MSP430F1610IPMR [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F1610IPMR
型号: MSP430F1610IPMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器和处理器 外围集成电路 装置 时钟
文件: 总70页 (文件大小:1168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368D− OCTOBER 2002− REVISED MARCH 2005  
D
D
Low Supply-Voltage Range, 1.8 V . . . 3.6 V  
D
D
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by Security  
Fuse  
Ultralow-Power Consumption:  
− Active Mode: 330 µA at 1 MHz, 2.2 V  
− Standby Mode: 1.1 µA  
− Off Mode (RAM Retention): 0.2 µA  
Family Members Include:  
− MSP430F155:  
16KB+256B Flash Memory  
512B RAM  
− MSP430F156:  
D
D
D
Five Power-Saving Modes  
Wake-Up From Standby Mode in less  
than 6 µs  
16-Bit RISC Architecture, 125-ns  
Instruction Cycle Time  
24KB+256B Flash Memory  
1KB RAM  
D
Three-Channel Internal DMA  
− MSP430F157:  
32KB+256B Flash Memory,  
1KB RAM  
− MSP430F167:  
32KB+256B Flash Memory,  
1KB RAM  
− MSP430F168:  
48KB+256B Flash Memory,  
2KB RAM  
− MSP430F169:  
60KB+256B Flash Memory,  
2KB RAM  
− MSP430F1610:  
32KB+256B Flash Memory  
5KB RAM  
− MSP430F1611:  
48KB+256B Flash Memory  
10KB RAM  
− MSP430F1612:  
55KB+256B Flash Memory  
5KB RAM  
D
12-Bit A/D Converter With Internal  
Reference, Sample-and-Hold and Autoscan  
Feature  
D
D
D
Dual 12-Bit D/A Converters With  
Synchronization  
16-Bit Timer_A With Three  
Capture/Compare Registers  
16-Bit Timer_B With Three or Seven  
Capture/Compare-With-Shadow Registers  
D
On-Chip Comparator  
D
Serial Communication Interface (USART0),  
Functions as Asynchronous UART or  
2
TM  
Synchronous SPI or I C Interface  
D
D
Serial Communication Interface (USART1),  
Functions as Asynchronous UART or  
Synchronous SPI Interface  
Supply Voltage Supervisor/Monitor With  
Programmable Level Detection  
D
Brownout Detector  
Bootstrap Loader  
D
D
Available in 64-Pin Quad Flat Pack (QFP)  
and 64-pin QFN (see Available Options)  
D
2
For Complete Module Descriptions, See the  
MSP430x1xx Family User’s Guide,  
Literature Number SLAU049  
I C is a registered trademark of Philips Incorporated.  
description  
The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs.  
The MSP430x15x/16x/161x series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit  
A/D converter, dual 12-bit D/A converter, one or two universal serial synchronous/asynchronous  
2
communication interfaces (USART), I C, DMA, and 48 I/O pins. In addition, the MSP430x161x series offers  
extended RAM addressing for memory-intensive applications and large C-stack requirements.  
Typical applications include sensor systems, industrial control applications, hand-held meters, etc.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2002 − 2005, Texas Instruments Incorporated  
ꢟ ꢣ ꢠ ꢟ ꢘ ꢙ ꢬ ꢛ ꢚ ꢞ ꢦ ꢦ ꢤ ꢞ ꢜ ꢞ ꢝ ꢣ ꢟ ꢣ ꢜ ꢠ ꢨ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
PLASTIC 64-PIN QFP (PM)  
PLASTIC 64-PIN QFN (RTD)  
MSP430F155IPM  
MSP430F156IPM  
MSP430F157IPM  
MSP430F167IPM  
MSP430F168IPM  
MSP430F169IPM  
MSP430F1610IPM  
MSP430F1611IPM  
MSP430F1612IPM  
MSP430F155IRTD  
MSP430F156IRTD†  
MSP430F157IRTD†  
MSP430F167IRTD†  
MSP430F168IRTD†  
MSP430F169IRTD†  
MSP430F1610IRTD  
MSP430F1611IRTD  
MSP430F1612IRTD  
40°C to 85°C  
Product Preview  
pin designation, MSP430F155, MSP430F156, and MSP430F157  
PM, RTD PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DVCC  
P6.3/A3  
1
48 P5.4/MCLK  
47 P5.3  
2
P6.4/A4  
3
46 P5.2  
P6.5/A5  
4
45 P5.1  
5
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P6.6/A6/DAC0  
P6.7/A7/DAC1/SVSIN  
VREF+  
P5.0  
P4.7/TBCLK  
P4.6  
6
7
8
XIN  
XOUT  
P4.5  
P4.4  
9
10  
11  
12  
13  
14  
15  
16  
VeREF+  
P4.3  
VREF/VeREF−  
P1.0/TACLK  
P1.1/TA0  
P4.2/TB2  
P4.1/TB1  
P4.0/TB0  
P3.7  
P1.2/TA1  
P1.3/TA2  
P1.4/SMCLK  
P3.6  
P3.5/URXD0  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
pin designation, MSP430F167, MSP430F168, MSP430F169  
PM, RTD PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DVCC  
P6.3/A3  
1
48 P5.4/MCLK  
47 P5.3/UCLK1  
46 P5.2/SOMI1  
45 P5.1/SIMO1  
2
P6.4/A4  
P6.5/A5  
3
4
5
44  
P6.6/A6/DAC0  
P6.7/A7/DAC1/SVSIN  
VREF+  
P5.0/STE1  
P4.7/TBCLK  
P4.6/TB6  
6
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
7
8
XIN  
XOUT  
P4.5/TB5  
P4.4/TB4  
9
10  
11  
12  
13  
14  
15  
16  
VeREF+  
P4.3/TB3  
P4.2/TB2  
VREF/VeREF−  
P1.0/TACLK  
P1.1/TA0  
P4.1/TB1  
P4.0/TB0  
P1.2/TA1  
P3.7/URXD1  
P3.6/UTXD1  
P3.5/URXD0  
P1.3/TA2  
P1.4/SMCLK  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
pin designation, MSP430F1610, MSP430F1611, MSP430F1612  
PM, RTD PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DVCC  
P6.3/A3  
1
48 P5.4/MCLK  
47 P5.3/UCLK1  
46 P5.2/SOMI1  
45 P5.1/SIMO1  
2
P6.4/A4  
P6.5/A5  
3
4
5
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P6.6/A6/DAC0  
P6.7/A7/DAC1/SVSIN  
VREF+  
P5.0/STE1  
P4.7/TBCLK  
P4.6/TB6  
6
7
8
XIN  
XOUT  
P4.5/TB5  
P4.4/TB4  
9
10  
11  
12  
13  
14  
15  
16  
VeREF+  
P4.3/TB3  
P4.2/TB2  
VREF/VeREF−  
P1.0/TACLK  
P1.1/TA0  
P4.1/TB1  
P4.0/TB0  
P1.2/TA1  
P3.7/URXD1  
P3.6/UTXD1  
P3.5/URXD0  
P1.3/TA2  
P1.4/SMCLK  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
functional block diagrams  
MSP430x15x  
P1  
XIN XOUT  
DV  
RST/NMI  
P2  
P3  
P4  
P5  
P6  
DV  
AV  
AV  
SS  
CC  
SS  
CC  
8
8
8
8
8
8
R
OSC  
Oscillator  
ACLK  
32KB Flash  
24KB Flash  
1KB RAM  
1KB RAM  
ADC12  
12-Bit  
DAC12  
12-Bit  
I/O Port 1/2 I/O Port 3/4 I/O Port 5/6  
16 I/Os,  
with  
16 I/Os  
16 I/Os  
XT2IN  
System  
Clock  
SMCLK  
8 Channels 2 Channels  
16KB Flash 512B RAM <10µs Conv. Voltage out  
Interrupt  
Capability  
XT2OUT  
MCLK  
MAB,  
4 Bit  
Test  
MAB, 16-Bit  
JTAG  
CPU  
MCB  
Incl. 16 Reg.  
Bus  
Conv  
MDB, 16-Bit  
MDB, 8 Bit  
4
TMS  
TCK  
DMA  
Controller  
Watchdog  
Timer  
Timer_B3  
Timer_A3  
3 CC Reg  
POR  
SVS  
Brownout  
Comparator  
A
USART0  
3 CC Reg  
Shadow  
Reg  
UART Mode  
SPI Mode  
TDI/TCLK  
TDO/TDI  
3 Channels  
15/16-Bit  
2
I C Mode  
MSP430x16x  
P1  
XIN XOUT  
DV  
CC  
RST/NMI  
P2  
P3  
P4  
P5  
P6  
DV  
AV  
AV  
SS  
SS  
CC  
8
8
8
8
8
8
R
OSC  
Oscillator  
ACLK  
60KB Flash  
48KB Flash  
32KB Flash  
2KB RAM  
2KB RAM  
1KB RAM  
ADC12  
12-Bit  
8 Channels 2 Channels  
<10µs Conv. Voltage out  
DAC12  
12-Bit  
I/O Port 1/2 I/O Port 3/4 I/O Port 5/6  
16 I/Os,  
with  
16 I/Os  
16 I/Os  
XT2IN  
System  
Clock  
SMCLK  
Interrupt  
Capability  
XT2OUT  
MCLK  
MAB,  
4 Bit  
Test  
MAB, 16-Bit  
JTAG  
CPU  
MCB  
Incl. 16 Reg.  
Bus  
Conv  
MDB, 16-Bit  
MDB, 8 Bit  
4
TMS  
TCK  
Hardware  
Multiplier  
DMA  
Controller  
Watchdog  
Timer  
Timer_B7  
Timer_A3  
3 CC Reg  
POR  
SVS  
Brownout  
Comparator  
A
USART0  
USART1  
7 CC Reg  
Shadow  
Reg  
UART Mode UART Mode  
MPY, MPYS  
MAC,MACS  
TDI/TCLK  
TDO/TDI  
3 Channels  
15/16-Bit  
SPI Mode  
SPI Mode  
2
I C Mode  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
functional block diagrams (continued)  
MSP430x161x  
P1  
XIN XOUT  
DV  
RST/NMI  
P2  
P3  
P4  
P5  
P6  
DV  
AV  
AV  
SS  
CC  
SS  
CC  
8
8
8
8
8
8
R
OSC  
Oscillator  
ACLK  
55KB Flash  
5KB RAM  
ADC12  
12-Bit  
8 Channels 2 Channels  
<10µs Conv. Voltage out  
DAC12  
12-Bit  
I/O Port 1/2 I/O Port 3/4 I/O Port 5/6  
16 I/Os,  
with  
16 I/Os  
16 I/Os  
XT2IN  
System  
Clock  
SMCLK  
48KB Flash 10KB RAM  
Interrupt  
Capability  
XT2OUT  
32KB Flash  
5KB RAM  
MCLK  
MAB,  
4 Bit  
Test  
MAB, 16-Bit  
JTAG  
CPU  
MCB  
Incl. 16 Reg.  
Bus  
Conv  
MDB, 16-Bit  
MDB, 8 Bit  
4
TMS  
TCK  
Hardware  
Multiplier  
DMA  
Controller  
Watchdog  
Timer  
Timer_B7  
Timer_A3  
3 CC Reg  
POR  
SVS  
Brownout  
Comparator  
A
USART0  
USART1  
7 CC Reg  
Shadow  
Reg  
UART Mode UART Mode  
MPY, MPYS  
MAC,MACS  
TDI/TCLK  
TDO/TDI  
3 Channels  
15/16-Bit  
SPI Mode  
SPI Mode  
2
I C Mode  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
64  
62  
1
AV  
AV  
Analog supply voltage, positive terminal. Supplies only the analog portion of ADC12 and DAC12.  
Analog supply voltage, negative terminal. Supplies only the analog portion of ADC12 and DAC12.  
Digital supply voltage, positive terminal. Supplies all digital parts.  
CC  
SS  
DV  
DV  
CC  
63  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Digital supply voltage, negative terminal. Supplies all digital parts.  
SS  
P1.0/TACLK  
P1.1/TA0  
I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output  
I/O General-purpose digital I/O pin/SMCLK signal output  
P1.2/TA1  
P1.3/TA2  
P1.4/SMCLK  
P1.5/TA0  
I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output  
P1.6/TA1  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output  
P1.7/TA2  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output  
P2.0/ACLK  
P2.1/TAINCLK  
P2.2/CAOUT/TA0  
P2.3/CA0/TA1  
P2.4/CA1/TA2  
P2.5/Rosc  
I/O General-purpose digital I/O pin/ACLK output  
I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL receive  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input  
I/O General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency  
I/O General-purpose digital I/O pin/conversion clock 12-bit ADC/DMA channel 0 external trigger  
P2.6/ADC12CLK/  
DMAE0  
P2.7/TA0  
27  
28  
29  
30  
31  
I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output  
P3.0/STE0  
I/O General-purpose digital I/O pin/slave transmit enable USART0/SPI mode  
2
2
P3.1/SIMO0/SDA  
P3.2/SOMI0  
P3.3/UCLK0/SCL  
I/O General-purpose digital I/O pin/slave in/master out of USART0/SPI mode, I C data USART0/I C mode  
I/O General-purpose digital I/O pin/slave out/master in of USART0/SPI mode  
I/O General-purpose digital I/O pin/external clock input USART0/UART or SPI mode, clock output –  
2
2
USART0/SPI mode, I C clock USART0/I C mode  
P3.4/UTXD0  
P3.5/URXD0  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
I/O General-purpose digital I/O pin/transmit data out USART0/UART mode  
I/O General-purpose digital I/O pin/receive data in USART0/UART mode  
I/O General-purpose digital I/O pin/transmit data out USART1/UART mode  
I/O General-purpose digital I/O pin/receive data in USART1/UART mode  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out1 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out2 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI3A/B input, compare: Out3 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI4A/B input, compare: Out4 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI5A/B input, compare: Out5 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI6A input, compare: Out6 output  
I/O General-purpose digital I/O pin/Timer_B, clock signal TBCLK input  
P3.6/UTXD1  
P3.7/URXD1†  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
P4.3/TB3†  
P4.4/TB4†  
P4.5/TB5†  
P4.6/TB6†  
P4.7/TBCLK  
P5.0/STE1†  
P5.1/SIMO1†  
P5.2/SOMI1†  
P5.3/UCLK1†  
I/O General-purpose digital I/O pin/slave transmit enable USART1/SPI mode  
I/O General-purpose digital I/O pin/slave in/master out of USART1/SPI mode  
I/O General-purpose digital I/O pin/slave out/master in of USART1/SPI mode  
I/O General-purpose digital I/O pin/external clock input USART1/UART or SPI mode, clock output –  
USART1/SPI mode  
16x, 161x devices only  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
P5.4/MCLK  
P5.5/SMCLK  
P5.6/ACLK  
NO.  
48  
I/O General-purpose digital I/O pin/main system clock MCLK output  
I/O General-purpose digital I/O pin/submain system clock SMCLK output  
I/O General-purpose digital I/O pin/auxiliary clock ACLK output  
49  
50  
P5.7/TBOUTH/  
SVSOUT  
51  
I/O General-purpose digital I/O pin/switch all PWM digital output ports to high impedance Timer_B TB0 to  
TB6/SVS comparator output  
P6.0/A0  
59  
60  
61  
2
I/O General-purpose digital I/O pin/analog input a0 12-bit ADC  
I/O General-purpose digital I/O pin/analog input a1 12-bit ADC  
I/O General-purpose digital I/O pin/analog input a2 12-bit ADC  
I/O General-purpose digital I/O pin/analog input a3 12-bit ADC  
I/O General-purpose digital I/O pin/analog input a4 12-bit ADC  
I/O General-purpose digital I/O pin/analog input a5 12-bit ADC  
I/O General-purpose digital I/O pin/analog input a6 12-bit ADC/DAC12.0 output  
I/O General-purpose digital I/O pin/analog input a7 12-bit ADC/DAC12.1 output/SVS input  
P6.1/A1  
P6.2/A2  
P6.3/A3  
P6.4/A4  
3
P6.5/A5  
4
P6.6/A6/DAC0  
5
P6.7/A7/DAC1/  
SVSIN  
6
RST/NMI  
TCK  
58  
57  
55  
54  
56  
10  
7
I
I
I
Reset input, nonmaskable interrupt input port, or bootstrap loader start (in Flash devices).  
