODE  
Normal mode (default, no divide)  
00  
01  
10  
Immediate mode: start divide immediately, return to Normal mode on IDLE wakeup condition or Normal mode write.  
Delay mode: same as Immediate mode, except that the mode changes with the millisecond interrupt (MSINT). If MSINT is  
enabled, the divide will start on the next MSINT and return to normal mode on the following MSINT. If MSINT is not  
enabled, the divide will start on the next MSINT condition (even if masked) but will not leave the divide mode until the  
MSINT counter overflows, which follows a wakeup condition. Can exit on Normal mode write.  
11  
Manual mode: start divide immediately; exit mode only on write to DIVMOD.  
Read:  
DIVMOD  
DIVISION MODE STATUS  
00  
01  
10  
11  
No divide  
Divider is in Immediate mode  
Divider is in Delay mode  
Reserved  
DIV2-0  
Divide Mode  
bit 2-0  
DIV  
DIVISOR  
000  
001  
010  
011  
100  
101  
110  
111  
Divide by 2 (default)  
Divide by 4  
Divide by 8  
Divide by 16  
Divide by 32  
Divide by 1024  
Divide by 2048  
Divide by 4096  
fCLK = fSYS/2  
fCLK = fSYS/4  
fCLK = fSYS/8  
fCLK = fSYS/16  
fCLK = fSYS/32  
fCLK = fSYS/1024  
fCLK = fSYS/2048  
fCLK = fSYS/4096  
MSC1200  
SBAS289E  
45  
www.ti.com  
Program Status Word (PSW)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D0H  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00H  
CY  
Carry Flag. This bit is set when the last arithmetic operation resulted in a carry (during addition) or a borrow  
bit 7  
(during subtraction). Otherwise it is cleared to 0 by all arithmetic operations.  
AC  
bit 6  
Auxiliary Carry Flag. This bit is set to 1 if the last arithmetic operation resulted in a carry into (during addition),  
or a borrow (during substraction) from the high order nibble. Otherwise it is cleared to 0 by all arithmetic  
operations.  
F0  
User Flag 0. This is a bit-addressable, general-purpose flag for software control.  
bit 5  
RS1, RS0 Register Bank Select 1-0. These bits select which register bank is addressed during register accesses.  
bits 4-3  
RS1  
RS0 REGISTER BANK ADDRESS  
0
0
1
1
0
1
0
1
0
1
2
3
00H-07H  
08H-0FH  
10H-17H  
18H-1FH  
OV  
Overflow Flag. This bit is set to 1 if the last arithmetic operation resulted in a carry (addition), borrow  
bit 2  
(subtraction), or overflow (multiply or divide). Otherwise it is cleared to 0 by all arithmetic operations.  
F1  
User Flag 1. This is a bit-addressable, general-purpose flag for software control.  
bit 1  
P
Parity Flag. This bit is set to 1 if the modulo-2 sum of the 8 bits of the accumulator is 1 (odd parity); and  
bit 0  
cleared to 0 on even parity.  
ADC Offset Calibration Register Low Byte (OCL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D1H  
LSB  
00H  
OCL  
ADC Offset Calibration Register Low Byte. This is the low byte of the 24-bit word that contains the  
bits 7-0  
ADC offset calibration. A value which is written to this location will set the ADC offset calibration value.  
ADC Offset Calibration Register Middle Byte (OCM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D2H  
00H  
OCM  
ADC Offset Calibration Register Middle Byte. This is the middle byte of the 24-bit word that contains the ADC  
bits 7-0  
offset calibration. A value which is written to this location will set the ADC offset calibration value.  
ADC Offset Calibration Register High Byte (OCH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D3H  
MSB  
00H  
OCH  
ADC Offset Calibration Register High Byte. This is the high byte of the 24-bit word that contains the  
bits 7-0  
ADC offset calibration. A value which is written to this location will set the ADC offset calibration value.  
MSC1200  
46  
SBAS289E  
www.ti.com  
ADC Gain Calibration Register Low Byte (GCL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D4H  
LSB  
5AH  
GCL  
ADC Gain Calibration Register Low Byte. This is the low byte of the 24-bit word that contains the ADC  
bits 7-0  
gain calibration. A value which is written to this location will set the ADC gain calibration value.  
ADC Gain Calibration Register Middle Byte (GCM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D5H  
ECH  
GCM  
ADC Gain Calibration Register Middle Byte. This is the middle byte of the 24-bit word that contains  
bits 7-0  
the ADC gain calibration. A value which is written to this location will set the ADC gain calibration value.  
ADC Gain Calibration Register High Byte (GCH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D6H  
MSB  
5FH  
GCH  
ADC Gain Calibration Register High Byte. This is the high byte of the 24-bit word that contains the  
bits 7-0  
ADC gain calibration. A value which is written to this location will set the ADC gain calibration value.  
ADC Multiplexer Register (ADMUX)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D7H  
INP3  
INP2  
INP1  
INP0  
INN3  
INN2  
INN1  
INN0  
01H  
INP3-0  
Input Multiplexer Positive Channel. This selects the positive signal input.  
bits 7-4  
INP3  
INP2  
INP1  
INP0  
POSITIVE INPUT  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0 (default)  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AINCOM  
Temperature Sensor (Requires ADMUX = FFH)  
INN3-0  
Input Multiplexer Negative Channel. This selects the negative signal input.  
bits 3-0  
INN3  
INN2  
INN1  
INN0  
NEGATIVE INPUT  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0  
AIN1 (default)  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AINCOM  
Temperature Sensor (Requires ADMUX = FFH)  
MSC1200  
SBAS289E  
47  
www.ti.com  
Enable Interrupt Control (EICON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D8H  
0
1
EAI  
AI  
WDTI  
0
0
0
40H  
EAI  
bit 5  
Enable Auxiliary Interrupt. The Auxiliary Interrupt accesses nine different interrupts which are masked and  
identified by SFR registers PAI (SFR A5H), AIE (SFR A6H), and AISTAT (SFR A7H).  
0 = Auxiliary Interrupt disabled (default).  
1 = Auxiliary Interrupt enabled.  
AI  
bit 4  
Auxiliary Interrupt Flag. AI must be cleared by software before exiting the interrupt service routine,  
after the source of the interrupt is cleared. Otherwise, the interrupt occurs again. Setting AI in software generates  
an Auxiliary Interrupt, if enabled.  
0 = No Auxiliary Interrupt detected (default).  
1 = Auxiliary Interrupt detected.  
WDTI  
bit 3  
Watchdog Timer Interrupt Flag. WDTI must be cleared by software before exiting the interrupt service routine.  
Otherwise, the interrupt occurs again. Setting WDTI in software generates a watchdog time interrupt, if enabled. The  
Watchdog timer can generate an interrupt or reset. The interrupt is available only if the reset action is disabledin HCR0.  
0 = No Watchdog Timer Interrupt Detected (default).  
1 = Watchdog Timer Interrupt Detected.  
ADC Results Register Low Byte (ADRESL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR D9H  
LSB  
00H  
ADRESL  
The ADC Results Low Byte. This is the low byte of the 24-bit word that contains the ADC  
bits 7-0  
Results. Reading from this register clears the ADC interrupt; however, AI in EICON (SFR D8) must also be cleared.  
ADC Results Register Middle Byte (ADRESM)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DAH  
00H  
ADRESM  
The ADC Results Middle Byte. This is the middle byte of the 24-bit word that contains the ADC  
bits 7-0  
Results.  
ADC Results Register High Byte (ADRESH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DBH  
MSB  
00H  
ADRESH  
The ADC Results High Byte. This is the high byte of the 24-bit word that contains the ADC  
bits 7-0  
Results.  
MSC1200  
48  
SBAS289E  
www.ti.com  
ADC Control Register 0 (ADCON0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DCH  
BOD  
EVREF  
VREFH  
EBUF  
PGA2  
PGA1  
PGA0  
30H  
BOD  
bit 6  
Burnout Detect. When enabled this connects a positive current source to the positive channel and a negative current  
source to the negative channel. If the channel is open circuit then the ADC results will be full-scale (buffer must be enabled).  
0 = Burnout Current Sources Off (default).  
1 = Burnout Current Sources On.  
EVREF  
Enable Internal Voltage Reference. If an external voltage reference is used, the internal voltage reference should  
bit 5  
be disabled.  
0 = Internal Voltage Reference Off.  
1 = Internal Voltage Reference On (default).  
VREFH  
bit 4  
Voltage Reference High Select. The internal voltage reference can be selected to be 2.5V or 1.25V.  
0 = REFOUT/REFIN+ is 1.25V.  
1 = REFOUT/REFIN+ is 2.5V (default).  
EBUF  
Enable Buffer. Enable the input buffer to provide higher input impedance but limits the input voltage range and  
bit 3  
dissipates more power.  
0 = Buffer disabled (default).  
1 = Buffer enabled.  
PGA2-0  
Programmable Gain Amplifier. Sets the gain for the PGA from 1 to 128.  
bits 2-0  
PGA2  
PGA1  
PGA0  
GAIN  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 (default)  
2
4
8
16  
32  
64  
128  
MSC1200  
SBAS289E  
49  
www.ti.com  
ADC Control Register 1 (ADCON1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DDH  
OF_UF  
POL  
SM1  
SM0  
CAL2  
CAL1  
CAL0  
x000 0000B  
OF_UF  
Overflow/Underflow. If this bit is set, the data in the summation register is invalid. Either an overflow or an  
bit 7  
underflow occurred. The bit is cleared by writing a 0 to it.  
POL  
Polarity. Polarity of the ADC result and Summation register.  
bit 6  
0 = Bipolar.  
1 = Unipolar.  
POL  
ANALOG INPUT  
DIGITAL OUTPUT  
+FSR  
ZERO  
FSR  
0x7FFFFF  
0x000000  
0x800000  
0
+FSR  
ZERO  
FSR  
0xFFFFFF  
0x000000  
0x000000  
1
SM1-0  
Settling Mode. Selects the type of filter or auto select which defines the digital filter settling characteristics.  
bits 5-4  
SM1  
SM0  
SETTLING MODE  
0
0
1
1
0
1
0
1
Auto  
Fast Settling Filter  
Sinc2 Filter  
Sinc3 Filter  
CAL2-0  
Calibration Mode Control Bits. Writing to this register initiates calibration.  
bits 2-0  
CAL2 CAL1 CAL0  
CALIBRATION MODE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No Calibration (default)  
Self Calibration, Offset and Gain  
Self Calibration, Offset Only  
Self Calibration, Gain Only  
System Calibration, Offset Only  
System Calibration, Gain Only  
Reserved  
Reserved  
Read Value000B.  
ADC Control Register 2 (ADCON2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR DEH  
DR7  
DR6  
DR5  
DR4  
DR3  
DR2  
DR1  
DR0  
1BH  
DR7-0  
Decimation Ratio LSB (refer to ADCON3, SFR DFH).  
bits 7-0  
ADC Control Register 3 (ADCON3)  
7
6
5
4
3
2
1
0
Reset Value  
06H  
SFR DFH  
DR10  
DR9  
DR8  
fMOD  
fCLK  
DR10-8  
bits 2-0  
Decimation Ratio Most Significant 3 Bits. The output data rate =  
where fMOD  
=
.
DecimationRatio  
(ACLK +1)64  
Accumulator (A or ACC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E0H  
ACC.7  
ACC.6  
ACC.5  
ACC.4  
ACC.3  
ACC.2  
ACC.1  
ACC.0  
00H  
ACC.7-0  
Accumulator. This register serves as the accumulator for arithmetic and logic operations.  
bits 7-0  
Summation/Shifter Control (SSCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E1H  
SSCON1  
SSCON0  
SCNT2  
SCNT1  
SCNT0  
SHF2  
SHF1  
SHF0  
00H  
The Summation register is powered down when the ADC is powered down. If all zeroes are written to this register the 32-bit  
SUMR3-0 registers will be cleared. The Summation registers will do sign extend if Bipolar is selected in ADCON1.  
MSC1200  
50  
SBAS289E  
www.ti.com  
SSCON1-0 Summation/Shift Control.  
bits 7-6  
SSCON1 SSCON0  
SCNT2  
SCNT1  
SCNT0  
SHF2  
SHF1  
SHF0  
DESCRIPTION  
0
0
0
1
0
1
0
0
0
0
1
1
0
0
1
x
0
1
0
x
0
0
0
x
0
0
0
0
0
0
0
0
0
Clear Summation Register  
CPU Summation on Write to SUMR0  
CPU Subtraction on Write to SUMR0  
Note (1) Note (1) Note (1) CPU Shift Only  
ADC Summation Only  
Note (1) Note (1) Note (1) Note (1) Note (1) Note (1) ADC Summation Completes then Shift Completes  
Note (1) Note (1) Note (1)  
x
x
x
NOTES: (1) Refer to register bit definition.  
SCNT2-0  
Summation Count. When the summation is complete an interrupt will be generated unless masked. Reading the  
bits 5-3  
SUMR0 register clears the interrupt.  
SCNT2 SCNT1 SCNT0  
SUMMATION COUNT  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
4
8
16  
32  
64  
128  
256  
SHF2-0  
Shift Count.  
bits 2-0  
SHF2  
SHF1  
SHF0  
SHIFT  
DIVIDE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
2
4
8
16  
32  
64  
128  
256  
Summation Register 0 (SUMR0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E2H  
LSB  
00H  
SUMR0  
bits 7-0  
Summation Register 0. This is the least significant byte of the 32-bit summation register or bits 0 to 7.  
Write: will cause values in SUMR3-0 to be added to or subtracted from the summation register.  
Read: will clear the Summation Interrupt.  
Summation Register 1 (SUMR1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E3H  
00H  
SUMR1  
Summation Register 1. This is the most significant byte of the lowest 16 bits of the summation register or bits 8-15.  
bits 7-0  
Summation Register 2 (SUMR2)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E4H  
00H  
SUMR2  
Summation Register 2. This is the most significant byte of the lowest 24 bits of the summation register or bits 16-23.  
bits 7-0  
Summation Register 3 (SUMR3)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E5H  
MSB  
00H  
SUMR3  
Summation Register 3. This is the most significant byte of the 32-bit summation register or bits 24-31.  
bits 7-0  
MSC1200  
SBAS289E  
51  
www.ti.com  
Offset DAC Register (ODAC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E6H  
00H  
ODAC  
Offset DAC Register. This register will shift the input by up to half of the ADC full-scale input range. The offset  
bit7-0  
DAC value is summed with the ADC input prior to conversion. Writing 00H or 80H to ODAC turns off the Offset DAC.  
bit 7  
Offset DAC Sign bit.  
0 = Positive  
1 = Negative  
VREF  
ODAC[6: 0]  
127  
(1)bit 7  
bit 6-0  
Offset =  
2PGA  
NOTE: ODAC cannot be used to offset the input so that the buffer can be used for AGND signals.  
Low Voltage Detect Control (LVDCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E7H  
ALVDIS  
0
0
0
1
1
1
1
8FH  
ALVDIS  
Analog Low Voltage Detect Disable.  
bit 7  
0 = Enable Detection of Low Analog Supply Voltage (ALVD interrupt set when AVDD < 2.8V).  
1 = Disable Detection of Low Analog Supply Voltage.  
Extended Interrupt Enable (EIE)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E8H  
1
1
1
EWDI  
EX5  
EX4  
EX3  
EX2  
E0H  
EWDI  
Enable Watchdog Interrupt. This bit enables/disables the watchdog interrupt. The Watchdog timer is enabled by  
the WDTCON (SFR FFH) and PDCON (SFR F1H) registers.  
bit 4  
0 = Disable the Watchdog Interrupt  
1 = Enable Interrupt Request Generated by the Watchdog Timer  
EX5  
bit 3  
External Interrupt 5 Enable. This bit enables/disables external interrupt 5.  
0 = Disable External Interrupt 5  
1 = Enable External Interrupt 5  
EX4  
bit 2  
External Interrupt 4 Enable. This bit enables/disables external interrupt 4.  
0 = Disable External Interrupt 4  
1 = Enable External Interrupt 4  
EX3  
bit 1  
External Interrupt 3 Enable. This bit enables/disables external interrupt 3.  
0 = Disable External Interrupt 3  
1 = Enable External Interrupt 3  
EX2  
bit 0  
External Interrupt 2 Enable. This bit enables/disables external interrupt 2.  
0 = Disable External Interrupt 2  
1 = Enable External Interrupt 2  
MSC1200  
52  
SBAS289E  
www.ti.com  
Hardware Product Code Register 0 (HWPC0)  
7
6
5
4
3
2
1
0
Reset Value  
SFR E9H  
0
0
0
0
0
0
0
MEMORY  
0000_000xB  
HWPC0.7-0  
Hardware Product Code LSB. Read only.  
MEMORY SIZE  
MODEL  
FLASH MEMORY  
bits 7-0  
0
1
MSC1200Y2  
MSC1200Y3  
4kB  
8kB  
Hardware Product Code Register 1 (HWPC1)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EAH  
0
0
1
0
0
0
0
0
20H  
HWPC1.7-0  
Hardware Product Code MSB. Read only.  
bits 7-0  
Hardware Version Register (HWVER)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EBH  
Flash Memory Control (FMCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EEH  
0
PGERA  
0
FRCM  
0
BUSY  
1
0
02H  
PGERA  
bit 6  
Page Erase. Available in both user and program modes.  
0 = Disable Page Erase Mode  
1 = Enable Page Erase Mode  
FRCM  
bit 4  
Frequency Control Mode. The bypass is only used for slow clocks to save power.  
0 = Bypass (default)  
1 = Use Delay Line. Saves power (Recommended).  
BUSY  
bit 2  
Write/Erase BUSY Signal.  
0 = Idle or Available  
1 = Busy  
Flash Memory Timing Control Register (FTCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR EFH  
FER3  
FER2  
FER1  
FER0  
FWR3  
FWR2  
FWR1  
FWR0  
A5H  
Refer to Flash Timing Characteristics  
FER3-0  
bits 7-4  
Set Erase. Flash Erase Time = (1 + FER) (MSEC + 1) tCLK  
11ms industrial temperature range.  
.
5ms commercial temperature range.  
FWR3-0  
bits 3-0  
Set Write. Flash Write Time = (1 + FWR) (USEC + 1) 5 tCLK  
30µs to 40µs.  
.
B Register (B)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F0H  
00H  
B
B Register. This register serves as a second accumulator for certain arithmetic operations.  
bits 7-0  
MSC1200  
SBAS289E  
53  
www.ti.com  
Power-Down Control Register (PDCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F1H  
PDICLK  
PDIDAC  
PDI2C  
0
PDADC  
PDWDT  
PDSPI  
PDSPI  
6FH  
Turning peripheral modules off puts the MSC1200 in the lowest power mode.  
PDICLK  
Internal Clock Control.  
bit 7  
0 = Internal Oscillator and PLL On (Internal Oscillator or PLL mode)  
1 = Internal Oscillator and PLL Power Down (External Clock mode)  
PDIDAC  
IDAC Control.  
bit 6  
0 = IDAC On  
1 = IDAC Power Down (default)  
PDI2C  
bit 5  
I2C Control.  
0 = I2C On (only when PDSPI = 1)  
1 = I2C Power Down (default)  
PDADC  
ADC Control.  
bit 3  
0 = ADC On  
1 = ADC, VREF, and Summation registers are powered down (default).  
PDWDT  
Watchdog Timer Control.  
bit 2  
0 = Watchdog Timer On  
1 = Watchdog Timer Power Down (default)  
PDST  
System Timer Control.  
bit 1  
0 = System Timer On  
1 = System Timer Power Down (default)  
PDSPI  
SPI Control.  
bit 0  
0 = SPI System On  
1 = SPI System Power Down (default)  
PSEN/ALE Select (PASEL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F2H  
PSEN4  
PSEN3  
PSEN2  
PSEN1  
PSEN0  
0
0
0
00H  
PSEN4-0  
bits 7-3  
PSEN Mode Select. Defines the output on P3.6 in User Application mode or Serial Flash Programming mode.  
00000: General-Purpose I/O (default)  
00001: SYSCLK  
00011: Internal PSEN (refer to Figure 3 for timing)  
00101: Internal ALE (refer to Figure 3 for timing)  
00111: fOSC(buffered XIN oscillator clock)  
01001: Memory WR (MOVX write)  
01011: T0 Out (overflow)(1)  
01101: T1 Out (overflow)(1)  
(2)  
01111: fMOD  
10001: SYSCLK/2 (toggles on rising edge)(2)  
10011: Internal PSEN/2(2)  
10101: Internal ALE/2(2)  
10111: fOSC/2(2)  
11001: Memory WR/2 (MOVX write)(2)  
11011: T0 Out/2 (overflow)(2)  
11101: T1 Out/2 (overflow)(2)  
11111: fMOD/2(2)  
NOTES: (1) On period of these signals equal to tCLK. (2) Duty cycle is 50%.  
MSC1200  
54  
SBAS289E  
www.ti.com  
Phase Lock Loop Low Register (PLLL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F4H  
PLL7  
PLL6  
PLL5  
PLL4  
PLL3  
PLL2  
PLL1  
PLL0  
C1H  
PLL7-0  
PLL Counter Value Least Significant Bit.  
bits 7-0  
PLL Frequency = External Crystal Frequency PLL9:0  
Phase Lock Loop High Register (PLLH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F5H  
CLKSTAT2 CLKSTAT1  
CLKSTAT0  
PLLLOCK  
0
0
PLL9  
PLL8  
x1H  
CLKSTAT2-0 Active Clock Status (read only). Derived from HCR2 setting; refer to Table II.  
bits 7-5  
000: Reserved  
001: Reserved  
010: Reserved  
011: External Clock Mode  
100: PLL High-Frequency (HF) Mode (must read PLLLOCK to determine active clock status)  
101: PLL Low-Frequency (LF) Mode (must read PLLLOCK to determine active clock status)  
110: Internal Oscillator High-Frequency (HF) Mode  
111: Internal Oscillator Low-Frequency (LF) Mode  
PLLLOCK  
PLL Lock Status and Status Enable.  
bit 4  
For Write (PLL Lock Status Enable):  
0 = No Effect  
1 = Enable PLL Lock Detection (must wait 20ms before PLLLOCK read status is valid).  
For Read (PLL Lock Status):  
0 = PLL Not Locked (PLL may be inactive; refer to Table II for active clock mode)  
1 = PLL Locked (PLL is active clock)  
PLL9-8  
PLL Counter Value Most Significant 2 Bits (refer to PLLL, SFR F4H)  
bits 1-0  
Analog Clock (ACLK)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F6H  
0
FREQ6  
FREQ5  
FREQ4  
FREQ3  
FREQ2  
FREQ1  
FREQ0  
03H  
FREQ6-0  
Clock Frequency 1. This value + 1 divides the system clock to create the ADC clock.  
fCLK  
fOSC  
bits 6-0  
fACLK  
fMOD  
=
, where fCLK  
=
.
(ACLK +1)  
fACLK  
SYSCLK Divider  
=
64  
fMOD  
DecimationRatio  
ADC Data Rate = fDATA  
=
System Reset Register (SRST)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F7H  
0
0
0
0
0
0
0
RSTREQ  
00H  
RSTREQ  
Reset Request. Setting this bit to 1 and then clearing to 0 will generate a system reset.  
bit 0  
MSC1200  
SBAS289E  
55  
www.ti.com  
Extended Interrupt Priority (EIP)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F8H  
1
1
1
PWDI  
PX5  
PX4  
PX3  
PX2  
E0H  
PWDI  
bit 4  
Watchdog Interrupt Priority. This bit controls the priority of the watchdog interrupt.  
0 = The watchdog interrupt is low priority.  
1 = The watchdog interrupt is high priority.  
PX5  
bit 3  
External Interrupt 5 Priority. This bit controls the priority of external interrupt 5.  
0 = External interrupt 5 is low priority.  
1 = External interrupt 5 is high priority.  
PX4  
bit 2  
External Interrupt 4 Priority. This bit controls the priority of external interrupt 4.  
0 = External interrupt 4 is low priority.  
1 = External interrupt 4 is high priority.  
PX3  
bit 1  
External Interrupt 3 Priority. This bit controls the priority of external interrupt 3.  
0 = External interrupt 3 is low priority.  
1 = External interrupt 3 is high priority.  
PX2  
bit 0  
External Interrupt 2 Priority. This bit controls the priority of external interrupt 2.  
0 = External interrupt 2 is low priority.  
1 = External interrupt 2 is high priority.  
Seconds Timer Interrupt (SECINT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR F9H  
WRT  
SECINT6  
SECINT5  
SECINT4  
SECINT3  
SECINT2  
SECINT1  
SECINT0  
7FH  
This system clock is divided by the value of the 16-bit register MSECH:MSECL. Then that 1ms timer tick is divided by the register  
HMSEC which provides the 100ms signal used by this seconds timer. Therefore, this seconds timer can generate an interrupt  
which occurs from 100ms to 12.8 seconds. Reading this register will clear the Seconds Interrupt. This Interrupt can be monitored  
in the AIE register.  
WRT  
bit 7  
Write Control. Determines whether to write the value immediately or wait until the current count is finished.  
Read = 0.  
0 = Delay Write Operation. The SEC value is loaded when the current count expires.  
1 = Write Immediately. The counter is loaded once the CPU completes the write operation.  
SECINT6-0 Seconds Count. Normal operation would use 100ms as the clock interval.  
bits 6-0 Seconds Interrupt = (1 + SEC) (HMSEC + 1) (MSEC + 1) tCLK  
.
Milliseconds Interrupt (MSINT)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FAH  
WRT  
MSINT6  
MSINT5  
MSINT4  
MSINT3  
MSINT2  
MSINT1  
MSINT0  
7FH  
The clock used for this timer is the 1ms clock which results from dividing the system clock by the values in registers MSECH:MSECL.  
Reading this register will clear MSINT.  
WRT  
bit 7  
Write Control. Determines whether to write the value immediately or wait until the current count is finished. Read = 0.  
0 = Delay Write Operation. The MSINT value is loaded when the current count expires.  
1 = Write Immediately. The MSINT counter is loaded once the CPU completes the write operation.  
MSINT6-0 Seconds Count. Normal operation would use 1ms as the clock interval.  
bits 6-0  
MS Interrupt Interval = (1 + MSINT) (MSEC + 1) tCLK  
MSC1200  
56  
SBAS289E  
www.ti.com  
One Microsecond Register (USEC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FBH  
0
0
FREQ5  
FREQ4  
FREQ3  
FREQ2  
FREQ1  
FREQ0  
03H  
FREQ5-0  
Clock Frequency 1. This value + 1 divides the system clock to create a 1µs Clock.  
bits 5-0  
USEC = CLK/(FREQ + 1). This clock is used to set Flash write time. See FTCON (SFR EFH).  
One Millisecond Low Register (MSECL)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FCH  
MSECL7  
MSECL6  
MSECL5  
MSECL4  
MSECL3  
MSECL2  
MSECL1  
MSECL0  
9FH  
MSECL7-0 One Millisecond Low. This value in combination with the next register is used to create a 1ms Clock.  
bits 7-0 1ms Clock = (MSECH 256 + MSECL + 1) tCLK. This clock is used to set Flash erase time. See FTCON (SFR EFH).  
One Millisecond High Register (MSECH)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FDH  
MSECH7  
MSECH6  
MSECH5  
MSECH4  
MSECH3  
MSECH2  
MSECH1  
MSECH0  
0FH  
MSECH7-0 One Millisecond High. This value in combination with the previous register is used to create a 1ms clock.  
bits 7-0 1ms = (MSECH 256 + MSECL + 1) tCLK  
.
One Hundred Millisecond Register (HMSEC)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FEH  
HMSEC7  
HMSEC6  
HMSEC5  
HMSEC4  
HMSEC3  
HMSEC2  
HMSEC1  
HMSEC0  
63H  
HMSEC7-0 One Hundred Millisecond. This clock divides the 1ms clock to create a 100ms clock.  
bits 7-0 100ms = (MSECH 256 + MSECL + 1) (HMSEC + 1) tCLK  
.
Watchdog Timer Register (WDTCON)  
7
6
5
4
3
2
1
0
Reset Value  
SFR FFH  
EWDT  
DWDT  
RWDT  
WDCNT4  
WDCNT3  
WDCNT2  
WDCNT1  
WDCNT0  
00H  
EWDT  
Enable Watchdog (R/W).  
bit 7  
Write 1/Write 0 sequence sets the Watchdog Enable Counting bit.  
DWDT  
Disable Watchdog (R/W).  
bit 6  
Write 1/Write 0 sequence clears the Watchdog Enable Counting bit.  
RWDT  
Reset Watchdog (R/W).  
bit 5  
Write 1/Write 0 sequence restarts the Watchdog Counter.  
WDCNT4-0  
Watchdog Count (R/W).  
bits 4-0  
Watchdog expires in (WDCNT + 1) HMSEC to (WDCNT + 2) HMSEC, if the sequence is not asserted. There  
is an uncertainty of 1 count.  
NOTE: If HCR0.3 (EWDR) is set and the watchdog timer expires, a system reset is generated. If HCR0.3 (EWDR) is cleared  
and the watchdog timer expires, an interrupt is generated (see Table VII).  
MSC1200  
SBAS289E  
57  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Nov-2004  
PACKAGING INFORMATION  
ORDERABLE DEVICE  
STATUS(1)  
PACKAGE TYPE  
PACKAGE DRAWING  
PINS  
PACKAGE QTY  
MSC1200Y2PFBR  
MSC1200Y2PFBT  
MSC1200Y3PFBR  
MSC1200Y3PFBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
TQFP  
TQFP  
PFB  
PFB  
PFB  
PFB  
48  
48  
48  
48  
2000  
250  
2000  
250  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
MECHANICAL DATA  
MTQF019A – JANUARY 1995 – REVISED JANUARY 1998  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY