MSP430F417IPMR [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F417IPMR
型号: MSP430F417IPMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总64页 (文件大小:1248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
D
D
Low Supply-Voltage Range, 1.8 V to 3.6 V  
D
Serial Onboard Programming,  
No External Programming Voltage Needed,  
Programmable Code Protection by Security  
Fuse  
Ultralow Power Consumption  
− Active Mode: 200 μA at 1 MHz, 2.2 V  
− Standby Mode: 0.7 μA  
− Off Mode (RAM Retention): 0.1 μA  
Five Power-Saving Modes  
D
D
Bootstrap Loader in Flash Devices  
D
D
Family Members Include:  
− MSP430C412: 4KB ROM, 256B RAM  
− MSP430C413: 8KB ROM, 256B RAM  
− MSP430F412: 4KB + 256B Flash  
256B RAM  
− MSP430F413: 8KB + 256B Flash  
256B RAM  
− MSP430F415: 16KB + 256B Flash  
512B RAM  
Wake-Up From Standby Mode in  
Less Than 6 μs  
Frequency-Locked Loop (FLL+)  
D
D
16-Bit RISC Architecture, 125-ns  
Instruction Cycle Time  
D
16-Bit Timer_A With Three or Five  
Capture/Compare Registers  
Integrated LCD Driver for 96 Segments  
On-Chip Comparator  
− MSP430F417: 32KB + 256B Flash  
1KB RAM  
D
D
D
D
D
D
Available in 64-Pin QFP (PM) and  
64-Pin QFN (RTD/RGC) Packages  
Brownout Detector  
Supply Voltage Supervisor/Monitor −  
Programmable Level Detection on  
MSP430F415/417 Devices Only  
For Complete Module Descriptions,See the  
MSP430x4xx Family User’s Guide,  
Literature Number SLAU056  
Timer_A5 in ’F415 and ’F417 devices only  
description  
The Texas Instruments MSP430 family of ultra-low-power microcontrollers consists of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less  
than 6 μs.  
The MSP430x41x series are microcontroller configurations with one or two built-in 16-bit timers, a comparator,  
96 LCD segment drive capability, and 48 I/O pins.  
Typical applications include sensor systems that capture analog signals, convert them to digital values, and  
process the data and transmit them to a host system. The comparator and timer make the configurations ideal  
for industrial meters, counter applications, handheld meters, etc.  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range  
from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage  
because very small parametric changes could cause the device not to meet its published specifications. These devices have limited  
built-in ESD protection.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright © 2008, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
PLASTIC 64-PIN QFP (PM)  
PLASTIC 64-PIN QFN (RTD/RGC)  
MSP430C412IPM  
MSP430C413IPM  
MSP430F412IPM  
MSP430F413IPM  
MSP430F415IPM  
MSP430F417IPM  
MSP430C412IRGC  
MSP430C413IRGC  
MSP430F412IRTD  
MSP430F413IRTD  
MSP430F415IRTD  
MSP430F417IRTD  
−40°C to 85°C  
pin designation − MSP430x412, MSP430x413  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P1.5/TACLK/ACLK  
P1.6/CA0  
P1.7/CA1  
P2.0/TA2  
P2.1  
P5.7/R33  
P5.6/R23  
P5.5/R13  
R03  
P5.4/COM3  
P5.3/COM2  
P5.2/COM1  
COM0  
P2.2/S23  
P2.3/S22  
P2.4/S21  
DVCC  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
NC  
XIN  
XOUT  
NC  
2
3
4
5
6
7
8
MSP430x412  
MSP430x413  
9
10  
11  
NC  
P5.1/S0 12  
P5.0/S1 13  
P4.7/S2 14  
P4.6/S3 15  
P4.5/S4 16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC − No internal connection. External connection to V recommended.  
SS  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
pin designation − MSP430x415, MSP430x417  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P1.5/TA0CLK/ACLK  
P1.6/CA0  
DVCC  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
NC  
XIN  
2
3
P1.7/CA1  
4
P2.0/TA0.2  
P2.1/TA1.1  
P5.7/R33  
P5.6/R23  
P5.5/R13  
5
6
7
8
MSP430x415  
MSP430x417  
XOUT  
AVSS2  
NC  
9
R03  
10  
11  
P5.4/COM3  
P5.3/COM2  
P5.2/COM1  
COM0  
P2.2/TA1.2/S23  
P2.3/TA1.3/S22  
P2.4/TA1.4/S21  
P5.1/S0 12  
P5.0/S1 13  
P4.7/S2 14  
P4.6/S3 15  
P4.5/S4 16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC − No internal connection. External connection to V recommended.  
SS  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
functional block diagram − MSP430x412, MSP430x413  
DV  
DV  
AV  
AV  
SS  
CC  
SS  
CC  
P4  
P5  
P6  
XIN XOUT  
P1  
P2  
P3  
8
8
8
8
8
8
ACLK  
SMCLK  
Oscillators  
FLL+  
Flash−F41x  
ROM−C41x  
Port 1  
Port 2  
RAM  
256B  
Port 3  
8 I/O  
Port 4  
8 I/O  
Port 5  
8 I/O  
Port 6  
6 I/O  
8 I/O  
Interrupt  
Capability  
8 I/O  
Interrupt  
Capability  
8KB  
4KB  
MCLK  
MAB  
8 MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
Module  
Watchdog  
WDT  
Basic  
Timer 1  
(F versions  
only)  
LCD  
96  
Segments  
1,2,3,4 MUX  
POR/  
SVS/  
Brownout  
Timer_A3  
3 CC Reg  
Comparator_  
A
15/16-Bit  
1 Interrupt  
Vector  
JTAG  
Interface  
f
LCD  
RST/NMI  
functional block diagram − MSP430x415, MSP430x417  
DV  
DV  
AV  
AV  
SS  
CC  
SS  
CC  
P4  
P5  
8
P6  
8
XIN XOUT  
P1  
P2  
P3  
8
8
8
8
ACLK  
SMCLK  
Oscillators  
FLL+  
Port 1  
Port 2  
Flash  
RAM  
Port 3  
8 I/O  
Port 4  
8 I/O  
Port 5  
8 I/O  
Port 6  
6 I/O  
8 I/O  
Interrupt  
Capability  
8 I/O  
Interrupt  
Capability  
32KB  
16KB  
1KB  
512B  
MCLK  
MAB  
MDB  
8 MHz  
CPU  
incl. 16  
Registers  
Emulation  
Module  
Watchdog  
WDT  
Basic  
Timer 1  
LCD  
96  
Segments  
1,2,3,4 MUX  
(F versions  
only)  
POR/  
SVS/  
Brownout  
Timer0_A3  
3 CC Reg  
Timer1_A5  
5 CC Reg  
Comparator  
_A  
15/16-Bit  
1 Interrupt  
Vector  
JTAG  
Interface  
f
LCD  
RST/NMI  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
Terminal Functions − MSP430x412, MSP430x413  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
Positive terminal that supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive  
AV  
AV  
64  
CC  
divider circuitry; must not power up prior to DV  
.
CC  
Negative terminal that supplies SVS, brownout, oscillator, comparator_A. Needs to be externally  
connected to DV  
62  
1
SS  
.
SS  
DV  
DV  
NC  
Digital supply voltage, positive terminal. Supplies all parts, except those which are supplied via AV  
.
CC  
CC  
Digital supply voltage, negative terminal. Supplies all digital parts, except those which are supplied via  
AV /AV  
63  
SS  
.
SS  
CC  
7, 10, 11  
53  
Not internally connected. Connection to V recommended.  
SS  
P1.0/TA0  
I/O  
I/O  
General-purpose digital I/O / Timer_A, Capture: CCI0A input, compare: Out0 output/BSL transmit  
General-purpose digital I/O / Timer_A, Capture: CCI0B input/MCLK output. Note: TA0 is only an input  
on this pin/BSL receive.  
P1.1/TA0/MCLK  
52  
P1.2/TA1  
51  
50  
49  
48  
47  
46  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output  
General-purpose digital I/O / SVS: output of SVS comparator  
General-purpose digital I/O  
P1.3/SVSOUT  
P1.4  
P1.5/TACLK/ ACLK  
P1.6/CA0  
General-purpose digital I/O / Input of Timer_A clock/output of ACLK  
General-purpose digital I/O / Comparator_A input  
P1.7/CA1  
General-purpose digital I/O / Comparator_A input  
P2.0/TA2  
P2.1  
45  
44  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / Timer_A capture: CCI2A input, compare: Out2 output  
General-purpose digital I/O  
P2.2/S23  
P2.3/S22  
P2.4/S21  
P2.5/S20  
P2.6/CAOUT/S19  
P2.7/S18  
P3.0/S17  
P3.1/S16  
P3.2/S15  
P3.3/S14  
P3.4/S13  
P3.5/S12  
P3.6/S11  
P3.7/S10  
General-purpose digital I/O / LCD segment output 23 (see Note 1)  
General-purpose digital I/O / LCD segment output 22 (see Note 1)  
General-purpose digital I/O / LCD segment output 21 (see Note 1)  
General-purpose digital I/O / LCD segment output 20 (see Note 1)  
General-purpose digital I/O / Comparator_A output/LCD segment output 19 (see Note 1)  
General-purpose digital I/O / LCD segment output 18 (see Note 1)  
General-purpose digital I/O / LCD segment output 17 (see Note 1)  
General-purpose digital I/O / LCD segment output 16 (see Note 1)  
General-purpose digital I/O / LCD segment output 15 (see Note 1)  
General-purpose digital I/O / LCD segment output 14 (see Note 1)  
General-purpose digital I/O / LCD segment output 13 (see Note 1)  
General-purpose digital I/O / LCD segment output 12 (see Note 1)  
General-purpose digital I/O / LCD segment output 11 (see Note 1)  
General-purpose digital I/O / LCD segment output 10 (see Note 1)  
NOTE 1: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
Terminal Functions − MSP430x412, MSP430x413 (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
36  
37  
38  
39  
40  
41  
42  
43  
59  
60  
61  
2
P4.0/S9  
I/O General-purpose digital I/O / LCD segment output 9 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 8 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 7 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 6 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 5 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 4 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 3 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 2 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 1 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 0 (see Note 1)  
P4.1/S8  
P4.2/S7  
P4.3/S6  
P4.4/S5  
P4.5/S4  
P4.6/S3  
P4.7/S2  
P5.0/S1  
P5.1/S0  
COM0  
O
Common output. COM0−3 are used for LCD backplanes  
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
R03  
I/O General-purpose digital I/O / Common output. COM0−3 are used for LCD backplanes.  
I/O General-purpose digital I/O / Common output. COM0−3 are used for LCD backplanes.  
I/O General-purpose digital I/O / Common output. COM0−3 are used for LCD backplanes.  
I
Input port of fourth positive (lowest) analog LCD level (V5)  
P5.5/R13  
P5.6/R23  
P5.7/R33  
P6.0  
I/O General-purpose digital I/O / Input port of third most positive analog LCD level (V4 or V3)  
I/O General-purpose digital I/O / Input port of second most positive analog LCD level (V2)  
I/O General-purpose digital I/O / Output port of most positive analog LCD level (V1)  
I/O General-purpose digital I/O  
P6.1  
I/O General-purpose digital I/O  
P6.2  
I/O General-purpose digital I/O  
P6.3  
I/O General-purpose digital I/O  
P6.4  
3
I/O General-purpose digital I/O  
P6.5  
4
I/O General-purpose digital I/O  
P6.6  
5
I/O General-purpose digital I/O  
P6.7  
6
I/O General-purpose digital I/O  
RST/NMI  
TCK  
58  
57  
55  
54  
56  
8
I
I
I
Reset input / Nonmaskable interrupt input  
Test clock. TCK is the clock input port for device programming and test.  
Test data input / Test clock input. The device protection fuse is connected to TDI.  
TDI/TCLK  
TDO/TDI  
TMS  
I/O Test data output port. TDO/TDI data output or programming data input terminal.  
I
I
Test mode select. TMS is used as an input port for device programming and test.  
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Output terminal of crystal oscillator XT1.  
XIN  
XOUT  
9
O
QFN Pad  
NA  
NA QFN package pad connection to V recommended.  
SS  
NOTE 2: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
Terminal Functions − MSP430x415, MSP430x417  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
Positive terminal that supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive  
AV  
AV  
64  
CC  
divider circuitry; must not power up prior to DV  
.
CC  
Negative terminal that supplies SVS, brownout, oscillator, comparator_A. Needs to be externally  
connected to DV  
62  
1
SS1  
.
SS  
DV  
DV  
Digital supply voltage, positive terminal. Supplies all parts, except those which are supplied via AV  
.
CC  
CC  
Digital supply voltage, negative terminal. Supplies all digital parts, except those which are supplied via  
AV /AV  
63  
SS  
.
SS  
CC  
Negative terminal that supplies SVS, brownout, oscillator, comparator_A. Needs to be externally  
connected to DV  
AV  
10  
SS2  
.
SS  
NC  
7, 11  
53  
Not internally connected. Connection to V recommended.  
SS  
P1.0/TA0.0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / Timer0_A. Capture: CCI0A input, compare: Out0 output/BSL transmit  
General-purpose digital I/O / Timer0_A. Capture: CCI0B input/MCLK output. Note: TA0 is only an input  
on this pin/BSL receive  
P1.1/TA0.0/MCLK  
52  
51  
50  
49  
48  
P1.2/TA0.1  
General-purpose digital I/O / Timer0_A, capture: CCI1A input, compare: Out1 output  
General-purpose digital I/O / Timer1_A, capture: CCI0B input/SVS: output of SVS comparator  
General-purpose digital I/O / Timer1_A, capture: CCI0A input, compare: Out0 output  
General-purpose digital I/O / input of Timer0_A clock/output of ACLK  
P1.3/TA1.0/  
SVSOUT  
P1.4/TA1.0  
P1.5/TA0CLK/  
ACLK  
P1.6/CA0  
P1.7/CA1  
47  
46  
I/O  
I/O  
General-purpose digital I/O / Comparator_A input  
General-purpose digital I/O / Comparator_A input  
P2.0/TA0.2  
P2.1/TA1.1  
45  
44  
I/O  
I/O  
General-purpose digital I/O / Timer0_A capture: CCI2A input, compare: Out2 output  
General-purpose digital I/O / Timer1_A, capture: CCI1A input, compare: Out1 output  
General-purpose digital I/O / Timer1_A, capture: CCI2A input, compare: Out2 output/LCD segment  
output 23 (see Note 1)  
P2.2/TA1.2/S23  
P2.3/TA1.3/S22  
P2.4/TA1.4/S21  
35  
34  
33  
I/O  
I/O  
I/O  
General-purpose digital I/O / Timer1_A, capture: CCI3A input, compare: Out3 output/LCD segment  
output 22 (see Note 1)  
General-purpose digital I/O / Timer1_A, capture: CCI4A input, compare: Out4 output/LCD segment  
output 21 (see Note 1)  
P2.5/TA1CLK/S20  
P2.6/CAOUT/S19  
P2.7/S18  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / input of Timer1_A clock/LCD segment output 20 (see Note 1)  
General-purpose digital I/O / Comparator_A output/LCD segment output 19 (see Note 1)  
General-purpose digital I/O / LCD segment output 18 (see Note 1)  
General-purpose digital I/O / LCD segment output 17 (see Note 1)  
General-purpose digital I/O / LCD segment output 16 (see Note 1)  
General-purpose digital I/O / LCD segment output 15 (see Note 1)  
General-purpose digital I/O / LCD segment output 14 (see Note 1)  
General-purpose digital I/O / LCD segment output 13 (see Note 1)  
General-purpose digital I/O / LCD segment output 12 (see Note 1)  
General-purpose digital I/O / LCD segment output 11 (see Note 1)  
General-purpose digital I/O / LCD segment output 10 (see Note 1)  
P3.0/S17  
P3.1/S16  
P3.2/S15  
P3.3/S14  
P3.4/S13  
P3.5/S12  
P3.6/S11  
P3.7/S10  
NOTE 3: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
Terminal Functions − MSP430x415, MSP430x417 (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
36  
37  
38  
39  
40  
41  
42  
43  
59  
60  
61  
2
P4.0/S9  
I/O General-purpose digital I/O / LCD segment output 9 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 8 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 7 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 6 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 5 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 4 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 3 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 2 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 1 (see Note 1)  
I/O General-purpose digital I/O / LCD segment output 0 (see Note 1)  
P4.1/S8  
P4.2/S7  
P4.3/S6  
P4.4/S5  
P4.5/S4  
P4.6/S3  
P4.7/S2  
P5.0/S1  
P5.1/S0  
COM0  
O
Common output. COM0−3 are used for LCD backplanes.  
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
R03  
I/O General-purpose digital I/O / common output. COM0−3 are used for LCD backplanes.  
I/O General-purpose digital I/O / common output. COM0−3 are used for LCD backplanes.  
I/O General-purpose digital I/O / common output. COM0−3 are used for LCD backplanes.  
I
Input port of fourth positive (lowest) analog LCD level (V5)  
P5.5/R13  
P5.6/R23  
P5.7/R33  
P6.0  
I/O General-purpose digital I/O / input port of third most positive analog LCD level (V4 or V3)  
I/O General-purpose digital I/O / input port of second most positive analog LCD level (V2)  
I/O General-purpose digital I/O / output port of most positive analog LCD level (V1)  
I/O General-purpose digital I/O  
P6.1  
I/O General-purpose digital I/O  
P6.2  
I/O General-purpose digital I/O  
P6.3  
I/O General-purpose digital I/O  
P6.4  
3
I/O General-purpose digital I/O  
P6.5  
4
I/O General-purpose digital I/O  
P6.6  
5
I/O General-purpose digital I/O  
P6.7/SVSIN  
RST/NMI  
TCK  
6
I/O General-purpose digital I/O / SVS, analog input  
58  
57  
55  
54  
56  
8
I
I
I
Reset input / Nonmaskable interrupt input port  
Test clock. TCK is the clock input port for device programming and test.  
Test data input / Test clock input. The device protection fuse is connected to TDI.  
TDI/TCLK  
TDO/TDI  
TMS  
I/O Test data output port. TDO/TDI data output or programming data input terminal.  
I
I
Test mode select. TMS is used as an input port for device programming and test.  
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Output terminal of crystal oscillator XT1.  
XIN  
XOUT  
9
O
QFN Pad  
NA  
NA QFN package pad connection to V recommended  
SS  
NOTE 4: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator, respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g. ADD R4,R5  
R4 + R5 −−−> R5  
e.g. CALL  
e.g. JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
D D  
R10 −−> R11  
Indexed  
D D  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
M(2+R5)−−> M(6+R6)  
M(EDE) −−> M(TONI)  
M(MEM) −−> M(TCDAT)  
M(R10) −−> M(Tab+R6)  
Symbolic (PC relative) D D  
Absolute  
Indirect  
D D MOV &MEM,&TCDAT  
D
D
D
MOV @Rn,Y(Rm)  
MOV @Rn+,Rm  
MOV #X,TONI  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) −−> R11  
R10 + 2−−> R10  
Immediate  
#45 −−> M(TONI)  
NOTE: S = source  
D = destination  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
D
Active mode (AM)  
All clocks are active.  
Low-power mode 0 (LPM0)  
CPU is disabled.  
ACLK and SMCLK remain active, MCLK is available to modules.  
FLL+ loop control remains active.  
D
D
Low-power mode 1 (LPM1)  
CPU is disabled.  
ACLK and SMCLK remain active. MCLK is available to modules.  
FLL+ loop control is disabled.  
Low-power mode 2 (LPM2)  
CPU is disabled.  
MCLK, FLL+ loop control, and DCOCLK are disabled.  
DCO’s dc generator remains enabled.  
ACLK remains active.  
D
D
Low-power mode 3 (LPM3)  
CPU is disabled.  
MCLK, FLL+ loop control, and DCOCLK are disabled.  
DCO’s dc generator is disabled.  
ACLK remains active.  
Low-power mode 4 (LPM4)  
CPU is disabled.  
ACLK is disabled.  
MCLK, FLL+ loop control, and DCOCLK are disabled.  
DCO’s dc generator is disabled.  
Crystal oscillator is stopped.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFE0h.  
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
Watchdog  
WDTIFG  
KEYV  
(see Note 1)  
Reset  
0FFFEh  
15, highest  
Flash memory  
NMI  
Oscillator fault  
Flash memory access violation  
NMIIFG (see Notes 1 and 3)  
OFIFG (see Notes 1 and 3)  
ACCVIFG (see Notes 1 and 3)  
(Non)maskable  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
0FFF8h  
14  
13  
12  
Timer1_A5 (see Note 4)  
TA1CCR0 CCIFG (see Note 2)  
Maskable  
TA1CCR1 to TA1CCR4  
CCIFGs and TA1CTL TAIFG  
(see Notes 1 and 2)  
Timer1_A5 (see Note 4)  
Maskable  
Comparator_A  
Watchdog timer  
CMPAIFG  
WDTIFG  
Maskable  
Maskable  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
11  
10  
9
8
7
Timer_A3/Timer0_A3  
TACCR0/TA0CCR0 CCIFG  
(see Note 2)  
Maskable  
6
TACCR1/TA0CCR1,  
TACCR2/TA0CCR2 CCIFGs  
and TACLT/TA0CTL TAIFG  
(see Notes 1 and 2)  
Timer_A3/Timer0_A3  
I/O port P1 (eight flags)  
Maskable  
Maskable  
0FFEAh  
0FFE8h  
5
4
P1IFG.0 to P1IFG.7  
(see Notes 1 and 2)  
0FFE6h  
0FFE4h  
3
2
P2IFG.0 to P2IFG.7  
(see Notes 1 and 2)  
I/O port P2 (eight flags)  
Maskable  
Maskable  
0FFE2h  
0FFE0h  
1
Basic Timer1  
BTIFG  
0, lowest  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module.  
3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt-enable cannot.  
4. Implemented in MSP430x415 and MSP430x417 devices only  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
that are not allocated to a functional purpose are not physically present in the device. Simple software access  
is provided with this arrangement.  
interrupt enable 1 and 2  
7
6
6
5
4
3
3
2
2
1
0
Address  
0h  
ACCVIE  
NMIIE  
OFIE  
WDTIE  
rw-0  
rw-0  
rw-0  
rw-0  
7
5
4
1
0
Address  
1h  
BTIE  
rw-0  
WDTIE:  
Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is  
configured in interval timer mode.  
OFIE:  
Oscillator fault interrupt enable  
Nonmaskable interrupt enable  
Flash access violation interrupt enable  
Basic Timer1 interrupt enable  
NMIIE:  
ACCVIE:  
BTIE:  
interrupt flag register 1 and 2  
7
6
5
5
4
3
3
2
2
1
0
Address  
02h  
NMIIFG  
OFIFG  
WDTIFG  
rw-0  
rw-1  
rw-(0)  
7
6
4
1
0
Address  
3h  
BTIFG  
rw-0  
WDTIFG:  
Set on watchdog-timer overflow (in watchdog mode) or security key violation. Reset with VCC power-up,  
or a reset condition at the RST/NMI pin in reset mode.  
OFIFG:  
NMIIFG:  
BTIFG:  
Flag set on oscillator fault  
Set via RST/NMI pin  
Basic Timer1 interrupt flag  
module enable registers 1 and 2  
7
6
5
4
3
2
1
0
Address  
04h/05h  
Legend: rw−0,1:  
rw−(0,1):  
Bit Can Be Read and Written. It Is Reset or Set by PUC.  
Bit Can Be Read and Written. It Is Reset or Set by POR.  
SFR Bit Not Present in Device.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
memory organization  
MSP430F412  
MSP430F413  
MSP430F415  
MSP430F417  
Memory  
Size  
4KB  
8KB  
16KB  
32KB  
Interrupt vector  
Code memory  
Flash  
Flash  
0FFFFh to 0FFE0h  
0FFFFh to 0F000h  
0FFFFh to 0FFE0h  
0FFFFh to 0E000h  
0FFFFh to 0FFE0h  
0FFFFh to 0C000h  
0FFFFh to 0FFE0h  
0FFFFh to 08000h  
Information memory  
Boot memory  
RAM  
Size  
Flash  
256 Byte  
010FFh to 01000h  
256 Byte  
010FFh to 01000h  
256 Byte  
010FFh to 01000h  
256 Byte  
010FFh to 01000h  
Size  
ROM  
1KB  
0FFFh to 0C00h  
1KB  
0FFFh to 0C00h  
1KB  
0FFFh to 0C00h  
1KB  
0FFFh to 0C00h  
Size  
256 Byte  
256 Byte  
512 Byte  
1 KB  
02FFh to 0200h  
02FFh to 0200h  
03FFh to 0200h  
05FFh to 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
MSP430C412  
MSP430C413  
Memory  
Interrupt vector  
Code memory  
Size  
ROM  
ROM  
4KB  
8KB  
0FFFFh to 0FFE0h  
0FFFFh to 0F000h  
0FFFFh to 0FFE0h  
0FFFFh to 0E000h  
Information memory  
Boot memory  
RAM  
Size  
Size  
Size  
NA  
NA  
NA  
NA  
256 Byte  
256 Byte  
02FFh to 0200h  
02FFh to 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
bootstrap loader (BSL)  
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access  
to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the  
features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap  
Loader, literature number SLAA089.  
BSL FUNCTION  
Data Transmit  
Data Receive  
PM, RTD, RGC PACKAGE PINS  
53 - P1.0  
52 - P1.1  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and two segments of information memory (A and B) of 128  
bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A and B can be erased individually, or as a group with segments 0 to n.  
Segments A and B are also called information memory.  
D
New devices may have some bytes programmed in the information memory (needed for test during  
manufacturing). The user should perform an erase of the information memory prior to the first use.  
8KB  
16KB  
32KB  
4KB  
0FFFFh 0FFFFh  
0FFFFh 0FFFFh  
Segment 0  
With Interrupt Vectors  
0FE00h 0FE00h  
0FDFFh 0FDFFh  
0FE00h 0FE00h  
0FDFFh 0FDFFh  
Segment 1  
Segment 2  
0FC00h 0FC00h  
0FBFFh 0FBFFh  
0FC00h 0FC00h  
0FBFFh 0FBFFh  
0FA00h 0FA00h  
0F9FFh 0F9FFh  
0FA00h 0FA00h  
0F9FFh 0F9FFh  
Main Memory  
0C400h 08400h  
0C3FFh 083FFh  
0F400h 0E400h  
0F3FFh 0E3FFh  
Segment n−1  
Segment n  
Segment A  
Segment B  
0C200h 08200h  
0C1FFh 081FFh  
0F200h 0E200h  
0F1FFh 0E1FFh  
0C000h 08000h  
010FFh 010FFh  
0F000h 0E000h  
010FFh 010FFh  
01080h 01080h  
0107Fh 0107Fh  
01080h 01080h  
0107Fh 0107Fh  
Information Memory  
01000h 01000h  
01000h 01000h  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number  
SLAU056.  
oscillator and system clock  
The clock system in the MSP430x41x family of devices is supported by the FLL+ module that includes support  
for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and a high-frequency  
crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low  
power consumption. The FLL+ features a digital frequency locked loop (FLL) hardware which in conjunction  
with a digital modulator stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency.  
The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 μs. The FLL+ module  
provides the following clock signals:  
D
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8.  
brownout, supply voltage supervisor  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a fixed  
level or user selectable level (MSP430x415 & MSP430x417 only) and supports both supply voltage supervision  
(the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset).  
The CPU begins code execution after the brownout circuit releases the device reset. However, V may not  
CC  
have ramped to V  
at that time. The user must ensure the default FLL+ settings are not changed until V  
CC(min)  
CC  
reaches V  
. If desired, the SVS circuit can be used to determine when V reaches V  
.
CC(min)  
CC  
CC(min)  
digital I/O  
There are six 8-bit I/O ports implemented—ports P1 through P6.  
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
Basic Timer1  
Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers  
can be read and written by software. Basic Timer1 can be used to generate periodic interrupts and clock for the  
LCD module.  
LCD driver  
The LCD driver generates the segment and common signals required to drive an LCD display. The LCD  
controller has dedicated data memory to hold segment drive information. Common and segment signals are  
generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
watchdog timer (WDT)  
The primary function of the WDT module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
comparator_A  
The primary function of the comparator_A module is to support precision slope analog-to-digital conversions,  
battery−voltage supervision, and monitoring of external analog signals.  
Timer_A3/Timer0_A3  
Timer_A3/Timer0_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3/Timer0_A3 can  
support multiple capture/compares, PWM outputs, and interval timing. Timer_A3/Timer0_A3 also has extensive  
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of  
the capture/compare registers.  
TIMER_A3/TIMER0_A3 SIGNAL CONNECTIONS  
INPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
OUTPUT PIN  
NUMBER  
MODULE BLOCK  
48 - P1.5  
TACLK/TA0CLK  
ACLK  
TACLK  
ACLK  
Timer  
NA  
SMCLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
48 - P1.5  
53 - P1.0  
52 - P1.1  
TACLK/TA0CLK  
TA0/TA0.0  
TA0/TA0.0  
53 - P1.0  
51 - P1.2  
45 - P2.0  
CCR0  
CCR1  
CCR2  
TA0/TA0.0  
TA1/TA0.1  
TA2/TA0.2  
DV  
DV  
SS  
CC  
V
CC  
51 - P1.2  
45 - P2.0  
TA1/TA0.1  
CCI1A  
CCI1B  
GND  
CAOUT (internal)  
DV  
SS  
CC  
DV  
V
CC  
TA2/TA0.2  
CCI2A  
CCI2B  
GND  
ACLK (internal)  
DV  
DV  
SS  
CC  
V
CC  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
Timer1_A5 (MSP430x415 and MSP430x417 only)  
Timer1_A5 is a 16-bit timer/counter with five capture/compare registers. Timer1_A5 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer1_A5 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
TIMER1_A5 SIGNAL CONNECTIONS  
INPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
OUTPUT PIN  
NUMBER  
MODULE BLOCK  
32 - P2.5  
TA1CLK  
ACLK  
TACLK  
ACLK  
Timer  
NA  
SMCLK  
TA1CLK  
TA1.0  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
32 - P2.5  
49 - P1.4  
50 - P1.3  
49 - P1.4  
44 - P2.1  
35 - P2.2  
34 - P2.3  
33 - P2.4  
TA1.0  
CCR0  
CCR1  
CCR2  
CCR3  
CCR4  
TA1.0  
TA1.1  
TA1.2  
TA1.3  
TA1.4  
DV  
DV  
SS  
CC  
V
CC  
44 - P2.1  
35 - P2.2  
34 - P2.3  
33 - P2.4  
TA1.1  
CCI1A  
CCI1B  
GND  
CAOUT (internal)  
DV  
SS  
CC  
DV  
V
CC  
TA1.2  
CCI2A  
CCI2B  
GND  
Not Connected  
DV  
DV  
SS  
CC  
V
CC  
TA1.3  
CCI3A  
CCI3B  
GND  
Not Connected  
DV  
DV  
SS  
CC  
V
CC  
TA1.4  
CCI4A  
CCI4B  
GND  
Not Connected  
DV  
DV  
SS  
CC  
V
CC  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Watchdog Timer control  
Watchdog  
WDTCTL  
TA1IV  
0120h  
011Eh  
0180h  
0182h  
0184h  
0186h  
0188h  
018Ah  
018Ch  
018Eh  
0190h  
0192h  
0194h  
0196h  
0198h  
019Ah  
019Ch  
019Eh  
012Eh  
0160h  
Timer1_A5  
(MSP430x415 and  
MSP430x417 only)  
Timer1_A interrupt vector  
Timer1_A control  
TA1CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Reserved  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1CCTL3  
TA1CCTL4  
Reserved  
Timer1_A register  
TA1R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Capture/compare register 3  
Capture/compare register 4  
Reserved  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1CCR3  
TA1CCR4  
Reserved  
Timer_A3/Timer0_A3  
Timer_A/Timer0_A interrupt vector  
Timer_A/Timer0_A control  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Reserved  
TAIV/TA0IV  
TACTL/TA0CTL  
TACCTL0/TA0CCTL0 0162h  
TACCTL1/TA0CCTL1 0164h  
TACCTL2/TA0CCTL2 0166h  
0168h  
016Ah  
016Ch  
016Eh  
Reserved  
Reserved  
Reserved  
Timer_A/Timer0_A register  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Reserved  
TAR/TA0R  
0170h  
0172h  
0174h  
0176h  
0178h  
017Ah  
017Ch  
017Eh  
012Ch  
012Ah  
0128h  
TACCR0/TA0CCR0  
TACCR1/TA0CCR1  
TACCR2/TA0CCR2  
Reserved  
Reserved  
Reserved  
Flash  
Flash control 3  
FCTL3  
FCTL2  
FCTL1  
Flash control 2  
Flash control 1  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS  
LCD memory 20  
LCD  
LCDM20  
:
0A4h  
:
:
LCD memory 16  
LCD memory 15  
:
LCDM16  
LCDM15  
:
0A0h  
09Fh  
:
LCD memory 1  
LCDM1  
LCDCTL  
CAPD  
091h  
090h  
05Bh  
05Ah  
059h  
056h  
054h  
053h  
052h  
051h  
050h  
047h  
046h  
040h  
037h  
036h  
035h  
034h  
033h  
032h  
031h  
030h  
01Fh  
01Eh  
01Dh  
01Ch  
01Bh  
01Ah  
019h  
018h  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
LCD control and mode  
Comparator_A port disable  
Comparator_A control2  
Comparator_A control1  
SVS control register  
FLL+ Control1  
Comparator_A  
CACTL2  
CACTL1  
SVSCTL  
FLL_CTL1  
FLL_CTL0  
SCFQCTL  
SCFI1  
SCFI0  
BTCNT2  
BTCNT1  
BTCTL  
P6SEL  
P6DIR  
P6OUT  
P6IN  
Brownout, SVS  
FLL+ Clock  
FLL+ Control0  
System clock frequency control  
System clock frequency integrator  
System clock frequency integrator  
BT counter2  
Basic Timer1  
Port P6  
BT counter1  
BT control  
Port P6 selection  
Port P6 direction  
Port P6 output  
Port P6 input  
Port P5  
Port P4  
Port P3  
Port P2  
Port P5 selection  
Port P5 direction  
Port P5 output  
P5SEL  
P5DIR  
P5OUT  
P5IN  
Port P5 input  
Port P4 selection  
Port P4 direction  
Port P4 output  
P4SEL  
P4DIR  
P4OUT  
P4IN  
Port P4 input  
Port P3 selection  
Port P3 direction  
Port P3 output  
P3SEL  
P3DIR  
P3OUT  
P3IN  
Port P3 input  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt-edge select  
Port P2 interrupt flag  
Port P2 direction  
Port P2 output  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P2 input  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS (CONTINUED)  
Port P1  
Port P1 selection  
P1SEL  
P1IE  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
005h  
004h  
003h  
002h  
001h  
000h  
Port P1 interrupt enable  
Port P1 interrupt-edge select  
Port P1 interrupt flag  
Port P1 direction  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
ME2  
Port P1 output  
Port P1 input  
Special Functions  
SFR module enable 2  
SFR module enable 1  
SFR interrupt flag2  
SFR interrupt flag1  
SFR interrupt enable2  
SFR interrupt enable1  
ME1  
IFG2  
IFG1  
IE2  
IE1  
absolute maximum ratings†  
Voltage applied at V to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to + 4.1 V  
CC  
SS  
Voltage applied to any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V + 0.3 V  
CC  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA  
Storage temperature:  
Unprogrammed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
Programmed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage  
SS  
FB  
is applied to the TDI/TCLK pin when blowing the JTAG fuse.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
recommended operating conditions  
PARAMETER  
MIN  
NOM  
MAX UNITS  
Supply voltage during program execution,  
MSP430x41x  
1.8  
3.6  
V
V
CC  
(AV = DV = V ) (see Note 1)  
CC CC CC  
MSP430x412/413  
MSP430x415/417  
2.2  
2.0  
3.6  
3.6  
Supply voltage during program execution, SVS enabled and PORON = 1,  
(AV = DV = V ) (see Note 1 and Note 2)  
V
V
V
CC  
CC  
CC  
CC  
Supply voltage during programming of flash memory,  
MSP430F41x  
2.7  
3.6  
V
CC  
(AV = DV = V  
)
CC  
CC  
CC  
Supply voltage, V (AV  
= DV = V )  
SS  
0
0
V
SS  
SS/1/2  
SS  
Operating free-air temperature range, T  
MSP430x41x  
Watch crystal  
Ceramic resonator  
Crystal  
−40  
85  
°C  
Hz  
A
LF selected, XTS_FLL=0  
XT1 selected, XTS_FLL=1  
XT1 selected, XTS_FLL=1  
32768  
LFXT1 crystal frequency, f  
(see Note 3)  
(LFXT1)  
450  
1000  
DC  
8000  
8000  
4.15  
8
kHz  
V
V
= 1.8 V  
= 3.6 V  
CC  
Processor frequency (signal MCLK), f  
MHz  
(System)  
DC  
CC  
NOTES: 1. It is recommended to power AV and DV from the same source. A maximum difference of 0.3 V between AV and DV can  
CC  
CC  
CC  
CC  
be tolerated during power up and operation.  
2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing supply voltage.  
POR is going inactive when the supply voltage is raised above minimum supply voltage plus the hysteresis of the SVS circuitry.  
3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.  
f (MHz)  
Supply Voltage Range  
During Programming of  
the Flash Memory  
8 MHz  
Supply Voltage Range, x41x  
During Program Execution  
4.15 MHz  
1.8 V  
2.7 V 3 V  
3.6 V  
V
CC  
− Supply Voltage − V  
Figure 1. Frequency vs Supply Voltage  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
supply current into AV + DV excluding external current (see Note 1)  
CC  
CC  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
160  
240  
200  
300  
MAX UNIT  
200  
CC  
2.2 V  
3 V  
Active mode,  
C41x  
F41x  
300  
f
f
= f  
= f  
(DCO)  
= 1 MHz,  
(MCLK)  
(SMCLK)  
I
T = −40°C to 85°C  
A
μA  
(AM)  
= 32,768 Hz, XTS_FLL = 0  
(F41x: Program executes in flash)  
2.2 V  
3 V  
250  
(ACLK)  
350  
Low-power mode (LPM0)  
2.2 V  
3 V  
32  
55  
57  
92  
45  
f
f
= f  
= f  
= 0.5 MHz,  
(MCLK)  
(SMCLK)  
(DCO)  
= 32,768 Hz, XTS_FLL = 0  
(ACLK)  
70  
FN_8=FN_4=FN_3=FN_2=0 (see Note 3)  
C41x  
F41x  
I
I
T = −40°C to 85°C  
μA  
(LPM0)  
A
Low-power mode (LPM0)  
2.2 V  
3 V  
70  
f
f
= f  
= f  
= 1 MHz,  
(MCLK)  
(SMCLK)  
(DCO)  
= 32,768 Hz, XTS_FLL = 0  
(ACLK)  
100  
14  
FN_8=FN_4=FN_3=FN_2=0 (see Note 3)  
2.2 V  
3 V  
11  
17  
Low-power mode (LPM2) (see Note 3)  
T = −40°C to 85°C  
A
μA  
(LPM2)  
22  
T = −40°C  
0.95  
0.8  
0.7  
0.95  
1.6  
1.1  
1.0  
0.9  
1.1  
2.0  
0.1  
0.1  
0.8  
1.4  
1.3  
1.2  
1.4  
2.3  
A
T = −10°C  
A
T = 25°C  
A
2.2 V  
T = 60°C  
A
T = 85°C  
A
I
Low-power mode (LPM3) (see Note 2 and Note 3)  
μA  
(LPM3)  
T = −40°C  
A
1.7  
T = −10°C  
A
1.6  
1.5  
1.7  
2.6  
0.5  
T = 25°C  
A
3 V  
T = 60°C  
A
T = 85°C  
A
T = −40°C  
A
T = 25°C  
A
0.5  
2.5  
I
Low-power mode (LPM4) (see Note 3)  
2.2 V/3 V  
μA  
(LPM4)  
T = 85°C  
A
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current. The current consumption is measured with active Basic  
CC  
Timer1 and LCD (ACLK selected).  
The current consumption of the Comparator_A and the SVS module are specified in the respective sections.  
2. The LPM3 currents are characterized with a KDS Daishinku DT−38 (6 pF) crystal.  
3. Current for brownout included.  
current consumption of active mode versus system frequency  
I
= I  
× f  
(AM)  
(AM) [1 MHz] (System) [MHz]  
current consumption of active mode versus supply voltage  
I
= I + 140 μA/V × (V – 3 V)  
(AM) [3 V] CC  
(AM)  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Schmitt-trigger inputs − ports P1, P2, P3, P4, P5, and P6  
PARAMETER  
V
MIN  
1.1  
MAX  
1.5  
1.9  
0.9  
1.3  
1.1  
1
UNIT  
CC  
2.2 V  
3 V  
V
IT+  
V
IT−  
V
hys  
Positive-going input threshold voltage  
V
1.5  
2.2 V  
3 V  
0.4  
Negative-going input threshold voltage  
V
V
0.9  
2.2 V  
3 V  
0.3  
Input voltage hysteresis (V − V  
)
IT−  
IT+  
0.45  
standard inputs − RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)  
PARAMETER  
V
MIN  
MAX  
UNIT  
V
CC  
V
V
Low-level input voltage  
High-level input voltage  
V
SS  
V +0.6  
SS  
IL  
2.2 V/3 V  
0.8×V  
V
CC  
V
IH  
CC  
inputs Px.x, TAx/TAx.x  
PARAMETER  
TEST CONDITIONS  
V
MIN  
1.5  
62  
MAX  
UNIT  
CC  
2.2 V/3 V  
2.2 V  
3 V  
cycle  
Port P1, P2: P1.x to P2.x, External  
trigger signal for the interrupt flag  
(see Note 1)  
t
External interrupt timing  
(int)  
ns  
ns  
50  
2.2 V  
3 V  
62  
t
f
f
Timer_A, capture timing  
TAx/TAx.y  
(cap)  
50  
2.2 V  
3 V  
8
10  
8
Timer_A clock frequency externally applied  
to pin  
TACLK/TAxCLK, INCLK t = t  
(L)  
MHz  
MHz  
(TAext)  
(H)  
2.2 V  
3 V  
Timer_A clock frequency  
SMCLK or ACLK signal selected  
(TAint)  
10  
NOTES: 1. The external signal sets the interrupt flag every time the minimum t  
cycle and time parameters are met. It may be set even with  
(int)  
trigger signals shorter than t . Both the cycle and timing specifications must be met to ensure the flag is set. t  
is measured in  
(int)  
(int)  
MCLK cycles.  
leakage current (see Note 1)  
PARAMETER  
TEST CONDITIONS  
(see Note 2)  
V
MIN  
MAX  
UNIT  
CC  
I
I
I
I
I
I
Port P1  
Port P2  
Port P3  
Port P4  
Port P5  
Port P6  
V
(P1.x)  
V
(P2.x)  
V
(P3.x)  
V
(P4.x)  
V
(P5.x)  
V
(P6.x)  
50  
50  
50  
50  
50  
50  
lkg(P1.x)  
lkg(P2.x)  
lkg(P3.x)  
lkg(P4.x)  
lkg(P5.x)  
lkg(P6.x)  
(see Note 2)  
(see Note 2)  
Leakage current  
2.2 V/3 V  
nA  
(see Note 2)  
(see Note 2)  
(see Note 2)  
NOTES: 1. The leakage current is measured with V or V applied to the corresponding pin(s), unless otherwise noted.  
SS  
CC  
2. The port pin must be selected as an input.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs − ports P1, P2, P3, P4, P5, and P6  
PARAMETER  
TEST CONDITIONS  
= −1.5 mA, See Note 1  
= −6 mA, See Note 2  
= −1.5 mA, See Note 1  
= −6 mA, See Note 2  
= 1.5 mA, See Note 1  
= 6 mA, See Note 2  
= 1.5 mA, See Note 1  
= 6 mA, See Note 2  
V
MIN  
MAX  
UNIT  
CC  
I
I
I
I
I
I
I
I
2.2 V  
2.2 V  
3 V  
V
−0.25  
V
CC  
V
CC  
V
CC  
V
CC  
OH(max)  
OH(max)  
OH(max)  
OH(max)  
OL(max)  
OL(max)  
OL(max)  
OL(max)  
CC  
V
−0.6  
CC  
V
OH  
High-level output voltage  
V
V
CC  
−0.25  
3 V  
V
−0.6  
CC  
2.2 V  
2.2 V  
3 V  
V
SS  
V
SS  
V
SS  
V
SS  
V
+0.25  
SS  
V
+0.6  
SS  
V
OL  
Low-level output voltage  
V
V
SS  
+0.25  
3 V  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed 12 mA to satisfy the maximum  
OH(max)  
OL(max),  
2. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed 24 mA to satisfy the maximum  
OH(max)  
OL(max),  
output frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
DC  
DC  
TYP  
MAX  
10  
UNIT  
V
CC  
CC  
= 2.2 V  
= 3 V  
C = 20 pF,  
I = 1.5mA  
L
L
f
(1 x 6, 0 y 7)  
MHz  
Px.y  
V
12  
f
f
f
V
= 2.2 V  
= 3 V  
8
ACLK,  
MCLK,  
SMCLK  
CC  
CC  
P1.1/TA0/MCLK, P1.5/TACLK/ACLK  
Duty cycle of output frequency  
C = 20 pF  
MHz  
L
V
12  
f
f
f
= f  
= f  
= f  
= f  
= f  
40%  
30%  
60%  
70%  
ACLK  
ACLK  
ACLK  
LFXT1  
XT1  
P1.5/TACLK/ACLK,  
C = 20 pF  
LFXT1  
LF  
L
V
CC  
= 2.2 V / 3 V  
50%  
50%  
LFXT1/n  
t
Xdc  
50%−  
15 ns  
50%+  
15 ns  
f
= f  
MCLK  
MCLK  
LFXT1/n  
DCOCLK  
P1.1/TA0/MCLK,  
C = 20 pF,  
L
50%−  
15 ns  
50%+  
15 ns  
V
CC  
= 2.2 V / 3 V  
f
= f  
50%  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
MSP430x412, MSP430x413 outputs − ports P1, P2, P3, P4, P5, and P6 (see Note A)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
V
P1.0  
= 2.2 V  
T
= 25°C  
V
P1.0  
= 3 V  
CC  
A
CC  
T
= 25°C  
A
T
= 85°C  
A
T
= 85°C  
A
6
4
2
0
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 2  
Figure 3  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
−2  
0
−5  
V
P1.0  
= 2.2 V  
V
P1.0  
= 3 V  
CC  
CC  
−4  
−10  
−15  
−20  
−25  
−30  
−6  
−8  
T
A
= 85°C  
−10  
−12  
−14  
T
A
= 85°C  
T
A
= 25°C  
T
A
= 25°C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
V
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
− High-Level Output Voltage − V  
OH  
Figure 4  
Figure 5  
NOTE A: One output loaded at a time  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
MSP430x415, MSP430x417 outputs − ports P1, P2, P3, P4, P5, and P6 (see Note A)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
T
A
= 25°C  
V
P2.4  
= 2.2 V  
V
P2.4  
= 3 V  
CC  
CC  
T
= 25°C  
A
T
A
= 85°C  
T
= 85°C  
A
0
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 6  
Figure 7  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
−5  
0
−5  
V
P2.4  
= 2.2 V  
V
P2.4  
= 3 V  
CC  
CC  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
−10  
−15  
−20  
−25  
T
A
= 85°C  
T
= 85°C  
A
T
A
= 25°C  
T
A
= 25°C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 8  
Figure 9  
NOTE B: One output loaded at a time  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
wake-up LPM3  
PARAMETER  
TEST CONDITIONS  
f = 1 MHz  
MIN  
MAX  
UNIT  
6
6
6
f = 2 MHz  
f = 3 MHz  
t
Delay time  
V
CC  
= 2.2 V/3 V  
μs  
d(LPM3)  
RAM (see Note 1)  
PARAMETER  
TEST CONDITIONS  
CPU halted (see Note 1)  
MIN  
MAX  
UNIT  
VRAMh  
1.6  
V
NOTE 1: This parameter defines the minimum supply voltage when the data in the program memory RAM remain unchanged. No program  
execution should take place during this supply voltage condition.  
LCD  
PARAMETER  
TEST CONDITIONS  
Voltage at P5.7/R33  
MIN  
TYP  
MAX  
V +0.2  
CC  
UNIT  
V
V
V
V
I
2.5  
(33)  
(23)  
(13)  
(33)  
Voltage at P5.6/R23  
Voltage at P5.5/R13  
Voltage at R33/R03  
(V −V ) × 2/3 + V  
03  
33  
03  
Analog voltage  
V
= 3 V  
V
CC  
(V −V ) × 1/3 + V  
(33) (03)  
(03)  
− V  
2.5  
V
+ 0.2  
(03)  
CC  
R03 = V  
20  
No load at all  
segment and  
common lines,  
(R03)  
(R13)  
(R23)  
SS  
I
I
P5.5/R13 = V /3  
20  
20  
Input leakage  
nA  
V
CC  
P5.6/R23 = 2 × V /3  
V
CC  
= 3 V  
CC  
V
V
V
V
V
V
V
V
V
V
− 0.1  
− 0.1  
− 0.1  
+ 0.1  
(Sxx0)  
(03)  
(03)  
(13)  
(23)  
(33)  
(Sxx1)  
(Sxx2)  
(Sxx3)  
(13)  
Segment line  
voltage  
I
= −3 μA,  
V
CC  
= 3 V  
(Sxx)  
V(  
V(  
23)  
33)  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Comparator_A (see Note 1)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
25  
MAX  
40  
UNIT  
CC  
2.2 V  
3 V  
I
CAON = 1, CARSEL = 0, CAREF = 0  
μA  
(CC)  
45  
30  
60  
CAON = 1, CARSEL = 0,  
CAREF = 1/2/3,  
No load at P1.6/CA0 and P1.7/CA1  
2.2 V  
3 V  
50  
71  
I
μA  
(Refladder/RefDiode)  
45  
PCA0 = 1, CARSEL = 1, CAREF = 1,  
No load at P1.6/CA0 and P1.7/CA1  
Voltage @ 0.25 V  
node  
V
V
CC  
2.2 V / 3 V  
2.2V / 3 V  
0.23  
0.47  
0.24  
0.25  
0.50  
(Ref025)  
V
CC  
PCA0 = 1, CARSEL = 1, CAREF = 2,  
No load at P1.6/CA0 and P1.7/CA1  
Voltage @ 0.5 V  
node  
CC  
0.48  
(Ref050)  
V
CC  
PCA0 = 1, CARSEL = 1, CAREF = 3,  
No load at P1.6/CA0 and P1.7/CA1;  
T = 85°C  
A
2.2 V  
3 V  
390  
400  
480  
490  
540  
550  
See Figure 10 and  
Figure 11  
V
V
mV  
V
(RefVT)  
Common-mode input  
voltage range  
CAON = 1  
2. 2 V/3 V  
0
V
CC  
−1.0  
(IC)  
V
V
Offset voltage  
See Note 2  
CAON = 1  
2.2 V/3 V  
2.2 V/3 V  
2.2 V  
−30  
0
30  
1.4  
300  
240  
3.4  
2.6  
300  
240  
3.4  
2.6  
mV  
mV  
(offset)  
Input hysteresis  
0.7  
210  
150  
1.9  
hys  
160  
80  
T = 25°C,  
A
ns  
μs  
ns  
μs  
Overdrive 10 mV, Without filter: CAF = 0  
3 V  
t
(response LH)  
(response HL)  
2.2 V  
1.4  
0.9  
130  
80  
T = 25°C  
A
Overdrive 10 mV, With filter: CAF = 1  
3 V  
1.5  
2.2 V  
210  
150  
1.9  
T = 25°C  
A
Overdrive 10 mV, Without filter: CAF = 0  
3 V  
t
2.2 V  
1.4  
0.9  
T = 25°C,  
A
Overdrive 10 mV, With filter: CAF = 1  
3 V  
1.5  
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.  
The two successive measurements are then summed together.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
REFERENCE VOLTAGE  
vs  
REFERENCE VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
= 2.2 V  
V
CC  
= 3 V  
CC  
Typical  
Typical  
−45  
−25  
−5  
15  
35  
55  
75  
95  
−45  
−25  
−5  
15  
35  
55  
75  
95  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 11  
Figure 10  
0 V  
V
CC  
CAF  
0
1
CAON  
To Internal  
Modules  
Low Pass Filter  
0
1
0
1
+
_
V+  
V−  
CAOUT  
Set CAIFG  
Flag  
τ ≈ 2 μs  
Figure 12. Comparator_A Module Block Diagram  
V
CAOUT  
Overdrive  
V−  
400 mV  
V+  
t
(response)  
Figure 13. Overdrive Definition  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
POR brownout, reset (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
μs  
t
2000  
d(BOR)  
V
V
V
dV /dt 3 V/s (see Figure 14)  
0.7 × V  
(B_IT−)  
V
CC(start)  
(B_IT−)  
CC  
dV /dt 3 V/s (see Figure 14, Figure 15, Figure 16)  
CC  
1.71  
180  
V
Brownout  
dV /dt 3 V/s (see Figure 14)  
CC  
70  
2
130  
mV  
hys(B_IT−)  
Pulse length needed at RST/NMI pin to accepted reset internally,  
t
μs  
(reset)  
V
CC  
= 2.2 V/3 V  
NOTES: 1. The current consumption of the brownout module is already included in the I current consumption data. The voltage level  
CC  
V
+ V  
is 1.8 V.  
(B_IT−)  
hys(B_IT−)  
2. During power up, the CPU begins code execution following a period of t  
after V = V  
+ V . The default FLL+  
hys(B_IT−)  
d(BOR)  
CC  
(B_IT−)  
settings must not be changed until V V  
. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on  
CC(min)  
CC  
the brownout/SVS circuit.  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 14. POR/Brownout Reset (BOR) vs Supply Voltage  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
V
CC  
t
2
pw  
3 V  
V
= 3 V  
cc  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − μs  
t
− Pulse Width − μs  
t
pw  
pw  
Figure 15. V  
Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
V
CC  
t
pw  
2
3 V  
V
= 3 V  
cc  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
t = t  
f
r
0.001  
1
1000  
t
t
t
r
f
− Pulse Width − μs  
t
− Pulse Width − μs  
pw  
pw  
Figure 16. V  
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
SVS (supply voltage supervisor/monitor) (MSP430x412, MSP430x413 only) (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
150  
2000  
150  
1.7  
UNIT  
μs  
dV /dt > 30 V/ms (see Note 2)  
5
CC  
t
t
d(SVSR)  
dV /dt 30 V/ms (see Note 2)  
μs  
CC  
SVSon, switch from 0 to 1, V = 3 V (see Note 2)  
20  
μs  
d(SVSon)  
CC  
V
V
V
dV /dt 3 V/s (see Figure 17)  
1.55  
1.95  
100  
V
(SVSstart)  
CC  
SVS  
dV /dt 3 V/s (see Figure 17)  
1.8  
70  
2.2  
V
(SVS_IT−)  
hys(SVS_IT−)  
CC(SVS)  
CC  
dV /dt 3 V/s (see Figure 17)  
155  
mV  
CC  
I
VLD 0 (VLD bits are in SVSCTL register), V = 2.2 V/3 V  
10  
15  
μA  
CC  
(see Note 1)  
NOTES: 1. The current consumption of the SVS module is not included in the I current consumption data.  
CC  
2. The SVS is not active at power up.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SVS (supply voltage supervisor/monitor) (MSP430x415, MSP430x417 only) (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
150  
2000  
150  
12  
UNIT  
dV /dt > 30 V/ms (see Figure 17)  
5
CC  
t
μs  
d(SVSR)  
dV /dt 30 V/ms  
CC  
t
t
SVSon, switch from VLD=0 to VLD 0, V = 3 V  
20  
μs  
μs  
V
d(SVSon)  
CC  
VLD 0  
settle  
V
VLD 0, V /dt 3 V/s (see Figure 17)  
1.55  
120  
1.7  
(SVSstart)  
CC  
VLD = 1  
70  
155  
mV  
V
V
/dt 3 V/s (see Figure 17)  
/dt 3 V/s (see Figure 17),  
V
V
(SVS_IT−)  
× 0.008  
CC  
(SVS_IT−)  
× 0.004  
VLD = 2 to 14  
V
hys(SVS_IT−)  
CC  
VLD = 15  
4.4  
10.4  
mV  
External voltage applied on SVSIN  
VLD = 1  
VLD = 2  
VLD = 3  
VLD = 4  
VLD = 5  
VLD = 6  
VLD = 7  
VLD = 8  
VLD = 9  
VLD = 10  
VLD = 11  
VLD = 12  
VLD = 13  
VLD = 14  
1.8  
1.9  
2.1  
2.05  
2.25  
2.37  
2.48  
2.6  
1.94  
2.05  
2.14  
2.24  
2.33  
2.46  
2.58  
2.69  
2.83  
2.94  
3.11  
3.24  
3.43  
2.2  
2.3  
2.4  
2.5  
2.71  
2.86  
3
2.65  
2.8  
V
CC  
/dt 3 V/s (see Figure 17)  
V
V
(SVS_IT−)  
2.9  
3.13  
3.29  
3.42  
3.05  
3.2  
3.35  
3.5  
3.61  
3.76  
3.7  
3.99  
V
/dt 3 V/s (see Figure 17),  
CC  
VLD = 15  
1.1  
1.2  
10  
1.3  
15  
External voltage applied on SVSIN  
I
CC(SVS)  
VLD 0, V = 2.2 V/3 V  
μA  
CC  
(see Note 1)  
The recommended operating voltage range is limited to 3.6 V.  
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value somewhere  
t
settle  
between 2 and 15. The overdrive is assumed to be > 50 mV.  
NOTES: 1. The current consumption of the SVS module is not included in the I current consumption data.  
CC  
2. The SVS is not active at power up.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SVS is Active  
Software Sets VLD>0:  
V
CC  
(SVS_IT−)  
V
hys(SVS_IT−)  
V
V
(SVSstart)  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
Brownout  
Region  
Brownout  
Region  
Brownout  
1
0
t
t
d(BOR)  
SVS out  
1
d(BOR)  
SVS Circuit is Active From VLD > to V < V  
CC  
(B_IT−)  
0
t
d(SVSon)  
Set POR  
1
t
d(SVSR)  
Undefined  
0
Figure 17. SVS Reset (SVSR) vs Supply Voltage  
V
CC  
t
pw  
3 V  
2
Rectangular Drop  
V
CC(drop)  
1.5  
1
Triangular Drop  
1 ns  
1 ns  
V
CC  
t
pw  
0.5  
0
3 V  
1
10  
100  
1000  
t
− Pulse Width − μs  
pw  
V
CC(drop)  
t = t  
f
r
t
t
r
f
t − Pulse Width − μs  
Figure 18. V  
With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal  
CC(drop)  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
DCO  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
N
= 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2,  
(DCO)  
f
2.2 V/3 V  
1
MHz  
(DCOCLK)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
DCOPLUS = 0, f  
= 32.768 kHz  
Crystal  
2.2 V  
3 V  
0.3  
0.3  
2.5  
2.7  
0.7  
0.8  
5.7  
6.5  
1.2  
1.3  
9
0.65  
0.7  
5.6  
6.1  
1.3  
1.5  
10.8  
12.1  
2
1.25  
1.3  
10.5  
11.3  
2.3  
2.5  
18  
f
f
f
f
f
f
f
f
f
f
FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1  
FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1  
FN_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1  
FN_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1  
FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1  
FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x; DCOPLUS = 1  
FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1  
FN_8 = 0, FN_4 = 1, FN_3 = FN_2 =x, DCOPLUS = 1  
FN_8 = 1, FN_4 = FN_3 = FN_2=x, DCOPLUS = 1  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
2.2 V  
3 V  
2.2 V  
3 V  
2.2 V  
3 V  
20  
2.2 V  
3 V  
3
2.2  
15.5  
17.9  
2.8  
3.4  
21.5  
26.6  
4.2  
6.3  
32  
3.5  
25  
2.2 V  
3 V  
10.3  
1.8  
2.1  
13.5  
16  
28.5  
4.2  
5.2  
33  
2.2 V  
3 V  
2.2 V  
3 V  
41  
2.2 V  
3 V  
2.8  
4.2  
21  
6.2  
9.2  
46  
2.2 V  
3 V  
FN_8 = 1,FN_4 = FN_3 = FN_2 = x, DCOPLUS = 1  
Step size between adjacent DCO taps:  
30  
46  
70  
1 < TAP 20  
1.06  
1.07  
1.11  
1.17  
S = f  
/ f  
S
n
DCO(Tap n+1) DCO(Tap n)  
n
TAP = 27  
(see Figure 20 for taps 21 to 27)  
2.2 V  
3 V  
–0.2  
–0.2  
–0.3  
–0.3  
–0.4  
–0.4  
Temperature drift, N  
D = 2, DCOPLUS = 0  
= 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0,  
(DCO)  
D
D
%/
_
C  
t
Drift with V variation, N  
= 01Eh,  
(DCO)  
CC  
0
5
15  
%/V  
V
FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0  
f
f
(DCO)  
(DCO)  
f
f
5
(DCO3V)  
(DCO20 C)  
1.0  
1.0  
0
1.8  
2.4  
3.0  
3.6  
V
−40  
−20  
0
20  
40  
60  
85  
− V  
T − °C  
A
CC  
Figure 19. DCO Frequency vs Supply Voltage V and vs Ambient Temperature  
CC  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
1.17  
Max  
1.11  
1.07  
1.06  
Min  
1
20  
27  
DCO Tap  
Figure 20. DCO Tap Step Size  
Legend  
Tolerance at Tap 27  
DCO Frequency  
Adjusted by Bits  
9
5
2 to 2 in SCFI1 {N  
}
{DCO}  
Tolerance at Tap 2  
Overlapping DCO Ranges:  
Uninterrupted Frequency Range  
FN_2=0  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=1  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=x  
FN_2=x  
FN_3=x  
FN_4=1  
FN_8=0  
FN_2=x  
FN_3=1  
FN_4=0  
FN_8=0  
FN_3=x  
FN_4=x  
FN_8=1  
Figure 21. Five Overlapping DCO Ranges Controlled by FN_x Bits  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
crystal oscillator, LFXT1 oscillator (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
OSCCAPx = 0h  
OSCCAPx = 1h  
OSCCAPx = 2h  
OSCCAPx = 3h  
OSCCAPx = 0h  
OSCCAPx = 1h  
OSCCAPx = 2h  
OSCCAPx = 3h  
V
MIN  
TYP  
0
MAX  
UNIT  
CC  
10  
14  
18  
0
C
Integrated load capacitance  
2.2 V/3 V  
2.2 V/3 V  
pF  
XIN  
10  
14  
18  
C
V
Integrated load capacitance  
Input levels at XIN  
pF  
V
XOUT  
2.2 V/3 V  
2.2 V/3 V  
V
SS  
0.2×V  
IL  
CC  
see Note 3  
V
IH  
0.8×V  
V
CC  
CC  
NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2pF. The effective load capacitor for the crystal is  
(C × C ) / (C + C ). It is independent of XTS_FLL.  
XIN  
XOUT  
XIN  
XOUT  
2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines must be  
observed:  
Keep the trace between the MSP430x41x and the crystal as short as possible.  
Design a good ground plane around oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to XIN an XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation.  
This signal is no longer required for the serial programming adapter.  
3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator.  
4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h.  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
flash memory  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN  
TYP  
MAX  
UNIT  
V
CC(PGM/  
ERASE)  
Program and erase supply voltage  
Flash timing generator frequency  
2.7  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from DV during program  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
3
3
PGM  
CC  
Supply current from DV during erase  
7
mA  
ERASE  
CPT  
CC  
Cumulative program time  
Cumulative mass erase time  
Program/erase endurance  
Data retention duration  
See Note 1  
See Note 2  
10  
ms  
200  
ms  
CMErase  
4
5
10  
10  
cycles  
years  
t
T = 25°C  
J
100  
Retention  
t
t
t
t
t
t
Word or byte program time  
35  
30  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
21  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
See Note 3  
t
FTG  
6
5297  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. The mass erase duration generated by the flash timing generator is at least 11.1 ms ( = 5297x1/f ,max = 5297x1/476kHz). To  
FTG  
achieve the required cumulative mass erase time the flash controller’s mass erase operation can be repeated until this time is met.  
(A worst case minimum of 19 cycles are required).  
3. These values are hardwired into the flash controller’s state machine (t  
= 1/f ).  
FTG  
FTG  
JTAG interface  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN  
TYP  
MAX  
UNIT  
2.2 V  
3 V  
0
0
5
10  
90  
MHz  
MHz  
kΩ  
f
TCK input frequency  
see Note 1  
TCK  
R
Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2  
may be restricted to meet the timing requirements of the module selected.  
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. f  
TCK  
2. TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions.  
JTAG fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
MAX  
UNIT  
V
V
Supply voltage during fuse-blow condition  
T = 25°C  
2.5  
3.5  
6
V
V
CC(FB)  
A
MSP430C41x  
3.9  
7
Voltage level on TDI/TCLK for fuse-blow  
FB  
MSP430F41x  
V
I
t
Supply current into TDI/TCLK during fuse blow  
Time to blow fuse  
100  
1
mA  
ms  
FB  
FB  
NOTES: 1. Once the fuse is blown, no further access to the MSP430 via JTAG/Test is possible. The JTAG block is switched to bypass mode.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
input/output schematics  
Port P1, P1.0 to P1.5, input/output with Schmitt trigger  
Pad Logic  
CAPD.x  
P1SEL.x  
0: Input  
1: Output  
0
P1DIR.x  
Direction Control  
1
0
1
From Module  
P1.x  
P1OUT.x  
Module X OUT  
Bus  
MSP430x412,  
MSP430x413 only  
keeper  
P1.0/TA0  
P1.1/TA0/MCLK  
P1.2/TA1  
P1.3/SVSOUT  
P1.4  
P1.5/TACLK/ACLK  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
MSP430x415,  
MSP430x417 only  
P1.0/TA0.0  
P1IE.x  
EN  
Interrupt  
Edge  
Select  
Q
P1IFG.x  
P1.1/TA0.0/MCLK  
P1.2/TA0.1  
Set  
P1.3/TA1.0/SVSOUT  
P1.4/TA1.0  
P1.5/TA0CLK/ACLK  
P1IES.x P1SEL.x  
NOTE: 0 x 5.  
Port Function is Active if CAPD.x = 0  
Direction  
Module X  
OUT  
PnOUT.x  
PnIE.x  
PnIES.x  
Control  
PnIN.x  
Module X IN  
PnSEL.x  
PnDIR.x  
PnIFG.x  
From Module  
P1SEL.0  
P1SEL.1  
P1OUT.0  
P1DIR.0  
P1DIR.1  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1DIR.4  
P1DIR.5  
P1IN.0  
P1IN.1  
P1IN.2  
P1IN.3  
P1IN.4  
P1IN.5  
Out0 Sig.  
CCI0A  
P1IE.0  
P1IE.1  
P1IE.2  
P1IE.3  
P1IE.4  
P1IE.5  
P1IFG.0  
P1IFG.1  
P1IFG.2  
P1IFG.3  
P1IFG.4  
P1IFG.5  
P1IES.0  
P1IES.1  
P1IES.2  
P1IES.3  
P1IES.4  
P1IES.5  
P1OUT.1  
P1OUT.2  
P1OUT.3  
P1OUT.4  
P1OUT.5  
MCLK  
CCI0B  
P1SEL.2  
P1SEL.3  
P1SEL.4  
P1DIR.2  
P1DIR.3  
P1DIR.4  
Out1 Sig.  
CCI1A  
SVSOUT  
Unused  
§
§
Unused  
DVSS  
CCI0A  
Out0 Sig.  
P1SEL.5  
P1DIR.5  
ACLK  
TACLK  
§
Timer_A3/Timer0_A3  
Timer1_A5 (MSP430x415, MSP430x417 only)  
MSP430x412, MSP430x413 only  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
Port P1, P1.6, P1.7 input/output with Schmitt trigger  
Pad Logic  
Note: Port Function Is Active if CAPD.6 = 0  
CAPD.6  
P1SEL.6  
0: Input  
1: Output  
0
P1DIR.6  
1
P1DIR.6  
P1.6/  
CA0  
0
P1OUT.6  
1
DVSS  
Bus  
Keeper  
P1IN.6  
EN  
unused  
D
P1IE.7  
P1IFG.7  
P1IRQ.07  
EN  
Set  
Interrupt  
Edge  
Select  
Q
P1IES.x  
P1SEL.x  
Comparator_A  
CAF  
P2CA  
AVcc  
CAREF  
CAEX  
CA0  
CA1  
+
CCI1B  
to Timer_Ax  
2
Reference Block  
CAREF  
Pad Logic  
Note: Port Function Is Active if CAPD.7 = 0  
CAPD.7  
P1SEL.7  
P1DIR.7  
P1DIR.7  
0: Input  
1: Output  
0
1
0
1
P1.7/  
CA1  
P1OUT.7  
DVSS  
Bus  
Keeper  
P1IN.7  
EN  
D
unused  
P1IE.7  
EN  
P1IRQ.07  
Interrupt  
Edge  
Select  
Q
P1IFG.7  
Set  
P1IES.7  
P1SEL.7  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
port P2, P2.0 to P2.7, input/output with Schmitt trigger  
P2.0, P2.1  
LCDM.5  
LCDM.6  
P2.2 to P2.5  
LCDM.7  
0: Port Active  
1: Segment xx  
Function Active  
P2.6, P2.7  
Pad Logic  
Segment xx  
P2SEL.x  
0: Input  
1: Output  
0
1
0
1
P2DIR.x  
Direction Control  
From Module  
P2.x  
P2OUT.x  
MSP430x412,  
MSP430x413 only  
P2.0/TA2  
Module X OUT  
Bus  
keeper  
P2.1  
P2IN.x  
P2.2/S23  
P2.3/S22  
P2.4/S21  
P2.5/S20  
P2.6/CAOUT/S19  
P2.7/S18  
EN  
D
Module X IN  
P2IRQ.x  
MSP430x415,  
MSP430x417 only  
P2.0/TA0.2  
P2.1/TA1.1  
P2.2/TA1.2/S23  
P2.3/TA1.3/S22  
P2.4/TA1.4/S21  
P2.5/TA1CLK/S20  
P2.6/CAOUT/S19  
P2.7/S18  
P2IE.x  
EN  
Interrupt  
Edge  
Q
P2IFG.x  
Select  
Set  
P2IES.x P2SEL.x  
NOTE: 0 x 7  
Direction  
Control  
From Module  
Module X  
OUT  
PnOUT.x  
PnIE.x  
PnIES.x  
PnIN.x  
Module X IN  
PnSEL.x  
PnDIR.x  
PnIFG.x  
Out2 Sig.  
CCI2A  
P2SEL.0  
P2SEL.1  
P2SEL.2  
P2SEL.3  
P2SEL.4  
P2SEL.5  
P2SEL.6  
P2SEL.7  
P2DIR.0  
P2DIR.1  
P2DIR.2  
P2DIR.3  
P2DIR.4  
P2DIR.5  
P2DIR.6  
P2DIR.7  
P2DIR.0  
P2DIR.1  
P2DIR.2  
P2DIR.3  
P2DIR.4  
P2DIR.5  
P2DIR.6  
P2DIR.7  
P2OUT.0  
P2OUT.1  
P2OUT.2  
P2OUT.3  
P2OUT.4  
P2OUT.5  
P2OUT.6  
P2OUT.7  
P2IN.0  
P2IN.1  
P2IN.2  
P2IN.3  
P2IN.4  
P2IN.5  
P2IN.6  
P2IN.7  
P2IE.0  
P2IE.1  
P2IE.2  
P2IE.3  
P2IE.4  
P2IE.5  
P2IE.6  
P2IE.7  
P2IFG.0  
P2IFG.1  
P2IFG.2  
P2IFG.3  
P2IFG.4  
P2IFG.5  
P2IFG.6  
P2IFG.7  
P2IES.0  
P2IES.1  
P2IES.2  
P2IES.3  
P2IES.4  
P2IES.5  
P2IES.6  
P2IES.7  
Unused§  
DVSS§  
Out1 Sig.  
CCI1A  
DVSS§  
Unused§  
Out2 Sig.  
CCI2A  
Unused§  
DVSS§  
CCI3A  
Out3 Sig.  
DVSS§  
Unused§  
Out4 Sig.  
CCI4A  
Unused§  
DVSS  
CAOUT  
DVSS  
TA1CLK  
Unused  
Unused  
§
Timer_A3/Timer0_A3  
Timer1_A5 (MSP430x415, MSP430x417 only)  
MSP430x412, MSP430x413 only  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
port P3, P3.0 to P3.7, input/output with Schmitt trigger  
LCDM.5  
LCDM.6  
LCDM.7  
P3.2 to P3.7  
P3.0, P3.1  
0: Port Active  
1: Segment xx  
Function Active  
Pad Logic  
Segment xx  
P3SEL.x  
0: Input  
1: Output  
0
1
0
1
P3DIR.x  
Direction Control  
From Module  
P3.x  
P3OUT.x  
Module X OUT  
Bus  
keeper  
P3.0/S17  
P3.1/S16  
P3.2/S15  
P3.3/S14  
P3.4/S13  
P3.5/S12  
P3.6/S11  
P3.7/S10  
P3IN.x  
EN  
D
Module X IN  
NOTE: 0 x 7  
Direction  
Module X  
OUT  
PnOUT.x  
Control  
PnIN.x  
Module X IN  
PnSEL.x  
PnDIR.x  
From Module  
P3IN.0  
P3IN.1  
P3IN.2  
P3IN.3  
P3IN.4  
P3IN.5  
P3IN.6  
P3IN.7  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
P3SEL.0  
P3SEL.1  
P3SEL.2  
P3SEL.3  
P3SEL.4  
P3SEL.5  
P3SEL.6  
P3SEL.7  
P3DIR.0  
P3DIR.1  
P3DIR.2  
P3DIR.3  
P3DIR.4  
P3DIR.5  
P3DIR.6  
P3DIR.7  
P3DIR.0  
P3OUT.0  
P3OUT.1  
P3OUT.2  
P3OUT.3  
P3OUT.4  
P3OUT.5  
P3OUT.6  
P3OUT.7  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
P3DIR.1  
P3DIR.2  
P3DIR.3  
P3DIR.4  
P3DIR.5  
P3DIR.6  
P3DIR.7  
DVSS  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
port P4, P4.0 to P4.7, input/output with Schmitt trigger  
LCDM.5  
0: Port Active  
LCDM.6  
1: Segment xx  
LCDM.7  
Function Active  
Pad Logic  
Segment xx  
P4SEL.x  
0: Input  
1: Output  
0
1
0
1
P4DIR.x  
Direction Control  
From Module  
P4.x  
P4OUT.x  
Module X OUT  
Bus  
keeper  
P4.0/S9  
P4.1/S8  
P4.2/S7  
P4.3/S6  
P4.4/S5  
P4.5/S4  
P4.6/S3  
P4.7/S2  
P4IN.x  
EN  
D
Module X IN  
NOTE: 0 x 7  
Direction  
Module X  
OUT  
PnOUT.x  
Control  
PnIN.x  
Module X IN  
PnSEL.x  
PnDIR.x  
From Module  
P4IN.0  
P4IN.1  
P4IN.2  
P4IN.3  
P4IN.4  
P4IN.5  
P4IN.6  
P4IN.7  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
P4SEL.0  
P4SEL.1  
P4SEL.2  
P4SEL.3  
P4SEL.4  
P4SEL.5  
P4SEL.6  
P4SEL.7  
P4DIR.0  
P4DIR.1  
P4DIR.2  
P4DIR.3  
P4DIR.4  
P4DIR.5  
P4DIR.6  
P4DIR.7  
P4DIR.0  
P4OUT.0  
P4OUT.1  
P4OUT.2  
P4OUT.3  
P4OUT.4  
P4OUT.5  
P4OUT.6  
P4OUT.7  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
P4DIR.1  
P4DIR.2  
P4DIR.3  
P4DIR.4  
P4DIR.5  
P4DIR.6  
P4DIR.7  
DVSS  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
port P5, P5.0, P5.1, input/output with Schmitt trigger  
LCDM.5  
LCDM.6  
LCDM.7  
0: Port Active  
1: Segment  
Function Active  
Pad Logic  
Segment xx or  
COMx or Rxx  
P5SEL.x  
0: Input  
1: Output  
0
1
0
1
P5DIR.x  
Direction Control  
From Module  
P5.x  
P5OUT.x  
Module X OUT  
Bus  
keeper  
P5.0/S1  
P5.1/S0  
P5IN.x  
EN  
D
Module X IN  
NOTE: x = 0, 1  
Direction  
Control  
From Module  
Module X  
OUT  
PnOUT.x  
Segment  
PnIN.x  
Module X IN  
PnSEL.x  
PnDIR.x  
P5IN.0  
P5IN.1  
Unused  
Unused  
S1  
S0  
P5SEL.0  
P5SEL.1  
P5DIR.0  
P5DIR.1  
P5DIR.0  
P5DIR.1  
P5OUT.0  
P5OUT.1  
DVSS  
DVSS  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
port P5, P5.2 to P5.4, input/output with Schmitt trigger  
0: Port Active  
1: COMx Function  
Active  
Pad Logic  
COMx  
P5SEL.x  
0: Input  
1: Output  
0
P5DIR.x  
Direction Control  
1
0
1
From Module  
P5.x  
P5OUT.x  
Module X OUT  
Bus  
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
keeper  
P5IN.x  
EN  
D
Module X IN  
NOTE: 2 x 4  
Direction  
Control  
From Module  
Module X  
OUT  
PnOUT.x  
COMx  
PnIN.x  
Module X IN  
PnSEL.x  
PnDIR.x  
P5IN.2  
P5IN.3  
P5IN.4  
Unused  
Unused  
Unused  
COM1  
COM2  
COM3  
P5SEL.2  
P5SEL.3  
P5SEL.4  
P5DIR.2  
P5DIR.3  
P5DIR.4  
P5DIR.2  
P5DIR.3  
P5DIR.4  
P5OUT.2  
P5OUT.3  
P5OUT.4  
DVSS  
DVSS  
DVSS  
NOTE:  
The direction control bits P5SEL.2, P5SEL.3, and P5SEL.4 are used to distinguish between port  
and common functions. Note that a 4MUX LCD requires all common signals COM3 to COM0, a  
3MUX LCD requires COM2 to COM0, 2MUX LCD requires COM1 to COM0, and a static LCD  
requires only COM0.  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
port P5, P5.5 to P5.7, input/output with Schmitt trigger  
0: Port Active  
1: Rxx Function  
Active  
Pad Logic  
Rxx  
P5SEL.x  
0: Input  
1: Output  
0
1
0
1
P5DIR.x  
Direction Control  
From Module  
P5.x  
P5OUT.x  
Module X OUT  
Bus  
P5.5/R13  
P5.6/R23  
P5.7/R33  
keeper  
P5IN.x  
EN  
D
Module X IN  
NOTE: 5 x 7  
Direction  
Control  
From Module  
Module X  
OUT  
PnOUT.x  
Rxx  
PnIN.x  
Module X IN  
PnSEL.x  
PnDIR.x  
P5SEL.5  
P5SEL.6  
P5SEL.7  
P5DIR.5  
P5DIR.6  
P5DIR.7  
P5DIR.5  
P5DIR.6  
P5DIR.7  
P5OUT.5  
P5OUT.6  
P5OUT.7  
DVSS  
DVSS  
DVSS  
P5IN.5  
P5IN.6  
P5IN.7  
Unused  
Unused  
Unused  
R13  
R23  
R33  
NOTE:  
The direction control bits P5SEL.5, P5SEL.6, and P5SEL.7 are used to distinguish between port  
and LCD analog level functions. Note that 4MUX and 3MUX LCDs require all Rxx signals R33 to  
R03, a 2MUX LCD requires R33, R13, and R03, and a static LCD requires only R33 and R03.  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
port P6, P6.0 to P6.6, input/output with Schmitt trigger  
P6SEL.x  
0: Input  
1: Output  
0
P6DIR.x  
Direction Control  
1
0
1
From Module  
P6.x  
P6OUT.x  
Module X OUT  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6IN.x  
EN  
D
Module X IN  
NOTE: 0 x 6  
Direction  
Control  
From Module  
Module X  
OUT  
PnOUT.x  
PnIN.x  
Module X IN  
PnSEL.x  
PnDIR.x  
P6IN.0  
P6IN.1  
P6IN.2  
P6IN.3  
P6IN.4  
P6IN.5  
P6IN.6  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
P6SEL.0  
P6SEL.1  
P6SEL.2  
P6SEL.3  
P6SEL.4  
P6SEL.5  
P6SEL.6  
P6DIR.0  
P6DIR.1  
P6DIR.2  
P6DIR.3  
P6DIR.4  
P6DIR.5  
P6DIR.6  
P6DIR.0  
P6DIR.1  
P6DIR.2  
P6DIR.3  
P6DIR.4  
P6DIR.5  
P6DIR.6  
P6OUT.0  
P6OUT.1  
P6OUT.2  
P6OUT.3  
P6OUT.4  
P6OUT.5  
P6OUT.6  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
port P6, P6.7 input/output with Schmitt trigger (MSP430x412/413 only)  
P6SEL.7  
0: Input  
1: Output  
0
1
0
1
P6DIR.7  
Direction Control  
From Module  
P6.x  
P6.7  
P6OUT.7  
Module X OUT  
P6IN.7  
EN  
D
Module X IN  
Direction  
Control  
From Module  
Module X  
OUT  
PnOUT.x  
PnIN.x  
Module X IN  
PnSEL.x  
PnDIR.x  
P6IN.7  
P6SEL.7  
P6DIR.7  
P6DIR.7  
P6OUT.7  
DVSS  
Unused  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
port P6, P6.7 input/output with Schmitt trigger (MSP430F415/417 only)  
SVS VLDx=15  
P6SEL.7  
0
0: Input  
P6DIR.7  
1: Output  
1
0
1
Pad Logic  
P6.7/SVSIN  
P6OUT.7  
DVss  
Bus Keeper  
P6IN.7  
EN  
D
Module X IN  
SVS VLDx=15  
To SVS  
1
NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if  
the analog signal is in the range of transitions 01 or 10. The value of the throughput current depends on the driving capability of the  
gate. For MSP430, it is approximately 100 μA.  
Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, if an analog signal is applied to the pin.  
SVS VLDx = 15  
P6SEL.7  
P6DIR.7  
Port Function  
P6.7 Input  
P6.7 Output  
Undefined  
SVSIN  
0
0
0
1
0
0
1
X
0
1
X
X
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
JTAG pins (TMS, TCK, TDI/TCLK, TDO/TDI), input/output with Schmitt trigger or output  
TDO  
Controlled by JTAG  
Controlled by JTAG  
TDO/TDI  
JTAG  
Controlled  
DV  
CC  
by JTAG  
TDI  
Burn and Test  
Fuse  
TDI/TCLK  
DV  
CC  
TMS  
TCK  
Test and  
Emulation Module  
(F versions only)  
TMS  
CC  
DV  
TCK  
RST/NMI  
Tau ~ 50 ns  
Brownout  
D
U
S
G
G
D
U
S
TCK  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
APPLICATION INFORMATION  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity  
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, I , of 1.8 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be  
TF  
taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the  
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check  
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the  
fuse check mode has the potential to be activated.  
The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 22). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
The JTAG pins are terminated internally, and therefore do not require external termination.  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TDI/TCLK  
Figure 22. Fuse Check Mode Current, MSP430C41x, MSP430F41x  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
Data Sheet Revision History  
Literature  
Number  
Summary  
Updated functional block diagrams (page 4)  
Clarified test conditions in recommended operating conditions table (page 21)  
Split Supply voltage during program execution for MSP430x412/413 and MSP430x415/417 (page 21)  
SLAS340H  
SLAS340I  
Clarified test conditions for I  
in supply current into AV + DV table (page 22)  
(LPM0)  
CC CC  
Added P2−P5 to leakage current table (page 23)  
Changed t maximum value from 4 ms to 10 ms in Flash memory table (page 37)  
CPT  
Changed all RTD package options for MSP430C41x to RGC package.  
NOTE: Page and figure numbers refer to the respective document revision.  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
MECHANICAL DATA  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x41x  
MIXED SIGNAL MICROCONTROLLER  
SLAS340J − MAY 2001 − REVISED DECEMBER 2008  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-May-2010  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
MSP430C413CY  
MSP430F412IPM  
ACTIVE  
ACTIVE  
TBD  
Call TI  
Call TI  
LQFP  
LQFP  
VQFN  
VQFN  
PM  
PM  
64  
64  
64  
64  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F412IPMR  
MSP430F412IRTDR  
MSP430F412IRTDT  
MSP430F413CY  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
RTD  
RTD  
2500 Green (RoHS &  
no Sb/Br)  
CU SN  
CU SN  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
N / A for Pkg Type  
250 Green (RoHS &  
no Sb/Br)  
Green (RoHS &  
no Sb/Br)  
MSP430F413IPM  
MSP430F413IPMR  
MSP430F413IRTDR  
MSP430F413IRTDT  
LQFP  
LQFP  
VQFN  
VQFN  
PM  
PM  
64  
64  
64  
64  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
RTD  
RTD  
2500 Green (RoHS &  
no Sb/Br)  
CU SN  
CU SN  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Call TI  
250 Green (RoHS &  
no Sb/Br)  
MSP430F415CY  
MSP430F415IPM  
ACTIVE  
ACTIVE  
TBD  
LQFP  
LQFP  
VQFN  
VQFN  
PM  
PM  
64  
64  
64  
64  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F415IPMR  
MSP430F415IRTDR  
MSP430F415IRTDT  
MSP430F417CY  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
RTD  
RTD  
2500 Green (RoHS &  
no Sb/Br)  
CU SN  
CU SN  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
N / A for Pkg Type  
250 Green (RoHS &  
no Sb/Br)  
Green (RoHS &  
no Sb/Br)  
MSP430F417IPM  
MSP430F417IPMR  
MSP430F417IRTDR  
MSP430F417IRTDT  
LQFP  
LQFP  
VQFN  
VQFN  
PM  
PM  
64  
64  
64  
64  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
RTD  
RTD  
2500 Green (RoHS &  
no Sb/Br)  
CU SN  
Level-3-260C-168 HR  
250 Green (RoHS &  
no Sb/Br)  
CU SN  
Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-May-2010  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-May-2011  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F412IPMR  
MSP430F413IPMR  
MSP430F415IPMR  
MSP430F415IPMR  
MSP430F417IPMR  
MSP430F417IPMR  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
PM  
PM  
PM  
PM  
64  
64  
64  
64  
64  
64  
1000  
1000  
1000  
1000  
1000  
1000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
12.3  
12.3  
13.0  
12.3  
13.0  
12.3  
12.3  
12.3  
13.0  
12.3  
13.0  
12.3  
2.5  
2.5  
2.1  
2.5  
2.1  
2.5  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-May-2011  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F412IPMR  
MSP430F413IPMR  
MSP430F415IPMR  
MSP430F415IPMR  
MSP430F417IPMR  
MSP430F417IPMR  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
PM  
PM  
PM  
PM  
64  
64  
64  
64  
64  
64  
1000  
1000  
1000  
1000  
1000  
1000  
333.2  
333.2  
346.0  
333.2  
346.0  
333.2  
345.9  
345.9  
346.0  
345.9  
346.0  
345.9  
41.3  
41.3  
41.0  
41.3  
41.0  
41.3  
Pack Materials-Page 2  
MECHANICAL DATA  
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996  
PM (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
33  
48  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
0°7°  
11,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040152/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. May also be thermally enhanced plastic with leads connected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

MSP430F417IRTD

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F417IRTDR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F417IRTDT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F417TDE1

具有 32KB 闪存、1KB RAM、比较器和 96 段 LCD 的 DIE 16 位超低功耗微控制器 | TD | 0
TI

MSP430F417TDE2

具有 32KB 闪存、1KB RAM、比较器和 96 段 LCD 的 DIE 16 位超低功耗微控制器 | TD | 0
TI

MSP430F41X2

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F41X2_14

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F423

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F423A

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F423AIPM

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F423AIPMR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F423IPM

MIXED SIGNAL MICROCONTROLLER
TI