MSP430F448IPZR [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F448IPZR
型号: MSP430F448IPZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总73页 (文件大小:1180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
D
D
Low Supply-Voltage Range, 1.8 V to 3.6 V  
D
D
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by Security  
Fuse  
Ultralow-Power Consumption:  
− Active Mode: 280 μA at 1 MHz, 2.2 V  
− Standby Mode: 1.1 μA  
− Off Mode (RAM Retention): 0.1 μA  
Integrated LCD Driver for up to  
160 Segments  
D
D
D
D
Five Power Saving Modes  
D
Bootstrap Loader  
Wake-Up From Standby Mode in Less  
Than 6 μs  
D
Family Members Include:  
− MSP430F435, MSP430F4351 :  
§
16-Bit RISC Architecture,  
125-ns Instruction Cycle Time  
16KB+256B Flash Memory,  
512B RAM  
12-Bit A/D Converter With Internal  
Reference, Sample-and-Hold and  
Autoscan Feature  
§
− MSP430F436, MSP430F4361 :  
24KB+256B Flash Memory,  
1KB RAM  
D
D
16-Bit Timer_B With Three or Seven  
§
− MSP430F437, MSP430F4371 :  
Capture/Compare-With-Shadow Registers  
32KB+256B Flash Memory,  
1KB RAM  
− MSP430F447:  
16-Bit Timer_A With Three  
Capture/Compare Registers  
32KB+256B Flash Memory,  
1KB RAM  
− MSP430F448:  
48KB+256B Flash Memory,  
2KB RAM  
− MSP430F449:  
D
On-Chip Comparator  
D
Serial Communication Interface (USART),  
Select Asynchronous UART or  
Synchronous SPI by Software:  
− Two USARTs (USART0, USART1) —  
MSP430x44x Devices  
60KB+256B Flash Memory,  
2KB RAM  
− One USART (USART0) —  
MSP430x43x(1) Devices  
D
For Complete Module Descriptions, See  
The MSP430x4xx Family User’s Guide,  
Literature Number SLAU056  
D
D
Brownout Detector  
Supply Voltage Supervisor/Monitor With  
Programmable Level Detection  
§
’F435, ’F436, and ’F437 devices  
’F447, ’F448, and ’F449 devices  
The MSP430F43x1 devices are identical to the MSP430F43x  
devices with the exception that the ADC12 module is not  
implemented.  
description  
The Texas Instruments MSP430 family of ultralow power microcontrollers consists of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less  
than 6 μs.  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range  
from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage  
because very small parametric changes could cause the device not to meet its published specifications. These devices have limited  
built-in ESD protection.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2002−2007, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
description (continued)  
The MSP430x43x(1) and the MSP430x44x series are microcontroller configurations with two built-in 16-bit  
timers, a fast 12-bit A/D converter (not implemented on the MSP430F43x1 devices), one or two universal serial  
synchronous/asynchronous communication interfaces (USART), 48 I/O pins, and a liquid crystal driver (LCD)  
with up to 160 segments.  
Typical applications include sensor systems that capture analog signals, convert them to digital values, and  
process and transmit the data to a host system, or process this data and display it on a LCD panel. The timers  
make the configurations ideal for industrial control applications such as ripple counters, digital motor control,  
EE-meters, hand-held meters, etc. The hardware multiplier enhances the performance and offers a broad code  
and hardware-compatible family solution.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
PLASTIC 80-PIN QFP  
(PN)  
PLASTIC 100-PIN QFP  
(PZ)  
MSP430F435IPN  
MSP430F436IPN  
MSP430F437IPN  
MSP430F435IPZ  
MSP430F436IPZ  
MSP430F437IPZ  
MSP430F4351IPN  
MSP430F4361IPN  
MSP430F4371IPN  
MSP430F4351IPZ  
MSP430F4361IPZ  
MSP430F4371IPZ  
−40°C to 85°C  
MSP430F447IPZ  
MSP430F448IPZ  
MSP430F449IPZ  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
pin designation, MSP430x4351IPN, MSP430x4361IPN, MSP430x4371IPN  
PN PACKAGE  
(TOP VIEW)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
DVCC1  
P6.3  
P6.4  
P6.5  
P6.6  
P1.7/CA1  
P2.0/TA2  
P2.1/TB0  
P2.2/TB1  
P2.3/TB2  
P2.4/UTXD0  
P2.5/URXD0  
DVSS2  
DVCC2  
P5.7/R33  
P5.6/R23  
P5.5/R13  
R03  
P5.4/COM3  
P5.3/COM2  
P5.2/COM1  
COM0  
P3.0/STE0/S31  
P3.1/SIMO0/S30  
P3.2/SOMI0/S29  
1
60  
2
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
3
4
5
P6.7/SVSIN  
Reserved  
XIN  
6
7
8
XOUT  
DVSS  
DVSS  
9
MSP430F4351IPN  
MSP430F4361IPN  
MSP430F4371IPN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P5.1/S0  
P5.0/S1  
P4.7/S2  
P4.6/S3  
P4.5/S4  
P4.4/S5  
P4.3/S6  
P4.2/S7  
P4.1/S8  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
pin designation, MSP430x4351IPZ, MSP430x4361IPZ, MSP430x4371IPZ  
PZ PACKAGE  
(TOP VIEW)  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DVCC1  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7/SVSIN  
Reserved  
XIN  
P2.4/UTXD0  
P2.5/URXD0  
P2.6/CAOUT  
P2.7  
P3.0/STE0  
P3.1/SIMO0  
P3.2/SOMI0  
P3.3/UCLK0  
P3.4  
P3.5  
P3.6  
P3.7  
P4.0  
2
3
4
5
6
7
8
9
XOUT  
DVSS  
DVSS  
P5.1/S0  
P5.0/S1  
S2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
MSP430F4351IPZ  
MSP430F4361IPZ  
MSP430F4371IPZ  
P4.1  
DVSS2  
DVCC2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
P5.7/R33  
P5.6/R23  
P5.5/R13  
R03  
P5.4/COM3  
P5.3/COM2  
P5.2/COM1  
COM0  
S11  
S12  
S13  
P4.2/S39  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
pin designation, MSP430x435IPN, MSP430x436IPN, MSP430x437IPN  
PN PACKAGE  
(TOP VIEW)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
DVCC1  
P6.3/A3  
P6.4/A4  
P6.5/A5  
P6.6/A6  
P1.7/CA1  
P2.0/TA2  
P2.1/TB0  
P2.2/TB1  
P2.3/TB2  
P2.4/UTXD0  
P2.5/URXD0  
DVSS2  
DVCC2  
P5.7/R33  
P5.6/R23  
P5.5/R13  
R03  
P5.4/COM3  
P5.3/COM2  
P5.2/COM1  
COM0  
P3.0/STE0/S31  
P3.1/SIMO0/S30  
P3.2/SOMI0/S29  
1
60  
2
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
3
4
5
P6.7/A7/SVSIN  
VREF+  
6
7
XIN  
XOUT  
VeREF+  
VREF−/VeREF−  
P5.1/S0  
8
9
MSP430F435IPN  
MSP430F436IPN  
MSP430F437IPN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P5.0/S1  
P4.7/S2  
P4.6/S3  
P4.5/S4  
P4.4/S5  
P4.3/S6  
P4.2/S7  
P4.1/S8  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
pin designation, MSP430x435IPZ, MSP430x436IPZ, MSP430x437IPZ  
PZ PACKAGE  
(TOP VIEW)  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DVCC1  
P6.3/A3  
P6.4/A4  
P6.5/A5  
P2.4/UTXD0  
P2.5/URXD0  
P2.6/CAOUT  
P2.7/ADC12CLK  
P3.0/STE0  
P3.1/SIMO0  
P3.2/SOMI0  
P3.3/UCLK0  
P3.4  
P3.5  
P3.6  
P3.7  
P4.0  
2
3
4
5
P6.6/A6  
6
P6.7/A7/SVSIN  
7
VREF+  
XIN  
XOUT  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VeREF+  
VREF−/VeREF−  
MSP430F435IPZ  
MSP430F436IPZ  
MSP430F437IPZ  
P5.1/S0  
P5.0/S1  
S2  
P4.1  
DVSS2  
DVCC2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
P5.7/R33  
P5.6/R23  
P5.5/R13  
R03  
P5.4/COM3  
P5.3/COM2  
P5.2/COM1  
COM0  
P4.2/S39  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
pin designation, MSP430x447IPZ, MSP430x448IPZ, MSP430x449IPZ  
PZ PACKAGE  
(TOP VIEW)  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DVCC1  
P6.3/A3  
P6.4/A4  
P6.5/A5  
P2.4/UTXD0  
P2.5/URXD0  
P2.6/CAOUT  
P2.7/ADC12CLK  
P3.0/STE0  
P3.1/SIMO0  
P3.2/SOMI0  
P3.3/UCLK0  
P3.4/TB3  
P3.5/TB4  
P3.6/TB5  
P3.7/TB6  
P4.0/UTXD1  
P4.1/URXD1  
DVSS2  
DVCC2  
P5.7/R33  
P5.6/R23  
P5.5/R13  
R03  
P5.4/COM3  
P5.3/COM2  
P5.2/COM1  
COM0  
2
3
4
5
P6.6/A6  
6
P6.7/A7/SVSIN  
7
VREF+  
XIN  
XOUT  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VeREF+  
VREF−/VeREF−  
MSP430F447IPZ  
MSP430F448IPZ  
MSP430F449IPZ  
P5.1/S0  
P5.0/S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
P4.2/STE1/S39  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
MSP430x43x1 functional block diagram  
DV  
DV  
AV  
AV  
SS  
CC1/2  
SS1/2  
CC  
P4  
P5  
P6  
XIN XOUT  
P1  
P2  
P3  
8
8
8
8
8
8
ACLK  
XT2IN  
Oscillator  
FLL+  
USART0  
Flash  
Port 1  
Port 2  
RAM  
XT2OUT  
Port 3  
8 I/O  
Port 4  
8 I/O  
Port 5  
8 I/O  
Port 6  
6 I/O  
SMCLK  
UART Mode  
SPI Mode  
32KB  
24KB  
16KB  
8 I/O  
Interrupt  
Capability  
8 I/O  
Interrupt  
Capability  
1KB  
512B  
MCLK  
8 MHz  
CPU  
MAB  
MDB  
incl. 16  
Registers  
Emulation  
Module  
Watchdog  
Timer  
WDT  
Timer_B3  
Basic  
Timer 1  
LCD  
128/160  
Segments  
1,2,3,4 MUX  
POR/  
SVS/  
Brownout  
Timer_A3  
3 CC Reg  
Comparator_  
A
3 CC Reg  
Shadow  
Reg  
1 Interrupt  
Vector  
15/16-Bit  
JTAG  
Interface  
f
LCD  
RST/NMI  
MSP430x43x functional block diagram  
DV  
DV  
AV  
AV  
SS  
CC1/2  
SS1/2  
CC  
P4  
8
P5  
8
P6  
8
XIN XOUT  
P1  
P2  
8
P3  
8
8
ACLK  
XT2IN  
Oscillator  
FLL+  
USART0  
Flash  
Port 1  
Port 2  
RAM  
XT2OUT  
Port 3  
8 I/O  
Port 4  
8 I/O  
Port 5  
8 I/O  
Port 6  
6 I/O  
SMCLK  
UART Mode  
SPI Mode  
32KB  
24KB  
16KB  
8 I/O  
Interrupt  
Capability  
8 I/O  
Interrupt  
Capability  
1KB  
512B  
MCLK  
8 MHz  
CPU  
MAB  
MDB  
incl. 16  
Registers  
Emulation  
Module  
ADC12  
Watchdog  
Timer  
WDT  
Timer_B3  
Basic  
Timer 1  
LCD  
128/160  
Segments  
1,2,3,4 MUX  
POR/  
SVS/  
Brownout  
Timer_A3  
3 CC Reg  
Comparator_  
A
12-Bit  
8 Channels  
<10μs Conv.  
3 CC Reg  
Shadow  
Reg  
1 Interrupt  
Vector  
15/16-Bit  
JTAG  
Interface  
f
LCD  
RST/NMI  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
MSP430x44x functional block diagram  
DV  
DV  
AV  
AV  
SS  
CC1/2  
SS1/2  
CC  
P4  
P5  
P6  
XIN XOUT  
P1  
P2  
P3  
8
8
8
8
8
8
ACLK  
XT2IN  
Oscillator  
FLL+  
USART0  
USART1  
Flash  
Port 1  
Port 2  
RAM  
XT2OUT  
Port 3  
8 I/O  
Port 4  
8 I/O  
Port 5  
8 I/O  
Port 6  
6 I/O  
SMCLK  
60KB  
48KB  
32KB  
8 I/O  
Interrupt  
Capability  
8 I/O  
Interrupt  
Capability  
2KB  
1KB  
UART Mode  
SPI Mode  
MCLK  
8 MHz  
CPU  
MAB  
MDB  
incl. 16  
Registers  
Emulation  
Module  
Hardware  
Multiplier  
ADC12  
Watchdog  
Timer  
WDT  
Timer_B7  
Basic  
Timer 1  
LCD  
160  
Segments  
POR/  
SVS/  
Brownout  
Timer_A3  
3 CC Reg  
Comparator_  
A
12-Bit  
8 Channels  
<10μs Conv.  
7 CC Reg  
Shadow  
Reg  
MPY, MPYS  
MAC,MACS  
1 Interrupt  
Vector  
1,2,3,4 MUX  
15/16-Bit  
JTAG  
Interface  
f
LCD  
RST/NMI  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
MSP430x43x1 Terminal Functions  
TERMINAL  
I/O  
PN  
NAME  
PZ  
NAME  
DESCRIPTION  
I/O  
NO.  
1
NO.  
1
DV  
DV  
Digital supply voltage, positive terminal.  
CC1  
CC1  
P6.3  
P6.4  
P6.5  
P6.6  
2
I/O P6.3  
I/O P6.4  
I/O P6.5  
I/O P6.6  
2
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
3
3
4
4
5
5
P6.7/SVSIN  
6
I/O P6.7/SVSIN  
6
I/O General-purpose digital I/O / input to brownout, supply voltage  
supervisor  
Reserved  
XIN  
7
8
Reserved  
7
8
Reserved, do not connect externally  
Input port for crystal oscillator XT1. Standard or watch crystals can be  
connected.  
I
XIN  
I
XOUT  
9
O
I
XOUT  
9
O
I
Output terminal of crystal oscillator XT1  
DV  
DV  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DV  
DV  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Connect to DV  
Connect to DV  
SS  
SS  
SS  
SS  
SS  
SS  
I
I
P5.1/S0  
P5.0/S1  
P4.7/S2  
P4.6/S3  
P4.5/S4  
P4.4/S5  
P4.3/S6  
P4.2/S7  
P4.1/S8  
P4.0/S9  
S10  
I/O P5.1/S0  
I/O P5.0/S1  
I/O S2  
I/O General-purpose digital I/O / LCD segment output 0  
I/O General-purpose digital I/O / LCD segment output 1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
General-purpose digital I/O / LCD segment output 2  
General-purpose digital I/O / LCD segment output 3  
General-purpose digital I/O / LCD segment output 4  
General-purpose digital I/O / LCD segment output 5  
General-purpose digital I/O / LCD segment output 6  
General-purpose digital I/O / LCD segment output 7  
General-purpose digital I/O / LCD segment output 8  
General-purpose digital I/O / LCD segment output 9  
LCD segment output 10  
I/O S3  
I/O S4  
I/O S5  
I/O S6  
I/O S7  
I/O S8  
I/O S9  
O
O
O
O
O
O
O
O
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S11  
LCD segment output 11  
S12  
LCD segment output 12  
S13  
LCD segment output 13  
S14  
LCD segment output 14  
S15  
LCD segment output 15  
S16  
LCD segment output 16  
S17  
LCD segment output 17  
P2.7/S18  
I/O S18  
General-purpose digital I/O / LCD segment output 18  
General-purpose digital I/O / Comparator_A output / LCD segment  
output 19  
P2.6/CAOUT/S19  
31  
I/O S19  
31  
O
S20  
32  
33  
34  
35  
36  
37  
38  
39  
O
O
O
O
S20  
S21  
S22  
S23  
32  
33  
34  
35  
36  
37  
38  
39  
O
O
O
O
O
O
O
O
LCD segment output 20  
S21  
LCD segment output 21  
S22  
LCD segment output 22  
S23  
LCD segment output 23  
P3.7/S24  
P3.6/S25  
P3.5/S26  
P3.4/S27  
I/O S24  
I/O S25  
I/O S26  
I/O S27  
General-purpose digital I/O / LCD segment output 24  
General-purpose digital I/O / LCD segment output 25  
General-purpose digital I/O / LCD segment output 26  
General-purpose digital I/O / LCD segment output 27  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
MSP430x43x1 Terminal Functions (Continued)  
TERMINAL  
PN  
NAME  
PZ  
NAME  
DESCRIPTION  
I/O  
I/O  
O
NO.  
NO.  
General-purpose digital I/O / ext. clock i/p—USART0/UART or SPI  
mode, clock o/p—USART0/SPI mode / LCD segment output 28  
P3.3/UCLK0/S28  
P3.2/SOMI0/S29  
P3.1/SIMO0/S30  
P3.0/STE0/S31  
40  
I/O S28  
I/O S29  
I/O S30  
I/O S31  
40  
General-purpose digital I/O / slave out/master in of USART0/SPI mode  
/ LCD segment output 29  
41  
42  
43  
41  
42  
43  
O
General-purpose digital I/O / slave out/master out of USART0/SPI  
mode / LCD segment output 30  
O
General-purpose digital I/O / slave transmit enable-USART0/SPI  
mode / LCD segment output 31  
O
S32  
S33  
44  
45  
46  
47  
48  
49  
50  
51  
52  
O
LCD segment output 32  
O
LCD segment output 33  
P4.7/S34  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
General-purpose digital I/O / LCD segment output 34  
General-purpose digital I/O / LCD segment output 35  
General-purpose digital I/O / LCD segment output 36  
General-purpose digital I/O / LCD segment output 37  
General-purpose digital I/O / LCD segment output 38  
General-purpose digital I/O / LCD segment output 39  
COM0−3 are used for LCD backplanes.  
P4.6/S35  
P4.5/S36  
P4.4/S37  
P4.3/S38  
P4.2/S39  
COM0  
COM0  
44  
45  
O
General-purpose digital I/O / common output, COM0−3 are used for  
LCD backplanes.  
P5.2/COM1  
I/O P5.2/COM1  
I/O P5.3/COM2  
I/O P5.4/COM3  
53  
54  
I/O  
I/O  
General-purpose digital I/O / common output, COM0−3 are used for  
LCD backplanes.  
P5.3/COM2  
46  
General-purpose digital I/O / common output, COM0−3 are used for  
LCD backplanes.  
P5.4/COM3  
R03  
47  
48  
49  
55  
56  
57  
I/O  
I
I
R03  
Input port of fourth positive (lowest) analog LCD level (V5)  
General-purpose digital I/O / input port of third most positive analog  
LCD level (V4 or V3)  
P5.5/R13  
I/O P5.5/R13  
I/O P5.6/R23  
I/O P5.7/R33  
I/O  
General-purpose digital I/O / input port of second most positive analog  
LCD level (V2)  
P5.6/R23  
P5.7/R33  
50  
51  
58  
59  
I/O  
I/O  
General-purpose digital I/O / output port of most positive analog LCD  
level (V1)  
DV  
DV  
52  
53  
DV  
DV  
60  
61  
62  
63  
64  
65  
66  
67  
Digital supply voltage, positive terminal.  
Digital supply voltage, negative terminal.  
General-purpose digital I/O  
CC2  
CC2  
SS2  
SS2  
P4.1  
P4.0  
P3.7  
P3.6  
P3.5  
P3.4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O / external clock input—USART0/UART or  
SPI mode, clock output—USART0/SPI mode  
P3.3/UCLK0  
68  
I/O  
P3.2/SOMI0  
P3.1/SIMO0  
P3.0/STE0  
69  
70  
71  
72  
73  
74  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / slave out/master in of USART0/SPI mode  
General-purpose digital I/O / slave in/master out of USART0/SPI mode  
General-purpose digital I/O / slave transmit enable USART0/SPI mode  
General-purpose digital I/O  
P2.7  
P2.6/CAOUT  
I/O P2.5/URXD0  
General-purpose digital I/O / Comparator_A output  
P2.5/URXD0  
54  
General-purpose digital I/O / receive data in—USART0/UART mode  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
MSP430x43x1 Terminal Functions (Continued)  
TERMINAL  
PN  
NAME  
PZ  
NAME  
DESCRIPTION  
I/O  
I/O  
I/O  
I/O  
NO.  
NO.  
P2.4/UTXD0  
55  
I/O P2.4/UTXD0  
75  
General-purpose digital I/O / transmit data out—USART0/UART mode  
General-purpose digital I/O / Timer_B3 CCR2.  
Capture: CCI2A/CCI2B input, compare: Out2 output  
P2.3/TB2  
56  
57  
58  
59  
I/O P2.3/TB2  
76  
77  
78  
79  
General-purpose digital I/O / Timer_B3 CCR1.  
Capture: CCI1A/CCI1B input, compare: Out1 output  
P2.2/TB1  
P2.1/TB0  
P2.0/TA2  
I/O P2.2/TB1  
I/O P2.1/TB0  
I/O P2.0/TA2  
I/O  
I/O  
I/O  
General-purpose digital I/O / Timer_B3 CCR0.  
Capture: CCI0A/CCI0B input, compare: Out0 output  
General-purpose digital I/O / Timer_A  
Capture: CCI2A input, compare: Out2 output  
P1.7/CA1  
P1.6/CA0  
60  
61  
I/O P1.7/CA1  
I/O P1.6/CA0  
80  
81  
I/O  
I/O  
General-purpose digital I/O / Comparator_A input  
General-purpose digital I/O / Comparator_A input  
P1.5/TACLK/  
ACLK  
P1.5/TACLK/  
ACLK  
General-purpose digital I/O / Timer_A, clock signal TACLK input /  
ACLK output (divided by 1, 2, 4, or 8)  
62  
63  
64  
65  
66  
I/O  
82  
83  
84  
85  
86  
I/O  
I/O  
I/O  
I/O  
I/O  
P1.4/TBCLK/  
SMCLK  
P1.4/TBCLK/  
SMCLK  
General-purpose digital I/O / input clock TBCLK—Timer_B3 / submain  
system clock SMCLK output  
I/O  
P1.3/TBOUTH/  
SVSOUT  
P1.3/TBOUTH/  
SVSOUT  
General-purpose digital I/O / switch all PWM digital output ports to high  
impedance—Timer_B3 TB0 to TB2 / SVS: output of SVS comparator  
I/O  
General-purpose digital I/O / Timer_A, Capture: CCI1A input,  
compare: Out1 output  
P1.2/TA1  
I/O P1.2/TA1  
General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK  
output. Note: TA0 is only an input on this pin / BSL receive  
P1.1/TA0/MCLK  
I/O P1.1/TA0/MCLK  
I/O P1.0/TA0  
General-purpose digital I/O / Timer_A. Capture: CCI0A input,  
compare: Out0 output / BSL transmit  
P1.0/TA0  
XT2OUT  
XT2IN  
67  
68  
69  
87  
88  
89  
I/O  
O
I
O
I
XT2OUT  
XT2IN  
Output terminal of crystal oscillator XT2  
Input port for crystal oscillator XT2. Only standard crystals can be  
connected.  
Test data output port. TDO/TDI data output or programming data input  
terminal  
TDO/TDI  
70  
71  
I/O TDO/TDI  
90  
91  
I/O  
I
Test data input or test clock input. The device protection fuse is  
connected to TDI/TCLK.  
TDI/TCLK  
I
TDI/TCLK  
Test mode select. TMS is used as an input port for device programming  
and test.  
TMS  
72  
73  
74  
I
I
I
TMS  
92  
93  
94  
I
I
I
TCK  
TCK  
Test clock. TCK is the clock input port for device programming and test.  
General-purpose digital I/O / reset input or nonmaskable interrupt input  
port  
RST/NMI  
RST/NMI  
P6.0  
P6.1  
P6.2  
75  
76  
77  
I/O P6.0  
I/O P6.1  
I/O P6.2  
95  
96  
97  
I/O  
I/O  
I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
Analog supply voltage, negative terminal. Supplies SVS, brownout,  
oscillator, comparator_A, port 1, and LCD resistive divider circuitry.  
AV  
78  
79  
AV  
98  
99  
SS  
SS  
DV  
DV  
Digital supply voltage, negative terminal.  
SS1  
SS1  
Analog supply voltage, positive terminal. Supplies SVS, brownout,  
oscillator, comparator_A, port 1, and LCD resistive divider circuitry;  
AV  
80  
AV  
100  
CC  
CC  
must not power up prior to DV  
/DV  
.
CC1  
CC2  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
MSP430x43x Terminal Functions  
TERMINAL  
I/O  
PN  
NAME  
PZ  
NAME  
DESCRIPTION  
I/O  
NO.  
1
NO.  
1
DV  
DV  
Digital supply voltage, positive terminal.  
CC1  
CC1  
P6.3/A3  
P6.4/A4  
P6.5/A5  
P6.6/A6  
2
I/O P6.3/A3  
I/O P6.4/A4  
I/O P6.5/A5  
I/O P6.6/A6  
2
I/O General-purpose digital I/O / analog input a3—12-bit ADC  
I/O General-purpose digital I/O / analog input a4—12-bit ADC  
I/O General-purpose digital I/O / analog input a5—12-bit ADC  
I/O General-purpose digital I/O / analog input a6—12-bit ADC  
3
3
4
4
5
5
P6.7/A7/SVSIN  
6
I/O P6.7/A7/SVSIN  
6
I/O General-purpose digital I/O / analog input a7—12-bit ADC, analog /  
input to brownout, supply voltage supervisor  
V
7
8
O
I
V
7
8
O
Output of positive terminal of the reference voltage in the ADC  
REF+  
REF+  
Input port for crystal oscillator XT1. Standard or watch crystals can be  
connected.  
XIN  
XIN  
I
XOUT  
9
O
I
XOUT  
9
O
I
Output terminal of crystal oscillator XT1  
Ve  
REF+  
10  
Ve  
REF+  
10  
Input for an external reference voltage to the ADC  
Negative terminal for the ADC’s reference voltage for both sources, the  
internal reference voltage, or an external applied reference voltage.  
V
REF−  
/Ve  
11  
I
V /Ve  
REF− REF−  
11  
I
REF−  
P5.1/S0  
P5.0/S1  
P4.7/S2  
P4.6/S3  
P4.5/S4  
P4.4/S5  
P4.3/S6  
P4.2/S7  
P4.1/S8  
P4.0/S9  
S10  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
I/O P5.1/S0  
I/O P5.0/S1  
I/O S2  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
I/O General-purpose digital I/O / LCD segment output 0  
I/O General-purpose digital I/O / LCD segment output 1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
General-purpose digital I/O / LCD segment output 2  
General-purpose digital I/O / LCD segment output 3  
General-purpose digital I/O / LCD segment output 4  
General-purpose digital I/O / LCD segment output 5  
General-purpose digital I/O / LCD segment output 6  
General-purpose digital I/O / LCD segment output 7  
General-purpose digital I/O / LCD segment output 8  
General-purpose digital I/O / LCD segment output 9  
LCD segment output 10  
I/O S3  
I/O S4  
I/O S5  
I/O S6  
I/O S7  
I/O S8  
I/O S9  
O
O
O
O
O
O
O
O
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S11  
LCD segment output 11  
S12  
LCD segment output 12  
S13  
LCD segment output 13  
S14  
LCD segment output 14  
S15  
LCD segment output 15  
S16  
LCD segment output 16  
S17  
LCD segment output 17  
P2.7/ADC12CLK/  
S18  
I/O S18  
General-purpose digital I/O / conversion clock—12-bit ADC / LCD  
segment output 18  
General-purpose digital I/O / Comparator_A output / LCD segment  
output 19  
P2.6/CAOUT/S19  
31  
I/O S19  
31  
O
S20  
32  
33  
34  
35  
36  
37  
38  
39  
O
O
O
O
S20  
S21  
S22  
S23  
32  
33  
34  
35  
36  
37  
38  
39  
O
O
O
O
O
O
O
O
LCD segment output 20  
S21  
LCD segment output 21  
S22  
LCD segment output 22  
S23  
LCD segment output 23  
P3.7/S24  
P3.6/S25  
P3.5/S26  
P3.4/S27  
I/O S24  
I/O S25  
I/O S26  
I/O S27  
General-purpose digital I/O / LCD segment output 24  
General-purpose digital I/O / LCD segment output 25  
General-purpose digital I/O / LCD segment output 26  
General-purpose digital I/O / LCD segment output 27  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
MSP430x43x Terminal Functions (Continued)  
TERMINAL  
PN  
NAME  
PZ  
NAME  
DESCRIPTION  
I/O  
I/O  
O
NO.  
NO.  
General-purpose digital I/O / ext. clock i/p—USART0/UART or SPI  
mode, clock o/p—USART0/SPI mode / LCD segment output 28  
P3.3/UCLK0/S28  
P3.2/SOMI0/S29  
P3.1/SIMO0/S30  
P3.0/STE0/S31  
40  
I/O S28  
I/O S29  
I/O S30  
I/O S31  
40  
General-purpose digital I/O / slave out/master in of USART0/SPI mode  
/ LCD segment output 29  
41  
42  
43  
41  
42  
43  
O
General-purpose digital I/O / slave out/master out of USART0/SPI  
mode / LCD segment output 30  
O
General-purpose digital I/O / slave transmit enable-USART0/SPI  
mode / LCD segment output 31  
O
S32  
S33  
44  
45  
46  
47  
48  
49  
50  
51  
52  
O
LCD segment output 32  
O
LCD segment output 33  
P4.7/S34  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
General-purpose digital I/O / LCD segment output 34  
General-purpose digital I/O / LCD segment output 35  
General-purpose digital I/O / LCD segment output 36  
General-purpose digital I/O / LCD segment output 37  
General-purpose digital I/O / LCD segment output 38  
General-purpose digital I/O / LCD segment output 39  
COM0−3 are used for LCD backplanes.  
P4.6/S35  
P4.5/S36  
P4.4/S37  
P4.3/S38  
P4.2/S39  
COM0  
COM0  
44  
45  
O
General-purpose digital I/O / common output, COM0−3 are used for  
LCD backplanes.  
P5.2/COM1  
I/O P5.2/COM1  
I/O P5.3/COM2  
I/O P5.4/COM3  
53  
54  
I/O  
I/O  
General-purpose digital I/O / common output, COM0−3 are used for  
LCD backplanes.  
P5.3/COM2  
46  
General-purpose digital I/O / common output, COM0−3 are used for  
LCD backplanes.  
P5.4/COM3  
R03  
47  
48  
49  
55  
56  
57  
I/O  
I
I
R03  
Input port of fourth positive (lowest) analog LCD level (V5)  
General-purpose digital I/O / input port of third most positive analog  
LCD level (V4 or V3)  
P5.5/R13  
I/O P5.5/R13  
I/O P5.6/R23  
I/O P5.7/R33  
I/O  
General-purpose digital I/O / input port of second most positive analog  
LCD level (V2)  
P5.6/R23  
P5.7/R33  
50  
51  
58  
59  
I/O  
I/O  
General-purpose digital I/O / output port of most positive analog LCD  
level (V1)  
DV  
DV  
52  
53  
DV  
DV  
60  
61  
62  
63  
64  
65  
66  
67  
Digital supply voltage, positive terminal.  
Digital supply voltage, negative terminal.  
General-purpose digital I/O  
CC2  
CC2  
SS2  
SS2  
P4.1  
P4.0  
P3.7  
P3.6  
P3.5  
P3.4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O / external clock input—USART0/UART or  
SPI mode, clock output—USART0/SPI mode  
P3.3/UCLK0  
68  
I/O  
P3.2/SOMI0  
P3.1/SIMO0  
69  
70  
71  
72  
73  
74  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / slave out/master in of USART0/SPI mode  
General-purpose digital I/O / slave in/master out of USART0/SPI mode  
General-purpose digital I/O / slave transmit enable USART0/SPI mode  
General-purpose digital I/O / conversion clock—12-bit ADC  
General-purpose digital I/O / Comparator_A output  
P3.0/STE0  
P2.7/ADC12CLK  
P2.6/CAOUT  
P2.5/URXD0  
54  
I/O P2.5/URXD0  
General-purpose digital I/O / receive data in—USART0/UART mode  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
MSP430x43x Terminal Functions (Continued)  
TERMINAL  
PN  
NAME  
PZ  
NAME  
DESCRIPTION  
I/O  
I/O  
I/O  
I/O  
NO.  
NO.  
P2.4/UTXD0  
55  
I/O P2.4/UTXD0  
75  
General-purpose digital I/O / transmit data out—USART0/UART mode  
General-purpose digital I/O / Timer_B3 CCR2.  
Capture: CCI2A/CCI2B input, compare: Out2 output  
P2.3/TB2  
56  
57  
58  
59  
I/O P2.3/TB2  
76  
77  
78  
79  
General-purpose digital I/O / Timer_B3 CCR1.  
Capture: CCI1A/CCI1B input, compare: Out1 output  
P2.2/TB1  
P2.1/TB0  
P2.0/TA2  
I/O P2.2/TB1  
I/O P2.1/TB0  
I/O P2.0/TA2  
I/O  
I/O  
I/O  
General-purpose digital I/O / Timer_B3 CCR0.  
Capture: CCI0A/CCI0B input, compare: Out0 output  
General-purpose digital I/O / Timer_A  
Capture: CCI2A input, compare: Out2 output  
P1.7/CA1  
P1.6/CA0  
60  
61  
I/O P1.7/CA1  
I/O P1.6/CA0  
80  
81  
I/O  
I/O  
General-purpose digital I/O / Comparator_A input  
General-purpose digital I/O / Comparator_A input  
P1.5/TACLK/  
ACLK  
P1.5/TACLK/  
ACLK  
General-purpose digital I/O / Timer_A, clock signal TACLK input /  
ACLK output (divided by 1, 2, 4, or 8)  
62  
63  
64  
65  
66  
I/O  
82  
83  
84  
85  
86  
I/O  
I/O  
I/O  
I/O  
I/O  
P1.4/TBCLK/  
SMCLK  
P1.4/TBCLK/  
SMCLK  
General-purpose digital I/O / input clock TBCLK—Timer_B3 / submain  
system clock SMCLK output  
I/O  
P1.3/TBOUTH/  
SVSOUT  
P1.3/TBOUTH/  
SVSOUT  
General-purpose digital I/O / switch all PWM digital output ports to high  
impedance—Timer_B3 TB0 to TB2 / SVS: output of SVS comparator  
I/O  
General-purpose digital I/O / Timer_A, Capture: CCI1A input,  
compare: Out1 output  
P1.2/TA1  
I/O P1.2/TA1  
General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK  
output. Note: TA0 is only an input on this pin / BSL receive  
P1.1/TA0/MCLK  
I/O P1.1/TA0/MCLK  
I/O P1.0/TA0  
General-purpose digital I/O / Timer_A. Capture: CCI0A input,  
compare: Out0 output / BSL transmit  
P1.0/TA0  
XT2OUT  
XT2IN  
67  
68  
69  
87  
88  
89  
I/O  
O
I
O
I
XT2OUT  
XT2IN  
Output terminal of crystal oscillator XT2  
Input port for crystal oscillator XT2. Only standard crystals can be  
connected.  
Test data output port. TDO/TDI data output or programming data input  
terminal  
TDO/TDI  
70  
71  
I/O TDO/TDI  
90  
91  
I/O  
I
Test data input or test clock input. The device protection fuse is  
connected to TDI/TCLK.  
TDI/TCLK  
I
TDI/TCLK  
Test mode select. TMS is used as an input port for device programming  
and test.  
TMS  
72  
73  
74  
I
I
I
TMS  
92  
93  
94  
I
I
I
TCK  
TCK  
Test clock. TCK is the clock input port for device programming and test.  
General-purpose digital I/O / reset input or nonmaskable interrupt input  
port  
RST/NMI  
RST/NMI  
P6.0/A0  
P6.1/A1  
P6.2/A2  
75  
76  
77  
I/O P6.0/A0  
I/O P6.1/A1  
I/O P6.2/A2  
95  
96  
97  
I/O  
I/O  
I/O  
General-purpose digital I/O / analog input a0 − 12-bit ADC  
General-purpose digital I/O / analog input a1 − 12-bit ADC  
General-purpose digital I/O / analog input a2 − 12-bit ADC  
Analog supply voltage, negative terminal. Supplies SVS, brownout,  
oscillator, comparator_A, ADC12, port 1, and LCD resistive divider  
circuitry.  
AV  
78  
79  
80  
AV  
98  
99  
SS  
SS  
DV  
DV  
Digital supply voltage, negative terminal.  
SS1  
CC  
SS1  
CC  
Analog supply voltage, positive terminal. Supplies SVS, brownout,  
oscillator, comparator_A, ADC12, port 1, and LCD resistive divider  
AV  
AV  
100  
circuitry; must not power up prior to DV  
/DV  
.
CC1  
CC2  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
MSP430x44x Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
1
DV  
Digital supply voltage, positive terminal.  
CC1  
P6.3/A3  
P6.4/A4  
P6.5/A5  
P6.6/A6  
2
I/O General-purpose digital I/O / analog input a3—12-bit ADC  
I/O General-purpose digital I/O / analog input a4—12-bit ADC  
I/O General-purpose digital I/O / analog input a5—12-bit ADC  
I/O General-purpose digital I/O / analog input a6—12-bit ADC  
3
4
5
General-purpose digital I/O / analog input a7—12-bit ADC / analog input to brownout, supply voltage  
supervisor  
P6.7/A7/SVSIN  
6
I/O  
V
7
8
O
I
Output of positive terminal of the reference voltage in the ADC  
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Output terminal of crystal oscillator XT1  
REF+  
XIN  
XOUT  
9
O
I
Ve  
10  
Input for an external reference voltage to the ADC  
REF+  
Negative terminal for the ADC’s reference voltage for both sources, the internal reference voltage, or an  
external applied reference voltage  
V
REF−  
/Ve  
11  
I
REF−  
P5.1/S0  
P5.0/S1  
S2  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
I/O General-purpose digital I/O / LCD segment output 0  
I/O General-purpose digital I/O / LCD segment output 1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LCD segment output 2  
LCD segment output 3  
LCD segment output 4  
LCD segment output 5  
LCD segment output 6  
LCD segment output 7  
LCD segment output 8  
LCD segment output 9  
LCD segment output 10  
LCD segment output 11  
LCD segment output 12  
LCD segment output 13  
LCD segment output 14  
LCD segment output 15  
LCD segment output 16  
LCD segment output 17  
LCD segment output 18  
LCD segment output 19  
LCD segment output 20  
LCD segment output 21  
LCD segment output 22  
LCD segment output 23  
LCD segment output 24  
LCD segment output 25  
LCD segment output 26  
LCD segment output 27  
LCD segment output 28  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
MSP430x44x Terminal Functions (Continued)  
TERMINAL  
PN  
I/O  
DESCRIPTION  
NAME  
NO.  
41  
42  
43  
44  
45  
46  
47  
S29  
S30  
S31  
S32  
S33  
O
O
O
O
O
LCD segment output 29  
LCD segment output 30  
LCD segment output 31  
LCD segment output 32  
LCD segment output 33  
P4.7/S34  
P4.6/S35  
I/O General-purpose digital I/O / LCD segment output 34  
I/O General-purpose digital I/O / LCD segment output 35  
General-purpose digital I/O / external clock input—USART1/UART or SPI mode, clock  
output—USART1/SPI MODE / LCD segment output 36  
P4.5/UCLK1/S36  
48  
I/O  
P4.4/SOMI1/S37  
P4.3/SIMO1/S38  
P4.2/STE1/S39  
COM0  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
I/O General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37  
I/O General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38  
I/O General-purpose digital I/O / slave transmit enable—USART1/SPI mode / LCD segment output 39  
O
COM0−3 are used for LCD backplanes.  
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
R03  
I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
I
Input port of fourth positive (lowest) analog LCD level (V5)  
P5.5/R13  
I/O General-purpose digital I/O / Input port of third most positive analog LCD level (V4 or V3)  
I/O General-purpose digital I/O / Input port of second most positive analog LCD level (V2)  
I/O General-purpose digital I/O / Output port of most positive analog LCD level (V1)  
Digital supply voltage, positive terminal.  
P5.6/R23  
P5.7/R33  
DV  
DV  
CC2  
SS2  
Digital supply voltage, negative terminal.  
P4.1/URXD1  
P4.0/UTXD1  
P3.7/TB6  
I/O General-purpose digital I/O / receive data in—USART1/UART mode  
I/O General-purpose digital I/O / transmit data out—USART1/UART mode  
I/O General-purpose digital I/O / Timer_B7 CCR6 / Capture: CCI6A/CCI6B input, compare: Out6 output  
I/O General-purpose digital I/O / Timer_B7 CCR5 / Capture: CCI5A/CCI5B input, compare: Out5 output  
I/O General-purpose digital I/O / Timer_B7 CCR4 / Capture: CCI4A/CCI4B input, compare: Out4 output  
I/O General-purpose digital I/O / Timer_B7 CCR3 / Capture: CCI3A/CCI3B input, compare: Out3 output  
P3.6/TB5  
P3.5/TB4  
P3.4/TB3  
General-purpose digital I/O / external clock input—USART0/UART or SPI mode, clock  
output—USART0/SPI mode  
P3.3/UCLK0  
68  
I/O  
P3.2/SOMI0  
P3.1/SIMO0  
P3.0/STE0  
P2.7/ADC12CLK  
P2.6/CAOUT  
P2.5/URXD0  
P2.4/UTXD0  
P2.3/TB2  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
I/O General-purpose digital I/O / slave out/master in of USART0/SPI mode  
I/O General-purpose digital I/O / slave in/master out of USART0/SPI mode  
I/O General-purpose digital I/O / slave transmit enable—USART0/SPI mode  
I/O General-purpose digital I/O / conversion clock—12-bit ADC  
I/O General-purpose digital I/O / Comparator_A output  
I/O General-purpose digital I/O / receive data in—USART0/UART mode  
I/O General-purpose digital I/O / transmit data out—USART0/UART mode  
I/O General-purpose digital I/O / Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output  
I/O General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output  
I/O General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output  
I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output  
I/O General-purpose digital I/O / Comparator_A input  
P2.2/TB1  
P2.1/TB0  
P2.0/TA2  
P1.7/CA1  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
MSP430x44x Terminal Functions (Continued)  
TERMINAL  
PN  
I/O  
DESCRIPTION  
NAME  
NO.  
P1.6/CA0  
81  
I/O General-purpose digital I/O / Comparator_A input  
P1.5/TACLK/  
ACLK  
82  
83  
I/O General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8)  
P1.4/TBCLK/  
SMCLK  
I/O General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK output  
P1.3/TBOUTH/  
SVSOUT  
General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B7 TB0 to TB6  
/ SVS: output of SVS comparator  
84  
85  
86  
I/O  
P1.2/TA1  
I/O General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output  
General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output.  
Note: TA0 is only an input on this pin / BSL receive  
P1.1/TA0/MCLK  
I/O  
P1.0/TA0  
XT2OUT  
XT2IN  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit  
O
I
Output terminal of crystal oscillator XT2  
Input port for crystal oscillator XT2. Only standard crystals can be connected.  
TDO/TDI  
TDI/TCLK  
TMS  
I/O Test data output port. TDO/TDI data output or programming data input terminal  
I
I
I
I
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.  
Test mode select. TMS is used as an input port for device programming and test.  
Test clock. TCK is the clock input port for device programming and test.  
Reset input or nonmaskable interrupt input port  
TCK  
RST/NMI  
P6.0/A0  
P6.1/A1  
P6.2/A2  
I/O General-purpose digital I/O, analog input a0—12-bit ADC  
I/O General-purpose digital I/O, analog input a1—12-bit ADC  
I/O General-purpose digital I/O, analog input a2—12-bit ADC  
Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, ADC12,  
port 1, and LCD resistive divider circuitry.  
AV  
98  
99  
SS  
DV  
Digital supply voltage, negative terminal.  
SS1  
CC  
Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, ADC12, port 1,  
AV  
100  
and LCD resistive divider circuitry; must not power up prior to DV  
/DV  
.
CC1  
CC2  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g. ADD R4,R5  
R4 + R5 −−−> R5  
e.g. CALL  
e.g. JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
D D  
R10 −−> R11  
Indexed  
D D  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
M(2+R5)−−> M(6+R6)  
M(EDE) −−> M(TONI)  
M(MEM) −−> M(TCDAT)  
M(R10) −−> M(Tab+R6)  
Symbolic (PC relative) D D  
Absolute  
Indirect  
D D MOV &MEM,&TCDAT  
D
D
D
MOV @Rn,Y(Rm)  
MOV @Rn+,Rm  
MOV #X,TONI  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) −−> R11  
R10 + 2−−> R10  
Immediate  
#45 −−> M(TONI)  
NOTE: S = source  
D = destination  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
D
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
FLL+ loop control remains active  
D
D
Low-power mode 1 (LPM1)  
CPU is disabled  
FLL+ loop control is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK, FLL+ loop control, and DCOCLK are disabled  
DCO’s dc-generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK, FLL+ loop control, and DCOCLK are disabled  
DCO’s dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK, FLL+ loop control, and DCOCLK are disabled  
DCO’s dc-generator is disabled  
Crystal oscillator is stopped  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range 0FFFFh−0FFE0h. The  
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 3. Interrupt Sources, Flags, and Vectors of 4xx Configurations  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
PRIORITY  
Power-Up  
External Reset  
Watchdog  
WDTIFG  
KEYV  
(see Note 1)  
Reset  
0FFFEh  
15, highest  
Flash Memory  
NMI  
Oscillator Fault  
Flash Memory Access Violation  
NMIIFG (see Notes 1 and 3)  
OFIFG (see Notes 1 and 3)  
ACCVIFG (see Notes 1 and 3)  
(Non)maskable  
(Non)maskable  
(Non)maskable  
0FFFCh  
14  
Timer_B7  
TBCCR0 CCIFG (see Note 2)  
Maskable  
0FFFAh  
0FFF8h  
13  
12  
TBCCR1 to TBCCR6 CCIFGs  
TBIFG (see Notes 1 and 2)  
Timer_B7  
Maskable  
Comparator_A  
Watchdog Timer  
USART0 Receive  
USART0 Transmit  
ADC12 (see Note 4)  
Timer_A3  
CAIFG  
WDTIFG  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
11  
10  
9
URXIFG0  
UTXIFG0  
8
ADC12IFG (see Notes 1 and 2)  
TACCR0 CCIFG (see Note 2)  
7
6
TACCR1 and TACCR2 CCIFGs,  
TAIFG (see Notes 1 and 2)  
Timer_A3  
Maskable  
Maskable  
0FFEAh  
0FFE8h  
5
4
P1IFG.0 to P1IFG.7  
(see Notes 1 and 2)  
I/O Port P1 (Eight Flags)  
USART1 Receive  
URXIFG1  
UTXIFG1  
Maskable  
Maskable  
0FFE6h  
0FFE4h  
3
2
USART1 Transmit  
P2IFG.0 to P2IFG.7  
(see Notes 1 and 2)  
I/O Port P2 (Eight Flags)  
Basic Timer1  
Maskable  
Maskable  
0FFE2h  
0FFE0h  
1
BTIFG  
0, lowest  
’43x(1) uses Timer_B3 with TBCCR0, 1 and 2 CCIFG flags, and TBIFG. ’44x uses Timer_B7 with TBCCR0 CCIFG, TBCCR1 to TBCCR6  
CCIFGs, and TBIFG  
USART1 is implemented in ’44x only.  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module.  
3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable  
it.  
4. ADC12 is not implemented in MSP430x43x1 devices.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
special function registers  
Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits  
not allocated to a functional purpose are not physically present in the device. This arrangement provides simple  
software access.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
UTXIE0  
URXIE0  
ACCVIE  
NMIIE  
OFIE  
WDTIE  
rw–0  
rw–0  
rw–0  
rw–0  
rw–0  
rw–0  
WDTIE:  
Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog  
timer is configured in interval timer mode.  
OFIE:  
Oscillator-fault-interrupt enable  
NMIIE:  
Nonmaskable-interrupt enable  
ACCVIE:  
URXIE0:  
UTXIE0:  
Flash access violation interrupt enable  
USART0: UART and SPI receive-interrupt enable  
USART0: UART and SPI transmit-interrupt enable  
7
6
5
4
3
2
1
0
Address  
01h  
BTIE  
rw–0  
UTXIE1  
URXIE1  
rw–0  
rw–0  
URXIE1:  
UTXIE1:  
BTIE:  
USART1: UART and SPI receive-interrupt enable (MSP430F44x devices only)  
USART1: UART and SPI transmit-interrupt enable (MSP430F44x devices only)  
Basic timer interrupt enable  
interrupt flag register 1 and 2  
7
6
URXIFG0  
rw–0  
5
4
3
2
1
0
Address  
02h  
UTXIFG0  
NMIIFG  
OFIFG  
WDTIFG  
rw–1  
rw–0  
rw–1  
rw–(0)  
WDTIFG:  
Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on V  
power up or a reset condition at the RST/NMI pin in reset mode.  
CC  
OFIFG:  
Flag set on oscillator fault  
Set via RST/NMI pin  
NMIIFG:  
URXIFG0: USART0: UART and SPI receive flag  
UTXIFG0: USART0: UART and SPI transmit flag  
7
6
5
4
3
2
1
0
Address  
03h  
UTXIFG1  
URXIFG1  
BTIFG  
rw  
rw–1  
rw–0  
URXIFG1: USART1: UART and SPI receive flag (MSP430F44x devices only)  
UTXIFG1: USART1: UART and SPI transmit flag (MSP430F44x devices only)  
BTIFG:  
Basic timer flag  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
module enable registers 1 and 2  
7
6
5
4
3
2
1
0
Address  
04h  
UTXE0  
URXE0  
USPIE0  
rw–0  
rw–0  
URXE0:  
USART0: UART mode receive enable  
USART0: UART mode transmit enable  
UTXE0:  
USPIE0:  
USART0: SPI mode transmit and receive enable  
7
6
5
4
3
2
1
0
Address  
05h  
UTXE1  
URXE1  
USPIE1  
rw–0  
rw–0  
URXE1:  
USART1: UART mode receive enable (MSP430F44x devices only)  
USART1: UART mode transmit enable (MSP430F44x devices only)  
UTXE1:  
USPIE1:  
USART1: SPI mode transmit and receive enable (MSP430F44x devices only)  
Legend: rw:  
Bit Can Be Read and Written  
rw–0,1:  
rw–(0,1):  
Bit Can Be Read and Written. It Is Reset or Set by PUC.  
Bit Can Be Read and Written. It Is Reset or Set by POR.  
SFR Bit Not Present in Device  
memory organization  
MSP430F437  
MSP430F447  
MSP430F435  
MSP430F436  
MSP430F448  
MSP430F449  
Memory  
Size  
16KB  
24KB  
32KB  
48KB  
60KB  
Main: interrupt vector  
Main: code memory  
Flash 0FFFFh − 0FFE0h 0FFFFh − 0FFE0h 0FFFFh − 0FFE0h 0FFFFh − 0FFE0h 0FFFFh − 0FFE0h  
Flash 0FFFFh − 0C000h 0FFFFh − 0A000h 0FFFFh − 08000h 0FFFFh − 04000h 0FFFFh − 01100h  
Information memory  
Boot memory  
RAM  
Size  
256 Byte  
256 Byte  
256 Byte  
256 Byte  
256 Byte  
Flash 010FFh − 01000h 010FFh − 01000h 010FFh − 01000h 010FFh − 01000h 010FFh − 01000h  
Size  
ROM  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
Size  
512 Byte  
1KB  
1KB  
2KB  
2KB  
03FFh − 0200h  
05FFh − 0200h  
05FFh − 0200h  
09FFh − 0200h  
09FFh − 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
bootstrap loader (BSL)  
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial  
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete  
description of the features of the BSL and its implementation, see the Application report Features of the MSP430  
Bootstrap Loader, Literature Number SLAA089.  
BSL Function  
Data Transmit  
Data Receive  
PN Package Pins  
67 - P1.0  
PZ Package Pins  
87 - P1.0  
66 - P1.1  
86 - P1.1  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and two segments of information memory (A and B) of 128  
bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A and B can be erased individually, or as a group with segments 0−n.  
Segments A and B are also called information memory.  
D
New devices may have some bytes programmed in the information memory (needed for test during  
manufacturing). The user should perform an erase of the information memory prior to the first use.  
16KB  
24KB  
32KB  
48KB  
60KB  
Segment 0  
w/ Interrupt Vectors  
0FFFFh  
0FFFFh  
0FFFFh  
0FFFFh  
0FFFFh  
0FE00h  
0FDFFh  
0FE00h  
0FDFFh  
0FE00h  
0FDFFh  
0FE00h  
0FDFFh  
0FE00h  
0FDFFh  
Segment 1  
Segment 2  
0FC00h  
0FBFFh  
0FC00h  
0FBFFh  
0FC00h  
0FBFFh  
0FC00h  
0FBFFh  
0FC00h  
0FBFFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
Main  
Memory  
0C400h  
0C3FFh  
0A400h  
0A3FFh  
08400h  
083FFh  
04400h  
043FFh  
01400h  
013FFh  
Segment n-1  
Segment n  
0C200h  
0C1FFh  
0A200h  
0A1FFh  
08200h  
081FFh  
04200h  
041FFh  
01200h  
011FFh  
0C000h  
010FFh  
0A000h  
010FFh  
08000h  
010FFh  
04000h  
010FFh  
01100h  
010FFh  
Segment A  
Segment B  
Information  
Memory  
01080h  
0107Fh  
01080h  
0107Fh  
01080h  
0107Fh  
01080h  
0107Fh  
01080h  
0107Fh  
01000h  
01000h  
01000h  
01000h  
01000h  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, refer to the MSP430x4xx Family User’s Guide, literature  
number SLAU056.  
digital I/O  
There are six 8-bit I/O ports implemented—ports P1 through P6:  
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
oscillator and system clock  
The clock system in the MSP430x43x(1) and MSP43x44x family of devices is supported by the FLL+ module  
that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and  
a high frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low  
system cost and low-power consumption. The FLL+ features a digital frequency locked loop (FLL) hardware  
which in conjunction with a digital modulator stabilizes the DCO frequency to a programmable multiple of the  
watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 μs.  
The FLL+ module provides the following clock signals:  
D
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8.  
brownout, supply voltage supervisor  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user  
selectable level and supports both supply voltage supervision (the device is automatically reset) and supply  
voltage monitoring (SVM, the device is not automatically reset).  
The CPU begins code execution after the brownout circuit releases the device reset. However, V may not  
CC  
have ramped to V  
at that time. The user must insure the default FLL+ settings are not changed until V  
CC(min)  
CC  
reaches V  
. If desired, the SVS circuit can be used to determine when V reaches V  
.
CC(min)  
CC  
CC(min)  
hardware multiplier (MSP430x44x Only)  
The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16,  
16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication  
as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed  
immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are  
required.  
watchdog timer  
The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
USART0  
The MSP430x43x(1) and the MSP430x44x have one hardware universal synchronous/asynchronous receive  
transmit (USART0) peripheral module that is used for serial data communication. The USART supports  
synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered  
transmit and receive channels.  
USART1 (MSP430x44x Only)  
The MSP430x44x has a second hardware universal synchronous/asynchronous receive transmit (USART1)  
peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4  
pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.  
Operation of USART1 is identical to USART0.  
timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A3 Signal Connections  
Input Pin Number  
Output Pin Number  
Device Input  
Signal  
Module Input  
Name  
Module  
Block  
Module Output  
Signal  
PN  
PZ  
PN  
PZ  
62 - P1.5  
82 - P1.5  
TACLK  
ACLK  
SMCLK  
TACLK  
TA0  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
NA  
TA0  
TA1  
TA2  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
62 - P1.5  
67 - P1.0  
66 - P1.1  
82 - P1.5  
87 - P1.0  
86 - P1.1  
67 - P1.0  
14 - P1.2  
87 - P1.0  
85 - P1.2  
79 - P2.0  
TA0  
DV  
DV  
SS  
CC  
V
CC  
65 - P1.2  
59 - P2.0  
85 - P1.2  
79 - P2.0  
TA1  
CAOUT (internal)  
CCI1A  
CCI1B  
GND  
ADC12 (internal)  
DV  
DV  
SS  
CC  
V
CC  
TA2  
ACLK (internal)  
CCI2A  
CCI2B  
GND  
15 - P1.3  
DV  
DV  
SS  
CC  
V
CC  
timer_B3 (MSP430x43x(1) Only)  
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
timer_B7 (MSP430x44x Only)  
Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_B3/B7 Signal Connections  
Input Pin Number  
Output Pin Number  
Device Input  
Signal  
Module Input  
Name  
Module  
Block  
Module Output  
Signal  
PN  
PZ  
PN  
PZ  
63 - P1.4  
83 - P1.4  
TBCLK  
ACLK  
SMCLK  
TBCLK  
TB0  
TBCLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
NA  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
63 - P1.4  
58 - P2.1  
58 - P2.1  
83 - P1.4  
78 - P2.1  
78 - P2.1  
58 - P2.1  
78 - P2.1  
77 - P2.2  
TB0  
ADC12 (internal)  
TB0  
TB1  
TB2  
TB3  
TB4  
TB5  
TB6  
DV  
DV  
SS  
CC  
V
CC  
57 - P2.2  
57 - P2.2  
77 - P2.2  
77 - P2.2  
TB1  
TB1  
CCI1A  
CCI1B  
GND  
57 - P2.2  
ADC12 (internal)  
DV  
DV  
SS  
CC  
V
CC  
56 - P2.3  
56 - P2.3  
76 - P2.3  
76 - P2.3  
TB2  
TB2  
CCI2A  
CCI2B  
GND  
56 - P2.3  
76 - P2.3  
67 - P3.4  
66 - P3.5  
65 - P3.6  
64 - P3.7  
DV  
DV  
SS  
CC  
V
CC  
67 - P3.4  
67 - P3.4  
TB3  
TB3  
CCI3A  
CCI3B  
GND  
DV  
DV  
SS  
CC  
V
CC  
66 - P3.5  
66 - P3.5  
TB4  
TB4  
CCI4A  
CCI4B  
GND  
DV  
DV  
SS  
CC  
V
CC  
65 - P3.6  
65 - P3.6  
TB5  
TB5  
CCI5A  
CCI5B  
GND  
DV  
DV  
SS  
CC  
V
CC  
64 - P3.7  
TB6  
ACLK (internal)  
CCI6A  
CCI6B  
GND  
DV  
DV  
SS  
CC  
V
CC  
Timer_B3 implements three capture/compare blocks (CCR0, CCR1 and CCR2 only).  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
comparator_A  
The primary function of the comparator_A module is to support precision slope analog−to−digital conversions,  
battery−voltage supervision, and monitoring of external analog signals.  
ADC12 (Not implemented in the MSP430x43x1)  
The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR  
core, sample select control, reference generator and a 16 word conversion-and-control buffer. The  
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without  
any CPU intervention.  
Basic Timer1  
The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both  
timers can be read and written by software. The Basic Timer1 can be used to generate periodic interrupts and  
clock for the LCD module.  
LCD drive  
The LCD driver generates the segment and common signals required to drive an LCD display. The LCD  
controller has dedicated data memory to hold segment drive information. Common and segment signals are  
generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Watchdog timer control  
Watchdog  
WDTCTL  
TBCCR6  
TBCCR5  
TBCCR4  
TBCCR3  
TBCCR2  
TBCCR1  
TBCCR0  
TBR  
0120h  
019Eh  
019Ch  
019Ah  
0198h  
0196h  
0194h  
0192h  
0190h  
018Eh  
018Ch  
018Ah  
0188h  
0186h  
0184h  
0182h  
0180h  
011Eh  
017Eh  
017Ch  
017Ah  
0178h  
0176h  
0174h  
0172h  
0170h  
016Eh  
016Ch  
016Ah  
0168h  
0166h  
0164h  
0162h  
0160h  
012Eh  
013Eh  
013Ch  
013Ah  
0138h  
0136h  
0134h  
0132h  
0130h  
Timer_B7/  
Timer_B3  
(see Note 1)  
Capture/compare register 6  
Capture/compare register 5  
Capture/compare register 4  
Capture/compare register 3  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_B register  
Capture/compare control 6  
Capture/compare control 5  
Capture/compare control 4  
Capture/compare control 3  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_B control  
TBCCTL6  
TBCCTL5  
TBCCTL4  
TBCCTL3  
TBCCTL2  
TBCCTL1  
TBCCTL0  
TBCTL  
Timer_B interrupt vector  
Reserved  
TBIV  
Timer_A3  
Reserved  
Reserved  
Reserved  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_A register  
TACCR2  
TACCR1  
TACCR0  
TAR  
Reserved  
Reserved  
Reserved  
Reserved  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_A control  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
TAIV  
Timer_A interrupt vector  
Sum extend  
Hardware  
Multiplier  
(MSP430x44x only)  
SUMEXT  
RESHI  
RESLO  
OP2  
Result high word  
Result low word  
Second operand  
Multiply signed + accumulate/operand1  
Multiply + accumulate/operand1  
Multiply signed/operand1  
Multiply unsigned/operand1  
MACS  
MAC  
MPYS  
MPY  
NOTE 1: Timer_B7 in the MSP430x44x family has seven CCRs; Timer_B3 in the MSP430x43x(1) family has three CCRs.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
peripheral file map (continued)  
PERIPHERALS WITH WORD ACCESS (CONTINUED)  
Flash control 3 FCTL3  
Flash  
012Ch  
012Ah  
0128h  
Flash control 2  
FCTL2  
FCTL1  
Flash control 1  
ADC12  
Conversion memory 15  
Conversion memory 14  
Conversion memory 13  
Conversion memory 12  
Conversion memory 11  
Conversion memory 10  
Conversion memory 9  
ADC12MEM15 015Eh  
ADC12MEM14 015Ch  
ADC12MEM13 015Ah  
ADC12MEM12 0158h  
ADC12MEM11 0156h  
ADC12MEM10 0154h  
ADC12MEM9  
ADC12MEM8  
ADC12MEM7  
ADC12MEM6  
ADC12MEM5  
ADC12MEM4  
ADC12MEM3  
ADC12MEM2  
ADC12MEM1  
ADC12MEM0  
ADC12IV  
0152h  
0150h  
014Eh  
014Ch  
014Ah  
0148h  
0146h  
0144h  
0142h  
0140h  
01A8h  
01A6h  
01A4h  
01A2h  
01A0h  
Conversion memory 8  
Conversion memory 7  
Conversion memory 6  
Conversion memory 5  
Conversion memory 4  
Conversion memory 3  
Conversion memory 2  
Conversion memory 1  
Conversion memory 0  
Interrupt-vector-word register  
Inerrupt-enable register  
Inerrupt-flag register  
ADC12IE  
ADC12IFG  
Control register 1  
ADC12CTL1  
ADC12CTL0  
Control register 0  
ADC memory-control register15  
ADC memory-control register14  
ADC memory-control register13  
ADC memory-control register12  
ADC memory-control register11  
ADC memory-control register10  
ADC memory-control register9  
ADC memory-control register8  
ADC memory-control register7  
ADC memory-control register6  
ADC memory-control register5  
ADC memory-control register4  
ADC memory-control register3  
ADC memory-control register2  
ADC memory-control register1  
ADC memory-control register0  
ADC12MCTL15 08Fh  
ADC12MCTL14 08Eh  
ADC12MCTL13 08Dh  
ADC12MCTL12 08Ch  
ADC12MCTL11 08Bh  
ADC12MCTL10 08Ah  
ADC12MCTL9  
ADC12MCTL8  
ADC12MCTL7  
ADC12MCTL6  
ADC12MCTL5  
ADC12MCTL4  
ADC12MCTL3  
ADC12MCTL2  
ADC12MCTL1  
ADC12MCTL0  
089h  
088h  
087h  
086h  
085h  
084h  
083h  
082h  
081h  
080h  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS  
LCD memory 20  
LCD  
LCDM20  
:
0A4h  
:
:
LCD memory 16  
LCD memory 15  
:
LCDM16  
LCDM15  
:
0A0h  
09Fh  
:
LCD memory 1  
LCD control and mode  
Transmit buffer  
Receive buffer  
Baud rate  
LCDM1  
LCDCTL  
U1TXBUF  
U1RXBUF  
U1BR1  
U1BR0  
U1MCTL  
U1RCTL  
U1TCTL  
U1CTL  
091h  
090h  
07Fh  
07Eh  
07Dh  
07Ch  
07Bh  
07Ah  
079h  
078h  
077h  
076h  
075h  
074h  
073h  
072h  
071h  
070h  
05Bh  
05Ah  
059h  
056h  
054h  
053h  
052h  
051h  
050h  
047h  
046h  
040h  
037h  
036h  
035h  
034h  
033h  
032h  
031h  
030h  
USART1  
(Only in ‘x44x)  
Baud rate  
Modulation control  
Receive control  
Transmit control  
USART control  
Transmit buffer  
Receive buffer  
Baud rate  
USART0  
U0TXBUF  
U0RXBUF  
U0BR1  
U0BR0  
U0MCTL  
U0RCTL  
U0TCTL  
U0CTL  
Baud rate  
Modulation control  
Receive control  
Transmit control  
USART control  
Comparator_A port disable  
Comparator_A control2  
Comparator_A control1  
Comparator_A  
CAPD  
CACTL2  
CACTL1  
BrownOUT, SVS  
FLL+ Clock  
SVS control register (Reset by brownout signal) SVSCTL  
FLL+ Control1  
FLL_CTL1  
FLL_CTL0  
SCFQCTL  
SCFI1  
FLL+ Control0  
System clock frequency control  
System clock frequency integrator  
System clock frequency integrator  
BT counter2  
SCFI0  
Basic Timer1  
Port P6  
BTCNT2  
BTCNT1  
BTCTL  
P6SEL  
P6DIR  
BT counter1  
BT control  
Port P6 selection  
Port P6 direction  
Port P6 output  
P6OUT  
P6IN  
Port P6 input  
Port P5  
Port P5 selection  
Port P5 direction  
Port P5 output  
P5SEL  
P5DIR  
P5OUT  
P5IN  
Port P5 input  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS (CONTINUED)  
Port P4  
Port P3  
Port P2  
Port P4 selection  
Port P4 direction  
P4SEL  
P4DIR  
P4OUT  
P4IN  
01Fh  
01Eh  
01Dh  
01Ch  
01Bh  
01Ah  
019h  
018h  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
005h  
004h  
003h  
002h  
001h  
000h  
Port P4 output  
Port P4 input  
Port P3 selection  
Port P3 direction  
P3SEL  
P3DIR  
P3OUT  
P3IN  
Port P3 output  
Port P3 input  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt-edge select  
Port P2 interrupt flag  
Port P2 direction  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P2 output  
Port P2 input  
Port P1  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt-edge select  
Port P1 interrupt flag  
Port P1 direction  
P1SEL  
P1IE  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
Special functions  
SFR module enable2  
SFR module enable1  
SFR interrupt flag2  
SFR interrupt flag1  
SFR interrupt enable2  
SFR interrupt enable1  
ME2  
ME1  
IFG2  
IFG1  
IE2  
IE1  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)†  
Voltage applied at V to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V  
CC  
SS  
Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V + 0.3 V  
CC  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA  
Storage temperature, T : (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
stg  
(programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE: All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage is applied  
SS  
FB  
to the TDI/TCLK pin when blowing the JTAG fuse.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
recommended operating conditions  
MIN  
NOM  
MAX UNITS  
Supply voltage during program execution  
MSP430F43x(1),  
MSP430F44x  
1.8  
3.6  
V
V
CC  
(AV = DV  
= DV = V ) (see Note 1)  
CC2 CC  
CC  
CC1  
Supply voltage during program execution, SVS enabled, PORON=1  
(see Note 1 and Note 2)  
MSP430F43x(1),  
MSP430F44x  
2
3.6  
V
V
CC  
(AV = DV  
= DV  
= V  
)
CC  
CC1  
CC2  
CC  
Supply voltage during flash memory programming  
(AV = DV = DV = V ) (see Note 1)  
MSP430F43x(1),  
MSP430F44x  
2.7  
0
3.6  
0
V
V
V
CC  
CC  
CC1  
CC2  
CC  
Supply voltage, V (AV = DV  
= DV  
= V  
)
SS  
SS  
SS1  
SS2  
SS  
MSP430x43x(1),  
MSP430x44x  
Operating free-air temperature range, T  
−40  
85  
°C  
A
LF selected,  
XTS_FLL=0  
Watch crystal  
Ceramic resonator  
Crystal  
32.768  
kHz  
kHz  
kHz  
XT1 selected,  
XTS_FLL=1  
LFXT1 crystal frequency, f  
(see Note 3)  
(LFXT1)  
450  
8000  
8000  
XT1 selected,  
XTS_FLL=1  
1000  
Ceramic resonator  
Crystal  
450  
1000  
DC  
8000  
8000  
4.15  
8
XT2 crystal frequency, f  
kHz  
(XT2)  
V
CC  
V
CC  
= 1.8 V  
= 3.6 V  
Processor frequency (signal MCLK), f  
MHz  
(System)  
DC  
NOTES: 1. It is recommended to power AV and DV from the same source. A maximum difference of 0.3 V between AV and DV can  
CC  
CC  
CC  
CC  
be tolerated during power up and operation.  
2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply  
voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS  
circuitry.  
3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.  
f
(MHz)  
System  
8 MHz  
Supply voltage range,  
’F43x(1)/’F44x, during  
program execution  
Supply voltage range, ’F43x(1)/’F44x,  
during flash memory programming  
4.15 MHz  
1.8  
2.7  
3
3.6  
Supply Voltage − V  
Figure 1. Frequency vs Supply Voltage, MSP430F43x(1) or MSP430F44x  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
supply current into AV + DV excluding external current  
CC  
CC  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
Active mode, (see Note 1)  
V
V
= 2.2 V  
= 3 V  
280  
350  
CC  
f
f
= f  
= 1 MHz,  
(MCLK)  
(SMCLK)  
I
I
I
T = −40°C to 85°C  
A
μA  
(AM)  
= 32,768 Hz  
(ACLK)  
420  
560  
CC  
XTS_FLL=0, SELM=(0,1)  
V
V
= 2.2 V  
= 3 V  
32  
55  
45  
70  
CC  
Low-power mode, (LPM0)  
(see Note 1 and Note 4)  
T = −40°C to 85°C  
μA  
μA  
(LPM0)  
(LPM2)  
A
CC  
Low-power mode, (LPM2),  
V
= 2.2 V  
= 3 V  
11  
17  
14  
22  
CC  
CC  
f(MCLK) = f (SMCLK) = 0 MHz,  
f(ACLK) = 32,768 Hz, SCG0 = 0 (see Note 2 and  
Note 4)  
T = −40°C to 85°C  
A
V
T = −40°C  
1
1.1  
2
1.5  
1.5  
3
A
T = 25°C  
A
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
μA  
μA  
μA  
μA  
Low-power mode, (LPM3)  
T = 60°C  
A
f
f
= f  
= 0 MHz,  
(MCLK)  
(SMCLK)  
T = 85°C  
A
3.5  
1.8  
1.6  
2.5  
4.2  
0.1  
0.1  
0.7  
1.7  
0.1  
0.1  
0.8  
1.9  
6
= 32,768 Hz, SCG0 = 1  
(ACLK)  
I
(LPM3)  
(see Note 3 and Note 4)  
T = −40°C  
A
2.2  
1.9  
3.5  
7.5  
0.5  
0.5  
1.1  
3
T = 25°C  
A
= 3 V  
T = 60°C  
A
T = 85°C  
A
T = −40°C  
A
T = 25°C  
A
= 2.2 V  
T = 60°C  
A
Low-power mode, (LPM4)  
T = 85°C  
A
f
f
= 0 MHz, f  
= 0 Hz, SCG0 = 1  
= 0 MHz,  
(MCLK)  
(SMCLK)  
I
(LPM4)  
T = −40°C  
A
0.5  
0.5  
1.2  
3.5  
(ACLK)  
(see Note 2 and Note 4)  
T = 25°C  
A
= 3 V  
T = 60°C  
A
T = 85°C  
A
NOTES: 1. Timer_B is clocked by f  
= f = 1 MHz. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
(DCO) CC  
(DCOCLK)  
2. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
CC  
3. All inputs are tied to 0 V or to V . Outputs do not source or sink any current. The current consumption in LPM3 is measured with  
CC  
active Basic Timer1 and LCD (ACLK selected). The current consumption of the Comparator_A and the SVS module are specified  
in the respective sections. The LPM3 currents are characterized with a KDS Daishinku DT−38 (6 pF) crystal and OSCCAPx=1h.  
4. Current consumption for brownout included.  
Current consumption of active mode versus system frequency  
I
= I  
[1 MHz] × f  
[MHz]  
(AM)  
(AM)  
(System)  
Current consumption of active mode versus supply voltage  
= I + 175 μA/V × (V – 3 V)  
I
(AM)  
(AM) [3 V]  
CC  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SCHMITT-trigger inputs − ports P1, P2, P3, P4, P5, and P6  
PARAMETER  
TEST CONDITIONS  
MIN  
1.1  
1.5  
0.4  
0.9  
0.3  
0.5  
TYP  
MAX  
1.5  
1.9  
0.9  
1.3  
1.1  
1
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
V
IT+  
V
IT−  
V
hys  
Positive-going input threshold voltage  
V
= 2.2 V  
= 3 V  
Negative-going input threshold voltage  
V
V
= 2.2 V  
= 3 V  
Input voltage hysteresis (V − V  
)
IT−  
IT+  
standard inputs − RST/NMI; JTAG: TCK, TMS, TDI/TCLK  
PARAMETER  
TEST CONDITIONS  
= 2.2 V / 3 V  
MIN  
TYP  
MAX  
UNIT  
V
V
V
Low-level input voltage  
High-level input voltage  
V
V
+0.6  
IL  
SS  
CC  
SS  
V
CC  
0.8×V  
V
CC  
V
IH  
inputs Px.x, TAx, TBx  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
2.2 V/3 V  
2.2 V  
1.5  
62  
50  
62  
cycle  
Port P1, P2: P1.x to P2.x, external trigger signal  
for the interrupt flag, (see Note 1)  
t
External interrupt timing  
(int)  
ns  
3 V  
TA0, TA1, TA2  
2.2 V  
Timer_A, Timer_B capture  
timing  
t
ns  
(cap)  
TB0, TB1, TB2, TB3, TB4, TB5, TB6  
(see Note 2)  
3 V  
50  
Timer_A, Timer_B clock  
frequency externally applied  
to pin  
f
f
2.2 V  
3 V  
8
(TAext)  
TACLK, TBCLK, INCLK: t = t  
MHz  
MHz  
(H)  
(L)  
10  
(TBext)  
f
f
2.2 V  
3 V  
8
(TAint)  
Timer_A, Timer_B clock  
frequency  
SMCLK or ACLK signal selected  
10  
(TBint)  
NOTES: 1. The external signal sets the interrupt flag every time the minimum t  
cycle and time parameters are met. It may be set even with  
(int)  
trigger signals shorter than t . Both the cycle and timing specifications must be met to ensure the flag is set. t  
is measured in  
(int)  
(int)  
MCLK cycles.  
2. Seven capture/compare registers in ’x44x and three capture/compare registers in ’x43x(1).  
leakage current (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
Port P1 Port 1: V  
Port P2 Port 2: V  
Port P3 Port 3: V  
Port P4 Port 4: V  
Port P5 Port 5: V  
Port P6 Port 6: V  
±50  
±50  
±50  
±50  
±50  
±50  
lkg(P1.x)  
lkg(P2.x)  
lkg(P3.x)  
lkg(P4.x)  
lkg(P5.x)  
lkg(P6.x)  
(P1.x)  
(P2.x)  
(P3.x)  
(P4.x)  
(P5.x)  
(P6.x)  
Leakage  
current  
V
CC  
= 2.2 V/3 V  
nA  
NOTES: 1. The leakage current is measured with V or V applied to the corresponding pin(s), unless otherwise noted.  
SS  
CC  
2. The port pin must be selected as input and there must be no optional pullup or pulldown resistor.  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs − ports P1, P2, P3, P4, P5, and P6  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
= −1.5 mA,  
= −6 mA,  
= −1.5 mA,  
= −6 mA,  
= 1.5 mA,  
= 6 mA,  
V
V
V
V
V
V
V
V
= 2.2 V,  
= 2.2 V,  
= 3 V,  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
V
−0.25  
V
V
V
V
OH(max)  
OH(max)  
OH(max)  
OH(max)  
OL(max)  
OL(max)  
OL(max)  
OL(max)  
OH(max)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
−0.6  
CC  
V
High-level output voltage  
V
OH  
V
CC  
−0.25  
= 3 V,  
V
−0.6  
CC  
= 2.2 V,  
= 2.2 V,  
= 3 V,  
V
SS  
V
SS  
V
SS  
V
SS  
V
+0.25  
SS  
V
+0.6  
SS  
V
OL  
Low-level output voltage  
V
= 1.5 mA,  
= 6 mA,  
V
SS  
+0.25  
= 3 V,  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed ±12 mA to satisfy the maximum  
OL(max),  
2. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed ±48 mA to satisfy the maximum  
OH(max)  
OL(max),  
output frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
DC  
DC  
TYP  
MAX  
5
UNIT  
V
CC  
CC  
= 2.2 V  
= 3 V  
C = 20 pF,  
I = ±1.5 mA  
L
L
f
(1 x 6, 0 y 7)  
MHz  
(Px.y)  
V
7.5  
f
f
f
(ACLK)  
P1.1/TA0/MCLK, P1.5/TACLK/  
ACLK P1.4/TBCLK/SMCLK  
C = 20 pF  
L
f
MHz  
(MCLK)  
(SMCLK)  
(System)  
f
f
f
f
= f  
= f  
= f  
= f  
= f  
40%  
30%  
60%  
70%  
(ACLK)  
(ACLK)  
(ACLK)  
(MCLK)  
(LFXT1)  
(LFXT1)  
(LFXT1)  
(XT1)  
P1.5/TACLK/ACLK,  
C = 20 pF  
(LF)  
L
V
CC  
= 2.2 V / 3 V  
50%  
50%  
= f  
40%  
60%  
(XT1)  
(DCOCLK)  
P1.1/TA0/MCLK,  
t
Duty cycle of output frequency  
C = 20 pF,  
(Xdc)  
50%−  
15 ns  
50%+  
15 ns  
L
f
f
f
= f  
(MCLK)  
V
CC  
= 2.2 V / 3 V  
= f  
40%  
60%  
(SMCLK)  
(SMCLK)  
(XT2)  
P1.4/TBCLK/SMCLK,  
C = 20 pF,  
50%−  
15 ns  
50%+  
15 ns  
L
= f  
50%  
(DCOCLK)  
V
CC  
= 2.2 V / 3 V  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs − Ports P1, P2, P3, P4, P5, and P6 (continued)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
V
P2.7  
= 2.2 V  
T
= 25°C  
V
P2.7  
= 3 V  
CC  
A
CC  
T
= 25°C  
A
T
= 85°C  
A
T
= 85°C  
A
6
4
2
0
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 2  
Figure 3  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
−2  
0
−5  
V
P2.7  
= 2.2 V  
CC  
V
P2.7  
= 3 V  
CC  
−4  
−10  
−15  
−20  
−25  
−30  
−6  
−8  
T
A
= 85°C  
−10  
−12  
−14  
T
A
= 85°C  
T
A
= 25°C  
T
A
= 25°C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 4  
Figure 5  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
wake-up LPM3  
PARAMETER  
PARAMETER  
TEST CONDITIONS  
f = 1 MHz  
MIN  
TYP  
MAX  
UNIT  
6
6
6
f = 2 MHz  
f = 3 MHz  
t
Delay time  
V
CC  
= 2.2 V/3 V  
μs  
d(LPM3)  
RAM  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VRAMh  
CPU halted (see Note 1)  
1.6  
V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution  
should take place during this supply voltage condition.  
LCD  
PARAMETER  
TEST CONDITIONS  
Voltage at P5.7/R33  
MIN  
TYP  
MAX  
UNIT  
V
V
V
V
I
2.5  
V
V
+ 0.2  
(33)  
(23)  
(13)  
(33)  
CC  
Voltage at P5.6/R23  
Voltage at P5.5/R13  
Voltage at R33 to R03  
[V −V ] × 2/3 + V  
(33) (03)  
(03)  
Analog voltage  
V
CC  
= 3 V  
V
[V −V ] × 1/3 + V  
(33) (03)  
(03)  
− V  
2.5  
+ 0.2  
(03)  
CC  
R03 = V  
±20  
No load at all  
segment and  
common lines,  
(R03)  
(R13)  
(R23)  
SS  
I
I
P5.5/R13 = V /3  
±20  
±20  
Input leakage  
nA  
V
CC  
P5.6/R23 = 2 × V /3  
V
CC  
= 3 V  
CC  
V
V
V
V
V
(03)  
V
(13)  
V
(23)  
V
(33)  
V
(03)  
V
(13)  
V
(23)  
V
(33)  
− 0.1  
(Sxx0)  
− 0.1  
− 0.1  
+ 0.1  
(Sxx1)  
(Sxx2)  
(Sxx3)  
Segment line  
voltage  
I
= −3 μA,  
V
CC  
= 3 V  
(Sxx)  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Comparator_A (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
25  
MAX  
40  
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
I
I
CAON=1, CARSEL=0, CAREF=0  
μA  
(CC)  
45  
30  
45  
60  
50  
71  
= 2.2 V  
= 3 V  
CAON=1, CARSEL=0, CAREF=1/2/3,  
No load at P1.6/CA0 and P1.7/CA1  
μA  
(Refladder/RefDiode)  
Voltage @ 0.25 V  
node  
node  
PCA0=1, CARSEL=1, CAREF=1,  
No load at P1.6/CA0 and P1.7/CA1  
CC  
V
V
V
= 2.2 V / 3 V  
= 2.2V / 3 V  
0.23  
0.47  
0.24  
0.48  
0.25  
0.5  
(Ref025)  
(Ref050)  
CC  
V
CC  
Voltage @ 0.5 V  
PCA0=1, CARSEL=1, CAREF=2,  
No load at P1.6/CA0 and P1.7/CA1  
CC  
V
CC  
V
CC  
PCA0=1, CARSEL=1, CAREF=3,  
No load at P1.6/CA0 and P1.7/CA1;  
T = 85°C  
A
V
V
= 2.2 V  
= 3 V  
390  
400  
480  
490  
540  
550  
CC  
V
V
See Figure 6 and Figure 7  
mV  
V
(RefVT)  
CC  
Common-mode input  
voltage range  
CAON=1  
V
CC  
= 2.2 V / 3 V  
0
V
−1  
30  
IC  
CC  
V −V  
p
Offset voltage  
See Note 2  
CAON = 1  
VCC = 2.2 V / 3 V  
−30  
0
mV  
mV  
S
V
hys  
Input hysteresis  
V
= 2.2 V / 3 V  
= 2.2 V  
= 3 V  
0.7  
210  
150  
1.9  
1.4  
300  
240  
3.4  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
160  
80  
T = 25°C,  
A
ns  
μs  
ns  
μs  
Overdrive 10 mV, without filter: CAF = 0  
V
t
(response LH)  
(response HL)  
V
= 2.2 V  
= 3 V  
1.4  
0.9  
130  
80  
T = 25°C  
A
Overdrive 10 mV, with filter: CAF = 1  
V
1.5  
2.6  
V
= 2.2 V  
= 3 V  
210  
150  
1.9  
300  
240  
3.4  
T = 25°C  
A
Overdrive 10 mV, without filter: CAF = 0  
V
t
V
V
= 2.2 V  
= 3 V  
1.4  
0.9  
T = 25°C,  
A
Overdrive 10 mV, with filter: CAF = 1  
1.5  
2.6  
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.  
The two successive measurements are then summed together.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
typical characteristics  
REFERENCE VOLTAGE  
vs  
REFERENCE VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
CC  
= 3 V  
V
= 2.2 V  
CC  
Typical  
Typical  
−45  
−25  
−5  
15  
35  
55  
75  
95  
−45  
−25  
−5  
15  
35  
55  
75  
95  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 6. V  
vs Temperature  
Figure 7. V  
vs Temperature  
(RefVT)  
(RefVT)  
0 V  
V
CC  
CAF  
0
1
CAON  
To Internal  
Modules  
Low-Pass Filter  
0
1
0
1
+
_
V+  
V−  
CAOUT  
Set CAIFG  
Flag  
τ ≈ 2 μs  
Figure 8. Block Diagram of Comparator_A Module  
V
CAOUT  
Overdrive  
V−  
400 mV  
V+  
t
(response)  
Figure 9. Overdrive Definition  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
POR/brownout reset (BOR) (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
μs  
t
2000  
d(BOR)  
V
V
V
dV /dt 3 V/s (see Figure 10)  
0.7 × V  
(B_IT−)  
V
CC(start)  
(B_IT−)  
CC  
Brownout  
(see Note 2)  
dV /dt 3 V/s (see Figure 10 through Figure 12)  
CC  
1.71  
180  
V
dV /dt 3 V/s (see Figure 10)  
CC  
70  
2
130  
mV  
hys(B_IT−)  
Pulse length needed at RST/NMI pin to accepted reset internally,  
t
μs  
(reset)  
V
CC  
= 2.2 V/3 V  
NOTES: 1. The current consumption of the brownout module is already included in the I current consumption data. The voltage level  
CC  
V
+ V  
is 1.8V.  
(B_IT−)  
hys(B_IT−)  
2. During power up, the CPU begins code execution following a period of t  
after V = V  
+ V . The default FLL+  
hys(B_IT−)  
d(BOR)  
CC  
(B_IT−)  
settings must not be changed until V V  
, where V  
is the minimum supply voltage for the desired  
CC  
CC(min)  
CC(min)  
operating frequency. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout/SVS circuit.  
typical characteristics  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage  
V
t
CC  
pw  
2
3 V  
V
CC  
= 3 V  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − μs  
t
− Pulse Width − μs  
t
pw  
pw  
Figure 11. V  
Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
typical characteristics (Continued)  
V
t
CC  
pw  
2
3 V  
V
CC  
= 3 V  
1.5  
1
Typical Conditions  
V
CC(drop)  
0.5  
0
t = t  
f
r
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − μs  
t
− Pulse Width − μs  
pw  
pw  
Figure 12. V  
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SVS (supply voltage supervisor/monitor)  
PARAMETER  
TEST CONDITIONS  
dV /dt > 30 V/ms (see Figure 13)  
MIN  
NOM  
MAX  
150  
2000  
150  
12  
UNIT  
μs  
5
CC  
t
(SVSR)  
dV /dt 30 V/ms  
CC  
μs  
t
t
SVSon, switch from VLD=0 to VLD 0, V = 3 V  
20  
μs  
d(SVSon)  
CC  
VLD 0  
μs  
settle  
V
VLD 0, V /dt 3 V/s (see Figure 13)  
1.55  
120  
1.7  
V
(SVSstart)  
CC  
VLD = 1  
70  
155  
mV  
V
V
/dt 3 V/s (see Figure 13)  
V
V
(SVS_IT−)  
× 0.008  
CC  
(SVS_IT−)  
× 0.004  
VLD = 2 .. 14  
V
hys(SVS_IT−)  
/dt 3 V/s (see Figure 13), external voltage applied  
CC  
VLD = 15  
4.4  
10.4  
mV  
on A7  
VLD = 1  
VLD = 2  
VLD = 3  
VLD = 4  
VLD = 5  
VLD = 6  
VLD = 7  
VLD = 8  
VLD = 9  
VLD = 10  
VLD = 11  
VLD = 12  
VLD = 13  
VLD = 14  
1.8  
1.9  
2.1  
2.05  
2.25  
2.37  
2.48  
2.6  
1.94  
2.05  
2.14  
2.24  
2.33  
2.46  
2.58  
2.69  
2.83  
2.94  
3.11  
3.24  
3.43  
2.2  
2.3  
2.4  
2.5  
2.71  
2.86  
3
2.65  
2.8  
V
CC  
/dt 3 V/s (see Figure 13)  
V
V
(SVS_IT−)  
2.9  
3.13  
3.29  
3.42  
3.05  
3.2  
3.35  
3.61  
3.5  
3.76  
3.7  
3.99  
V
on A7  
/dt 3 V/s (see Figure 13), external voltage applied  
CC  
VLD = 15  
1.1  
1.2  
10  
1.3  
15  
I
CC(SVS)  
VLD 0, V = 2.2 V/3 V  
μA  
CC  
(see Note 1)  
The recommended operating voltage range is limited to 3.6 V.  
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value somewhere  
t
settle  
between 2 and 15. The overdrive is assumed to be > 50 mV.  
NOTE 1: The current consumption of the SVS module is not included in the I current consumption data.  
CC  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
typical characteristics  
Software Sets VLD>0:  
SVS is Active  
V
CC  
V
hys(SVS_IT−)  
V
(SVS_IT−)  
V
(SVSstart)  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
Brown-  
Out  
Region  
Brownout  
Region  
Brownout  
1
0
t
t
SVS  
d(BOR)  
d(BOR)  
Out  
SVS Circuit is Active From VLD > to V < V(  
CC  
B_IT−)  
1
0
t
t
d(SVSon)  
d(SVSR)  
Set POR  
1
undefined  
0
Figure 13. SVS Reset (SVSR) vs Supply Voltage  
V
CC  
t
pw  
3 V  
2
1.5  
1
Rectangular Drop  
V
CC(drop)  
Triangular Drop  
1 ns  
1 ns  
V
t
CC  
0.5  
pw  
3 V  
0
1
10  
100  
1000  
V
t
− Pulse Width − μs  
pw  
CC(drop)  
t = t  
f
r
t
t
r
f
t − Pulse Width − μs  
Figure 14. V  
With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal  
CC(drop)  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
DCO  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
MHz  
N
f
=01Eh, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 0,  
= 32.768 kHz  
(DCO)  
Crystal  
f
f
f
f
f
f
f
f
f
f
f
V
CC  
= 2.2 V/3 V  
1
(DCOCLK)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 2.2 V  
= 3 V  
0.3  
0.3  
2.5  
2.7  
0.7  
0.8  
5.7  
6.5  
1.2  
1.3  
9
0.65  
0.7  
5.6  
6.1  
1.3  
1.5  
10.8  
12.1  
2
1.25  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
FN_8=FN_4=FN_3=FN_2=0; DCOPLUS = 1  
MHz  
1.3  
= 2.2 V  
= 3 V  
10.5  
FN_8=FN_4=FN_3=FN_2=0; DCOPLUS = 1  
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1  
MHz  
11.3  
= 2.2 V  
= 3 V  
2.3  
MHz  
2.5  
= 2.2 V  
= 3 V  
18  
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1  
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1  
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1  
FN_8=0, FN_4= 1, FN_3= FN_2=x; DCOPLUS = 1  
FN_8=0, FN_4=1, FN_3= FN_2=x; DCOPLUS = 1  
FN_8=1, FN_4=FN_3=FN_2=x; DCOPLUS = 1  
MHz  
20  
= 2.2 V  
= 3 V  
3
MHz  
2.2  
15.5  
17.9  
2.8  
3.4  
21.5  
26.6  
4.2  
6.3  
32  
3.5  
= 2.2 V  
= 3 V  
25  
MHz  
10.3  
1.8  
2.1  
13.5  
16  
28.5  
= 2.2 V  
= 3 V  
4.2  
MHz  
5.2  
= 2.2 V  
= 3 V  
33  
MHz  
41  
= 2.2 V  
= 3 V  
2.8  
4.2  
21  
6.2  
MHz  
9.2  
= 2.2 V  
= 3 V  
46  
FN_8=1,FN_4=FN_3=FN_2=x; DCOPLUS = 1  
Step size between adjacent DCO taps:  
MHz  
30  
46  
70  
1 < TAP 20  
1.06  
1.07  
–0.2  
–0.2  
1.11  
1.17  
–0.4  
S
n
S = f  
/ f  
, (see Figure 16 for taps 21 to 27)  
n
DCO(Tap n+1) DCO(Tap n)  
TAP = 27  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
–0.3  
–0.3  
D
Temperature drift, N  
= 01Eh, FN_8=FN_4=FN_3=FN_2=0  
t
(DCO)  
%/
_
C  
D = 2; DCOPLUS = 0  
–0.4  
Drift with V variation, N  
FN_8=FN_4=FN_3=FN_2=0, D= 2; DCOPLUS = 0  
= 01Eh,  
(DCO)  
CC  
V
CC  
= 2.2 V/3 V  
0
5
15  
%/V  
D
V
f
f
(DCO)  
(DCO)  
f
f
5
(DCO3V)  
(DCO20 C)  
1.0  
1.0  
0
1.8  
2.4  
3.0  
3.6  
−40  
−20  
0
20  
40  
60  
85  
V
CC  
− V  
T − °C  
A
Figure 15. DCO Frequency vs Supply Voltage V and vs Ambient Temperature  
CC  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
1.17  
Max  
1.11  
1.07  
1.06  
Min  
1
20  
27  
DCO Tap  
Figure 16. DCO Tap Step Size  
Legend  
Tolerance at Tap 27  
DCO Frequency  
Adjusted by Bits  
9
5
2 to 2 in SCFI1 {N  
}
(DCO)  
Tolerance at Tap 2  
Overlapping DCO Ranges:  
uninterrupted frequency range  
FN_2=0  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=1  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=x  
FN_2=x  
FN_3=x  
FN_4=1  
FN_8=0  
FN_2=x  
FN_3=1  
FN_4=0  
FN_8=0  
FN_3=x  
FN_4=x  
FN_8=1  
Figure 17. Five Overlapping DCO Ranges Controlled by FN_x Bits  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
crystal oscillator, LFXT1 oscillator (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
OSCCAPx = 0h, V = 2.2 V / 3 V  
MIN  
TYP  
0
MAX  
UNIT  
CC  
OSCCAPx = 1h, V = 2.2 V / 3 V  
10  
14  
18  
0
CC  
C
C
Integrated input capacitance  
pF  
XIN  
OSCCAPx = 2h, V = 2.2 V / 3 V  
CC  
OSCCAPx = 3h, V = 2.2 V / 3 V  
CC  
OSCCAPx = 0h, V = 2.2 V / 3 V  
CC  
OSCCAPx = 1h, V = 2.2 V / 3 V  
10  
14  
18  
CC  
Integrated output capacitance  
Input levels at XIN  
pF  
XOUT  
OSCCAPx = 2h, V = 2.2 V / 3 V  
CC  
OSCCAPx = 3h, V = 2.2 V / 3 V  
CC  
V
V
V
0.2 × V  
CC  
V
V
IL  
SS  
V
CC  
= 2.2 V/3 V (see Note 3)  
0.8 × V  
V
CC  
IH  
CC  
NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is  
(C x C ) / (C + C ). This is independent of XTS_FLL.  
XIN  
XOUT  
XIN  
XOUT  
2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed.  
Keep as short of a trace as possible between the ’F43x(1)/44x and the crystal.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator.  
4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h.  
crystal oscillator, XT2 oscillator (see Note 1)  
PARAMETER  
TEST CONDITIONS  
= 2.2 V/3 V  
MIN  
NOM  
MAX  
UNIT  
pF  
pF  
V
C
C
Integrated input capacitance  
Integrated output capacitance  
V
V
2
2
XT2IN  
XT2OUT  
IL  
CC  
= 2.2 V/3 V  
CC  
V
V
V
SS  
0.2 × V  
CC  
Input levels at XT2IN  
V
CC  
= 2.2 V/3 V (see Note 2)  
0.8 × V  
V
CC  
V
IH  
CC  
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.  
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.  
USART0, USART1 (see Note 1)  
PARAMETER  
TEST CONDITIONS  
= 2.2 V, SYNC = 0, UART mode  
= 3 V, SYNC = 0, UART mode  
MIN  
200  
150  
NOM MAX  
UNIT  
V
V
430  
280  
800  
500  
CC  
t
τ
( )  
USART0/1: deglitch time  
ns  
CC  
NOTE 1: The signal applied to the USART0/1 receive signal/terminal (URXD0/1) should meet the timing requirements of t to ensure that the  
(τ  
)
URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t . The operating  
(τ  
)
conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative  
transitions on the URXD0/1 line.  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, power supply and input range conditions (see Note 1)  
PARAMETER  
TEST CONDITIONS  
AV and DV are connected together  
V
CC  
MIN NOM  
MAX  
UNIT  
CC  
CC  
AV  
Analog supply voltage  
AV and DV are connected together  
2.2  
3.6  
V
CC  
SS  
SS  
V
(AVSS)  
= V  
= 0 V  
(DVSS)  
All P6.0/A0 to P6.7/A7 terminals. Analog inputs  
selected in ADC12MCTLx register and P6Sel.x=1  
Analog input voltage  
range (see Note 2)  
V
0
V
AVCC  
V
(P6.x/Ax)  
0 x 7; V  
V  
V  
(AVSS)  
P6.x/Ax (AVCC)  
Operating supply current  
f
= 5.0 MHz  
2.2 V  
3 V  
0.65  
0.8  
1.3  
1.6  
ADC12CLK  
into AV terminal  
ADC12ON = 1, REFON = 0  
SHT0=0, SHT1=0, ADC12DIV=0  
I
mA  
mA  
CC  
ADC12  
REF+  
(see Note 3)  
f
= 5.0 MHz  
ADC12CLK  
ADC12ON = 0,  
REFON = 1, REF2_5V = 1  
3 V  
0.5  
0.8  
Operating supply current  
I
into AV terminal  
CC  
f
= 5.0 MHz  
2.2 V  
3 V  
0.5  
0.5  
0.8  
0.8  
ADC12CLK  
(see Note 4)  
ADC12ON = 0,  
REFON = 1, REF2_5V = 0  
mA  
Only one terminal can be selected  
at one time, P6.x/Ax  
C
R
Input capacitance  
2.2 V  
3 V  
40  
pF  
I
I
Input MUX ON resistance 0V V V  
2000  
Ω
Ax  
AVCC  
NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter.  
2. The analog input voltage range must be within the selected reference voltage range V to V for valid conversion results.  
R+  
R−  
3. The internal reference supply current is not included in current consumption parameter I  
.
ADC12  
4. The internal reference current is supplied via terminal AV . Consumption is independent of the ADC12ON control bit, unless a  
CC  
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.  
12-bit ADC, external reference (see Note 1)  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN NOM  
MAX  
UNIT  
Positive external  
reference voltage input  
V
V
> V  
> V  
/V  
(see Note 2)  
(see Note 3)  
(see Note 4)  
1.4  
V
V
eREF+  
eREF+  
REF− eREF−  
AVCC  
Negative external  
reference voltage input  
V
V
V
eREF+  
/V  
REF− eREF−  
0
1.2  
V
V
REF− / eREF−  
(V  
Differential external  
reference voltage input  
eREF+  
V
eREF+  
> V  
/V  
1.4  
V
AVCC  
REF− eREF−  
V
V
)
REF−/ eREF−  
I
I
Static input current  
Static input current  
0V V  
V  
2.2 V/3 V  
2.2 V/3 V  
±1  
±1  
μA  
μA  
VeREF+  
eREF+  
AVCC  
0V V  
V  
AVCC  
VREF−/VeREF−  
eREF−  
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C , is also  
i
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, built-in reference  
PARAMETER  
TEST CONDITIONS  
REF2_5V = 1 for 2.5 V  
I max  
V
MIN NOM  
MAX  
UNIT  
CC  
3 V  
2.4  
2.5  
1.5  
2.6  
I
VREF+  
VREF+  
Positive built-in reference  
voltage output  
V
REF+  
V
REF2_5V = 0 for 1.5 V  
2.2 V/3 V  
1.44  
2.2  
1.56  
I
I max  
VREF+  
VREF+  
REF2_5V = 0, I  
REF2_5V = 1, I  
REF2_5V = 1, I  
1mA  
0.5mA  
1mA  
VREF+  
VREF+  
VREF+  
AV minimum voltage,  
CC  
V
V
+ 0.15  
Positive built-in reference  
active  
AV  
V
REF+  
REF+  
CC(min)  
+ 0.15  
2.2 V  
3 V  
0.01  
−0.5  
−1  
Load current out of V  
terminal  
REF+  
I
mA  
VREF+  
I
= 500 μA +/− 100 μA  
2.2 V  
3 V  
±2  
±2  
VREF+  
Analog input voltage ~0.75 V;  
REF2_5V = 0  
LSB  
Load-current regulation  
terminal  
I
L(VREF)+  
V
REF+  
I
= 500 μA ± 100 μA  
VREF+  
Analog input voltage ~1.25 V;  
REF2_5V = 1  
3 V  
3 V  
±2  
LSB  
I
=100 μA 900 μA,  
=5 μF, Ax ~0.5 x V  
VREF+  
Load current regulation  
terminal  
C
I
20  
ns  
VREF+  
REF+  
DL(VREF) +  
V
REF+  
Error of conversion result 1 LSB  
Capacitance at pin V  
(see Note 1)  
REFON =1,  
REF+  
C
2.2 V/3 V  
2.2 V/3 V  
5
10  
μF  
VREF+  
0 mA I  
I  
max  
VREF+  
VREF+  
Temperature coefficient of  
built-in reference  
I
is a constant in the range of  
VREF+  
T
REF+  
±100 ppm/°C  
0 mA I  
1 mA  
VREF+  
Settle time of internal  
reference voltage (see  
Figure 18 and Note 2)  
I
V
= 0.5 mA, C  
= 1.5 V  
= 10μF,  
VREF+  
VREF+  
2.2 V  
17  
ms  
t
REFON  
REF+  
NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses  
two capacitors between pins V  
and AV and V  
/V  
and AV : 10 μF tantalum and 100 nF ceramic.  
REF+  
SS  
REF− eREF−  
SS  
2. The condition is that the error in a conversion started after t  
capacitive load.  
is less than ±0.5 LSB. The settling time depends on the external  
REFON  
C
VREF+  
100 μF  
t
.66 x C  
[ms] with C  
in μF  
REFON  
VREF+  
VREF+  
10 μF  
1 μF  
0
10 ms  
1 ms  
100 ms  
t
REFON  
Figure 18. Typical Settling Time of Internal Reference t  
vs External Capacitor on V  
+
REF  
REFON  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
/DV  
DV  
DV  
From  
Power  
Supply  
CC2  
CC1  
+
/DV  
SS1  
SS2  
10 μF 100 nF  
AV  
CC  
SS  
+
MSP430F43x  
MSP430F44x  
AV  
10 μF 100 nF  
Apply External Reference [V  
or Use Internal Reference [V  
]
eREF+  
V
REF+  
or V  
eREF+  
]
REF+  
+
10 μF 100 nF  
Apply  
V
REF  
−/V  
eREF−  
External  
Reference  
+
10 μF 100 nF  
Figure 19. Supply Voltage and Reference Voltage Design V  
V
External Supply  
REF−/ eREF−  
/DV  
DV  
From  
Power  
Supply  
CC2  
CC1  
+
/DV  
DV  
SS1  
SS2  
10 μF 100 nF  
AV  
AV  
CC  
SS  
+
MSP430F43x  
MSP430F44x  
10 μF 100 nF  
Apply External Reference [V  
or Use Internal Reference [V  
]
eREF+  
V
REF+  
or V  
eREF+  
]
REF+  
+
10 μF 100 nF  
Reference Is Internally  
Switched to AV  
V
/V  
REF− eREF−  
SS  
Figure 20. Supply Voltage and Reference Voltage Design V  
V
= AV , Internally Connected  
REF−/ eREF− SS  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, timing parameters  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
NOM  
MAX  
UNIT  
For specified performance of ADC12  
linearity parameters  
2.2V/  
3 V  
f
f
0.45  
5
6.3  
MHz  
ADC12CLK  
Internal ADC12  
oscillator  
ADC12DIV=0,  
2.2 V/  
3 V  
3.7  
6.3  
MHz  
μs  
ADC12OSC  
f
=f  
ADC12CLK ADC12OSC  
C
5 μF, Internal oscillator,  
2.2 V/  
3 V  
VREF+  
2.06  
3.51  
f
= 3.7 MHz to 6.3 MHz  
ADC12OSC  
t
Conversion time  
CONVERT  
External f  
from ACLK, MCLK or SMCLK:  
13×ADC12DIV×  
ADC12CLK  
μs  
ADC12SSEL 0  
1/f  
ADC12CLK  
Turn on settling time of  
the ADC  
t
t
(see Note 1)  
100  
ns  
ADC12ON  
R = 400 Ω, R = 1000 Ω,  
3 V  
1220  
1400  
S
I
Sampling time  
ns  
C = 30 pF  
Sample  
I
2.2 V  
τ = [R + R ] x C (see Note 2)  
S
I
I;  
NOTES: 1. The condition is that the error in a conversion started after t  
settled.  
is less than ±0.5 LSB. The reference and input signal are already  
ADC12ON  
2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB:  
n+1  
t
= ln(2 ) x (R + R ) x C + 800 ns where n = ADC resolution = 12, R = external source resistance.  
Sample  
S
I
I
S
12-bit ADC, linearity parameters  
PARAMETER  
TEST CONDITIONS  
/V ) min 1.6 V  
REF− eREF−  
V
MIN NOM MAX  
UNIT  
CC  
1.4 V (V  
− V  
− V  
±2  
eREF+  
E
E
Integral linearity error  
2.2 V/3 V  
2.2 V/3 V  
LSB  
I
1.6 V < (V  
/V  
) min [V  
]
±1.7  
eREF+  
REF− eREF−  
(AVCC)  
Differential linearity  
error  
(V  
C
− V  
/V  
)
(V  
− V /V  
),  
),  
eREF+  
VREF+  
REF− eREF− min  
eREF+  
REF− eREF−  
±1  
LSB  
LSB  
D
= 10 μF (tantalum) and 100 nF (ceramic)  
− V /V (V − V /V  
REF− eREF−  
(V  
eREF+  
)
REF− eREF− min  
eREF+  
E
O
Internal impedance of source R < 100 Ω,  
2.2 V/3 V  
±2  
±4  
Offset error  
Gain error  
S
C
= 10 μF (tantalum) and 100 nF (ceramic)  
VREF+  
(V  
C
− V  
/V  
)
(V  
− V /V  
),  
),  
eREF+  
VREF+  
REF− eREF− min  
eREF+  
REF− eREF−  
E
E
2.2 V/3 V  
2.2 V/3 V  
±1.1  
±2  
±2  
±5  
LSB  
LSB  
G
= 10 μF (tantalum) and 100 nF (ceramic)  
− V /V (V − V /V  
REF− eREF−  
(V  
C
)
Total unadjusted  
error  
eREF+  
REF− eREF− min  
eREF+  
T
= 10 μF (tantalum) and 100 nF (ceramic)  
VREF+  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, temperature sensor and built-in V  
MID  
PARAMETER  
TEST CONDITIONS  
V
MIN NOM  
MAX  
120  
UNIT  
CC  
2.2 V  
3 V  
40  
60  
Operating supply current into  
REFON = 0, INCH = 0Ah,  
I
μA  
SENSOR  
AV terminal (see Note 1)  
ADC12ON=NA, T = 25_C  
CC  
A
160  
2.2 V  
3 V  
986  
986±5%  
986±5%  
3.55±3%  
3.55±3%  
ADC12ON = 1, INCH = 0Ah,  
T = 0°C  
V
mV  
mV/°C  
μs  
SENSOR  
A
986  
2.2 V  
3 V  
3.55  
3.55  
30  
TC  
t
ADC12ON = 1, INCH = 0Ah  
SENSOR  
2.2 V  
3 V  
Sample time required if channel  
10 is selected (see Note 2)  
ADC12ON = 1, INCH = 0Ah,  
Error of conversion result 1 LSB  
SENSOR(sample)  
VMID  
30  
2.2 V  
3 V  
NA  
NA  
ADC12ON = 1, INCH = 0Bh,  
(see Note 3)  
I
Current into divider at channel 11  
μA  
2.2 V  
3 V  
1.1  
1.1±0.04  
ADC12ON = 1, INCH = 0Bh,  
V
MID  
AV divider at channel 11  
V
CC  
V
MID  
is ~0.5 x V  
AVCC  
1.5 1.50±0.04  
2.2 V  
3 V  
1400  
1220  
Sample time required if channel  
11 is selected (see Note 4)  
ADC12ON = 1, INCH = 0Bh,  
Error of conversion result 1 LSB  
t
ns  
VMID(sample)  
NOTES: 1. The sensor current I  
is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal  
SENSOR  
is high). Therefore it includes the constant current through the sensor and the reference.  
2. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time t  
.
SENSOR(on)  
3. No additional current is needed. The V  
is used during sampling.  
MID  
4. The on-time t  
is included in the sampling time t ; no additional on time is needed.  
VMID(sample)  
VMID(on)  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Flash Memory  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
2.7  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from DV during program  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
3
PGM  
CC  
Supply current from DV during erase  
3
7
mA  
ERASE  
CPT  
CC  
Cumulative program time  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
see Note 1  
see Note 2  
10  
ms  
200  
ms  
CMErase  
4
5
10  
100  
10  
cycles  
years  
t
T = 25°C  
J
Retention  
t
t
t
t
t
t
Word or byte program time  
35  
30  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
21  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 3  
t
FTG  
6
5297  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/f  
,max = 5297x1/476kHz). To  
FTG  
achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met.  
(A worst case minimum of 19 cycles are required).  
3. These values are hardwired into the Flash Controller’s state machine (t  
= 1/f ).  
FTG  
FTG  
JTAG Interface  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
2.2 V  
3 V  
0
0
5
10  
90  
MHz  
MHz  
kΩ  
f
TCK input frequency  
see Note 1  
TCK  
R
Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2  
may be restricted to meet the timing requirements of the module selected.  
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. f  
TCK  
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.  
JTAG Fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TDI/TCLK for fuse-blow: F versions  
Supply current into TDI/TCLK during fuse blow  
Time to blow fuse  
T = 25°C  
A
2.5  
6
V
V
CC(FB)  
7
100  
1
FB  
I
FB  
t
FB  
mA  
ms  
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched  
to bypass mode.  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic  
Port P1, P1.0 to P1.5, input/output with Schmitt-trigger  
Pad Logic  
CAPD.x  
P1SEL.x  
0: Input  
1: Output  
0
P1DIR.x  
Direction Control  
1
0
1
From Module  
P1.x  
P1OUT.x  
Module X OUT  
Bus  
Keeper  
P1.0/TA0  
P1.1/TA0/MCLK  
P1.2/TA1  
P1.3/TBOUTH/SVSOUT  
P1.4/TBCLK/SMCLK  
P1.5/TACLK/ACLK  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Interrupt  
Edge  
Select  
Q
P1IFG.x  
Set  
P1IES.x P1SEL.x  
Note: 0 < x< 5  
Note: Port function is active if CAPD.x = 0  
Direction  
Control  
From Module  
Module X  
OUT  
PnOUT.x  
PnIE.x  
PnIES.x  
PnIN.x  
Module X IN  
PnSel.x  
PnDIR.x  
PnIFG.x  
P1Sel.0  
P1Sel.1  
P1Sel.2  
P1OUT.0  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1DIR.4  
P1DIR.5  
Out0 sig.  
MCLK  
P1IN.0  
P1IN.1  
P1IN.2  
P1IN.3  
P1IN.4  
P1IN.5  
CCI0A  
P1IE.0  
P1IE.1  
P1IE.2  
P1IE.3  
P1IE.4  
P1IE.5  
P1IFG.0  
P1IFG.1  
P1IFG.2  
P1IFG.3  
P1IFG.4  
P1IFG.5  
P1IES.0  
P1IES.1  
P1IES.2  
P1IES.3  
P1IES.4  
P1IES.5  
CCI0B  
P1OUT.1  
P1OUT.2  
P1OUT.3  
P1OUT.4  
P1OUT.5  
Out1 sig.  
CCI1A  
P1Sel.3  
P1Sel.4  
P1DIR.3  
P1DIR.4  
SVSOUT  
SMCLK  
ACLK  
TBOUTH  
TBCLK  
P1Sel.5  
P1DIR.5  
TACLK  
Timer_A  
Timer_B  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
Port P1, P1.6, P1.7, input/output with Schmitt-trigger  
Pad Logic  
Note: Port function is active if CAPD.6 = 0  
CAPD.6  
P1SEL.6  
0: Input  
1: Output  
0
P1DIR.6  
P1.6/  
CA0  
1
P1DIR.6  
0
P1OUT.6  
1
DV  
SS  
Bus  
Keeper  
P1IN.6  
EN  
D
unused  
P1IE.7  
P1IFG.7  
P1IRQ.07  
EN  
Set  
Interrupt  
Edge  
Select  
Q
P1IES.x  
P1SEL.x  
Comparator_A  
CAF  
P2CA  
AVcc  
CAREF  
CAEX  
CA0  
CA1  
+
CCI1B  
to Timer_Ax  
2
Reference Block  
CAREF  
Pad Logic  
Note: Port function is active if CAPD.7 = 0  
CAPD.7  
P1SEL.7  
P1DIR.7  
P1DIR.7  
P1OUT.7  
0: input  
1: output  
0
1
P1.7/  
CA1  
0
1
DV  
SS  
Bus  
keeper  
P1IN.7  
EN  
D
unused  
P1IE.7  
EN  
P1IRQ.07  
Interrupt  
Edge  
Select  
Q
P1IFG.7  
Set  
P1IES.7  
P1SEL.7  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P2, P2.0, P2.4 to P2.5, input/output with Schmitt-trigger  
Pad Logic  
DVSS  
DVSS  
P2SEL.x  
0: Input  
1: Output  
0
P2DIR.x  
Direction Control  
From Module  
1
0
1
P2OUT.x  
Module X OUT  
Bus  
Keeper  
P2.0/TA2  
P2.4/UTXD0  
P2IN.x  
P2.5/URXD0  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
P2IFG.x  
EN  
Set  
Interrupt  
Edge  
Select  
Q
P2IES.x  
P2SEL.x  
Note: x {0,4,5}  
Dir. Control  
from module  
Module X  
OUT  
PnSel.x  
PnDIR.x  
PnOUT.x  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
P2Sel.0  
P2Sel.4  
P2DIR.0  
P2DIR.4  
P2DIR.5  
P2DIR.0  
P2OUT.0  
P2OUT.4  
P2OUT.5  
Out2 sig.  
P2IN.0  
P2IN.4  
CCI2A  
P2IE.0  
P2IE.4  
P2IE.5  
P2IFG.0  
P2IFG.4  
P2IES.0  
P2IES.4  
UTXD0  
unused  
URXD0  
DV  
CC  
SS  
DV  
SS  
P2Sel.5  
P2IN.5  
P2IES.5  
DV  
P2IFG.5  
Timer_A  
USART0  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P2, P2.1 to P2.3, input/output with Schmitt-trigger  
Pad Logic  
DVSS  
DVSS  
Module IN of pin  
P1.3/TBOUTH/SVSOUT  
P1DIR.3  
P1SEL.3  
P2SEL.x  
0: Input  
1: Output  
0
P2DIR.x  
Direction Control  
From Module  
1
0
1
P2OUT.x  
Module X OUT  
Bus  
Keeper  
P2.1/TB0  
P2.2/TB1  
P2IN.x  
P2.3/TB2  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
P2IFG.x  
EN  
Set  
Interrupt  
Edge  
Select  
Q
P2IES.x  
P2SEL.x  
Note: 1 < x < 3  
Dir. Control  
from module  
Module X  
OUT  
PnSel.x  
PnDIR.x  
PnOUT.x  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
CCI0A  
CCI0B  
P2Sel.1  
P2Sel.2  
P2DIR.1  
P2DIR.2  
P2DIR.3  
P2DIR.1  
P2DIR.2  
P2DIR.3  
P2OUT.1  
P2OUT.2  
P2OUT.3  
Out0 sig.  
Out1 sig.  
Out2 sig.  
P2IN.1  
P2IN.2  
P2IN.3  
P2IE.1  
P2IE.2  
P2IE.3  
P2IFG.1  
P2IFG.2  
P2IFG.3  
P2IES.1  
P2IES.2  
P2IES.3  
CCI1A  
CCI1B  
CCI2A  
CCI2B  
P2Sel.3  
Timer_B  
56  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P2, P2.6 to P2.7, input/output with Schmitt-trigger  
0: Port active  
1: Segment xx function active  
Pad Logic  
Port/LCD  
Segment xx  
P2SEL.x  
0: Input  
1: Output  
0
P2DIR.x  
Direction Control  
From Module  
1
0
1
P2OUT.x  
Module X OUT  
Bus  
Keeper  
P2.6/CAOUT/S19  
P2.7/ADC12CLK/S18  
P2IN.x  
Segment function  
only available with  
MSP430x43x(1)IPN  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
EN  
Set  
Interrupt  
Edge  
Select  
Q
P2IFG.x  
P2IES.x  
P2SEL.x  
Note: 6 < x < 7  
Dir. Control  
from module  
Module X  
OUT  
PnSel.x  
PnDIR.x  
PnOUT.x  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
Port/LCD  
P2IES.6  
P2IES.7  
P2Sel.6  
P2Sel.7  
P2DIR.6  
P2DIR.7  
P2DIR.6  
P2DIR.7  
P2OUT.6  
CAOUT  
P2IN.6  
P2IN.7  
unused  
unused  
0: LCDM<40h  
0: LCDM<40h  
P2IE.6  
P2IE.7  
P2IFG.6  
P2IFG.7  
§
P2OUT.7 ADC12CLK  
§
Comparator_A  
Port/LCD signal is 1 only with MSP430xIPN and LCDM 40h.  
ADC12  
57  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P3, P3.0 to P3.3, input/output with Schmitt-trigger  
MSP430x43x(1)IPN (80-Pin) Only  
LCDM.5  
0: Port active  
LCDM.6  
1: Segment xx function active  
LCDM.7  
Pad Logic  
x43xIPZ and x44xIPZ have no segment  
function on Port P3: Both lines are low.  
Segment xx  
P3SEL.x  
0: Input  
1: Output  
0
P3DIR.x  
Direction Control  
1
From Module  
0
1
P3OUT.x  
Module X OUT  
Bus  
Keeper  
P3.0/STEO/S31  
P3.1/SIMO0/S30  
P3.2/SOMI0/S29  
P3IN.x  
P3.3/UCLK0/S28  
EN  
D
Module X IN  
Note: 0 x 3  
Direction  
Control  
Module X  
OUT  
PnSel.x  
PnDIR.x  
PnOUT.x  
PnIN.x  
Module X IN  
From Module  
P3Sel.0  
P3Sel.1  
P3Sel.2  
P3Sel.3  
P3DIR.0  
P3DIR.1  
P3DIR.2  
P3DIR.3  
P3OUT.0  
P3IN.0  
STE0(in)  
DV  
SS  
DV  
SS  
DCM_SIMO0 P3OUT.1  
DCM_SOMI0 P3OUT.2  
DCM_UCLK0 P3OUT.3  
SIMO0(out) P3IN.1  
SOMIO(out) P3IN.2  
UCLK0(out) P3IN.3  
SIMO0(in)  
SOMI0(in)  
UCLK0(in)  
S24 to S31 shared with port function only at MSP430x43x(1)IPN (80-pin QFP)  
Direction Control for SIMO0 and UCLK0  
Direction Control for SOMI0  
DCM_SOMI0  
SYNC  
MM  
SYNC  
DCM_SIMO0  
DCM_UCLK0  
MM  
STC  
STE  
STC  
STE  
58  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P3, P3.4 to P3.7, input/output with Schmitt-trigger  
0: Port active  
1: Segment xx function active  
Pad Logic  
LCDM.7 or DVSS  
Segmentxx or DVSS  
#
§
TBOUTHiZ or DVSS  
P3SEL.x  
P3DIR.x  
Direction Control  
From Module  
0: Input  
1: Output  
0
1
0
1
P3OUT.x  
Module XOUT  
Bus  
Keeper  
’x43x(1)IPN ’x43xIPZ  
’x44x  
80-Pin  
100-Pin  
P3IN.x  
P3.4/S27  
P3.5/S26  
P3.6/S25  
P3.7/S24  
P3.4  
P3.5  
P3.6  
P3.7  
P3.4/TB3  
P3.5/TB4  
P3.6/TB5  
P3.7/TB6  
EN  
D
Module X IN  
Note: 4 < x < 7  
Module IN of pin  
P1.3/TBOUTH/SVSOUT  
P1DIR.3  
P1SEL.3  
P3DIR.x  
P3SEL.x  
TBOUTHiZ  
Dir. Control  
from module  
Module X  
OUT  
PnSel.x  
PnDIR.x  
PnOUT.x  
PnIN.x  
Module X IN  
§
#
§
#
unused  
CCI3A/B  
unused  
DVSS  
OUT3  
P3Sel.4  
P3DIR.4  
P3DIR.5  
P3DIR.6  
P3DIR.7  
P3OUT.4  
P3OUT.5  
P3OUT.6  
P3OUT.7  
P3IN.4  
P3IN.5  
P3IN.6  
P3IN.7  
P3DIR.4  
P3DIR.5  
P3DIR.6  
P3DIR.7  
§
#
§
#
DVSS  
OUT4  
P3Sel.5  
P3Sel.6  
CCI4A/B  
unused §  
§
#
DVSS  
OUT5  
#
CCI5A/B  
§
#
§
#
unused  
CCI6A  
DVSS  
OUT6  
P3Sel.7  
MSP430x43x(1)IPN  
MSP430x43xIPZ, MSP430x44xIPZ  
MSP430x43x(1)  
§
#
MSP430x44x  
59  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P4, P4.0 to P4.7, input/output with Schmitt-trigger  
0: Port active  
1: Segment xx function active  
Pad Logic  
§
Port/LCD  
Segment xx  
P4SEL.x  
0: Input  
1: Output  
0
P4DIR.x  
Direction Control  
1
From Module  
0
1
P4OUT.x  
Module X OUT  
Bus  
Keeper  
x43x(1)IPN x43xIPZ  
80-Pin  
QFP:  
100-Pin  
QFP:  
x44x  
P4IN.x  
P4.7/S2  
P4.6/S3  
P4.5/S4  
P4.3/S6  
P4.4/S5  
P4.2/S7  
P4.1/S8  
P4.0/S9  
P4.7/S34 P4.7/S34  
P4.6/S35 P4.6/S35  
P4.5/S36 P4.5/UCLK1/S36  
P4.3/S37 P4.4/SMO1/S37  
P4.4/S38 P4.3/SIMO1/S38  
P4.2/S39 P4.2/STE1/S39  
EN  
D
Module X IN  
Note: 0 < x < 7  
P4.0  
P4.1  
P4.1/URXD1  
P4.0/UTXD1  
Direction  
Module X  
OUT  
Control  
From Module  
PnSel.x  
PnDIR.x  
PnOUT.x  
PnIN.x Module X IN  
DV  
P4DIR.0  
SS  
P4Sel.0  
P4Sel.1  
P4DIR.0  
P4DIR.1  
P4OUT.0  
P4OUT.1  
P4IN.0  
P4IN.1  
unused  
unused†  
DV  
UTXD1  
CC‡  
P4DIR.1  
DV  
DV  
SS  
SS  
SS‡  
URXD1  
unused†  
STE1(in)‡  
P4DIR.2  
DV  
DV  
P4Sel.2  
P4Sel.3  
P4DIR.2  
P4DIR.3  
P4OUT.2  
P4OUT.3  
P4IN.2  
P4IN.3  
SS‡  
unused†  
SIMO1(in)‡  
DV  
SS  
P4DIR3.  
DCM_SIMO1  
SIMO1(out)  
unused  
SOMI1(in)‡  
DV  
SOMI1(out)  
P4DIR4.  
SS  
P4Sel.4  
P4Sel.5  
P4DIR.4  
P4DIR.5  
P4OUT.4  
P4OUT.5  
P4IN.4  
P4IN.5  
DCM_SOMI  
1‡  
unused†  
UCLK1(in)‡  
P4DIR5.  
DV  
SS  
DCM_UCLK1  
UCLK1(out)  
DV  
SS  
P4Sel.6  
P4Sel.7  
P4DIR.6  
P4DIR.7  
P4DIR.6  
P4DIR.7  
P4OUT.6  
P4OUT.7  
P4IN.6  
P4IN.7  
unused  
unused  
DV  
SS  
Signal at MSP430x43x(1)  
Signal at MSP430x44x  
DEVICE  
PORT BITS  
PORT FUNCTION  
LCDM < 020h  
LCDM < 0E0h  
LCDM < 0C0h  
LCD SEG. FUNCTION  
LCDM 020h  
x43x(1)IPN 80-pin QFP  
x43xIPZ 100-pin QFP  
x44xIPZ 100-pin QFP  
P4.0 . . .P4.7  
P4.2 . . .P4.5  
P4.6 . . .P4.7  
LCDM 0E0h  
LCDM 0C0h  
60  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P4, P4.0 to P4.7, input/output with Schmitt-trigger (continued)  
Direction Control for SIMO1 and UCLK1  
Direction Control for SOMI1  
DCM_SOMI1  
SYNC  
SYNC  
MM  
STC  
STE  
DCM_SIMO1  
DCM_UCLK1  
MM  
STC  
STE  
port P5, P5.0 to P5.1, input/output with Schmitt-trigger  
0: Port active  
Segment Pad Logic  
1: Segment function active  
Port/LCD  
Segment  
Port Pad Logic  
P5SEL.x  
0
P5DIR.x  
0: Input  
Direction Control  
From Module  
1
1: Output  
0
1
P5OUT.x  
Module X OUT  
Bus  
Keeper  
P5.0/S1  
P5.1/S0  
P5IN.x  
EN  
D
Module X IN  
Note:  
0 < x < 1  
Module X  
OUT  
Dir. Control  
from module  
PnSel.x  
PnDIR.x  
PnOUT.x  
PnIN.x  
Module X IN  
Segment  
Port/LCD  
P5Sel.0  
P5Sel.1  
P5DIR.0  
P5DIR.1  
P5DIR.0  
P5OUT.0  
P5OUT.1  
P5IN.0  
P5IN.1  
unused  
unused  
DV  
SS  
S1  
S0  
0: LCDM<20h  
0: LCDM<20h  
DV  
SS  
P5DIR.1  
61  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P5, P5.2 to P5.4, input/output with Schmitt-trigger  
0: Port active  
Pad Logic  
1: LCD function active  
Port/LCD  
LCD signal  
P5SEL.x  
0: Input  
1: Output  
0
P5DIR.x  
Direction Control  
From Module  
1
0
1
P5OUT.x  
Module X OUT  
Bus  
Keeper  
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
P5IN.x  
EN  
D
Module X IN  
Note: 2 < x < 4  
Dir. Control  
from module  
Module X  
OUT  
PnSel.x  
P5Sel.2  
P5Sel.3  
P5Sel.4  
PnDIR.x  
P5DIR.2  
P5DIR.3  
P5DIR.4  
PnOUT.x  
P5OUT.2  
P5OUT.3  
P5OUT.4  
PnIN.x  
Module X IN  
unused  
LCD signal  
Port/LCD  
P5DIR.2  
P5DIR.3  
P5DIR.4  
P5IN.2  
P5IN.3  
P5IN.4  
DV  
SS  
COM1  
COM2  
COM3  
P5SEL.2  
P5SEL.3  
P5SEL.4  
DV  
SS  
unused  
DV  
SS  
unused  
62  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P5, P5.5 to P5.7, input/output with Schmitt-trigger  
0: Port active  
Pad Logic  
1: LCD function active  
Port/LCD  
LCD signal  
P5SEL.x  
0: Input  
1: Output  
0
P5DIR.x  
Direction Control  
From Module  
1
0
1
P5OUT.x  
Module X OUT  
Bus  
Keeper  
P5.5/R13  
P5.6/R23  
P5.7/R33  
P5IN.x  
EN  
D
Module X IN  
Note: 5 < x < 7  
Dir. Control  
from module  
Module X  
OUT  
PnSel.x  
P5Sel.5  
P5Sel.6  
P5Sel.7  
PnDIR.x  
P5DIR.5  
P5DIR.6  
P5DIR.7  
PnOUT.x  
P5OUT.5  
P5OUT.6  
P5OUT.7  
PnIN.x  
Module X IN  
unused  
LCD signal  
Port/LCD  
P5DIR.5  
P5DIR.6  
P5DIR.7  
DV  
SS  
P5IN.5  
P5IN.6  
P5IN.7  
R13  
R23  
R33  
P5SEL.5  
unused  
DV  
SS  
P5SEL.6  
P5SEL.7  
unused  
DV  
SS  
63  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P6, P6.0 to P6.6, input/output with Schmitt-trigger  
P6SEL.x  
0
0: Input  
P6DIR.x  
Direction Control  
From Module  
1: Output  
1
0
1
Pad Logic  
P6.0/A0 ..  
P6.6/A6  
P6OUT.x  
Module X OUT  
Bus Keeper  
P6IN.x  
EN  
D
Module X IN  
From ADC  
To ADC  
x: Bit Identifier, 0 to 6 for Port P6  
NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if  
the analog signal is in the range of transitions 01 or 10. The value of the throughput current depends on the driving capability of the  
gate. For MSP430, it is approximately 100 μA.  
Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12.  
Dir. Control  
PnSel.x  
PnDIR.x  
PnOUT.x  
Module X OUT  
PnIN.x  
Module X IN  
From Module  
P6DIR.0  
P6DIR.1  
P6DIR.2  
P6DIR.3  
P6DIR.4  
P6DIR.5  
P6DIR.6  
P6Sel.0  
P6Sel.1  
P6Sel.2  
P6Sel.3  
P6Sel.4  
P6Sel.5  
P6Sel.6  
P6DIR.0  
P6DIR.1  
P6DIR.2  
P6DIR.3  
P6DIR.4  
P6DIR.5  
P6DIR.6  
P6OUT.0  
P6OUT.1  
P6OUT.2  
P6OUT.3  
P6OUT.4  
P6OUT.5  
P6OUT.6  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
P6IN.0  
P6IN.1  
P6IN.2  
P6IN.3  
P6IN.4  
P6IN.5  
P6IN.6  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module.  
64  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P6, P6.7, input/output with Schmitt-trigger  
P6SEL.x  
VLP(SVS)=15  
0
0: Input  
P6DIR.x  
Direction Control  
1: Output  
Pad Logic  
1
From Module  
P6.7/A7/SVSIN  
0
P6OUT.x  
Module X OUT  
1
Bus Keeper  
P6IN.x  
EN  
Module X IN  
D
Note: Not implemented in the MSP430x43x1 devices  
From ADC  
To ADC  
To Brownout/SVS Module  
x: Bit Identifier, 7 for Port P6  
NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if  
the analog signal is in the range of transitions 01 or 10. The value of the throughput current depends on the driving capability of the  
gate. For MSP430, it is approximately 100 μA.  
Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12.  
Dir. Control  
From Module  
PnSel.x  
PnDIR.x  
PnOUT.x  
Module X OUT  
DV  
PnIN.x  
Module X IN  
P6Sel.7  
P6DIR.7  
P6DIR.7  
P6OUT.7  
P6IN.7  
unused  
SS  
NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module.  
The signal at pin P6.7/A7/SVSIN is also connected to the input multiplexer in the module brownout/supply voltage supervisor.  
65  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger or output  
TDO  
Controlled by JTAG  
Controlled by JTAG  
TDO/TDI  
JTAG  
Controlled  
DV  
CC  
by JTAG  
TDI  
Burn and Test  
Fuse  
TDI/TCLK  
CC  
Test  
and  
DV  
TMS  
TCK  
Emulation  
Module  
TMS  
DV  
CC  
TCK  
RST/NMI  
Tau ~ 50 ns  
Brownout  
D
U
S
G
D
U
S
TCK  
G
66  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
APPLICATION INFORMATION  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity  
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current (I  
) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be  
(TF)  
taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the  
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check  
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the  
fuse check mode has the potential to be activated.  
The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 21). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition). The JTAG pins are terminated internally and therefore do not require external termination.  
Time TMS Goes Low After POR  
TMS  
I
(TF)  
I
TDI/TCLK  
Figure 21. Fuse Check Mode Current MSP430x43x(1), MSP430x44x  
67  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x43x1, MSP430x43x, MSP430x44x  
MIXED SIGNAL MICROCONTROLLER  
SLAS344F − JANUARY 2002 − REVISED MAY 2007  
Data Sheet Revision History  
Literature  
Number  
Summary  
Added MSP430F43x1 devices  
Updated functional block diagram (page 6)  
Clarified test conditions in recommended operating conditions table (page 27)  
Clarified test conditions in electrical characteristics table (page 28)  
Added Port 2 through Port 5 to leakage current table (page 29)  
Corrected y-axis unit on Figures 6 and 7; changed from V to mV (page 34)  
Clarified test conditions in USART0/USART1 table (page 40)  
SLAS344E  
SLAS344F  
Changed t  
maximum value from 4 ms to 10 ms in Flash memory table (page 46)  
CPT  
Added MSP430F43x1 devices in PZ (100 pin) package  
NOTE: Page and figure numbers refer to the respective document revision.  
68  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-May-2007  
PACKAGING INFORMATION  
Orderable Device  
MSP430F4351IPN  
MSP430F4351IPNR  
Status (1)  
PREVIEW  
PREVIEW  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
LQFP  
PN  
80  
50 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
LQFP  
PN  
80  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F4351IPZ  
MSP430F4351IPZR  
MSP430F435IPN  
PREVIEW  
PREVIEW  
ACTIVE  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
PN  
100  
100  
80  
50  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
1000  
119 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F435IPNR  
MSP430F435IPZ  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PN  
PZ  
PZ  
PN  
PN  
80  
100  
100  
80  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F435IPZR  
MSP430F4361IPN  
MSP430F4361IPNR  
ACTIVE  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
PREVIEW  
PREVIEW  
50 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
80  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F4361IPZ  
MSP430F4361IPZR  
MSP430F436IPN  
PREVIEW  
PREVIEW  
ACTIVE  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
PN  
100  
100  
80  
50  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
1000  
119 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F436IPNR  
MSP430F436IPZ  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PN  
PZ  
PZ  
PN  
PN  
80  
100  
100  
80  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F436IPZR  
MSP430F4371IPN  
MSP430F4371IPNR  
ACTIVE  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
PREVIEW  
PREVIEW  
50 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
80  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F4371IPZ  
MSP430F4371IPZR  
MSP430F437IPN  
PREVIEW  
PREVIEW  
ACTIVE  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
PN  
100  
100  
80  
50  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
1000  
119 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
MSP430F437IPNR  
MSP430F437IPZ  
MSP430F437IPZR  
MSP430F447IPZ  
MSP430F447IPZR  
MSP430F448IPZ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PN  
PZ  
PZ  
PZ  
PZ  
PZ  
80  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
100  
100  
100  
100  
100  
90 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-May-2007  
Orderable Device  
MSP430F448IPZR  
MSP430F449IPZ  
MSP430F449IPZR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
LQFP  
PZ  
100  
100  
100  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
LQFP  
LQFP  
PZ  
PZ  
90 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996  
PN (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
60  
M
0,08  
41  
61  
40  
0,13 NOM  
80  
21  
1
20  
Gage Plane  
9,50 TYP  
0,25  
12,20  
SQ  
11,80  
0,05 MIN  
0°7°  
14,20  
SQ  
13,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040135 /B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

MSP430F449

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F449

电路图!可以用的,是个好参考!!
ATMEL

MSP430F4491

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F4491IPZ

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4491IPZR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F449IPZ

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F449IPZR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4616

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F46161

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F46161IPZ

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F46161IPZR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4616IPZ

MIXED SIGNAL MICROCONTROLLER
TI