Test clock. TCK is the clock input port for device programming test and bootstrap loader start  
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.  
TDI/TCLK  
TDO/TDI  
TMS  
I/O Test data output port. TDO/TDI data output or programming data input terminal  
I
I
Test mode select. TMS is used as an input port for device programming and test.  
Input for an external reference voltage  
Ve  
REF+  
REF+  
V
V
O
I
Output of positive terminal of the reference voltage in the ADC12  
/Ve  
REF−  
11  
Negative terminal for the reference voltage for both sources, the internal reference voltage, or an external  
applied reference voltage  
REF−  
XIN  
8
9
I
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Output terminal of crystal oscillator XT1  
XOUT  
O
I
XT2IN  
XT2OUT  
QFN Pad  
53  
52  
NA  
Input port for crystal oscillator XT2. Only standard crystals can be connected.  
Output terminal of crystal oscillator XT2  
O
NA QFN package pad connection to DV recommended (RTD package only)  
SS  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g. ADD R4,R5  
R4 + R5 −−−> R5  
e.g. CALL  
e.g. JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
D D  
R10 −−> R11  
Indexed  
D D  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
M(2+R5)−−> M(6+R6)  
M(EDE) −−> M(TONI)  
M(MEM) −−> M(TCDAT)  
M(R10) −−> M(Tab+R6)  
Symbolic (PC relative) D D  
Absolute  
Indirect  
D D MOV &MEM,&TCDAT  
D
D
D
MOV @Rn,Y(Rm)  
MOV @Rn+,Rm  
MOV #X,TONI  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) −−> R11  
R10 + 2−−> R10  
Immediate  
#45 −−> M(TONI)  
NOTE: S = source  
D = destination  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
D
Active mode AM;  
All clocks are active  
Low-power mode 0 (LPM0);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
D
D
Low-power mode 1 (LPM1);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
DCOs dc-generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCOs dc-generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCOs dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4);  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCOs dc-generator is disabled  
Crystal oscillator is stopped  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range 0FFFFh 0FFE0h.  
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up  
External Reset  
Watchdog  
WDTIFG  
KEYV  
(see Note 1)  
Reset  
0FFFEh  
15, highest  
Flash memory  
NMI  
Oscillator Fault  
Flash memory access violation  
NMIIFG (see Notes 1 & 3)  
OFIFG (see Notes 1 & 3)  
ACCVIFG (see Notes 1 & 3)  
(Non)maskable  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
14  
13  
Timer_B7 (see Note 5)  
Timer_B7 (see Note 5)  
TBCCR0 CCIFG  
(see Note 2)  
Maskable  
TBCCR1 to TBCCR6  
CCIFGs, TBIFG  
Maskable  
0FFF8h  
12  
(see Notes 1 & 2)  
Comparator_A  
Watchdog timer  
USART0 receive  
USART0 transmit  
CAIFG  
WDTIFG  
URXIFG0  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
11  
10  
9
UTXIFG0  
I2CIFG (see Note 4)  
8
2
I C transmit/receive/others  
ADC12  
ADC12IFG  
(see Notes 1 & 2)  
Maskable  
Maskable  
0FFEEh  
0FFECh  
7
6
Timer_A3  
TACCR0 CCIFG  
(see Note 2)  
TACCR1 and TACCR2  
CCIFGs, TAIFG  
(see Notes 1 & 2)  
Timer_A3  
Maskable  
Maskable  
0FFEAh  
0FFE8h  
5
4
P1IFG.0 to P1IFG.7  
(see Notes 1 & 2)  
I/O port P1 (eight flags)  
USART1 receive  
USART1 transmit  
URXIFG1  
UTXIFG1  
Maskable  
Maskable  
0FFE6h  
0FFE4h  
3
2
P2IFG.0 to P2IFG.7  
(see Notes 1 & 2)  
I/O port P2 (eight flags)  
Maskable  
Maskable  
0FFE2h  
0FFE0h  
1
DAC12  
DMA  
DAC12_0IFG,  
DAC12_1IFG  
0, lowest  
DMA0IFG, DMA1IFG,  
DMA2IFG (see Notes 1 & 2)  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module.  
3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
2
4. I C interrupt flags located in the module  
5. Timer_B7 in MSP430x16x/161x family has 7 CCRs; Timer_B3 in MSP430x15x family has 3 CCRs; in Timer_B3 there are only  
interrupt flags TBCCR0, 1 and 2 CCIFGs and the interrupt-enable bits TBCCR0, 1 and 2 CCIEs.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
special function registers  
Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits  
not allocated to a functional purpose are not physically present in the device. This arrangement provides simple  
software access.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
UTXIE0  
URXIE0  
ACCVIE  
NMIIE  
OFIE  
WDTIE  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
Watchdog timer interrupt enable. Inactive if watchdog mode is selected.  
Active if watchdog timer is configured as general-purpose timer.  
OFIE:  
Oscillator-fault-interrupt enable  
NMIIE:  
Nonmaskable-interrupt enable  
ACCVIE:  
URXIE0:  
UTXIE0:  
Flash memory access violation interrupt enable  
USART0: UART and SPI receive-interrupt enable  
USART0: UART and SPI transmit-interrupt enable  
7
6
5
4
3
2
1
0
Address  
01h  
UTXIE1  
URXIE1  
rw-0  
rw-0  
URXIE1:  
USART1: UART and SPI receive-interrupt enable  
USART1: UART and SPI transmit-interrupt enable  
UTXIE1:  
URXIE1 and UTXIE1 are not present in MSP430x15x devices.  
interrupt flag register 1 and 2  
7
6
URXIFG0  
rw-0  
5
4
3
2
1
0
Address  
02h  
UTXIFG0  
NMIIFG  
OFIFG  
WDTIFG  
rw-1  
rw-0  
rw-1  
rw-(0)  
WDTIFG:  
Set on watchdog-timer overflow (in watchdog mode) or security key violation  
Reset on V power-on, or a reset condition at the RST/NMI pin in reset mode  
CC  
OFIFG:  
Flag set on oscillator fault  
Set via RST/NMI pin  
NMIIFG:  
URXIFG0: USART0: UART and SPI receive flag  
UTXIFG0: USART0: UART and SPI transmit flag  
7
6
5
4
3
2
1
0
Address  
03h  
UTXIFG1  
URXIFG1  
rw-1  
rw-0  
URXIFG1: USART1: UART and SPI receive flag  
UTXIFG1: USART1: UART and SPI transmit flag  
URXIFG1 and UTXIFG1 are not present in MSP430x15x devices.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
module enable registers 1 and 2  
7
6
5
4
3
2
1
0
Address  
04h  
UTXE0  
URXE0  
USPIE0  
rw-0  
rw-0  
URXE0:  
USART0: UART mode receive enable  
USART0: UART mode transmit enable  
UTXE0:  
USPIE0:  
USART0: SPI mode transmit and receive enable  
7
6
5
4
3
2
1
0
Address  
05h  
UTXE1  
URXE1  
USPIE1  
rw-0  
rw-0  
URXE1:  
USART1: UART mode receive enable  
USART1: UART mode transmit enable  
UTXE1:  
USPIE1:  
USART1: SPI mode transmit and receive enable  
URXE1, UTXE1, and USPIE1 are not present in MSP430x15x devices.  
Legend: rw:  
rw-0:  
Bit Can Be Read and Written  
Bit Can Be Read and Written. It Is Reset by PUC.  
SFR Bit Not Present in Device  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
memory organization (MSP430F15x)  
MSP430F155  
MSP430F156  
MSP430F157  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
16KB  
0FFFFh 0FFE0h  
0FFFFh 0C000h  
24KB  
0FFFFh 0FFE0h  
0FFFFh 0A000h  
32KB  
0FFFFh 0FFE0h  
0FFFFh 08000h  
Information memory  
Boot memory  
RAM  
Size  
Flash  
256 Byte  
010FFh 01000h  
256 Byte  
010FFh 01000h  
256 Byte  
010FFh 01000h  
Size  
ROM  
1KB  
0FFFh 0C00h  
1KB  
0FFFh 0C00h  
1KB  
0FFFh 0C00h  
Size  
512B  
1KB  
1KB  
03FFh 0200h  
05FFh 0200h  
05FFh 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh 0100h  
0FFh 010h  
0Fh 00h  
01FFh 0100h  
0FFh 010h  
0Fh 00h  
01FFh 0100h  
0FFh 010h  
0Fh 00h  
memory organization (MSP430F16x)  
MSP430F167  
32KB  
0FFFFh 0FFE0h  
0FFFFh 08000h  
MSP430F168  
MSP430F169  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
48KB  
0FFFFh 0FFE0h  
0FFFFh 04000h  
60KB  
0FFFFh 0FFE0h  
0FFFFh 01100h  
Information memory  
Boot memory  
RAM  
Size  
Flash  
256 Byte  
010FFh 01000h  
256 Byte  
010FFh 01000h  
256 Byte  
010FFh 01000h  
Size  
ROM  
1KB  
0FFFh 0C00h  
1KB  
0FFFh 0C00h  
1KB  
0FFFh 0C00h  
Size  
1KB  
2KB  
2KB  
05FFh 0200h  
09FFh 0200h  
09FFh 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh 0100h  
0FFh 010h  
0Fh 00h  
01FFh 0100h  
0FFh 010h  
0Fh 00h  
01FFh 0100h  
0FFh 010h  
0Fh 00h  
memory organization (MSP430F161x)  
MSP430F1610  
32KB  
0FFFFh 0FFE0h  
0FFFFh 08000h  
MSP430F1611  
MSP430F1612  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
48KB  
0FFFFh 0FFE0h  
0FFFFh 04000h  
55KB  
0FFFFh 0FFE0h  
0FFFFh 02500h  
RAM (Total)  
Size  
Size  
Size  
5KB  
10KB  
038FFh 01100h  
5KB  
024FFh 01100h  
024FFh 01100h  
Extended  
3KB  
8KB  
3KB  
024FFh 01900h  
038FFh 01900h  
024FFh 01900h  
Mirrored  
2KB  
2KB  
2KB  
018FFh 01100h  
018FFh 01100h  
018FFh 01100h  
Information memory  
Boot memory  
Size  
Flash  
256 Byte  
010FFh 01000h  
256 Byte  
010FFh 01000h  
256 Byte  
010FFh 01000h  
Size  
1KB  
1KB  
1KB  
ROM  
0FFFh 0C00h  
0FFFh 0C00h  
0FFFh 0C00h  
RAM  
Size  
2KB  
2KB  
2KB  
(mirrored at  
018FFh - 01100h)  
09FFh 0200h  
09FFh 0200h  
09FFh 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh 0100h  
0FFh 010h  
0Fh 00h  
01FFh 0100h  
0FFh 010h  
0Fh 00h  
01FFh 0100h  
0FFh 010h  
0Fh 00h  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
bootstrap loader (BSL)  
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial  
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete  
description of the features of the BSL and its implementation, see the Application report Features of the MSP430  
Bootstrap Loader, Literature Number SLAA089.  
BSL Function  
Data Transmit  
Data Receive  
PM, RTD Package Pins  
13 - P1.1  
22 - P2.2  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and two segments of information memory (A and B) of 128  
bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A and B can be erased individually, or as a group with segments 0n.  
Segments A and B are also called information memory.  
D
New devices may have some bytes programmed in the information memory (needed for test during  
manufacturing). The user should perform an erase of the information memory prior to the first use.  
MSP430F161x  
48KB  
MSP430F15x and MSP430F16x  
16KB  
24KB  
32KB  
48KB  
60KB  
32KB  
55KB  
Segment 0  
0FFFFh  
0FFFFh  
0FFFFh  
0FFFFh  
0FFFFh  
0FFFFh  
0FFFFh  
0FFFFh  
w/ Interrupt Vectors  
0FE00h  
0FDFFh 0FDFFh  
0FE00h  
0FE00h  
0FDFFh 0FDFFh 0FDFFh  
0FE00h  
0FE00h  
0FE00h  
0FDFFh  
0FE00h  
0FDFFh  
0FE00h  
0FDFFh  
Segment 1  
Segment 2  
0FC00h  
0FBFFh 0FBFFh  
0FC00h  
0FC00h  
0FBFFh 0FBFFh 0FBFFh  
0FC00h  
0FC00h  
0FC00h  
0FBFFh  
0FC00h  
0FBFFh  
0FC00h  
0FBFFh  
Main  
Memory  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
0C400h  
0C3FFh 0A3FFh  
0A400h  
08400h  
083FFh  
04400h  
043FFh  
01400h  
013FFh  
08400h  
083FFh  
04400h  
043FFh  
02800h  
027FFh  
Segment n-1  
0C200h  
0C1FFh 0A1FFh  
0A200h  
08200h  
081FFh  
04200h  
041FFh  
01200h  
011FFh  
08200h  
081FFh  
04200h  
041FFh  
02600h  
025FFh  
Segment n†  
0C000h  
010FFh  
0A000h  
08000h  
04000h  
01100h  
08000h  
024FFh  
04000h  
038FFh  
02500h  
024FFh  
RAM  
(F161x  
only)  
01100h  
010FFh  
01100h  
010FFh  
01100h  
010FFh  
010FFh  
010FFh  
010FFh  
010FFh  
Segment A  
Segment B  
Info  
Memory  
01080h  
0107Fh  
01080h  
0107Fh  
01080h  
0107Fh  
01080h  
0107Fh  
01080h  
0107Fh  
01080h  
0107Fh  
01080h  
0107Fh  
01080h  
0107Fh  
01000h  
01000h  
01000h  
01000h  
01000h  
01000h  
01000h  
01000h  
MSP430F169 and MSP430F1612 flash segment n = 256 bytes.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, see the MSP430x1xx Family User’s Guide, literature number  
SLAU049.  
DMA controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using  
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system  
power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to  
or from a peripheral.  
oscillator and system clock  
The clock system in the MSP430x15x and MSP430x16x(x) family of devices is supported by the basic clock  
module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator  
(DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements  
of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source  
and stabilizes in less than 6 µs. The basic clock module provides the following clock signals:  
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
brownout, supply voltage supervisor  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user  
selectable level and supports both supply voltage supervision (the device is automatically reset) and supply  
voltage monitoring (SVM, the device is not automatically reset).  
The CPU begins code execution after the brownout circuit releases the device reset. However, V may not  
CC  
have ramped to V  
at that time. The user must insure the default DCO settings are not changed until V  
CC(min)  
CC  
reaches V  
. If desired, the SVS circuit can be used to determine when V reaches V  
.
CC(min)  
CC  
CC(min)  
digital I/O  
There are six 8-bit I/O ports implementedports P1 through P6:  
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
watchdog timer  
The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
hardware multiplier (MSP430x16x/161x Only)  
The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16,  
16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication  
as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed  
immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are  
required.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
USART0  
The MSP430x15x and the MSP430x16x(x) have one hardware universal synchronous/asynchronous receive  
transmit (USART0) peripheral module that is used for serial data communication. The USART supports  
synchronous SPI (3 or 4 pin), asynchronous UART and I2C communication protocols using double-buffered  
transmit and receive channels.  
2
2
The I C support is compliant with the Philips I C specification version 2.1 and supports standard mode (up to  
100 kbps) and fast mode (up to 400 kbps). In addition, 7-bit and 10-bit device addressing modes are supported,  
2
as well as master and slave modes. The USART0 also supports 16-bit-wide I C data transfers and has two  
dedicated DMA channels to maximize bus throughput. Extensive interrupt capability is also given in the I C  
2
mode.  
USART1 (MSP430x16x/161x Only)  
The MSP430x16x(x) devices have a second hardware universal synchronous/asynchronous receive transmit  
(USART1) peripheral module that is used for serial data communication. The USART supports synchronous  
SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive  
channels. With the exception of I2C support, operation of USART1 is identical to USART0.  
timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A3 Signal Connections  
Input Pin Number Device Input Signal Module Input Name  
Module Block  
Module Output Signal  
Output Pin Number  
12 - P1.0  
TACLK  
ACLK  
TACLK  
ACLK  
Timer  
NA  
SMCLK  
TAINCLK  
TA0  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
21 - P2.1  
13 - P1.1  
22 - P2.2  
13 - P1.1  
17 - P1.5  
27 - P2.7  
TA0  
CCR0  
CCR1  
CCR2  
TA0  
TA1  
TA2  
DV  
DV  
SS  
CC  
V
CC  
14 - P1.2  
15 - P1.3  
TA1  
CAOUT (internal)  
CCI1A  
CCI1B  
GND  
14 - P1.2  
18 - P1.6  
DV  
DV  
23 - P2.3  
SS  
CC  
V
CC  
ADC12 (internal)  
15 - P1.3  
TA2  
ACLK (internal)  
CCI2A  
CCI2B  
GND  
19 - P1.7  
DV  
DV  
24 - P2.4  
SS  
CC  
V
CC  
timer_B3 (MSP430x15x Only)  
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
timer_B7 (MSP430x16x/161x Only)  
Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_B3/B7 Signal Connections  
Input Pin Number Device Input Signal Module Input Name  
Module Block  
Module Output Signal  
Output Pin Number  
43 - P4.7  
TBCLK  
ACLK  
SMCLK  
TBCLK  
TB0  
TBCLK  
ACLK  
Timer  
NA  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
43 - P4.7  
36 - P4.0  
36 - P4.0  
36 - P4.0  
TB0  
ADC12 (internal)  
CCR0  
CCR1  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
TB0  
TB1  
TB2  
TB3  
TB4  
TB5  
TB6  
DV  
SS  
CC  
DV  
V
CC  
37 - P4.1  
37 - P4.1  
TB1  
TB1  
CCI1A  
CCI1B  
GND  
37 - P4.1  
ADC12 (internal)  
DV  
DV  
SS  
CC  
V
CC  
38 - P4.2  
38 - P4.2  
TB2  
TB2  
CCI2A  
CCI2B  
GND  
38 - P4.2  
39 - P4.3  
40 - P4.4  
41 - P4.5  
42 - P4.6  
DV  
DV  
SS  
CC  
V
CC  
39 - P4.3  
39 - P4.3  
TB3  
TB3  
CCI3A  
CCI3B  
GND  
DV  
DV  
SS  
CC  
V
CC  
40 - P4.4  
40 - P4.4  
TB4  
TB4  
CCI4A  
CCI4B  
GND  
DV  
DV  
SS  
CC  
V
CC  
41 - P4.5  
41 - P4.5  
TB5  
TB5  
CCI5A  
CCI5B  
GND  
DV  
DV  
SS  
CC  
V
CC  
42 - P4.6  
TB6  
ACLK (internal)  
CCI6A  
CCI6B  
GND  
DV  
SS  
CC  
DV  
V
CC  
Timer_B3 implements three capture/compare blocks (CCR0, CCR1 and CCR2 only).  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
comparator_A  
The primary function of the comparator_A module is to support precision slope analogtodigital conversions,  
batteryvoltage supervision, and monitoring of external analog signals.  
ADC12  
The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR  
core, sample select control, reference generator and a 16 word conversion-and-control buffer. The  
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without  
any CPU intervention.  
DAC12  
The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 may be used in 8- or 12-bit mode,  
and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may  
be grouped together for synchronous operation.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
peripheral file map  
PERIPHERAL FILE MAP  
DMA  
DMA channel 2 transfer size  
DMA channel 2 destination address  
DMA channel 2 source address  
DMA channel 2 control  
DMA channel 1 transfer size  
DMA channel 1 destination address  
DMA channel 1 source address  
DMA channel 1 control  
DMA channel 0 transfer size  
DMA channel 0 destination address  
DMA channel 0 source address  
DMA channel 0 control  
DMA module control 1  
DMA module control 0  
DAC12_1 data  
DMA2SZ  
01F6h  
01F4h  
01F2h  
01F0h  
01EEh  
01ECh  
01EAh  
01E8h  
01E6h  
01E4h  
01E2h  
01E0h  
0124h  
0122h  
01CAh  
01C2h  
01C8h  
01C0h  
01A8h  
01A6h  
01A4h  
01A2h  
01A0h  
DMA2DA  
DMA2SA  
DMA2CTL  
DMA1SZ  
DMA1DA  
DMA1SA  
DMA1CTL  
DMA0SZ  
DMA0DA  
DMA0SA  
DMA0CTL  
DMACTL1  
DMACTL0  
DAC12_1DAT  
DAC12_1CTL  
DAC12_0DAT  
DAC12_0CTL  
ADC12IV  
DAC12  
ADC12  
DAC12_1 control  
DAC12_0 data  
DAC12_0 control  
Interrupt-vector-word register  
Inerrupt-enable register  
Inerrupt-flag register  
ADC12IE  
ADC12IFG  
ADC12CTL1  
ADC12CTL0  
Control register 1  
Control register 0  
Conversion memory 15  
Conversion memory 14  
Conversion memory 13  
Conversion memory 12  
Conversion memory 11  
Conversion memory 10  
Conversion memory 9  
Conversion memory 8  
Conversion memory 7  
Conversion memory 6  
Conversion memory 5  
Conversion memory 4  
Conversion memory 3  
Conversion memory 2  
Conversion memory 1  
Conversion memory 0  
ADC12MEM15 015Eh  
ADC12MEM14 015Ch  
ADC12MEM13 015Ah  
ADC12MEM12 0158h  
ADC12MEM11 0156h  
ADC12MEM10 0154h  
ADC12MEM9  
ADC12MEM8  
ADC12MEM7  
ADC12MEM6  
ADC12MEM5  
ADC12MEM4  
ADC12MEM3  
ADC12MEM2  
ADC12MEM1  
ADC12MEM0  
0152h  
0150h  
014Eh  
014Ch  
014Ah  
0148h  
0146h  
0144h  
0142h  
0140h  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
peripheral file map (continued)  
PERIPHERAL FILE MAP (CONTINUED)  
ADC memory-control register15  
ADC memory-control register14  
ADC memory-control register13  
ADC memory-control register12  
ADC memory-control register11  
ADC memory-control register10  
ADC memory-control register9  
ADC memory-control register8  
ADC memory-control register7  
ADC memory-control register6  
ADC memory-control register5  
ADC memory-control register4  
ADC memory-control register3  
ADC memory-control register2  
ADC memory-control register1  
ADC memory-control register0  
Capture/compare register 6  
Capture/compare register 5  
Capture/compare register 4  
Capture/compare register 3  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_B register  
ADC12  
(continued)  
ADC12MCTL15 08Fh  
ADC12MCTL14 08Eh  
ADC12MCTL13 08Dh  
ADC12MCTL12 08Ch  
ADC12MCTL11 08Bh  
ADC12MCTL10 08Ah  
ADC12MCTL9  
ADC12MCTL8  
ADC12MCTL7  
ADC12MCTL6  
ADC12MCTL5  
ADC12MCTL4  
ADC12MCTL3  
ADC12MCTL2  
ADC12MCTL1  
ADC12MCTL0  
TBCCR6  
089h  
088h  
087h  
086h  
085h  
084h  
083h  
082h  
081h  
080h  
Timer_B7/  
Timer_B3  
(see Note 1)  
019Eh  
019Ch  
019Ah  
0198h  
0196h  
0194h  
0192h  
0190h  
018Eh  
018Ch  
018Ah  
0188h  
0186h  
0184h  
0182h  
0180h  
011Eh  
017Eh  
017Ch  
017Ah  
0178h  
0176h  
0174h  
0172h  
0170h  
016Eh  
016Ch  
016Ah  
0168h  
TBCCR5  
TBCCR4  
TBCCR3  
TBCCR2  
TBCCR1  
TBCCR0  
TBR  
Capture/compare control 6  
Capture/compare control 5  
Capture/compare control 4  
Capture/compare control 3  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_B control  
TBCCTL6  
TBCCTL5  
TBCCTL4  
TBCCTL3  
TBCCTL2  
TBCCTL1  
TBCCTL0  
TBCTL  
Timer_B interrupt vector  
Reserved  
TBIV  
Timer_A3  
Reserved  
Reserved  
Reserved  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_A register  
TACCR2  
TACCR1  
TACCR0  
TAR  
Reserved  
Reserved  
Reserved  
Reserved  
NOTE 1: Timer_B7 in MSP430x16x/161x family has 7 CCRs, Timer_B3 in MSP430x15x family has 3 CCRs.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
peripheral file map (continued)  
PERIPHERAL FILE MAP (CONTINUED)  
Capture/compare control 2  
Timer_A3  
(continued)  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
0166h  
0164h  
0162h  
0160h  
012Eh  
013Eh  
013Ch  
013Ah  
0138h  
0136h  
0134h  
0132h  
0130h  
012Ch  
012Ah  
0128h  
0120h  
07Fh  
07Eh  
07Dh  
07Ch  
07Bh  
07Ah  
079h  
Capture/compare control 1  
Capture/compare control 0  
Timer_A control  
Timer_A interrupt vector  
Sum extend  
TAIV  
Hardware  
Multiplier  
(MSP430x16x and  
MSP430x161x  
only)  
SUMEXT  
RESHI  
Result high word  
Result low word  
Second operand  
Multiply signed +accumulate/operand1  
Multiply+accumulate/operand1  
Multiply signed/operand1  
Multiply unsigned/operand1  
Flash control 3  
RESLO  
OP2  
MACS  
MAC  
MPYS  
MPY  
Flash  
FCTL3  
Flash control 2  
FCTL2  
Flash control 1  
FCTL1  
Watchdog  
Watchdog Timer control  
Transmit buffer  
WDTCTL  
U1TXBUF  
U1RXBUF  
U1BR1  
U1BR0  
U1MCTL  
U1RCTL  
U1TCTL  
U1CTL  
U0TXBUF  
U0RXBUF  
U0BR1  
U0BR0  
U0MCTL  
U0RCTL  
U0TCTL  
U0CTL  
I2CIV  
USART1  
(MSP430x16x and  
MSP430x161x  
only)  
Receive buffer  
Baud rate  
Baud rate  
Modulation control  
Receive control  
Transmit control  
USART control  
078h  
USART0  
(UART or  
SPI mode)  
Transmit buffer  
077h  
Receive buffer  
076h  
Baud rate  
075h  
Baud rate  
074h  
Modulation control  
Receive control  
Transmit control  
USART control  
073h  
072h  
071h  
070h  
USART0  
I2C interrupt vector  
I2C slave address  
I2C own address  
I2C data  
011Ch  
011Ah  
0118h  
076h  
2
(I C mode)  
I2CSA  
I2COA  
I2CDR  
I2C SCLL  
I2CSCLL  
I2CSCLH  
I2CPSC  
I2CDCTL  
I2CTCTL  
U0CTL  
I2CNDAT  
I2CIFG  
I2CIE  
075h  
I2C SCLH  
074h  
I2C PSC  
073h  
I2C data control  
I2C transfer control  
USART control  
072h  
071h  
070h  
I2C data count  
052h  
I2C interrupt flag  
I2C interrupt enable  
051h  
050h  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
peripheral file map (continued)  
PERIPHERAL FILE MAP (CONTINUED)  
Comparator_A port disable  
Comparator_A control2  
Comparator_A  
CAPD  
05Bh  
05Ah  
059h  
058h  
057h  
056h  
055h  
037h  
036h  
035h  
034h  
033h  
032h  
031h  
030h  
01Fh  
01Eh  
01Dh  
01Ch  
01Bh  
01Ah  
019h  
018h  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
005h  
004h  
003h  
002h  
001h  
000h  
CACTL2  
CACTL1  
BCSCTL2  
BCSCTL1  
DCOCTL  
Comparator_A control1  
Basic Clock  
Basic clock system control2  
Basic clock system control1  
DCO clock frequency control  
BrownOUT, SVS  
Port P6  
SVS control register (reset by brownout signal) SVSCTL  
Port P6 selection  
Port P6 direction  
Port P6 output  
P6SEL  
P6DIR  
P6OUT  
P6IN  
Port P6 input  
Port P5  
Port P4  
Port P3  
Port P2  
Port P5 selection  
Port P5 direction  
Port P5 output  
P5SEL  
P5DIR  
P5OUT  
P5IN  
Port P5 input  
Port P4 selection  
Port P4 direction  
Port P4 output  
P4SEL  
P4DIR  
P4OUT  
P4IN  
Port P4 input  
Port P3 selection  
Port P3 direction  
Port P3 output  
P3SEL  
P3DIR  
P3OUT  
P3IN  
Port P3 input  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt-edge select  
Port P2 interrupt flag  
Port P2 direction  
Port P2 output  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P2 input  
Port P1  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt-edge select  
Port P1 interrupt flag  
Port P1 direction  
Port P1 output  
P1SEL  
P1IE  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 input  
Special Functions  
SFR module enable 2  
SFR module enable 1  
SFR interrupt flag2  
SFR interrupt flag1  
SFR interrupt enable2  
SFR interrupt enable1  
ME2  
ME1  
IFG2  
IFG1  
IE2  
IE1  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)†  
Voltage applied at V to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4.1 V  
CC  
SS  
Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V + 0.3 V  
CC  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA  
Storage temperature, T : (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
(programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE: All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage is applied  
SS  
FB  
to the TDI/TCLK pin when blowing the JTAG fuse.  
recommended operating conditions  
MIN  
NOM  
MAX UNITS  
Supply voltage during program execution,  
MSP430F15x/16x/  
161x  
1.8  
3.6  
3.6  
V
V
V
CC  
(AV = DV = V  
)
CC  
CC  
CC  
Supply voltage during flash memory programming, V  
MSP430F15x/16x/  
161x  
CC  
2.7  
(AV = DV = V )  
CC  
CC  
CC  
Supply voltage during program execution, SVS enabled (see  
Note 1), V (AV = DV = V  
MSP430F15x/16x/  
161x  
2
0
3.6  
0
V
V
)
CC  
CC  
CC  
CC  
Supply voltage, V (AV = DV = V  
SS  
)
SS  
SS  
SS  
MSP430F15x/16x/  
161x  
Operating free-air temperature range, T  
40  
85  
°C  
A
LF selected, XTS=0  
Watch crystal  
32.768  
kHz  
kHz  
kHz  
LFXT1 crystal frequency, f  
(see Notes 2 and 3)  
(LFXT1)  
XT1 selected, XTS=1 Ceramic resonator  
XT1 selected, XTS=1 Crystal  
Ceramic resonator  
450  
1000  
450  
8000  
8000  
8000  
8000  
4.15  
8
XT2 crystal frequency, f  
kHz  
(XT2)  
Crystal  
1000  
DC  
V
CC  
V
CC  
= 1.8 V  
= 3.6 V  
Processor frequency (signal MCLK), f  
MHz  
(System)  
DC  
NOTES: 1. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply  
voltage. POR is going inactive when the V is raised above the minimum supply voltage plus the hysteresis of the SVS circuitry.  
CC  
2. In LF mode, the LFXT1 oscillator requires a watch crystal. A 5.1Mresistor from XOUT to V is recommended when V  
<
SS  
CC  
2.5 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 4.15MHz at V 2.2 V. In XT1 mode,  
CC  
the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 8MHz at V 2.8 V.  
CC  
3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.  
f (MHz)  
8.0 MHz  
Supply voltage range,  
Supply voltage range,  
F15x/16x/161x, during  
F15x/16x/161x,  
program execution  
during flash memory programming  
4.15 MHz  
1.8 V  
2.7 V 3 V  
3.6 V  
Supply Voltage V  
Figure 1. Frequency vs Supply Voltage, MSP430F15x/16x/161x  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
MSP430F15x/16x supply current into AV + DV excluding external current (AV = DV = V  
)
CC  
CC  
CC  
CC  
CC  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
Active mode, (see Note 1)  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
330  
400  
600  
7
f
f
= f  
= 1 MHz,  
(MCLK)  
(SMCLK)  
T
= 40°C to 85°C  
= 40°C to 85°C  
µA  
A
= 32,768 Hz  
(ACLK)  
500  
2.5  
9
XTS=0, SELM=(0,1)  
I
(AM)  
Active mode, (see Note 1)  
= 2.2 V  
= 3 V  
f
f
= f  
= 4,096 Hz,  
(MCLK)  
(SMCLK)  
T
A
µA  
= 4,096 Hz  
(ACLK)  
20  
XTS=0, SELM=3  
Low-power mode, (LPM0)  
V
V
= 2.2 V  
= 3 V  
50  
75  
60  
90  
CC  
CC  
f
f
= 0 MHz, f  
= 32,768 Hz  
= 1 MHz,  
(MCLK)  
(SMCLK)  
I
I
T
= 40°C to 85°C  
= 40°C to 85°C  
µA  
µA  
(ACLK)  
(LPM0)  
A
XTS=0, SELM=(0,1)  
(see Note 1)  
Low-power mode, (LPM2),  
V
V
= 2.2 V  
= 3 V  
11  
17  
14  
22  
CC  
f
f
= f  
= 0 MHz,  
T
A
(MCLK)  
(ACLK)  
(SMCLK)  
(LPM2)  
= 32.768 Hz, SCG0 = 0  
CC  
T
= 40°C  
= 25°C  
= 85°C  
= 40°C  
= 25°C  
= 85°C  
= 40°C  
= 25°C  
= 85°C  
1.1  
1.1  
2.2  
2.2  
2.0  
3.0  
0.1  
0.2  
1.3  
1.6  
1.6  
3.0  
2.8  
2.6  
4.3  
0.5  
0.5  
2.5  
A
T
A
V
= 2.2 V  
CC  
Low-power mode, (LPM3)  
T
A
f
f
= f  
= 0 MHz,  
(MCLK)  
(SMCLK)  
I
µA  
µA  
(LPM3)  
= 32,768 Hz, SCG0 = 1  
T
A
(ACLK)  
(see Note 2)  
T
A
V
V
= 3 V  
=
CC  
T
A
T
A
Low-power mode, (LPM4)  
CC  
T
A
f
f
= 0 MHz, f  
= 0 Hz, SCG0 = 1  
= 0 MHz,  
I
(MCLK)  
(ACLK)  
(SMCLK)  
(LPM4)  
2.2V / 3 V  
T
A
NOTES: 1. Timer_B is clocked by f  
= 1 MHz. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
CC  
(DCOCLK)  
2. WDT is clocked by f  
= 32,768 Hz. All inputs are tied to 0 V or to V . Outputs do not source or sink any current. The current  
(ACLK)  
CC  
consumption in LPM2 and LPM3 are measured with ACLK selected.  
Current consumption of active mode versus system frequency, F-version  
I(AM) = I(AM) [1 MHz] × f(System) [MHz]  
Current consumption of active mode versus supply voltage, F-version  
I
= I  
+ 210 µA/V × (V 3 V)  
(AM) [3 V] CC  
(AM)  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
MSP430F161x supply current into AV + DV excluding external current (AV = DV = V )  
CC  
CC  
CC  
CC  
CC  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
Active mode, (see Note 1)  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
330  
500  
2.5  
9
400  
f
f
= f  
= 1 MHz,  
(MCLK)  
(SMCLK)  
T
= 40°C to 85°C  
= 40°C to 85°C  
µA  
A
= 32,768 Hz  
(ACLK)  
600  
7
XTS=0, SELM=(0,1)  
I
(AM)  
Active mode, (see Note 1)  
= 2.2 V  
= 3 V  
f
f
= f  
= 4,096 Hz,  
(MCLK)  
(SMCLK)  
T
A
µA  
= 4,096 Hz  
(ACLK)  
20  
XTS=0, SELM=3  
Low-power mode, (LPM0)  
V
V
= 2.2 V  
= 3 V  
50  
75  
60  
95  
CC  
CC  
f
f
= 0 MHz, f  
= 32,768 Hz  
= 1 MHz,  
(MCLK)  
(SMCLK)  
I
I
T
= 40°C to 85°C  
= 40°C to 85°C  
µA  
µA  
(ACLK)  
(LPM0)  
A
XTS=0, SELM=(0,1)  
(see Note 1)  
Low-power mode, (LPM2),  
V
V
= 2.2 V  
= 3 V  
11  
17  
14  
22  
CC  
f
f
= f  
= 0 MHz,  
T
A
(MCLK)  
(ACLK)  
(SMCLK)  
(LPM2)  
= 32.768 Hz, SCG0 = 0  
CC  
T
= 40°C  
= 25°C  
= 85°C  
= 40°C  
= 25°C  
= 85°C  
= 40°C  
= 25°C  
= 85°C  
1.3  
1.3  
3.0  
2.6  
2.6  
4.4  
0.2  
0.2  
2.0  
1.6  
1.6  
6.0  
3.0  
3.0  
8.0  
0.5  
0.5  
5.0  
A
T
A
V
= 2.2 V  
CC  
Low-power mode, (LPM3)  
T
A
f
f
= f  
= 0 MHz,  
(MCLK)  
(SMCLK)  
I
µA  
µA  
(LPM3)  
= 32,768 Hz, SCG0 = 1  
T
A
(ACLK)  
(see Note 2)  
T
A
V
V
= 3 V  
=
CC  
T
A
T
A
Low-power mode, (LPM4)  
CC  
T
A
f
f
= 0 MHz, f  
= 0 Hz, SCG0 = 1  
= 0 MHz,  
I
(MCLK)  
(ACLK)  
(SMCLK)  
(LPM4)  
2.2V / 3 V  
T
A
NOTES: 1. Timer_B is clocked by f  
= 1 MHz. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
CC  
(DCOCLK)  
2. WDT is clocked by f  
= 32,768 Hz. All inputs are tied to 0 V or to V . Outputs do not source or sink any current. The current  
(ACLK)  
CC  
consumption in LPM2 and LPM3 are measured with ACLK selected.  
Current consumption of active mode versus system frequency, F-version  
I(AM) = I(AM) [1 MHz] × f(System) [MHz]  
Current consumption of active mode versus supply voltage, F-version  
I
= I  
+ 210 µA/V × (V 3 V)  
(AM) [3 V] CC  
(AM)  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SCHMITT-trigger inputs Ports P1, P2, P3, P4, P5, P6; RST/NMI; JTAG: TCK, TMS, TDI/TCLK, TDO/TDI  
PARAMETER  
TEST CONDITIONS  
MIN  
1.1  
1.5  
0.4  
0.9  
0.3  
0.5  
TYP  
MAX  
1.5  
1.98  
0.9  
1.3  
1.1  
1
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
V
IT+  
V
IT−  
V
hys  
Positive-going input threshold voltage  
V
= 2.2 V  
= 3 V  
Negative-going input threshold voltage  
V
V
= 2.2 V  
= 3 V  
Input voltage hysteresis (V V  
)
IT−  
IT+  
inputs Px.x, TAx, TBx  
PARAMETER  
TEST CONDITIONS  
V
MIN  
62  
TYP  
MAX  
UNIT  
CC  
2.2 V  
3 V  
Port P1, P2: P1.x to P2.x, external trigger signal  
for the interrupt flag, (see Note 1)  
t
t
External interrupt timing  
ns  
(int)  
50  
TA0, TA1, TA2  
2.2 V  
62  
Timer_A, Timer_B capture  
timing  
ns  
(cap)  
TB0, TB1, TB2, TB3, TB4, TB5, TB6  
(see Note 2)  
3 V  
50  
Timer_A, Timer_B clock  
frequency externally applied  
to pin  
f
f
2.2 V  
3 V  
8
(TAext)  
TACLK, TBCLK, INCLK: t = t  
MHz  
MHz  
(H)  
(L)  
10  
(TBext)  
f
f
2.2 V  
3 V  
8
(TAint)  
Timer_A, Timer_B clock  
frequency  
SMCLK or ACLK signal selected  
10  
(TBint)  
NOTES: 1. The external signal sets the interrupt flag every time the minimum t  
parameters are met. It may be set even with trigger signals  
(int)  
shorter than t  
.
(int)  
2. Seven capture/compare registers in x16x/161x and three capture/compare registers in x15x.  
leakage current Ports P1, P2, P3, P4, P5 and P6 (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Leakage  
current  
I
Port Px  
V
(Px.y)  
(see Note 2)  
V = 2.2 V/3 V  
CC  
±50  
nA  
lkg(Px.y)  
NOTES: 1. The leakage current is measured with V or V applied to the corresponding pin(s), unless otherwise noted.  
SS  
CC  
2. The port pin must be selected as input.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs Ports P1, P2, P3, P4, P5, and P6  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
= 1.5 mA,  
= 6 mA,  
= 1.5 mA,  
= 6 mA,  
= 1.5 mA,  
= 6 mA,  
V
V
V
V
V
V
V
V
= 2.2 V,  
= 2.2 V,  
= 3 V,  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
V
0.25  
V
V
V
V
OH(max)  
OH(max)  
OH(max)  
OH(max)  
OL(max)  
OL(max)  
OL(max)  
OL(max)  
OH(max)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
0.6  
CC  
V
High-level output voltage  
V
OH  
V
CC  
0.25  
= 3 V,  
V
0.6  
CC  
= 2.2 V,  
= 2.2 V,  
= 3 V,  
V
SS  
V
SS  
V
SS  
V
SS  
V
+0.25  
SS  
V
+0.6  
SS  
V
OL  
Low-level output voltage  
V
= 1.5 mA,  
= 6 mA,  
V
SS  
+0.25  
= 3 V,  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed ±12 mA to satisfy the maximum  
OL(max),  
2. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed ±48 mA to satisfy the maximum  
OH(max)  
OL(max),  
output frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
C = 20 pF,  
I = ±1.5 mA  
L
L
f
(1 x 6, 0 y 7)  
V
V
= 2.2 V / 3 V  
= 2.2 V / 3 V  
DC  
f
f
MHz  
(Px.y)  
CC  
System  
f
f
f
P2.0/ACLK, P5.6/ACLK  
P5.4/MCLK,  
P1.4/SMCLK, P5.5/SMCLK  
(ACLK)  
System  
C = 20 pF  
L
MHz  
(MCLK)  
(SMCLK)  
CC  
f
f
f
f
= f  
= f  
= f  
= f  
= f  
40%  
30%  
60%  
70%  
(ACLK)  
(ACLK)  
(ACLK)  
(MCLK)  
(LFXT1)  
(LFXT1)  
(LFXT1)  
(XT1)  
P1.0/TACLK  
C = 20 pF  
(LF)  
L
V
CC  
= 2.2 V / 3 V  
50%  
50%  
= f  
40%  
60%  
(XT1)  
(DCOCLK)  
P1.1/TA0/MCLK,  
t
Duty cycle of output frequency  
C = 20 pF,  
(Xdc)  
50%−  
15 ns  
50%+  
15 ns  
L
f
f
f
= f  
(MCLK)  
V
CC  
= 2.2 V / 3 V  
= f  
40%  
60%  
(SMCLK)  
(SMCLK)  
(XT2)  
P1.4/TBCLK/SMCLK,  
C = 20 pF,  
50%−  
15 ns  
50%+  
15 ns  
L
= f  
50%  
(DCOCLK)  
V
CC  
= 2.2 V / 3 V  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs Ports P1, P2, P3, P4, P5, and P6 (continued)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
V
P3.5  
= 2.2 V  
T
= 25°C  
V
P3.5  
= 3 V  
CC  
A
CC  
T
= 25°C  
A
T
= 85°C  
A
T
= 85°C  
A
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
Low-Level Output Voltage V  
V
OL  
Low-Level Output Voltage V  
Figure 2  
Figure 3  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
5  
V
P3.5  
= 2.2 V  
CC  
V
P3.5  
= 3 V  
CC  
5  
15  
25  
35  
45  
10  
15  
20  
25  
T
A
= 85°C  
T
A
= 85°C  
T
A
= 25°C  
T
A
= 25°C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
High-Level Output Voltage V  
V
OH  
High-Level Output Voltage V  
Figure 5  
Figure 4  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
wake-up LPM3  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
DCO  
= 2.2 V/3 V,  
CC  
t
Delay time  
6
µs  
(LPM3)  
f
f  
DCO43  
RAM  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VRAMh  
CPU HALTED (see Note 1)  
1.6  
V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution  
should take place during this supply voltage condition.  
Comparator_A (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
25  
MAX UNIT  
V
V
= 2.2 V  
= 3 V  
40  
µA  
60  
CC  
I
I
CAON=1, CARSEL=0, CAREF=0  
(DD)  
45  
CC  
CAON=1, CARSEL=0,  
CAREF=1/2/3, no load at  
P2.3/CA0/TA1 and P2.4/CA1/TA2  
V
= 2.2 V  
= 3 V  
30  
45  
50  
µA  
71  
CC  
CC  
(Refladder/Refdiode)  
V
Common-mode input  
voltage  
V
CAON =1  
V
= 2.2 V/3 V  
= 2.2 V/3 V  
0
V 1  
CC  
V
(IC)  
CC  
CC  
PCA0=1, CARSEL=1, CAREF=1,  
no load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage @ 0.25 V  
node  
node  
V
V
0.23  
0.24  
0.48  
0.25  
0.5  
CC  
(Ref025)  
V
CC  
PCA0=1, CARSEL=1, CAREF=2,  
no load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage @ 0.5V  
CC  
V
V
V
CC  
= 2.2 V/3 V  
0.47  
(Ref050)  
V
CC  
PCA0=1, CARSEL=1, CAREF=3,  
no load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2 T = 85°C  
V
V
= 2.2 V  
= 3 V  
390  
400  
480  
490  
540  
550  
CC  
(see Figure 6 and Figure 7)  
mV  
(RefVT)  
CC  
A
V
V
Offset voltage  
See Note 2  
CAON=1  
V
V
V
V
V
V
V
V
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V  
= 3 V  
30  
0
30  
1.4  
mV  
mV  
(offset)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
Input hysteresis  
0.7  
210  
150  
1.9  
hys  
130  
80  
300  
240  
3.4  
T
A
= 25°C, Overdrive 10 mV,  
ns  
µs  
ns  
µs  
Without filter: CAF=0  
t
(response LH)  
= 2.2 V  
= 3 V  
1.4  
0.9  
130  
80  
T
A
= 25°C, Overdrive 10 mV,  
With filter: CAF=1  
1.5  
2.6  
= 2.2 V  
= 3 V  
210  
150  
300  
240  
T
A
= 25°C, Overdrive 10 mV,  
Without filter: CAF=0  
t
(response HL)  
V
V
= 2.2 V  
= 3 V  
1.4  
0.9  
1.9  
1.5  
3.4  
2.6  
CC  
T
A
= 25°C, Overdrive 10 mV,  
With filter: CAF=1  
CC  
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.  
The two successive measurements are then summed together.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
= 2.2 V  
V
CC  
= 3 V  
CC  
Typical  
Typical  
45  
25  
5  
15  
35  
55  
75  
95  
45  
25  
5  
15  
35  
55  
75  
95  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 7. V  
vs Temperature, V = 2.2 V  
Figure 6. V  
vs Temperature, V = 3 V  
CC  
(RefVT)  
CC  
(RefVT)  
0 V  
V
CC  
0
1
CAF  
CAON  
To Internal  
Modules  
Low Pass Filter  
0
1
0
1
+
_
V+  
V−  
CAOUT  
Set CAIFG  
Flag  
τ ≈ 2.0 µs  
Figure 8. Block Diagram of Comparator_A Module  
V
CAOUT  
Overdrive  
V−  
400 mV  
V+  
t
(response)  
Figure 9. Overdrive Definition  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
POR/brownout reset (BOR) (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µs  
t
2000  
d(BOR)  
V
dV /dt 3 V/s (see Figure 10)  
CC  
0.7 × V  
(B_IT)  
V
CC(Start)  
V
V
dV /dt 3 V/s (see Figure 10 through Figure 12)  
1.71  
180  
V
(B_IT)  
CC  
Brownout  
dV /dt 3 V/s (see Figure 10)  
CC  
70  
2
130  
mV  
hys(B_IT)  
Pulse length needed at RST/NMI pin to accepted reset internally,  
t
µs  
(reset)  
V
CC  
= 2.2 V/3 V  
NOTES: 1. The current consumption of the brownout module is already included in the I current consumption data. The voltage level V  
CC  
(B_IT)  
+ V  
is 1.8 V.  
hys(B_IT)  
2. During power up, the CPU begins code execution following a period of t  
default DCO settings must not be changed until V V , where V is the minimum supply voltage for the desired  
CC(min)  
after V = V  
+ V . The  
hys(B_IT)  
BOR(delay)  
CC  
(B_IT)  
CC  
CC(min)  
operating frequency. See the MSP430x1xx Family Users Guide (SLAU049) for more information on the brownout/SVS circuit.  
typical characteristics  
V
CC  
V
hys(B_IT)  
V
(B_IT)  
V
CC(Start)  
BOR  
1
0
t
d(BOR)  
Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
typical characteristics (continued)  
V
t
CC  
pw  
2
3 V  
Vcc = 3 V  
typical conditions  
1.5  
1
0.5  
0
V
CC(min)  
0.001  
1
1000  
1 ns  
1 ns  
Pulse Width µs  
t
Pulse Width µs  
t
pw  
pw  
Figure 11. V  
Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
CC(min)  
V
t
CC  
pw  
2
3 V  
Vcc = 3 V  
typical conditions  
1.5  
1
V
CC(min)  
0.5  
0
t = t  
f
r
0.001  
1
1000  
t
t
r
f
t
Pulse Width µs  
t
Pulse Width µs  
pw  
pw  
Figure 12. V  
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
CC(min)  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
SVS (supply voltage supervisor/monitor)  
PARAMETER  
TEST CONDITIONS  
dV /dt > 30 V/ms (see Figure 13)  
MIN  
NOM  
MAX  
150  
2000  
150  
12  
UNIT  
µs  
5
CC  
t
(SVSR)  
dV /dt 30 V/ms  
CC  
µs  
t
t
SVSON, switch from VLD = 0 to VLD 0, V = 3 V  
20  
µs  
d(SVSon)  
CC  
VLD 0  
µs  
settle  
V
VLD 0, V /dt 3 V/s (see Figure 13)  
1.55  
120  
1.7  
V
(SVSstart)  
CC  
VLD = 1  
70  
155  
mV  
V
V
/dt 3 V/s (see Figure 13)  
V
V
(SVS_IT)  
x 0.008  
CC  
(SVS_IT)  
x 0.004  
VLD = 2 .. 14  
V
hys(SVS_IT)  
/dt 3 V/s (see Figure 13), External voltage applied  
CC  
VLD = 15  
4.4  
10.4  
mV  
on A7  
VLD = 1  
VLD = 2  
VLD = 3  
VLD = 4  
VLD = 5  
VLD = 6  
VLD = 7  
VLD = 8  
VLD = 9  
VLD = 10  
VLD = 11  
VLD = 12  
VLD = 13  
VLD = 14  
1.8  
1.9  
2.1  
2.05  
2.25  
2.37  
2.48  
2.6  
1.94  
2.05  
2.14  
2.24  
2.33  
2.46  
2.58  
2.69  
2.83  
2.94  
3.11  
3.24  
3.43  
2.2  
2.3  
2.4  
2.5  
2.71  
2.86  
3
2.65  
2.8  
V
CC  
/dt 3 V/s (see Figure 13 and Figure 14)  
V
V
(SVS_IT)  
2.9  
3.13  
3.29  
3.42  
3.05  
3.2  
3.35  
3.5  
3.61  
3.76  
3.7  
3.99  
V
/dt 3 V/s (see Figure 13 and Figure 14), External  
CC  
VLD = 15  
1.1  
1.2  
10  
1.3  
15  
voltage applied on A7  
I
CC(SVS)  
VLD 0, V = 2.2 V/3 V  
µA  
CC  
(see Note 1)  
The recommended operating voltage range is limited to 3.6 V.  
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value somewhere  
t
settle  
between 2 and 15. The overdrive is assumed to be > 50 mV.  
NOTE 1: The current consumption of the SVS module is not included in the I current consumption data.  
CC  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
typical characteristics  
Software sets VLD >0:  
SVS is active  
AV  
CC  
V
(SVS_IT)  
hys(SVS_IT)  
V
V
(SVSstart)  
V
hys(B_IT)  
V
(B_IT)  
V
CC(start)  
Brown-  
out  
Region  
Brownout  
Region  
Brownout  
1
0
t
t
SVS out  
1
d(BOR)  
d(BOR)  
SVS Circuit is Active From VLD > to V < V(  
CC  
B_IT)  
0
t
t
d(SVSon)  
d(SVSR)  
Set POR  
1
undefined  
0
Figure 13. SVS Reset (SVSR) vs Supply Voltage  
V
CC  
t
pw  
3 V  
2
Rectangular Drop  
V
CC(min)  
1.5  
1
Triangular Drop  
1 ns  
1 ns  
V
t
CC  
pw  
0.5  
0
3 V  
1
10  
100  
1000  
t
Pulse Width µs  
pw  
V
CC(min)  
t = t  
f
r
t
t
r
f
t Pulse Width µs  
Figure 14. V  
: Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1)  
CC(min)  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
DCO (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.08  
NOM  
0.12  
MAX  
0.15  
UNIT  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 2.2 V  
= 3 V  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
f
R
R
R
R
R
R
R
= 0, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
MHz  
(DCO03)  
(DCO13)  
(DCO23)  
(DCO33)  
(DCO43)  
(DCO53)  
(DCO63)  
sel  
sel  
sel  
sel  
sel  
sel  
sel  
A
0.08  
0.14  
0.14  
0.22  
0.22  
0.37  
0.37  
0.61  
0.61  
1
0.13  
0.19  
0.18  
0.30  
0.28  
0.49  
0.47  
0.77  
0.75  
1.2  
0.16  
0.23  
0.22  
0.36  
0.34  
0.59  
0.56  
0.93  
0.90  
1.5  
= 2.2 V  
= 3 V  
f
f
f
f
f
f
= 1, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
A
= 2.2 V  
= 3 V  
= 2, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
A
= 2.2 V  
= 3 V  
= 3, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
A
= 2.2 V  
= 3 V  
= 4, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
A
= 2.2 V  
= 3 V  
= 5, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
A
1
1.3  
1.5  
= 2.2 V  
= 3 V  
1.6  
1.9  
2.2  
= 6, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
A
1.69  
2.4  
2.0  
2.29  
3.4  
= 2.2 V  
= 3 V  
2.9  
f
f
R
R
= 7, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
MHz  
MHz  
(DCO73)  
sel  
sel  
A
2.7  
3.2  
3.65  
f
f
f
DCO40  
× 2.5  
DCO40  
DCO40  
= 4, DCO = 7, MOD = 0, DCOR = 0, T = 25°C  
V
CC  
= 2.2 V/3 V  
(DCO47)  
A
× 1.7  
× 2.1  
V
V
= 2.2 V  
= 3 V  
4
4.4  
4.5  
4.9  
4.9  
5.4  
CC  
f
R
= 7, DCO = 7, MOD = 0, DCOR = 0, T = 25°C  
MHz  
(DCO77)  
sel  
A
CC  
S
S
S
S
= f  
/ f  
V
= 2.2 V/3 V  
= 2.2 V/3 V  
1.35  
1.07  
0.31  
0.33  
1.65  
1.12  
0.36  
0.38  
2
Rsel  
R
Rsel+1 Rsel  
CC  
CC  
= f / f  
(DCO+1) (DCO)  
V
1.16  
0.40  
0.43  
DCO  
DCO  
V
= 2.2 V  
= 3 V  
CC  
CC  
Temperature drift, R = 4, DCO = 3, MOD = 0  
(see Note 2)  
sel  
D
D
%/°C  
%/V  
t
V
Drift with V variation, R = 4, DCO = 3, MOD = 0  
(see Note 2)  
CC  
sel  
V
CC  
= 2.2 V/3 V  
0
5
10  
V
NOTES: 1. The DCO frequency may not exceed the maximum system frequency defined by parameter processor frequency, f  
2. This parameter is not production tested.  
.
(System)  
1
DCOCLK  
f
Max  
DCO_7  
f
Min  
Max  
f
DCO_0  
Min  
0
1
2
3
4
5
6
7
DCO  
V
CC  
V  
2.2  
3
Figure 15. DCO Characteristics  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
main DCO characteristics  
D
Individual devices have a minimum and maximum operation frequency. The specified parameters for  
DCOx0) to f DCOx7) are valid for all devices.  
f
(
(
D
D
D
All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps Rsel1, ... Rsel6 overlaps Rsel7.  
DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter SDCO  
.
Modulation control bits MOD0 to MOD4 select how often f DCO+1) is used within the period of 32 DCOCLK  
(
cycles. The frequency f(DCO) is used for the remaining cycles. The frequency is an average equal to:  
32   f(DCO)   f(DCO)1)  
faverage  
+
MOD   f(DCO))(32*MOD)   f(DCO)1)  
DCO when using R  
(see Note 1)  
OSC  
PARAMETER  
TEST CONDITIONS  
V
MIN  
NOM  
1.8±15%  
1.95±15%  
±0.1  
MAX  
UNIT  
MHz  
MHz  
%/°C  
%/V  
CC  
2.2 V  
R
= 4, DCO = 3, MOD = 0, DCOR = 1,  
sel  
f
, DCO output frequency  
DCO  
T = 25°C  
A
3 V  
D , Temperature drift  
R
R
= 4, DCO = 3, MOD = 0, DCOR = 1  
= 4, DCO = 3, MOD = 0, DCOR = 1  
2.2 V/3 V  
2.2 V/3 V  
t
sel  
sel  
D , Drift with V variation  
10  
v
CC  
NOTES: 1. R  
= 100k. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and T = ±50ppm/°C.  
K
OSC  
crystal oscillator, LFXT1 oscillator (see Note 1)  
PARAMETER  
TEST CONDITIONS  
XTS=0; LF oscillator selected, V = 2.2 V/3 V  
MIN  
NOM  
12  
2
MAX  
UNIT  
CC  
C
C
Integrated input capacitance  
pF  
XIN  
XTS=1; XT1 oscillator selected, V = 2.2 V/3 V  
CC  
XTS=0; LF oscillator selected, V = 2.2 V/3 V  
12  
2
CC  
Integrated output capacitance  
Input levels at XIN  
pF  
V
XOUT  
XTS=1; XT1 oscillator selected, V = 2.2 V/3 V  
CC  
XTS = 0 or 1  
V
V
V
0.2 × V  
CC  
IL  
SS  
V
= 2.2 V/3 V  
XT1 or LF modes  
XTS = 0, LF mode  
XTS = 1, XT1 mode  
CC  
(see Note 2)  
0.9 × V  
0.8 × V  
V
V
CC  
CC  
IH  
CC  
CC  
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.  
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.  
crystal oscillator, XT2 oscillator (see Note 1)  
PARAMETER  
TEST CONDITIONS  
= 2.2 V/3 V  
MIN  
NOM  
MAX  
UNIT  
pF  
pF  
V
C
C
Integrated input capacitance  
Integrated output capacitance  
V
V
2
2
XIN  
XOUT  
IL  
CC  
= 2.2 V/3 V  
CC  
V
V
V
SS  
0.2 × V  
CC  
Input levels at XIN  
V
CC  
= 2.2 V/3 V (see Note 2)  
0.8 × V  
V
CC  
V
IH  
CC  
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.  
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.  
USART0, USART1 (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
200  
150  
NOM  
430  
MAX  
800  
UNIT  
V
V
= 2.2 V  
= 3 V  
CC  
t
τ
( )  
USART0/USART1: deglitch time  
ns  
280  
500  
CC  
NOTE 1: The signal applied to the USART0/USART1 receive signal/terminal (URXD0/1) should meet the timing requirements of t to ensure  
(τ  
)
that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t . The operating  
(τ  
)
conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative  
transitions on the URXD0/1 line.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, power supply and input range conditions (see Note 1)  
PARAMETER  
TEST CONDITIONS  
AV and DV are connected together  
MIN NOM  
MAX  
UNIT  
CC  
CC  
AV  
Analog supply voltage  
AV and DV are connected together  
2.2  
3.6  
V
CC  
SS  
SS  
V
(AVSS)  
= V  
= 0 V  
(DVSS)  
All P6.0/A0 to P6.7/A7 terminals. Analog inputs  
selected in ADC12MCTLx register and P6Sel.x=1  
Analog input voltage  
range (see Note 2)  
V
0
V
AVCC  
V
(P6.x/Ax)  
0 x 7; V  
V  
V  
(AVSS)  
P6.x/Ax (AVCC)  
Operating supply current  
f
= 5.0 MHz  
2.2 V  
3 V  
0.65  
0.8  
1.3  
1.6  
ADC12CLK  
into AV terminal  
ADC12ON = 1, REFON = 0  
SHT0=0, SHT1=0, ADC12DIV=0  
I
mA  
mA  
CC  
ADC12  
(see Note 3)  
f
= 5.0 MHz  
ADC12CLK  
ADC12ON = 0,  
REFON = 1, REF2_5V = 1  
3 V  
0.5  
0.8  
Operating supply current  
I
into AV terminal  
REF+  
CC  
f
= 5.0 MHz  
2.2 V  
3 V  
0.5  
0.5  
0.8  
0.8  
ADC12CLK  
(see Note 4)  
ADC12ON = 0,  
REFON = 1, REF2_5V = 0  
mA  
Only one terminal can be selected  
at one time, P6.x/Ax  
C
R
Input capacitance  
2.2 V  
3 V  
40  
pF  
I
I
Input MUX ON resistance 0V V V  
2000  
Ax  
AVCC  
Not production tested, limits verified by design  
NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter.  
2. The analog input voltage range must be within the selected reference voltage range V to V for valid conversion results.  
R+  
R−  
3. The internal reference supply current is not included in current consumption parameter I  
.
ADC12  
4. The internal reference current is supplied via terminal AV . Consumption is independent of the ADC12ON control bit, unless a  
CC  
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.  
