MSP430F2617TPNR [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F2617TPNR
型号: MSP430F2617TPNR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器和处理器 外围集成电路 时钟
文件: 总98页 (文件大小:1650K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
D
D
Low Supply-Voltage Range, 1.8 V to 3.6 V  
D
Supply Voltage Supervisor/Monitor With  
Programmable Level Detection  
Ultralow-Power Consumption:  
-- Active Mode: 365 μA at 1 MHz, 2.2 V  
-- Standby Mode (VLO): 0.5 μA  
D
D
D
Brownout Detector  
Bootstrap Loader  
-- Off Mode (RAM Retention): 0.1 μA  
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by Security  
Fuse  
D
D
Wake-Up From Standby Mode in Less  
Than 1 μs  
16-Bit RISC Architecture,  
62.5-nsInstruction Cycle Time  
D
Family Members Include:  
-- MSP430F2416:  
D
D
Three-Channel Internal DMA  
92KB+256B Flash Memory, 4KB RAM  
-- MSP430F2417:  
92KB+256B Flash Memory, 8KB RAM  
-- MSP430F2418:  
116KB+256B Flash Memory, 8KB RAM  
-- MSP430F2419:  
120KB+256B Flash Memory, 4KB RAM  
-- MSP430F2616:  
12-Bit Analog-to-Digital (A/D) Converter  
With Internal Reference, Sample-and-Hold,  
and Autoscan Feature  
D
D
D
Dual 12-Bit Digital-to-Analog (D/A)  
Converters With Synchronization  
16-Bit Timer_A With Three  
Capture/Compare Registers  
16-Bit Timer_B With Seven  
Capture/Compare-With-Shadow Registers  
92KB+256B Flash Memory, 4KB RAM  
-- MSP430F2617:  
92KB+256B Flash Memory, 8KB RAM  
-- MSP430F2618:  
116KB+256B Flash Memory, 8KB RAM  
-- MSP430F2619:  
D
D
On-Chip Comparator  
Four Universal Serial Communication  
Interfaces (USCIs)  
-- USCI_A0 and USCI_A1  
-- Enhanced UART Supporting  
Auto-Baudrate Detection  
-- IrDA Encoder and Decoder  
-- Synchronous SPI  
120KB+256B Flash Memory, 4KB RAM  
D
D
Available in 80-Pin Quad Flat Pack (QFP)  
and 64-Pin QFP (See Available Options)  
For Complete Module Descriptions, See the  
MSP430x2xx Family User’s Guide,  
Literature Number SLAU144  
-- USCI_B0 and USCI_B1  
-- I 2Ct  
The MSP430F241x devices are identical to the MSP430F261x  
devices, with the exception that the DAC12 modules and the DMA  
controller are not implemented.  
-- Synchronous SPI  
description  
The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency. The calibrated digitally controlled oscillator (DCO) allows wake-up from low-power modes to active  
mode in less than 1 μs.  
The MSP430F261x/241x series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit  
A/D converter, a comparator, dual 12-bit D/A converters, four universal serial communication interface (USCI)  
modules, DMA, and up to 64 I/O pins. The MSP430F241x devices are identical to the MSP430F261x devices,  
with the exception that the DAC12 and the DMA modules are not implemented.  
Typical applications include sensor systems, industrial control applications, hand-held meters, etc.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
I C is a registered trademark of Philips Incorporated.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 2007, Texas Instruments Incorporated  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
PLASTIC 80-PIN LQFP (PN)  
PLASTIC 64-PIN LQFP (PM)  
MSP430F2416TPN  
MSP430F2417TPN  
MSP430F2418TPN  
MSP430F2419TPN  
MSP430F2616TPN  
MSP430F2617TPN  
MSP430F2618TPN  
MSP430F2619TPN  
MSP430F2416TPM  
MSP430F2417TPM  
MSP430F2418TPM  
MSP430F2419TPM  
MSP430F2616TPM  
MSP430F2617TPM  
MSP430F2618TPM  
MSP430F2619TPM  
-- 4 0 °C to 105°C  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
pin designation, MSP430F241x, 80-pin package  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
DVCC1  
P6.3/A3  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P7.6  
2
P7.5  
P6.4/A4  
3
P7.4  
P6.5/A5  
4
P7.3  
P6.6/A6  
5
P7.2  
P6.7/A7/SVSIN  
VREF+  
6
P7.1  
7
P7.0  
XIN  
8
DVSS2  
XOUT  
9
DVCC2  
80-pin  
PN PACKAGE  
(TOP VIEW)  
VeREF+  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P5.7/TBOUTH/SVSOUT  
P5.6/ACLK  
VREF-/VeREF-  
P1.0/TACLK/CAOUT  
P1.1/TA0  
P5.5/SMCLK  
P5.4/MCLK  
P1.2/TA1  
P5.3/UCB1CLK/UCA1STE  
P5.2/UCB1SOMI/UCB1SCL  
P5.1/UCB1SIMO/UCB1SDA  
P5.0/UCB1STE/UCA1CLK  
P4.7/TBCLK  
P1.3/TA2  
P1.4/SMCLK  
P1.5/TA0  
P1.6/TA1  
P1.7/TA2  
P4.6/TB6  
P2.0/ACLK/CA2  
P4.5/TB5  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
pin designation, MSP430F241x, 64-pin package  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DVCC1  
P6.3/A3  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P5.4/MCLK  
2
P5.3/UCB1CLK/UCA1STE  
P5.2/UCB1SOMI/UCB1SCL  
P5.1/UCB1SIMO/UCB1SDA  
P5.0/UCB1STE/UCA1CLK  
P4.7/TBCLK  
P6.4/A4  
3
P6.5/A5  
4
P6.6/A6  
5
P6.7/A7/SVSIN  
VREF+  
6
7
P4.6/TB6  
64-pin  
PM PACKAGE  
(TOP VIEW)  
XIN  
8
P4.5/TB5  
XOUT  
9
P4.4/TB4  
VeREF+  
10  
11  
12  
13  
14  
15  
16  
P4.3/TB3  
VREF-/VeREF-  
P1.0/TACLK/CAOUT  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
P1.4/SMCLK  
P4.2/TB2  
P4.1/TB1  
P4.0/TB0  
P3.7/UCA1RXD/UCA1SOMI  
P3.6/UCA1TXD/UCA1SIMO  
P3.5/UCA0RXD/UCA0SOMI  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
pin designation, MSP430F261x, 80-pin package  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
DVCC1  
P6.3/A3  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P7.6  
2
P7.5  
P6.4/A4  
3
P7.4  
P6.5/A5/DAC1  
P6.6/A6/DAC0  
P6.7/A7/DAC1/SVSIN  
VREF+  
4
P7.3  
5
P7.2  
6
P7.1  
7
P7.0  
XIN  
8
DVSS2  
XOUT  
9
DVCC2  
80-pin  
PN PACKAGE  
(TOP VIEW)  
VeREF+/DAC0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P5.7/TBOUTH/SVSOUT  
P5.6/ACLK  
V
REF-/VeREF-  
P1.0/TACLK/CAOUT  
P1.1/TA0  
P5.5/SMCLK  
P5.4/MCLK  
P1.2/TA1  
P5.3/UCB1CLK/UCA1STE  
P5.2/UCB1SOMI/UCB1SCL  
P5.1/UCB1SIMO/UCB1SDA  
P5.0/UCB1STE/UCA1CLK  
P4.7/TBCLK  
P1.3/TA2  
P1.4/SMCLK  
P1.5/TA0  
P1.6/TA1  
P1.7/TA2  
P4.6/TB6  
P2.0/ACLK/CA2  
P4.5/TB5  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
pin designation, MSP430F261x, 64-pin package  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DVCC1  
P6.3/A3  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P5.4/MCLK  
2
P5.3/UCB1CLK/UCA1STE  
P5.2/UCB1SOMI/UCB1SCL  
P5.1/UCB1SIMO/UCB1SDA  
P5.0/UCB1STE/UCA1CLK  
P4.7/TBCLK  
P6.4/A4  
3
P6.5/A5/DAC1  
P6.6/A6/DAC0  
P6.7/A7/DAC1/SVSIN  
VREF+  
4
5
6
7
P4.6/TB6  
64-pin  
PM PACKAGE  
(TOP VIEW)  
XIN  
8
P4.5/TB5  
XOUT  
9
P4.4/TB4  
VeREF+/DAC0  
10  
11  
12  
13  
14  
15  
16  
P4.3/TB3  
V
REF-/VeREF-  
P4.2/TB2  
P1.0/TACLK/CAOUT  
P1.1/TA0  
P4.1/TB1  
P4.0/TB0  
P1.2/TA1  
P3.7/UCA1RXD/UCA1SOMI  
P3.6/UCA1TXD/UCA1SIMO  
P3.5/UCA0RXD/UCA0SOMI  
P1.3/TA2  
P1.4/SMCLK  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
functional block diagram, MSP430F241x, 80-pin package  
XIN/  
XOUT/  
P3.x/P4.x  
P5.x/P6.x  
4x8  
DVCC1/2 DVSS1/2  
AVCC  
AVSS  
P1.x/P2.x  
2x8  
P7.x/P8.x  
2x8/  
1x16  
XT2IN XT2OUT  
2
2
ACLK  
Oscillators  
Basic Clock  
System+  
Ports  
P1/P2  
Ports  
P3/P4  
P5/P6  
Ports  
P7/P8  
Flash  
RAM  
USCI A0  
UART/  
LIN,  
ADC12  
12-Bit  
SMCLK  
120kB  
116kB  
92kB  
4kB  
8kB  
8kB  
4kB  
IrDA, SPI  
2x8 I/O  
Interrupt  
capability  
2x8/1x16  
I/O  
8
4x8 I/O  
MCLK  
USCI B0  
SPI, I2C  
Channels  
92kB  
16MHz  
MAB  
CPU  
1MB  
incl. 16  
Registers  
MDB  
Hardware  
Multiplier  
Timer_B7  
USCI A1  
UART/  
LIN,  
Brownout  
Protection  
Emulation  
Watchdog  
WDT+  
Timer_A3  
Comp_A+  
7 CC  
Registers,  
Shadow  
Reg  
MPY,  
MPYS,  
MAC,  
IrDA, SPI  
3 CC  
Registers  
8
JTAG  
Interface  
SVS,  
SVM  
15-Bit  
Channels  
USCI B1  
SPI, I2C  
MACS  
RST/NMI  
functional block diagram, MSP430F241x, 64-pin package  
P3.x/P4.x  
P5.x/P6.x  
XIN/ XOUT/  
XT2IN XT2OUT  
DVCC  
Flash  
DVSS  
AVCC  
AVSS  
P1.x/P2.x  
2x8  
4x8  
2
2
ACLK  
Oscillators  
Basic Clock  
System+  
RAM  
Ports  
P1/P2  
Ports  
P3/P4  
P5/P6  
USCI A0  
ADC12  
12-Bit  
UART/  
LIN,  
SMCLK  
120kB  
116kB  
92kB  
4kB  
8kB  
8kB  
4kB  
IrDA, SPI  
2x8 I/O  
Interrupt  
capability  
8
4x8 I/O  
MCLK  
USCI B0  
SPI, I2C  
Channels  
92kB  
16MHz  
CPU  
MAB  
1MB  
incl. 16  
Registers  
MDB  
Hardware  
Multiplier  
Timer_B7  
USCI A1  
UART/  
LIN,  
Brownout  
Protection  
Emulation  
Watchdog  
WDT+  
Timer_A3  
Comp_A+  
7 CC  
Registers,  
Shadow  
Reg  
MPY,  
MPYS,  
MAC,  
IrDA, SPI  
3 CC  
Registers  
8
JTAG  
Interface  
SVS,  
SVM  
15-Bit  
Channels  
USCI B1  
SPI, I2C  
MACS  
RST/NMI  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
functional block diagram, MSP430F261x, 80-pin package  
XIN/  
XOUT/  
P3.x/P4.x  
P5.x/P6.x  
DVCC1/2 DVSS1/2  
AVCC  
AVSS  
P1.x/P2.x  
2x8  
P7.x/P8.x  
2x8/  
1x16  
XT2IN XT2OUT  
2
2
4x8  
ACLK  
Flash  
RAM  
DAC12  
12-Bit  
Oscillators  
Basic Clock  
System+  
Ports  
P1/P2  
Ports  
P3/P4  
P5/P6  
Ports  
P7/P8  
USCI A0  
UART/  
LIN,  
ADC12  
12-Bit  
SMCLK  
120kB  
116kB  
92kB  
92kB  
56kB  
4kB  
8kB  
8kB  
4kB  
4kB  
2
IrDA, SPI  
2x8 I/O  
Interrupt  
capability  
2x8/1x16  
I/O  
8
Channels  
Voltage  
Out  
4x8 I/O  
MCLK  
USCI B0  
SPI, I2C  
Channels  
16MHz  
MAB  
CPU  
1MB  
incl. 16  
Registers  
MDB  
Hardware  
Multiplier  
Timer_B7  
USCI A1  
UART/  
LIN,  
Brownout  
Protection  
DMA  
Controller  
Emulation  
Watchdog  
WDT+  
Timer_A3  
Comp_A+  
7 CC  
Registers,  
Shadow  
Reg  
MPY,  
MPYS,  
MAC,  
IrDA, SPI  
3 CC  
Registers  
8
JTAG  
Interface  
SVS,  
SVM  
3
15-Bit  
Channels  
USCI B1  
SPI, I2C  
Channels  
MACS  
RST/NMI  
functional block diagram, MSP430F261x, 64-pin package  
XIN/  
XOUT/  
P3.x/P4.x  
P5.x/P6.x  
DVCC  
DVSS  
AVCC  
AVSS  
P1.x/P2.x  
XT2IN XT2OUT  
2
2
2x8  
4x8  
ACLK  
Flash  
RAM  
DAC12  
12-Bit  
Oscillators  
Basic Clock  
System+  
Ports  
P1/P2  
Ports  
P3/P4  
P5/P6  
USCI A0  
UART/  
LIN,  
ADC12  
12-Bit  
SMCLK  
120kB  
116kB  
92kB  
92kB  
56kB  
4kB  
8kB  
8kB  
4kB  
4kB  
2
IrDA, SPI  
2x8 I/O  
Interrupt  
capability  
8
Channels  
Voltage  
Out  
4x8 I/O  
MCLK  
USCI B0  
SPI, I2C  
Channels  
16MHz  
MAB  
CPU  
1MB  
incl. 16  
Registers  
MDB  
Hardware  
Multiplier  
Timer_B7  
USCI A1  
UART/  
LIN,  
Brownout  
Protection  
DMA  
Controller  
Emulation  
Watchdog  
WDT+  
Timer_A3  
Comp_A+  
7 CC  
Registers,  
Shadow  
Reg  
MPY,  
MPYS,  
MAC,  
IrDA, SPI  
3 CC  
Registers  
8
JTAG  
Interface  
SVS,  
SVM  
3
15-Bit  
Channels  
USCI B1  
SPI, I2C  
Channels  
MACS  
RST/NMI  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
64  
80  
PIN  
64  
62  
1
PIN  
AV  
AV  
80  
78  
1
Analog supply voltage, positive terminal. Supplies only the analog portion of ADC12 and DAC12.  
Analog supply voltage, negative terminal. Supplies only the analog portion of ADC12 and DAC12.  
Digital supply voltage, positive terminal. Supplies all digital parts.  
CC  
SS  
DV  
DV  
DV  
DV  
CC1  
63  
79  
52  
53  
Digital supply voltage, negative terminal. Supplies all digital parts.  
SS1  
CC2  
SS2  
Digital supply voltage, positive terminal. Supplies all digital parts.  
Digital supply voltage, negative terminal. Supplies all digital parts.  
P1.0/TACLK/  
CAOUT  
12  
12  
I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input/Comparator_A output  
P1.1/TA0  
13  
14  
15  
16  
17  
18  
19  
20  
13  
14  
15  
16  
17  
18  
19  
20  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output  
I/O General-purpose digital I/O pin/SMCLK signal output  
P1.2/TA1  
P1.3/TA2  
P1.4/SMCLK  
P1.5/TA0  
I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output  
P1.6/TA1  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output  
P1.7/TA2  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output  
P2.0/ACLK/CA2  
I/O General-purpose digital I/O pin/ACLK output/Comparator_A input  
P2.1/TAINCLK/  
CA3  
21  
22  
21  
22  
I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK  
P2.2/CAOUT/  
TA0/CA4  
General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL  
I/O  
receive/Comparator_A input  
P2.3/CA0/TA1  
P2.4/CA1/TA2  
23  
24  
23  
24  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input  
General-purpose digital I/O pin/input for external resistor defining the DCO nominal  
frequency/Comparator_A input  
P2.5/Rosc/CA5  
25  
25  
I/O  
P2.6/ADC12CLK/  
DMAE0†/CA6  
General-purpose digital I/O pin/conversion clock  
trigger/Comparator_A input  
– 12-bit ADC/DMA channel 0 external  
26  
27  
28  
26  
27  
28  
I/O  
P2.7/TA0/CA7  
I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output/Comparator_A input  
I/O General-purpose digital I/O pin/USCI B0 slave transmit enable/USCI A0 clock input/output  
P3.0/UCB0STE/  
UCA0CLK  
P3.1/UCB0SIMO/  
UCB0SDA  
2
2
29  
30  
31  
32  
33  
34  
35  
29  
30  
31  
32  
33  
34  
35  
I/O General-purpose digital I/O pin/USCI B0 slave in/master out in SPI mode, SDA I C data in I C mode  
P3.2/UCB0SOMI/  
UCB0SCL  
2
2
I/O General-purpose digital I/O pin/USCI B0 slave out/master in in SPI mode, SCL I C clock in I C mode  
P3.3/UCB0CLK/  
UCA0STE  
I/O General-purpose digital I/O/USCI B0 clock input/output, USCI A0 slave transmit enable  
P3.4/UCA0TXD/  
UCA0SIMO  
General-purpose digital I/O pin/USCIA transmit data output in UART mode, slave data in/master out  
I/O  
in SPI mode  
P3.5/UCA0RXD/  
UCA0SOMI  
General-purpose digital I/O pin/USCI A0 receive data input in UART mode, slave data out/master  
I/O  
in in SPI mode  
P3.6/UCA1TXD/  
UCA1SIMO  
General-purpose digital I/O pin/USCI A1 transmit data output in UART mode, slave data in/master  
I/O  
out in SPI mode  
P3.7/UCA1RXD/  
UCA1SOMI  
General-purpose digital I/O pin/USCIA1 receive data input in UART mode, slave data out/master  
I/O  
in in SPI mode  
MSP430F261x devices only  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Terminal Functions (Continued)  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
P4.0/TB0  
64  
80  
PIN  
36  
37  
38  
39  
40  
41  
42  
43  
PIN  
36  
37  
38  
39  
40  
41  
42  
43  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out1 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out2 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI3A/B input, compare: Out3 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI4A/B input, compare: Out4 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI5A/B input, compare: Out5 output  
I/O General-purpose digital I/O pin/Timer_B, capture: CCI6A input, compare: Out6 output  
I/O General-purpose digital I/O pin/Timer_B, clock signal TBCLK input  
P4.1/TB1  
P4.2/TB2  
P4.3/TB3  
P4.4/TB4  
P4.5/TB5  
P4.6/TB6  
P4.7/TBCLK  
P5.0/UCB1STE/  
UCA1CLK  
44  
45  
46  
47  
44  
45  
46  
47  
I/O General-purpose digital I/O pin/USCI B1 slave transmit enable/USCI A1 clock input/output  
P5.1/UCB1SIMO/  
UCB1SDA  
2
2
I/O General-purpose digital I/O pin/USCI B1slave in/master out in SPI mode, SDA I C data in I C mode  
P5.2/UCB1SOMI/  
UCB1SCL  
2
2
I/O General-purpose digital I/O pin/USCI B1slave out/master in in SPI mode, SCL I C clock in I C mode  
P5.3/UCB1CLK/  
UCA1STE  
I/O General-purpose digital I/O/USCI B1 clock input/output, USCI A1 slave transmit enable  
P5.4/MCLK  
P5.5/SMCLK  
P5.6/ACLK  
48  
49  
50  
48  
49  
50  
I/O General-purpose digital I/O pin/main system clock MCLK output  
I/O General-purpose digital I/O pin/submain system clock SMCLK output  
I/O General-purpose digital I/O pin/auxiliary clock ACLK output  
P5.7/TBOUTH/  
SVSOUT  
General-purpose digital I/O pin/switch all PWM digital output ports to high impedance -- Timer_B  
TB0 to TB6/SVS comparator output  
51  
51  
I/O  
P6.0/A0  
P6.1/A1  
P6.2/A2  
P6.3/A3  
P6.4/A4  
59  
60  
61  
2
75  
76  
77  
2
I/O General-purpose digital I/O pin/analog input A0 – 12-bit ADC  
I/O General-purpose digital I/O pin/analog input A1 – 12-bit ADC  
I/O General-purpose digital I/O pin/analog input A2 – 12-bit ADC  
I/O General-purpose digital I/O pin/analog input A3 – 12-bit ADC  
I/O General-purpose digital I/O pin/analog input A4 – 12-bit ADC  
I/O General-purpose digital I/O pin/analog input A5 – 12-bit ADC/DAC12.1 output  
I/O General-purpose digital I/O pin/analog input A6 – 12-bit ADC/DAC12.0 output  
3
3
P6.5/A5/DAC1  
4
4
P6.6/A6/DAC0  
5
5
P6.7/A7/DAC1 /  
6
6
I/O General-purpose digital I/O pin/analog input a7 – 12-bit ADC/DAC12.1 output/SVS input  
SVSIN  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
P7.5  
P7.6  
P7.7  
P8.0  
P8.1  
P8.2  
P8.3  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
MSP430F261x devices only  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Terminal Functions (Continued)  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
64  
80  
PIN  
PIN  
P8.4  
P8.5  
66  
67  
68  
I/O General-purpose digital I/O pin  
I/O General-purpose digital I/O pin  
P8.6/XT2OUT  
O
General-purpose digital I/O pin/Output terminal of crystal oscillator XT2  
General-purpose digital I/O pin/Input port for crystal oscillator XT2. Only standard crystals can be  
connected.  
P8.7/XT2IN  
69  
I
XT2OUT  
XT2IN  
52  
53  
58  
57  
55  
54  
56  
10  
7
O
I
Output terminal of crystal oscillator XT2  
Input port for crystal oscillator XT2  
RST/NMI  
TCK  
74  
73  
71  
70  
72  
10  
7
I
Reset input, nonmaskable interrupt input port, or bootstrap loader start (in flash devices).  
Test clock (JTAG). TCK is the clock input port fordevice programming test and bootstrap loaderstart.  
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.  
I
TDI/TCLK  
TDO/TDI  
TMS  
I
I/O Test data output port. TDO/TDI data output or programming data input terminal.  
I
I
Test mode select. TMS is used as an input port for device programming and test.  
Input for an external reference voltage/DAC12.0 output  
Ve  
/DAC0  
REF+  
V
O
Output of positive terminal of the reference voltage in the ADC12  
REF+  
Negative terminal for the reference voltage for both sources, the internal reference voltage, or an  
external applied reference voltage  
V
/Ve  
11  
11  
I
REF--  
REF--  
XIN  
8
9
8
9
I
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Output port for crystal oscillator XT1. Standard or watch crystals can be connected.  
XOUT  
O
MSP430F261x devices only  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator, respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g., ADD R4,R5  
R4 + R5 ------> R5  
e.g., CALL  
e.g., JNE  
R8  
PC ---->(TOS), R8----> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
D D  
D D  
MOV Rs,Rd  
R10 ----> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
M(2+R5)----> M(6+R6)  
M(EDE) ----> M(TONI)  
M(MEM) ----> M(TCDAT)  
M(R10) ----> M(Tab+R6)  
Symbolic (PC relative) D D  
Absolute  
D D MOV &MEM,&TCDAT  
Indirect  
D
D
D
MOV @Rn,Y(Rm)  
MOV @Rn+,Rm  
MOV #X,TONI  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) ----> R11  
R10 + 2----> R10  
Immediate  
#45 ----> M(TONI)  
NOTE: S = source  
D = destination  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request, and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
Active mode (AM)  
-- All clocks are active.  
Low-power mode 0 (LPM0)  
D
-- CPU is disabled.  
ACLK and SMCLK remain active. MCLK is disabled.  
D
D
Low-power mode 1 (LPM1)  
-- CPU is disabled.  
ACLK and SMCLK remain active. MCLK is disabled.  
DCO’s dc-generator is disabled if DCO not used in active mode.  
Low-power mode 2 (LPM2)  
-- CPU is disabled.  
MCLK and SMCLK are disabled.  
DCO’s dc-generator remains enabled.  
ACLK remains active.  
D
D
Low-power mode 3 (LPM3)  
-- CPU is disabled.  
MCLK and SMCLK are disabled.  
DCO’s dc-generator is disabled.  
ACLK remains active.  
Low-power mode 4 (LPM4)  
-- CPU is disabled.  
ACLK is disabled.  
MCLK and SMCLK are disabled.  
DCO’s dc-generator is disabled.  
Crystal oscillator is stopped.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
interrupt vector addresses  
The interruptvectors and the power-up starting address are located in theaddress range0x0FFFFto 0x0FFC0.  
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. If the reset  
vector (0x0FFFE) contains 0xFFFF (e.g., flash is not programmed), the CPU enters LPM4 after power-up.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT WORD ADDRESS PRIORITY  
Power-up  
External Reset  
PORIFG  
WDTIFG  
Watchdog  
Flash Key Violation  
PC out of range (see Note 1)  
RSTIFG  
KEYV (see Note 2)  
Reset  
0x0FFFE  
0x0FFFC  
31, highest  
30  
NMI  
Oscillator Fault  
Flash memory access violation  
NMIIFG  
OFIFG  
ACCVIFG (see Notes 2 and 6)  
(Non)maskable  
(Non)maskable  
(Non)maskable  
TBCCR0 CCIFG  
(see Note 3)  
Timer_B7  
Timer_B7  
Maskable  
Maskable  
0x0FFFA  
0x0FFF8  
29  
28  
TBCCR1 to TBCCR6 CCIFGs, TBIFG  
(see Notes 2 and 3)  
Comparator_A+  
Watchdog timer+  
Timer_A3  
CAIFG  
WDTIFG  
Maskable  
Maskable  
Maskable  
0x0FFF6  
0x0FFF4  
0x0FFF2  
27  
26  
25  
TACCR0 CCIFG (see Note 3)  
TACCR1 CCIFG  
TACCR2 CCIFG  
TAIFG (see Notes 2 and 3)  
Timer_A3  
Maskable  
Maskable  
0x0FFF0  
24  
USCI_A0/USCI_B0 receive  
USCI_B0 I2C status  
UCA0RXIFG, UCB0RXIFG  
(see Notes 2 and 4)  
0x0FFEE  
0x0FFEC  
23  
22  
USCI_A0/USCI_B0 transmit  
USCI_B0 I2C receive/transmit  
UCA0TXIFG, UCB0TXIFG  
(see Note 2 and 4)  
Maskable  
Maskable  
ADC12  
ADC12IFG (see Notes 2 and 3)  
0x0FFEA  
0x0FFE8  
0x0FFE6  
0x0FFE4  
21  
20  
19  
18  
I/O port P2 (eight flags)  
I/O port P1 (eight flags)  
P2IFG.0 to P2IFG.7 (see Notes 2 and 3)  
P1IFG.0 to P1IFG.7 (see Notes 2 and 3)  
Maskable  
Maskable  
USCI_A0/USCI_B1 receive  
USCI_B1 I2C status  
UCA1RXIFG, UCB1RXIFG  
(see Notes 2 and 4)  
Maskable  
Maskable  
Maskable  
Maskable  
0x0FFE2  
0x0FFE0  
0x0FFDE  
0x0FFDC  
17  
16  
15  
14  
USCI_A1/USCI_B1 transmit  
USCI_B1 I2C receive/transmit  
UCA1TXIFG, UCB1TXIFG  
(see Notes 2 and 5)  
DMA0IFG, DMA1IFG, DMA2IFG  
(see Notes 2 and 3)  
DMA  
DAC12  
DAC12_0IFG, DAC12_1IFG  
(see Notes 2 and 3)  
0x0FFDA to  
0x0FFC0  
13 to 0,  
lowest  
Reserved (see Notes 7 and 8)  
Reserved  
NOTES: 1. A reset is executed if the CPU tries to fetch instructions from within the module register memory address range (0x00000 to 0x001FF)  
or from within unused address ranges.  
2. Multiple source flags.  
3. Interrupt flags are located in the module.  
4. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.  
5. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.  
6. (Non)maskable: The individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot.  
7. The address 0x0FFBE is used as bootstrap loader security key (BSLSKEY).  
A 0x0AA55 at this location disables the BSL completely.  
A zero disables the erasure of the flash if an invalid password is supplied.  
8. The interrupt vectors at addresses 0x0FFDA to 0x0FFC0 are not used in this device and can be used for regular program code if  
necessary.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
special function registers  
Most interrupt enable bits are collected in the lowest address space. Special-function register bits not allocated  
to a functional purpose are not physically present in the device. This arrangement provides simple software  
access.  
interrupt enable 1 and 2  
Address  
00h  
7
6
5
4
3
2
1
0
ACCVIE  
rw--0  
NMIIE  
rw--0  
OFIE  
rw--0  
WDTIE  
rw--0  
Interrupt Enable Register 1  
WDTIE  
Watchdog timer interrupt enable. Inactive if watchdog mode is selected.  
Active if watchdog timer is configured as general-purpose timer.  
OFIE  
Oscillator-fault-interrupt enable  
NMIIE  
ACCVIE  
Nonmaskable-interrupt enable  
Flash memory access violation interrupt enable  
Address  
01h  
7
6
5
4
3
2
1
0
UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE  
rw--0 rw--0 rw--0 rw--0  
Interrupt Enable Register 2  
UCA0RXIE  
UCA0TXIE  
UCB0RXIE  
UCB0TXIE  
USCI_A0 receive-interrupt enable  
USCI_A0 transmit-interrupt enable  
USCI_B0 receive-interrupt enable  
USCI_B0 transmit-interrupt enable  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
interrupt flag register 1 and 2  
Address  
02h  
7
6
5
4
3
2
1
0
NMIIFG  
rw--0  
RSTIFG  
rw--(0)  
PORIFG  
rw--(1)  
OFIFG  
rw--1  
WDTIFG  
rw--(0)  
Interrupt Flag Register 1  
Set on watchdog timer overflow or security key violation  
WDTIFG  
Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode  
OFIFG  
Flag set on oscillator fault7  
PORIFG  
RSTIFG  
Power--on interrupt flag. Set on VCC power up.  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset  
on VCC power up.  
NMIIFG  
Set via RST/NMI pin  
Address  
03h  
7
6
5
4
3
2
1
0
UCB0TX  
IFG  
UCB0RX  
IFG  
UCA0TX  
IFG  
UCA0RX  
IFG  
rw--1  
rw--0  
rw--1  
rw--0  
Interrupt Flag Register 2  
UCA0RXIFG USCI_A0 receive-interrupt flag  
UCA0TXIFG USCI_A0 transmit-interrupt flag  
UCB0RXIFG USCI_B0 receive-interrupt flag  
UCB0TXIFG  
USCI_B0 transmit-interrupt flag  
Legend  
rw:  
Bit can be read and written .  
rw-0,1:  
rw-(0,1)  
Bit can be read and written . It is Reset or Set by PUC .  
Bit can be read and written . It is Reset or Set by POR .  
SFR bit is not present in device .  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
memory organization  
MSP430F2416  
MSP430F2616  
MSP430F2417  
MSP430F2617  
Memory  
Size  
92KB  
92KB  
Main: interrupt vector  
Main: code memory  
Flash  
Flash  
0x0FFFF -- 0x0FFC0  
0x18FFF -- 0x02100  
0x0FFFF -- 0x0FFC0  
0x19FFF -- 0x03100  
RAM (total)  
Extended  
Mirrored  
Size  
Size  
Size  
4kB  
8kB  
0x020FF -- 0x01100  
2kB  
0x020FF -- 0x01900  
2kB  
0x030FF -- 0x01100  
6kB  
0x030FF -- 0x01900  
2kB  
0x018FF -- 0x01100  
0x018FF -- 0x01100  
Information memory  
Boot memory  
Size  
Flash  
256 Byte  
0x010FF -- 0x01000  
256 Byte  
0x010FF -- 0x01000  
Size  
1KB  
1KB  
ROM  
0x00FFF -- 0x00C00  
0x00FFF -- 0x00C00  
RAM (mirrored at  
Size  
2KB  
2KB  
0x18FF to 0x01100)  
0x009FF -- 0x00200  
0x009FF -- 0x00200  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
0x001FF -- 0x00100  
0x000FF -- 0x00010  
0x0000F -- 0x00000  
0x001FF -- 0x00100  
0x000FF -- 0x00010  
0x0000F -- 0x00000  
MSP430F2618  
MSP430F2418  
MSP430F2619  
MSP430F2419  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
116KB  
0x0FFFF -- 0x0FFC0  
0x1FFFF -- 0x03100  
120KB  
0x0FFFF -- 0x0FFC0  
0x1FFFF -- 0x02100  
RAM (total)  
Extended  
Mirrored  
Size  
Size  
Size  
8kB  
4kB  
0x030FF -- 0x01100  
6kB  
0x030FF -- 0x01900  
2kB  
0x020FF -- 0x01100  
2kB  
0x020FF -- 0x01900  
2kB  
0x018FF -- 0x01100  
0x018FF -- 0x01100  
Information memory  
Boot memory  
Size  
Flash  
256 Byte  
0x010FF -- 0x01000  
256 Byte  
0x010FF -- 0x01000  
Size  
1KB  
1KB  
ROM  
0x00FFF -- 0x00C00  
0x00FFF -- 0x00C00  
RAM (mirrored at  
Size  
2KB  
2KB  
0x18FF to 0x01100)  
0x009FF -- 0x00200  
0x009FF -- 0x00200  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
0x001FF -- 0x00100  
0x000FF -- 0x00010  
0x0000F -- 0x00000  
0x001FF -- 0x00100  
0x000FF -- 0x00010  
0x0000F -- 0x00000  
bootstrap loader (BSL)  
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access  
to the MSP430 memory via the BSL is protected by a user-defined password. For complete description of the  
features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap  
Loader, literature number SLAA089.  
BSL Function  
Data Transmit  
Data Receive  
PM, RTD Package Pins  
13 - P1.1  
22 - P2.2  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and four segments of information memory (A to D) of 64  
bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n.  
Segments A to D are also called information memory.  
D
D
Segment A contains calibration data. After reset, segment A is protected against programming or erasing.  
It can be unlocked, but care should be taken not to erase this segment if the calibration data is required.  
Flash content integrity check with marginal read modes  
peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x2xx Family User’s Guide, literature number  
SLAU144.  
DMA controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using  
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system  
power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to  
or from a peripheral.  
oscillator and system clock  
The clock system in the MSP430x241x and MSP43x261x family of devices is supported by the basic clock  
module that includes support for a 32768-Hz watch crystal oscillator, an internal very low power, low frequency  
oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock  
module is designed to meet the requirements of both low system cost and low-power consumption. The internal  
DCO provides a fast turn-on clock source and stabilizes in less than 1 μs. The basic clock module provides the  
following clock signals:  
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high frequency crystal, or a very  
low-power LF oscillator  
D
D
Main clock (MCLK), the system clock used by the CPU  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules  
The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
calibration data stored in information memory segment A  
Calibration data is stored for the DCO and for the ADC12. It is organized in a tag-length-value (TLV) structure.  
TAGS USED BY THE ADC CALIBRATION TAGS  
NAME  
ADDRESS  
0x10F6  
0x10DA  
--  
VALUE  
0x01  
DESCRIPTION  
TAG_DCO_30  
TAG_ADC12_1  
TAG_EMPTY  
DCO frequency calibration at VCC = 3 V and T = 25°C at calibration  
A
0x10  
ADC12_1 calibration tag  
0xFE  
Identifier for empty memory areas  
LABELS USED BY THE ADC CALIBRATION TAGS  
CONDITION AT CALIBRATION / DESCRIPTION  
LABEL  
SIZE  
word  
word  
word  
word  
word  
word  
word  
word  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
ADDRESS OFFSET  
0x000E  
0x000C  
0x000A  
0x0008  
CAL_ADC_25T85 INCHx = 0x1010; REF2_5 = 1, T = 85°C  
A
CAL_ADC_25T30 INCHx = 0x1010; REF2_5 = 1, T = 30°C  
A
CAL_ADC_25VREF_FACTOR REF2_5 = 1, T = 30°C  
A
CAL_ADC_15T85 INCHx = 0x1010; REF2_5 = 0, T = 85°C  
A
CAL_ADC_15T30 INCHx = 0x1010; REF2_5 = 0, T = 30°C  
0x0006  
A
CAL_ADC_15VREF_FACTOR REF2_5 = 0, T = 30°C  
0x0004  
A
CAL_ADC_OFFSET External V  
CAL_ADC_GAIN_FACTOR External V  
CAL_BC1_1MHz --  
= 1.5 V, f  
= 1.5 V, f  
= 5 MHz  
= 5 MHz  
0x0002  
REF  
REF  
ADC12CLK  
ADC12CLK  
0x0000  
0x0007  
CAL_DCO_1MHz --  
0x0006  
CAL_BC1_8MHz --  
0x0005  
CAL_DCO_8MHz --  
0x0004  
CAL_BC1_12MHz --  
0x0003  
CAL_DCO_12MHz --  
0x0002  
CAL_BC1_16MHz --  
0x0001  
CAL_DCO_16MHz --  
0x0000  
brownout, supply voltage supervisor (SVS)  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off. The SVS circuitry detects if the supply voltage drops below a user selectable level and supports  
both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the  
device is not automatically reset).  
The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not  
have ramped to VCC(min) at that time. The user must ensure that the default DCO settings are not changed until  
VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min)  
.
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
digital I/O  
There are up to eight 8-bit I/O ports implemented—ports P1 through P8:  
D
D
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all eight bits of ports P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pullup/pulldown resistor.  
Ports P7/P8 can be accessed word wise.  
watchdog timer+ (WDT+)  
The primary function of the WDT+ module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
hardware multiplier  
The multiplication operation is supported by a dedicated peripheral module. The module performs 16×16,  
16×8, 8×16, and 8×8 bit operations. The module is capable of supporting signed and unsigned multiplication  
as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed  
immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are  
required.  
universal serial communication interface (USCI)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3 pin or 4 pin) or I2C, and asynchronous combination protocols such as  
UART, enhanced UART with automatic baudrate detection (LIN), and IrDA.  
The USCI A module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, and IrDA.  
The USCI B module provides support for SPI (3 pin or 4 pin) and I2C.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
TIMER_A3 SIGNAL CONNECTIONS  
INPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE  
BLOCK  
MODULE OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
12 - P1.0  
TACLK  
ACLK  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
NA  
SMCLK  
TAINCLK  
TA0  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
21 - P2.1  
13 - P1.1  
22 - P2.2  
13 - P1.1  
17 - P1.5  
27 - P2.7  
TA0  
TA0  
DV  
DV  
SS  
CC  
V
CC  
14 - P1.2  
TA1  
CAOUT (internal)  
CCI1A  
CCI1B  
GND  
14 - P1.2  
18 - P1.6  
DV  
23 - P2.3  
SS  
CC  
TA1  
TA2  
DV  
V
ADC12 (internal)  
DAC12_0 (internal)  
DAC12_1 (internal)  
15 - P1.3  
CC  
15 - P1.3  
TA2  
ACLK (internal)  
CCI2A  
CCI2B  
GND  
19 - P1.7  
CCR2  
DV  
24 - P2.4  
SS  
CC  
DV  
V
CC  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
timer_B7  
Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
TIMER_B3/B7 SIGNAL CONNECTIONS  
INPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE  
BLOCK  
MODULE OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
43 - P4.7  
TBCLK  
ACLK  
SMCLK  
TBCLK  
TB0  
TBCLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
NA  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
43 - P4.7  
36 - P4.0  
36 - P4.0  
36 - P4.0  
TB0  
ADC12 (internal)  
TB0  
TB1  
TB2  
TB3  
TB4  
TB5  
TB6  
DV  
DV  
SS  
CC  
V
CC  
37 - P4.1  
37 - P4.1  
TB1  
TB1  
CCI1A  
CCI1B  
GND  
37 - P4.1  
ADC12 (internal)  
DV  
DV  
SS  
CC  
V
CC  
38 - P4.2  
38 - P4.2  
TB2  
TB2  
CCI2A  
CCI2B  
GND  
38 - P4.2  
DAC_0(internal)  
DAC_1(internal)  
DV  
DV  
SS  
CC  
V
CC  
39 - P4.3  
39 - P4.3  
TB3  
TB3  
CCI3A  
CCI3B  
GND  
39 - P4.3  
40 - P4.4  
41 - P4.5  
42 - P4.6  
DV  
DV  
SS  
CC  
V
CC  
40 - P4.4  
40 - P4.4  
TB4  
TB4  
CCI4A  
CCI4B  
GND  
DV  
SS  
CC  
DV  
V
CC  
41 - P4.5  
41 - P4.5  
TB5  
TB5  
CCI5A  
CCI5B  
GND  
DV  
DV  
SS  
CC  
V
CC  
42 - P4.6  
TB6  
ACLK (internal)  
CCI6A  
CCI6B  
GND  
DV  
DV  
SS  
CC  
V
CC  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
comparator_A+  
The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions,  
battery-voltage supervision, and monitoring of external analog signals.  
ADC12  
The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR  
core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The  
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without  
any CPU intervention.  
DAC12  
The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 may be used in 8-bit or 12-bit mode  
and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may  
be grouped together for synchronous operation.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
peripheral file map  
PERIPHERAL FILE MAP  
DMA  
DMA channel 2 transfer size  
DMA2SZ  
0x01F2  
0x01EE  
0x01EA  
0x01E8  
0x01E6  
0x01E2  
0x01DE  
0x01DC  
0x01DA  
0x01D6  
0x01D2  
0x01D0  
0x0126  
0x0124  
0x0122  
0x01CA  
0x01C2  
0x01C8  
0x01C0  
0x01A8  
0x01A6  
0x01A4  
0x01A2  
0x01A0  
DMA channel 2 destination address  
DMA channel 2 source address  
DMA channel 2 control  
DMA channel 1 transfer size  
DMA channel 1 destination address  
DMA channel 1 source address  
DMA channel 1 control  
DMA channel 0 transfer size  
DMA channel 0 destination address  
DMA channel 0 source address  
DMA channel 0 control  
DMA module interrupt vector word  
DMA module control 1  
DMA module control 0  
DAC12_1 data  
DMA2DA  
DMA2SA  
DMA2CTL  
DMA1SZ  
DMA1DA  
DMA1SA  
DMA1CTL  
DMA0SZ  
DMA0DA  
DMA0SA  
DMA0CTL  
DMAIV  
DMACTL1  
DMACTL0  
DAC12_1DAT  
DAC12_1CTL  
DAC12_0DAT  
DAC12_0CTL  
ADC12IV  
DAC12  
ADC12  
DAC12_1 control  
DAC12_0 data  
DAC12_0 control  
Interrupt-vector-word register  
Inerrupt-enable register  
Inerrupt-flag register  
ADC12IE  
ADC12IFG  
ADC12CTL1  
ADC12CTL0  
Control register 1  
Control register 0  
Conversion memory 15  
Conversion memory 14  
Conversion memory 13  
Conversion memory 12  
Conversion memory 11  
Conversion memory 10  
Conversion memory 9  
Conversion memory 8  
Conversion memory 7  
Conversion memory 6  
Conversion memory 5  
Conversion memory 4  
Conversion memory 3  
Conversion memory 2  
Conversion memory 1  
Conversion memory 0  
ADC12MEM15 0x015E  
ADC12MEM14 0x015C  
ADC12MEM13 0x015A  
ADC12MEM12 0x0158  
ADC12MEM11 0x0156  
ADC12MEM10 0x0154  
ADC12MEM9  
ADC12MEM8  
ADC12MEM7  
ADC12MEM6  
ADC12MEM5  
ADC12MEM4  
ADC12MEM3  
ADC12MEM2  
ADC12MEM1  
ADC12MEM0  
0x0152  
0x0150  
0x014E  
0x014C  
0x014A  
0x0148  
0x0146  
0x0144  
0x0142  
0x0140  
MSP430F261x devices only  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
PERIPHERAL FILE MAP (CONTINUED)  
ADC12  
(continued)  
ADC memory-control register15  
ADC memory-control register14  
ADC memory-control register13  
ADC memory-control register12  
ADC memory-control register11  
ADC memory-control register10  
ADC memory-control register9  
ADC memory-control register8  
ADC memory-control register7  
ADC memory-control register6  
ADC memory-control register5  
ADC memory-control register4  
ADC memory-control register3  
ADC memory-control register2  
ADC memory-control register1  
ADC memory-control register0  
Capture/compare register 6  
Capture/compare register 5  
Capture/compare register 4  
Capture/compare register 3  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_B register  
ADC12MCTL15 0x008F  
ADC12MCTL14 0x008E  
ADC12MCTL13 0x008D  
ADC12MCTL12 0x008C  
ADC12MCTL11 0x008B  
ADC12MCTL10 0x008A  
ADC12MCTL9  
ADC12MCTL8  
ADC12MCTL7  
ADC12MCTL6  
ADC12MCTL5  
ADC12MCTL4  
ADC12MCTL3  
ADC12MCTL2  
ADC12MCTL1  
ADC12MCTL0  
TBCCR6  
0x0089  
0x0088  
0x0087  
0x0086  
0x0085  
0x0084  
0x0083  
0x0082  
0x0081  
0x0080  
0x019E  
0x019C  
0x019A  
0x0198  
0x0196  
0x0194  
0x0192  
0x0190  
0x018E  
0x018C  
0x018A  
0x0188  
0x0186  
0x0184  
0x0182  
0x0180  
0x011E  
0x0176  
0x0174  
0x0172  
0x0170  
0x016E  
0x016C  
0x016A  
0x0168  
0x0166  
0x0164  
0x0162  
0x0160  
0x012E  
Timer_B7  
TBCCR5  
TBCCR4  
TBCCR3  
TBCCR2  
TBCCR1  
TBCCR0  
TBR  
Capture/compare control 6  
Capture/compare control 5  
Capture/compare control 4  
Capture/compare control 3  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_B control  
TBCCTL6  
TBCCTL5  
TBCCTL4  
TBCCTL3  
TBCCTL2  
TBCCTL1  
TBCCTL0  
TBCTL  
Timer_B interrupt vector  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_A register  
TBIV  
Timer_A3  
TACCR2  
TACCR1  
TACCR0  
TAR  
Reserved  
Reserved  
Reserved  
Reserved  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_A control  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
Timer_A interrupt vector  
TAIV  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
PERIPHERAL FILE MAP (CONTINUED)  
Hardware  
Multiplier  
Sum extend  
SUMEXT  
0x013E  
0x013C  
0x013A  
0x0138  
0x0136  
0x0134  
0x0132  
0x0130  
0x01BE  
0x012C  
0x012A  
0x0128  
0x0120  
0x005D  
0x0067  
0x0066  
0x0065  
0x0064  
0x0063  
0x0062  
0x0061  
0x0060  
0x005F  
0x005E  
0x006F  
0x006E  
0x006D  
0x006C  
0x006B  
0x006A  
0x0069  
0x0068  
0x011A  
0x0118  
0x00CD  
0x00D7  
0x00D6  
0x00D5  
0x00D4  
0x00D3  
0x00D2  
0x00D1  
0x00D0  
0x00CF  
0x00CE  
Result high word  
RESHI  
Result low word  
RESLO  
Second operand  
OP2  
Multiply signed +accumulate/operand1  
Multiply+accumulate/operand1  
Multiply signed/operand1  
Multiply unsigned/operand1  
Flash control 4  
MACS  
MAC  
MPYS  
MPY  
Flash  
FCTL4  
Flash control 3  
FCTL3  
Flash control 2  
FCTL2  
Flash control 1  
FCTL1  
Watchdog  
Watchdog Timer control  
USCI A0 auto baud rate control  
USCI A0 transmit buffer  
USCI A0 receive buffer  
USCI A0 status  
WDTCTL  
USCI A0/B0  
UCA0ABCTL  
UCA0TXBUF  
UCA0RXBUF  
UCA0STAT  
UCA0MCTL  
UCA0BR1  
UCA0BR0  
UCA0CTL1  
UCA0CTL0  
UCA0IRRCTL  
UCA0IRTCLT  
UCB0TXBUF  
UCB0RXBUF  
UCB0STAT  
UCB0CIE  
UCB0BR1  
UCB0BR0  
UCB0CTL1  
UCB0CTL0  
UCB0SA  
USCI A0 modulation control  
USCI A0 baud rate control 1  
USCI A0 baud rate control 0  
USCI A0 control 1  
USCI A0 control 0  
USCI A0 IrDA receive control  
USCI A0 IrDA transmit control  
USCI B0 transmit buffer  
USCI B0 receive buffer  
USCI B0 status  
USCI B0 I2C Interrupt enable  
USCI B0 baud rate control 1  
USCI B0 baud rate control 0  
USCI B0 control 1  
USCI B0 control 0  
USCI B0 I2C slave address  
USCI B0 I2C own address  
USCI A1 auto baud rate control  
USCI A1 transmit buffer  
USCI A1 receive buffer  
USCI A1 status  
UCB0OA  
USCI A1/B1  
UCA1ABCTL  
UCA1TXBUF  
UCA1RXBUF  
UCA1STAT  
UCA1MCTL  
UCA1BR1  
UCA1BR0  
UCA1CTL1  
UCA1CTL0  
UCA1IRRCTL  
UCA1IRTCLT  
USCI A1 modulation control  
USCI A1 baud rate control 1  
USCI A1 baud rate control 0  
USCI A1 control 1  
USCI A1 control 0  
USCI A1 IrDA receive control  
USCI A1 IrDA transmit control  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
PERIPHERAL FILE MAP (CONTINUED)  
USCI B1 transmit buffer  
USCI A1/B1  
(continued)  
UCB1TXBUF  
UCB1RXBUF  
UCB1STAT  
UCB1CIE  
UCB1BR1  
UCB1BR0  
UCB1CTL1  
UCB1CTL0  
UCB1SA  
UCB1OA  
UC1IE  
0x00DF  
0x00DE  
0x00DD  
0x00DC  
0x00DB  
0x00DA  
0x00D9  
0x00D8  
0x017E  
0x017C  
0x0006  
0x0007  
0x005B  
0x005A  
0x0059  
0x0053  
0x0058  
0x0057  
0x0056  
0x0055  
0x0014  
0x003E  
0x003C  
0x003A  
0x0038  
0x0015  
0x003F  
0x003D  
0x003B  
0x0039  
0x0014  
0x003E  
0x003C  
0x003A  
0x0038  
0x0013  
0x0037  
0x0036  
0x0035  
0x0034  
0x0012  
0x0033  
0x0032  
0x0031  
0x0030  
USCI B1 receive buffer  
USCI B1 status  
USCI B1 I2C Interrupt enable  
USCI B1 baud rate control 1  
USCI B1 baud rate control 0  
USCI B1 control 1  
USCI B1 control 0  
USCI B1 I2C slave address  
USCI B1 I2C own address  
USCI A1/B1 interrupt enable  
USCI A1/B1 interrupt flag  
Comparator_A port disable  
Comparator_A control2  
Comparator_A control1  
Basic clock system control3  
Basic clock system control2  
Basic clock system control1  
DCO clock frequency control  
UC1IFG  
Comparator_A+  
Basic Clock  
CAPD  
CACTL2  
CACTL1  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
Brownout, SVS  
SVS control register (reset by brownout signal) SVSCTL  
Port PA  
Port PA resistor enable  
Port PA selection  
Port PA direction  
Port PA output  
PAREN  
PASEL  
PADIR  
PAOUT  
PAIN  
Port PA input  
Port P8  
Port P8 resistor enable  
Port P8 selection  
Port P8 direction  
Port P8 output  
P8REN  
P8SEL  
P8DIR  
P8OUT  
P8IN  
Port P8 input  
Port P7  
Port P7 resistor enable  
Port P7 selection  
Port P7 direction  
Port P7 output  
P7REN  
P7SEL  
P7DIR  
P7OUT  
P7IN  
Port P7 input  
Port P6  
Port P6 resistor enable  
Port P6 selection  
Port P6 direction  
Port P6 output  
P6REN  
P6SEL  
P6DIR  
P6OUT  
P6IN  
Port P6 input  
Port P5  
Port P5 resistor enable  
Port P5 selection  
Port P5 direction  
Port P5 output  
P5REN  
P5SEL  
P5DIR  
P5OUT  
P5IN  
Port P5 input  
80-pin devices only  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
PERIPHERAL FILE MAP (CONTINUED)  
Port P4  
Port P3  
Port P2  
Port P4 selection  
P4SEL  
P4REN  
P4DIR  
P4OUT  
P4IN  
0x001F  
0x0011  
0x001E  
0x001D  
0x001C  
0x0010  
0x001B  
0x001A  
0x0019  
0x0018  
0x002F  
0x002E  
0x002D  
0x002C  
0x002B  
0x002A  
0x0029  
0x0028  
0x0027  
0x0026  
0x0025  
0x0024  
0x0023  
0x0022  
0x0021  
0x0020  
0x0003  
0x0002  
0x0001  
0x0000  
Port P4 resistor enable  
Port P4 direction  
Port P4 output  
Port P4 input  
Port P3 resistor enable  
Port P3 selection  
P3REN  
P3SEL  
P3DIR  
P3OUT  
P3IN  
Port P3 direction  
Port P3 output  
Port P3 input  
Port P2 resistor enable  
Port P2 selection  
P2REN  
P2SEL  
P2IE  
Port P2 interrupt enable  
Port P2 interrupt-edge select  
Port P2 interrupt flag  
Port P2 direction  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P2 output  
Port P2 input  
Port P1  
Port P1 resistor enable  
Port P1 selection  
P1REN  
P1SEL  
P1IE  
Port P1 interrupt enable  
Port P1 interrupt-edge select  
Port P1 interrupt flag  
Port P1 direction  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
Special Functions  
SFR interrupt flag2  
SFR interrupt flag1  
SFR interrupt enable2  
SFR interrupt enable1  
IFG2  
IFG1  
IE2  
IE1  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
absolute maximum ratings (see Note 1)  
Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to 4.1 V  
Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC + 0.3 V  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA  
Storage temperature: Unprogrammed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . --55°C to 150°C  
Programmed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --40°C to 105°C  
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended  
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
2. All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage  
SS  
FB  
is applied to the TDI/TCLK pin when blowing the JTAG fuse.  
3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification, with  
peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.  
recommended operating conditions  
PARAMETER  
MIN  
1.8  
MAX UNIT  
Supply voltage during program execution, V  
AV = DV = V (see Note 1)  
3.6  
3.6  
0.0  
85  
V
V
V
CC  
CC  
CC  
CC  
Supply voltage during flash memory programming, V  
AV = DV = V (see Note 1)  
2.2  
CC  
CC  
CC  
CC  
SS  
Supply voltage, V  
AV = DV = V  
0.0  
SS  
SS  
SS  
I version  
-- 4 0  
-- 4 0  
Operating free-air temperature, T  
°C  
A
T version  
105  
V
= 1.8 V,  
CC  
dc  
dc  
dc  
4.15  
12  
Duty cycle = 50% ± 10%  
V = 2.7 V,  
CC  
Processor frequency f  
(see Notes 2 and 3 and Figure 1)  
(maximum MCLK frequency)  
SYSYTEM  
MHz  
Duty cycle = 50% ± 10%  
V
3.3 V,  
CC  
16  
Duty cycle = 50% ± 10%  
NOTES: 1. It is recommended to power AV and DV from the same source. A maximum difference of 0.3 V between AV and DV can  
CC  
CC  
CC  
CC  
be tolerated during power-up.  
2. The MSP430 CPU is clocked directly with MCLK.  
Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.  
3. Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
Legend:  
16 MHz  
Supply voltage range  
during flash memory  
programming  
12 MHz  
Supply voltage range  
during program execution  
7.5 MHz  
4.15 MHz  
1.8 V  
2.2 V  
2.7 V  
3.3 V 3.6 V  
Supply Voltage --V  
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V of 2.2 V.  
CC  
Figure 1. Operating Area  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
active mode supply current into VCC excluding external current (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
TYP  
MAX UNIT  
f
f
= f  
MCLK  
= f = 1 MHz,  
DCO  
SMCLK  
-- 4 0 _C to 85_C  
105_C  
365  
395  
= 32,768 Hz,  
ACLK  
2.2 V  
Program executes from flash,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
375  
515  
525  
330  
340  
460  
470  
420  
μA  
560  
Active mode (AM)  
current (1 MHz)  
I
I
AM, 1MHz  
-- 4 0 _C to 85_C  
105_C  
3 V  
2.2 V  
3 V  
595  
370  
f
f
= f  
= f  
= 1 MHz,  
SMCLK  
DCO  
MCLK  
-- 4 0 _C to 85_C  
105_C  
= 32,768 Hz,  
ACLK  
Program executes in RAM,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
390  
μA  
495  
Active mode (AM)  
current (1 MHz)  
AM, 1MHz  
-- 4 0 _C to 85_C  
105_C  
520  
9
f
f
f
= f  
=
SMCLK  
MCLK  
ACLK  
-- 4 0 _C to 85_C  
105_C  
2.1  
15  
3
= 32,768 Hz/8 = 4,096 Hz,  
= 0 Hz,  
2.2 V  
3 V  
DCO  
31  
μA  
11  
Active mode (AM) Program executes in flash,  
I
I
AM, 4kHz  
current (4 kHz)  
SELMx = 11, SELS = 1,  
DIVMx = DIVSx = DIVAx = 11,  
CPUOFF = 0, SCG0 = 1, SCG1 = 0,  
OSCOFF = 0  
-- 4 0 _C to 85_C  
105_C  
19  
32  
86  
f
f
= f  
= 0 Hz,  
= f  
100 kHz,  
DCO(0, 0)  
MCLK  
ACLK  
SMCLK  
-- 4 0 _C to 85_C  
105_C  
67  
80  
84  
99  
2.2 V  
3 V  
99  
μA  
Program executes in flash,  
RSELx = 0, DCOx = 0,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 1  
Active mode (AM)  
current (100 kHz)  
AM,100kHz  
-- 4 0 _C to 85_C  
105_C  
107  
128  
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a micro crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
typical characteristics -- active mode supply current (into DVCC + AVCC  
)
7.0  
10.0  
T
= 85 °C  
= 25 °C  
A
f
= 16 MHz  
= 12 MHz  
DCO  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
T
A
f
DCO  
V
= 3 V  
CC  
T
= 85 °C  
= 25 °C  
A
f
= 8 MHz  
DCO  
T
A
V
= 2.2 V  
CC  
f
= 1 MHz  
DCO  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
-- Supply Voltage -- V  
f
-- DCO Frequency -- MHz  
CC  
DCO  
Figure 2. Active Mode Current vs VCC, TA = 25°C  
Figure 3. Active Mode Current vs DCO Frequency  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
low-power mode supply current into VCC excluding external current (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
TYP  
MAX UNIT  
f
f
f
= 0 MHz,  
MCLK  
-- 4 0 _C to 85_C  
105_C  
68  
83  
= f  
= 1 MHz,  
SMCLK  
DCO  
2.2 V  
= 32,768 Hz,  
Low-power mode 0  
(LPM0) current,  
see Note 3  
83  
87  
98  
μA  
105  
ACLK  
I
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
LPM0, 1MHz  
-- 4 0 _C to 85_C  
105_C  
3 V  
100  
125  
49  
f
f
f
= 0MHz,  
MCLK  
-- 4 0 _C to 85_C  
105_C  
37  
50  
40  
57  
23  
35  
25  
2.2 V  
3 V  
= f  
100 kHz,  
SMCLK  
DCO(0, 0)  
Low-power mode 0  
(LPM0) current,  
see Note 3  
62  
μA  
55  
= 0 Hz,  
I
ACLK  
LPM0,  
RSELx = 0, DCOx = 0,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 1  
f
f
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 1,  
OSCOFF = 0  
100kHz  
-- 4 0 _C to 85_C  
105_C  
73  
33  
= f  
= 0 MHz, f  
= 1 MHz,  
DCO  
MCLK  
ACLK  
SMCLK  
-- 4 0 _C to 85_C  
105_C  
2.2 V  
3 V  
= 32,768 Hz,  
Low-power mode 2  
(LPM2) current,  
see Note 4  
46  
μA  
36  
I
LPM2  
-- 4 0 _C to 85_C  
105_C  
-- 4 0 °C  
25°C  
40  
0.8  
1
55  
1.2  
1.3  
7
2.2 V  
3 V  
85°C  
4.6  
14  
f
f
= f  
= f  
= 0 MHz,  
SMCLK  
DCO  
MCLK  
Low-power mode 3  
(LPM3) current,  
see Note 4  
105°C  
-- 4 0 °C  
25°C  
24  
μA  
1.3  
= 32,768 Hz,  
ACLK  
I
LPM3,LFXT1  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
0.9  
1.1  
5.5  
17  
1.5  
8
85°C  
105°C  
-- 4 0 °C  
25°C  
30  
1.0  
1.0  
6.5  
0.4  
0.5  
4.3  
14  
2.2 V  
3 V  
85°C  
f
f
= f  
= f  
= 0 MHz,  
SMCLK  
DCO  
MCLK  
105°C  
-- 4 0 °C  
25°C  
24  
μA  
1.2  
Low-power mode 3  
(LPM3) current,  
see Note 4  
from internal LF oscillator (VLO),  
ACLK  
I
LPM3,VLO  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
0.6  
0.6  
5
1.2  
7.5  
85°C  
105°C  
16.5  
29.5  
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a micro crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
3. Current for Brownout and WDT+ is included. The WDT+ is clocked by SMCLK.  
4. Current for Brownout and WDT+ is included. The WDT+ is clocked by ACLK.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
low-power mode supply current into VCC excluding external current (see Notes 1 and 2) (continued)  
PARAMETER  
TEST CONDITIONS  
T
VCC  
MIN  
TYP  
0.1  
0.1  
4
MAX UNIT  
A
-- 4 0 °C  
25°C  
0.5  
0.5  
Low-power mode 4  
(LPM4) current,  
see Note 3  
f
f
= f  
MCLK  
= f = 0 MHz,  
SMCLK  
DCO  
= 0 Hz,  
ACLK  
I
I
2.2 V  
μA  
LPM4  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
85°C  
6
105°C  
13  
23  
0.5  
0.5  
-- 4 0 °C  
25°C  
0.2  
0.2  
4.7  
14  
Low-power mode 4  
(LPM4) current,  
see Note 3  
f
f
= f  
= f  
= 0 MHz,  
SMCLK  
DCO  
MCLK  
= 0 Hz,  
ACLK  
3 V  
μA  
LPM4  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
85°C  
7
105°C  
24  
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a micro crystal CC4V--T1A SMD crystal with a load capacitance of 9 pf. The internal and external  
load capacitance is chosen to closely match the required 9 pf.  
3. Current for Brownout included.  
typical characteristics -- LPM4 current  
16.0  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Vcc = 3.6V  
Vcc = 3.0V  
Vcc = 2.2V  
Vcc = 1.8V  
--40.0 --20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0  
T
A
-- Temperature -- °C  
Figure 4. ILPM4 -- LPM4 Current vs Temperature  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Schmitt-trigger inputs -- ports P1 through P8, RST/NMI, JTAG, XIN, and XT2IN (see Note 4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
0.45 V  
0.75 V  
CC  
CC  
2.2 V  
3 V  
1.0  
1.65  
V
Positive-going input threshold voltage  
V
IT+  
1.35  
2.25  
0.25 V  
0.55 V  
CC  
CC  
2.2 V  
3 V  
0.55  
1.2  
V
V
Negative-going input threshold voltage  
V
V
IT--  
0.75  
0.2  
1.65  
1.0  
2.2 V  
3 V  
Input voltage hysteresis (V  
-- V  
)
IT--  
hys  
IT+  
0.3  
1.0  
Pullup: V = V  
,
SS  
IN  
R
C
Pullup/pulldown resistor  
Input capacitance  
20  
35  
5
50  
kΩ  
Pull  
Pulldown: V = V  
IN  
CC  
V
= V or V  
CC  
pF  
I
IN  
SS  
NOTE 4: XIN and XT2IN in bypass mode only.  
inputs -- ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
20  
MAX  
UNIT  
Port P1, P2: P1.x to P2.x, external trigger pulse width to  
set the interrupt flag (see Note)  
t
External interrupt timing  
2.2 V/3 V  
ns  
int  
NOTE: The external signal sets the interrupt flag every time the minimum t  
parameters are met. It may be set even with trigger signals shorter  
(int)  
than t  
.
(int)  
leakage current -- ports P1 through P8 (see Note 1 and 2)  
PARAMETER  
TEST CONDITIONS  
see Notes 1 and 2  
VCC  
MIN  
MAX  
UNIT  
I
High-impedance leakage current  
2.2 V/3 V  
±50  
nA  
lkg (Px.x)  
NOTES: 1. The leakage current is measured with V or V applied to the corresponding pin(s), unless otherwise noted.  
SS  
CC  
2. The leakage of digital port pins is measured individually. The port pin is selected for input and the pull--up/pull--down resistor is  
disabled..  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
standard inputs -- RST/NMI  
PARAMETER  
Low-level input voltage  
High-level input voltage  
TEST CONDITIONS  
VCC  
MIN  
MAX  
+0.6  
UNIT  
V
V
V
2.2 V/3 V  
2.2 V/3 V  
V
V
SS  
IL  
SS  
CC  
0.8×V  
V
V
IH  
CC  
outputs -- ports P1 through P8  
PARAMETER  
TEST CONDITIONS  
= --1.5 mA (see Note 2)  
= --6 mA (see Note 2)  
= --1.5 mA (see Note 2)  
= --6 mA (see Note 2)  
= 1.5 mA (see Note 2)  
= 6 mA (see Note 2)  
= 1.5 mA (see Note 2)  
= 6 mA (see Note 2)  
VCC  
MIN  
MAX  
UNIT  
I
I
I
I
I
I
I
I
V
--0.25  
V
V
V
V
OH(max)  
OH(max)  
OH(max)  
OH(max)  
OL(max)  
OL(max)  
OL(max)  
OL(max)  
CC  
CC  
CC  
CC  
CC  
2.2 V  
V
-- 0 . 6  
CC  
V
V
High-level output voltage  
Low-level output voltage  
V
OH  
V
--0.25  
CC  
3 V  
2.2 V  
3 V  
V
-- 0 . 6  
CC  
V
V
V
V
V
+0.25  
SS  
SS  
SS  
SS  
SS  
V
+0.6  
SS  
V
OL  
V
+0.25  
SS  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
voltage drop specified.  
and I  
for all outputs combined, should not exceed ±12 mA to satisfy the maximum  
OH(max)  
OL(max),  
2. The maximum total current, I  
voltage drop specified.  
and I  
for all outputs combined, should not exceed ±48 mA to satisfy the maximum  
OH(max)  
OL(max),  
output frequency -- ports P1 through P8  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3.0 V  
2.2 V  
3.3 V  
MIN  
TYP  
MAX  
10  
UNIT  
DC  
Port output frequency  
with load  
P1.4/SMCLK, C = 20 pF, R = 1 kΩ  
L
L
f
f
MHz  
Px.y  
(see Notes 1 and 2)  
DC  
12  
DC  
12  
P2.0/ACLK/CA2, P1.4/SMCLK, C = 20 pF  
L
Clock output frequency  
MHz  
%
Port_CLK  
(see Note 2)  
DC  
16  
P5.6/ACLK, C = 20 pF, LF mode  
L
30  
50  
50  
70  
P5.6/ACLK, C = 20 pF, XT1 mode  
L
40  
40  
60  
P5.4/MCLK, C = 20 pF, XT1 mode  
L
60  
Duty cycle of output  
frequency  
t
(Xdc)  
P5.4/MCLK, C = 20 pF, DCO  
50% -- 15 ns  
40  
50% 50% + 15 ns  
60  
L
P1.4/SMCLK, C = 20 pF, XT2 mode  
%
L
P1.4/SMCLK, C = 20 pF, DCO  
50% -- 15 ns  
50% + 15 ns  
L
NOTES: 1. A resistive divider with 2 times 0.5 kΩ between V and V is used as load. The output is connected to the center tap of the divider.  
CC  
SS  
2. The output voltage reaches at least 10% and 90% V at the specified toggle frequency.  
CC  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics -- outputs  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
of one pin  
of one pin  
25.0  
20.0  
15.0  
10.0  
5.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
P4.5  
= 2.2 V  
CC  
V
P4.5  
= 3 V  
CC  
T
= 25°C  
A
T
= 25°C  
= 85°C  
A
T
= 85°C  
A
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
-- Low-Level Output Voltage -- V  
V
-- Low-Level Output Voltage -- V  
OL  
OL  
Figure 6  
Figure 5  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
of one pin  
HIGH-LEVEL OUTPUT VOLTAGE  
of one pin  
0.0  
-- 5 . 0  
0.0  
--10.0  
--20.0  
--30.0  
--40.0  
--50.0  
V
P4.5  
= 2.2 V  
CC  
V
P4.5  
= 3 V  
CC  
--10.0  
--15.0  
--20.0  
--25.0  
T
A
= 85°C  
T
A
= 85°C  
T
A
= 25°C  
T
A
= 25°C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
-- High-Level Output Voltage -- V  
OH  
V
-- High-Level Output Voltage -- V  
OH  
Figure 7  
Figure 8  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
POR/brownout reset (BOR) (see Notes 1 and 2)  
PARAMETER  
operating voltage  
negative going V reset threshold voltage  
TEST CONDITIONS  
dV /dt ± 3 V/s  
VCC  
MIN  
TYP  
MAX  
UNIT  
V
V
V
V
0.7 ¢ V  
CC(start)  
(B_IT--)  
CC  
(B_IT--)  
dV /dt ± 3 V/s  
CC  
1.71  
V
CC  
V
reset threshold hysteresis  
dV /dt ± 3 V/s  
CC  
70  
2
130  
210  
mV  
μs  
hys(B_IT--)  
d(BOR)  
reset  
CC  
t
t
BOR reset release delay time  
2000  
Pulse length at RST/NMI pin to accept a reset  
2.2 V / 3 V  
μs  
NOTES: 1. The current consumption of the brownout module is included in the I current consumption data. The voltage level  
CC  
V
+ V  
is 1.8 V.  
(B_IT--)  
hys(B_IT--)  
2. During power up, the CPU begins code execution following a period of t  
after V = V  
+ V . The default DCO  
hys(B_IT--)  
d(BOR)  
CC  
(B_IT--)  
settings must not be changed until V  
frequency.  
V  
, where V  
is the minimum supply voltage for the desired operating  
CC  
CC(MIN)  
CC(min)  
VCC  
Vhys(B_IT-)  
V(B_IT-)  
VCC(Start)  
1
0
td(BOR)  
Figure 9. POR/Brownout Reset (BOR) vs Supply Voltage  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics -- POR/brownout reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
-- Pulse Width -- μs  
t
pw  
-- Pulse Width -- μs  
t
pw  
Figure 10. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(drop)  
0.5  
t = t  
f
r
0
0.001  
1
1000  
t
f
t
r
t
pw  
-- Pulse Width -- μs  
t
pw  
-- Pulse Width -- μs  
Figure 11. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
SVS (supply voltage supervisor/monitor)  
PARAMETER  
TEST CONDITIONS  
dV /dt > 30 V/ms (see Figure 12)  
MIN  
TYP  
MAX UNIT  
5
150  
μs  
CC  
t
(SVSR)  
dV /dt 30 V/ms  
CC  
2000  
t
t
SVSON, switch from VLD = 0 to VLD 0, V = 3 V  
20  
150  
12  
μs  
μs  
V
d(SVSon)  
settle  
CC  
VLD 0  
V
VLD 0, V /dt 3 V/s (see Figure 12)  
1.55  
120  
1.7  
210  
×
(SVSstart)  
CC  
VLD = 1  
70  
mV  
V
V
/dt 3 V/s (see Figure 12)  
V
×
V
CC  
(SVS_IT--)  
(SVS_IT--)  
VLD = 2 to 14  
V
0.004  
0.016  
V
hys(SVS_IT-- )  
/dt 3 V/s (see Figure 12), External voltage applied  
CC  
VLD = 15  
4.4  
20  
mV  
on A7  
VLD = 1  
VLD = 2  
VLD = 3  
VLD = 4  
VLD = 5  
VLD = 6  
VLD = 7  
VLD = 8  
VLD = 9  
VLD = 10  
VLD = 11  
VLD = 12  
VLD = 13  
VLD = 14  
1.8  
1.94  
2.05  
2.14  
2.24  
2.33  
2.46  
2.58  
2.69  
2.83  
2.94  
3.11  
3.24  
3.43  
1.9  
2.1  
2.05  
2.25  
2.37  
2.48  
2.6  
2.2  
2.3  
2.4  
2.5  
2.71  
2.86  
3
2.65  
2.8  
V
/dt 3 V/s (see Figure 12 and Figure 13)  
CC  
V
V
(SVS_IT--)  
2.9  
3.13  
3.29  
3.42  
3.05  
3.2  
3.35  
3.5  
3.61  
3.76  
3.7  
3.99  
V
/dt 3 V/s (see Figure 12 and Figure 13),  
CC  
VLD = 15  
1.1  
1.2  
10  
1.3  
15  
External voltage applied on A7  
I
CC(SVS)  
VLD 0, V = 2.2 V/3 V  
μA  
CC  
(see Note 1)  
The recommended operating voltage range is limited to 3.6 V.  
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value somewhere  
t
settle  
between 2 and 15. The overdrive is assumed to be > 50 mV.  
NOTE 1: The current consumption of the SVS module is not included in the I current consumption data.  
CC  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
typical characteristics  
Software sets VLD >0:  
SVS is active  
AV  
CC  
V
hys(SVS_IT--)  
V
(SVS_IT--)  
V
(SVSstart)  
V
hys(B_IT--)  
V
(B_IT--)  
V
CC(start)  
Brown-  
out  
Brownout  
Region  
Region  
Brownout  
1
0
t
t
SVS out  
1
d(BOR)  
d(BOR)  
SVS Circuit is Active From VLD > to V < V(  
CC  
B_IT--)  
0
t
t
d(SVSon)  
d(SVSR)  
Set POR  
1
undefined  
0
Figure 12. SVS Reset (SVSR) vs Supply Voltage  
V
CC  
t
pw  
3 V  
2
Rectangular Drop  
V
CC(min)  
1.5  
1
Triangular Drop  
1 ns  
1 ns  
V
t
CC  
pw  
0.5  
0
3 V  
1
10  
100  
1000  
t
pw  
-- Pulse Width -- μs  
V
CC(min)  
t = t  
f
r
t
f
t
r
t -- Pulse Width -- μs  
Figure 13. VCC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1)  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
main DCO characteristics  
D
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
D
D
DCO control bits DCOx have a step size as defined by parameter SDCO.  
Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK  
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal  
to:  
32 × fDCO(RSEL,DCO) × fDCO(RSEL,DCO+1)  
MOD × fDCO(RSEL,DCO)+(32MOD) × fDCO(RSEL,DCO+1)  
faverage  
=
DCO frequency  
PARAMETER  
TEST CONDITIONS  
RSELx < 14  
VCC  
MIN  
1.8  
TYP  
MAX UNIT  
3.6  
RSELx = 14  
2.2  
3.6  
3.6  
Vcc  
Supply voltage range  
V
RSELx = 15  
3.0  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
Frequency step between  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
3 V  
0.06  
0.07  
0.10  
0.14  
0.20  
0.28  
0.39  
0.54  
0.80  
1.10  
1.60  
2.50  
3.00  
4.30  
6.00  
8.60  
12.0  
16.0  
0.14 MHz  
0.17 MHz  
0.20 MHz  
0.28 MHz  
0.40 MHz  
0.54 MHz  
0.77 MHz  
1.06 MHz  
1.50 MHz  
2.10 MHz  
3.00 MHz  
4.30 MHz  
5.50 MHz  
7.30 MHz  
9.60 MHz  
13.9 MHz  
18.5 MHz  
26.0 MHz  
DCO(0,0)  
DCO(0,3)  
DCO(1,3)  
DCO(2,3)  
DCO(3,3)  
DCO(4,3)  
DCO(5,3)  
DCO(6,3)  
DCO(7,3)  
DCO(8,3)  
DCO(9,3)  
DCO(10,3)  
DCO(11,3)  
DCO(12,3)  
DCO(13,3)  
DCO(14,3)  
DCO(15,3)  
DCO(15,7)  
3 V  
S
S
S
S
= f /f  
DCO(RSEL+1,DCO) DCO(RSEL,DCO)  
2.2 V/3 V  
1.55 ratio  
1.12 ratio  
RSEL  
DCO  
RSEL  
DCO  
range RSEL and RSEL+1  
Frequency step between  
tap DCO and DCO+1  
= f  
/f  
2.2 V/3 V  
2.2 V/3 V  
1.05  
40  
1.08  
50  
DCO(RSEL,DCO+1) DCO(RSEL,DCO)  
Duty cycle  
Measured at P1.4/SMCLK  
60  
%
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
calibrated DCO frequencies -- tolerance at calibration  
PARAMETER  
TEST CONDITIONS  
T
VCC  
MIN  
TYP  
MAX UNIT  
+1  
A
Frequency tolerance at calibration  
25°C  
3 V  
-- 1  
±0.2  
%
BCSCTL1 = CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz,  
Gating time: 5 ms  
f
f
f
f
1-MHz calibration value  
8-MHz calibration value  
12-MHz calibration value  
16-MHz calibration value  
25°C  
3 V  
3 V  
3 V  
3 V  
0.990  
7.920  
11.88  
15.84  
1
8
1.010 MHz  
8.080 MHz  
CAL(1MHz)  
CAL(8MHz)  
CAL(12MHz)  
CAL(16MHz)  
BCSCTL1 = CALBC1_8MHz,  
DCOCTL = CALDCO_8MHz,  
Gating time: 5ms  
25°C  
25°C  
25°C  
BCSCTL1 = CALBC1_12MHz,  
DCOCTL = CALDCO_12MHz,  
Gating time: 5ms  
12 12.12 MHz  
16 16.16 MHz  
BCSCTL1 = CALBC1_16MHz,  
DCOCTL = CALDCO_16MHz,  
Gating time: 2 ms  
calibrated DCO frequencies -- tolerance over temperature 0°C to 85°C  
PARAMETER  
TEST CONDITIONS  
T
VCC  
3 V  
MIN  
-- 2 . 5  
TYP  
MAX UNIT  
A
1-MHz tolerance over temperature  
8-MHz tolerance over temperature  
12-MHz tolerance over temperature  
16-MHz tolerance over temperature  
0°C to 85°C  
0°C to 85°C  
0°C to 85°C  
0°C to 85°C  
±0.5  
±1.0  
±1.0  
±2.0  
1
+2.5  
+2.5  
%
%
%
%
3 V  
-- 2 . 5  
3 V  
-- 2 . 5  
+2.5  
3 V  
-- 3 . 0  
+3.0  
2.2 V  
3 V  
0.970  
0.975  
0.970  
7.760  
7.800  
7.600  
11.64  
11.64  
11.64  
1.030  
1.025  
1.030  
8.400  
8.200  
8.240  
BCSCTL1 = CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz,  
Gating time: 5ms  
1
f
f
1-MHz calibration value  
8-MHz calibration value  
0°C to 85°C  
0°C to 85°C  
MHz  
MHz  
CAL(1MHz)  
CAL(8MHz)  
3.6 V  
2.2 V  
3 V  
1
8
BCSCTL1 = CALBC1_8MHz,  
DCOCTL = CALDCO_8MHz,  
Gating time: 5 ms  
8
3.6 V  
2.2 V  
3 V  
8
12 12.36  
12 12.36  
12 12.36  
BCSCTL1 = CALBC1_12MHz,  
DCOCTL = CALDCO_12MHz,  
Gating time: 5 ms  
f
f
12-MHz calibration value  
16-MHz calibration value  
0°C to 85°C  
0°C to 85°C  
MHz  
MHz  
CAL(12MHz)  
CAL(16MHz)  
3.6 V  
BCSCTL1 = CALBC1_16MHz,  
DCOCTL = CALDCO_16MHz,  
Gating time: 2 ms  
3 V  
15.52  
15.00  
16 16.48  
16 16.48  
3.6 V  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
calibrated DCO frequencies -- tolerance over supply voltage VCC  
PARAMETER  
TEST CONDITIONS  
T
VCC  
MIN  
-- 3  
TYP  
±2  
MAX UNIT  
A
1-MHz tolerance over V  
25°C  
25°C  
25°C  
25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3.0 V to 3.6 V  
+3  
+3  
+3  
+3  
%
%
%
%
CC  
CC  
8-MHz tolerance over V  
-- 3  
±2  
12-MHz tolerance over V  
16-MHz tolerance over V  
-- 3  
±2  
CC  
CC  
-- 6  
±2  
BCSCTL1 = CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz,  
Gating time: 5 ms  
f
f
f
f
1-MHz calibration value  
8-MHz calibration value  
12-MHz calibration value  
16-MHz calibration value  
25°C  
25°C  
25°C  
25°C  
1.8 V to 3.6 V 0.970  
1.8 V to 3.6 V 7.760  
1
8
1.030 MHz  
8.240 MHz  
CAL(1MHz)  
CAL(8MHz)  
CAL(12MHz)  
CAL(16MHz)  
BCSCTL1 = CALBC1_8MHz,  
DCOCTL = CALDCO_8MHz,  
Gating time: 5 ms  
BCSCTL1 = CALBC1_12MHz,  
DCOCTL = CALDCO_12MHz,  
Gating time: 5 ms  
2.2 V to 3.6 V  
11.64  
12 12.36 MHz  
16 16.48 MHz  
BCSCTL1 = CALBC1_16MHz,  
DCOCTL = CALDCO_16MHz,  
Gating time: 2 ms  
3.0 V to 3.6 V 15.00  
calibrated DCO frequencies -- overall tolerance  
PARAMETER  
1-MHz tolerance overall  
8-MHz tolerance overall  
12-MHz tolerance overall  
16-MHz tolerance overall  
TEST CONDITIONS  
T
VCC  
MIN  
-- 5  
TYP  
MAX UNIT  
A
-- 4 0 °C to 105°C 1.8 V to 3.6 V  
-- 4 0 °C to 105°C 1.8 V to 3.6 V  
-- 4 0 °C to 105°C 2.2 V to 3.6 V  
±2  
±2  
±2  
±3  
+5  
+5  
+5  
+6  
%
%
%
%
-- 5  
-- 5  
-- 4 0 °C to 105°C  
3 V to 3.6 V  
-- 6  
BCSCTL1 = CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz,  
Gating time: 5ms  
f
f
f
f
1-MHz calibration value  
8-MHz calibration value  
-- 4 0 °C to 105°C 1.8 V to 3.6 V 0.950  
-- 4 0 °C to 105°C 1.8 V to 3.6 V 7.600  
1
8
1.050 MHz  
8.400 MHz  
CAL(1MHz)  
CAL(8MHz)  
CAL(12MHz)  
CAL(16MHz)  
BCSCTL1 = CALBC1_8MHz,  
DCOCTL = CALDCO_8MHz,  
Gating time: 5ms  
BCSCTL1 = CALBC1_12MHz,  
12-MHz calibration value DCOCTL = CALDCO_12MHz, -- 4 0 °C to 105°C 2.2 V to 3.6 V  
11.40  
15.00  
12 12.60 MHz  
16 17.00 MHz  
Gating time: 5ms  
BCSCTL1 = CALBC1_16MHz,  
16-MHz calibration value DCOCTL = CALDCO_16MHz, -- 4 0 °C to 105°C  
3 V to 3.6 V  
Gating time: 2 ms  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics -- calibrated 1-MHz DCO frequency  
1.02  
1.01  
T
A
= 105 °C  
1.00  
0.99  
0.98  
T
= 85 °C  
= 25 °C  
A
T
A
T
A
= --40 °C  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
-- Supply Voltage -- V  
CC  
Figure 14. Calibrated 1-MHz Frequency vs VCC  
typical characteristics -- calibrated 8-MHz DCO frequency  
8.20  
8.15  
8.10  
8.05  
8.00  
7.95  
7.90  
7.85  
7.80  
T
= 105 °C  
A
T
= 85 °C  
A
T
A
= 25 °C  
T
A
= --40 °C  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
-- Supply Voltage -- V  
CC  
Figure 15. Calibrated 8-MHz Frequency vs VCC  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics -- calibrated 12-MHz DCO frequency  
12.2  
12.1  
T
A
= --40 °C  
T
= 25 °C  
= 85 °C  
12.0  
11.9  
11.8  
11.7  
A
T
A
T
A
= 105 °C  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
-- Supply Voltage -- V  
CC  
Figure 16. Calibrated 12-MHz Frequency vs VCC  
typical characteristics -- calibrated 16-MHz DCO frequency  
16.1  
16.0  
15.9  
15.8  
15.7  
15.6  
T
= --40 °C  
A
T
= 25 °C  
A
T
A
= 85 °C  
T
A
= 105 °C  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
-- Supply Voltage -- V  
CC  
Figure 17. Calibrated 16-MHz Frequency vs VCC  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
wake-up from low-power modes (LPM3/LPM4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
BCSCTL1= CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz  
2.2 V/3 V  
2
BCSCTL1= CALBC1_8MHz,  
DCOCTL = CALDCO_8MHz  
2.2 V/3 V  
2.2 V/3 V  
3 V  
1.5  
DCO clock wake-up time from LPM3/4  
(see Note 1)  
t
t
μs  
DCO,LPM3/4  
CPU,LPM3/4  
BCSCTL1= CALBC1_12MHz,  
DCOCTL = CALDCO_12MHz  
1
BCSCTL1= CALBC1_16MHz,  
DCOCTL = CALDCO_16MHz  
1
CPU wake-up time from LPM3/4  
(see Note 2)  
1/f  
+
MCLK  
t
Clock,LPM3/4  
NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge  
observable externally on a clock pin (MCLK or SMCLK).  
2. Parameter applicable only if DCOCLK is used for MCLK.  
typical characteristics -- DCO clock wake-up time from LPM3/4  
10.00  
RSELx = 0...11  
1.00  
RSELx = 12...15  
0.10  
0.10  
1.00  
DCO Frequency -- MHz  
10.00  
Figure 18. Clock Wake-Up Time From LPM3 vs DCO Frequency  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
DCO with external resistor ROSC (see Note 1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
TYP UNIT  
1.8  
MHz  
1.95  
f
DCO output frequency with R  
Temperature drift  
DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0, T = 25°C  
DCO,ROSC  
OSC  
A
3 V  
D
D
DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0  
DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0  
2.2 V/3 V  
2.2 V/3 V  
±0.1 %/°C  
t
Drift with V  
10 %/V  
V
CC  
NOTE 1:  
R = 100 k. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and T = ±50ppm/°C.  
OSC K  
typical characteristics -- DCO with external resistor ROSC  
10.00  
10.00  
1.00  
0.10  
0.01  
1.00  
0.10  
RSELx = 4  
RSELx = 4  
0.01  
10.00  
100.00  
1000.00  
10000.00  
10.00  
100.00  
1000.00  
10000.00  
R
OSC  
-- External Resistor -- kOhm  
R
OSC  
-- External Resistor -- kOhm  
Figure 19. DCO Frequency vs ROSC  
,
Figure 20. DCO Frequency vs ROSC  
,
V
CC = 2.2 V, TA = 25°C  
V
CC = 3.0 V, TA = 25°C  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
R
= 100k  
OSC  
R
= 100k  
OSC  
R
R
= 270k  
= 1M  
3.5  
R
R
= 270k  
= 1M  
OSC  
OSC  
OSC  
OSC  
--50.0 --25.0  
0.0  
25.0  
50.0  
75.0 100.0  
1.5  
2.0  
2.5  
3.0  
4.0  
T
A
-- Temperature -- °C  
V
CC  
-- Supply Voltage -- V  
Figure 21. DCO Frequency vs Temperature,  
CC = 3.0 V  
Figure 22. DCO Frequency vs VCC,  
V
TA = 25°C  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
crystal oscillator, LFXT1, low frequency modes (see Note 4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal  
frequency, LF mode 0/1  
f
f
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V to 3.6 V  
32,768  
Hz  
LFXT1,LF  
LFXT1 oscillator logic  
level square wave input  
frequency, LF mode  
XTS = 0, LFXT1Sx = 3, XCAPx = 0  
XTS = 0, LFXT1Sx = 0,  
1.8 V to 3.6 V  
10,000 32,768  
50,000  
Hz  
LFXT1,LF,logic  
f
C
= 32,768 kHz,  
= 6 pF  
500  
200  
LFXT1,LF  
Oscillation allowance for  
LF crystals  
L,eff  
OA  
kΩ  
LF  
XTS = 0, LFXT1Sx = 0;  
= 32,768 kHz, C  
f
= 12 pF  
L,eff  
LFXT1,LF  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
8.5  
11  
Integrated effective load  
capacitance, LF mode  
(see Note 1)  
C
L,eff  
pF  
XTS = 0, Measured at P1.4/ACLK,  
= 32,768 Hz  
Duty cycle  
LF mode  
2.2 V/3 V  
2.2 V/3 V  
30  
10  
50  
70  
%
f
LFXT1,LF  
Oscillator fault  
frequency, LF mode  
(see Note 3)  
XTS = 0, LFXT1Sx = 3, XCAPx = 0  
(see Note 2)  
f
10,000  
Hz  
Fault,LF  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
2. Measured with logic level input frequency but also applies to operation with crystals.  
3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.  
Frequencies in between might set the flag.  
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.  
-- Keep as short of a trace as possible between the device and the crystal.  
-- Design a good ground plane around the oscillator pins.  
-- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
-- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
-- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
-- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
-- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
5. Applies only if using an external logic-level clock source. Not applicable when using a crystal or resonator.  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
internal very low power, low frequency oscillator (VLO)  
PARAMETER  
TEST CONDITIONS  
T
A
VCC  
MIN  
TYP  
MAX UNIT  
-- 4 0 °C to 85°C  
105°C  
4
12  
20  
f
VLO frequency  
2.2 V/3 V  
kHz  
22  
VLO  
VLO frequency  
temperature drift  
df  
df  
/dT  
/dV  
See Note NO TAG1  
See Note 2  
2.2 V/3 V  
0.5  
4
%/°C  
VLO  
VLO  
VLO frequency supply  
voltage drift  
25°C  
1.8V -- 3.6V  
%/V  
CC  
NOTES: 1. Calculated using the box method:  
I version: (MAX(--40_C to 85_C) -- MIN(--40_C to 85_C))/MIN(--40_C to 85_C)/(85_C -- (--40_C))  
T version: (MAX(--40_C to 105_C) -- MIN(--40_C to 105_C))/MIN(--40_C to 105_C)/(105_C -- (--40_C))  
2. Calculated using the box method: (MAX(1.8 V to 3.6V) -- MIN(1.8V to 3.6V))/MIN(1.8 V to 3.6V)/(3.6 V -- 1.8 V)  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
crystal oscillator, LFXT1, high frequency modes (see Note 5)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal frequency,  
HF mode 0  
f
f
XTS = 1, LFXT1Sx = 0, XCAPx = 0 1.8 V to 3.6 V  
0.4  
1
4
MHz  
MHz  
LFXT1,HF0  
LFXT1,HF1  
LFXT1 oscillator crystal frequency,  
HF mode 1  
XTS = 1, LFXT1Sx = 1, XCAPx = 0 1.8 V to 3.6 V  
1.8 V to 3.6 V  
1
2
2
10  
12  
16  
10  
12  
16  
LFXT1 oscillator crystal frequency,  
HF mode 2  
2.2 V to 3.6 V  
3 V to 3.6 V  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
f
f
XTS = 1, LFXT1Sx = 2, XCAPx = 0  
MHz  
MHz  
LFXT1,HF2  
2
0.4  
0.4  
0.4  
LFXT1 oscillator logic level  
square-wave input frequency,  
HF mode  
XTS = 1, LFXT1Sx = 3, XCAPx = 0  
XTS = 1, XCAPx = 0,  
LFXT1,HF,logic  
LFXT1Sx = 0, f  
= 1 MHz,  
= 4 MHz,  
= 16 MHz,  
2700  
800  
300  
1
LFXT1,HF  
C
L,eff  
= 15 pF  
XTS = 1, XCAPx = 0,  
LFXT1Sx = 1, f  
Oscillation allowance for HF  
crystals  
OA  
Ω
LFXT1,HF  
HF  
C
L,eff  
= 15 pF  
(see Figure 23 and Figure 24)  
XTS = 1, XCAPx = 0,  
LFXT1Sx = 2, f  
LFXT1,HF  
C
L,eff  
= 15 pF  
Integrated effective load  
capacitance, HF mode  
(see Note 1)  
C
XTS = 1, XCAPx = 0 (see Note 2)  
pF  
%
L,eff  
XTS = 1, XCAPx = 0,  
Measured at P1.4/ACLK,  
2.2 V/3 V  
40  
50  
60  
60  
f
= 10 MHz  
LFXT1,HF  
Duty cycle  
HF mode  
XTS = 1, XCAPx = 0,  
Measured at P1.4/ACLK,  
2.2 V/3 V  
2.2 V/3 V  
40  
30  
50  
f
= 16 MHz  
LFXT1,HF  
Oscillator fault frequency, HF mode XTS = 1, LFXT1Sx = 3, XCAPx = 0  
(see Note 4) (see Note 3)  
f
300 kHz  
Fault,HF  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
3. Measured with logic level input frequency but also applies to operation with crystals.  
4. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.  
Frequencies in between might set the flag.  
5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.  
-- Keep the trace between the device and the crystal as short as possible.  
-- Design a good ground plane around the oscillator pins.  
-- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
-- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
-- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
-- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
-- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics -- LFXT1 oscillator in HF mode (XTS = 1)  
100000.00  
10000.00  
1000.00  
LFXT1Sx = 3  
100.00  
LFXT1Sx = 2  
10.00  
LFXT1Sx = 1  
1.00  
10.00  
0.10  
100.00  
Crystal Frequency -- MHz  
Figure 23. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C  
1500.0  
1400.0  
1300.0  
LFXT1Sx = 3  
1200.0  
1100.0  
1000.0  
900.0  
800.0  
700.0  
600.0  
500.0  
400.0  
300.0  
LFXT1Sx = 2  
200.0  
100.0  
LFXT1Sx = 1  
0.0  
0.0  
4.0  
8.0  
12.0  
16.0  
20.0  
Crystal Frequency -- MHz  
Figure 24. XT Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
crystal oscillator, XT2 (see Note 5)  
PARAMETER  
TEST CONDITIONS  
XT2Sx = 0  
VCC  
MIN  
TYP  
MAX UNIT  
XT2 oscillator crystal frequency,  
mode 0  
f
f
1.8 V to 3.6 V  
0.4  
1
4
MHz  
MHz  
XT2  
XT2  
XT2 oscillator crystal frequency,  
mode 1  
XT2Sx = 1  
XT2Sx = 2  
1.8 V to 3.6 V  
1
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
2
2
10  
12  
16  
10  
12  
16  
XT2 oscillator crystal frequency,  
mode 2  
f
f
MHz  
MHz  
XT2  
XT2  
2
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
0.4  
0.4  
0.4  
XT2 oscillator logic level  
square-wave input frequency  
XT2Sx = 3  
XT2Sx = 0, f  
= 1 MHz,  
= 4 MHz,  
XT2  
XT2  
2700  
800  
C
L,eff  
= 15 pF  
XT2Sx = 1, f  
Oscillation allowance  
(see Figure 23 and Figure 24)  
OA  
Ω
C
L,eff  
= 15 pF  
XT2Sx = 2, f  
= 16 MHz,  
XT1,HF  
300  
C
= 15 pF  
L,eff  
Integrated effective load  
capacitance, HF mode  
(see Note 1)  
C
See Note 2  
1
pF  
%
L,eff  
Measured at P1.4/SMCLK,  
= 10 MHz  
40  
40  
30  
50  
50  
60  
60  
f
XT2  
Duty cycle  
2.2 V/3 V  
2.2 V/3 V  
Measured at P1.4/SMCLK,  
= 16 MHz  
f
XT2  
Oscillator fault frequency, HF mode  
(see Note 4)  
f
XT2Sx = 3, (see Note 3)  
300 kHz  
Fault  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
3. Measured with logic level input frequency but also applies to operation with crystals.  
4. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.  
Frequencies in between might set the flag.  
5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.  
-- Keep the trace between the device and the crystal as short as possible.  
-- Design a good ground plane around the oscillator pins.  
-- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
-- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
-- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
-- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
-- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics -- XT2 oscillator  
100000.00  
10000.00  
1000.00  
XT2Sx = 3  
100.00  
XT2Sx = 2  
XT2Sx = 1  
1.00  
10.00  
0.10  
10.00  
100.00  
Crystal Frequency -- MHz  
Figure 25. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C  
1600.0  
1500.0  
1400.0  
XT2Sx = 3  
1300.0  
1200.0  
1100.0  
1000.0  
900.0  
800.0  
700.0  
600.0  
500.0  
400.0  
300.0  
XT2Sx = 2  
200.0  
100.0  
XT2Sx = 1  
0.0  
0.0  
4.0  
8.0  
12.0  
16.0  
20.0  
Crystal Frequency -- MHz  
Figure 26. XT2 Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Timer_A  
PARAMETER  
TEST CONDITIONS  
Internal: SMCLK, ACLK,  
External: TACLK, INCLK,  
VCC  
MIN  
MAX UNIT  
2.2 V  
10  
f
t
Timer_A clock frequency  
Timer_A, capture timing  
MHz  
16  
TA  
3.3 V  
Duty cycle = 50% ±10%  
TA0, TA1, TA2  
2.2 V/3 V  
20  
ns  
TA,cap  
Timer_B  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, ACLK,  
External: TBCLK,  
Duty cycle = 50% ±10%  
2.2 V  
10  
f
Timer_B clock frequency  
Timer_B, capture timing  
MHz  
16  
TB  
3.3 V  
t
TB0, TB1, TB2  
2.2 V/3 V  
20  
ns  
TB,cap  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
USCI (UART mode)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
f
USCI input clock frequency  
f
MHz  
USCI  
SYSTEM  
Duty cycle = 50% ± 10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
f
t
2.2 V /3 V  
1
MHz  
BITCLK  
2.2 V  
3 V  
50  
50  
150  
100  
600  
600  
ns  
ns  
UART receive deglitch time  
(see Note 1)  
τ
NOTE 1: Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
USCI (SPI master mode) (see Figure 27 and Figure 28)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
SMCLK, ACLK  
Duty cycle = 50% ± 10%  
f
t
t
t
USCI input clock frequency  
f
MHz  
ns  
USCI  
SYSTEM  
2.2 V  
3 V  
110  
75  
0
SOMI input data setup time  
SOMI input data hold time  
SU,MI  
2.2 V  
3 V  
ns  
HD,MI  
0
2.2 V  
3 V  
30  
20  
UCLK edge to SIMO valid;  
SIMO output data valid time  
1
ns  
VALID,MO  
C
L
= 20 pF  
NOTE 2: fUCxCLK  
=
with tLOHI max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).  
2tLOHI  
For the slave parameters t  
and t  
, see the SPI parameters of the attached slave.  
VALID,SO(Slave)  
SU,SI(Slave)  
USCI (SPI slave mode) (see Figure 29 and Figure 30)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
STE lead time,  
STE low to clock  
t
t
t
t
2.2 V/3 V  
50  
ns  
STE,LEAD  
STE,LAG  
STE,ACC  
STE,DIS  
STE lag time,  
Last clock to STE high  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
10  
ns  
ns  
ns  
STE access time,  
STE low to SOMI data out  
50  
50  
STE disable time,  
STE high to SOMI high impedance  
2.2 V  
3 V  
20  
15  
10  
10  
t
t
t
SIMO input data setup time  
SIMO input data hold time  
ns  
SU,SI  
2.2 V  
3 V  
ns  
HD,SI  
2.2 V  
3 V  
75  
50  
110  
UCLK edge to SOMI valid;  
= 20 pF  
SOMI output data valid time  
1
ns  
75  
VALID,SO  
C
L
NOTE 3: fUCxCLK  
=
with tLOHI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI))  
2tLOHI  
For the master parameters t  
and t  
, see the SPI parameters of the attached master.  
VALID,MO(Master)  
SU,MI(Master)  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
t
LO/HI  
LO/HI  
SU,MI  
t
HD,MI  
SOMI  
SIMO  
t
VALID,MO  
Figure 27. SPI Master Mode, CKPH = 0  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
LO/HI  
LO/HI  
t
HD,MI  
t
SU,MI  
SOMI  
SIMO  
t
VALID,MO  
Figure 28. SPI Master Mode, CKPH = 1  
56  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
t
t
STE,LAG  
STE,LEAD  
STE  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
t
LO/HI  
LO/HI  
SU,SI  
t
HD,SI  
SIMO  
SOMI  
t
t
t
STE,DIS  
STE,ACC  
VALID,SO  
Figure 29. SPI Slave Mode, CKPH = 0  
t
t
STE,LAG  
STE,LEAD  
STE  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
LO/HI  
LO/HI  
t
HD,SI  
t
SU,SI  
SIMO  
SOMI  
t
t
t
STE,DIS  
STE,ACC  
VALID,SO  
Figure 30. SPI Slave Mode, CKPH = 1  
57  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
USCI (I2C mode) (see Figure 31)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
MHz  
Internal: SMCLK, ACLK  
External: UCLK  
f
USCI input clock frequency  
f
SYSTEM  
USCI  
Duty cycle = 50% ± 10%  
f
t
SCL clock frequency  
2.2 V/3 V  
2.2 V/3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
SCL  
f
f
f
f
100 kHz  
> 100 kHz  
100 kHz  
> 100 kHz  
SCL  
SCL  
SCL  
SCL  
Hold time (repeated) Start  
μs  
HD,STA  
t
Setup time for a repeated Start  
2.2 V/3 V  
μs  
SU,STA  
t
t
t
Data hold time  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V  
ns  
HD,DAT  
SU,DAT  
SU,STO  
Data setup time  
Setup time for Stop  
250  
4.0  
50  
ns  
μs  
150  
100  
600  
t
Pulse width of spikes suppressed by input filter  
ns  
SP  
3 V  
50  
600  
t
t
t
SU,STA HD,STA  
HD,STA  
SDA  
SCL  
1/f  
t
SP  
SCL  
t
t
SU,STO  
SU,DAT  
t
HD,DAT  
Figure 31. I2C Mode Timing  
58  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Comparator_A+ (see Note 1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
25  
MAX UNIT  
40  
μA  
60  
I
I
CAON = 1, CARSEL = 0, CAREF = 0  
(DD)  
45  
CAON = 1, CARSEL = 0,  
CAREF = 1/2/3, no load at P2.3/CA0/TA1  
and P2.4/CA1/TA2  
2.2 V  
30  
45  
50  
μA  
71  
(Refladder/Refdiode)  
3 V  
V
V
Common-mode input voltage  
CAON =1  
2.2 V/3 V  
0
V
-- 1  
CC  
V
(IC)  
PCA0 = 1, CARSEL = 1, CAREF = 1,  
no load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage @ 0.25 V  
node  
2.2 V/3 V  
2.2 V/3 V  
0.23  
0.24  
0.48  
0.25  
0.5  
(Ref025)  
CC  
V
CC  
PCA0 = 1, CARSEL = 1, CAREF = 2,  
no load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage @ 0.5V  
node  
CC  
V
V
0.47  
(Ref050)  
(RefVT)  
V
CC  
PCA0 = 1, CARSEL = 1, CAREF = 3,  
no load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2, T = 85°C  
2.2 V  
3 V  
390  
400  
480  
490  
540  
550  
See Figure 35 and Figure 36  
mV  
A
V
V
Offset voltage  
See Note 2  
CAON=1  
2.2 V/3 V  
2.2 V/3 V  
2.2 V  
-- 3 0  
0
30  
1.4  
300  
240  
2.8  
2.2  
mV  
mV  
(offset)  
hys  
Input hysteresis  
0.7  
165  
120  
1.9  
80  
70  
1.4  
0.9  
T
A
= 25°C, Overdrive 10 mV,  
ns  
Without filter: CAF = 0  
3 V  
Response time, low-to-high and  
high-to-low (see Note 3)  
t
(response)  
2.2 V  
T
A
= 25°C, Overdrive 10 mV,  
μs  
With filter: CAF = 1  
3 V  
1.5  
NOTES: 1. The leakage current for the Comparator_A+ terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements.  
The two successive measurements are then summed together.  
3. The response time is measured at P2.2/CAOUT/TA0/CA4 with an input voltage step, with Comparator_A+ already enabled  
(CAON = 1). If CAON is set at the same time, a settling time of up to 300 ns is added to the response time.  
59  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
0 V  
V
CC  
0
1
CAF  
CAON  
To Internal  
Modules  
Low Pass Filter  
0
1
0
1
+
_
V+  
V--  
CAOUT  
Set CAIFG  
Flag  
τ ≈ 2.0 μs  
Figure 32. Block Diagram of Comparator_A Module  
V
CAOUT  
Overdrive  
V--  
400 mV  
V+  
t
(response)  
Figure 33. Overdrive Definition  
CASHORT  
CA1  
CA0  
1
+
--  
I
= 10μA  
OUT  
V
IN  
Comparator_A+  
CASHORT = 1  
Figure 34. Comparator_A+ Short Resistance Test Condition  
60  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics -- Comparator A+  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
= 2.2 V  
V
= 3 V  
CC  
CC  
Typical  
Typical  
-- 4 5  
-- 2 5  
-- 5  
1 5  
3 5  
5 5  
7 5  
9 5  
-- 4 5  
-- 2 5  
-- 5  
1 5  
3 5  
5 5  
7 5  
9 5  
T
A
-- Free-Air Temperature -- °C  
T
A
-- Free-Air Temperature -- °C  
Figure 36. V(RefVT) vs Temperature, VCC = 2.2 V  
Figure 35. V(RefVT) vs Temperature, VCC = 3 V  
100.00  
V
= 1.8V  
CC  
V
= 2.2V  
= 3.0V  
CC  
V
CC  
10.00  
V
= 3.6V  
0.6  
CC  
1.00  
0.0  
0.2  
/V  
0.4  
0.8  
1.0  
V
-- Normalized Input Voltage -- V/V  
IN CC  
Figure 37. Short Resistance vs VIN/VCC  
61  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
12-bit ADC power supply and input range conditions (see Note 1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
AV and DV are connected together,  
CC  
CC  
AV  
Analog supply voltage  
AV and DV are connected together,  
2.2  
3.6  
V
CC  
SS  
SS  
V
= V  
= 0 V  
(AVSS)  
(DVSS)  
All P6.0/A0 to P6.7/A7 terminals.  
Analog inputs selected in ADC12MCTLx register  
and P6Sel.x = 1, 0 x 7,  
Analog input voltage  
(see Note 2)  
V
0
V
AVCC  
V
(P6.x/Ax)  
V
V  
V  
(AVSS)  
P6.x/Ax (AVCC)  
Operating supply current  
2.2 V  
3 V  
0.65  
0.8  
0.8  
1.0  
f
= 5 MHz, ADC12ON = 1, REFON = 0,  
ADC12CLK  
into AV terminal  
I
mA  
CC  
ADC12  
SHT0 = 0, SHT1 = 0, ADC12DIV = 0  
(see Note 3)  
f
= 5 MHz, ADC12ON = 0,  
ADC12CLK  
3 V  
0.5  
0.7  
Operating supply current  
REFON = 1, REF2_5V = 1  
I
mA  
into AV terminal  
(see Note 4)  
REF+  
CC  
2.2 V  
3 V  
0.5  
0.5  
0.7  
0.7  
f
= 5 MHz, ADC12ON = 0,  
ADC12CLK  
REFON = 1, REF2_5V = 0  
Only one terminal can be selected at one time,  
P6.x/Ax  
C
Input capacitance  
2.2 V  
40  
pF  
I
R
I
Input MUX ON resistance 0 V V V  
3 V  
2000  
Ax  
AVCC  
Lmits verified by design  
NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter.  
2. The analog input voltage range must be within the selected reference voltage range V to V for valid conversion results.  
R+  
R--  
3. The internal reference supply current is not included in current consumption parameter I  
.
ADC12  
4. The internal reference current is supplied via terminal AV . Consumption is independent of the ADC12ON control bit, unless a  
CC  
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.  
12-bit ADC external reference (see Note 1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX  
UNIT  
Positive external  
reference voltage input  
V
V
> V  
> V  
/V  
(see Note 2)  
(see Note 3)  
(see Note 4)  
1.4  
V
V
eREF+  
eREF+  
REF-- eREF--  
AVCC  
Negative external  
reference voltage input  
V
V
V
eREF+  
/V  
REF-- eREF--  
0
1.2  
V
V
REF-- / eREF--  
Differential external  
reference voltage input  
(V  
-- V  
V
)
V
eREF+  
> V  
/V  
1.4  
V
AVCC  
eREF+  
REF--/ eREF--  
REF-- eREF--  
I
I
Static input current  
Static input current  
0V V  
V  
AVCC  
2.2 V/3 V  
2.2 V/3 V  
±1  
±1  
μA  
μA  
VeREF+  
eREF+  
0V V  
V  
AVCC  
VREF--/VeREF--  
eREF--  
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C , is also  
i
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
62  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
12-bit ADC built-in reference  
PARAMETER  
TEST CONDITIONS  
REF2_5V = 1 (2.5 V)  
VCC  
TA  
MIN  
2.4  
TYP  
2.5  
2.5  
1.5  
1.5  
MAX  
2.6  
UNIT  
-- 4 0 °C to 85°C  
105°C  
3 V  
Positive built-in  
reference voltage  
output  
I
max I I  
min  
VREF+  
VREF+ VREF+  
2.37  
1.44  
1.42  
2.64  
1.56  
1.57  
V
V
REF+  
-- 4 0 °C to 85°C  
105°C  
REF2_5V = 0 (1.5 V)  
max I I  
2.2 V/3 V  
2.2 V/3 V  
I
min  
min  
VREF+  
VREF+ VREF+  
REF2_5V = 0,  
max I  
2.2  
2.8  
2.9  
I
I  
VREF+ VREF+  
VREF+  
AV minimum  
CC  
REF2_5V = 1,  
voltage, positive  
built-in reference  
active  
AV  
V
CC(min)  
--0.5mA I  
I  
min  
VREF+ VREF+  
REF2_5V = 1,  
-- 1 m A I  
I  
min  
VREF+ VREF+  
2.2 V  
3 V  
0.01  
0.01  
-- 0 . 5  
-- 1  
Load current out of  
I
I
mA  
VREF+  
V
terminal  
REF+  
I
= 500 μA +/-- 100 μA  
2.2 V  
3 V  
±2  
±2  
VREF+  
Analog input voltage ~0.75 V,  
REF2_5V = 0  
Load-current  
regulation, V  
terminal  
LSB  
REF+  
L(VREF)+  
I
= 500 μA ± 100 μA  
VREF+  
Analog input voltage ~1.25 V,  
REF2_5V = 1  
3 V  
±2  
Load current  
regulation V  
I
C
= 100 μA 900 μA,  
= 5 μF, at ~0.5 V ,  
REF+  
VREF+  
I
3 V  
20  
ns  
REF+  
VREF+  
DL(VREF) +  
terminal  
Capacitance at pin REFON =1,  
(see Note 1) 0 mA I  
Error of conversion result 1 LSB  
C
2.2 V/3 V  
2.2 V/3 V  
5
10  
μF  
VREF+  
V
I  
max  
VREF+  
REF+  
VREF+  
Temperature  
coefficient of  
I
is a constant in the range  
VREF+  
T
REF+  
±100 ppm/°C  
of 0 mA I  
1 mA  
VREF+  
built-in reference  
Settle time of  
internal reference  
voltage (see  
Figure 38 and Note  
2)  
I
V
= 0.5 mA, C  
= 10 μF,  
= 2.2 V  
VREF+  
VREF+  
17  
ms  
t
REFON  
= 1.5 V, V  
REF+  
AVCC  
Limits characterized  
Limits verified by design  
NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests use  
two capacitors between pins V  
and AV and V  
/V  
and AV : 10 μF tantalum and 100 nF ceramic.  
REF+  
SS  
REF-- eREF--  
SS  
2. The condition is that the error in a conversion started after t  
capacitive load.  
is less than ±0.5 LSB. The settling time depends on the external  
REFON  
63  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics -- ADC12  
C
VREF+  
100 μF  
t
.66 x C  
[ms] with C  
in μF  
REFON  
VREF+  
VREF+  
10 μF  
1 μF  
0
10 ms  
1 ms  
100 ms  
t
REFON  
Figure 38. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF  
+
64  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
DV  
From  
Power  
Supply  
CC  
SS  
+
--  
DV  
10 μF 100 nF  
AV  
CC  
SS  
+
--  
MSP430F261x  
MSP430F241x  
AV  
10 μF 100 nF  
Apply External Reference [V  
or Use Internal Reference [V  
]
eREF+  
V
or V  
eREF+  
REF+  
]
REF+  
+
--  
10 μF 100 nF  
Apply  
V
-- / V  
eREF--  
REF  
External  
Reference  
+
--  
10 μF 100 nF  
Figure 39. Supply Voltage and Reference Voltage Design VREF--/VeREF-- External Supply  
DV  
DV  
From  
Power  
Supply  
CC  
+
--  
SS  
10 μF 100 nF  
AV  
CC  
SS  
+
--  
MSP430F261x  
MSP430F241x  
AV  
V
10 μF 100 nF  
Apply External Reference [V  
or Use Internal Reference [V  
]
eREF+  
or V  
]
REF+  
eREF+  
REF+  
+
--  
10 μF 100 nF  
Reference Is Internally  
Switched to AV  
V
/V  
REF-- eREF--  
SS  
Figure 40. Supply Voltage and Reference Voltage Design VREF--/VeREF-- = AVSS, Internally Connected  
65  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
12-bit ADC timing parameters  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
For specified performance of ADC12  
linearity parameters  
f
f
2.2V/3 V  
0.45  
5
6.3  
MHz  
ADC12CLK  
ADC12OSC  
ADC12DIV = 0,  
Internal ADC12 oscillator  
Conversion time  
2.2 V/ 3 V  
2.2 V/ 3 V  
3.7  
5
6.3  
MHz  
f
= f  
ADC12CLK  
ADC12OSC  
C
VREF+  
5 μF, Internal oscillator,  
2.06  
3.51  
f
= 3.7 MHz to 6.3 MHz  
ADC12OSC  
t
μs  
CONVERT  
External f  
from ACLK, MCLK  
13 × ADC12DIV  
ADC12CLK  
or SMCLK, ADC12SSEL 0  
× 1/f  
ADC12CLK  
Turn-on settling time of  
the ADC  
t
t
See Note 1  
100  
ns  
ns  
ADC12ON  
3 V  
1220  
1400  
R
S
= 400 , R = 1000 , C = 30 pF,  
I I  
Sampling time  
Sample  
τ = [R + R ] x C (see Note 2)  
2.2 V  
S
I
I;  
Limits characterized  
Limits verified by design  
NOTES: 1. The condition is that the error in a conversion started after t  
settled.  
is less than ±0.5 LSB. The reference and input signal are already  
ADC12ON  
2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB:  
n+1  
t
= ln(2 ) x (R + R ) x C + 800 ns where n = ADC resolution = 12, R = external source resistance.  
Sample  
S
I
I
S
12-bit ADC linearity parameters  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN TYP  
MAX  
±2  
UNIT  
1.4 V (V  
-- V  
/V  
) min 1.6 V  
eREF+  
REF-- eREF--  
E
E
Integral linearity error  
2.2 V/3 V  
LSB  
I
1.6 V < (V  
-- V  
/V  
) min V  
±1.7  
eREF+  
REF-- eREF--  
AVCC  
(V  
C
-- V  
/V  
)
(V  
-- V  
/V  
),  
eREF+  
VREF+  
REF-- eREF-- min  
eREF+  
REF-- eREF--  
Differential linearity error  
2.2 V/3 V  
2.2 V/3 V  
±1  
LSB  
LSB  
D
= 10 μF (tantalum) and 100 nF (ceramic)  
-- V /V (V -- V /V  
REF-- eREF--  
(V  
eREF+  
)
),  
REF-- eREF-- min  
eREF+  
E
Internal impedance of source R < 100 ,  
±2  
±4  
Offset error  
O
S
C
VREF+  
= 10 μF (tantalum) and 100 nF (ceramic)  
(V  
C
-- V  
/V  
)
(V  
-- V /V  
REF-- eREF--  
),  
),  
eREF+  
VREF+  
REF-- eREF-- min  
eREF+  
E
E
2.2 V/3 V  
2.2 V/3 V  
±1.1  
±2  
±2  
±5  
LSB  
LSB  
Gain error  
G
T
= 10 μF (tantalum) and 100 nF (ceramic)  
-- V /V (V -- V /V  
REF-- eREF--  
= 10 μF (tantalum) and 100 nF (ceramic)  
(V  
)
eREF+  
VREF+  
REF-- eREF-- min  
eREF+  
Total unadjusted error  
C
66  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC temperature sensor and built-in VMID  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
40  
MAX UNIT  
120  
Operating supply current into  
REFON = 0, INCH = 0Ah,  
I
μA  
SENSOR  
AV terminal (see Note 1)  
ADC12ON = 1, T = 25_C  
CC  
A
60  
160  
2.2 V  
3 V  
986  
986  
3.55  
3.55  
ADC12ON = 1, INCH = 0Ah,  
V
See Note 2  
mV  
SENSOR  
T
A
= 0°C  
2.2 V  
3 V  
TC  
ADC12ON = 1, INCH = 0Ah  
mV/°C  
SENSOR  
2.2 V  
3 V  
30  
30  
Sample time required if channel  
10 is selected (see Note 3)  
ADC12ON = 1, INCH = 0Ah,  
Error of conversion result 1 LSB  
t
μs  
SENSOR(sample)  
VMID  
2.2 V  
3 V  
NA  
Current into divider at channel 11  
(see Note 4)  
I
ADC12ON = 1, INCH = 0Bh  
ADC12ON = 1, INCH = 0Bh,  
μA  
NA  
2.2 V  
3 V  
1.1  
1.1±0.04  
V
AV divider at channel 11  
V
MID  
CC  
V
is ~0.5 x V  
MID  
AVCC  
1.5 1.50±0.04  
2.2 V  
3 V  
1400  
1220  
Sample time required if channel  
11 is selected (see Note 5)  
ADC12ON = 1, INCH = 0Bh,  
Error of conversion result 1 LSB  
t
ns  
VMID(sample)  
Limits characterized  
NOTES: 1. The sensor current I  
is consumed if (ADC12ON = 1 and REFON = 1) or if (ADC12ON = 1, INCH = 0Ah and sample signal  
SENSOR  
is high). When REFON = 1, I  
is already included in I  
.
SENSOR  
REF+  
2. The temperature sensor offset can be as much as ±20_C. A single-point calibration is recommended in order to minimize the offset  
error of the built-in temperature sensor.  
3. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time t  
.
SENSOR(on)  
4. No additional current is needed. The V  
is used during sampling.  
MID  
5. The on time t  
is included in the sampling time t  
; no additional on time is needed.  
VMID(on)  
VMID(sample)  
67  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
12-bit DAC supply specifications  
PARAMETER  
TEST CONDITIONS  
VCC  
T
A
MIN TYP MAX UNIT  
AV = DV  
,
CC  
CC  
AV  
Analog supply voltage  
2.20  
3.60  
V
CC  
AV = DV = 0 V  
SS  
SS  
-- 4 0 °C to 85°C  
105°C  
50  
69  
110  
150  
DAC12AMPx = 2, DAC12IR = 0,  
DAC12_xDAT = 0x0800  
2.2V/3V  
2.2V/3V  
DAC12AMPx = 2, DAC12IR = 1,  
DAC12_xDAT = x00800  
50  
130  
440  
,
V
eREF+  
= V  
= AV  
REF+ CC  
Supply current, single  
DAC channel  
I
μA  
DAC12AMPx = 5, DAC12IR = 1,  
DAC12_xDAT = 0x0800,  
DD  
(see Notes 1 and 2)  
2.2V/3V  
2.2V/3V  
200  
V
eREF+  
= V  
= AV  
REF+ CC  
DAC12AMPx = 7, DAC12IR = 1,  
DAC12_xDAT = 0x0800,  
700 1500  
V
eREF+  
= V  
= AV  
REF+ CC  
DAC12_xDAT = 800h, V  
= 1.5 V,  
REF  
REF  
2.2V  
3V  
Power-supply rejection  
ratio  
AV = 100mV  
CC  
PSRR  
70  
dB  
DAC12_xDAT = 800h, V  
= 1.5 V or 2.5 V,  
(see Notes 3 and 4)  
AV = 100mV  
CC  
NOTES: 1. No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.  
2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input  
specifications.  
3. PSRR = 20 × log{∆AV /V  
}
CC  
DAC12_xOUT  
4.  
V
is applied externally. The internal reference is not used.  
REF  
68  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC linearity specifications (see Figure 41)  
PARAMETER  
TEST CONDITIONS  
12-bit monotonic  
= 1.5 V  
VCC  
MIN  
TYP  
MAX  
UNIT  
Resolution  
12  
bits  
V
REF  
2.2 V  
3 V  
DAC12AMPx = 7, DAC12IR = 1  
= 2.5 V  
INL  
Integral nonlinearity (see Note 1)  
±2.0  
±8.0  
LSB  
LSB  
V
REF  
DAC12AMPx = 7, DAC12IR = 1  
= 1.5 V  
V
REF  
2.2 V  
3 V  
DAC12AMPx = 7, DAC12IR = 1  
= 2.5 V  
Differential nonlinearity  
(see Note 1)  
DNL  
±0.4  
±1.0  
±21  
V
REF  
DAC12AMPx = 7, DAC12IR = 1  
= 1.5 V  
V
REF  
2.2 V  
3 V  
DAC12AMPx = 7, DAC12IR = 1  
= 2.5 V  
Offset voltage without calibration  
(see Notes 1 and 2)  
V
REF  
DAC12AMPx = 7, DAC12IR = 1  
= 1.5 V  
E
O
mV  
V
REF  
2.2 V  
3 V  
DAC12AMPx = 7, DAC12IR = 1  
= 2.5 V  
Offset voltage with calibration  
(see Notes 1 and 2)  
±2.5  
V
REF  
DAC12AMPx = 7, DAC12IR = 1  
Offset error temperature  
coefficient (see Note 1)  
d
/d  
/d  
2.2 V/3 V  
30  
10  
μV/C  
E(O)  
T
T
V
V
= 1.5 V  
= 2.5 V  
2.2 V  
3 V  
REF  
REF  
E
Gain error (see Note 1)  
±3.50 % FSR  
G
Gain temperature  
coefficient (see Note 1)  
ppm of  
FSR/°C  
d
2.2 V/3 V  
E(G)  
DAC12AMPx = 2  
100  
Time for offset calibration  
(see Note 3)  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
32  
6
t
2.2 V/3 V  
ms  
Offset_Cal  
NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and  
“b” of the first order equation: y = a + b × x. V = E + (1 + E ) × (V /4095) × DAC12_xDAT, DAC12IR = 1.  
DAC12_xOUT  
O
G
eREF+  
2. The offset calibration works on the output operational amplifier. Offset calibration is triggered setting bit DAC12CALON.  
3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with  
DAC12AMPx = {0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during  
calibration may affect accuracy and is not recommended.  
DAC V  
OUT  
DAC Output  
V
R+  
R
=
Load  
Ideal transfer  
function  
AV  
CC  
2
Offset Error  
Positive  
Gain Error  
DAC Code  
C
= 100pF  
Load  
Negative  
Figure 41. Linearity Test Load Conditions and Gain/Offset Definition  
69  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
typical characteristics -- 12-bit DAC, linearity specifications  
TYPICAL INL ERROR  
vs  
DIGITAL INPUT DATA  
4
V
= 2.2 V, V  
= 1.5V  
REF  
CC  
DAC12AMPx = 7  
DAC12IR = 1  
3
2
1
0
-- 1  
-- 2  
-- 3  
-- 4  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4095  
DAC12_xDAT -- Digital Code  
TYPICAL DNL ERROR  
vs  
DIGITAL INPUT DATA  
2.0  
1.5  
V
= 2.2 V, V  
= 1.5V  
REF  
CC  
DAC12AMPx = 7  
DAC12IR = 1  
1.0  
0.5  
0.0  
-- 0 . 5  
-- 1 . 0  
-- 1 . 5  
-- 2 . 0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4095  
DAC12_xDAT -- Digital Code  
70  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC output specifications  
PARAMETER  
TEST CONDITIONS  
No Load, Ve = AV  
VCC  
MIN  
TYP  
MAX UNIT  
,
CC  
REF+  
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
0
0.005  
No Load, Ve  
= AV  
,
CC  
REF+  
DAC12_xDAT = 0FFFh,  
DAC12IR = 1, DAC12AMPx = 7  
AV --0.05  
AV  
CC  
CC  
Output voltage range  
(see Note 1 and Figure 44)  
V
2.2 V/3 V  
V
O
R
Load  
= 3 k, Ve = AV  
,
CC  
REF+  
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
0
0.1  
R = 3 k, Ve  
Load  
= AV  
,
CC  
REF+  
DAC12_xDAT = 0FFFh, DAC12IR =  
1, DAC12AMPx = 7  
AV --0.13  
AV  
CC  
CC  
Max DAC12 load  
capacitance  
C
2.2 V/3 V  
100  
pF  
L(DAC12)  
2.2V  
3V  
-- 0 . 5  
-- 1 . 0  
+0.5  
+1.0  
I
Max DAC12 load current  
mA  
L(DAC12)  
R
= 3 k, V  
= 0 V,  
O/P(DAC12)  
Load  
150  
150  
250  
DAC12AMPx = 7, DAC12_xDAT = 0h  
R
Load  
= 3 k, V = AV  
,
CC  
O/P(DAC12)  
DAC12AMPx = 7,  
DAC12_xDAT = 0FFFh  
250  
Output resistance  
(see Figure 44)  
R
2.2 V/3 V  
O/P(DAC12)  
R = 3 k,  
Load  
0.3 V < V  
< AV -- 0 . 3 V,  
1
4
O/P(DAC12)  
CC  
DAC12AMPx = 7  
NOTE 1: Data is valid after the offset calibration of the output amplifier.  
R
O/P(DAC12_x)  
Max  
R
Load  
I
Load  
AV  
CC  
DAC12  
2
C
= 100pF  
O/P(DAC12_x)  
Min  
Load  
0.3  
AV  
--0.3V  
V
CC  
OUT  
AV  
CC  
Figure 44. DAC12_x Output Resistance Tests  
71  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC reference input specifications  
PARAMETER  
TEST CONDITIONS  
DAC12IR = 0, (see Notes 1 and 2)  
DAC12IR = 1, (see Notes 3 and 4)  
DAC12_0 IR = DAC12_1 IR = 0  
DAC12_0 IR = 1, DAC12_1 IR = 0  
DAC12_0 IR = 0, DAC12_1 IR = 1  
VCC  
MIN  
TYP  
MAX UNIT  
AV /3 AV +0.2  
CC  
CC  
Reference input voltage  
range  
Ve  
2.2 V/3 V  
V
REF+  
AVcc AVcc+0.2  
20  
40  
MΩ  
48  
24  
56  
28  
Ri  
,
Reference input  
resistance  
(VREF+)  
2.2 V/3 V  
Ri  
(VeREF+)  
kΩ  
DAC12_0 IR = DAC12_1 IR = 1  
DAC12_0 SREFx = DAC12_1 SREFx  
(see Note 5)  
20  
NOTES: 1. For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AV ).  
CC  
2. The maximum voltage applied at reference input voltage terminal Ve  
= [AV -- V  
] / [3*(1 + E )].  
E(O) G  
REF+  
CC  
3. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AV ).  
CC  
4. The maximum voltage applied at reference input voltage terminal Ve  
= [AV -- V  
] / (1 + E ).  
E(O) G  
REF+  
CC  
5. When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel  
reducing the reference input resistance.  
12-bit DAC dynamic specifications, Vref = VCC, DAC12IR = 1 (see Figure 45 and Figure 46)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
60  
15  
6
MAX  
120  
30  
UNIT  
DAC12AMPx = 0 {2, 3, 4}  
DAC12_xDAT = 800h,  
Error < ±0.5 LSB  
V(O)  
DAC12AMPx = 0 {5, 6}  
DAC12AMPx = 0 7  
DAC12AMPx = 2  
t
DAC12 on-time  
2.2 V/3 V  
μs  
ON  
(see Note 1 and  
Figure 45)  
12  
100  
40  
15  
5
200  
80  
Settling time,  
full scale  
DAC12_xDAT =  
80hF7Fh80h  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
t
t
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
μs  
μs  
S(FS)  
30  
DAC12_xDAT =  
Settling time,  
code to code  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
2
3F8h408h3F8h  
BF8hC08hBF8h  
S(C-C)  
1
0.05  
0.35  
1.5  
0.12  
0.7  
2.7  
600  
150  
30  
DAC12_xDAT =  
80hF7Fh80h  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
SR  
Slew rate  
V/μs  
nV-s  
Glitch energy,  
full scale  
DAC12_xDAT =  
80hF7Fh80h  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
NOTES: 1.  
R
Load  
and C  
are connected to AV (not AV /2) in Figure 45.  
Load SS CC  
2. Slew rate applies to output voltage steps 200 mV.  
Conversion 1  
Conversion 2  
Conversion 3  
+/-- 1/2 LSB  
V
+/-- 1/2 LSB  
DAC Output  
OUT  
Glitch  
Energy  
R
= 3 kΩ  
Load  
I
Load  
AV  
CC  
2
C
= 100pF  
Load  
R
O/P(DAC12.x)  
t
t
settleHL  
settleLH  
Figure 45. Settling Time and Glitch Energy Testing  
72  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Conversion 1  
Conversion 2  
Conversion 3  
V
OUT  
90%  
90%  
10%  
10%  
t
t
SRHL  
SRLH  
Figure 46. Slew Rate Testing  
12-bit DAC, dynamic specifications (continued) (TA = 25°C, unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
40  
3-dB bandwidth,  
DAC12AMPx = {5, 6}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
180  
550  
BW  
2.2 V/3 V  
kHz  
V
= 1.5V, V = 0.1 V  
--3dB  
DC  
AC PP  
(see Figure 47)  
DAC12AMPx = 7, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
DAC12_0DAT = 800h, No load,  
DAC12_1DAT = 80h<-->F7Fh, R  
= 3 k,  
-- 8 0  
-- 8 0  
Load  
f
= 10 kHz, Duty cycle = 50%  
DAC12_1OUT  
Channel-to-channel crosstalk  
(see Note 1 and Figure 48)  
2.2 V/3 V  
dB  
DAC12_0DAT = 80h<-->F7Fh, R  
DAC12_1DAT = 800h, No load,  
= 3 k,  
Load  
f
= 10 kHz, Duty cycle = 50%  
DAC12_0OUT  
NOTE 1:  
R
LOAD  
= 3 k, C  
= 100 pF  
LOAD  
R
= 3 kΩ  
Load  
I
Load  
Ve  
REF+  
AV  
CC  
DAC12_x  
2
DACx  
AC  
DC  
C
= 100pF  
Load  
Figure 47. Test Conditions for 3-dB Bandwidth Specification  
R
Load  
I
Load  
AV  
DAC12_xDAT 080h  
7F7h  
080h  
7F7h  
080h  
CC  
DAC12_0  
DAC12_1  
2
DAC0  
V
OUT  
C
= 100pF  
Load  
V
V
V
DAC12_yOUT  
DAC12_xOUT  
REF+  
R
Load  
I
Load  
AV  
CC  
e
2
f
DAC1  
Toggle  
C
= 100pF  
Load  
Figure 48. Crosstalk Test Conditions  
73  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
flash memory  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX  
UNIT  
V
Program and erase supply voltage  
Flash Timing Generator frequency  
2.2  
3.6  
476  
5
V
kHz  
mA  
CC(PGM/ERASE)  
f
I
I
t
t
257  
FTG  
Supply current from DV during program  
2.2 V/ 3.6 V  
2.2 V/ 3.6 V  
2.2 V/ 3.6 V  
2.2 V/ 3.6 V  
3
3
PGM  
CC  
Supply current from DV during erase  
CC  
7
mA  
ERASE  
Cumulative program time  
See Note 1  
See Note 2  
4
ms  
CPT  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
200  
ms  
CMErase  
4
5
10  
10  
cycles  
years  
t
T = 25°C  
J
100  
Retention  
t
t
t
t
t
t
Word or byte program time  
Block program time for first byte or word  
See Note 3  
See Note 3  
35  
30  
t
t
t
t
t
t
Word  
FTG  
FTG  
FTG  
FTG  
FTG  
FTG  
Block, 0  
Block program time for each additional byte or word See Note 3  
21  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
Block program end-sequence wait time  
Mass erase time (see Note 4)  
Segment erase time  
See Note 3  
See Note 3  
See Note 3  
6
10593  
4819  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. The mass erase duration generated by the flash timing generator is at least 11.1 ms ( = 5297x1/f ,max = 5297 × 1/476 kHz). To  
FTG  
achieve the required cumulative mass erase time, the Flash Controller’s mass erase operation can be repeated until this time is met.  
A worst case minimum of 19 cycles is required.  
3. These values are hardwired into the Flash Controller’s state machine (t  
= 1/f  
).  
FTG  
FTG  
4. To erase the complete code area, the mass erase must be performed once with a dummy address in the range of the lower 64-kB  
flash addresses and once with the dummy address in the upper 64-kB flash addresses.  
RAM  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
MAX  
UNIT  
VRAMh  
See Note 1  
1.6  
V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution  
should take place during this supply voltage condition.  
74  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
JTAG interface  
TEST  
CONDITIONS  
PARAMETER  
V
MIN  
TYP  
MAX  
UNIT  
CC  
2.2 V  
3 V  
0
0
5
10  
90  
f
TCK input frequency  
Internal pullup resistance on TMS, TCK, TDI/TCLK  
See Note 1  
See Note 2  
MHz  
TCK  
R
2.2 V/ 3 V  
25  
60  
kΩ  
Internal  
NOTES: 1.  
f
may be restricted to meet the timing requirements of the module selected.  
TCK  
2. TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions.  
JTAG fuse (see Note 1)  
PARAMETER  
Supply voltage during fuse-blow condition  
Voltage level on TDI/TCLK for fuse blow (F versions)  
Supply current into TDI/TCLK during fuse blow  
Time to blow fuse  
TEST CONDITIONS  
MIN  
2.5  
6
MAX  
UNIT  
V
V
V
T
A
= 25°C  
CC(FB)  
FB  
7
100  
1
V
I
t
mA  
ms  
FB  
FB  
NOTE 1: Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched  
to bypass mode.  
75  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.0 to P1.7, input/output with Schmitt trigger  
Pad Logic  
P1REN.x  
0
1
DVSS  
DVCC  
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1.0/TACLK/CAOUT  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
P1.4/SMCLK  
P1.5/TA0  
P1SEL.x  
P1IN.x  
EN  
P1.6/TA1  
P1.7/TA2  
Module X IN  
P1IRQ.x  
D
P1IE.x  
EN  
Set  
Q
P1IFG.x  
P1SEL.x  
P1IES.x  
Interrupt  
Edge Select  
76  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P1 (P1.0 to P1.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0/TACLK  
0
P1.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
1
1
0
1
1
0
1
1
Timer_A3.TACLK  
CAOUT  
0
1
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
1
2
3
P1.1 (I/O)  
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.2 (I/O)  
0
1
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.3 (I/O)  
0
1
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.4 (I/O)  
0
1
P1.4/SMCLK  
P1.5/TA0  
4
5
I: 0; O: 1  
SMCLK  
1
P1.5 (I/O)  
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.6 (I/O)  
0
1
P1.6/TA1  
P1.7/TA2  
6
7
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA1  
P1.7 (I/O)  
0
1
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA2  
0
1
77  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P2 pin schematic: P2.0 to P2.4, P2.6, and P2.7, input/output with Schmitt trigger  
Pad Logic  
To  
Comparator_A  
From  
Comparator_A  
CAPD.x  
P2REN.x  
0
1
DVSS  
DVCC  
1
0
1
P2DIR.x  
Direction  
0: Input  
1: Output  
0
1
P2OUT.x  
Module X OUT  
P2.0/ACLK/CA2  
P2.1/TAINCLK/CA3  
P2.2/CAOUT/TA0/CA4  
P2.3/CA0/TA1  
Bus  
Keeper  
EN  
P2SEL.x  
P2IN.x  
P2.4/CA1/TA2  
P2.6/ADC12CLK/  
DMAE0/CA6  
EN  
P2.7/TA0/CA7  
D
Module X IN  
P2IRQ.x  
P2IE.x  
EN  
Set  
Q
P2IFG.x  
P2SEL.x  
P2IES.x  
Interrupt  
Edge Select  
78  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P2.0, P2.3, P2.4, P2.6 and P2.7 pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
CAPD.x  
P2DIR.x  
P2SEL.x  
P2.0/ACLK/CA2  
0
P2.0 (I/O)  
ACLK  
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
1
I: 0; O: 1  
0
1
X
0
1
1
X
0
1
1
X
0
1
X
0
X
1
0
1
1
X
0
1
X
1
CA2  
X
P2.1/TAINCLK/CA3  
1
2
P2.1 (I/O)  
Timer_A3.INCLK  
I: 0; O: 1  
0
DV  
1
SS  
CA3  
X
P2.2/CAOUT/TA0/  
CA4  
P2.2 (I/O)  
CAOUT  
TA0  
I: 0; O: 1  
1
0
CA4  
X
P2.3/CA0/TA1  
P2.4/CA1/TA2  
3
4
6
P2.3 (I/O)  
Timer_A3.TA1  
CA0  
I: 0; O: 1  
1
X
P2.4 (I/O)  
Timer_A3.TA2  
CA1  
I: 0; O: 1  
1
X
P2.6/ADC12CLK/  
DMAE0/CA6  
P2.6 (I/O)  
ADC12CLK  
DMAE0  
CA6  
I: 0; O: 1  
1
0
X
P2.7/TA0/CA7  
7
P2.7 (I/O)  
Timer_A3.TA0  
CA7  
I: 0; O: 1  
1
X
NOTE: X: Don’t care  
79  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P2 pin schematic: P2.5, input/output with Schmitt trigger  
Pad Logic  
To Comparator  
From Comparator  
CAPD.5  
To DCO  
in DCO  
DCOR  
P2REN.5  
0
1
DVSS  
DVCC  
1
P2DIR.5  
0
1
Direction  
0: Input  
1: Output  
P2OUT.5  
0
1
Module X OUT  
P2.5/ROSC/CA5  
Bus  
Keeper  
EN  
P2SEL.x  
P2IN.5  
EN  
Module X IN  
P2IRQ.5  
D
P2IE.5  
EN  
Set  
Q
P2IFG.5  
P2SEL.5  
P2IES.5  
Interrupt  
Edge Select  
Port P2.5 pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
P2.5/R /CA5  
X
FUNCTION  
CAPD  
DCOR  
P2DIR.5  
P2SEL.5  
5
P2.5 (I/O)  
(see Note 2)  
0
0
1
0
0
I: 0; O: 1  
0
X
1
OSC  
R
0
X
1
OSC  
DV  
0
SS  
CA5  
1 or selected  
X
X
NOTES: 1. X: Don’t care  
2. If Rosc is used it is connected to an external resistor.  
80  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P3 pin schematic: P3.0 to P3.7, input/output with Schmitt trigger  
Pad Logic  
P3REN.x  
0
1
DVSS  
DVCC  
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
Module  
direction  
P3OUT.x  
0
1
Module X OUT  
P3.0/UCB0STE/UCA0CLK  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
P3.4/UCA0TXD/UCA0SIMO  
P3.5/UCA0RXD/UCA0SOMI  
P3.6/UCA1TXD/UCA1SIMO  
P3.7/UCA1RXD/UCA1SOMI  
P3SEL.x  
P3IN.x  
EN  
D
Module X IN  
Port P3.0 to P3.7 pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P3.X)  
X
FUNCTION  
P3DIR.x  
P3SEL.x  
P3.0/UCB0STE/  
UCA0CLK  
0
P3.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
UCB0STE/UCA0CLK (see Note 2 and 4)  
P3.1 (I/O)  
X
P3.1/UCB0SIMO/  
UCB0SDA  
1
2
3
4
5
6
7
I: 0; O: 1  
UCB0SIMO/UCB0SDA (see Note 2 and 3)  
P3.2 (I/O)  
X
P3.2/UCB0SOMI/  
UCB0SCL  
I: 0; O: 1  
UCB0SOMI/UCB0SCL (see Note 2 and 3)  
P3.3 (I/O)  
X
P3.3/UCB0CLK/  
UCA0STE  
I: 0; O: 1  
UCB0CLK/UCA0STE (see Note 2)  
P3.4 (I/O)  
X
P3.4/UCA0TXD/  
UCA0SIMO  
I: 0; O: 1  
UCA0TXD/UCA0SIMO (see Note 2)  
P3.5 (I/O)  
X
P3.5/UCA0RXD/  
UCA0SOMI  
I: 0; O: 1  
UCA0RXD/UCA0SOMI (see Note 2)  
P3.6 (I/O)  
X
I: 0; O: 1  
X
P3.6/UCA1TXD/  
UCA1SIMO  
UCA1TXD/UCA1SIMO (see Note 2)  
P3.7 (I/O)  
P3.7/UCA1RXD/  
UCA1SOMI  
I: 0; O: 1  
X
UCA1RXD/UCA1SOMI (see Note 2)  
NOTES: 1. X: Don’t care  
2. The pin direction is controlled by the USCI module.  
3. In case the I2C functionality is selected the output drives only the logical 0 to V level.  
SS  
4. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output USCI A0/B0 will  
be forced to 3-wire SPI mode if 4-wire SPI mode is selected.  
81  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P4 pin schematic: P4.0 to P4.7, input/output with Schmitt trigger  
Pad Logic  
P4REN.x  
0
1
DVSS  
DVCC  
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
0
1
Module X OUT  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
P4.3/TB3  
P4.4/TB4  
P4.5/TB5  
P4.6/TB6  
P4.7/TBCLK  
P4SEL.x  
P4IN.x  
EN  
D
Module X IN  
Port P4.0 to P4.7 pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P4.X)  
X
FUNCTION  
P4DIR.x  
P4SEL.x  
P4.0/TB0  
0
P4.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
Timer_B7.CCI0A and Timer_B7.CCI0B  
Timer_B7.TB0  
0
1
P4.1/TB1  
P4.2/TB2  
P4.3/TB3  
P4.4/TB4  
P4.5/TB5  
P4.6/TB6  
P4.7/TBCLK  
1
2
3
4
5
6
7
P4.1 (I/O)  
I: 0; O: 1  
Timer_B7.CCI1A and Timer_B7.CCI1B  
Timer_B7.TB1  
0
1
P4.2 (I/O)  
I: 0; O: 1  
Timer_B7.CCI2A and Timer_B7.CCI2B  
Timer_B7.TB2  
0
1
P4.3 (I/O)  
I: 0; O: 1  
Timer_B7.CCI3A and Timer_B7.CCI3B  
Timer_B7.TB3  
0
1
P4.4 (I/O)  
I: 0; O: 1  
Timer_B7.CCI4A and Timer_B7.CCI4B  
Timer_B7.TB4  
0
1
P4.5 (I/O)  
I: 0; O: 1  
Timer_B7.CCI5A and Timer_B7.CCI5B  
Timer_B7.TB5  
0
1
P4.6 (I/O)  
I: 0; O: 1  
Timer_B7.CCI6A and Timer_B7.CCI6B  
Timer_B7.TB6  
0
1
I: 0; O: 1  
1
P4.7 (I/O)  
Timer_B7.TBCLK  
82  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P5 pin schematic: P5.0 to P5.7, input/output with Schmitt trigger  
Pad Logic  
P5REN.x  
0
1
DVSS  
DVCC  
1
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
Module  
Direction  
P5OUT.x  
0
1
Module X OUT  
P5.0/UCB1STE/UCA1CLK  
P5.1/UCB1SIMO/UCB1SDA  
P5.2/UCB1SOMI/UCB1SCL  
P5.3/UCB1CLK/UCA1STE  
P5.4/MCLK  
P5SEL.x  
P5IN.x  
P5.5/SMCLK  
P5.6/ACLK  
P5.7/TBOUTH/SVSOUT  
EN  
D
Module X IN  
Port P5.0 to P5.7 pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
X
FUNCTION  
P5DIR.x  
P5SEL.x  
P5.0/UCB1STE/  
UCA1CLK  
0
P5.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
UCB1STE/UCA1CLK (see Note 2 and 4)  
X
P5.1/UCB1SIMO/  
UCB1SDA  
1
2
3
4
5
6
7
P5.1 (I/O)  
I: 0; O: 1  
UCB1SIMO/UCB1SDA (see Note 2 and 3)  
X
P5.2/UCB1SOMI/  
UCB1SCL  
P5.2 (I/O)  
I: 0; O: 1  
UCB1SOMI/UCB1SCL (see Note 2 and 3)  
X
P5.3/UCB1CLK/  
UCA1STE  
P5.3 (I/O)  
I: 0; O: 1  
UCB1CLK/UCA1STE (see Note 2)  
X
P5.4/MCLK  
P5.5/SMCLK  
P5.6/ACLK  
P5.0 (I/O)  
MCLK  
I: 0; O: 1  
1
P5.1 (I/O)  
SMCLK  
I: 0; O: 1  
1
P5.2 (I/O)  
ACLK  
I: 0; O: 1  
1
P5.7/TBOUTH/  
SVSOUT  
P5.7 (I/O)  
TBOUTH  
SVSOUT  
I: 0; O: 1  
0
1
NOTES: 1. X: Don’t care  
2. The pin direction is controlled by the USCI module.  
3. In case the I2C functionality is selected the output drives only the logical 0 to V level.  
SS  
4. UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output USCI A1/B1 will  
be forced to 3-wire SPI mode if 4-wire SPI mode is selected.  
83  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P6 pin schematic: P6.0 to P6.4, input/output with Schmitt trigger  
Pad Logic  
ADC12 Ax  
P6REN.x  
0
1
DVSS  
1
DVCC  
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
P6OUT.x  
0
1
Module X OUT  
P6.0/A0  
P6.1/A1  
P6.2/A2  
P6.3/A3  
P6.4/A4  
Bus  
Keeper  
EN  
P6SEL.x  
P6IN.x  
EN  
D
Module X IN  
Port P6.0 to P6.4 pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
P6.0/A0  
0
P6.0 (I/O)  
I: 0; O: 1  
0
X
0
A0 (see Note 2)  
P6.1 (I/O)  
X
P6.1/A1  
P6.2/A2  
P6.3/A3  
P6.4/A4  
1
2
3
4
I: 0; O: 1  
A1 (see Note 2)  
P6.2 (I/O)  
X
X
0
I: 0; O: 1  
A2 (see Note 2)  
P6.3 (I/O)  
X
I: 0; O: 1  
X
X
0
A3 (see Note 2)  
P6.4 (I/O)  
X
0
I: 0; O: 1  
X
A4 (see Note 2)  
X
NOTES: 1. X: Don’t care  
2. The ADC12 channel Ax is connected to AVss internally if not selected.  
84  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P6 pin schematic: P6.5 and P6.6, input/output with Schmitt trigger  
Pad Logic  
DAC12_0OUT  
DAC12AMP > 0  
ADC12 Ax  
ADC12 Ax  
P6REN.x  
0
1
DVSS  
DVCC  
1
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
P6OUT.x  
0
1
Module X OUT  
P6.5/A5/DAC1  
P6.6/A6/DAC0  
Bus  
Keeper  
EN  
P6SEL.x  
P6IN.x  
EN  
D
Module X IN  
Port P6.5 to P6.6 pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
CAPD.x or  
DAC12AMP > 0  
P6DIR.x  
P6SEL.x  
P6.5/A5/DAC1†  
5
P6.5 (I/O)  
DV  
I: 0; O: 1  
0
1
0
0
1
1
0
0
1
1
1
SS  
A5 (see Note 2)  
X
X
X
0
DAC1 (DA12OPS= 1, see Note 3)  
P6.6 (I/O)  
X
P6.6/A6/DAC0†  
6
I: 0; O: 1  
DV  
1
X
X
1
SS  
A6 (see Note 2)  
X
X
DAC0 (DA12OPS= 0, see Note 3)  
MSP430F261x devices only  
NOTES: 1. X: Don’t care  
2. The ADC12 channel Ax is connected to AVss internally if not selected.  
3. The DAC outputs are floating if not selected.  
85  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P6 pin schematic: P6.7, input/output with Schmitt trigger  
Pad Logic  
to SVS Mux  
VLD = 15  
DAC12_0OUT  
DAC12AMP > 0  
ADC12 A7  
from ADC12  
P6REN.7  
0
1
DVSS  
1
DVCC  
P6DIR.7  
0
1
Direction  
0: Input  
1: Output  
P6OUT.7  
0
1
Module X OUT  
P6.7/A7/DAC1/SVSIN  
Bus  
Keeper  
EN  
P6SEL.7  
P6IN.7  
EN  
D
Module X IN  
Port P6.7 pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
P6.7/A7/DAC1†/  
SVSIN†  
7
P6.7 (I/O)  
I: 0; O: 1  
0
1
DV  
1
X
X
X
SS  
A7 (see Note 2)  
X
X
X
DAC1 (DA12OPS= 0, see Note 3)  
SVSIN (VLD = 15)  
NOTES: 1. X: Don’t care  
2. The ADC12 channel Ax is connected to AVss internally if not selected.  
3. The DAC outputs are floating if not selected.  
MSP430F261x devices only  
86  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P7 pin schematic: P7.0 to P7.7, input/output with Schmitt trigger†  
Pad Logic  
P7REN.x  
0
1
DVSS  
DVCC  
1
P7DIR.x  
0
0
1
Direction  
0: Input  
1: Output  
P7OUT.x  
VSS  
0
1
P7.x  
P7SEL.x  
P7IN.x  
EN  
D
Module X IN  
Port P7.0 to P7.7 pin functions†  
CONTROL BITS / SIGNALS  
PIN NAME (P7.X)  
P7.0  
X
FUNCTION  
P7DIR.x  
P7SEL.x  
0
P7.0 (I/O)  
Input  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
P7.1  
1
2
3
4
5
6
7
P7.1 (I/O)  
Input  
I: 0; O: 1  
X
P7.2  
P7.2 (I/O)  
Input  
I: 0; O: 1  
X
P7.3  
P7.3 (I/O)  
Input  
I: 0; O: 1  
X
P7.4  
P7.4 (I/O)  
Input  
I: 0; O: 1  
X
P7.5  
P7.5 (I/O)  
Input  
I: 0; O: 1  
X
I: 0; O: 1  
X
P7.6  
P7.6 (I/O)  
Input  
P7.7  
P7.7 (I/O)  
Input  
I: 0; O: 1  
X
80-pin devices only  
87  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P8 pin schematic: P8.0 to P8.5, input/output with Schmitt trigger†  
Pad Logic  
P8REN.x  
0
1
DVSS  
1
DVCC  
P8DIR.x  
0
0
1
Direction  
0: Input  
1: Output  
P8OUT.x  
VSS  
0
1
P8.0  
P8.1  
P8.2  
P8.3  
P8.4  
P8.5  
P8SEL.x  
P8IN.x  
EN  
D
Module X IN  
Port P8.0 to P8.5 pin functions†  
CONTROL BITS / SIGNALS  
PIN NAME (P8.X)  
P8.0  
X
FUNCTION  
P8DIR.x  
P8SEL.x  
0
P8.0 (I/O)  
Input  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
X
P8.1  
1
2
3
4
5
P8.1 (I/O)  
Input  
I: 0; O: 1  
X
P8.2  
P8.2 (I/O)  
Input  
I: 0; O: 1  
X
P8.3  
P8.3 (I/O)  
Input  
I: 0; O: 1  
X
I: 0; O: 1  
X
P8.4  
P8.4 (I/O)  
Input  
P8.5  
P8.5 (I/O)  
Input  
I: 0; O: 1  
X
80-pin devices only  
88  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P8 pin schematic: P8.6, input/output with Schmitt trigger†  
BCSCTL3.XT2Sx = 11  
0
XT2CLK  
From  
P8.7/XIN  
P8.7/XIN  
1
XT2 off  
Pad Logic  
P8SEL.7  
P8REN.6  
0
1
DVSS  
DVCC  
1
P8DIR.6  
0
1
Direction  
0: Input  
1: Output  
P8OUT.6  
0
1
Module X OUT  
P8.6/XOUT  
Bus  
Keeper  
EN  
P8SEL.6  
P8IN.6  
EN  
D
Module X IN  
Port P8.6 pin functions†  
CONTROL BITS / SIGNALS  
PIN NAME (P8.X)  
X
FUNCTION  
P8DIR.x  
P8SEL.x  
P8.6/XOUT  
6
P8.6 (I/O)  
I: 0; O: 1  
0
1
1
XOUT (default)  
0
1
DV  
SS  
80-pin devices only  
89  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Port P8 pin schematic: P8.7, input/output with Schmitt trigger†  
BCSCTL3.XT2Sx = 11  
XT2 off  
P8.6/XOUT  
0
XT2CLK  
1
P8SEL.6  
P8REN.7  
Pad Logic  
0
1
DVSS  
DVCC  
0
1
P8DIR.7  
0
1
Direction  
0: Input  
1: Output  
P8OUT.7  
0
1
Module X OUT  
P8.7/XIN  
Bus  
Keeper  
EN  
P8SEL.7  
P8IN.7  
EN  
D
Module X IN  
Port P8.7 pin functions†  
CONTROL BITS / SIGNALS  
PIN NAME (P8.X)  
X
FUNCTION  
P8DIR.x  
P8SEL.x  
P8.7/XIN  
7
P8.7 (I/O)  
I: 0; O: 1  
0
1
1
XIN (default)  
0
1
V
SS  
80-pin devices only  
90  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
APPLICATION INFORMATION  
JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger  
TDO  
Controlled by JTAG  
Controlled by JTAG  
JTAG  
TDO/TDI  
Controlled  
by JTAG  
DV  
DV  
CC  
CC  
TDI  
Fuse  
Burn & Test  
Fuse  
Test  
and  
TDI/TCLK  
DV  
CC  
Emulation  
Module  
TMS  
TCK  
TMS  
TCK  
DV  
CC  
During Programming Activity and  
During Blowing of the Fuse, Pin  
TDO/TDI Is Used to Apply the Test  
Input Data for JTAG Circuitry  
91  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
APPLICATION INFORMATION  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity  
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, ITF, of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned.  
Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the  
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check  
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the  
fuse check mode has the potential to be activated.  
The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 49). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TDI/TCLK  
Figure 49. Fuse Check Mode Current  
92  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x241x, MSP430x261x  
MIXED SIGNAL MICROCONTROLLER  
SLAS541A -- JUNE 2007 -- REVISED OCTOBER 2007  
Data Sheet Revision History  
LITERATURE  
NUMBER  
SUMMARY  
SLAS541  
Product Preview release.  
Production Data release.  
Corrected the format and the content shown on the first page.  
Corrected pin number of P3.6 and P3.7 in 64-pin package in the terminal function list.  
Corrected the port schematics.  
SLAS541A  
Corrected “calibration data” section (page 20). Typos and formatting corrected.  
Added figure “typical characteristics -- LPM4 current” (page 33).  
93  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Nov-2007  
PACKAGING INFORMATION  
Orderable Device  
MSP430F2416TPM  
MSP430F2416TPMR  
MSP430F2416TPN  
MSP430F2416TPNR  
MSP430F2417TPM  
MSP430F2417TPMR  
MSP430F2417TPN  
MSP430F2417TPNR  
MSP430F2418TPM  
MSP430F2418TPMR  
MSP430F2418TPN  
MSP430F2418TPNR  
MSP430F2419TPM  
MSP430F2419TPMR  
MSP430F2419TPN  
MSP430F2419TPNR  
MSP430F2616TPM  
MSP430F2616TPMR  
MSP430F2616TPN  
MSP430F2616TPNR  
MSP430F2617TPM  
MSP430F2617TPMR  
MSP430F2617TPN  
MSP430F2617TPNR  
MSP430F2618TPM  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
LQFP  
PM  
64  
64  
80  
80  
64  
64  
80  
80  
64  
64  
80  
80  
64  
64  
80  
80  
64  
64  
80  
80  
64  
64  
80  
80  
64  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PN  
PN  
PM  
PM  
PN  
PN  
PM  
PM  
PN  
PN  
PM  
PM  
PN  
PN  
PM  
PM  
PN  
PN  
PM  
PM  
PN  
PN  
PM  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
119 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
119 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
119 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
119 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
119 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
119 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Nov-2007  
Orderable Device  
MSP430F2618TPMR  
MSP430F2618TPN  
MSP430F2618TPNR  
MSP430F2619TPM  
MSP430F2619TPMR  
MSP430F2619TPN  
MSP430F2619TPNR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
LQFP  
PM  
64  
80  
80  
64  
64  
80  
80  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PN  
PN  
PM  
PM  
PN  
PN  
119 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
119 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996  
PM (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
33  
48  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
0°7°  
11,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040152/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. May also be thermally enhanced plastic with leads connected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996  
PN (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
60  
M
0,08  
41  
61  
40  
0,13 NOM  
80  
21  
1
20  
Gage Plane  
9,50 TYP  
0,25  
12,20  
SQ  
11,80  
0,05 MIN  
0°7°  
14,20  
SQ  
13,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040135 /B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY