MSP430F423IPMR [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F423IPMR
型号: MSP430F423IPMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器和处理器 外围集成电路 装置 时钟
文件: 总45页 (文件大小:912K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
D
D
Low Supply-Voltage Range, 1.8 V to 3.6 V  
D
D
Supply Voltage Supervisor/Monitor With  
Programmable Level Detection  
Ultralow-Power Consumption:  
− Active Mode: 400 μA at 1 MHz, 3.0 V  
− Standby Mode: 1.6 μA  
− Off Mode (RAM Retention): 0.1 μA  
Five Power-Saving Modes  
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by Security  
Fuse  
D
D
D
D
Bootstrap Loader in Flash Devices  
Wake-Up From Standby Mode in Less  
Than 6 μs  
Frequency-Locked Loop, FLL+  
Family Members Include:  
− MSP430F423:  
8KB + 256B Flash Memory,  
256B RAM  
− MSP430F425:  
16KB + 256B Flash Memory,  
512B RAM  
− MSP430F427:  
D
D
16-Bit RISC Architecture, 125-ns  
Instruction Cycle Time  
D
D
Three Independent 16-bit Sigma-Delta A/D  
Converters With Differential PGA Inputs  
16-Bit Timer_A With Three  
Capture/Compare Registers  
32KB + 256B Flash Memory,  
1KB RAM  
D
D
Integrated LCD Driver for 128 Segments  
D
D
Available in 64-Pin Quad Flat Pack (QFP)  
Serial Communication Interface (USART),  
Asynchronous UART or Synchronous SPI  
Selectable by Software  
For Complete Module Descriptions, Refer  
to the MSP430x4xx Family User’s Guide,  
Literature Number SLAU056  
D
Brownout Detector  
description  
The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less  
than 6 μs.  
The MSP430F42x series are microcontroller configurations with three independent 16-bit sigma-delta A/D  
converters, each with an integrated differential programmable gain amplifier input stage. Also included is a  
built-in 16-bit timer, 128 LCD segment drive capability, hardware multiplier, and 14 I/O pins.  
Typical applications include high resolution applications such as handheld metering equipment, weigh scales,  
and energy meters.  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range  
from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage  
because very small parametric changes could cause the device not to meet its published specifications. These devices have limited  
built-in ESD protection.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright © 2004−2007 Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
PLASTIC 64-PIN QFP  
(PM)  
MSP430F423IPM  
MSP430F425IPM  
MSP430F427IPM  
−40°C to 85°C  
pin designation{  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
P1.5/TACLK/ACLK/S28  
DVCC  
A0.0+  
A0.0−  
A1.0+  
A1.0−  
A2.0+  
A2.0−  
XIN  
P1.6/SIMO0/S27  
P1.7/SOMI0/S26  
P2.0/TA2/S25  
P2.1/UCLK0/S24  
R33  
R23  
R13  
R03  
COM3  
COM2  
COM1  
COM0  
S23  
S22  
S21  
2
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
3
4
5
6
7
8
MSP430F42x  
XOUT  
9
V
REF  
10  
11  
12  
13  
14  
15  
16  
P2.2/STE0  
S0  
S1  
S2  
S3  
S4  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Open connection recommended for all unused analog inputs.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
functional block diagram  
DV  
DV  
AV  
AV  
SS  
CC  
SS  
CC  
XIN XOUT  
P1  
P2  
8
6
ACLK  
SMCLK  
Oscillators  
FLL+  
Flash  
RAM  
Timer_A3  
3 CC Reg  
Port 1  
Port 2  
USART0  
32KB  
16KB  
8KB  
1KB  
512B  
256B  
8 I/O  
Interrupt  
Capability  
6 I/O  
Interrupt  
Capability  
UART or  
SPI  
Function  
MCLK  
MAB  
8 MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
Module  
SD16  
Hardware  
Multiplier  
POR/  
SVS/  
Brownout  
Watchdog  
WDT+  
Basic  
Timer 1  
LCD  
128  
Segments  
1,2,3,4 MUX  
Three 16-bit  
Sigma-Delta  
A/D  
MPY, MPYS  
MAC,MACS  
15/16-Bit  
1 Interrupt  
Vector  
JTAG  
Interface  
Converters  
f
LCD  
RST/NMI  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
MSP430F42x Terminal Functions  
TERMINAL  
PN  
I/O  
DESCRIPTION  
NAME  
NO.  
1
DV  
Digital supply voltage, positive terminal.  
CC  
A0.0+  
A0.0−  
A1.0+  
A1.0−  
A2.0+  
A2.0−  
XIN  
2
I
I
Internal connection to SD16 Channel 0, input 0 +. (see Note 1)  
Internal connection to SD16 Channel 0, input 0 −. (see Note 1)  
Internal connection to SD16 Channel 1, input 0 +. (see Note 1)  
Internal connection to SD16 Channel 1, input 0 −. (see Note 1)  
Internal connection to SD16 Channel 2, input 0 +. (see Note 1)  
Internal connection to SD16 Channel 2, input 0 −. (see Note 1)  
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Output terminal of crystal oscillator XT1  
3
4
I
5
I
6
I
7
I
8
I
XOUT  
9
O
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
I/O Input for an external reference voltage / internal reference voltage output (can be used as mid-voltage)  
I/O General-purpose digital I/O / slave transmit enable—USART0/SPI mode  
REF  
P2.2/STE0  
S0  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
LCD segment output 0  
S1  
LCD segment output 1  
S2  
LCD segment output 2  
S3  
LCD segment output 3  
S4  
LCD segment output 4  
S5  
LCD segment output 5  
S6  
LCD segment output 6  
S7  
LCD segment output 7  
S8  
LCD segment output 8  
S9  
LCD segment output 9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
COM0  
COM1  
COM2  
COM3  
R03  
LCD segment output 10  
LCD segment output 11  
LCD segment output 12  
LCD segment output 13  
LCD segment output 14  
LCD segment output 15  
LCD segment output 16  
LCD segment output 17  
LCD segment output 18  
LCD segment output 19  
LCD segment output 20  
LCD segment output 21  
LCD segment output 22  
LCD segment output 23  
Common output, COM0−3 are used for LCD backplanes.  
Common output, COM0−3 are used for LCD backplanes.  
Common output, COM0−3 are used for LCD backplanes.  
Common output, COM0−3 are used for LCD backplanes.  
Input port of fourth positive (lowest) analog LCD level (V5)  
NOTE 1: Open connection recommended for all unused analog inputs.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
MSP430F42x Terminal Functions (Continued)  
TERMINAL  
PN  
I/O  
DESCRIPTION  
NAME  
NO.  
41  
R13  
R23  
R33  
I
I
Input port of third most positive analog LCD level (V4 or V3)  
Input port of second most positive analog LCD level (V2)  
Output port of most positive analog LCD level (V1)  
42  
43  
O
General-purpose digital I/O / external clock input-USART0/UART or SPI mode, clock output—USART0/SPI  
mode / LCD segment output 24 (See Note 1)  
P2.1/UCLK0/S24  
P2.0/TA2/S25  
44  
45  
46  
47  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / Timer_A Capture: CCI2A input, Compare: Out2 output / LCD segment output  
25 (See Note 1)  
General-purpose digital I/O / slave out/master in of USART0/SPI mode / LCD segment output 26  
(See Note 1)  
P1.7/SOMI0/S26  
P1.6/SIMO0/S27  
General-purpose digital I/O / slave in/master out of USART0/SPI mode / LCD segment output 27  
(See Note 1)  
P1.5/TACLK/  
ACLK/S28  
General-purpose digital I/O / Timer_A and SD16 clock signal TACLK input / ACLK output (divided by 1,  
2, 4, or 8) / LCD segment output 28 (See Note 1)  
48  
49  
50  
P1.4/S29  
I/O General-purpose digital I/O / LCD segment output 29 (See Note 1)  
P1.3/SVSOUT/  
S30  
I/O General-purpose digital I/O / SVS: output of SVS comparator / LCD segment output 30 (See Note 1)  
General-purpose digital I/O / Timer_A, Capture: CCI1A, CCI1B input, Compare: Out1 output / LCD segment  
output 31 (See Note 1)  
P1.2/TA1/S31  
51  
52  
I/O  
General-purpose digital I/O / Timer_A, Capture: CCI0B input / MCLK output.  
Note: TA0 is only an input on this pin / BSL receive  
P1.1/TA0/MCLK  
I/O  
P1.0/TA0  
TDO/TDI  
TDI/TCLK  
TMS  
53  
54  
55  
56  
57  
58  
59  
60  
61  
I/O General-purpose digital I/O / Timer_A, Capture: CCI0A input, Compare: Out0 output / BSL transmit  
I/O Test data output port. TDO/TDI data output or programming data input terminal.  
I
I
I
I
Test data input or test clock input. The device protection fuse is connected to TDI.  
Test mode select. TMS is used as an input port for device programming and test.  
Test clock. TCK is the clock input port for device programming and test.  
Reset input or nonmaskable interrupt input port  
TCK  
RST/NMI  
P2.5/URXD0  
P2.4/UTXD0  
P2.3/SVSIN  
I/O General-purpose digital I/O / receive data in—USART0/UART mode  
I/O General-purpose digital I/O / transmit data out—USART0/UART mode  
I/O General-purpose digital I/O / Analog input to brownout, supply voltage supervisor  
Analog supply voltage, negative terminal. Supplies SD16, SVS, brownout, oscillator, and LCD resistive  
divider circuitry.  
AV  
62  
63  
64  
SS  
DV  
Digital supply voltage, negative terminal  
SS  
CC  
Analog supply voltage, positive terminal. Supplies SD16, SVS, brownout, oscillator, and LCD resistive  
AV  
divider circuitry; must not power up prior to DV  
.
CC  
NOTE 1: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g. ADD R4,R5  
R4 + R5 −−−> R5  
e.g. CALL  
e.g. JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
D D  
D D  
R10 −−> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
M(2+R5)−−> M(6+R6)  
M(EDE) −−> M(TONI)  
M(MEM) −−> M(TCDAT)  
M(R10) −−> M(Tab+R6)  
Symbolic (PC relative) D D  
Absolute  
Indirect  
D D MOV &MEM,&TCDAT  
D
D
D
MOV @Rn,Y(Rm)  
MOV @Rn+,Rm  
MOV #X,TONI  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) −−> R11  
R10 + 2−−> R10  
Immediate  
#45 −−> M(TONI)  
NOTE: S = source  
D = destination  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
operating modes  
The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request, and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
D
CPU is disabled  
ACLK and SMCLK remain active, MCLK is available to modules  
FLL+ loop control remains active  
D
D
Low-power mode 1 (LPM1)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is available to modules  
FLL+ loop control is disabled  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK, FLL+ loop control, and DCOCLK are disabled  
DCO’s dc-generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK, FLL+ loop control, and DCOCLK are disabled  
DCO’s dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK, FLL+ loop control, and DCOCLK are disabled  
DCO’s dc-generator is disabled  
Crystal oscillator is stopped  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh−0FFE0h.  
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up  
External Reset  
WDTIFG  
KEYV  
Reset  
0FFFEh  
15, highest  
Watchdog  
(see Note 1)  
Flash memory  
PC Out-of-Range (see Note 4)  
NMI  
Oscillator Fault  
Flash memory access violation  
NMIIFG (see Notes 1 and 3)  
OFIFG (see Notes 1 and 3)  
ACCVIFG (see Notes 1 and 3)  
(Non)maskable  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
0FFF8h  
14  
13  
12  
SD16CCTLx SD16OVIFG,  
SD16CCTLx SD16IFG  
(see Notes 1 and 2)  
SD16  
Maskable  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
11  
10  
9
Watchdog Timer  
USART0 Receive  
USART0 Transmit  
WDTIFG  
URXIFG0  
UTXIFG0  
Maskable  
Maskable  
Maskable  
8
7
Timer_A3  
Timer_A3  
TACCR0 CCIFG (see Note 2)  
Maskable  
Maskable  
6
TACCR1 and TACCR2  
CCIFGs, and TACTL TAIFG  
(see Notes 1 and 2)  
0FFEAh  
5
P1IFG.0 to P1IFG.7  
(see Notes 1 and 2)  
I/O port P1 (eight flags)  
Maskable  
0FFE8h  
4
0FFE6h  
0FFE4h  
3
2
P2IFG.0 to P2IFG.7  
(see Notes 1 and 2)  
I/O port P2 (eight flags)  
Maskable  
Maskable  
0FFE2h  
0FFE0h  
1
Basic Timer1  
BTIFG  
0, lowest  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module.  
3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt-enable cannot.  
4. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h−01FFh) or from  
within unused address ranges (from 0600h to 0BFFh).  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
that are not allocated to a functional purpose are not physically present in the device. Simple software access  
is provided with this arrangement.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
UTXIE0  
URXIE0  
ACCVIE  
NMIIE  
OFIE  
WDTIE  
rw–0  
rw–0  
rw–0  
rw–0  
rw–0  
rw–0  
WDTIE:  
Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog  
timer is configured in interval timer mode.  
OFIE:  
Oscillator-fault-interrupt enable  
NMIIE:  
Nonmaskable-interrupt enable  
ACCVIE:  
URXIE0:  
UTXIE0:  
Flash access violation interrupt enable  
USART0: UART and SPI receive-interrupt enable  
USART0: UART and SPI transmit-interrupt enable  
7
6
5
4
3
2
1
0
Address  
1h  
BTIE  
rw-0  
BTIE:  
Basic Timer1 interrupt enable  
interrupt flag register 1 and 2  
7
6
URXIFG0  
rw–0  
5
4
3
2
1
0
Address  
02h  
UTXIFG0  
NMIIFG  
OFIFG  
WDTIFG  
rw–(0)  
rw–1  
rw–0  
rw–1  
WDTIFG:  
Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on V  
power up or a reset condition at the RST/NMI pin in reset mode.  
CC  
OFIFG:  
Flag set on oscillator fault  
Set via RST/NMI pin  
NMIIFG:  
URXIFG0: USART0: UART and SPI receive flag  
UTXIFG0: USART0: UART and SPI transmit flag  
7
6
5
4
3
2
1
0
Address  
3h  
BTIFG  
rw-0  
BTIFG:  
Basic Timer1 interrupt flag  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
module enable registers 1 and 2  
7
6
5
4
3
2
1
0
Address  
04h  
UTXE0  
URXE0  
USPIE0  
rw–0  
rw–0  
URXE0:  
USART0: UART mode receive enable  
USART0: UART mode transmit enable  
UTXE0:  
USPIE0:  
USART0: SPI mode transmit and receive enable  
7
6
5
4
3
2
1
0
Address  
05h  
Legend: rw−0,1:  
rw−(0,1):  
Bit Can Be Read and Written. It Is Reset or Set by PUC.  
Bit Can Be Read and Written. It Is Reset or Set by POR.  
SFR Bit Not Present in Device.  
memory organization  
MSP430F423  
MSP430F425  
16KB  
MSP430F427  
Memory  
Size  
8KB  
32KB  
Interrupt vector  
Code memory  
Flash  
Flash  
0FFFFh − 0FFE0h  
0FFFFh − 0E000h  
0FFFFh − 0FFE0h  
0FFFFh − 0C000h  
0FFFFh − 0FFE0h  
0FFFFh − 08000h  
Information memory  
Boot memory  
RAM  
Size  
Size  
Size  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
1kB  
1kB  
1kB  
0FFFh − 0C00h  
0FFFh − 0C00h  
0FFFh − 0C00h  
256 Byte  
512 Byte  
1KB  
02FFh − 0200h  
03FFh − 0200h  
05FFh − 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
bootstrap loader (BSL)  
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial  
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete  
description of the features of the BSL and its implementation, see the Application report Features of the MSP430  
Bootstrap Loader, Literature Number SLAA089.  
BSL Function  
Data Transmit  
Data Receive  
PM Package Pins  
53 - P1.0  
52 - P1.1  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and two segments of information memory (A and B) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A and B can be erased individually, or as a group with segments 0−n.  
Segments A and B are also called information memory.  
D
New devices may have some bytes programmed in the information memory (needed for test during  
manufacturing). The user should perform an erase of the information memory prior to the first use.  
8KB  
16KB  
32KB  
0FFFFh 0FFFFh  
0FFFFh  
Segment 0  
With Interrupt Vectors  
0FE00h 0FE00h  
0FDFFh 0FDFFh  
0FE00h  
0FDFFh  
Segment 1  
Segment 2  
0FC00h 0FC00h  
0FBFFh 0FBFFh  
0FC00h  
0FBFFh  
0FA00h 0FA00h  
0F9FFh 0F9FFh  
0FA00h  
0F9FFh  
Main Memory  
0C400h 08400h  
0C3FFh 083FFh  
0E400h  
0E3FFh  
Segment n−1  
Segment n  
Segment A  
Segment B  
0C200h 08200h  
0C1FFh 081FFh  
0E200h  
0E1FFh  
0C000h 08000h  
010FFh 010FFh  
0E000h  
010FFh  
01080h 01080h  
0107Fh 0107Fh  
01080h  
0107Fh  
Information Memory  
01000h 01000h  
01000h  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, TI literature  
number SLAU056.  
oscillator and system clock  
The clock system in the MSP430F42x family of devices is supported by the FLL+ module that includes support  
for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and a high frequency  
crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low  
power consumption. The FLL+ features digital frequency locked loop (FLL) hardware that, in conjunction with  
a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency.  
The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 μs. The FLL+ module  
provides the following clock signals:  
D
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8.  
brownout, supply voltage supervisor  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user  
selectable level and supports both supply voltage supervision (the device is automatically reset) and supply  
voltage monitoring (SVM, the device is not automatically reset).  
The CPU begins code execution after the brownout circuit releases the device reset. However, V may not  
CC  
have ramped to V  
at that time. The user must insure the default FLL+ settings are not changed until V  
CC(min)  
CC  
reaches V  
. If desired, the SVS circuit can be used to determine when V reaches V  
.
CC(min)  
CC  
CC(min)  
digital I/O  
There are two 8-bit I/O ports implemented—ports P1 and P2 (only six P2 I/O signals are available on external  
pins):  
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of port P1 and six bits of P2.  
Read/write access to port-control registers is supported by all instructions.  
NOTE:  
Six bits of port P2 (P2.0 to P2.5) are available on external pins, but all control and data bits for port  
P2 are implemented.  
Basic Timer1  
The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both  
timers can be read and written by software. The Basic Timer1 can be used to generate periodic interrupts and  
clock for the LCD module.  
LCD drive  
The LCD driver generates the segment and common signals required to drive an LCD display. The LCD  
controller has dedicated data memory to hold segment drive information. Common and segment signals are  
generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
WDT+ watchdog timer  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A3 Signal Connections  
Input Pin Number Device Input Signal Module Input Name  
Module Block  
Module Output Signal  
Output Pin Number  
48 - P1.5  
TACLK  
ACLK  
SMCLK  
TACLK  
TA0  
TACLK  
ACLK  
Timer  
NA  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
48 - P1.5  
53 - P1.0  
52 - P1.1  
53 - P1.0  
51 - P1.2  
45 - P2.0  
TA0  
CCR0  
CCR1  
CCR2  
TA0  
TA1  
TA2  
DV  
DV  
SS  
CC  
V
CC  
51 - P1.2  
51 - P1.2  
TA1  
TA1  
CCI1A  
CCI1B  
GND  
DV  
SS  
CC  
DV  
V
CC  
45 - P2.0  
TA2  
ACLK (internal)  
CCI2A  
CCI2B  
GND  
DV  
DV  
SS  
CC  
V
CC  
USART0  
The MSP430F42x devices have one hardware universal synchronous/asynchronous receive transmit  
(USART0) peripheral module that is used for serial data communication. The USART supports synchronous  
SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive  
channels.  
hardware multiplier  
The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16,  
16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication  
as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed  
immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are  
required.  
SD16  
The SD16 module integrates three independent 16-bit sigma-delta A/D converters, internal temperature sensor  
and built-in voltage reference. Each channel is designed with a fully differential analog input pair and  
programmable gain amplifier input stage.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Watchdog  
Timer_A3  
Watchdog Timer control  
Timer_A interrupt vector  
Timer_A control  
WDTCTL  
TAIV  
0120h  
012Eh  
0160h  
0162h  
0164h  
0166h  
0170h  
0172h  
0174h  
0176h  
013Eh  
013Ch  
013Ah  
0138h  
0136h  
0134h  
0132h  
0130h  
012Ch  
012Ah  
0128h  
0100h  
0102h  
0104h  
0106h  
0108h  
010Ah  
010Ch  
010Eh  
0110h  
0112h  
0114h  
0116h  
0118h  
011Ah  
011Ch  
011Eh  
TACTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Timer_A register  
TACCTL0  
TACCTL1  
TACCTL2  
TAR  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Sum extend  
TACCR0  
TACCR1  
TACCR2  
SUMEXT  
RESHI  
Hardware Multiplier  
Result high word  
Result low word  
RESLO  
OP2  
Second operand  
Multiply signed + accumulate/operand1  
Multiply + accumulate/operand1  
Multiply signed/operand1  
Multiply unsigned/operand1  
Flash control 3  
MACS  
MAC  
MPYS  
MPY  
Flash  
FCTL3  
Flash control 2  
FCTL2  
Flash control 1  
FCTL1  
SD16  
General Control  
SD16CTL  
SD16CCTL0  
SD16CCTL1  
SD16CCTL2  
(see also: Peripherals  
with Byte Access)  
Channel 0 Control  
Channel 1 Control  
Channel 2 Control  
Reserved  
Reserved  
Reserved  
Reserved  
Interrupt vector word register  
Channel 0 conversion memory  
Channel 1 conversion memory  
Channel 2 conversion memory  
Reserved  
SD16IV  
SD16MEM0  
SD16MEM1  
SD16MEM2  
Reserved  
Reserved  
Reserved  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS  
Channel 0 Input Control  
SD16  
SD16INCTL0  
SD16INCTL1  
SD16INCTL2  
0B0h  
0B1h  
0B2h  
0B3h  
0B4h  
0B5h  
0B6h  
0B7h  
0B8h  
0B9h  
0BAh  
0BBh  
0BCh  
0BDh  
0BEh  
0BFh  
0A4h  
:
(see also: Peripherals  
with Word Access)  
Channel 1 Input Control  
Channel 2 Input Control  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Channel 0 preload  
Channel 1 preload  
Channel 2 preload  
Reserved  
SD16PRE0  
SD16PRE1  
SD16PRE2  
Reserved  
Reserved  
Reserved  
Reserved  
LCD  
LCD memory 20  
:
LCDM20  
:
LCD memory 16  
LCD memory 15  
:
LCDM16  
LCDM15  
:
0A0h  
09Fh  
:
LCD memory 1  
LCD control and mode  
Transmit buffer  
Receive buffer  
Baud rate  
LCDM1  
LCDCTL  
U0TXBUF  
U0RXBUF  
U0BR1  
U0BR0  
U0MCTL  
U0RCTL  
U0TCTL  
U0CTL  
091h  
090h  
077h  
076h  
075h  
074h  
073h  
072h  
071h  
070h  
056h  
054h  
053h  
052h  
051h  
050h  
047h  
046h  
040h  
USART0  
Baud rate  
Modulation control  
Receive control  
Transmit control  
USART control  
SVS control register  
FLL+ Control1  
FLL+ Control0  
System clock frequency control  
System clock frequency integrator  
System clock frequency integrator  
BT counter2  
Brownout, SVS  
FLL+ Clock  
SVSCTL  
FLL_CTL1  
FLL_CTL0  
SCFQCTL  
SCFI1  
SCFI0  
Basic Timer1  
BTCNT2  
BTCNT1  
BTCTL  
BT counter1  
BT control  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS (CONTINUED)  
Port P2  
Port P2 selection  
P2SEL  
P2IE  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
005h  
004h  
003h  
002h  
001h  
000h  
Port P2 interrupt enable  
Port P2 interrupt-edge select  
Port P2 interrupt flag  
Port P2 direction  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P2 output  
Port P2 input  
Port P1  
Port P1 selection  
P1SEL  
P1IE  
Port P1 interrupt enable  
Port P1 interrupt-edge select  
Port P1 interrupt flag  
Port P1 direction  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
Special Functions  
SFR module enable 2  
SFR module enable 1  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable2  
SFR interrupt enable1  
ME2  
ME1  
IFG2  
IFG1  
IE2  
IE1  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
absolute maximum ratings†  
Voltage applied at V to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to + 4.1 V  
CC  
SS  
Voltage applied to any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V + 0.3 V  
CC  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA  
Storage temperature (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
Storage temperature (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage is  
SS  
FB  
applied to the TDI/TCLK pin when blowing the JTAG fuse.  
recommended operating conditions  
PARAMETER  
MIN  
NOM  
MAX UNITS  
Supply voltage during program execution; SD16 disabled.  
MSP430F42x  
MSP430F42x  
MSP430F42x  
1.8  
3.6  
3.6  
3.6  
V
V
V
V
CC  
(AV = DV = V ) (see Note 1)  
CC CC CC  
Supply voltage during program execution; SD16 disabled, SVS enabled, and  
PORON = 1. V (AV = DV = V ) (see Note 1 and Note 2)  
2.0  
2.7  
CC  
CC  
CC  
CC  
Supply voltage during program execution; SD16 enabled or  
during programming of flash memory. V (AV = DV = V )  
CC  
CC  
CC  
CC  
Supply voltage, V (AV = DV = V )  
SS  
0
0
V
SS  
SS  
SS  
Operating free-air temperature range, T  
MSP430F42x  
Watch crystal  
Ceramic resonator  
Crystal  
−40  
85  
°C  
A
LF selected, XTS_FLL=0  
XT1 selected, XTS_FLL=1  
XT1 selected, XTS_FLL=1  
32768  
Hz  
450  
1000  
DC  
8000  
8000  
4.15  
8
kHz  
kHz  
LFXT1 crystal frequency, f  
(see Note 3)  
(LFXT1)  
V
V
= 1.8 V  
= 3.6 V  
CC  
Processor frequency (signal MCLK), f  
MHz  
(System)  
DC  
CC  
NOTES: 1. It is recommended to power AV and DV from the same source. A maximum difference of 0.3 V between AV and DV can  
CC  
CC  
CC  
CC  
be tolerated during power up and operation.  
2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing supply voltage.  
POR is going inactive when the supply voltage is raised above minimum supply voltage plus the hysteresis of the SVS circuitry.  
3. The LFXT1 oscillator in LF-mode requires a watch crystal.  
f (MHz)  
8 MHz  
Supply Voltage Range with SD16  
Enabled or During Programming  
of the Flash Memory  
Supply Voltage Range  
During Program  
Execution  
6 MHz  
4.15 MHz  
1.8 V  
2.7 V 3 V  
3.6 V  
V
CC  
− Supply Voltage − V  
Figure 1. Frequency vs Supply Voltage  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
supply current into AV + DV excluding external current (see Note 1)  
CC  
CC  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
Active mode,  
f
f
= f  
= f = 1 MHz,  
(DCO)  
(MCLK)  
(SMCLK)  
I
T = −40°C to 85°C  
A
V
CC  
= 3 V  
400  
500  
μA  
(AM)  
= 32,768 Hz, XTS_FLL = 0  
(ACLK)  
(program executes in flash)  
Low-power mode, (LPM0/LPM1)  
f
f
= f  
= f  
= 1 MHz,  
(MCLK)  
(SMCLK)  
(DCO)  
I
I
T = −40°C to 85°C  
V
V
= 3 V  
= 3 V  
130  
150  
μA  
μA  
(LPM0)  
A
CC  
= 32,768 Hz, XTS_FLL = 0  
(ACLK)  
FN_8=FN_4=FN_3=FN_2=0 (see Note 2)  
Low-power mode, (LPM2) (see Note 2)  
T = −40°C to 85°C  
A
10  
1.5  
1.6  
1.7  
2.0  
0.1  
0.1  
0.8  
22  
2.0  
2.1  
2.2  
2.6  
0.5  
0.5  
2.5  
(LPM2)  
CC  
T = −40°C  
A
T = 25°C  
A
I
Low-power mode, (LPM3) (see Note 2)  
Low-power mode, (LPM4) (see Note 2)  
V
= 3 V  
= 3 V  
μA  
μA  
(LPM3)  
CC  
CC  
T = 60°C  
A
T = 85°C  
A
T = −40°C  
A
T = 25°C  
A
I
V
(LPM4)  
T = 85°C  
A
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
The current consumption in LPM2, LPM3, and LPM4 are measured with active Basic Timer1 and LCD (ACLK selected).  
The current consumption of the SD16 and the SVS module are specified in their respective sections.  
LPMx currents measured with WDT disabled.  
The currents are characterized with a KDS Daishinku DT−38 (6 pF) crystal.  
2. Current for brownout included.  
current consumption of active mode versus system frequency  
I
= I  
× f  
(AM)  
(AM) [1 MHz] (System) [MHz]  
current consumption of active mode versus supply voltage  
I
= I + 170 μA/V × (V – 3 V)  
(AM) [3 V] CC  
(AM)  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Schmitt-trigger inputs − Ports P1 and P2; RST/NMI; JTAG: TCK, TMS, TDI/TCLK, TDO/TDI  
PARAMETER  
Positive-going input threshold voltage  
Negative-going input threshold voltage  
TEST CONDITIONS  
MIN  
1.5  
TYP  
TYP  
MAX  
1.98  
1.3  
1
UNIT  
V
V
V
V
CC  
V
CC  
V
CC  
= 3 V  
= 3 V  
= 3 V  
V
V
V
IT+  
IT−  
hys  
0.9  
Input voltage hysteresis (V − V  
)
IT−  
0.45  
IT+  
inputs Px.x, TAx  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
1.5  
50  
MAX  
UNIT  
cycle  
ns  
3 V  
3 V  
Port P1, P2: P1.x to P2.x, External trigger signal  
for the interrupt flag, (see Note 1)  
t
External interrupt timing  
(int)  
t
f
f
Timer_A, capture timing  
TAx  
3 V  
3 V  
3 V  
50  
ns  
(cap)  
Timer_A clock frequency  
externally applied to pin  
TACLK, INCLK t = t  
(L)  
10  
10  
MHz  
(TAext)  
(H)  
Timer_A clock frequency  
SMCLK or ACLK signal selected  
MHz  
(TAint)  
NOTES: 1. The external signal sets the interrupt flag every time the minimum t  
cycle and time parameters are met. It may be set even with  
(int)  
trigger signals shorter than t . Both the cycle and timing specifications must be met to ensure the flag is set. t  
is measured in  
(int)  
(int)  
MCLK cycles.  
leakage current (see Note 1)  
PARAMETER  
TEST CONDITIONS  
(see Note 2)  
MIN NOM  
MAX  
UNIT  
I
I
Port P1 Port 1: V  
Port P2 Port 2: V  
50  
50  
lkg(P1.x)  
(P1.x)  
Leakage  
current  
V
CC  
= 3 V  
nA  
(see Note 2)  
lkg(P2.x)  
(P2.x)  
NOTES: 1. The leakage current is measured with V or V applied to the corresponding pin(s), unless otherwise noted.  
SS  
CC  
2. The port pin must be selected as an input.  
outputs − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
= −1.5 mA,  
= −6 mA,  
= 1.5 mA,  
= 6 mA,  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V,  
= 3 V,  
= 3 V,  
= 3 V,  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
V
−0.25  
V
OH(max)  
OH(max)  
OL(max)  
OL(max)  
CC  
CC  
CC  
V
V
High-level output voltage  
V
OH  
V
−0.6  
V
CC  
V
SS  
V
SS  
V
+0.25  
SS  
Low-level output voltage  
V
OL  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
and I  
for all outputs combined, should not exceed 12 mA to satisfy the  
OH(max)  
OL(max),  
maximum specified voltage drop.  
2. The maximum total current, I  
and I  
for all outputs combined, should not exceed 48 mA to satisfy the  
OH(max)  
OL(max),  
maximum specified voltage drop.  
output frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
C = 20 pF,  
I = 1.5mA  
L
L
f
(1 x 2, 0 y 7)  
V
CC  
= 3 V  
DC  
12  
MHz  
Px.y  
f
f
f
ACLK,  
MCLK,  
SMCLK  
P1.1/TA0/MCLK  
P1.5/TACLK/ACLK/S28  
C = 20 pF  
L
V
CC  
= 3 V  
12  
MHz  
f
f
f
= f  
= f  
= f  
= f  
= f  
40%  
30%  
60%  
70%  
ACLK  
ACLK  
ACLK  
LFXT1  
LFXT1  
LFXT1  
XT1  
P1.5/TACLK/ACLK/  
S28, C = 20 pF  
LF  
L
V
CC  
= 3 V  
50%  
50%  
t
Duty cycle of output frequency  
Xdc  
P1.1/TA0/MCLK,  
C = 20 pF,  
50%−  
15 ns  
50%+  
15 ns  
f
= f  
DCOCLK  
L
MCLK  
V
CC  
= 3 V  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs − Ports P1 and P2 (continued)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
V
P2.1  
= 2.2 V  
V
P2.1  
= 3 V  
CC  
CC  
T
A
= 25°C  
T
A
= 25°C  
T
A
= 85°C  
T
A
= 85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 2  
Figure 3  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
−5  
0
−10  
−20  
−30  
−40  
−50  
V
P2.1  
= 2.2 V  
CC  
V
P2.1  
= 3 V  
CC  
−10  
−15  
−20  
−25  
−30  
T
A
= 85°C  
T
A
= 85°C  
T
A
= 25°C  
T
= 25°C  
A
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 4  
Figure 5  
NOTE:  
One output loaded at a time  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
wake-up LPM3  
PARAMETER  
TEST CONDITIONS  
f = 1 MHz  
MIN  
TYP  
TYP  
MAX  
UNIT  
6
6
6
f = 2 MHz  
f = 3 MHz  
t
Delay time  
V
CC  
= 3 V  
μs  
d(LPM3)  
RAM (see Note 1)  
PARAMETER  
TEST CONDITIONS  
CPU halted (see Note 1)  
MIN  
MAX  
UNIT  
VRAMh  
1.6  
V
NOTE 1: This parameter defines the minimum supply voltage when the data in the program memory RAM remain unchanged. No program  
execution should take place during this supply voltage condition.  
LCD  
PARAMETER  
TEST CONDITIONS  
Voltage at R33  
MIN  
TYP  
MAX  
UNIT  
V
V
V
V
I
2.5  
V
+0.2  
(33)  
(23)  
(13)  
CC  
Voltage at R23  
(V −V ) × 2/3 + V  
03  
33  
03  
Analog voltage  
Input leakage  
V
= 3 V  
V
CC  
Voltage at R13  
(V −V ) × 1/3 + V  
(33) (03)  
(03)  
V
Voltage at R33/R03  
2.5  
V
+0.2  
20  
(33) − (03)  
CC  
R03 = V  
No load at all  
segment and  
common lines,  
(R03)  
(R13)  
(R23)  
SS  
I
I
R13 = V /3  
20  
20  
nA  
V
CC  
R23 = 2 × V /3  
V
CC  
= 3 V  
CC  
V
(Sxx0)  
V
(Sxx1)  
V
(Sxx2)  
V
(Sxx3)  
V
V
V
− 0.1  
(03)  
(03)  
(13)  
(23)  
(33)  
V
V
V
− 0.1  
− 0.1  
+ 0.1  
(13)  
Segment line  
voltage  
I
= −3 μA,  
V
CC  
= 3 V  
(Sxx)  
V(  
V(  
23)  
33)  
USART0 (see Note 1)  
PARAMETER  
TEST CONDITIONS  
= 3 V, SYNC = 0, UART mode  
CC  
MIN  
NOM MAX  
280 500  
UNIT  
t
τ
( )  
USART0: deglitch time  
V
150  
ns  
NOTE 1: The signal applied to the USART0 receive signal/terminal (URXD0) should meet the timing requirements of t to ensure that the URXS  
(τ  
)
flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t . The operating conditions to  
(τ  
)
set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the  
URXD0 line.  
POR brownout, reset (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
μs  
t
2000  
d(BOR)  
V
V
V
dV /dt 3 V/s (see Figure 6)  
0.7 × V  
(B_IT−)  
V
CC(start)  
(B_IT−)  
CC  
dV /dt 3 V/s (see Figure 6, Figure 7, and Figure 8)  
CC  
1.71  
180  
V
Brownout  
dV /dt 3 V/s (see Figure 6)  
CC  
70  
2
130  
mV  
hys(B_IT−)  
Pulse length needed at RST/NMI pin to accepted reset internally,  
t
μs  
(reset)  
V
CC  
= 3 V  
NOTES: 1. The current consumption of the brownout module is already included in the I current consumption data. The voltage level  
CC  
V
+ V  
is 1.8 V.  
(B_IT−)  
hys(B_IT−)  
2. During power up, the CPU begins code execution following a period of t  
after V = V  
+ V  
.
d(BOR)  
CC  
(B_IT−)  
hys(B_IT−)  
The default FLL+ settings must not be changed until V V  
, where V  
is the minimum supply voltage for the desired  
CC  
CC(min)  
CC(min)  
operating frequency. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout/SVS circuit.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 6. POR/Brownout Reset (BOR) vs Supply Voltage  
V
CC  
t
2
pw  
3 V  
V
= 3 V  
cc  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − μs  
t
− Pulse Width − μs  
t
pw  
pw  
Figure 7. V  
Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
V
CC  
t
pw  
2
3 V  
V
= 3 V  
cc  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
t = t  
f
r
0
0.001  
1
1000  
t
t
t
r
f
− Pulse Width − μs  
t
− Pulse Width − μs  
pw  
pw  
Figure 8. V  
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SVS (supply voltage supervisor/monitor) (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
150  
2000  
150  
12  
UNIT  
dV /dt > 30 V/ms (see Figure 9)  
5
CC  
t
μs  
(SVSR)4  
dV /dt 30 V/ms  
CC  
t
t
SVSon, switch from VLD=0 to VLD 0, V = 3 V  
20  
μs  
μs  
V
d(SVSon)  
CC  
VLD 0  
settle  
V
VLD 0, V /dt 3 V/s (see Figure 9)  
1.55  
120  
1.7  
(SVSstart)  
CC  
VLD = 1  
70  
155  
mV  
V
V
/dt 3 V/s (see Figure 9)  
V
V
(SVS_IT−)  
x 0.008  
CC  
(SVS_IT−)  
x 0.004  
VLD = 2 .. 14  
V
hys(SVS_IT−)  
/dt 3 V/s (see Figure 9), external voltage applied  
CC  
VLD = 15  
4.4  
10.4  
mV  
on P2.3  
VLD = 1  
VLD = 2  
VLD = 3  
VLD = 4  
VLD = 5  
VLD = 6  
VLD = 7  
VLD = 8  
VLD = 9  
VLD = 10  
VLD = 11  
VLD = 12  
VLD = 13  
VLD = 14  
1.8  
1.9  
2.1  
2.05  
2.25  
2.37  
2.48  
2.6  
1.94  
2.05  
2.14  
2.24  
2.33  
2.46  
2.58  
2.69  
2.83  
2.94  
3.11  
3.24  
3.43  
2.2  
2.3  
2.4  
2.5  
2.71  
2.86  
3
2.65  
2.8  
V
CC  
/dt 3 V/s (see Figure 9)  
V
V
(SVS_IT−)  
2.9  
3.13  
3.29  
3.42  
3.05  
3.2  
3.35  
3.5  
3.61  
3.76  
3.7  
3.99  
V
/dt 3 V/s (see Figure 9), external voltage applied  
CC  
VLD = 15  
1.1  
1.2  
10  
1.3  
15  
on P2.3  
I
CC(SVS)  
VLD 0, V = 2.2 V/3 V  
μA  
CC  
(see Note 1)  
The recommended operating voltage range is limited to 3.6 V.  
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value somewhere  
t
settle  
between 2 and 15. The overdrive is assumed to be > 50 mV.  
NOTE 1: The current consumption of the SVS module is not included in the I current consumption data.  
CC  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Software Sets VLD>0:  
SVS is Active  
V
CC  
(SVS_IT−)  
V
hys(SVS_IT−)  
V
V
(SVSstart)  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
Brownout  
Region  
Brownout  
Region  
Brownout  
1
0
t
t
d(BOR)  
SVS out  
1
d(BOR)  
SVS Circuit is Active From VLD > to V < V  
CC  
(B_IT−)  
0
t
d(SVSon)  
Set POR  
1
t
d(SVSR)  
Undefined  
0
Figure 9. SVS Reset (SVSR) vs Supply Voltage  
V
CC  
t
pw  
3 V  
2
Rectangular Drop  
1.5  
1
V
CC(drop)  
Triangular Drop  
1 ns  
1 ns  
0.5  
0
V
CC  
t
pw  
3 V  
1
10  
100  
1000  
t
− Pulse Width − μs  
pw  
V
CC(drop)  
t = t  
f
r
t
t
r
f
t − Pulse Width − μs  
Figure 10. V  
With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal  
CC(drop)  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
DCO  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
N
f
=01Eh, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 0,  
= 32.768 kHz  
(DCO)  
Crystal  
f
3 V  
1
MHz  
(DCOCLK)  
f
f
f
f
f
f
f
f
f
f
FN_8=FN_4=FN_3=FN_2=0 ; DCOPLUS = 1  
FN_8=FN_4=FN_3=FN_2=0; DCOPLUS = 1  
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1  
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1  
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1  
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1  
FN_8=0, FN_4= 1, FN_3= FN_2=x; DCOPLUS = 1  
FN_8=0, FN_4=1, FN_3= FN_2=x; DCOPLUS = 1  
FN_8=1, FN_4=FN_3=FN_2=x; DCOPLUS = 1  
FN_8=1,FN_4=FN_3=FN_2=x; DCOPLUS = 1  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
0.3  
2.7  
0.8  
6.5  
1.3  
10.3  
2.1  
16  
0.7  
6.1  
1.3  
11.3  
2.5  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
1.5  
12.1  
2.2  
20  
3.5  
17.9  
3.4  
28.5  
5.2  
26.6  
6.3  
41  
4.2  
30  
9.2  
46  
70  
1 < TAP 20  
1.06  
1.07  
1.11  
1.17  
Step size between adjacent DCO taps:  
S
n
S = f  
/ f  
, (see Figure 12 for taps 21 to 27)  
n
DCO(Tap n+1) DCO(Tap n)  
TAP = 27  
Temperature drift, N  
D = 2; DCOPLUS = 0  
= 01Eh, FN_8=FN_4=FN_3=FN_2=0  
(DCO)  
D
D
3 V  
–0.2  
0
–0.3  
5
–0.4  
15  
%/_C  
t
Drift with V variation, N  
= 01Eh, FN_8=FN_4=FN_3=FN_2=0  
CC  
(DCO)  
%/V  
V
D = 2; DCOPLUS = 0  
f
f
(DCO)  
(DCO)  
f
f
5
(DCO3V)  
(DCO20 C)  
1.0  
1.0  
0
1.8  
2.4  
3.0  
3.6  
V
−40  
−20  
0
20  
40  
60  
85  
− V  
T − °C  
A
CC  
Figure 11. DCO Frequency vs Supply Voltage V and vs Ambient Temperature  
CC  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
1.17  
Max  
1.11  
1.07  
1.06  
Min  
1
20  
27  
DCO Tap  
Figure 12. DCO Tap Step Size  
Legend  
Tolerance at Tap 27  
DCO Frequency  
Adjusted by Bits  
9
5
2 to 2 in SCFI1 {N  
}
{DCO}  
Tolerance at Tap 2  
Overlapping DCO Ranges:  
Uninterrupted Frequency Range  
FN_2=0  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=1  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=x  
FN_2=x  
FN_3=x  
FN_4=1  
FN_8=0  
FN_2=x  
FN_3=1  
FN_4=0  
FN_8=0  
FN_3=x  
FN_4=x  
FN_8=1  
Figure 13. Five Overlapping DCO Ranges Controlled by FN_x Bits  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
crystal oscillator, LFXT1 oscillator (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
OSCCAPx = 0h  
OSCCAPx = 1h  
OSCCAPx = 2h  
OSCCAPx = 3h  
OSCCAPx = 0h  
OSCCAPx = 1h  
OSCCAPx = 2h  
OSCCAPx = 3h  
V
CC  
MIN  
TYP  
0
MAX  
UNIT  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
10  
14  
18  
0
Integrated input capacitance  
(see Note 4)  
C
pF  
XIN  
10  
14  
18  
Integrated output capacitance  
(see Note 4)  
C
V
pF  
V
XOUT  
V
SS  
0.2×V  
CC  
IL  
Input levels at XIN  
see Note 3  
3 V  
V
IH  
0.8×V  
V
CC  
CC  
NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2pF. The effective load capacitor for the crystal is  
(C x C ) / (C + C ). It is independent of XTS_FLL.  
XIN  
XOUT  
XIN  
XOUT  
2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines must be  
observed:  
Keep as short a trace as possible between the ’F42x and the crystal.  
Design a good ground plane around oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to XIN an XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation.  
This signal is no longer required for the serial programming adapter.  
3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator.  
4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SD16, power supply and recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
2.7  
TYP  
MAX  
UNIT  
Analog supply  
voltage  
AV = DV  
CC  
CC  
AV  
3.6  
V
CC  
AV = DV = 0V  
SS SS  
GAIN: 1, 2  
3 V  
3 V  
3 V  
650  
950  
1100  
1550  
SD16LP = 0,  
= 1 MHz,  
SD16OSR = 256  
Analog supply  
current: 1 active  
SD16 channel  
including internal  
reference  
GAIN: 4, 8, 16  
GAIN: 32  
730  
f
SD16  
1050  
ISD16  
μA  
SD16LP = 1,  
GAIN: 1  
3 V  
3 V  
3 V  
3 V  
620  
700  
1
930  
f
= 0.5 MHz,  
SD16  
GAIN: 32  
1060  
SD16OSR = 256  
Analog front-end  
input clock  
frequency  
SD16LP = 0 (Low power mode disabled)  
SD16LP = 1 (Low power mode enabled)  
f
MHz  
SD16  
0.5  
SD16, analog input range (see Note 1)  
PARAMETER  
TEST CONDITIONS  
SD16GAINx = 1, SD16REFON = 1  
V
CC  
MIN  
TYP  
500  
250  
125  
62  
MAX  
UNIT  
SD16GAINx = 2, SD16REFON = 1  
SD16GAINx = 4, SD16REFON = 1  
SD16GAINx = 8, SD16REFON = 1  
SD16GAINx = 16, SD16REFON = 1  
SD16GAINx = 32, SD16REFON = 1  
Differential input  
voltage range for  
specified  
performance  
(see Note 2)  
V
ID  
mV  
31  
15  
Input impedance  
(one input pin  
f
f
f
f
= 1MHz, SD16GAINx = 1  
= 1MHz, SD16GAINx = 32  
= 1MHz, SD16GAINx = 1  
= 1MHz, SD16GAINx = 32  
3 V  
3 V  
3 V  
3 V  
200  
75  
SD16  
SD16  
SD16  
SD16  
Z
kΩ  
kΩ  
I
to AV  
)
SS  
Differential  
input impedance  
(IN+ to IN−)  
300  
400  
150  
Z
ID  
100  
AV  
Absolute input  
voltage range  
-
SS  
V
V
AV  
AV  
V
V
I
CC  
1.0V  
Common-mode  
input voltage range  
AV  
SS  
-
IC  
CC  
1.0V  
NOTES: 1. All parameters pertain to each SD16 channel.  
2. The analog input range depends on the reference voltage applied to V  
. If V  
is sourced externally, the full-scale range  
REF  
REF  
is defined by V  
= +(V  
/2)/GAIN and V  
= −(V /2)/GAIN. The analog input range should not exceed 80% of  
REF  
FSR+  
REF  
FSR−  
V
FSR+  
or V  
.
FSR−  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SD16, analog performance (f  
= 1MHz, SD16OSRx = 256, SD16REFON = 1)  
SD16  
PARAMETER  
TEST CONDITIONS  
V
MIN  
83.5  
81.5  
76  
TYP  
85  
MAX  
UNIT  
CC  
SD16GAINx = 1,Signal Amplitude = 500mV  
SD16GAINx = 2,Signal Amplitude = 250mV  
SD16GAINx = 4,Signal Amplitude = 125mV  
SD16GAINx = 8,Signal Amplitude = 62mV  
SD16GAINx = 16,Signal Amplitude = 31mV  
SD16GAINx = 32,Signal Amplitude = 15mV  
SD16GAINx = 1  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
84  
79.5  
76.5  
73  
Signal-to-noise +  
distortion ratio  
f
= 50Hz,  
IN  
SINAD  
dB  
100Hz  
73  
69  
62  
69  
0.97  
1.90  
3.76  
7.36  
1.00  
1.96  
3.86  
7.62  
1.02  
2.02  
3.96  
7.84  
SD16GAINx = 2  
SD16GAINx = 4  
G
Nominal gain  
SD16GAINx = 8  
SD16GAINx = 16  
14.56 15.04 15.52  
SD16GAINx = 32  
27.20 28.35 29.76  
SD16GAINx = 1  
0.2  
1.5  
E
OS  
Offset error  
%FSR  
SD16GAINx = 32  
Offset error  
temperature  
coefficient  
SD16GAINx = 1  
3 V  
3 V  
4
20  
ppm  
FSR/_C  
dE /dT  
OS  
SD16GAINx = 32  
20  
100  
SD16GAINx = 1, Common-mode input signal:  
3 V  
3 V  
>90  
>75  
V
ID  
= 500 mV, f = 50 Hz, 100 Hz  
IN  
Common-mode  
rejection ratio  
CMRR  
dB  
SD16GAINx = 32, Common-mode input signal:  
= 16 mV, f = 50 Hz, 100 Hz  
V
ID  
IN  
AC power supply  
rejection ratio  
AC PSRR  
SD16GAINx = 1, V = 3 V 100 mV, f  
= 50 Hz  
3 V  
3 V  
>80  
dB  
dB  
CC  
VCC  
X
T
Crosstalk  
<−100  
SD16, built-in temperature sensor  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
Sensor temperature  
coefficient  
TC  
1.18  
1.32  
1.46 mV/K  
Sensor  
Sensor offset  
voltage  
V
−100  
100  
mV  
mV  
Offset,sensor  
Temperature sensor voltage at T = 85°C  
3 V  
3 V  
3 V  
435  
355  
320  
475  
395  
360  
515  
435  
400  
A
Sensor output  
voltage (see Note 2)  
Temperature sensor voltage at T = 25°C  
V
Sensor  
A
Temperature sensor voltage at T = 0°C  
A
NOTES: 1. The following formula can be used to calculate the temperature sensor output voltage:  
= TC ( 273 + T [°C] ) + V [mV]  
V
Sensor,typ  
Sensor  
Offset,sensor  
2. Results based on characterization and/or production test, not TC  
or V  
.
Sensor  
Offset,sensor  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SD16, built-in voltage reference  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
voltage  
V
I
SD16REFON = 1, SD16VMIDON = 0  
3 V  
3 V  
3 V  
1.14  
1.20  
1.26  
V
REF  
Reference supply  
current  
SD16REFON = 1, SD16VMIDON = 0  
SD16REFON = 1, SD16VMIDON = 0  
SD16REFON = 1, SD16VMIDON = 0 (see Note 1)  
SD16REFON = 0  
175  
20  
260  
μA  
REF  
Temperature  
coefficient  
TC  
50 ppm/K  
nF  
V
REF  
load  
C
100  
REF  
capacitance  
V
REF  
maximum load  
I
t
3 V  
3 V  
200  
nA  
ms  
LOAD  
current  
Turn-on time  
SD16REFON = 0 1, SD16VMIDON = 0, C  
= 100 nF  
5
ON  
REF  
DC power supply  
rejection,  
DC PSR  
SD16REFON = 1, SD16VMIDON = 0, V = 2.5 V to 3.6 V  
200  
μV/V  
CC  
ΔV  
/ΔV  
REF  
CC  
NOTES: 1. There is no capacitance required on V . However, a capacitance of at least 100nF is recommended to reduce any reference  
REF  
voltage noise.  
SD16, built-in reference output buffer  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
1.2  
MAX  
UNIT  
CC  
Reference buffer  
V
SD16REFON = 1, SD16VMIDON = 1  
3 V  
V
REF,BUF  
output voltage  
Reference Supply +  
Reference output  
buffer quiescent  
current  
I
SD16REFON = 1, SD16VMIDON = 1  
3 V  
385  
600  
μA  
REF,BUF  
Required load  
capacitance on  
C
SD16REFON = 1, SD16VMIDON = 1  
SD16REFON = 1, SD16VMIDON = 1  
470  
nF  
REF(O)  
V
REF  
Maximum load  
current on V  
I
3 V  
1
mA  
LOAD,Max  
REF  
Maximum voltage  
variation vs. load  
current  
|I  
| = 0 to 1mA  
3 V  
3 V  
−15  
+15  
mV  
LOAD  
t
Turn-on time  
SD16REFON = 0 1, SD16VMIDON = 1, C  
= 470 nF  
100  
μs  
ON  
REF  
SD16, external reference input  
PARAMETER  
TEST CONDITIONS  
SD16REFON = 0  
V
MIN  
1.0  
TYP  
1.25  
MAX  
1.5  
UNIT  
V
CC  
V
REF(I)  
Input voltage range  
Input current  
3 V  
I
SD16REFON = 0  
3 V  
50  
nA  
REF(I)  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Flash Memory  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
2.7  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from DV during program  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
3
PGM  
CC  
Supply current from DV during erase  
3
7
mA  
ERASE  
CPT  
CC  
Cumulative program time  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
see Note 1  
see Note 2  
10  
ms  
200  
ms  
CMErase  
4
5
10  
100  
10  
cycles  
years  
t
T = 25°C  
J
Retention  
t
t
t
t
t
t
Word or byte program time  
35  
30  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
21  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 3  
t
FTG  
6
5297  
4819  
Segment erase time  
NOTES: 1. The cumulative programming time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all  
programming methods: individual word/byte write and block write modes.  
2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/f ,max = 5297x1/476kHz). To  
FTG  
achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met.  
(A worst case minimum of 19 cycles are required).  
3. These values are hardwired into the Flash Controller’s state machine (t  
= 1/f ).  
FTG  
FTG  
JTAG Interface  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
2.2 V  
3 V  
0
0
5
10  
90  
MHz  
MHz  
kΩ  
f
TCK input frequency  
see Note 1  
TCK  
R
Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2  
may be restricted to meet the timing requirements of the module selected.  
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. f  
TCK  
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.  
JTAG Fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TDI/TCLK for fuse-blow  
Supply current into TDI/TCLK during fuse-blow  
Time to blow fuse  
T = 25°C  
A
2.5  
6
V
V
CC(FB)  
7
100  
1
FB  
I
FB  
t
FB  
mA  
ms  
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched  
to bypass mode.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
APPLICATION INFORMATION  
input/output schematic  
Port P1, P1.0 to P1.1, input/output with Schmitt-trigger  
Pad Logic  
CAPD.x  
P1SEL.x  
0: Input  
1: Output  
0
P1DIR.x  
Direction Control  
1
0
1
From Module  
P1OUT.x  
Module X OUT  
Bus  
P1.0/TA0  
P1.1/TA0/MCLK  
keeper  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Interrupt  
Edge  
Select  
Q
P1IFG.x  
Set  
P1IES.x P1SEL.x  
NOTE: 0 x 1.  
Port Function is Active if CAPD.x = 0  
Direction  
Module X  
PnIN.x  
OUT  
CAPD.x  
PnOUT.x  
P1OUT.0  
P1OUT.1  
PnIE.x  
PnIES.x  
Control  
Module X IN  
PnSEL.x  
P1SEL.0  
P1SEL.1  
Timer_A3  
PnDIR.x  
PnIFG.x  
From Module  
P1DIR.0  
P1DIR.1  
P1DIR.0  
P1IN.0  
P1IN.1  
Out0 Sig.  
MCLK  
CCI0A  
DVSS  
DVSS  
P1IE.0  
P1IE.1  
P1IFG.0  
P1IFG.1  
P1IES.0  
P1IES.1  
P1DIR.1  
CCI0B  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
Port P1, P1.2 to P1.7, input/output with Schmitt-trigger  
Pad Logic  
Port/LCD  
Segment xx  
DVSS  
P1SEL.x  
0: Input  
1: Output  
0
P1DIR.x  
Direction Control  
1
0
1
From Module  
P1OUT.x  
Module X OUT  
Bus  
keeper  
P1.2/TA1/S31  
P1.3/SVSOUT/S30  
P1.4/S29  
P1.5/TACLK/ACLK/S28  
P1.6/SIMO0/S27  
P1.7/SOMI0/S26  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Interrupt  
Edge  
Select  
Q
P1IFG.x  
Set  
P1IES.x P1SEL.x  
NOTE: 2 x 7.  
Port Function is Active if Port/LCD = 0  
Direction  
Module X  
OUT  
Segment  
PnOUT.x  
PnIE.x  
PnIES.x  
Control  
PnIN.x  
Module X IN  
Port/LCD  
PnSEL.x  
PnDIR.x  
PnIFG.x  
From Module  
S31  
S30  
S29  
S28  
S27  
S26  
P1SEL.2  
P1SEL.3  
P1SEL.4  
P1DIR.2  
P1DIR.3  
P1DIR.4  
P1DIR.2  
P1DIR.3  
P1DIR.4  
P1OUT.2  
P1OUT.3  
P1OUT.4  
Out1 Sig.  
P1IN.2  
P1IN.3  
P1IN.4  
CCI1A  
P1IE.2  
P1IE.3  
P1IE.4  
P1IE.5  
P1IE.6  
P1IE.7  
P1IFG.2  
P1IFG.3  
P1IFG.4  
P1IFG.5  
P1IFG.6  
P1IFG.7  
P1IES.2  
P1IES.3  
P1IES.4  
P1IES.5  
P1IES.6  
P1IES.7  
0: LCDM  
< 0E0h  
1: LCDM  
0E0h  
unused  
unused  
SVSOUT  
DVSS  
TACLK  
P1SEL.5  
P1SEL.6  
P1DIR.5  
P1DIR.6  
P1DIR.5  
P1OUT.5  
P1OUT.6  
ACLK  
P1IN.5  
P1IN.6  
0: LCDM  
< 0C0h  
1: LCDM  
0C0h  
DCM_SIMO  
SIMO0(o)  
SIMO0(i)  
SOMI0(o)  
P1SEL.7  
P1DIR.7  
DCM_SOMI  
P1OUT.7  
P1IN.7  
SOMI0(i)  
Timer_A3  
USART0  
Direction Control for SIMO0  
DCM_SIMO  
Direction Control for SOMI0  
DCM_SOMI  
SYNC  
MM  
SYNC  
MM  
STC  
STE  
STC  
STE  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P2, P2.0 to P2.1, input/output with Schmitt-trigger  
0: Port active  
1: Segment xx function active  
Pad Logic  
Port/LCD  
Segment xx  
P2SEL.x  
0: Input  
1: Output  
0
P2DIR.x  
Direction Control  
From Module  
1
0
1
P2OUT.x  
Module X OUT  
Bus  
Keeper  
P2.0/TA2/S25  
P2.1/UCLK0/S24  
P2IN.x  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
P2IFG.x  
EN  
Set  
Interrupt  
Edge  
Select  
Q
P2IES.x  
P2SEL.x  
NOTE: 0 x 1.  
Port Function is Active if Port/LCD = 0  
Dir. Control  
from module  
Module X  
OUT  
Segment  
PnSel.x  
PnDIR.x  
PnOUT.x  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
Port/LCD  
0: LCDM  
< 0E0h  
1: LCDM  
0E0h  
S25  
S24  
P2Sel.0  
P2Sel.1  
P2DIR.0  
P2DIR.1  
P2DIR.0  
P2OUT.0  
Out2sig.  
P2IN.0  
P2IN.1  
CCI2A  
P2IES.0  
P2IES.1  
P2IE.0  
P2IE.1  
P2IFG.0  
P2IFG.1  
DCM_UCLK P2OUT.1  
UCLK0(o)  
UCLK0(i)  
Timer_A3  
USART0  
Direction Control for UCLK0  
DCM_UCLK  
SYNC  
MM  
STC  
STE  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P2, P2.2 to P2.5, input/output with Schmitt-trigger  
To BrownOut/SVS for P2.3/SVSIN  
Pad Logic  
DVSS  
DVSS  
CAPD.x  
P2SEL.x  
0: Input  
1: Output  
0
P2DIR.x  
Direction Control  
1
0
1
From Module  
P2OUT.x  
Module X OUT  
Bus  
keeper  
P2.2/STE0  
P2.3/SVSIN  
P2.4/UTXD0  
P2.5/URXD0  
P2IN.x  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
EN  
Interrupt  
Edge  
Select  
Q
P2IFG.x  
Set  
P2IES.x P2SEL.x  
NOTE: 2 x 5  
Port function is active if CAPD.x = 0  
Direction  
Module X  
PnIN.x  
OUT  
PnOUT.x  
PnIE.x  
PnIES.x  
Control  
Module X IN  
CAPD.x  
PnSEL.x  
PnDIR.x  
PnIFG.x  
From Module  
DVSS  
DVSS  
DVSS  
UTXD0  
DVSS  
P2SEL.2  
P2SEL.3  
P2SEL.4  
P2DIR.2  
P2DIR.3  
P2DIR.4  
DVSS  
P2OUT.2  
P2OUT.3  
P2OUT.4  
P2OUT.5  
P2IN.2  
P2IN.3  
P2IN.4  
P2IN.5  
STE0  
P2IE.2  
P2IE.3  
P2IE.4  
P2IE.5  
P2IFG.2  
P2IFG.3  
P2IFG.4  
P2IFG.5  
P2IES.2  
P2IES.3  
P2IES.4  
P2IES.5  
SVSCTL VLD  
= 1111b  
P2DIR.3  
unused  
unused  
DVSS  
DVSS  
DVCC  
DVSS  
URXD0  
P2SEL.5  
P2DIR.5  
USART0  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
Port P2, unbonded GPIOs P2.6 and P2.7  
P2SEL.x  
P2DIR.x  
0: Input  
1: Output  
0
1
Direction Control  
From Module  
0
1
P2OUT.x  
Module X OUT  
P2IN.x  
Node Is Reset With PUC  
Bus Keeper  
EN  
Module X IN  
D
P2IRQ.x  
P2IE.x  
PUC  
Interrupt  
Edge  
Select  
EN  
Set  
Q
P2IFG.x  
Interrupt  
Flag  
P2IES.x  
P2SEL.x  
NOTE: x = Bit/identifier, 6 to 7 for port P2 without external pins  
DIRECTION  
P2Sel.x P2DIR.x  
CONTROL  
P2OUT.x MODULE X OUT P2IN.x  
MODULE X IN  
P2IE.x  
P2IFG.x  
P2IES.x  
FROM MODULE  
P2Sel.6 P2DIR.6  
P2Sel.7 P2DIR.7  
P2DIR.6  
P2DIR.7  
P2OUT.6  
P2OUT.7  
DV  
DV  
P2IN.6  
P2IN.7  
unused  
unused  
P2IE.6  
P2IE.7  
P2IFG.6  
P2IFG.7  
P2IES.6  
P2IES.7  
SS  
SS  
NOTE: Unbonded GPIOs 6 and 7 of port P2 can be used as interrupt flags. Only software can affect the interrupt flags. They work as software  
interrupts.  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
APPLICATION INFORMATION  
JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger or output  
TDO  
Controlled by JTAG  
Controlled by JTAG  
TDO/TDI  
JTAG  
Controlled  
DV  
CC  
by JTAG  
TDI  
Burn and Test  
Fuse  
TDI/TCLK  
Test  
and  
DV  
CC  
TMS  
TCK  
Emulation  
Module  
TMS  
CC  
DV  
TCK  
RST/NMI  
Tau ~ 50 ns  
Brownout  
D
U
S
G
G
D
U
S
TCK  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
APPLICATION INFORMATION  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity  
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, I , of 1.8 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be  
TF  
taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the  
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check  
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the  
fuse check mode has the potential to be activated.  
The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 14). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
The JTAG pins are terminated internally, and therefore do not require external termination.  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TDI/TCLK  
Figure 14. Fuse Check Mode Current, MSP430F42x  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x  
MIXED SIGNAL MICROCONTROLLER  
SLAS421A − APRIL 2004 − REVISED JUNE 2007  
Data Sheet Revision History  
Literature  
Number  
Summary  
SLAS421  
Production datasheet release  
Updated functional block diagram (page 3)  
Clarified test conditions in recommended operating conditions table (page 17)  
Changed “Supply voltage during program execution; SD16 disabled, SVS enabled, and PORON = 1” MIN value from 2.2 V  
to 2.0 V (page 17)  
Clarified test conditions for I  
Clarified test conditions in USART0 table (page 21)  
in supply current into AV + DV table (page 18)  
(LPM0)  
CC CC  
SLAS421A  
Changed PSRR to AC PSRR in SD16 analog performance table (page 29)  
Added DC PSR in SD16, built-in voltage reference table (page 30)  
Added t parameter to SD16, built-in voltage reference and SD16, built-in reference output buffer tables (page 30)  
ON  
Changed t  
maximum value from 4 ms to 10 ms in Flash memory table (page 31)  
CPT  
NOTE: Page and figure numbers refer to the respective document revision.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Dec-2009  
PACKAGING INFORMATION  
Orderable Device  
MSP430F423IPM  
MSP430F423IPMR  
MSP430F425IPM  
MSP430F425IPMR  
MSP430F427IPM  
MSP430F427IPMR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
LQFP  
PM  
64  
64  
64  
64  
64  
64  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
PM  
PM  
PM  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
160 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Apr-2011  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F425IPMR  
MSP430F427IPMR  
LQFP  
LQFP  
PM  
PM  
64  
64  
1000  
1000  
330.0  
330.0  
24.4  
24.4  
12.3  
12.3  
12.3  
12.3  
2.5  
2.5  
16.0  
16.0  
24.0  
24.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Apr-2011  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F425IPMR  
MSP430F427IPMR  
LQFP  
LQFP  
PM  
PM  
64  
64  
1000  
1000  
333.2  
333.2  
345.9  
345.9  
41.3  
41.3  
Pack Materials-Page 2  
MECHANICAL DATA  
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996  
PM (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
33  
48  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
0°7°  
11,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040152/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. May also be thermally enhanced plastic with leads connected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

MSP430F425

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4250

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4250IDL

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4250IDLR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4250IRGZ

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4250IRGZR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4250IRGZT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F425A

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F425AIPM

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F425AIPMR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F425IPM

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F425IPMR

MIXED SIGNAL MICROCONTROLLER
TI