MSP430F2101IDWR [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F2101IDWR
型号: MSP430F2101IDWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器和处理器 外围集成电路 光电二极管 PC 时钟
文件: 总53页 (文件大小:1140K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
D
D
Low Supply Voltage Range 1.8 V to 3.6 V  
D
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by  
Security Fuse  
Ultralow-Power Consumption  
− Active Mode: 250 µA at 1 MHz, 2.2 V  
− Standby Mode: 0.7 µA  
− Off Mode (RAM Retention): 0.1 µA  
Ultrafast Wake-Up From Standby Mode in  
less than 1 µs  
16-Bit RISC Architecture, 62.5 ns  
Instruction Cycle Time  
D
D
D
Bootstrap Loader  
D
D
D
On Chip Emulation Module  
Family Members Include:  
MSP430F2101: 1KB + 256B Flash Memory  
128B RAM  
MSP430F2111: 2KB + 256B Flash Memory  
128B RAM  
MSP430F2121: 4KB + 256B Flash Memory  
256B RAM  
Basic Clock Module Configurations:  
− Internal Frequencies up to 16MHz with  
4 calibrated Frequencies to 1%  
− 32-kHz Crystal  
− High-Frequency Crystal up to 16MHz  
− Resonator  
MSP430F2131: 8KB + 256B Flash Memory  
256B RAM  
D
D
Available in a 20-Pin Plastic Small-Outline  
Wide Body (SOWB) Package, 20-Pin Plastic  
Small-Outline Thin (TSSOP) Package,  
20-Pin TVSOP and 24-Pin QFN  
For Complete Module Descriptions, Refer  
to the MSP430x2xx Family User’s Guide  
− External Digital Clock Source  
D
D
16-Bit Timer_A With Three  
Capture/Compare Registers  
On-Chip Comparator for Analog Signal  
Compare Function or Slope A/D  
Conversion  
D
Brownout Detector  
description  
The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1µs.  
The MSP430x21x1 series is an ultralow-power mixed signal microcontroller with a built-in 16-bit timer, versatile  
analog comparator and sixteen I/O pins.  
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then  
process the data for display or for transmission to a host system. Stand alone RF sensor front end is another  
area of application. The analog comparator provides slope A/D conversion capability.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PLASTIC  
20-PIN SOWB  
(DW)  
PLASTIC  
20-PIN TSSOP  
(PW)  
PLASTIC  
20-PIN TVSOP  
(DGV)  
PLASTIC  
24-PIN QFN  
(RGE)  
T
A
MSP430F2101IDW  
MSP430F2111IDW  
MSP430F2121IDW  
MSP430F2131IDW  
MSP430F2101IPW  
MSP430F2111IPW  
MSP430F2121IPW  
MSP430F2131IPW  
MSP430F2101IDGV  
MSP430F2111IDGV  
MSP430F2121IDGV  
MSP430F2131IDGV  
MSP430F2101IRGE  
MSP430F2111IRGE  
MSP430F2121IRGE  
MSP430F2131IRGE  
40°C to 85°C  
40°C to 105°C  
MSP430F2101TDW  
MSP430F2111TDW  
MSP430F2121TDW  
MSP430F2131TDW  
MSP430F2101TPW  
MSP430F2111TPW  
MSP430F2121TPW  
MSP430F2131TPW  
MSP430F2101TDGV  
MSP430F2111TDGV  
MSP430F2121TDGV  
MSP430F2131TDGV  
MSP430F2101TRGE  
MSP430F2111TRGE  
MSP430F2121TRGE  
MSP430F2131TRGE  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢔꢡ  
Copyright 2004 − 2006 Texas Instruments Incorporated  
ꢝ ꢡ ꢞ ꢝꢖ ꢗꢪ ꢙꢘ ꢜ ꢤꢤ ꢢꢜ ꢚ ꢜ ꢛ ꢡ ꢝ ꢡ ꢚ ꢞ ꢦ  
ꢞꢖ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢓꢑ  
ꢓꢎ  
ꢐꢋ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
device pinout  
RGE PACKAGE  
(TOP VIEW)  
DW, PW, or DGV PACKAGE  
(TOP VIEW)  
TEST  
P1.7/TA2/TDO/TDI  
P1.6/TA1/TDI/TCLK  
P1.5/TA0/TMS  
P1.4/SMCLK/TCK  
P1.3/TA2  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
CC  
P2.5/CA5  
V
SS  
XOUT/P2.7/CA7  
XIN/P2.6/CA6  
P1.2/TA1  
RST/NMI  
P1.1/TA0  
24 23 22 21 20 19  
NC  
P1.5/TA0/TMS  
P1.4/SMCLK/TCK  
P1.3/TA2  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
P2.0/ACLK/CA2  
P2.1/INCLK/CA3  
P2.2/CAOUT/TA0/CA4  
P1.0/TACLK  
V
SS  
P2.4/TA2/CA1  
P2.3/TA1/CA0  
XOUT/P2.7/CA7  
XIN/P2.6/CA6  
RST/NMI  
P1.2/TA1  
P1.1/TA0  
P2.0/ACLK/CA2  
P1.0/TACLK  
7 8 9 10 11 12  
Note: NC pins not internally connected  
Power Pad connection to V  
recommended  
SS  
functional block diagram  
P2.x &  
XIN/XOUT  
8
VCC  
VSS  
P1.x & JTAG  
8
XIN  
XOUT  
Port P1  
Port P2  
ACLK  
Flash  
RAM  
Comparator  
_A+  
Basic Clock  
System+  
8 I/O  
Interrupt  
capability,  
pullup/down pullup/down  
resistors  
8 I/O  
Interrupt  
capability,  
8kB  
4kB  
2kB  
1kB  
256B  
256B  
128B  
128B  
SMCLK  
8 Channel  
Input Mux  
MCLK  
resistors  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
Watchdog  
WDT+  
Timer_A3  
JTAG  
Interface  
Brownout  
Protection  
3 CC  
15/16Bit  
Registers  
RST/NMI  
NOTE: See port schematics section for detailed I/O information.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
Terminal Functions  
TERMINAL  
DW, PW, or DGV  
RGE  
NO.  
13  
DESCRIPTION  
NAME  
I/O  
NO.  
P1.0/TACLK  
13  
I/O General-purpose digital I/O pin  
Timer_A, clock signal TACLK input  
P1.1/TA0  
14  
15  
16  
17  
18  
19  
20  
8
14  
15  
16  
17  
18  
20  
21  
6
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit  
P1.2/TA1  
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI1A input, compare: Out1 output  
P1.3/TA2  
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI2A input, compare: Out2 output  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
P1.6/TA1/TDI/TCLK  
I/O General-purpose digital I/O pin / SMCLK signal output  
Test Clock input for device programming and test  
I/O General-purpose digital I/O pin / Timer_A, compare: Out0 output  
Test Mode Select input for device programming and test  
I/O General-purpose digital I/O pin / Timer_A, compare: Out1 output  
Test Data Input or Test Clock Input for programming and test  
P1.7/TA2/TDO/TDI  
P2.0/ACLK/CA2  
P2.1/INCLK/CA3  
I/O General-purpose digital I/O pin / Timer_A, compare: Out2 output  
Test Data Output or Test Data Input for programming and test  
I/O General-purpose digital I/O pin / ACLK output  
Comparator_A+, CA2 input  
9
7
I/O General-purpose digital I/O pin / Timer_A, clock signal at INCLK  
Comparator_A+, CA3 input  
P2.2/CAOUT/  
TA0/CA4  
10  
8
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI0B input/BSL receive  
Comparator_A+, output / CA4 input  
P2.3/CA0/TA1  
P2.4/CA1/TA2  
P2.5/CA5  
11  
12  
3
10  
11  
24  
4
I/O General-purpose digital I/O pin / Timer_A, compare: Out1 output  
Comparator_A+, CA0 input  
I/O General-purpose digital I/O pin / Timer_A, compare: Out2 output  
Comparator_A+, CA1 input  
I/O General-purpose digital I/O pin  
Comparator_A+, CA5 input  
XIN/P2.6/CA6  
6
I/O Input terminal of crystal oscillator  
General-purpose digital I/O pin  
Comparator_A+, CA6 input  
XOUT/P2.7/CA7  
5
3
I/O Output terminal of crystal oscillator  
general-purpose digital I/O pin  
Comparator_A+, CA7 input  
RST/NMI  
TEST  
7
1
5
I
I
Reset or nonmaskable interrupt input  
22  
Selects test mode for JTAG pins on Port1. The device protection fuse  
is connected to TEST.  
V
V
2
4
23  
Supply voltage  
CC  
2
Ground reference  
SS  
QFN Pad  
NA  
Package Pad  
NA QFN package pad connection to V recommended.  
SS  
TDO or TDI is selected via JTAG instruction.  
NOTE: If XOUT/P2.7/CA7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver  
connection to this pad after reset.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g. ADD R4,R5  
R4 + R5 −−−> R5  
e.g. CALL  
e.g. JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
F
F
F
F
F
F
F
F
F
MOV Rs,Rd  
R10 −−> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5)−−> M(6+R6)  
M(EDE) −−> M(TONI)  
M(MEM) −−> M(TCDAT)  
M(R10) −−> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) −−> R11  
R10 + 2−−> R10  
F
F
MOV @Rn+,Rm  
Immediate  
MOV #X,TONI  
#45 −−> M(TONI)  
NOTE: S = source  
D = destination  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
D
Active mode AM;  
All clocks are active  
Low-power mode 0 (LPM0);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
D
D
Low-power mode 1 (LPM1);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
DCO’s dc-generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4);  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
Crystal oscillator is stopped  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh−0FFC0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g. flash is not programmed) the CPU will  
go into LPM4 immediately after power−up.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
Watchdog  
PORIFG  
RSTIFG  
WDTIFG  
KEYV  
Reset  
0FFFEh  
31, highest  
Flash key violation  
PC out-of-range (see Note 1)  
(see Note 2)  
NMIIFG  
OFIFG  
ACCVIFG  
NMI  
Oscillator fault  
Flash memory access violation  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
0FFFCh  
30  
(see Notes 2 & 4)  
0FFFAh  
0FFF8h  
0FFF6h  
0FFF4h  
0FFF2h  
29  
28  
27  
26  
25  
Comparator_A+  
Watchdog Timer+  
Timer_A2  
CAIFG  
WDTIFG  
maskable  
maskable  
maskable  
TACCR0 CCIFG (see Note 3)  
TACCR1 CCIFG,  
TAIFG (see Notes 2 & 3)  
Timer_A2  
maskable  
0FFF0h  
24  
0FFEEh  
0FFECh  
0FFEAh  
0FFE8h  
23  
22  
21  
20  
I/O Port P2  
(eight flags)  
P2IFG.0 to P2IFG.7  
(see Notes 2 & 3)  
maskable  
maskable  
0FFE6h  
0FFE4h  
19  
18  
I/O Port P1  
(eight flags)  
P1IFG.0 to P1IFG.7  
(see Notes 2 & 3)  
0FFE2h  
0FFE0h  
17  
16  
(see Note 5)  
(see Note 6)  
0FFDEh  
15  
0FFDCh ... 0FFC0h  
14 ... 0, lowest  
NOTES: 1. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h−01FFh).  
2. Multiple source flags  
3. Interrupt flags are located in the module  
4. (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
5. This location is used as bootstrap loader security key (BSLSKEY).  
A value of 0AA55h at this location disables the BSL completely.  
A value of 0h disables the erasure of the flash if an invalid password is supplied.  
6. The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if  
necessary.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
OFIE  
WDTIE  
ACCVIE  
NMIIE  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer  
is configured in interval timer mode.  
OFIE:  
Oscillator fault enable  
NMIIE:  
ACCVIE:  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
7
6
5
4
3
2
1
0
Address  
01h  
interrupt flag register 1 and 2  
7
6
5
4
3
2
1
0
Address  
02h  
NMIIFG  
RSTIFG  
PORIFG  
OFIFG  
WDTIFG  
rw-0  
rw-(0)  
rw-1  
rw-(0)  
rw-(1)  
WDTIFG:  
Set on Watchdog Timer overflow (in watchdog mode) or security key violation.  
Reset on V power-up or a reset condition at RST/NMI pin in reset mode.  
Flag set on oscillator fault  
CC  
OFIFG:  
RSTIFG:  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on V  
power−up  
CC  
PORIFG:  
NMIIFG:  
Power−On Reset interrupt flag. Set on V  
Set via RST/NMI-pin  
power−up.  
CC  
7
6
5
4
3
2
1
0
Address  
03h  
Legend  
rw:  
Bit can be read and written.  
rw-0,1:  
rw-(0,1):  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
memory organization  
MSP430F2101  
MSP430F2111  
MSP430F2121  
MSP430F2131  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
1KB Flash  
0FFFFh−0FFE0h  
0FFFFh−0FC00h  
2KB Flash  
0FFFFh−0FFE0h  
0FFFFh−0F800h  
4KB Flash  
0FFFFh−0FFE0h  
0FFFFh−0F000h  
8KB Flash  
0FFFFh−0FFE0h  
0FFFFh−0E000h  
Information memory  
Boot memory  
RAM  
Size  
Flash  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
Size  
ROM  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
Size  
128 Byte  
128 Byte  
256 Byte  
256 Byte  
027Fh − 0200h  
027Fh − 0200h  
02FFh − 0200h  
02FFh − 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
bootstrap loader (BSL)  
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial  
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. A bootstrap loader  
security key is provided at address 0FFDEh to disable the BSL completely or to disable the erasure of the flash  
if an invalid password is supplied. For complete description of the features of the BSL and its implementation,  
see the Application report Features of the MSP430 Bootstrap Loader, Literature Number SLAA089.  
BSLKEY  
00000h  
Description  
Erasure of flash disabled if an invalid password is supplied  
BSL disabled  
0AA55h  
any other value  
BSL enabled  
BSL Function  
Data Transmit  
Data Receive  
DW, PW & DGV Package Pins  
14 - P1.1  
RGE Package Pins  
14 - P1.1  
8 - P2.2  
10 - P2.2  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and four segments of information memory (A to D) of 64  
bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0−n.  
Segments A to D are also called information memory.  
D
Segment A contains calibration data. After reset segment A is protected against programming or erasing.  
It can be unlocked but care should be taken not to erase this segment if the calibration data is required.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, refer to the MSP430x2xx Family User’s Guide.  
oscillator and system clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock  
module is designed to meet the requirements of both low system cost and low-power consumption. The internal  
DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the  
following clock signals:  
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
DCO Calibration Data (provided from factory in flash info memory segment A)  
DCO Frequency  
Calibration Register  
CALBC1_1MHZ  
CALDCO_1MHZ  
CALBC1_8MHZ  
CALDCO_8MHZ  
CALBC1_12MHZ  
CALDCO_12MHZ  
CALBC1_16MHZ  
CALDCO_16MHZ  
Size  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
Address  
010FFh  
010FEh  
010FDh  
010FCh  
010FBh  
010FAh  
010F9h  
010F8h  
1 MHz  
8 MHz  
12 MHz  
16 MHz  
brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off.  
digital I/O  
There are two 8-bit I/O ports implemented—ports P1 and P2:  
D
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of port P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pull−up/pull−down resistor.  
WDT+ watchdog timer  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
comparator_A+  
The primary function of the Comparator_A+ module is to support precision slope analog-to-digital conversions,  
battery-voltage supervision, and monitoring of external analog signals.  
timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A3 Signal Connections  
Input  
Pin Number  
Device  
Input Signal  
Module  
Input Name  
Module  
Block  
Module  
Output Signal  
Output  
Pin Number  
DW, PW, DGV  
RGE  
DW, PW, DGV  
RGE  
13 - P1.0  
13 - P1.0  
TACLK  
ACLK  
SMCLK  
INCLK  
TA0  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
NA  
TA0  
TA1  
TA2  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
9 - P2.1  
14 - P1.1  
10 - P2.2  
7 - P2.1  
14 - P1.1  
8 - P2.2  
14 - P1.1  
18 - P1.5  
14 - P1.1  
18 - P1.5  
TA0  
V
SS  
V
V
CC  
CC  
15 - P1.2  
16 - P1.3  
15 - P1.2  
16 - P1.3  
TA1  
CCI1A  
CCI1B  
GND  
11 - P2.3  
15 - P1.2  
19 - P1.6  
10 - P2.3  
15 - P1.2  
20 - P1.6  
CAOUT (internal)  
V
SS  
V
CC  
V
CC  
TA2  
CCI2A  
CCI2B  
GND  
12 - P2.4  
16 - P1.3  
20 - P1.7  
11 - P2.4  
16 - P1.3  
21 - P1.7  
ACLK (internal)  
V
SS  
V
CC  
V
CC  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Timer_A  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
TACCR2  
TACCR1  
TACCR0  
TAR  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
0176h  
0174h  
0172h  
0170h  
0166h  
0164h  
0162h  
0160h  
012Eh  
Timer_A interrupt vector  
TAIV  
Flash Memory  
Flash control 3  
Flash control 2  
Flash control 1  
FCTL3  
FCTL2  
FCTL1  
012Ch  
012Ah  
0128h  
Watchdog TImer+  
Comparator_A+  
Watchdog/timer control  
WDTCTL  
0120h  
PERIPHERALS WITH BYTE ACCESS  
Comparator_A+ port disable  
Comparator_A+ control 2  
Comparator_A+ control 1  
CAPD  
CACTL2  
CACTL1  
05Bh  
05Ah  
059h  
Basic Clock  
Port P2  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
053h  
058h  
057h  
056h  
Port P2 resistor enable  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
P2REN  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
02Fh  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
Port P2 output  
Port P2 input  
Port P1  
Port P1 resistor enable  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1REN  
P1SEL  
P1IE  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
Port P1 output  
Port P1 input  
Special Function  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
absolute maximum ratings (see Note 1)  
Voltage applied at V  
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V  
CC  
SS  
Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V +0.3 V  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA  
CC  
Storage temperature, T (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
stg  
Storage temperature, T (programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
stg  
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended  
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
2. All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage  
SS  
FB  
is applied to the TEST pin when blowing the JTAG fuse.  
3. Higher temperature may be applied during board soldering process according to the current JEDEC J−STD−020 specification with  
peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.  
recommended operating conditions  
MIN NOM  
MAX UNIT  
Supply voltage during program execution, V  
CC  
1.8  
2.2  
0
3.6  
3.6  
V
V
Supply voltage during program/erase flash memory, V  
CC  
Supply voltage, V  
SS  
V
I Version  
T Version  
−40  
−40  
0
85  
105  
6
°C  
°C  
Operating free-air temperature range, T  
A
V
= 1.8 V, Duty Cycle = 50% 10%  
CC  
CC  
V
= 2.7 V, Duty Cycle = 50% 10%  
Processor frequency f  
SYSTEM  
0
0
12  
16  
(see Note 3)  
MHz  
(Maximum MCLK frequency)  
(see Notes 1, 2 and Figure 1)  
V
= 3.3 V, Duty Cycle = 50% 10%  
CC  
(see Note 4)  
NOTES: 1. The MSP430 CPU is clocked directly with MCLK.  
Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.  
2. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this  
datasheet.  
3. This includes using the provided DCO calibration value for 12 MHz for V  
4. This includes using the provided DCO calibration value for 16 MHz for V  
= 2.7 V to 3.6 V over the operating temperature range.  
= 3.3 V to 3.6 V over the operating temperature range.  
CC  
CC  
Legend:  
16 MHz  
12 MHz  
Supply voltage range,  
during flash memory  
programming  
Supply voltage range,  
during program execution  
6 MHz  
1.8 V  
2.2 V  
2.7 V  
3.3 V 3.6 V  
Supply Voltage −V  
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V  
of 2.2 V.  
CC  
Figure 1. Operating Area  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
active mode supply current (into V ) excluding external current (see Notes 1 and 2)  
CC  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
TYP  
MAX UNIT  
f
= f  
= f  
= 1MHz,  
DCO MCLK SMCLK  
f = 32,768Hz,  
ACLK  
2.2 V  
250  
300  
µA  
Program executes in flash,  
Active mode (AM)  
current (1MHz)  
I
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
AM,1MHz  
AM,1MHz  
3 V  
2.2 V  
3 V  
350  
200  
410  
f
= f  
= f  
= 1MHz,  
DCO MCLK SMCLK  
f = 32,768Hz,  
ACLK  
Program executes in RAM,  
Active mode (AM)  
current (1MHz)  
I
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
µA  
300  
2
f
f
f
= f =  
= 32,768Hz/8 = 4,096Hz,  
= 0Hz,  
MCLK SMCLK  
ACLK  
DCO  
-40−85°C  
105°C  
2.2 V  
2.2 V  
3 V  
5
6
Active mode (AM) Program executes in flash,  
I
I
µA  
9
AM,4kHz  
current (4kHz)  
SELMx = 11, SELS = 1,  
DIVMx = DIVSx = DIVAx = 11,  
CPUOFF = 0, SCG0 = 1, SCG1 = 0,  
OSCOFF = 0  
-40−85°C  
105°C  
3
3 V  
9
f
= f 100kHz,  
= 0Hz,  
= f  
MCLK SMCLK DCO(0,0)  
2.2 V  
3 V  
60  
72  
85  
µA  
95  
f
ACLK  
Program executes in flash,  
RSELx = 0, DCOx = 0,  
Active mode (AM)  
current (100kHz)  
AM,100kHz  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 1  
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a Micro Crystal CC4V−T1A SMD crystal with a load capacitance of 9 pF.  
The internal and external load capacitance is chosen to closely match the required 9pF.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
typical characteristics − active mode supply current (into V  
)
CC  
7.0  
5.0  
f
f
= 16 MHz  
DCO  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
3.0  
2.0  
1.0  
0.0  
T
= 85 °C  
= 25 °C  
A
= 12 MHz  
= 8 MHz  
DCO  
f
T
A
V
= 3 V  
DCO  
CC  
T
= 85 °C  
= 25 °C  
A
T
A
V
CC  
= 2.2 V  
f
= 1 MHz  
DCO  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
CC  
− Supply Voltage − V  
f
DCO  
− DCO Frequency − MHz  
Figure 2. Active mode current vs V , T = 25°C  
Figure 3. Active mode current vs DCO frequency  
CC  
A
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
low power mode supply currents (into V ) excluding external current (see Notes 1 and 2)  
CC  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
TYP  
MAX UNIT  
f
f
f
= 0MHz,  
MCLK  
= f  
= 1MHz,  
= 32,768Hz,  
2.2 V  
65  
80  
SMCLK DCO  
Low-power mode  
ACLK  
I
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
µA  
0 (LPM0) current,  
see Note 3  
LPM0,1MHz  
3 V  
85  
37  
100  
f
f
f
= 0MHz,  
MCLK  
2.2 V  
3 V  
48  
µA  
52  
= f  
SMCLK DCO(0, 0)  
100kHz,  
Low-power mode  
0 (LPM0) current,  
see Note 3  
= 0Hz,  
ACLK  
I
LPM0,100kHz  
RSELx = 0, DCOx = 0,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 1  
41  
22  
f
= f  
MCLK SMCLK  
= 0MHz, f = 1MHz,  
DCO  
-40−85°C  
105°C  
29  
2.2 V  
3 V  
f
= 32,768Hz,  
ACLK  
Low-power mode  
2 (LPM2) current,  
see Note 4  
31  
µA  
32  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
I
LPM2  
-40−85°C  
25  
CPUOFF = 1, SCG0 = 0, SCG1 = 1,  
OSCOFF = 0  
105°C  
-40°C  
25°C  
34  
0.7  
0.7  
1.6  
3
1.2  
1.0  
µA  
2.3  
2.2 V  
3 V  
85°C  
Low-power mode  
3 (LPM3) current,  
see Note 4  
f
= f = 0MHz,  
= f  
= 32,768Hz,  
DCO MCLK SMCLK  
105°C  
-40°C  
25°C  
6
f
ACLK  
I
LPM3,LFXT1  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
0.9  
0.9  
1.6  
3
1.2  
1.2  
µA  
2.8  
85°C  
105°C  
-40°C  
25°C  
7
0.5  
0.5  
0.1  
0.1  
0.8  
2
f
= f = 0MHz,  
= 0Hz,  
= f  
DCO MCLK SMCLK  
Low-power mode  
4 (LPM4) current,  
see Note 5  
f
ACLK  
I
LPM4  
2.2 V/3 V  
µA  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
85°C  
1.9  
105°C  
4
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a Micro Crystal CC4V−T1A SMD crystal with a load capacitance of 9 pF.  
The internal and external load capacitance is chosen to closely match the required 9pF.  
3. Current for brownout and WDT clocked by SMCLK included.  
4. Current for brownout and WDT clocked by ACLK included.  
5. Current for brownout included.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Schmitt-trigger inputs − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45  
1.00  
1.35  
0.25  
0.55  
0.75  
0.2  
TYP  
MAX UNIT  
0.75  
1.65  
2.25  
0.55  
1.20  
1.65  
1.0  
V
CC  
V
Positive-going input threshold  
voltage  
2.2 V  
3 V  
V
IT+  
V
CC  
V
Negative-going input threshold  
voltage  
2.2 V  
3 V  
V
V
IT−  
2.2 V  
3 V  
Input voltage hysteresis (V  
IT+  
V
hys  
V
)
0.3  
1.0  
IT−  
For pull−up: V = V  
For pull−down: V = V  
IN  
;
IN SS  
R
C
Pull−up/pull−down resistor  
Input Capacitance  
20  
35  
50  
kW  
Pull  
I
CC  
V
IN  
= V  
SS  
or V  
CC  
5
pF  
inputs − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Port P1, P2: P1.x to P2.x, External  
trigger puls width to set interrupt  
flag, (see Note 1)  
t
External interrupt timing  
2.2 V/3 V  
20  
ns  
(int)  
NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t  
(int)  
is met. It may be set even with trigger signals  
shorter than t  
.
(int)  
leakage current − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
see Notes 1 and 2  
or V applied to the corresponding pin(s), unless otherwise noted.  
VCC  
MIN  
TYP  
MAX UNIT  
50 nA  
I
High-impedance leakage current  
2.2 V/3 V  
lkg(Px.x)  
NOTES: 1. The leakage current is measured with V  
SS  
CC  
2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pull−up/pull−down resistor  
is disabled.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
outputs − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
= −1.5 mA (see Note 1)  
= −6 mA (see Note 2)  
= −1.5 mA (see Note 1)  
= −6 mA (see Note 2)  
= 1.5 mA (see Note 1)  
= 6 mA (see Note 2)  
= 1.5 mA (see Note 1)  
= 6 mA (see Note 2)  
VCC  
2.2 V  
2.2 V  
3 V  
MIN  
−0.25  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
V
V
CC  
V
CC  
V
CC  
V
CC  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OLmax)  
(OLmax)  
(OLmax)  
(OLmax)  
CC  
V
−0.6  
High-level output  
voltage  
CC  
−0.25  
V
V
OH  
OL  
V
CC  
3 V  
V
−0.6  
CC  
2.2 V  
2.2 V  
3 V  
V
V
+0.25  
SS  
SS  
SS  
SS  
SS  
V
V
V
V +0.6  
SS  
Low-level output  
voltage  
V
V
V
+0.25  
+0.6  
SS  
3 V  
V
SS  
NOTES: 1. The maximum total current, I  
voltage drop specified.  
and I  
, for all outputs combined, should not exceed 12 mA to hold the maximum  
OHmax  
OLmax  
OLmax  
2. The maximum total current, I  
voltage drop specified.  
and I  
, for all outputs combined, should not exceed 48 mA to hold the maximum  
OHmax  
output frequency − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
MAX UNIT  
10 MHz  
12 MHz  
12 MHz  
16 MHz  
Port output frequency  
(with load)  
P1.4/SMCLK, C = 20 pF, R = 1 kOhm  
L
L
f
f
Px.y  
(see Note 1 and 2)  
2.2 V  
3 V  
P2.0/ACLK, P1.4/SMCLK, C = 20 pF  
L
(see Note 2)  
Clock output frequency  
Port_CLK  
NOTES: 1. A resistive divider with 2 times 0.5 kW between V  
and V  
is used as load. The output is connected to the center tap of the divider.  
at the specified toggle frequency.  
CC  
SS  
2. The output voltage reaches at least 10% and 90% V  
CC  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − outputs  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
25.0  
20.0  
15.0  
10.0  
5.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
CC  
P2.4  
= 2.2 V  
T
= 25°C  
V
CC  
P2.4  
= 3 V  
A
T
= 25°C  
= 85°C  
A
T
= 85°C  
A
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 4  
Figure 5  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−5.0  
0.0  
−10.0  
−20.0  
−30.0  
−40.0  
−50.0  
V
= 2.2 V  
CC  
P2.4  
V
= 3 V  
CC  
P2.4  
−10.0  
−15.0  
−20.0  
−25.0  
T
= 85°C  
A
T
A
= 85°C  
T
A
= 25°C  
T
= 25°C  
A
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 6  
Figure 7  
NOTE: One output loaded at a time.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
POR/brownout reset (BOR) (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
TYP  
MAX UNIT  
V
V
(see Figure 8)  
dV /dt 3 V/s  
0.7 × V  
V
CC(start)  
CC  
dV /dt 3 V/s  
(B_IT−)  
(see Figure 8 through Figure 10)  
(see Figure 8)  
1.71  
180  
V
(B_IT−)  
CC  
-40−85°C  
105°C  
70  
70  
130  
130  
mV  
mV  
µs  
V
dV /dt 3 V/s  
CC  
hys(B_IT−)  
d(BOR)  
(reset)  
210  
t
t
(see Figure 8)  
2000  
Pulse length needed at RST/NMI  
pin to accepted reset internally  
2.2 V/3 V  
2
µs  
NOTES: 1. The current consumption of the brownout module is already included in the I  
current consumption data. The voltage level V  
(B_IT−)  
CC  
+ V  
is 1.8V.  
2. During power up, the CPU begins code execution following a period of t  
hys(B_IT−)  
after V  
CC  
= V  
(B_IT−)  
+ V . The default  
hys(B_IT−)  
d(BOR)  
CC(min)  
DCO settings must not be changed until V  
operating frequency.  
V  
, where V  
is the minimum supply voltage for the desired  
CC  
CC(min)  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − POR/brownout reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 9. V  
Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
t = t  
f
r
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 10. V  
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
main DCO characteristics  
D
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
D
DCO control bits DCOx have a step size as defined by parameter S  
.
DCO  
D
Modulation control bits MODx select how often f  
is used within the period of 32 DCOCLK  
DCO(RSEL,DCO+1)  
cycles. The frequency f  
to:  
is used for the remaining cycles. The frequency is an average equal  
DCO(RSEL,DCO)  
32   fDCO(RSEL,DCO)   fDCO(RSEL,DCO)1)  
faverage  
+
MOD   fDCO(RSEL,DCO))(32*MOD)   fDCO(RSEL,DCO)1)  
DCO frequency  
PARAMETER  
TEST CONDITIONS  
RSELx < 14  
VCC  
MIN  
1.8  
TYP  
MAX UNIT  
3.6  
3.6  
3.6  
V
V
V
RSELx = 14  
2.2  
3.0  
Vcc  
Supply voltage range  
RSELx = 15  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
Frequency step between  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
3 V  
0.06  
0.07  
0.10  
0.14  
0.20  
0.28  
0.39  
0.54  
0.80  
1.10  
1.60  
2.50  
3.00  
4.30  
6.00  
8.60  
12.0  
16.0  
0.14 MHz  
0.17 MHz  
0.20 MHz  
0.28 MHz  
0.40 MHz  
0.54 MHz  
0.77 MHz  
1.06 MHz  
1.50 MHz  
2.10 MHz  
3.00 MHz  
4.30 MHz  
5.50 MHz  
7.30 MHz  
9.60 MHz  
13.9 MHz  
18.5 MHz  
26.0 MHz  
DCO(0,0)  
DCO(0,3)  
DCO(1,3)  
DCO(2,3)  
DCO(3,3)  
DCO(4,3)  
DCO(5,3)  
DCO(6,3)  
DCO(7,3)  
DCO(8,3)  
DCO(9,3)  
DCO(10,3)  
DCO(11,3)  
DCO(12,3)  
DCO(13,3)  
DCO(14,3)  
DCO(15,3)  
DCO(15,7)  
3 V  
S
=
RSEL  
S
2.2 V/3 V  
1.55  
ratio  
1.12  
RSEL  
DCO  
range RSEL and RSEL+1  
f
/f  
DCO(RSEL+1,DCO) DCO(RSEL,DCO)  
Frequency step between  
tap DCO and DCO+1  
S
=
DCO  
S
2.2 V/3 V  
2.2 V/3 V  
1.05  
40  
1.08  
50  
f
/f  
DCO(RSEL,DCO+1) DCO(RSEL,DCO)  
Duty Cycle  
Measured at P1.4/SMCLK  
60  
%
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
calibrated DCO frequencies − tolerance at calibration  
PARAMETER  
TEST CONDITIONS  
T
VCC  
MIN  
−1  
TYP  
0.2  
MAX UNIT  
+1  
A
Frequency tolerance at calibration  
25°C  
3 V  
%
BCSCTL1= CALBC1_1MHZ  
DCOCTL = CALDCO_1MHZ  
Gating time: 5ms  
f
1MHz calibration value  
8MHz calibration value  
12MHz calibration value  
16MHz calibration value  
25°C  
3 V  
3 V  
3 V  
3 V  
0.990  
7.920  
11.88  
15.84  
1
8
1.010 MHz  
8.080 MHz  
CAL(1MHz)  
BCSCTL1= CALBC1_8MHZ  
DCOCTL = CALDCO_8MHZ  
Gating time: 5ms  
f
25°C  
25°C  
25°C  
CAL(8MHz)  
BCSCTL1= CALBC1_12MHZ  
DCOCTL = CALDCO_12MHZ  
Gating time: 5ms  
f
12 12.12 MHz  
16 16.16 MHz  
CAL(12MHz)  
BCSCTL1= CALBC1_16MHZ  
DCOCTL = CALDCO_16MHZ  
Gating time: 2ms  
f
CAL(16MHz)  
calibrated DCO frequencies − tolerance over temperature 0°C − +85°C  
PARAMETER  
TEST CONDITIONS  
T
VCC  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
2.2 V  
3.0 V  
3.6 V  
2.2 V  
3.0 V  
3.6 V  
2.2 V  
3.0 V  
3.6 V  
MIN  
TYP  
MAX UNIT  
A
1 MHz tolerance over temperature  
8 MHz tolerance over temperature  
12 MHz tolerance over temperature  
16 MHz tolerance over temperature  
0−85°C  
0−85°C  
0−85°C  
0−85°C  
−2.5  
0.5  
1.0  
1.0  
2.0  
1
+2.5  
+2.5  
+2.5  
+3.0  
%
%
%
%
−2.5  
−2.5  
−3.0  
0.970  
0.975  
0.970  
7.760  
7.800  
7.600  
11.70  
11.70  
11.70  
1.030 MHz  
1.025 MHz  
1.030 MHz  
8.400 MHz  
8.200 MHz  
8.240 MHz  
BCSCTL1= CALBC1_1MHZ  
DCOCTL = CALDCO_1MHZ  
Gating time: 5ms  
1
f
1MHz calibration value  
8MHz calibration value  
0−85°C  
0−85°C  
CAL(1MHz)  
1
8
BCSCTL1= CALBC1_8MHZ  
DCOCTL = CALDCO_8MHZ  
Gating time: 5ms  
8
f
CAL(8MHz)  
8
12 12.30 MHz  
12 12.30 MHz  
12 12.30 MHz  
BCSCTL1= CALBC1_12MHZ  
DCOCTL = CALDCO_12MHZ  
Gating time: 5ms  
f
12MHz calibration value  
16MHz calibration value  
0−85°C  
0−85°C  
CAL(12MHz)  
BCSCTL1= CALBC1_16MHZ  
DCOCTL = CALDCO_16MHZ  
Gating time: 2ms  
3.0 V  
3.6 V  
15.52  
15.00  
16 16.48 MHz  
16 16.48 MHz  
f
CAL(16MHz)  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
calibrated DCO frequencies − tolerance over supply voltage V  
CC  
PARAMETER  
TEST CONDITIONS  
T
VCC  
MIN  
−3  
TYP  
MAX UNIT  
A
1 MHz tolerance over V  
8 MHz tolerance over V  
25°C  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
2
+3  
+3  
+3  
+3  
%
%
%
%
CC  
25°C  
25°C  
25°C  
−3  
−3  
−3  
2
2
2
CC  
12 MHz tolerance over V  
CC  
CC  
16 MHz tolerance over V  
BCSCTL1= CALBC1_1MHZ  
DCOCTL = CALDCO_1MHZ  
Gating time: 5ms  
f
1MHz calibration value  
8MHz calibration value  
12MHz calibration value  
16MHz calibration value  
25°C  
25°C  
25°C  
25°C  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
0.970  
7.760  
11.64  
15.00  
1
8
1.030 MHz  
8.240 MHz  
CAL(1MHz)  
BCSCTL1= CALBC1_8MHZ  
DCOCTL = CALDCO_8MHZ  
Gating time: 5ms  
f
CAL(8MHz)  
BCSCTL1= CALBC1_12MHZ  
DCOCTL = CALDCO_12MHZ  
Gating time: 5ms  
f
12 12.36 MHz  
16 16.48 MHz  
CAL(12MHz)  
BCSCTL1= CALBC1_16MHZ  
DCOCTL = CALDCO_16MHZ  
Gating time: 2ms  
f
CAL(16MHz)  
calibrated DCO frequencies − overall tolerance  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
TYP  
MAX UNIT  
I: -40−85°C  
T: -40−105°C  
1 MHz tolerance overall  
1.8 V − 3.6 V  
−5  
2
2
2
3
+5  
+5  
+5  
+6  
%
%
%
%
I: -40−85°C  
T: -40−105°C  
8 MHz tolerance overall  
12 MHz tolerance overall  
16 MHz tolerance overall  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
−5  
−5  
−6  
I: -40−85°C  
T: -40−105°C  
I: -40−85°C  
T: -40−105°C  
BCSCTL1= CALBC1_1MHZ  
DCOCTL = CALDCO_1MHZ  
Gating time: 5ms  
I: -40−85°C  
T: -40−105°C  
f
1MHz calibration value  
8MHz calibration value  
12MHz calibration value  
16MHz calibration value  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
0.950  
7.600  
11.40  
15.00  
1
8
1.050 MHz  
8.400 MHz  
CAL(1MHz)  
BCSCTL1= CALBC1_8MHZ  
DCOCTL = CALDCO_8MHZ  
Gating time: 5ms  
I: -40−85°C  
T: -40−105°C  
f
CAL(8MHz)  
BCSCTL1= CALBC1_12MHZ  
DCOCTL = CALDCO_12MHZ  
Gating time: 5ms  
I: -40−85°C  
T: -40−105°C  
f
12 12.60 MHz  
16 17.00 MHz  
CAL(12MHz)  
BCSCTL1= CALBC1_16MHZ  
DCOCTL = CALDCO_16MHZ  
Gating time: 2ms  
I: -40−85°C  
T: -40−105°C  
f
CAL(16MHz)  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − calibrated 1MHz DCO frequency  
1.03  
1.02  
V
V
= 1.8 V  
= 2.2 V  
CC  
1.01  
1.00  
0.99  
0.98  
0.97  
CC  
V
CC  
= 3.0 V  
V
CC  
= 3.6 V  
−50.0 −25.0  
0.0  
25.0  
50.0  
75.0 100.0  
T
A
− Temperature − °C  
Figure 11. Calibrated 1 MHz Frequency vs. Temperature  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
T
= 105 °C  
= 85 °C  
A
T
A
T
= 25 °C  
A
T
= −40 °C  
A
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
CC  
− Supply Voltage − V  
Figure 12. Calibrated 1 MHz Frequency vs. V  
CC  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
wake-up from lower power modes (LPM3/4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
BCSCTL1= CALBC1_1MHZ;  
DCOCTL = CALDCO_1MHZ  
2.2 V/3 V  
2
BCSCTL1= CALBC1_8MHZ;  
DCOCTL = CALDCO_8MHZ  
2.2 V/3 V  
2.2 V/3 V  
3 V  
1.5  
DCO clock wake−up time from  
LPM3/4  
(see Note 1)  
t
t
µs  
DCO,LPM3/4  
BCSCTL1= CALBC1_12MHZ;  
DCOCTL = CALDCO_12MHZ  
1
BCSCTL1= CALBC1_16MHZ;  
DCOCTL = CALDCO_16MHZ  
1
CPU wake−up time from LPM3/4  
(see Note 2)  
1/f  
+
MCLK  
CPU,LPM3/4  
t
Clock,LPM3/4  
NOTES: 1. The DCO clock wake−up time is measured from the edge of an external wake−up signal (e.g. port interrupt) to the first clock edge  
observable externally on a clock pin (MCLK or SMCLK).  
2. Parameter applicable only if DCOCLK is used for MCLK.  
typical characteristics − DCO clock wake−up time from LPM3/4  
10.00  
RSELx = 0...11  
1.00  
0.10  
RSELx = 12...15  
0.10  
1.00  
DCO Frequency − MHz  
10.00  
Figure 13. DCO wake−up time from LPM3 vs DCO frequency  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
crystal oscillator, LFXT1, low frequency modes (see Note 4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
f
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V − 3.6 V  
32,768  
Hz  
LFXT1,LF  
LFXT1 oscillator logic level  
square wave input frequency,  
LF mode  
f
XTS = 0, LFXT1Sx = 3  
XTS = 0, LFXT1Sx = 0;  
1.8 V − 3.6 V  
10,000 32,768 50,000  
Hz  
kW  
kW  
LFXT1,LF,logic  
f
C
= 32,768 kHz,  
500  
200  
LFXT1,LF  
= 6 pF  
L,eff  
XTS = 0, LFXT1Sx = 0;  
= 32,768 kHz,  
Oscillation Allowance for LF  
crystals  
OA  
LF  
f
LFXT1,LF  
= 12 pF  
C
L,eff  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
XTS = 0, Measured at  
1
5.5  
8.5  
11  
pF  
pF  
pF  
pF  
Integrated effective Load  
Capacitance, LF mode  
(see Note 1)  
C
L,eff  
Duty Cycle  
LF mode  
P1.4/ACLK, f  
Hz  
= 32,768  
2.2 V/3 V  
2.2 V/3 V  
30  
10  
50  
70  
%
LFXT1,LF  
Oscillator fault frequency, LF  
mode (see Note 3)  
XTS = 0, LFXT1Sx = 3  
(see Notes 2)  
f
10,000  
Hz  
Fault,LF  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Measured with logic level input frequency but also applies to operation with crystals.  
3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.  
Frequencies in between might set the flag.  
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.  
Keep as short of a trace as possible between the device and the crystal.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
crystal oscillator, LFXT1, high frequency modes (see Note 5)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal frequency,  
HF mode 0  
f
f
XTS = 1, LFXT1Sx = 0  
1.8 V − 3.6 V  
0.4  
1
4
MHz  
MHz  
LFXT1,HF0  
LFXT1 oscillator crystal frequency,  
HF mode 1  
XTS = 1, LFXT1Sx = 1  
XTS = 1, LFXT1Sx = 2  
1.8 V − 3.6 V  
1
LFXT1,HF1  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
2
2
10 MHz  
12 MHz  
16 MHz  
10 MHz  
12 MHz  
16 MHz  
LFXT1 oscillator crystal frequency,  
HF mode 2  
f
LFXT1,HF2  
2
0.4  
0.4  
0.4  
LFXT1 oscillator logic level square  
wave input frequency,  
HF mode  
f
XTS = 1, LFXT1Sx = 3  
XTS = 0, LFXT1Sx = 0,  
LFXT1,HF,logic  
f
C
= 1 MHz,  
2700  
800  
300  
1
W
W
LFXT1,HF  
= 15 pF  
L,eff  
XTS = 0, LFXT1Sx = 1  
= 4 MHz,  
Oscillation Allowance for HF  
crystals  
(refer to Figure 14 and Figure 15)  
f
C
OA  
HF  
LFXT1,HF  
= 15 pF  
L,eff  
XTS = 0, LFXT1Sx = 2  
= 16 MHz,  
f
C
W
LFXT1,HF  
= 15 pF  
L,eff  
Integrated effective Load  
Capacitance, HF mode  
(see Note 1)  
C
XTS = 1 (see Note 2)  
pF  
L,eff  
XTS = 1, Measured at P1.4/ACLK,  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
40  
40  
30  
50  
50  
60  
60  
%
%
f
= 10 MHz  
LFXT1,HF  
XTS = 1, Measured at P1.4/ACLK,  
= 16 MHz  
Duty Cycle  
HF mode  
f
LFXT1,HF  
Oscillator fault frequency, HF mode XTS = 1, LFXT1Sx = 3  
(see Note 4) (see Notes 3)  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).  
f
300 kHz  
Fault,HF  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
3. Measured with logic level input frequency but also applies to operation with crystals.  
4. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.  
Frequencies in between might set the flag.  
5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.  
Keep as short of a trace as possible between the device and the crystal.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − LFXT1 oscillator in HF mode (XTS = 1)  
100000.00  
10000.00  
1000.00  
LFXT1Sx = 3  
100.00  
LFXT1Sx = 2  
10.00  
LFXT1Sx = 1  
1.00  
10.00  
0.10  
100.00  
Crystal Frequency − MHz  
Figure 14. Oscillation Allowance vs Crystal Frequency, C  
= 15 pF, T = 25°C  
A
L,eff  
800.0  
LFXT1Sx = 3  
700.0  
600.0  
500.0  
400.0  
300.0  
200.0  
100.0  
0.0  
LFXT1Sx = 2  
LFXT1Sx = 1  
0.0  
4.0  
8.0  
12.0  
16.0  
20.0  
Crystal Frequency − MHz  
Figure 15. XT Oscillator Supply Current vs Crystal Frequency, C  
= 15 pF, T = 25°C  
A
L,eff  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Timer_A  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK;  
External: TACLK, INCLK;  
Duty Cycle = 50% 10%  
2.2 V  
10  
f
t
Timer_A clock frequency  
Timer_A, capture timing  
MHz  
16  
TA  
3 V  
TA0, TA1, TA2  
2.2 V/3 V  
20  
ns  
TA,cap  
Comparator_A+ (see Note 1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
25  
MAX UNIT  
40  
µA  
60  
I
I
CAON=1, CARSEL=0, CAREF=0  
(DD)  
45  
CAON=1, CARSEL=0,  
CAREF=1/2/3, no load at  
P2.3/CA0/TA1 and P2.4/CA1/TA2  
2.2 V  
3 V  
30  
45  
50  
µA  
71  
(Refladder/RefDiode)  
Common-mode input  
voltage  
V
CAON=1  
2.2 V/3 V  
2.2 V/3 V  
0
V
CC  
−1  
V
(IC)  
PCA0=1, CARSEL=1, CAREF=1,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage @ 0.25 V  
node  
CC  
V
0.23  
0.24  
0.48  
0.25  
0.5  
(Ref025)  
V
CC  
PCA0=1, CARSEL=1, CAREF=2,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage @ 0.5V  
node  
CC  
V
2.2 V/3 V  
0.47  
(Ref050)  
(RefVT)  
V
CC  
PCA0=1, CARSEL=1, CAREF=3,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2, T = 85°C  
2.2 V  
3 V  
390  
400  
480  
490  
540  
550  
V
(see Figure 19 and Figure 20)  
mV  
A
V
V
Offset voltage  
See Note 2  
2.2 V/3 V  
2.2 V/3 V  
−30  
0
30  
mV  
mV  
(offset)  
Input hysteresis  
CAON=1  
0.7  
1.4  
hys  
T
= 25°C, Overdrive 10 mV,  
A
2.2 V  
3 V  
80  
70  
165  
300  
240  
2.8  
2.2  
Without filter: CAF=0  
(see Note 3, Figure 16 and  
Figure 17)  
ns  
120  
1.9  
1.5  
Response time  
(low−high and high−low)  
t
(response)  
T
= 25°C, Overdrive 10 mV,  
A
2.2 V  
1.4  
0.9  
With filter: CAF=1  
(see Note 3, Figure 16 and  
Figure 17)  
µs  
3 V  
NOTES: 1. The leakage current for the Comparator_A+ terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements.  
The two successive measurements are then summed together.  
3. Response time measured at P2.2/CAOUT.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
0 V  
V
CC  
0
1
CAF  
CAON  
To Internal  
Modules  
Low Pass Filter  
0
1
0
1
+
_
V+  
V−  
CAOUT  
Set CAIFG  
Flag  
τ ≈ 2.0 µs  
Figure 16. Block Diagram of Comparator_A+ Module  
V
CAOUT  
Overdrive  
V−  
400 mV  
V+  
t
(response)  
Figure 17. Overdrive Definition  
CASHORT  
CA1  
CA0  
1
+
I
= 10µA  
OUT  
V
IN  
Comparator_A+  
CASHORT = 1  
Figure 18. Comparator_A+ Short Resistance Test Condition  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − Comparator_A+  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
= 2.2 V  
V
CC  
= 3 V  
CC  
Typical  
Typical  
−45  
−25  
−5  
15  
35  
55  
75  
95  
−45  
−25  
−5  
15  
35  
55  
75  
95  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 20. V  
vs Temperature, V  
= 2.2 V  
Figure 19. V  
vs Temperature, V  
= 3 V  
(RefVT)  
CC  
(RefVT)  
CC  
100.00  
10.00  
1.00  
V
CC  
= 1.8V  
V
= 2.2V  
CC  
V
CC  
= 3.0V  
V
CC  
= 3.6V  
0.6  
0.0  
0.2  
/V  
0.4  
0.8  
1.0  
V
− Normalized Input Voltage − V/V  
IN CC  
Figure 21. Short Resistance vs V /V  
IN CC  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Flash Memory  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
TYP  
MAX UNIT  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from V  
Supply current from V  
during program  
during erase  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
3
3
PGM  
CC  
7
mA  
ERASE  
CPT  
CC  
Cumulative program time (see Note 1)  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
10  
ms  
20  
ms  
CMErase  
4
10  
5
10  
cycles  
years  
t
T = 25°C  
J
100  
Retention  
t
t
t
t
t
t
Word or byte program time  
30  
25  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
18  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 2  
t
FTG  
6
10593  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. These values are hardwired into the Flash Controller’s state machine (t  
FTG  
= 1/f ).  
FTG  
RAM  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
TYP  
MAX UNIT  
V
RAM retention supply voltage (see Note 1)  
1.6  
V
(RAMh)  
NOTE 1: This parameter defines the minimum supply voltage V  
happen during this supply voltage condition.  
when the data in RAM remains unchanged. No program execution should  
CC  
JTAG Interface  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
MIN  
0
TYP  
MAX UNIT  
MHz  
10 MHz  
90 kΩ  
5
f
TCK input frequency  
see Note 1  
TCK  
3 V  
0
R
Internal pull-down resistance on TEST  
2.2 V/3 V  
25  
60  
Internal  
NOTES: 1. f  
may be restricted to meet the timing requirements of the module selected.  
TCK  
JTAG Fuse (see Note 1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.5  
6
TYP  
MAX UNIT  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse-blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
T
= 25°C  
= 25°C  
= 25°C  
= 25°C  
V
CC(FB)  
A
T
7
100  
1
V
FB  
A
I
t
T
mA  
ms  
FB  
A
T
FB  
A
NOTES: 1. Once the fuse is blown, no further access to the JTAG/Test and emulation feature is possible and is switched to bypass mode.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.0 to P1.3, input/output with Schmitt-trigger  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.0/TACLK  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
P1SEL.x  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
Port P1 (P1.0 to P1.3) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0/TACLK  
0
P1.0† (I/O)  
TACLK  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
DV  
1
SS  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
1
2
3
P1.1† (I/O)  
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.2† (I/O)  
0
1
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.3† (I/O)  
0
1
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
0
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
Port P1 pin schematic: P1.4 to P1.7, input/output with Schmitt-trigger and in-system access features  
Pad Logic  
P1REN.1  
DVSS  
DVCC  
0
1
1
P1DIR.1  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.1  
Module X OUT  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
P1.6/TA1/TDI  
Bus  
Keeper  
P1SEL.1  
P1IN.1  
P1.7/TA2/TDO/TDI  
EN  
EN  
D
Module X IN  
P1IRQ.1  
P1IE.1  
EN  
Q
Set  
P1IFG.1  
Interrupt  
Edge  
Select  
P1SEL.1  
P1IES.1  
To JTAG  
From JTAG  
TDO From JTAG  
P1.7/TA2/TDO/TDI only  
TEST pad  
TEST  
JTAG  
Fuse  
DVSS  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
Port P1 (P1.4 to P1.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
TEST  
P1.4/SMCLK/TCK  
4
P1.4† (I/O)  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
0
1
0
0
1
0
0
1
0
0
1
SMCLK  
1
TCK  
X
P1.5/TA0/TMS  
5
6
7
P1.5† (I/O)  
I: 0; O: 1  
Timer_A3.TA0  
TMS  
1
X
P1.6/TA1/TDI/TCLK  
P1.7/TA2/TDO/TDI  
P1.6† (I/O)  
I: 0; O: 1  
Timer_A3.TA1  
TDI/TCLK (see Note 3)  
P1.7† (I/O)  
1
X
I: 0; O: 1  
Timer_A3.TA2  
TDO/TDI (see Note 3)  
1
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Function controlled by JTAG.  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
Port P2 pin schematic: P2.0 to P2.5, input/output with Schmitt-trigger  
Pad Logic  
To Comparator_A+  
From Comparator_A+  
CAPD.x  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.x  
Module X OUT  
P2.0/ACLK/CA2  
P2.1/INCLK/CA3  
P2.2/CAOUT/TA0/CA4  
P2.3/TA1/CA0  
P2.4/TA2/CA1  
P2.5/CA5  
Bus  
Keeper  
P2SEL.x  
P2IN.x  
EN  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
EN  
Q
Set  
P2IFG.x  
Interrupt  
Edge  
Select  
P2SEL.x  
P2IES.x  
Control signal “From Comparator_A+”  
SIGNAL “FROM COMPARATOR_A+” = 1  
PIN NAME  
FUNCTION  
P2CA4  
1
P2CA0  
P2CA3  
P2CA2  
P2CA1  
P2.0/ACLK/CA2  
P2.1/INCLK/CA3  
P2.2/CAOUT/TA0/CA4  
P2.3/TA1/CA0  
CA2  
CA3  
CA4  
CA0  
CA1  
CA5  
1
N/A  
N/A  
1
0
0
1
1
0
1
N/A  
N/A  
0
1
0
0
OR  
N/A  
0
N/A  
0
N/A  
1
P2.4/TA2/CA1  
1
0
P2.5/CA5  
N/A  
N/A  
1
0
1
NOTES: 1. N/A: Not available or not applicable.  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
Port P2 (P2.0 to P2.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
CAPD.x  
P2.0/ACLK/CA2  
0
P2.0† (I/O)  
I: 0; O: 1  
0
1
X
0
1
1
X
0
1
1
X
0
1
X
0
1
X
0
X
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
1
0
1
ACLK  
1
CA2 (see Note 3)  
P2.1† (I/O)  
X
P2.1/INCLK/CA3  
1
2
I: 0; O: 1  
Timer_A3.INCLK  
0
DV  
1
SS  
CA3 (see Note 3)  
P2.2† (I/O)  
X
P2.2/CAOUT/TA0/CA4  
I: 0; O: 1  
Timer_A3.CCI0B  
CAOUT  
0
1
CA4 (see Note 3)  
P2.3† (I/O)  
X
P2.3/TA1/CA0  
P2.4/TA2/CA1  
P2.5/CA5  
3
4
5
I: 0; O: 1  
Timer_A3.TA1  
CA0 (see Note 3)  
P2.4† (I/O)  
1
X
I: 0; O: 1  
Timer_A3.TA2  
CA1 (see Note 3)  
P2.5† (I/O)  
1
X
I: 0; O: 1  
X
CA5 (see Note 3)  
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the CAPD.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer  
for that pin, regardless of the state of the associated CAPD.x bit.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
Port P2 pin schematic: P2.6, input/output with Schmitt-trigger and crystal oscillator input  
Pad Logic  
To Comparator_A+  
From Comparator_A+  
CAPD.x  
LFXT1 Oscillator  
BCSCTL3.LFXT1Sx = 11  
P2.7/XOUT/CA7  
LFXT1 off  
0
LFXT1CLK  
1
P2SEL.7  
P2REN.6  
DVSS  
DVCC  
0
1
1
P2DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.6  
Module X OUT  
P2.6/XIN/CA6  
Bus  
Keeper  
P2SEL.6  
P2IN.6  
EN  
EN  
D
Module X IN  
P2IRQ.6  
P2IE.6  
EN  
Set  
Q
P2IFG.6  
Interrupt  
Edge  
Select  
P2SEL.6  
P2IES.6  
Control signal “From Comparator_A+”  
SIGNAL “FROM COMPARATOR_A+” = 1  
PIN NAME  
FUNCTION  
P2CA3  
P2CA2  
P2CA1  
P2.6/XIN/CA6  
CA6  
1
1
0
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
Port P2 pin schematic: P2.7, input/output with Schmitt-trigger and crystal oscillator output  
Pad Logic  
To Comparator_A+  
From Comparator_A+  
CAPD.x  
LFXT1 Oscillator  
BCSCTL3.LFXT1Sx = 11  
LFXT1 off  
0
LFXT1CLK  
From  
P2.6/XIN  
P2.6/XIN/CA6  
1
Pad Logic  
P2SEL.6  
P2REN.7  
DVSS  
DVCC  
0
1
1
P2DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.7  
Module X OUT  
P2.7/XOUT/CA7  
Bus  
Keeper  
P2SEL.7  
P2IN.7  
EN  
EN  
D
Module X IN  
P2IRQ.7  
P2IE.7  
EN  
Set  
Q
P2IFG.7  
Interrupt  
Edge  
Select  
P2SEL.7  
P2IES.7  
Control signal “From Comparator_A+”  
SIGNAL “FROM COMPARATOR_A+” = 1  
PIN NAME  
FUNCTION  
P2CA3  
P2CA2  
P2CA1  
P2.7/XOUT/CA7  
CA7  
1
1
1
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
Port P2 (P2.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
CAPD.x  
P2.6/XIN/CA6  
6
P2.6 (I/O)  
XIN†  
I: 0; O: 1  
0
1
0
0
1
X
X
CA6 (see Note 3)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the CAPD.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer  
for that pin, regardless of the state of the associated CAPDx bit.  
Port P2 (P2.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
CAPD.x  
P2.7/XOUT/CA7  
6
P2.7 (I/O)  
I: 0; O: 1  
0
1
0
0
1
XOUT† (see Note 4)  
CA7 (see Note 3)  
X
X
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the CAPD.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer  
for that pin, regardless of the state of the associated CAPD.x bit.  
4. If the pin XOUT/P2.7/CA7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection  
to this pin after reset.  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of  
the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, I , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care  
TF  
must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense  
currents are terminated.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS  
is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode.  
After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse  
check mode has the potential to be activated.  
The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 22). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TEST  
Figure 22. Fuse Check Mode Current, MSP430F21x1  
NOTE:  
The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader  
access key is used. Also, see the bootstrap loader section for more information.  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439C − SEPTEMBER 2004 − REVISED JULY 2006  
Data Sheet Revision History  
Literature  
Number  
Summary  
SLAS439  
SLAS439A  
SLAS439B  
Preliminary PRODUCT PREVIEW datasheet release.  
MSP430x21x1 production datasheet release.  
Corrected instruction cycle time to 62.5ns, pg 1  
Updated Figure 1. Operating Area, pg 12  
Updated Figures 2 & 3, pg 13  
R
unit corrected from ”W” to ”kW”, pg 15  
Pull  
Max load current specification and Note 3 removed from ”outputs” table, pg 16  
MIN and MAX percentages for ”calibrated DCO frequencies − tolerance over supply voltage VCC” corrected from 2.5% to  
3% to match the specified frequency ranges., pg 22  
SLAS439C  
MSP430x21x1T production datasheet release.  
105°C characterization results added.  
NOTE: The referring page and figure numbers are referred to the respective document revision.  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Dec-2006  
PACKAGING INFORMATION  
Orderable Device  
MSP430F2101IDGV  
MSP430F2101IDGVR  
MSP430F2101IDW  
MSP430F2101IDWR  
MSP430F2101IPW  
MSP430F2101IPWR  
MSP430F2101IRGER  
MSP430F2101IRGET  
MSP430F2101TDGV  
MSP430F2101TDGVR  
MSP430F2101TDW  
MSP430F2101TDWR  
MSP430F2101TPW  
MSP430F2101TPWR  
MSP430F2101TRGER  
MSP430F2101TRGET  
MSP430F2111IDGV  
MSP430F2111IDGVR  
MSP430F2111IDW  
MSP430F2111IDWR  
MSP430F2111IPW  
MSP430F2111IPWR  
MSP430F2111IRGER  
MSP430F2111IRGET  
MSP430F2111TDGV  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TVSOP  
DGV  
20  
20  
20  
20  
20  
20  
24  
24  
20  
20  
20  
20  
20  
20  
24  
24  
20  
20  
20  
20  
20  
20  
24  
24  
20  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TVSOP  
SOIC  
DGV  
DW  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
DW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
PW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RGE  
DGV  
DGV  
DW  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TVSOP  
TVSOP  
SOIC  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
DW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
PW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RGE  
DGV  
DGV  
DW  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TVSOP  
TVSOP  
SOIC  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
DW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
PW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RGE  
DGV  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TVSOP  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Dec-2006  
Orderable Device  
MSP430F2111TDGVR  
MSP430F2111TDW  
MSP430F2111TDWR  
MSP430F2111TPW  
MSP430F2111TPWR  
MSP430F2111TRGER  
MSP430F2111TRGET  
MSP430F2121IDGV  
MSP430F2121IDGVR  
MSP430F2121IDW  
MSP430F2121IDWR  
MSP430F2121IPW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TVSOP  
DGV  
20  
20  
20  
20  
20  
24  
24  
20  
20  
20  
20  
20  
20  
24  
24  
20  
20  
20  
20  
20  
20  
24  
24  
20  
20  
20  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SOIC  
SOIC  
DW  
DW  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
PW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RGE  
DGV  
DGV  
DW  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TVSOP  
TVSOP  
SOIC  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
DW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
PW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSP430F2121IPWR  
MSP430F2121IRGER  
MSP430F2121IRGET  
MSP430F2121TDGV  
MSP430F2121TDGVR  
MSP430F2121TDW  
MSP430F2121TDWR  
MSP430F2121TPW  
MSP430F2121TPWR  
MSP430F2121TRGER  
MSP430F2121TRGET  
MSP430F2131IDGV  
MSP430F2131IDGVR  
MSP430F2131IDW  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RGE  
DGV  
DGV  
DW  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TVSOP  
TVSOP  
SOIC  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
DW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
PW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RGE  
DGV  
DGV  
DW  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TVSOP  
TVSOP  
SOIC  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Dec-2006  
Orderable Device  
MSP430F2131IDWR  
MSP430F2131IPW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
DW  
20  
20  
20  
24  
24  
20  
20  
20  
20  
20  
20  
24  
24  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
PW  
PW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSP430F2131IPWR  
MSP430F2131IRGER  
MSP430F2131IRGET  
MSP430F2131TDGV  
MSP430F2131TDGVR  
MSP430F2131TDW  
MSP430F2131TDWR  
MSP430F2131TPW  
MSP430F2131TPWR  
MSP430F2131TRGER  
MSP430F2131TRGET  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RGE  
DGV  
DGV  
DW  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TVSOP  
TVSOP  
SOIC  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
DW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
PW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RGE  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Dec-2006  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 4  
MECHANICAL DATA  
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000  
DGV (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
24 PINS SHOWN  
0,23  
0,13  
M
0,07  
0,40  
24  
13  
0,16 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
0°ā8°  
0,75  
1
12  
0,50  
A
Seating Plane  
0,08  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
38  
48  
56  
DIM  
A MAX  
A MIN  
3,70  
3,50  
3,70  
3,50  
5,10  
4,90  
5,10  
4,90  
7,90  
7,70  
9,80  
9,60  
11,40  
11,20  
4073251/E 08/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.  
D. Falls within JEDEC: 24/48 Pins – MO-153  
14/16/20/56 Pins – MO-194  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to  
discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete. All products are sold  
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent  
TI deems necessary to support this warranty. Except where mandated by government requirements, testing  
of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible  
for their products and applications using TI components. To minimize the risks associated with customer  
products and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent  
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,  
or process in which TI products or services are used. Information published by TI regarding third-party  
products or services does not constitute a license from TI to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or  
other intellectual property of the third party, or a license from TI under the patents or other intellectual  
property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not  
responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service  
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Interface  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Military  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www.ti.com/lpw  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

MSP430F2101IPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101IPWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101IRGE

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101IRGER

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101IRGET

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TDGV

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TDGVR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TDW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TDWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TPWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TRGE

MIXED SIGNAL MICROCONTROLLER
TI