12-bit ADC, external reference (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
Positive external  
reference voltage input  
V
V
> V  
> V  
/V  
(see Note 2)  
(see Note 3)  
(see Note 4)  
1.4  
V
V
eREF+  
eREF+  
REFeREF−  
AVCC  
Negative external  
reference voltage input  
V
V
V
eREF+  
/V  
REFeREF−  
0
1.2  
V
V
REF/ eREF−  
(V  
Differential external  
reference voltage input  
eREF+  
V
eREF+  
> V  
/V  
1.4  
V
AVCC  
REFeREF−  
V
V
)
REF/ eREF−  
I
I
Static input current  
Static input current  
0V V  
V  
2.2 V/3 V  
2.2 V/3 V  
±1  
±1  
µA  
µA  
VeREF+  
eREF+  
AVCC  
0V V  
V  
AVCC  
VREF/VeREF−  
eREF−  
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C , is also  
i
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, built-in reference  
PARAMETER  
TEST CONDITIONS  
REF2_5V = 1 for 2.5 V  
max I I  
MIN NOM  
MAX  
UNIT  
3 V  
2.4  
2.5  
1.5  
2.6  
I
min  
VREF+  
VREF+ VREF+  
Positive built-in reference  
voltage output  
V
REF+  
V
REF2_5V = 0 for 1.5 V  
max I I  
2.2 V/3 V  
1.44  
1.56  
I
min  
VREF+  
VREF+ VREF+  
REF2_5V = 0, I  
max I  
I min  
2.2  
2.8  
VREF+  
VREF+ VREF+  
AV minimum voltage,  
Positive built-in reference  
active  
CC  
REF2_5V = 1, 0.5mA I  
I  
min  
AV  
V
VREF+ VREF+  
CC(min)  
REF2_5V = 1, 1mA I  
I  
min  
2.9  
VREF+ VREF+  
2.2 V  
3 V  
0.01  
0.01  
0.5  
1  
Load current out of V  
terminal  
REF+  
I
mA  
VREF+  
I
= 500 µA +/100 µA  
2.2 V  
3 V  
±2  
±2  
VREF+  
Analog input voltage ~0.75 V;  
REF2_5V = 0  
LSB  
Load-current regulation  
terminal  
I
L(VREF)+  
V
REF+  
I
= 500 µA ± 100 µA  
VREF+  
Analog input voltage ~1.25 V;  
REF2_5V = 1  
3 V  
3 V  
±2  
LSB  
I
=100 µA 900 µA,  
=5 µF, ax ~0.5 x V  
VREF+  
Load current regulation  
terminal  
C
I
20  
ns  
VREF+  
REF+  
DL(VREF) +  
V
REF+  
Error of conversion result 1 LSB  
Capacitance at pin V  
(see Note 1)  
REFON =1,  
REF+  
C
2.2 V/3 V  
2.2 V/3 V  
5
10  
µF  
VREF+  
0 mA I  
I  
max  
VREF+  
VREF+  
Temperature coefficient of  
built-in reference  
I
is a constant in the range of  
VREF+  
T
REF+  
±100 ppm/°C  
0 mA I  
1 mA  
VREF+  
Settle time of internal  
reference voltage (see  
Figure 16 and Note 2)  
I
V
= 0.5 mA, C  
= 10 µF,  
= 2.2 V  
VREF+  
VREF+  
17  
ms  
t
REFON  
= 1.5 V, V  
REF+  
AVCC  
Not production tested, limits characterized  
Not production tested, limits verified by design  
NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses  
two capacitors between pins V  
and AV and V  
/V  
and AV : 10 µF tantalum and 100 nF ceramic.  
REF+  
SS  
REFeREF−  
SS  
2. The condition is that the error in a conversion started after t  
capacitive load.  
is less than ±0.5 LSB. The settling time depends on the external  
REFON  
C
VREF+  
100 µF  
t
.66 x C  
[ms] with C  
in µF  
REFON  
VREF+  
VREF+  
10 µF  
1 µF  
0
10 ms  
1 ms  
100 ms  
t
REFON  
Figure 16. Typical Settling Time of Internal Reference t  
vs External Capacitor on V  
+
REF  
REFON  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢕꢓ  
ꢕꢐ  
ꢕꢒ  
ꢒꢍ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
DV  
DV  
From  
Power  
Supply  
CC  
+
SS  
10 µF 100 nF  
AV  
CC  
SS  
+
MSP430F15x  
MSP430F16x  
MSP430F161x  
AV  
10 µF 100 nF  
Apply External Reference [V  
or Use Internal Reference [V  
]
eREF+  
V
REF+  
or V  
eREF+  
]
REF+  
+
10 µF 100 nF  
Apply  
External  
Reference  
V
REF  
/V  
eREF−  
+
10 µF 100 nF  
Figure 17. Supply Voltage and Reference Voltage Design V  
V
External Supply  
REF/ eREF−  
DV  
From  
Power  
Supply  
CC  
SS  
+
DV  
10 µF 100 nF  
AV  
CC  
SS  
+
MSP430F15x  
MSP430F16x  
AV  
10 µF 100 nF  
MSP430F161x  
Apply External Reference [V  
or Use Internal Reference [V  
]
eREF+  
V
REF+  
or V  
]
eREF+  
REF+  
+
10 µF 100 nF  
Reference Is Internally  
Switched to AV  
V
/V  
REFeREF−  
SS  
Figure 18. Supply Voltage and Reference Voltage Design V  
V
= AV , Internally Connected  
REF/ eREFSS  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, timing parameters  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
For specified performance of ADC12  
linearity parameters  
2.2V/  
3 V  
f
f
0.45  
5
6.3  
MHz  
ADC12CLK  
Internal ADC12  
oscillator  
ADC12DIV=0,  
2.2 V/  
3 V  
3.7  
5
6.3  
MHz  
µs  
ADC12OSC  
f
=f  
ADC12CLK ADC12OSC  
C
5 µF, Internal oscillator,  
2.2 V/  
3 V  
VREF+  
2.06  
3.51  
f
= 3.7 MHz to 6.3 MHz  
ADC12OSC  
t
Conversion time  
CONVERT  
External f  
from ACLK, MCLK or SMCLK:  
13×ADC12DIV×  
ADC12CLK  
µs  
ADC12SSEL 0  
1/f  
ADC12CLK  
Turn on settling time of  
the ADC  
t
t
(see Note 1)  
100  
ns  
ADC12ON  
R
= 400 , R = 1000 ,  
I
3 V  
1220  
1400  
S
Sampling time  
ns  
C = 30 pF  
Sample  
I
2.2 V  
τ = [R + R ] x C (see Note 2)  
S
I
I;  
Not production tested, limits characterized  
Not production tested, limits verified by design  
NOTES: 1. The condition is that the error in a conversion started after t  
settled.  
is less than ±0.5 LSB. The reference and input signal are already  
ADC12ON  
2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB:  
n+1  
t
= ln(2 ) x (R + R ) x C + 800 ns where n = ADC resolution = 12, R = external source resistance.  
Sample  
S
I
I
S
12-bit ADC, linearity parameters  
PARAMETER  
TEST CONDITIONS  
/V ) min 1.6 V  
REFeREF−  
MIN NOM MAX  
UNIT  
1.4 V (V  
V  
V  
±2  
eREF+  
E
E
Integral linearity error  
2.2 V/3 V  
2.2 V/3 V  
LSB  
I
1.6 V < (V  
/V  
) min [V  
]
±1.7  
eREF+  
REFeREF−  
AVCC  
Differential linearity  
error  
(V  
C
V  
/V  
)
(V  
V /V  
),  
),  
eREF+  
VREF+  
REFeREFmin  
eREF+  
REFeREF−  
±1  
LSB  
LSB  
D
= 10 µF (tantalum) and 100 nF (ceramic)  
V /V (V V /V  
REFeREF−  
(V  
eREF+  
)
REFeREFmin  
eREF+  
E
O
Internal impedance of source R < 100 ,  
2.2 V/3 V  
±2  
±4  
Offset error  
Gain error  
S
C
= 10 µF (tantalum) and 100 nF (ceramic)  
VREF+  
(V  
C
V  
/V  
)
(V  
V /V  
),  
),  
eREF+  
VREF+  
REFeREFmin  
eREF+  
REFeREF−  
E
E
2.2 V/3 V  
2.2 V/3 V  
±1.1  
±2  
±2  
±5  
LSB  
LSB  
G
= 10 µF (tantalum) and 100 nF (ceramic)  
V /V (V V /V  
REFeREF−  
(V  
C
)
Total unadjusted  
error  
eREF+  
REFeREFmin  
eREF+  
T
= 10 µF (tantalum) and 100 nF (ceramic)  
VREF+  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, temperature sensor and built-in V  
MID  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
40  
MAX  
120  
UNIT  
2.2 V  
3 V  
Operating supply current into  
REFON = 0, INCH = 0Ah,  
I
µA  
SENSOR  
AV terminal (see Note 1)  
ADC12ON=NA, T = 25_C  
CC  
A
60  
986  
986  
3.55  
3.55  
160  
2.2 V  
3 V  
ADC12ON = 1, INCH = 0Ah,  
V
(see Note 2)  
mV  
SENSOR  
T
A
= 0°C  
2.2 V  
3 V  
3.55±3%  
3.55±3%  
TC  
ADC12ON = 1, INCH = 0Ah  
mV/°C  
SENSOR  
ADC12ON = 1, INCH = 0Ah,  
Error of conversion result 1  
LSB  
2.2 V  
3 V  
30  
30  
Sample time required if channel  
10 is selected (see Note 3)  
t
µs  
SENSOR(sample)  
VMID  
2.2 V  
3 V  
NA  
NA  
Current into divider at channel 11  
(see Note 4)  
I
ADC12ON = 1, INCH = 0Bh,  
ADC12ON = 1, INCH = 0Bh,  
µA  
2.2 V  
3 V  
1.1  
1.1±0.04  
V
AV divider at channel 11  
V
MID  
CC  
V
MID  
is ~0.5 x V  
AVCC  
1.5 1.50±0.04  
ADC12ON = 1, INCH = 0Bh,  
Error of conversion result 1  
LSB  
2.2 V  
3 V  
1400  
1220  
Sample time required if channel  
11 is selected (see Note 5)  
t
ns  
VMID(sample)  
Not production tested, limits characterized  
NOTES: 1. The sensor current I is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal  
SENSOR  
is high). When REFON = 1, I  
is already included in I  
.
SENSOR  
REF+  
2. The temperature sensor offset can be as much as ±20_C. A single-point calibration is recommended in order to minimize the offset  
error of the built-in temperature sensor.  
3. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time t  
SENSOR(on)  
4. No additional current is needed. The V  
is used during sampling.  
MID  
5. The on-time t  
is included in the sampling time t ; no additional on time is needed.  
VMID(sample)  
VMID(on)  
12-bit DAC, supply specifications  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
AV  
DV  
,
CC =  
CC  
AV  
Analog supply voltage  
2.20  
3.60  
V
CC  
AV = DV =0 V  
SS  
SS  
DAC12AMPx=2, DAC12IR=0,  
DAC12_xDAT=0800h  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V  
50  
50  
110  
110  
DAC12AMPx=2, DAC12IR=1,  
Supply Current:  
DAC12_xDAT=0800h  
V
eREF+  
=V  
= AV  
,
REF+  
CC  
CC  
CC  
Single DAC Channel  
(see Notes 1 and 2)  
I
µA  
DD  
DAC12AMPx=5, DAC12IR=1,  
DAC12_xDAT=0800h, V  
200  
700  
440  
=V  
REF+  
= AV  
= AV  
eREF+  
DAC12AMPx=7, DAC12IR=1,  
1500  
DAC12_xDAT=0800h, V  
=V  
REF+  
eREF+  
DAC12_xDAT = 800h, V  
= 1.5 V  
REF  
REF  
Power supply  
AV = 100mV  
CC  
rejection ratio  
PSRR  
70  
dB  
DAC12_xDAT = 800h, V  
= 1.5 V or 2.5 V  
(see Notes 3 and 4)  
3V  
AV = 100mV  
CC  
NOTES: 1. No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.  
2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input  
specifications.  
3. PSRR = 20*log{∆AV /V  
}.  
CC  
DAC12_xOUT  
4.  
V
REF  
is applied externally. The internal reference is not used.  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC, linearity specifications (see Figure 19)  
PARAMETER  
TEST CONDITIONS  
(12-bit Monotonic)  
= 1.5 V  
V
MIN  
TYP  
MAX  
UNIT  
CC  
Resolution  
12  
bits  
V
ref  
2.2V  
3V  
DAC12AMPx = 7, DAC12IR = 1  
= 2.5 V  
Integral nonlinearity  
(see Note 1)  
INL  
±2.0  
±8.0  
LSB  
LSB  
V
ref  
DAC12AMPx = 7, DAC12IR = 1  
= 1.5 V  
V
ref  
2.2V  
3V  
DAC12AMPx = 7, DAC12IR = 1  
= 2.5 V  
Differential nonlinearity  
(see Note 1)  
DNL  
±0.4  
±1.0  
±21  
V
ref  
DAC12AMPx = 7, DAC12IR = 1  
= 1.5 V  
V
ref  
2.2V  
3V  
Offset voltage w/o  
calibration  
DAC12AMPx = 7, DAC12IR = 1  
= 2.5 V  
V
ref  
(see Notes 1, 2)  
E
O
DAC12AMPx = 7, DAC12IR = 1  
= 1.5 V  
mV  
V
ref  
2.2V  
3V  
Offset voltage with  
calibration  
DAC12AMPx = 7, DAC12IR = 1  
= 2.5 V  
±2.5  
V
ref  
(see Notes 1, 2)  
DAC12AMPx = 7, DAC12IR = 1  
Offset error  
d
/d  
/d  
E(O)  
T
temperature coefficient  
(see Note 1)  
2.2V/3V  
30  
10  
uV/C  
V
V
= 1.5 V  
= 2.5 V  
2.2V  
3V  
REF  
E
Gain error (see Note 1)  
±3.50 % FSR  
G
REF  
Gain temperature  
ppm of  
FSR/°C  
d
E(G)  
2.2V/3V  
T
coefficient (see Note 1)  
DAC12AMPx=2  
2.2V/3V  
2.2V/3V  
2.2V/3V  
100  
Time for offset calibration  
(see Note 3)  
DAC12AMPx=3,5  
DAC12AMPx=4,6,7  
32  
6
t
ms  
Offset_Cal  
NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients aand  
bof the first order equation: y = a + b*x. V = E + (1 + E ) * (V /4095) * DAC12_xDAT, DAC12IR = 1.  
DAC12_xOUT  
O
G
eREF+  
2. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON  
3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx  
={0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may  
effect accuracy and is not recommended.  
DAC V  
OUT  
DAC Output  
V
R+  
R
=
Load  
Ideal transfer  
function  
AV  
CC  
2
Offset Error  
Positive  
Gain Error  
C
= 100pF  
Load  
Negative  
DAC Code  
Figure 19. Linearity Test Load Conditions and Gain/Offset Definition  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC, linearity specifications (continued)  
TYPICAL INL ERROR  
vs  
DIGITAL INPUT DATA  
4
V
CC  
= 2.2 V, V  
= 1.5V  
REF  
DAC12AMPx = 7  
DAC12IR = 1  
3
2
1
0
1  
2  
3  
4  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4095  
DAC12_xDAT Digital Code  
TYPICAL DNL ERROR  
vs  
DIGITAL INPUT DATA  
2.0  
1.5  
V
= 2.2 V, V  
= 1.5V  
CC  
REF  
DAC12AMPx = 7  
DAC12IR = 1  
1.0  
0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4095  
DAC12_xDAT Digital Code  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC, output specifications  
PARAMETER  
TEST CONDITIONS  
No Load, Ve = AV  
V
CC  
MIN  
TYP  
MAX  
UNIT  
,
CC  
REF+  
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
2.2V/3V  
2.2V/3V  
2.2V/3V  
0
0.005  
V
No Load, Ve  
= AV  
,
REF+  
CC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
AV 0.05  
AV  
Output voltage  
CC  
CC  
range  
V
O
(see Note 1,  
Figure 22)  
R
= 3 k, Ve  
= AV  
,
Load  
REF+  
CC  
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
0
0.1  
V
R
= 3 k, Ve  
= AV  
,
Load  
REF+  
CC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
2.2V/3V  
2.2V/3V  
AV 0.13  
AV  
V
CC  
CC  
Max DAC12  
C
100  
pF  
L(DAC12)  
load capacitance  
2.2V  
3V  
0.5  
1.0  
+0.5  
+1.0  
mA  
mA  
Max DAC12  
load current  
I
L(DAC12)  
R
= 3 kΩ  
Load  
V
= 0 V  
O/P(DAC12)  
2.2V/3V  
150  
250  
DAC12AMPx = 7  
DAC12_xDAT = 0h  
R
V
= 3 kΩ  
Output  
Load  
= AV  
R
Resistance  
(see Figure 22)  
O/P(DAC12)  
CC  
O/P(DAC12)  
2.2V/3V  
2.2V/3V  
150  
1
250  
4
DAC12AMPx = 7  
DAC12_xDAT = 0FFFh  
= 3 kΩ  
R
Load  
0.3 V < V  
< AV 0.3 V  
CC  
O/P(DAC12)  
DAC12AMPx = 7  
NOTES: 1. Data is valid after the offset calibration of the output amplifier.  
R
O/P(DAC12_x)  
Max  
R
Load  
I
Load  
AV  
CC  
DAC12  
2
C
= 100pF  
O/P(DAC12_x)  
Min  
Load  
0.3  
AV  
0.3V  
V
CC  
OUT  
AV  
CC  
Figure 22. DAC12_x Output Resistance Tests  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
12-bit DAC, reference input specifications  
PARAMETER  
Reference input  
TEST CONDITIONS  
DAC12IR=0, (see Notes 1 and 2)  
DAC12IR=1, (see Notes 3 and 4)  
DAC12_0 IR=DAC12_1 IR =0  
DAC12_0 IR=1, DAC12_1 IR = 0  
DAC12_0 IR=0, DAC12_1 IR = 1  
V
MIN  
TYP  
MAX  
UNIT  
CC  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
AV /3 AV +0.2  
CC  
CC  
Ve  
V
REF+  
voltage range  
AVcc AVcc+0.2  
20  
40  
MΩ  
48  
24  
56  
28  
kΩ  
kΩ  
Ri  
Ri  
,
Reference input  
resistance  
(VREF+)  
DAC12_0 IR=DAC12_1 IR =1  
DAC12_0 SREFx = DAC12_1 SREFx  
(see Note 5)  
(VeREF+)  
2.2V/3V  
20  
NOTES: 1. For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AV ).  
CC  
2. The maximum voltage applied at reference input voltage terminal Ve  
= [AV V  
] / [3*(1 + E )].  
E(O) G  
REF+  
CC  
3. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AV ).  
CC  
4. The maximum voltage applied at reference input voltage terminal Ve  
= [AV V  
] / (1 + E ).  
E(O) G  
REF+  
CC  
5. When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel  
reducing the reference input resistance.  
12-bit DAC, dynamic specifications; V = V , DAC12IR = 1 (see Figure 23 and Figure 24)  
ref  
CC  
PARAMETER  
TEST CONDITIONS  
DAC12AMPx=0 {2, 3, 4}  
DAC12AMPx=0 {5, 6}  
DAC12AMPx=0 7  
DAC12AMPx=2  
V
MIN  
TYP  
60  
15  
6
MAX  
120  
30  
UNIT  
CC  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
DAC12_xDAT = 800h,  
Error < ±0.5 LSB  
DAC12 on-  
time  
t
t
t
µs  
V(O)  
ON  
(see Note 1,Figure 23)  
12  
100  
40  
15  
5
200  
80  
Settling  
DAC12_xDAT =  
DAC12AMPx=3,5  
DAC12AMPx=4,6,7  
DAC12AMPx=2  
µs  
µs  
S(FS)  
time,full-scale 80hF7Fh80h  
30  
DAC12_xDAT =  
Settling time,  
DAC12AMPx=3,5  
DAC12AMPx=4,6,7  
DAC12AMPx=2  
2
3F8h408h3F8h  
code to code  
S(C-C)  
BF8hC08hBF8h  
1
0.05  
0.35  
1.5  
0.12  
0.7  
2.7  
10  
10  
10  
DAC12_xDAT =  
DAC12AMPx=3,5  
DAC12AMPx=4,6,7  
DAC12AMPx=2  
SR  
Slew Rate  
V/µs  
nV-s  
80hF7Fh80h  
DAC12_xDAT =  
DAC12AMPx=3,5  
DAC12AMPx=4,6,7  
Glitch energy: full-scale  
80hF7Fh80h  
NOTES: 1. R  
and C connected to AV (not AV /2) in Figure 23.  
Load SS CC  
Load  
2. Slew rate applies to output voltage steps >= 200mV.  
Conversion 1  
Conversion 2  
Conversion 3  
V
+/1/2 LSB  
DAC Output  
OUT  
Glitch  
Energy  
R
= 3 kΩ  
Load  
I
Load  
AV  
CC  
2
+/1/2 LSB  
C
= 100pF  
Load  
R
O/P(DAC12.x)  
t
t
settleHL  
settleLH  
Figure 23. Settling Time and Glitch Energy Testing  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
Conversion 1  
Conversion 2  
Conversion 3  
V
OUT  
90%  
90%  
10%  
10%  
t
t
SRHL  
SRLH  
Figure 24. Slew Rate Testing  
12-bit DAC, dynamic specifications continued (T = 25°C unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
2.2V/3V  
2.2V/3V  
2.2V/3V  
40  
3-dB bandwidth,  
DAC12AMPx = {5, 6}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
180  
550  
BW  
kHz  
V
DC  
=1.5V, V =0.1V  
AC PP  
3dB  
(see Figure 25)  
DAC12AMPx = 7, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
DAC12_0DAT = 800h, No Load,  
DAC12_1DAT = 80h<>F7Fh, R  
= 3kΩ  
2.2V/3V  
2.2V/3V  
80  
80  
Load  
f
= 10kHz @ 50/50 duty cycle  
DAC12_1OUT  
dB  
Channel to channel crosstalk  
(see Note 1 and Figure 26)  
DAC12_0DAT = 80h<>F7Fh, R  
= 3k,  
Load  
DAC12_1DAT = 800h, No Load  
f
= 10kHz @ 50/50 duty cycle  
DAC12_0OUT  
NOTES: 1. R  
= 3 k, C  
= 100 pF  
LOAD  
LOAD  
R
= 3 kΩ  
Load  
I
Load  
Ve  
REF+  
AV  
CC  
DAC12_x  
2
DACx  
AC  
DC  
C
= 100pF  
Load  
Figure 25. Test Conditions for 3-dB Bandwidth Specification  
R
Load  
I
Load  
AV  
DAC12_xDAT 080h  
7F7h  
080h  
7F7h  
080h  
CC  
DAC12_0  
2
DAC0  
V
OUT  
C
= 100pF  
Load  
V
V
V
DAC12_yOUT  
DAC12_xOUT  
REF+  
R
Load  
I
Load  
AV  
CC  
DAC12_1  
2
f
DAC1  
Toggle  
C
= 100pF  
Load  
Figure 26. Crosstalk Test Conditions  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
Flash Memory  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
2.7  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from DV during program  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
3
PGM  
CC  
Supply current from DV during erase  
3
7
mA  
ERASE  
CPT  
CC  
Cumulative program time  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
see Note 1  
see Note 2  
4
ms  
200  
ms  
CMErase  
4
5
10  
100  
10  
cycles  
years  
t
T = 25°C  
J
Retention  
t
t
t
t
t
t
Word or byte program time  
35  
30  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
21  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 3  
t
FTG  
6
5297  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/f  
,max = 5297x1/476kHz). To  
FTG  
achieve the required cumulative mass erase time the Flash Controllers mass erase operation can be repeated until this time is met.  
(A worst case minimum of 19 cycles are required).  
3. These values are hardwired into the Flash Controllers state machine (t  
= 1/f ).  
FTG  
FTG  
JTAG Interface  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
2.2 V  
3 V  
0
0
5
10  
90  
MHz  
MHz  
kΩ  
f
TCK input frequency  
see Note 1  
TCK  
R
Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2  
may be restricted to meet the timing requirements of the module selected.  
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. f  
TCK  
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.  
JTAG Fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TDI/TCLK for fuse-blow: F versions  
Supply current into TDI/TCLK during fuse blow  
Time to blow fuse  
T
A
= 25°C  
2.5  
6
V
V
CC(FB)  
7
100  
1
FB  
I
FB  
t
FB  
mA  
ms  
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched  
to bypass mode.  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic  
port P1, P1.0 to P1.7, input/output with Schmitt-trigger  
P1SEL.x  
0
P1DIR.x  
Direction Control  
1
0
1
From Module  
Pad Logic  
P1.0/TACLK ...  
P1.7/TA2  
P1OUT.x  
Module X OUT  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
Interrupt  
Edge  
Select  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Flag  
P1IES.x  
P1SEL.x  
Dir. CONTROL  
FROM MODULE  
PnSel.x  
PnDIR.x  
PnOUT.x MODULE X OUT PnIN.x  
MODULE X IN  
PnIE.x PnIFG.x PnIES.x  
P1Sel.0  
P1Sel.1  
P1Sel.2  
P1Sel.3  
P1Sel.4  
P1Sel.5  
P1Sel.6  
P1Sel.7  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1DIR.4  
P1DIR.5  
P1DIR.6  
P1DIR.7  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1DIR.4  
P1DIR.5  
P1DIR.6  
P1DIR.7  
P1OUT.0  
P1OUT.1  
P1OUT.2  
P1OUT.3  
P1OUT.4  
P1OUT.5  
P1OUT.6  
P1OUT.7  
DV  
P1IN.0  
P1IN.1  
P1IN.2  
P1IN.3  
P1IN.4  
P1IN.5  
P1IN.6  
P1IN.7  
TACLK  
P1IE.0 P1IFG.0 P1IES.0  
P1IE.1 P1IFG.1 P1IES.1  
P1IE.2 P1IFG.2 P1IES.2  
P1IE.3 P1IFG.3 P1IES.3  
P1IE.4 P1IFG.4 P1IES.4  
P1IE.5 P1IFG.5 P1IES.5  
P1IE.6 P1IFG.6 P1IES.6  
P1IE.7 P1IFG.7 P1IES.7  
SS  
Out0 signal  
Out1 signal  
Out2 signal  
SMCLK  
CCI0A  
CCI1A  
CCI2A  
unused  
unused  
unused  
unused  
Out0 signal  
Out1 signal  
Out2 signal  
Signal from or to Timer_A  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P2, P2.0 to P2.2, P2.6, and P2.7 input/output with Schmitt-trigger  
P2SEL.x  
0
0: Input  
P2DIR.x  
Direction Control  
From Module  
1: Output  
1
0
1
P2OUT.x  
Module X OUT  
P2.0/ACLK  
P2.1/TAINCLK  
P2.2/CAOUT/TA0  
P2.6/ADC12CLK/DMAE0  
P2.7/TA0  
Pad Logic  
P2IN.x  
EN  
D
Bus Keeper  
Module X IN  
P2IRQ.x  
P2IE.x  
P2IFG.x  
CAPD.X  
EN  
Interrupt  
Edge  
Select  
Q
Set  
Interrupt  
Flag  
P2IES.x  
P2SEL.x  
x: Bit Identifier 0 to 2, 6, and 7 for Port P2  
Dir. CONTROL  
PnSel.x  
PnDIR.x  
PnOUT.x MODULE X OUT PnIN.x  
MODULE X IN  
PnIE.x PnIFG.x PnIES.x  
FROM MODULE  
P2Sel.0  
P2Sel.1  
P2Sel.2  
P2Sel.6  
P2Sel.7  
P2DIR.0  
P2DIR.1  
P2DIR.2  
P2DIR.6  
P2DIR.7  
P2DIR.0  
P2OUT.0  
P2OUT.1  
P2OUT.2  
P2OUT.6  
P2OUT.7  
ACLK  
DV  
P2IN.0  
P2IN.1  
P2IN.2  
P2IN.6  
P2IN.7  
unused  
P2IE.0 P2IFG.0 P2IES.0  
P2IE.1 P2IFG.1 P2IES.1  
P2IE.2 P2IFG.2 P2IES.2  
P2IE.6 P2IFG.6 P2IES.6  
P2IE.7 P2IFG.7 P2IES.7  
P2DIR.1  
INCLK  
SS  
P2DIR.2  
CAOUT  
CCI0B  
#
P2DIR.6  
ADC12CLK  
DMAE0  
§
P2DIR.7  
Out0 signal  
unused  
§
#
Signal from Comparator_A  
Signal to Timer_A  
Signal from Timer_A  
ADC12CLK signal is output of the 12-bit ADC module  
Signal to DMA, channel 0, 1 and 2  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P2, P2.3 to P2.4, input/output with Schmitt-trigger  
P2SEL.3  
0: Input  
0
1: Output  
P2DIR.3  
Direction Control  
1
From Module  
Pad Logic  
P2.3/CA0/TA1  
0
P2OUT.3  
Module X OUT  
1
P2IN.3  
EN  
Bus Keeper  
Module X IN  
P2IRQ.3  
D
P2IE.3  
Interrupt  
Edge  
Select  
EN  
Set  
CAPD.3  
Q
P2IFG.3  
Comparator_A  
CAF  
CAEX  
P2CA  
Interrupt  
Flag  
P2IES.3  
P2SEL.3  
CAREF  
+
CCI1B  
To Timer_A3  
P2SEL.4  
P2IES.4  
Reference Block  
CAREF  
Interrupt  
Flag  
Edge  
Select  
Interrupt  
P2IFG.4  
Set  
Q
EN  
CAPD.4  
P2IRQ.4  
Module X IN  
P2IE.4  
D
Bus Keeper  
EN  
P2IN.4  
1
Module X OUT  
P2OUT.4  
0
1
P2.4/CA1/TA2  
Pad Logic  
From Module  
Direction Control  
P2DIR.4  
1: Output  
0: Input  
0
P2SEL.4  
DIRECTION  
CONTROL  
PnSel.x  
PnDIR.x  
PnOUT.x MODULE X OUT PnIN.x  
MODULE X IN  
PnIE.x PnIFG.x PnIES.x  
FROM MODULE  
P2Sel.3  
P2Sel.4  
P2DIR.3  
P2DIR.4  
P2DIR.3  
P2DIR.4  
P2OUT.3  
P2OUT.4  
Out1 signal  
Out2 signal  
P2IN.3  
P2IN.4  
unused  
unused  
P2IE.3 P2IFG.3 P2IES.3  
P2IE.4 P2IFG.4 P2IES.4  
Signal from Timer_A  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P2, P2.5, input/output with Schmitt-trigger and R  
function for the basic clock module  
osc  
0: Input  
1: Output  
P2SEL.5  
Pad Logic  
0
1
0
1
P2DIR.5  
Direction Control  
From Module  
P2.5/Rosc  
P2OUT.5  
Module X OUT  
Bus Keeper  
P2IN.5  
EN  
D
Internal to  
Basic Clock  
Module  
Module X IN  
P2IRQ.5  
1
0
V
CC  
Edge  
Select  
Interrupt  
P2IE.5  
EN  
Q
Set  
P2IFG.5  
Interrupt  
Flag  
to  
DC Generator  
P2IES.5  
P2SEL.5  
DCOR  
CAPD.5  
DCOR: Control Bit From Basic Clock Module  
If it Is Set, P2.5 Is Disconnected From P2.5 Pad  
DIRECTION  
PnSel.x  
PnDIR.x  
CONTROL  
FROM MODULE  
PnOUT.x MODULE X OUT PnIN.x  
P2OUT.5 DV P2IN.5  
MODULE X IN  
PnIE.x PnIFG.x PnIES.x  
P2Sel.5  
P2DIR.5  
P2DIR.5  
unused  
P2IE.5 P2IFG.5 P2IES.5  
SS  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P3, P3.0 and P3.4 to P3.7, input/output with Schmitt-trigger  
P3SEL.x  
0: Input  
0
1
0
1
1: Output  
P3DIR.x  
Direction Control  
From Module  
Pad Logic  
P3.0/STE0  
P3OUT.x  
Module X OUT  
P3.4/UTXD0  
P3.5/URXD0  
P3.6/UTXD1  
P3.7/URXD1  
P3IN.x  
EN  
D
Module X IN  
x: Bit Identifier, 0 and 4 to 7 for Port P3  
DIRECTION  
CONTROL  
FROM MODULE  
PnSel.x  
PnDIR.x  
PnOUT.x  
MODULE X OUT  
DV  
PnIN.x  
MODULE X IN  
P3Sel.0  
P3Sel.4  
P3Sel.5  
P3Sel.6  
P3Sel.7  
P3DIR.0  
P3DIR.4  
P3DIR.5  
P3DIR.6  
P3DIR.7  
DV  
DV  
DV  
DV  
DV  
P3OUT.0  
P3OUT.4  
P3OUT.5  
P3OUT.6  
P3OUT.7  
P3IN.0  
P3IN.4  
P3IN.5  
P3IN.6  
P3IN.7  
STE0  
SS  
CC  
SS  
CC  
SS  
SS  
UTXD0  
DV  
Unused  
§
URXD0  
SS  
UTXD1  
DV  
Unused  
URXD1  
SS  
Output from USART0 module  
Output from USART1 module  
Input to USART0 module  
Input to USART1 module  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P3, P3.1, input/output with Schmitt-trigger  
P3SEL.1  
P3DIR.1  
0: Input  
1: Output  
0
1
0
1
SYNC  
MM  
DCM_SIMO  
STC  
STE  
Pad Logic  
P3.1/SIMO0/SDA  
P3OUT1  
(SI)MO0 or SDAo/p  
From USART0  
P3IN.1  
EN  
D
SI(MO)0 or SDAi/p  
To USAET0  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P3, P3.2, input/output with Schmitt-trigger  
P3SEL.2  
P3DIR.2  
0: Input  
1: Output  
0
1
0
1
SYNC  
MM  
DCM_SOMI  
Pad Logic  
STC  
STE  
P3.2/SOMI0  
P3OUT.2  
SO(MI)0  
From USART0  
P3IN.2  
EN  
D
(SO)MI0  
To USART0  
port P3, P3.3, input/output with Schmitt-trigger  
0: Input  
1: Output  
P3SEL.3  
P3DIR.3  
0
1
0
1
SYNC  
MM  
DCM_UCLK  
STC  
STE  
Pad Logic  
P3.3/UCLK0/SCL  
P3OUT.3  
UCLK.0  
From USART0  
P3IN.3  
EN  
D
UCLK0  
To USART0  
NOTE: UART mode:  
The UART clock can only be an input. If UART mode and UART function are selected, the P3.3/UCLK0 is always  
an input.  
SPI, slave mode:  
The clock applied to UCLK0 is used to shift data in and out.  
SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode).  
2
I C, slave mode:  
The clock applied to SCL is used to shift data in and out. The frequency of the clock source of the module must be  
w 10 times the frequency of the SCL clock.  
2
2
I C, master mode:  
To shift data in and out, the clock is supplied via the SCL terminal to all I C slaves. The frequency of the clock source  
of the module must be w 10 times the frequency of the SCL clock.  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P4, P4.0 to P4.6, input/output with Schmitt-trigger  
Module IN of pin  
P5.7/TBOUTH/SVSOUT  
P4DIR.7  
P4SEL.7  
P4SEL.x  
0: Input  
1: Output  
0
P4DIR.x  
Direction Control  
From Module  
1
P4.0/TB0 ...  
P4.6/TB6  
0
1
P4OUT.x  
Module X OUT  
Bus  
Keeper  
P4IN.x  
EN  
D
Module X IN  
x: Bit Identifier, 0 to 6 for Port P4  
DIRECTION  
PnSel.x  
PnDIR.x  
CONTROL  
PnOUT.x  
MODULE X OUT  
PnIN.x  
MODULE X IN  
FROM MODULE  
P4Sel.0  
P4Sel.1  
P4DIR.0  
P4DIR.1  
P4DIR.0  
P4DIR.1  
P4OUT.0  
P4OUT.1  
Out0 signal  
P4IN.0  
P4IN.1  
CCI0A / CCI0B  
Out1 signal  
CCI1A / CCI1B  
P4Sel.2  
P4Sel.3  
P4Sel.4  
P4Sel.5  
P4Sel.6  
P4DIR.2  
P4DIR.3  
P4DIR.4  
P4DIR.5  
P4DIR.6  
P4DIR.2  
P4DIR.3  
P4DIR.4  
P4DIR.5  
P4DIR.6  
P4OUT.2  
P4OUT.3  
P4OUT.4  
P4OUT.5  
P4OUT.6  
Out2 signal  
P4IN.2  
P4IN.3  
P4IN.4  
P4IN.5  
P4IN.6  
CCI2A / CCI2B  
Out3 signal  
CCI3A / CCI3B  
Out4 signal  
CCI4A / CCI4B  
Out5 signal  
CCI5A / CCI5B  
Out6 signal  
CCI6A  
Signal from Timer_B  
Signal to Timer_B  
56  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P4, P4.7, input/output with Schmitt-trigger  
P4SEL.7  
P4DIR.7  
0: Input  
1: Output  
0
1
0
1
Pad Logic  
P4.7/TBCLK  
P4OUT.7  
DV  
SS  
P4IN.7  
EN  
D
Timer_B,  
TBCLK  
port P5, P5.0 and P5.4 to P5.7, input/output with Schmitt-trigger  
P5SEL.x  
0: Input  
0
1
0
1
1: Output  
P5DIR.x  
Direction Control  
From Module  
Pad Logic  
P5.0/STE1  
P5OUT.x  
Module X OUT  
P5.4/MCLK  
P5.5/SMCLK  
P5.6/ACLK  
P5.7/TBOUTH/SVSOUT  
P5IN.x  
EN  
D
Module X IN  
x: Bit Identifier, 0 and 4 to 7 for Port P5  
PnSel.x  
P5Sel.0  
P5Sel.4  
P5Sel.5  
P5Sel.6  
P5Sel.7  
PnDIR.x  
P5DIR.0  
P5DIR.4  
P5DIR.5  
P5DIR.6  
P5DIR.7  
Dir. CONTROL FROM MODULE  
PnOUT.x  
MODULE X OUT  
DV  
PnIN.x  
P5IN.0  
P5IN.4  
P5IN.5  
P5IN.6  
P5IN.7  
MODULE X IN  
STE.1  
DV  
DV  
DV  
DV  
DV  
P5OUT.0  
P5OUT.4  
P5OUT.5  
P5OUT.6  
P5OUT.7  
SS  
CC  
CC  
CC  
SS  
SS  
MCLK  
SMCLK  
ACLK  
unused  
unused  
unused  
SVSOUT  
TBOUTHiZ  
NOTE: TBOUTHiZ signal is used by port module P4, pins P4.0 to P4.6. The function of TBOUTHiZ is mainly useful when used with Timer_B7.  
57  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P5, P5.1, input/output with Schmitt-trigger  
P5SEL.1  
P5DIR.1  
0: Input  
1: Output  
0
1
0
1
SYNC  
MM  
DCM_SIMO  
Pad Logic  
STC  
STE  
P5.1/SIMO1  
P5OUT.1  
(SI)MO1  
From USART1  
P5IN.1  
EN  
D
SI(MO)1  
To USART1  
port P5, P5.2, input/output with Schmitt-trigger  
P5SEL.2  
P5DIR.2  
0: Input  
1: Output  
0
1
0
1
SYNC  
MM  
DCM_SOMI  
STC  
STE  
Pad Logic  
P5.2/SOMI1  
P5OUT.2  
SO(MI)1  
From USART1  
P5IN.2  
EN  
D
(SO)MI1  
To USART1  
58  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P5, P5.3, input/output with Schmitt-trigger  
P5SEL.3  
P5DIR.3  
0: Input  
1: Output  
0
1
0
1
SYNC  
MM  
DCM_SIMO  
Pad Logic  
STC  
STE  
P5.3/UCLK1  
P5OUT.3  
UCLK1  
From USART1  
P5IN.3  
EN  
D
UCLK1  
To USART1  
NOTE: UART mode:  
The UART clock can only be an input. If UART mode and UART function are selected, the P5.3/UCLK1 direction  
is always input.  
SPI, slave mode:  
The clock applied to UCLK1 is used to shift data in and out.  
SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P5.3/UCLK1 (in slave mode).  
59  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P6, P6.0 to P6.5, input/output with Schmitt-trigger  
P6SEL.x  
0
0: Input  
P6DIR.x  
Direction Control  
From Module  
1: Output  
1
0
1
Pad Logic  
P6OUT.x  
Module X OUT  
P6.0/A0  
P6.1/A1  
P6.2/A2  
P6.3/A3  
P6.4/A4  
P6.5/A5  
Bus Keeper  
P6IN.x  
EN  
D
Module X IN  
From ADC  
To ADC  
x: Bit Identifier, 0 to 5 for Port P6  
NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if  
the analog signal is in the range of transitions 01 or 10. The value of the throughput current depends on the driving capability of the  
gate. For MSP430, it is approximately 100 µA.  
Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12.  
DIR. CONTROL  
FROM MODULE  
PnSel.x  
PnDIR.x  
PnOUT.x  
MODULE X OUT  
PnIN.x  
MODULE X IN  
P6Sel.0  
P6Sel.1  
P6Sel.2  
P6Sel.3  
P6Sel.4  
P6Sel.5  
P6DIR.0  
P6DIR.1  
P6DIR.2  
P6DIR.3  
P6DIR.4  
P6DIR.5  
P6DIR.0  
P6OUT.0  
P6OUT.1  
P6OUT.2  
P6OUT.3  
P6OUT.4  
P6OUT.5  
DV  
DV  
DV  
DV  
DV  
DV  
P6IN.0  
P6IN.1  
P6IN.2  
P6IN.3  
P6IN.4  
P6IN.5  
unused  
unused  
unused  
unused  
unused  
unused  
SS  
SS  
SS  
SS  
SS  
SS  
P6DIR.1  
P6DIR.2  
P6DIR.3  
P6DIR.4  
P6DIR.5  
NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module.  
60  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P6, P6.6, input/output with Schmitt-trigger  
0: Port Active, T-Switch Off  
1: T-Switch On, Port Disabled  
INCH = 6  
a6  
1, if DAC12.0AMP > 0  
Pad Logic  
0: Input  
P6SEL.6  
0
1: Output  
P6DIR.6  
1
P6DIR.6  
0
P6OUT.6  
1
DVSS  
Bus  
Keeper  
P6.6/A6/DAC0  
P6IN.6  
EN  
D
0, if DAC12.0CALON = 0 and DAC12.0AMP > 1  
1
+
0
1, if DAC12.0AMP >1  
1, if DAC12.0AMP = 1  
Signal from or to ADC12  
61  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P6, P6.7, input/output with Schmitt-trigger  
To SVS Mux (15)  
0: Port Active, T-Switch Off  
1: T-Switch On, Port Disabled  
INCH = 7  
a7  
§
1, if VLD = 15  
1, if DAC12.0AMP > 0  
Pad Logic  
P6SEL.6  
0: Input  
0
1: Output  
P6DIR.7  
1
P6DIR.7  
0
P6OUT.7  
1
DVSS  
Bus  
Keeper  
P6.7/A7/  
DAC1/SVSIN  
P6IN.7  
EN  
D
0, if DAC12.0CALON = 0 and DAC12.0AMP > 1  
1
+
0
1, if DAC12.0AMP > 1  
1, if DAC12.0AMP = 1  
§
Signal to SVS Block, Selected if VLD = 15  
Signal From or To ADC12  
VLD Control Bits are Located in SVS  
62  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢊ ꢆ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢊ ꢇꢆ  
ꢀ ꢋꢌꢍ ꢎ ꢁꢋ ꢏ ꢐꢑꢒ ꢀ ꢋꢓꢔꢕ ꢓꢕ ꢐꢖ ꢔꢕ ꢒꢒ ꢍꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger  
TDO  
Controlled by JTAG  
Controlled by JTAG  
JTAG  
TDO/TDI  
Controlled  
by JTAG  
DV  
DV  
CC  
CC  
TDI  
Fuse  
Burn & Test  
Fuse  
Test  
and  
TDI/TCLK  
DV  
CC  
Emulation  
Module  
TMS  
TCK  
TMS  
TCK  
DV  
CC  
During Programming Activity and  
During Blowing of the Fuse, Pin  
TDO/TDI Is Used to Apply the Test  
Input Data for JTAG Circuitry  
63  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢆꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢊ ꢇ ꢆ  
ꢀ ꢋ ꢌ ꢍꢎ ꢁꢋ ꢏꢐ ꢑ ꢒ ꢀꢋ ꢓ ꢔꢕꢓ ꢕꢐ ꢖꢔ ꢕꢒ ꢒꢍ ꢔ  
SLAS368DOCTOBER 2002REVISED MARCH 2005  
APPLICATION INFORMATION  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity  
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, I , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned.  
TF  
Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the  
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check  
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the  
fuse check mode has the potential to be activated.  
The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 27). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TDI/TCLK  
Figure 27. Fuse Check Mode Current, MSP430x15x/16x/161x  
64  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jul-2005  
PACKAGING INFORMATION  
Orderable Device  
MSP430F155IPM  
MSP430F155IPMR  
MSP430F156IPM  
MSP430F156IPMR  
MSP430F157IPM  
MSP430F157IPMR  
MSP430F1610IPM  
MSP430F1610IPMR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
LQFP  
PM  
64  
64  
64  
64  
64  
64  
64  
64  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
PM  
PM  
PM  
PM  
PM  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F1610IRTD  
MSP430F1610IRTDR  
ACTIVE  
ACTIVE  
QFN  
QFN  
RTD  
RTD  
64  
64  
TBD  
Call TI  
Call TI  
2500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
MSP430F1610IRTDT  
MSP430F1611IPM  
MSP430F1611IPMR  
ACTIVE  
ACTIVE  
ACTIVE  
QFN  
LQFP  
LQFP  
RTD  
PM  
64  
64  
64  
250 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
PM  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F1611IRTD  
MSP430F1611IRTDR  
ACTIVE  
ACTIVE  
QFN  
QFN  
RTD  
RTD  
64  
64  
TBD  
Call TI  
Call TI  
2500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
MSP430F1611IRTDT  
MSP430F1612IPM  
MSP430F1612IPMR  
ACTIVE  
ACTIVE  
ACTIVE  
QFN  
LQFP  
LQFP  
RTD  
PM  
64  
64  
64  
250 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
PM  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F1612IRTD  
MSP430F1612IRTDR  
ACTIVE  
ACTIVE  
QFN  
QFN  
RTD  
RTD  
64  
64  
TBD  
Call TI  
Call TI  
2500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
MSP430F1612IRTDT  
MSP430F167IPM  
MSP430F167IPMR  
MSP430F168IPM  
MSP430F168IPMR  
MSP430F169IPM  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
QFN  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
RTD  
PM  
PM  
PM  
PM  
PM  
64  
64  
64  
64  
64  
64  
250 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jul-2005  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
MSP430F169IPMR  
ACTIVE  
LQFP  
PM  
64  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996  
PM (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
33  
48  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
0°7°  
11,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040152/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. May also be thermally enhanced plastic with leads connected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY