MSP430F5214 [TI]

具有 128KB 闪存、8KB SRAM、比较器、DMA、UART/SPI/I2C 和 1.8V 双电源 I/O 的 25MHz MCU;
MSP430F5214
型号: MSP430F5214
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 128KB 闪存、8KB SRAM、比较器、DMA、UART/SPI/I2C 和 1.8V 双电源 I/O 的 25MHz MCU

静态存储器 比较器 闪存
文件: 总124页 (文件大小:3977K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
MSP430F522x/MSP430F521x 混合信号微控制器  
1 器件概述  
1.1 特性  
1
双电源电压器件  
统一时钟系统  
主电源 (AVVCDVVC):  
针对频率稳定的锁相环 (FLL) 控制环路  
低功耗低频内部时钟源 (VLO)  
低频修整内部基准源 (REFO)  
– 32kHz 手表晶振 (XT1)  
由外部电源供电:  
3.6V 低至 1.8V  
多达 22 个通用 I/O,最多可支持 4 个外部中  
高达 32MHz 的高频晶振 (XT2)  
低压接口电源 (DVIO):  
由独立的外部电源供电:1.62V 1.98V  
多达 31 个通用 I/O,支持多达 12 个外部中断  
串行通信  
具有 5 个捕捉/比较寄存器的 16 位定时器  
TA0Timer_A  
具有 3 个捕捉/比较寄存器的 16 位定时器  
TA1Timer_A  
超低功耗  
具有 3 个捕捉/比较寄存器的 16 位定时器  
TA2Timer_A  
具有 7 个捕捉/比较影子寄存器的 16 位定时器  
TB0Timer_B  
激活模式 (AM):  
所有系统时钟激活  
8MHz3.0V,闪存程序执行时为 290µA/MHz  
(典型值)  
8MHz3.0VRAM 程序执行时为  
150µA/MHz(典型值)  
• 2 个通用串行通信接口  
– USCI_A0 USCI_A1 每个都支持:  
具有自动波特率检测功能的增强型通用异步收  
发器 (UART)  
– IrDA 编码和解码  
同步串行外设接口 (SPI)  
– USCI_B0 USCI_B1 每个都支持:  
– I2C  
待机模式 (LPM3):  
带有晶振的实时时钟 (RTC),看门狗和电源监视  
器可用,完全 RAM 保持,快速唤醒:  
2.2V 时为 1.9µA3.0V 时为 2.1µA(典型值)  
低功耗振荡器 (VLO),通用计数器,看门狗和电  
源监视器可用,完全 RAM 保持,快速唤醒:  
3.0V 时为 1.4µA(典型值)  
同步串行外设接口 (SPI)  
关闭模式 (LPM4):  
带内部基准、采样与保持功能的 10 位模数转换器  
完全 RAM 保持,电源监视器可用,快速唤醒:  
3.0V 时为 1.1µA(典型值)  
关断模式 (LPM4.5):  
(ADC)  
比较器  
硬件乘法器支持 32 位运算  
串行板上编程,无需外部编程电压  
• 3 通道内部直接内存访问 (DMA)  
具有 RTC 特性的基本计时器  
器件比较 汇总了可用的系列产品成员  
3.0V 时为 0.18µA(典型值)  
3.5µs(典型值)内从待机模式唤醒  
• 16 位精简指令集计算机 (RISC) 架构,扩展内存,  
高达 25MHz 的系统时钟  
灵活的电源管理系统  
内置可编程的低压降稳压器 (LDO)  
电源电压监控、监视、和临时限电  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLAS718  
 
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
1.2 应用范围  
模拟和数字传感器系统  
数据记录器  
通用 应用  
1.3 说明  
TI MSP430™系列超低功耗微控制器种类繁多,各成员器件配备不同的外设集以满足各类应用的 需要。  
此架构与多种低功耗模式配合使用,是延长便携式测量应用电池寿命的最优 选择。该器件 具有 一个强大的  
16 RISC CPU,使用 16 位寄存器以及常数发生器,以便获得最高编码效率。该数控振荡器 (DCO) 可在  
3.5µs(典型值)内从低功率模式唤醒至激活模式。  
MSP430F522x 系列微控制器配有四个 16 位定时器、一个高性能 10 ADC、两个通用串行通信接口  
(USCI)、一个硬件乘法器、DMA、比较器和具有报警功能的 RTC 模块。  
MSP430F521x 系列包括除 ADC 以外的所有 MSP430F522x 系列的外设。  
所有器件均具有一个分离式 I/O 电源系统,无需进行外部电平转换即可与其他具有 1.8V 标称值 I/O 接口的  
器件无缝连接。  
有关完整的模块说明,请参阅MSP430F5xx MSP430F6xx 系列用户指南》。有关设计指南,请参阅  
《使用 MSP430F522x MSP430F521x 器件进行设计》。  
器件信息(1)  
封装  
器件型号  
MSP430F5229IRGC  
MSP430F5229IZQE  
MSP430F5224IRGZ  
MSP430F5219IYFF  
封装尺寸(2)  
9mm x 9mm  
5mm x 5mm  
7mm x 7mm  
请参见 8  
VQFN (64)  
BGA (80)  
VQFN (48)  
DSBGA (64)  
(1) 要获得最新的产品、封装和订购信息,请参见封装选项附录8),或者访问德州仪器 (TI) 网站  
www.ti.com.cn。  
(2) 此处显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据8)。  
2
器件概述  
版权 © 2012–2018, Texas Instruments Incorporated  
 
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
1.4 功能方框图  
1-1 给出了采用 RGCZQE YFF 封装的 MSP430F5229 MSP430F5227 器件的功能方框图。  
DVCC AVCC  
DVSS AVSS  
PB  
PC  
PD  
PJ  
PA  
XIN XOUT  
DVIO VCORE  
RSTDVCC RST/NMI BSLEN  
P3.x P4.x P5.x P6.x  
P1.x  
P2.x  
P7.x PJ.x  
P3  
P4  
P5  
P6  
1×5 I/Os 1×8 I/Os 1×6 I/Os 1×8 I/Os 1×6 I/Os  
P7  
P1  
P1  
P2  
1×4 I/Os 1×4 I/Os 1×8 I/Os  
XT2IN  
SYS  
USCI0,1  
ACLK  
Power  
Management  
Unified  
Clock  
System  
128KB  
64KB  
8KB  
PB  
1×13 I/Os  
PC  
1×14 I/Os  
PD PJ  
1×6 I/Os 1×4 I/Os  
PA  
1×16 I/Os  
Watchdog  
USCI_Ax:  
UART,  
IrDA, SPI  
XT2OUT  
SMCLK  
I/O Ports  
Interrupt and Wakeup  
Port Map  
Control  
(P4)  
I/O Ports  
LDO  
SVM/SVS  
Brownout  
MCLK  
USCI_Bx:  
SPI, I2C  
Flash  
RAM  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
ADC10_A  
TA0  
TA1  
TA2  
TB0  
10 Bit  
200 KSPS  
JTAG,  
SBW  
Interface  
COMP_B  
RTC_A  
MPY32  
CRC16  
REF  
Timer_A  
5 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_B  
7 CC  
Registers  
8 Channels  
12 Channels  
(10 ext,2 int)  
I/O are supplied by DVIO  
Copyright © 2016, Texas Instruments Incorporated  
1-1. 功能方框图 – F5229 F5227 – RGCZQEYFF 封装  
版权 © 2012–2018, Texas Instruments Incorporated  
器件概述  
3
 
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
1-2 给出了采用 RGZ 封装的 MSP430F5224 MSP430F5222 器件的功能方框图。  
DVCC AVCC  
DVSS AVSS  
PB  
PC  
PA  
DVIO VCORE  
PJ  
XIN XOUT  
RSTDVCC RST/NMI BSLEN  
P3.x P4.x P5.x P6.x  
P1.x  
P2.x  
PJ.x  
P3  
P4  
P5  
1×5 I/Os 1×7 I/Os 1×6 I/Os 1×6 I/Os  
P6  
P1  
P1  
P2  
1×4 I/Os 1×4 I/Os 1×1 I/Os  
XT2IN  
SYS  
USCI0,1  
ACLK  
Power  
Management  
Unified  
Clock  
System  
128KB  
64KB  
8KB  
PB  
1×12 I/Os  
PC  
1×12 I/Os  
PJ  
1×4 I/Os  
PA  
1×9 I/Os  
Watchdog  
USCI_Ax:  
UART,  
IrDA, SPI  
XT2OUT  
SMCLK  
I/O Ports  
Interrupt and Wakeup  
Port Map  
Control  
(P4)  
I/O Ports  
LDO  
SVM,SVS  
Brownout  
MCLK  
USCI_Bx:  
SPI, I2C  
Flash  
RAM  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
ADC10_A  
TA0  
TA1  
TA2  
TB0  
10 Bit  
200 KSPS  
JTAG,  
SBW  
Interface  
COMP_B  
RTC_A  
MPY32  
CRC16  
REF  
Timer_A  
5 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_B  
7 CC  
Registers  
6 Channels  
10 Channels  
(8 ext, 2 int)  
I/O are supplied by DVIO  
Copyright © 2016, Texas Instruments Incorporated  
1-2. 功能方框图 – F5224 F5222 – RGZ 封装  
1-3 显示了采用 RGCZQE YFF 封装的 MSP430F5219 MSP430F5217 器件的功能方框图。  
DVCC AVCC  
DVSS AVSS  
PB  
PC  
PD  
PJ  
PA  
DVIO VCORE  
XIN XOUT  
RSTDVCC RST/NMI BSLEN  
P3.x P4.x P5.x P6.x  
P1.x  
P2.x  
P7.x PJ.x  
P3  
P4  
P5  
P6  
1×5 I/Os 1×8 I/Os 1×6 I/Os 1×8 I/Os 1×6 I/Os  
P7  
P1  
P1  
P2  
1×4 I/Os 1×4 I/Os 1×8 I/Os  
XT2IN  
SYS  
USCI0,1  
ACLK  
SMCLK  
Power  
Management  
Unified  
Clock  
System  
128KB  
64KB  
8KB  
PB  
1×13 I/Os  
PC  
1×14 I/Os  
PD PJ  
1×6 I/Os 1×4 I/Os  
PA  
1×16 I/Os  
Watchdog  
USCI_Ax:  
UART,  
IrDA, SPI  
XT2OUT  
I/O Ports  
Interrupt and Wakeup  
Port Map  
Control  
(P4)  
I/O Ports  
LDO  
SVM/SVS  
Brownout  
MCLK  
USCI_Bx:  
SPI, I2C  
Flash  
RAM  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
TA0  
TA1  
TA2  
TB0  
JTAG,  
SBW  
Interface  
COMP_B  
RTC_A  
MPY32  
CRC16  
REF  
Timer_A  
5 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_B  
7 CC  
Registers  
8 Channels  
I/O are supplied by DVIO  
Copyright © 2016, Texas Instruments Incorporated  
1-3. 功能方框图 – F5219 F5217 – RGCZQEYFF 封装  
1-4 给出了采用 RGZ 封装的 MSP430F5214 MSP430F5212 器件的功能方框图。  
4
器件概述  
版权 © 2012–2018, Texas Instruments Incorporated  
 
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
DVCC AVCC  
DVSS AVSS  
PB  
PC  
PA  
PJ  
XIN XOUT  
DVIO VCORE  
RSTDVCC RST/NMI BSLEN  
P3.x P4.x P5.x P6.x  
P1.x  
P2.x  
PJ.x  
P3  
P4  
P5  
1×5 I/Os 1×7 I/Os 1×6 I/Os 1×6 I/Os  
P6  
P1  
P1  
P2  
1×4 I/Os 1×4 I/Os 1×1 I/Os  
XT2IN  
SYS  
USCI0,1  
ACLK  
Power  
Management  
Unified  
Clock  
System  
128KB  
64KB  
8KB  
PB  
1×12 I/Os  
PC  
1×12 I/Os  
PJ  
1×4 I/Os  
PA  
1×9 I/Os  
Watchdog  
USCI_Ax:  
UART,  
IrDA, SPI  
XT2OUT  
SMCLK  
I/O Ports  
Interrupt and Wakeup  
Port Map  
Control  
(P4)  
I/O Ports  
LDO  
SVM, SVS  
Brownout  
MCLK  
USCI_Bx:  
SPI, I2C  
Flash  
RAM  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
TA0  
TA1  
TA2  
TB0  
JTAG,  
SBW  
Interface  
COMP_B  
RTC_A  
MPY32  
CRC16  
REF  
Timer_A  
5 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_B  
7 CC  
Registers  
6 Channels  
I/O are supplied by DVIO  
Copyright © 2016, Texas Instruments Incorporated  
1-4. 功能方框图 – F5214 F5212 – RGZ 封装  
版权 © 2012–2018, Texas Instruments Incorporated  
器件概述  
5
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
内容  
5.18 Output Frequency – General-Purpose I/O DVIO  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用范围 .............................................. 2  
1.3 说明 ................................................... 2  
1.4 功能方框图............................................ 3  
修订历史记录............................................... 8  
Device Comparison ..................................... 9  
3.1 Related Products ..................................... 9  
Terminal Configuration and Functions ............ 10  
4.1 Pin Diagrams........................................ 10  
4.2 Signal Descriptions.................................. 16  
Specifications ........................................... 21  
5.1 Absolute Maximum Ratings......................... 21  
5.2 ESD Ratings ........................................ 21  
5.3 Recommended Operating Conditions............... 21  
Domain  
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to  
P4.7, P7.0 to P7.5).................................. 30  
5.19 Typical Characteristics – Outputs, Reduced Drive  
Strength (PxDS.y = 0)............................... 31  
5.20 Typical Characteristics – Outputs, Full Drive  
Strength (PxDS.y = 1)............................... 32  
5.21 Crystal Oscillator, XT1, Low-Frequency Mode...... 33  
2
3
5.22 Crystal Oscillator, XT2 .............................. 34  
5.23 Internal Very-Low-Power Low-Frequency Oscillator  
(VLO) ................................................ 35  
5.24 Internal Reference, Low-Frequency Oscillator  
(REFO) .............................................. 35  
5.25 DCO Frequency..................................... 36  
5.26 PMM, Brownout Reset (BOR)....................... 37  
5.27 PMM, Core Voltage ................................. 37  
5.28 PMM, SVS High Side ............................... 38  
5.29 PMM, SVM High Side............................... 39  
5.30 PMM, SVS Low Side................................ 39  
4
5
5.4  
Active Mode Supply Current Into VCC Excluding  
External Current..................................... 24  
5.5  
Low-Power Mode Supply Currents (Into VCC  
)
Excluding External Current.......................... 25  
5.6 Thermal Resistance Characteristics ................ 26  
5.31 PMM, SVM Low Side ............................... 40  
5.32 Wake-up Times From Low-Power Modes and  
Reset ................................................ 40  
5.7  
5.8  
5.9  
Schmitt-Trigger Inputs – General-Purpose I/O  
DVCC Domain  
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to  
PJ.3, RSTDVCC) ................................... 27  
Schmitt-Trigger Inputs – General-Purpose I/O DVIO  
Domain  
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to  
P4.7, P7.0 to P7.5, RST/NMI, BSLEN) ............. 27  
Inputs – Interrupts DVCC Domain Port P1  
5.33 Timer_A ............................................. 41  
5.34 Timer_B ............................................. 41  
5.35 USCI (UART Mode), Recommended Operating  
Conditions ........................................... 42  
5.36 USCI (UART Mode)................................. 42  
5.37 USCI (SPI Master Mode), Recommended Operating  
Conditions ........................................... 42  
(P1.0 to P1.3) ....................................... 27  
5.10 Inputs – Interrupts DVIO Domain Ports P1 and P2  
(P1.4 to P1.7, P2.0 to P2.7)......................... 27  
5.11 Leakage Current – General-Purpose I/O DVCC  
Domain  
5.38 USCI (SPI Master Mode)............................ 42  
5.39 USCI (SPI Slave Mode)............................. 44  
5.40 USCI (I2C Mode) .................................... 46  
5.41 10-Bit ADC, Power Supply and Input Range  
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to  
Conditions ........................................... 47  
PJ.3)................................................. 28  
5.42 10-Bit ADC, Timing Parameters .................... 47  
5.43 10-Bit ADC, Linearity Parameters................... 48  
5.44 REF, External Reference ........................... 48  
5.45 REF, Built-In Reference............................. 49  
5.46 Comparator_B....................................... 50  
5.47 Flash Memory ....................................... 51  
5.48 JTAG and Spy-Bi-Wire Interface.................... 51  
5.49 DVIO BSL Entry..................................... 52  
Detailed Description ................................... 53  
6.1 CPU (Link to user's guide) .......................... 53  
6.2 Operating Modes.................................... 54  
6.3 Interrupt Vector Addresses.......................... 55  
6.4 Memory Organization ............................... 56  
6.5 Bootloader (BSL).................................... 58  
6.6 JTAG Operation ..................................... 59  
6.7 Flash Memory (Link to user's guide)................ 60  
6.8 RAM (Link to user's guide).......................... 60  
6.9 Peripherals .......................................... 61  
6.10 Input/Output Diagrams .............................. 82  
5.12 Leakage Current – General-Purpose I/O DVIO Domain  
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to  
P4.7, P7.0 to P7.5).................................. 28  
5.13 Outputs – General-Purpose I/O DVCC Domain (Full  
Drive Strength)  
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to  
PJ.3)................................................. 28  
5.14 Outputs – General-Purpose I/O DVCC Domain  
(Reduced Drive Strength)  
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to  
6
PJ.3)................................................. 28  
5.15 Outputs – General-Purpose I/O DVIO Domain (Full  
Drive Strength)  
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to  
P4.7, P7.0 to P7.5).................................. 29  
5.16 Outputs – General-Purpose I/O DVIO Domain  
(Reduced Drive Strength)  
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to  
P4.7, P7.0 to P7.5).................................. 29  
5.17 Output Frequency – General-Purpose I/O DVCC  
Domain  
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to  
PJ.3)................................................. 30  
6
内容  
版权 © 2012–2018, Texas Instruments Incorporated  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.11 Device Descriptors .................................. 99  
7.5 相关链接 ........................................... 110  
7.6 社区资源 ........................................... 110  
7.7 商标 ................................................ 110  
7.8 静电放电警告....................................... 110  
7.9 Glossary............................................ 110  
机械、封装和可订购信息 .............................. 110  
7
器件和文档支......................................... 105  
7.1 开始使用 ........................................... 105  
7.2 Device Nomenclature.............................. 105  
7.3 工具与软件 ......................................... 107  
7.4 文档支持 ........................................... 108  
8
版权 © 2012–2018, Texas Instruments Incorporated  
内容  
7
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from June 29, 2016 to September 26, 2018  
Page  
Added Section 3.1, Related Products ............................................................................................. 9  
Removed D and E dimension lines on the YFF pinout (for the package dimesions with tolerances, see the  
Mechanical Data in 8) ........................................................................................................... 15  
Added typical conditions statements at the beginning of Section 5, Specifications ........................................ 21  
Changed the MIN value of the V(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 5.26, PMM,  
Brownout Reset (BOR) ............................................................................................................. 37  
Updated notes (1) and (2) and added note (3) in Section 5.32, Wake-up Times From Low-Power Modes and  
Reset.................................................................................................................................. 40  
Removed ADC10DIV from the formula for the TYP value in the second row of the tCONVERT parameter in  
Section 5.42, 10-Bit ADC, Timing Parameters (removed because ADC10CLK is after division)......................... 47  
Added second row for tEN_CMP with Test Conditions of "CBPWRMD = 10" and MAX value of 100 μs in  
Section 5.46, Comparator_B....................................................................................................... 50  
Renamed FCTL4.MGR0 and MGR1 in Section 5.47, Flash Memory, to be consistent with header files ............... 51  
Throughout document, changed all instances of "bootstrap loader" to "bootloader"....................................... 58  
将先前的开发工具支持 部分替换成了7.3工具与软.................................................................... 107  
7.4文档支持 中添加了内容.................................................................................................. 108  
8
修订历史记录  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
3 Device Comparison  
Table 3-1 summarizes the available family members.  
Table 3-1. Family Members(1)(2)  
USCI  
CHANNEL A:  
UART, IrDA,  
SPI  
FLASH  
(KB)  
SRAM  
(KB)  
ADC10_A Comp_B  
I/O  
I/O  
DEVICE  
Timer_A(3) Timer_B(4)  
PACKAGE  
DVCC(5) DVIO(6)  
CHANNEL B:  
SPI, I2C  
(Ch)  
(Ch)  
64 RGC  
64 YFF  
80 ZQE  
10 ext,  
2 int  
MSP430F5229  
MSP430F5227  
128  
64  
8
8
5, 3, 3  
5, 3, 3  
7
7
2
2
2
2
8
8
22  
22  
31  
31  
64 RGC  
64 YFF  
80 ZQE  
10 ext,  
2 int  
MSP430F5224  
MSP430F5222  
128  
64  
8
8
5, 3, 3  
5, 3, 3  
7
7
2
2
2
2
8 ext, 2 int  
8 ext, 2 int  
6
6
20  
20  
17  
17  
48 RGZ  
48 RGZ  
64 RGC  
64 YFF  
80 ZQE  
MSP430F5219  
MSP430F5217  
128  
64  
8
8
5, 3, 3  
5, 3, 3  
7
7
2
2
2
2
-
-
8
8
22  
22  
31  
31  
64 RGC  
64 YFF  
80 ZQE  
MSP430F5214  
MSP430F5212  
128  
64  
8
8
5, 3, 3  
5, 3, 3  
7
7
2
2
2
2
-
-
6
6
20  
20  
17  
17  
48 RGZ  
48 RGZ  
(1) For the most current device, package, and ordering information, see the Package Option Addendum in 8, or see the TI website at  
www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/packaging.  
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM  
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM  
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
(5) All of these I/Os reside on a single voltage rail supplied by DVCC.  
(6) All of these I/Os reside on a single voltage rail supplied by DVIO.  
3.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
Products for TI Microcontrollers TI's low-power and high-performance MCUs, with wired and wireless  
connectivity options, are optimized for a broad range of applications.  
Products for MSP430 Ultra-Low-Power Microcontrollers One platform. One ecosystem. Endless  
possibilities. Enabling the connected world with innovations in ultra-low-power  
microcontrollers with advanced peripherals for precise sensing and measurement.  
Companion Products for MSP430F5229 Review products that are frequently purchased or used with  
this product.  
Reference Designs for MSP430F5229 Find reference designs that leverage the best in TI technology to  
solve your system-level challenges.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Device Comparison  
9
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
4 Terminal Configuration and Functions  
4.1 Pin Diagrams  
Figure 4-1 shows the pinout for the MSP430F5229 and MSP430F5227 devices in the 64-pin RGC  
package.  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P6.0/A0/CB0  
P6.1/A1/CB1  
P6.2/A2/CB2  
P6.3/A3/CB3  
P6.4/A4/CB4  
P6.5/A5/CB5  
P6.6/A6/CB6  
P6.7/A7/CB7  
P5.0/A8/VeREF+  
P5.1/A9/VeREF-  
AVCC  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P4.7/PM_NONE  
P4.6/PM_NONE  
3
P4.5/PM_UCA1RXD/PM_UCA1SOMI  
P4.4/PM_UCA1TXD/PM_UCA1SIMO  
P4.3/PM_UCB1CLK/PM_UCA1STE  
P4.2/PM_UCB1SOMI/PM_UCB1SCL  
P4.1/PM_UCB1SIMO/PM_UCB1SDA  
P4.0/PM_UCB1STE/PM_UCA1CLK  
DVIO  
4
5
6
7
8
MSP430F5229IRGC  
MSP430F5227IRGC  
9
10  
11  
12  
13  
14  
15  
16  
DVSS  
P3.4/UCA0RXD/UCA0SOMI  
P3.3/UCA0TXD/UCA0SIMO  
P3.2/UCB0CLK/UCA0STE  
P3.1/UCB0SOMI/UCB0SCL  
P3.0/UCB0SIMO/UCB0SDA  
P2.7/UCB0STE/UCA0CLK  
P5.4/XIN  
P5.5/XOUT  
AVSS  
DVCC  
DVSS  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Supplied by DVIO  
NOTE: TI recommends connection of exposed thermal pad to VSS  
.
Figure 4-1. 64-Pin RGC Package – F5229, F5227  
10  
Terminal Configuration and Functions  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Figure 4-2 shows the pinout for the MSP430F5224 and MSP430F5222 devices in the 48-pin RGZ  
package.  
48 47 46 45 44 43 42 41 40 39 38 37  
P6.3/A3/CB3  
P6.4/A4/CB4  
P6.5/A5/CB5  
P5.0/A8/VeREF+  
P5.1/A9/VeREF-  
AVCC  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
BSLEN  
P4.6/PM_NONE  
3
P4.5/PM_UCA1RXD/PM_UCA1SOMI  
P4.4/PM_UCA1TXD/PM_UCA1SIMO  
P4.3/PM_UCB1CLK/PM_UCA1STE  
P4.2/PM_UCB1SOMI/PM_UCB1SCL  
P4.1/PM_UCB1SIMO/PM_UCB1SDA  
P4.0/PM_UCB1STE/PM_UCA1CLK  
DVIO  
4
5
6
MSP430F5224IRGZ  
MSP430F5222IRGZ  
P5.4/XIN  
7
P5.5/XOUT  
AVSS  
8
9
DVCC  
10  
11  
12  
DVSS  
DVSS  
P3.4/UCA0RXD/UCA0SOMI  
P3.3/UCA0TXD/UCA0SIMO  
VCORE  
13 14 15 16 17 18 19 20 21 22 23 24  
Supplied by DVIO  
NOTE: TI recommends connection of exposed thermal pad to VSS  
.
Figure 4-2. 48-Pin RGZ Package – F5224, F5222  
Copyright © 2012–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Figure 4-3 shows the pinout for the MSP430F5219 and MSP430F5217 devices in the 64-pin RGC  
package.  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P6.0/CB0  
P6.1/CB1  
P6.2/CB2  
P6.3/CB3  
P6.4/CB4  
P6.5/CB5  
P6.6/CB6  
P6.7/CB7  
P5.0  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P4.7/PM_NONE  
P4.6/PM_NONE  
3
P4.5/PM_UCA1RXD/PM_UCA1SOMI  
P4.4/PM_UCA1TXD/PM_UCA1SIMO  
P4.3/PM_UCB1CLK/PM_UCA1STE  
P4.2/PM_UCB1SOMI/PM_UCB1SCL  
P4.1/PM_UCB1SIMO/PM_UCB1SDA  
P4.0/PM_UCB1STE/PM_UCA1CLK  
DVIO  
4
5
6
7
8
MSP430F5219IRGC  
MSP430F5217IRGC  
9
P5.1  
10  
11  
12  
13  
14  
15  
16  
DVSS  
AVCC  
P3.4/UCA0RXD/UCA0SOMI  
P3.3/UCA0TXD/UCA0SIMO  
P3.2/UCB0CLK/UCA0STE  
P3.1/UCB0SOMI/UCB0SCL  
P3.0/UCB0SIMO/UCB0SDA  
P2.7/UCB0STE/UCA0CLK  
P5.4/XIN  
P5.5/XOUT  
AVSS  
DVCC  
DVSS  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Supplied by DVIO  
NOTE: TI recommends connection of exposed thermal pad to VSS  
.
Figure 4-3. 64-Pin RGC Package – F5219, F5217  
12  
Terminal Configuration and Functions  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Figure 4-4 shows the pinout for the MSP430F5214 and MSP430F5212 devices in the 48-pin RGZ  
package.  
48 47 46 45 44 43 42 41 40 39 38 37  
P6.3/CB3  
P6.4/CB4  
P6.5/CB5  
P5.0  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
BSLEN  
P4.6/PM_NONE  
3
P4.5/PM_UCA1RXD/PM_UCA1SOMI  
P4.4/PM_UCA1TXD/PM_UCA1SIMO  
P4.3/PM_UCB1CLK/PM_UCA1STE  
P4.2/PM_UCB1SOMI/PM_UCB1SCL  
P4.1/PM_UCB1SIMO/PM_UCB1SDA  
P4.0/PM_UCB1STE/PM_UCA1CLK  
DVIO  
4
P5.1  
5
AVCC  
6
MSP430F5214IRGZ  
MSP430F5212IRGZ  
P5.4/XIN  
P5.5/XOUT  
AVSS  
7
8
9
DVCC  
10  
11  
12  
DVSS  
DVSS  
P3.4/UCA0RXD/UCA0SOMI  
P3.3/UCA0TXD/UCA0SIMO  
VCORE  
13 14 15 16 17 18 19 20 21 22 23 24  
Supplied by DVIO  
NOTE: TI recommends connection of exposed thermal pad to VSS  
.
Figure 4-4. 48-Pin RGZ Package – F5214, F5212  
Copyright © 2012–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Figure 4-5 shows the pinout for the MSP430F5229, MSP430F5227, MSP430F5219, and MSP430F5217  
devices in the 80-pin ZQE package.  
TEST RST/NMI P7.5  
P7.4  
A7  
P7.3  
A8  
P7.1  
A9  
P6.0 RSTDVCC PJ.2  
A1  
A2  
A3  
A4  
A5  
A6  
P6.2  
B1  
P6.1  
B2  
PJ.3  
B3  
P5.3  
B4  
P5.2 BSLEN P7.2  
P7.0  
B5  
B6  
C6  
D6  
E6  
F6  
B7  
B8  
B9  
P6.4  
C1  
P6.3  
C2  
PJ.1  
C4  
PJ.0  
C5  
P4.7  
C7  
P4.6  
C8  
P4.5  
C9  
P6.6  
D1  
P6.5  
D2  
P4.4  
D7  
P4.3  
D8  
P4.2  
D9  
P6.7  
D3  
D4  
E4  
F4  
D5  
E5  
F5  
DVIO  
E9  
P4.0  
E8  
P4.1  
E7  
P5.0  
E1  
P5.1  
E2  
E3  
F3  
G3  
P5.4 AVCC  
DVSS  
F9  
F1  
F2  
F7  
F8  
P5.5 AVSS  
P1.3  
G4  
P1.6  
G5  
P2.1  
G6  
P3.4  
G7  
P3.2  
G8  
P3.3  
G9  
G1  
G2  
DVCC P1.0  
P1.1  
H3  
P1.4  
H4  
P1.7  
H5  
P2.3  
H6  
P2.7  
H7  
P3.0  
H8  
P3.1  
H9  
H1  
H2  
DVSS  
J1  
VCORE P1.2  
P1.5  
J4  
P2.0  
J5  
P2.2  
J6  
P2.4  
J7  
P2.5  
J8  
P2.6  
J9  
J2  
J3  
Supplied by DVIO  
Figure 4-5. 80-Pin ZQE Package – F5229, F5227, F5219, F5217  
14  
Terminal Configuration and Functions  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Figure 4-6 shows the pinout for the MSP430F5229, MSP430F5227, MSP430F5219, and MSP430F5217  
devices in the 64-pin YFF package.  
Top View  
Ball-Side View  
H8  
H7  
H6  
H5  
H4  
H3  
H2  
H1  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
P3.0  
P3.3 DVSS DVIO P4.1  
P4.4  
P4.6  
P7.0  
P7.0  
P4.6  
P4.4  
P4.1 DVIO DVSS P3.3  
P3.0  
G8  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
P2.6  
P3.1  
P3.2  
P3.4  
P4.3  
P4.7  
P7.1  
P7.3  
P7.3  
P7.1  
P4.7  
P4.3  
P3.4  
P3.2  
P3.1  
P2.6  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
P2.3  
P2.5  
P2.7  
P4.0  
P4.5  
P7.2  
P7.4  
P7.5  
P7.5  
P7.4  
P7.2  
P4.5  
P4.0  
P2.7  
P2.5  
P2.3  
E8  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
P2.0  
P2.2  
P2.4  
P4.2 TEST RST/NMI BSLEN P5.2  
P5.2 BSLEN RST/NMI TEST P4.2  
P2.4  
P2.2  
P2.0  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
P1.5  
P1.6  
P1.7  
P2.1 RSTDVCC PJ.2  
PJ.0  
P5.3  
P5.3  
PJ.0  
PJ.2 RSTDVCC P2.1 P1.7  
P1.6  
P1.5  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
P1.2  
P1.1  
P1.3  
P1.4  
P6.6  
P6.3  
P6.0  
PJ.1  
PJ.1  
P6.0  
P6.3  
P6.6  
P1.4  
P1.3  
P1.1  
P1.2  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
VCORE P1.0 AVSS AVCC P5.0  
P6.5  
P6.2  
PJ.3  
PJ.3  
P6.2  
P6.5  
P5.0 AVCC AVSS P1.0 VCORE  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
DVSS DVCC P5.5  
P5.4  
P5.1  
P6.7  
P6.4  
P6.1  
P6.1  
P6.4  
P6.7  
P5.1  
P5.4  
P5.5 DVCC DVSS  
Supplied by DVIO  
Figure 4-6. 64-Pin YFF Package – F5229, F5227, F5219, F5217  
Copyright © 2012–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
4.2 Signal Descriptions  
Table 4-1 describes the signals for all device variants and package options.  
Table 4-1. Terminal Functions  
TERMINAL  
NO.  
I/O(1) SUPPLY  
DESCRIPTION  
NAME  
RGC ZQE YFF RGZ  
General-purpose digital I/O  
Comparator_B input CB0  
P6.0/CB0/A0  
1
2
3
4
5
6
7
8
A1  
B2  
B1  
C2  
C1  
D2  
D1  
D3  
C2  
A1  
B2  
C3  
A2  
B3  
C4  
A3  
46  
47  
48  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
Analog input A0 for ADC (not available on all device types)  
General-purpose digital I/O  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6.6/CB6/A6  
P6.7/CB7/A7  
Comparator_B input CB1  
Analog input A1 for ADC (not available on all device types)  
General-purpose digital I/O  
Comparator_B input CB2  
Analog input A2 for ADC (not available on all device types)  
General-purpose digital I/O  
Comparator_B input CB3  
Analog input A3 for ADC (not available on all device types)  
General-purpose digital I/O  
2
Comparator_B input CB4  
Analog input A4 for ADC (not available on all device types)  
General-purpose digital I/O  
3
Comparator_B input CB5  
Analog input A5 for ADC (not available on all device types)  
General-purpose digital I/O (not available on all device types)  
N/A  
N/A  
Comparator_B input CB6 (not available on all device types)  
Analog input A6 for ADC (not available on all device types)  
General-purpose digital I/O (not available on all device types)  
Comparator_B input CB7 (not available on all device types)  
Analog input A7 for ADC (not available on all device types)  
General-purpose digital I/O  
Analog input A8 for ADC (not available on all device types)  
P5.0/A8/VeREF+  
P5.1/A9/VeREF-  
9
E1  
E2  
B4  
A4  
4
5
I/O  
I/O  
DVCC  
DVCC  
Input for an external reference voltage to the ADC (not available  
on all device types)  
General-purpose digital I/O  
Analog input A9 for ADC (not available on all device types)  
10  
Negative terminal for the ADC reference voltage for an external  
applied reference voltage (not available on all device types)  
AVCC  
11  
12  
F2  
F1  
B5  
A5  
6
7
Analog power supply  
General-purpose digital I/O  
P5.4/XIN  
I/O  
I/O  
DVCC  
DVCC  
Input terminal for crystal oscillator XT1(2)  
General-purpose digital I/O  
P5.5/XOUT  
AVSS  
13  
14  
G1  
G2  
A6  
B6  
8
9
Output terminal of crystal oscillator XT1  
Analog ground supply  
(1) I = input, O = output, N/A = not available  
(2) When in crystal bypass mode, XIN can be configured so that it can support an input digital waveform with swing levels from DVSS to  
DVCC or DVSS to DVIO. In this case, it is required that the pin be configured properly for the intended input swing.  
16  
Terminal Configuration and Functions  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 4-1. Terminal Functions (continued)  
TERMINAL  
NO.  
RGC ZQE YFF RGZ  
I/O(1) SUPPLY  
DESCRIPTION  
NAME  
DVCC  
DVSS  
15  
16  
H1  
J1  
A7  
A8  
10  
11  
Digital power supply  
Digital ground supply  
Regulated core power supply output (internal use only, no  
external current loading)  
VCORE(3)  
17  
J2  
B8  
12  
DVCC  
General-purpose digital I/O with port interrupt  
TA0 clock signal TA0CLK input  
P1.0/TA0CLK/ACLK  
18  
H2  
B7  
13  
I/O  
I/O  
I/O  
DVCC  
DVCC  
DVCC  
ACLK output (divided by 1, 2, 4, 8, 16, or 32)  
General-purpose digital I/O with port interrupt  
P1.1/TA0.0  
P1.2/TA0.1  
19  
20  
H3  
J3  
C7  
C8  
14  
15  
TA0 CCR0 capture: CCI0A input, compare: Out0 output  
BSL transmit output  
General-purpose digital I/O with port interrupt  
TA0 CCR1 capture: CCI1A input, compare: Out1 output  
BSL receive input  
General-purpose digital I/O with port interrupt  
P1.3/TA0.2  
P1.4/TA0.3  
P1.5/TA0.4  
21  
22  
23  
G4  
H4  
J4  
C6  
C5  
D8  
16  
17  
18  
I/O  
I/O  
I/O  
DVCC  
DVIO(4)  
DVIO(4)  
TA0 CCR2 capture: CCI2A input, compare: Out2 output  
General-purpose digital I/O with port interrupt  
TA0 CCR3 capture: CCI3A input compare: Out3 output  
General-purpose digital I/O with port interrupt  
TA0 CCR4 capture: CCI4A input, compare: Out4 output  
General-purpose digital I/O with port interrupt  
P1.6/TA1CLK/CBOUT  
P1.7/TA1.0  
24  
25  
G5  
H5  
D7  
D6  
19  
20  
I/O  
I/O  
DVIO(4) TA1 clock signal TA1CLK input  
Comparator_B output  
General-purpose digital I/O with port interrupt  
DVIO(4)  
DVIO(4)  
TA1 CCR0 capture: CCI0A input, compare: Out0 output  
General-purpose digital I/O with port interrupt (not available on  
all device types)  
P2.0/TA1.1  
P2.1/TA1.2  
26  
27  
J5  
E8  
D5  
N/A  
N/A  
I/O  
I/O  
TA1 CCR1 capture: CCI1A input, compare: Out1 output (not  
available on all device types)  
General-purpose digital I/O with port interrupt (not available on  
all device types)  
G6  
DVIO(4)  
DVIO(4)  
TA1 CCR2 capture: CCI2A input, compare: Out2 output (not  
available on all device types)  
General-purpose digital I/O with port interrupt (not available on  
all device types)  
P2.2/TA2CLK/SMCLK  
28  
J6  
E7  
N/A  
I/O  
TA2 clock signal TA2CLK input  
SMCLK output (not available on all device types)  
General-purpose digital I/O with port interrupt (not available on  
all device types)  
P2.3/TA2.0  
P2.4/TA2.1  
29  
30  
H6  
J7  
F8  
E6  
N/A  
N/A  
I/O  
I/O  
DVIO(4)  
DVIO(4)  
TA2 CCR0 capture: CCI0A input, compare: Out0 output (not  
available on all device types)  
General-purpose digital I/O with port interrupt (not available on  
all device types)  
TA2 CCR1 capture: CCI1A input, compare: Out1 output (not  
available on all device types)  
(3) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended  
capacitor value, CVCORE  
.
(4) This pin function is supplied by DVIO. See Section 5.8 for input and output requirements.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 4-1. Terminal Functions (continued)  
TERMINAL  
NO.  
RGC ZQE YFF RGZ  
I/O(1) SUPPLY  
DESCRIPTION  
NAME  
General-purpose digital I/O with port interrupt (not available on  
all device types)  
P2.5/TA2.2  
31  
J8  
F7  
N/A  
I/O  
I/O  
DVIO(4)  
TA2 CCR2 capture: CCI2A input, compare: Out2 output (not  
available on all device types)  
General-purpose digital I/O with port interrupt (not available on  
all device types)  
P2.6/RTCCLK/DMAE0  
32  
J9  
G8  
N/A  
DVIO(4) RTC clock output for calibration (not available on all device  
types)  
DMA external trigger input (not available on all device types)  
General-purpose digital I/O  
P2.7/UCB0STE/  
UCA0CLK  
Slave transmit enable – USCI_B0 SPI mode  
DVIO(4)  
33  
H7  
F6  
21  
I/O  
Clock signal input  
USCI_A0 SPI slave mode  
Clock signal output – USCI_A0 SPI master mode  
General-purpose digital I/O  
P3.0/UCB0SIMO/  
UCB0SDA  
34  
35  
H8  
H9  
H8  
G7  
22  
23  
I/O  
I/O  
DVIO(4) Slave in, master out – USCI_B0 SPI mode  
I2C data – USCI_B0 I2C mode  
General-purpose digital I/O  
P3.1/UCB0SOMI/  
UCB0SCL  
DVIO(4) Slave out, master in – USCI_B0 SPI mode  
I2C clock – USCI_B0 I2C mode  
General-purpose digital I/O  
P3.2/UCB0CLK/  
UCA0STE  
Clock signal input  
Clock signal output – USCI_B0 SPI master mode  
USCI_B0 SPI slave mode  
36  
G8  
G6  
24  
I/O  
DVIO(4)  
Slave transmit enable – USCI_A0 SPI mode  
General-purpose digital I/O  
P3.3/UCA0TXD/  
UCA0SIMO  
37  
38  
G9  
G7  
H7  
G5  
25  
26  
I/O  
I/O  
DVIO(4) Transmit data – USCI_A0 UART mode  
Slave in, master out – USCI_A0 SPI mode  
General-purpose digital I/O  
P3.4/UCA0RXD/  
UCA0SOMI  
DVIO(4) Receive data – USCI_A0 UART mode  
Slave out, master in – USCI_A0 SPI mode  
Digital ground supply  
DVSS  
DVIO(5)  
39  
40  
F9  
E9  
H6  
H5  
27  
28  
Digital I/O power supply  
General-purpose digital I/O with reconfigurable port mapping  
secondary function Default mapping: Slave transmit enable –  
USCI_B1 SPI mode  
P4.0/PM_UCB1STE/  
PM_UCA1CLK  
41  
E8  
F5  
29  
I/O  
DVIO(4)  
Default mapping: Clock signal input – USCI_A1 SPI slave mode  
Default mapping: Clock signal output – USCI_A1 SPI master  
mode  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.1/PM_UCB1SIMO/  
PM_UCB1SDA  
42  
43  
E7  
D9  
H4  
E5  
30  
31  
I/O  
I/O  
DVIO(4)  
Default mapping: Slave in, master out – USCI_B1 SPI mode  
Default mapping: I2C data – USCI_B1 I2C mode  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.2/PM_UCB1SOMI/  
PM_UCB1SCL  
DVIO(4)  
Default mapping: Slave out, master in – USCI_B1 SPI mode  
Default mapping: I2C clock – USCI_B1 I2C mode  
(5) The voltage on DVIO is not supervised or monitored.  
18 Terminal Configuration and Functions  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 4-1. Terminal Functions (continued)  
TERMINAL  
NO.  
RGC ZQE YFF RGZ  
I/O(1) SUPPLY  
DESCRIPTION  
NAME  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.3/PM_UCB1CLK/  
PM_UCA1STE  
Default mapping: Clock signal input – USCI_B1 SPI slave mode  
Default mapping: Clock signal output – USCI_B1 SPI master  
mode  
44  
D8  
G4  
32  
I/O  
DVIO(4)  
Default mapping: Slave transmit enable – USCI_A1 SPI mode  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.4/PM_UCA1TXD/  
PM_UCA1SIMO  
45  
46  
D7  
C9  
H3  
F4  
33  
34  
I/O  
I/O  
DVIO(4)  
Default mapping: Transmit data – USCI_A1 UART mode  
Default mapping: Slave in, master out – USCI_A1 SPI mode  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.5/PM_UCA1RXD/  
PM_UCA1SOMI  
DVIO(4)  
Default mapping: Receive data – USCI_A1 UART mode  
Default mapping: Slave out, master in – USCI_A1 SPI mode  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.6/PM_NONE  
P4.7/PM_NONE  
47  
48  
C8  
C7  
H2  
G3  
35  
I/O  
I/O  
DVIO(4)  
DVIO(4)  
Default mapping: no secondary function  
General-purpose digital I/O with reconfigurable port mapping  
secondary function (not available on all device types)  
N/A  
Default mapping: no secondary function (not available on all  
device types)  
General-purpose digital I/O (not available on all device types)  
B8,  
B9  
P7.0/TB0.0  
P7.1/TB0.1  
P7.2/TB0.2  
P7.3/TB0.3  
P7.4/TB0.4  
P7.5/TB0.5  
49  
50  
51  
52  
53  
54  
H1  
G2  
F3  
G1  
F2  
F1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DVIO(4)  
DVIO(4)  
DVIO(4)  
DVIO(4)  
DVIO(4)  
DVIO(4)  
TB0 CCR0 capture: CCI0A input, compare: Out0 output (not  
available on all device types)  
General-purpose digital I/O (not available on all device types)  
A9  
B7  
A8  
A7  
A6  
TB0 CCR1 capture: CCI1A input, compare: Out1 output (not  
available on all device types)  
General-purpose digital I/O (not available on all device types)  
TB0 CCR2 capture: CCI2A input, compare: Out2 output (not  
available on all device types)  
General-purpose digital I/O (not available on all device types)  
TB0 CCR3 capture: CCI3A input, compare: Out3 output (not  
available on all device types)  
General-purpose digital I/O (not available on all device types)  
TB0 CCR4 capture: CCI4A input, compare: Out4 output (not  
available on all device types)  
General-purpose digital I/O (not available on all device types)  
TB0 CCR5 capture: CCI5A input, compare: Out5 output (not  
available on all device types)  
BSLEN  
55  
56  
B6  
A5  
E2  
E3  
36  
37  
I
I
DVIO(4) BSL enable with internal pulldown  
Reset input active low(6)(7)  
RST/NMI  
DVIO(4)  
Nonmaskable interrupt input(6)  
General-purpose digital I/O  
DVCC  
P5.2/XT2IN  
57  
B5  
E1  
38  
I/O  
Input terminal for crystal oscillator XT2(8)  
(6) This pin is configurable as reset or NMI and resides on the DVIO supply domain. When driven from external, input swing levels from  
DVSS to DVIO are required.  
(7) When this pin is configured as reset, the internal pullup resistor is enabled by default.  
(8) When in crystal bypass mode, XT2IN can be configured so that it can support an input digital waveform with swing levels from DVSS to  
DVCC or DVSS to DVIO. In this case, it is required that the pin be configured properly for the intended input swing.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 4-1. Terminal Functions (continued)  
TERMINAL  
NO.  
RGC ZQE YFF RGZ  
I/O(1) SUPPLY  
DESCRIPTION  
NAME  
General-purpose digital I/O  
P5.3/XT2OUT  
58  
59  
60  
61  
62  
63  
B4  
A4  
C5  
C4  
A3  
B3  
D1  
E4  
D2  
C1  
D3  
B1  
39  
40  
41  
42  
43  
44  
I/O  
I
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
Output terminal of crystal oscillator XT2  
Test mode pin – Selects four wire JTAG operation  
TEST/SBWTCK(9)  
PJ.0/TDO(10)  
Spy-Bi-Wire input clock when Spy-Bi-Wire operation activated  
General-purpose digital I/O  
I/O  
I/O  
I/O  
I/O  
JTAG test data output port  
General-purpose digital I/O  
PJ.1/TDI/TCLK(10)  
PJ.2/TMS(10)  
JTAG test data input or test clock input  
General-purpose digital I/O  
JTAG test mode select  
General-purpose digital I/O  
PJ.3/TCK(10)  
JTAG test clock  
Reset input, active-low(11)  
RSTDVCC/  
64  
A2  
D4  
45  
I/O  
DVCC  
SBWTDIO(10)  
Spy-Bi-Wire data input/output when Spy-Bi-Wire operation  
activated  
(12)  
Reserved  
QFN Pad  
N/A  
N/A  
N/A  
Reserved  
Pad N/A  
N/A Pad  
QFN thermal pad. TI recommends connecting to VSS.  
(9) See Section 6.5 and Section 6.6 for use with BSL and JTAG functions.  
(10) See Section 6.6 for use with JTAG function.  
(11) This nonconfigurable reset resides on the DVCC supply domain and has an internal pullup to DVCC. When driven from external, input  
swing levels from DVSS to DVCC are required. This reset must be used for Spy-Bi-Wire communication and is not the same RST/NMI  
reset as found on other devices in the MSP430 family. See Section 6.5 and Section 6.6 for details regarding the use of this pin.  
(12) C6, D4, D5, D6, E3, E4, E5, E6, F3, F4, F5, F6, F7, F8, G3 are reserved and should be connected to ground.  
20  
Terminal Configuration and Functions  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5 Specifications  
All graphs in this section are for typical conditions, unless otherwise noted.  
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.  
5.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
4.1  
UNIT  
V
Voltage applied at VCC to VSS  
–0.3  
–0.3  
–0.3  
–0.3  
Voltage applied at VIO to VSS  
Voltage applied to any pin (excluding VCORE and VIO pins)(2)  
2.2  
V
VCC + 0.3  
VIO + 0.2  
±2  
V
Voltage applied to VIO pins  
V
Diode current at any device pin  
mA  
°C  
(3)  
Storage temperature, Tstg  
–55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
5.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V  
may actually have higher performance.  
5.3 Recommended Operating Conditions  
MIN  
1.8  
NOM  
MAX  
3.6  
UNIT  
PMMCOREVx = 0  
PMMCOREVx = 0, 1  
PMMCOREVx = 0, 1, 2  
PMMCOREVx = 0, 1, 2, 3  
2.0  
3.6  
Supply voltage during program execution and flash  
programming (AVCC = DVCC)(1)(2)(3)  
VCC  
V
2.2  
3.6  
2.4  
3.6  
(2)  
VIO  
Supply voltage applied to DVIO referenced to VSS  
Supply voltage (AVSS = DVSS)  
1.62  
1.98  
V
V
VSS  
TA  
0
Operating free-air temperature  
–40  
–40  
85  
85  
°C  
°C  
nF  
TJ  
Operating junction temperature  
Recommended capacitor at VCORE(4)  
CVCORE  
470  
CDVCC  
CVCORE  
/
Capacitor ratio of DVCC to VCORE  
10  
(1) TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) During VCC and VIO power up, it is required that VIO VCC during the ramp up phase of VIO. During VCC and VIO power down, it is  
required that VIO VCC during the ramp down phase of VIO (see Figure 5-1).  
(3) The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Section 5.28 threshold parameters for  
the exact values and further details.  
(4) A capacitor tolerance of ±20% or better is required.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
MIN  
NOM  
MAX  
UNIT  
PMMCOREVx = 0  
(default condition),  
0
8
1.8 V VCC 3.6 V  
PMMCOREVx = 1,  
2.0 V VCC 3.6 V  
Processor frequency (maximum MCLK frequency)(5)  
(see Figure 5-3)  
0
0
0
12  
20  
25  
fSYSTEM  
MHz  
PMMCOREVx = 2,  
2.2 V VCC 3.6 V  
PMMCOREVx = 3,  
2.4 V VCC 3.6 V  
(5) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
VCC  
VIO  
VIO,min  
VSS  
t
VCC VIO  
VIO VCC  
VCC VIO  
while VIO < VIO,min  
while VIO < VIO,min  
NOTE: The device supports continuous operation with VCC = VSS while VIO is fully within its specification. During this time, the  
general-purpose I/Os that reside on the VIO supply domain are configured as inputs and pulled down to VSS through  
their internal pulldown resistors. RST/NMI is high impedance. BSLEN is configured as an input and is pulled down to  
VSS through its internal pulldown resistor. When VCC reaches above the BOR threshold, the general-purpose I/Os  
become high-impedance inputs (no resistor enabled), RST/NMI becomes an input pulled up to VIO through its internal  
pullup resistor, and BSLEN remains pulled down to VSS through its internal pulldown resistor.  
NOTE: Under certain condtions during the rising transition of VCC, the general-purpose I/Os residing on the VIO supply  
domain may actively transition high momentarily before settling to high-impedance inputs. These voltage transitions  
are temporary (typically resolving to high-impedance inputs when VCC exceeds approximately 0.9 V) and are bounded  
by the VIO supply.  
Figure 5-1. VCC and VIO Power Sequencing  
22  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
VCC  
V(SVSH_+), min  
tWAKE_UP_RESET  
tWAKE_UP_RESET  
tWAKE_UP_RESET  
DVCC  
VCC  
VIT+  
RSTDVCC  
VCC VRSTDVCC  
VRSTDVCC = VCC  
VIO  
tWAKE_UP_RESET  
tWAKE_UP_RESET  
DVIO  
VIO  
VIT+  
RST  
VIO VRST  
VRST = VIO  
t
NOTE: The device remains in reset based on the conditions of the RSTDVCC and RST pins and the voltage present on  
DVCC voltage supply. If RSTDVCC or RST is held at a logic low or if DVCC is below the SVSH_+ minimum  
threshold, the device remains in its reset condition; that is, these conditions form a logical OR with respect to device  
reset.  
Figure 5-2. Reset Timing  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
25  
3
20  
2, 3  
2
12  
1, 2  
1, 2, 3  
1
8
0
0, 1  
0, 1, 2  
0, 1, 2, 3  
0
1.8  
2.0  
2.2  
2.4  
3.6  
Supply Voltage - V  
NOTE: The numbers within the fields denote the supported PMMCOREVx settings.  
Figure 5-3. Maximum System Frequency  
5.4 Active Mode Supply Current Into VCC Excluding External Current  
(2) (3)  
over recommended operating free-air temperature (unless otherwise noted)(1)  
FREQUENCY (fDCO = fMCLK = fSMCLK  
8 MHz 12 MHz 20 MHz  
TYP MAX TYP MAX  
)
EXECUTION  
MEMORY  
PARAMETER  
VCC  
PMMCOREVx  
1 MHz  
25 MHz  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
10.1  
5.3  
MAX  
11.0  
6.2  
0
1
2
3
0
1
2
3
0.36  
0.40  
0.44  
0.46  
0.20  
0.22  
0.24  
0.26  
0.47  
2.32  
2.65  
2.90  
3.10  
1.20  
1.35  
1.50  
1.60  
2.60  
4.0  
4.3  
4.6  
4.4  
IAM, Flash  
Flash  
3.0 V  
mA  
7.1  
7.6  
7.7  
4.2  
0.29  
1.30  
2.0  
2.2  
2.4  
2.2  
IAM, RAM  
RAM  
3.0 V  
mA  
3.7  
3.9  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load  
capacitance are chosen to closely match the required 12.5 pF.  
(3) Characterized with program executing typical data processing.  
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.  
24  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
–40°C  
25°C  
60°C  
85°C  
PARAMETER  
VCC  
PMMCOREVx  
UNIT  
µA  
TYP  
MAX  
TYP  
MAX  
91  
TYP  
MAX  
TYP  
MAX  
97  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0
3
0
3
0
1
2
0
1
2
3
0
1
2
3
0
1
2
3
73  
79  
77  
83  
80  
88  
85  
95  
ILPM0,1MHz  
Low-power mode 0(3)(4)  
Low-power mode 2(5)(4)  
99  
107  
17  
6.5  
7.0  
1.60  
1.65  
1.75  
1.8  
1.9  
2.0  
2.0  
1.1  
1.1  
1.2  
1.3  
0.9  
1.1  
1.2  
1.3  
0.15  
6.5  
7.0  
1.90  
2.00  
2.15  
2.1  
2.3  
2.4  
2.5  
1.4  
1.4  
1.5  
1.6  
1.1  
1.2  
1.2  
1.3  
0.18  
12  
10  
11  
ILPM2  
µA  
13  
11  
12  
18  
2,8  
3.0  
3.2  
3.0  
3.2  
3.3  
3.4  
2.0  
2.2  
2.3  
2.3  
2.0  
2.1  
2.2  
2.2  
0.26  
6.0  
6.3  
6.6  
6.2  
6.5  
6.8  
6.8  
6.1  
6.4  
6.8  
6.8  
5.1  
5.3  
5.5  
5.5  
0.5  
2.2 V  
Low-power mode 3, crystal  
mode(6)(4)  
ILPM3,XT1LF  
2.9  
9.4  
µA  
µA  
3.0 V  
3.9  
2.7  
10.9  
9.7  
Low-power mode 3,  
VLO mode(7)(4)  
ILPM3,VLO  
3.0 V  
3.0  
1.5  
10.9  
8.8  
ILPM4  
Low-power mode 4(8)(4)  
Low-power mode 4.5(9)  
3.0 V  
3.0 V  
µA  
µA  
1.6  
9.8  
1.0  
ILPM4.5  
0.35  
Current supplied from  
DVIO while  
DVCC = AVCC = 0 V,  
DVIO = 1.62 V to 1.98 V,  
All DVIO I/O floating  
including BSLEN and  
RST/NMI  
IDVIO_START  
0 V  
1.8  
1.8  
1.8  
1.8  
µA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load  
capacitance are chosen to closely match the required 12.5 pF.  
(3) Current for the watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz  
(4) Current for brownout and high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML)  
disabled. High-side monitor (SVMH) disabled. RAM retention enabled.  
(5) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1  
MHz operation, DCO bias generator enabled.)  
(6) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
(7) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz  
(8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(9) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.6 Thermal Resistance Characteristics  
THERMAL METRIC(1)  
VALUE(2)  
27.8  
29.6  
44.3  
35.2  
13.6  
14.8  
0.2  
UNIT  
VQFN 48 (RGZ)  
VQFN 64 (RGC)  
DSBGA 64 (YFF)  
BGA 80 (ZQE)  
RθJA  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
°C/W  
VQFN 48 (RGZ)  
VQFN 64 (RGC)  
DSBGA 64 (YFF)  
BGA 80 (ZQE)  
RθJC(TOP)  
RθJC(BOTTOM)  
RθJB  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
17.6  
0.9  
VQFN 48 (RGZ)  
VQFN 64 (RGC)  
DSBGA 64 (YFF)  
BGA 80 (ZQE)  
1.4  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal resistance  
N/A(3)  
N/A  
4.7  
VQFN 48 (RGZ)  
VQFN 64 (RGC)  
DSBGA 64 (YFF)  
BGA 80 (ZQE)  
8.5  
6.0  
16.7  
0.2  
VQFN 48 (RGZ)  
VQFN 64 (RGC)  
DSBGA 64 (YFF)  
BGA 80 (ZQE)  
0.2  
ΨJT  
Junction-to-package-top thermal characterization parameter  
Junction-to-board thermal characterization parameter  
0.6  
0.3  
VQFN 48 (RGZ)  
VQFN 64 (RGC)  
DSBGA 64 (YFF)  
BGA 80 (ZQE)  
4.7  
8.4  
ΨJB  
6.0  
9.6  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(3) N/A = not applicable  
26  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.7 Schmitt-Trigger Inputs – General-Purpose I/O DVCC Domain(1)  
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3, RSTDVCC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.80  
1.50  
0.45  
0.75  
0.3  
TYP  
MAX UNIT  
1.40  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
2.10  
1.8 V  
3 V  
1.00  
V
Negative-going input threshold voltage  
1.65  
1.8 V  
3 V  
0.8  
V
Input voltage hysteresis (VIT+ – VIT–  
)
0.4  
1.0  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
,
RPull  
CI  
Pullup or pulldown resistor(2)  
Input capacitance  
20  
35  
5
50  
kΩ  
VIN = VSS or VCC  
pF  
(1) Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).  
(2) RSTDVCC has a fixed pullup resistor that cannot be disabled.  
5.8 Schmitt-Trigger Inputs – General-Purpose I/O DVIO Domain  
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5, RST/NMI, BSLEN)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VIO  
1.62 V  
MIN  
0.8  
1.1  
0.3  
0.5  
0.3  
TYP  
MAX UNIT  
1.25  
V
VIT+  
Positive-going input threshold voltage  
VCC = 3.0 V  
1.98 V  
1.40  
1.62 V  
0.7  
V
VIT–  
Negative-going input threshold voltage  
VCC = 3.0 V  
VCC = 3.0 V  
1.98 V  
1.0  
Vhys  
RPull  
CI  
Input voltage hysteresis (VIT+ – VIT–  
Pullup or pulldown resistor(1)  
Input capacitance  
)
1.62 V to 1.98 V  
0.8  
V
For pullup: VIN = VSS  
,
20  
35  
5
50  
kΩ  
pF  
For pulldown: VIN = VIO  
VIN = VSS or VIO  
(1) Also applies to RST pin when pullup or pulldown resistor is enabled.  
5.9 Inputs – Interrupts DVCC Domain Port P1  
(P1.0 to P1.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
t(int)  
External interrupt timing(1)  
External trigger pulse duration to set interrupt flag  
1.8 V, 3 V  
20  
ns  
(1) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
5.10 Inputs – Interrupts DVIO Domain Ports P1 and P2  
(P1.4 to P1.7, P2.0 to P2.7)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VIO  
MIN  
MAX UNIT  
External trigger pulse duration to set interrupt flag,  
VCC = 1.8 V or 3.0 V  
t(int)  
External interrupt timing(2)  
1.62 V to 1.98 V  
20  
ns  
(1) In all test conditions, VIO VCC  
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
.
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.11 Leakage Current – General-Purpose I/O DVCC Domain  
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
50 nA  
(1) (2)  
Ilkg(Px.y)  
High-impedance leakage current  
1.8 V, 3 V  
–50  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
5.12 Leakage Current – General-Purpose I/O DVIO Domain  
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VIO  
MIN  
MAX UNIT  
50 nA  
(2) (3)  
Ilkg(Px.y)  
High-impedance leakage current  
1.62 V to 1.98 V  
–50  
(1) In all test conditions, VIO VCC  
.
(2) The leakage current is measured with VSS or VIO applied to the corresponding pins, unless otherwise noted.  
(3) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
5.13 Outputs – General-Purpose I/O DVCC Domain (Full Drive Strength)  
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –10 mA(2)  
I(OHmax) = –5 mA(1)  
I(OHmax) = –15 mA(2)  
I(OLmax) = 3 mA(1)  
I(OLmax) = 10 mA(2)  
I(OLmax) = 5 mA(1)  
I(OLmax) = 15 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
5.14 Outputs – General-Purpose I/O DVCC Domain (Reduced Drive Strength)  
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(2)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –3 mA(3)  
I(OHmax) = –2 mA(2)  
I(OHmax) = –6 mA(3)  
I(OLmax) = 1 mA(2)  
I(OLmax) = 3 mA(3)  
I(OLmax) = 2 mA(2)  
I(OLmax) = 6 mA(3)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3.0 V  
1.8 V  
3.0 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) Selecting reduced drive strength may reduce EMI.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(3) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
28  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.15 Outputs – General-Purpose I/O DVIO Domain (Full Drive Strength)  
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(2)  
I(OHmax) = –6 mA(2)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 6 mA(2)  
VIO  
MIN  
VIO – 0.25  
VIO – 0.50  
MAX UNIT  
VIO  
VOH  
High-level output voltage  
1.62 V to 1.98 V  
V
VIO  
VSS VSS + 0.25  
VSS VSS + 0.50  
VOL  
Low-level output voltage  
1.62 V to 1.98 V  
V
(1) In all test conditions, VIO VCC  
.
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
5.16 Outputs – General-Purpose I/O DVIO Domain (Reduced Drive Strength)  
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(2)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(3)  
I(OHmax) = –2 mA(3)  
I(OLmax) = 1 mA(3)  
I(OLmax) = 2 mA(3)  
VIO  
MIN  
VIO – 0.25  
VIO – 0.50  
MAX UNIT  
VIO  
VOH  
High-level output voltage  
1.62 V to 1.98 V  
V
VIO  
VSS VSS + 0.25  
VSS VSS + 0.50  
VOL  
Low-level output voltage  
1.62 V to 1.98 V  
V
(1) Selecting reduced drive strength may reduce EMI.  
(2) In all test conditions, VIO VCC  
.
(3) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.17 Output Frequency – General-Purpose I/O DVCC Domain  
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
VCC = 1.8 V,  
PMMCOREVx = 0  
16  
Port output frequency  
(with load)  
(1)(2)  
fPx.y  
MHz  
25  
VCC = 3 V,  
PMMCOREVx = 3  
VCC = 1.8 V,  
PMMCOREVx = 0  
16  
ACLK, SMCLK, or MCLK,  
CL = 20 pF(2)  
fPort_CLK  
Clock output frequency  
MHz  
25  
VCC = 3 V,  
PMMCOREVx = 3  
(1) A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full  
drive strength, R1 = 550 . For reduced drive strength, R1 = 1.6 k. CL = 20 pF is connected to the output to VSS  
.
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
5.18 Output Frequency – General-Purpose I/O DVIO Domain  
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VIO = 1.62 V to 1.98 V(3)  
MIN  
MAX UNIT  
,
,
,
,
16  
PMMCOREVx = 0  
VIO = 1.62 V to 1.98 V(3)  
PMMCOREVx = 3  
Port output frequency  
(with load)  
(1)(2)  
fPx.y  
MHz  
25  
VIO = 1.62 V to 1.98 V(3)  
PMMCOREVx = 0  
VIO = 1.62 V to 1.98 V(3)  
PMMCOREVx = 3  
16  
ACLK, SMCLK, or MCLK,  
CL = 20 pF(2)  
fPort_CLK  
Clock output frequency  
MHz  
25  
(1) A resistive divider with 2 × R1 between VIO and VSS is used as load. The output is connected to the center tap of the divider. For full  
drive strength, R1 = 550 . For reduced drive strength, R1 = 1.6 k. CL = 20 pF is connected to the output to VSS  
.
(2) The output voltage reaches at least 10% and 90% VIO at the specified toggle frequency.  
(3) In all test conditions, VIO VCC  
.
30  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.19 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
25.0  
20.0  
15.0  
10.0  
5.0  
TA = 25°C  
TA = 85°C  
VCC = 3.0 V  
Px.y  
VCC = 1.8 V  
Px.y  
TA = 25°C  
TA = 85°C  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOL – Low-Level Output Voltage – V  
Figure 5-5. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
VOL – Low-Level Output Voltage – V  
Figure 5-4. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
0.0  
0.0  
VCC = 1.8 V  
VCC = 3.0 V  
Px.y  
Px.y  
−1.0  
−5.0  
−2.0  
−3.0  
−4.0  
−10.0  
TA = 85°C  
−5.0  
−15.0  
TA = 85°C  
−6.0  
TA = 25°C  
−20.0  
TA = 25°C  
−7.0  
−8.0  
−25.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOH – High-Level Output Voltage – V  
Figure 5-7. Typical High-Level Output Current vs High-Level  
Output Voltage  
VOH – High-Level Output Voltage – V  
Figure 5-6. Typical High-Level Output Current vs High-Level  
Output Voltage  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.20 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
60.0  
24  
20  
16  
12  
8
TA = 25°C  
TA = 85°C  
VCC = 1.8 V  
Px.y  
VCC = 3.0 V  
Px.y  
55.0  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
TA = 25°C  
TA = 85°C  
4
0
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOL – Low-Level Output Voltage – V  
Figure 5-9. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
VOL – Low-Level Output Voltage – V  
Figure 5-8. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
0
0.0  
VCC = 1.8 V  
Px.y  
VCC = 3.0 V  
−5.0  
Px.y  
−10.0  
−15.0  
−20.0  
−25.0  
−30.0  
−35.0  
−40.0  
−4  
−8  
−12  
TA = 85°C  
−16  
−45.0  
TA = 85°C  
−50.0  
−55.0  
TA = 25°C  
−60.0  
TA = 25°C  
−20  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
VOH – High-Level Output Voltage – V  
Figure 5-10. Typical High-Level Output Current vs High-Level  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOH – High-Level Output Voltage – V  
Figure 5-11. Typical High-Level Output Current vs High-Level  
Output Voltage  
Output Voltage  
32  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.21 Crystal Oscillator, XT1, Low-Frequency Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
TA = 25°C  
0.075  
Differential XT1 oscillator crystal  
fOSC = 32768 Hz, XTS = 0,  
ΔIDVCC.LF  
current consumption from lowest XT1BYPASS = 0, XT1DRIVEx = 2,  
3.0 V  
0.170  
µA  
drive setting, LF mode  
TA = 25°C  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C  
0.290  
XT1 oscillator crystal frequency,  
LF mode  
fXT1,LF0  
XTS = 0, XT1BYPASS = 0  
32768  
Hz  
XT1 oscillator logic-level square- XTS = 0, XT1BYPASS = 1(2)(3)  
fXT1,LF,SW  
10 32.768  
210  
50 kHz  
wave input frequency, LF mode  
XT1BYPASSLV = 0 or 1  
XTS = 0, XT1BYPASS = 0,  
XT1DRIVEx = 0,  
fXT1,LF = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(4)  
OALF  
kΩ  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,LF = 32768 Hz, CL,eff = 12 pF  
300  
XTS = 0, XCAPx = 0(6)  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
Integrated effective load  
capacitance, LF mode(5)  
CL,eff  
pF  
8.5  
12.0  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30%  
10  
70%  
Oscillator fault frequency,  
LF mode(7)  
XTS = 0, XT1BYPASS = 1(8)  
XT1BYPASSLV = 0 or 1  
,
fFault,LF  
10000  
Hz  
ms  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TA = 25°C, CL,eff = 6 pF  
1000  
500  
tSTART,LF  
Start-up time, LF mode  
3.0 V  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C, CL,eff = 12 pF  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-Trigger Inputs section of this data sheet. When in crystal bypass mode, XIN can be configured so that it can support an  
input digital waveform with swing levels from DVSS to DVCC (XT1BYPASSLV = 0) or DVSS to DVIO (XT1BYPASSLV = 1). In this case,  
the pin must be configured properly for the intended input swing.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but each application should be evaluated based on the actual crystal selected:  
For XT1DRIVEx = 0, CL,eff 6 pF  
For XT1DRIVEx = 1, 6 pF CL,eff 9 pF  
For XT1DRIVEx = 2, 6 pF CL,eff 10 pF  
For XT1DRIVEx = 3, CL,eff 6 pF  
(5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the  
effective load capacitance should always match the specification of the used crystal.  
(6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX specifications might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
MAX UNIT  
5.22 Crystal Oscillator, XT2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
fOSC = 4 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C  
200  
fOSC = 12 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 1,  
TA = 25°C  
260  
325  
450  
XT2 oscillator crystal current  
consumption  
IDVCC.XT2  
3.0 V  
µA  
fOSC = 20 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 2,  
TA = 25°C  
fOSC = 32 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 3,  
TA = 25°C  
XT2 oscillator crystal frequency,  
mode 0  
fXT2,HF0  
fXT2,HF1  
fXT2,HF2  
fXT2,HF3  
XT2DRIVEx = 0, XT2BYPASS = 0(3)  
XT2DRIVEx = 1, XT2BYPASS = 0(3)  
XT2DRIVEx = 2, XT2BYPASS = 0(3)  
XT2DRIVEx = 3, XT2BYPASS = 0(3)  
4
8
8
MHz  
XT2 oscillator crystal frequency,  
mode 1  
16 MHz  
24 MHz  
32 MHz  
XT2 oscillator crystal frequency,  
mode 2  
16  
24  
XT2 oscillator crystal frequency,  
mode 3  
XT2 oscillator logic-level square-  
wave input frequency, bypass  
mode  
XT2BYPASS = 1(4)(3)  
XT2BYPASSLV = 0 or 1  
fXT2,HF,SW  
0.7  
32 MHz  
XT2DRIVEx = 0, XT2BYPASS = 0,  
fXT2,HF0 = 6 MHz, CL,eff = 15 pF  
450  
320  
200  
200  
XT2DRIVEx = 1, XT2BYPASS = 0,  
fXT2,HF1 = 12 MHz, CL,eff = 15 pF  
Oscillation allowance for  
HF crystals(5)  
OAHF  
XT2DRIVEx = 2, XT2BYPASS = 0,  
fXT2,HF2 = 20 MHz, CL,eff = 15 pF  
XT2DRIVEx = 3, XT2BYPASS = 0,  
fXT2,HF3 = 32 MHz, CL,eff = 15 pF  
fOSC = 6 MHz,  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C, CL,eff = 15 pF  
0.5  
0.3  
tSTART,HF  
Start-up time  
3.0 V  
ms  
pF  
fOSC = 20 MHz,  
XT2BYPASS = 0, XT2DRIVEx = 2,  
TA = 25°C, CL,eff = 15 pF  
Integrated effective load  
CL,eff  
1
capacitance, HF mode(6) (1)  
Duty cycle  
Measured at ACLK, fXT2,HF2 = 20 MHz  
40%  
50%  
60%  
(1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(2) To improve EMI on the XT2 oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.  
Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(3) This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device  
operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.  
(4) When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined  
in the Schmitt-trigger Inputs section of this data sheet. When in crystal bypass mode, XT2IN can be configured so that it can support an  
input digital waveform with swing levels from DVSS to DVCC (XT2BYPASSLV = 0) or DVSS to DVIO (XT2BYPASSLV = 1). In this case,  
it is required that the pin be configured properly for the intended input swing.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the  
effective load capacitance should always match the specification of the used crystal.  
34  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Crystal Oscillator, XT2 (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
XT2BYPASS = 1(8)  
XT2BYPASSLV = 0 or 1  
,
fFault,HF  
Oscillator fault frequency(7)  
30  
300 kHz  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX specifications might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals. In general, an effective load capacitance of up to  
18 pF can be supported.  
5.23 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
9.4  
0.5  
4
MAX UNIT  
14 kHz  
%/°C  
fVLO  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
dfVLO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
Duty cycle  
%/V  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
5.24 Internal Reference, Low-Frequency Oscillator (REFO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
3
MAX UNIT  
µA  
IREFO  
REFO oscillator current consumption TA = 25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
REFO frequency  
Measured at ACLK  
32768  
Hz  
fREFO  
Full temperature range  
TA = 25°C  
Measured at ACLK(1)  
1.8 V to 3.6 V –3.5%  
3.5%  
1.5%  
%/°C  
%/V  
REFO absolute tolerance  
REFO frequency temperature drift  
3 V  
–1.5%  
dfREFO/dT  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
0.01  
1.0  
dfREFO/dVCC  
REFO frequency supply voltage drift Measured at ACLK(2)  
Duty cycle  
Measured at ACLK  
40%/60% duty cycle  
40%  
50%  
25  
60%  
tSTART  
REFO start-up time  
µs  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.25 DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DCORSELx = 0, DCOx = 0, MODx = 0  
DCORSELx = 0, DCOx = 31, MODx = 0  
DCORSELx = 1, DCOx = 0, MODx = 0  
DCORSELx = 1, DCOx = 31, MODx = 0  
DCORSELx = 2, DCOx = 0, MODx = 0  
DCORSELx = 2, DCOx = 31, MODx = 0  
DCORSELx = 3, DCOx = 0, MODx = 0  
DCORSELx = 3, DCOx = 31, MODx = 0  
DCORSELx = 4, DCOx = 0, MODx = 0  
DCORSELx = 4, DCOx = 31, MODx = 0  
DCORSELx = 5, DCOx = 0, MODx = 0  
DCORSELx = 5, DCOx = 31, MODx = 0  
DCORSELx = 6, DCOx = 0, MODx = 0  
DCORSELx = 6, DCOx = 31, MODx = 0  
DCORSELx = 7, DCOx = 0, MODx = 0  
DCORSELx = 7, DCOx = 31, MODx = 0  
MIN  
0.07  
0.70  
0.15  
1.47  
0.32  
3.17  
0.64  
6.07  
1.3  
TYP  
MAX UNIT  
0.20 MHz  
1.70 MHz  
0.36 MHz  
3.45 MHz  
0.75 MHz  
7.38 MHz  
1.51 MHz  
14.0 MHz  
3.2 MHz  
fDCO(0,0)  
fDCO(0,31)  
fDCO(1,0)  
fDCO(1,31)  
fDCO(2,0)  
fDCO(2,31)  
fDCO(3,0)  
fDCO(3,31)  
fDCO(4,0)  
fDCO(4,31)  
fDCO(5,0)  
fDCO(5,31)  
fDCO(6,0)  
fDCO(6,31)  
fDCO(7,0)  
fDCO(7,31)  
DCO frequency (0, 0)(1)  
DCO frequency (0, 31)(1)  
DCO frequency (1, 0)(1)  
DCO frequency (1, 31)(1)  
DCO frequency (2, 0)(1)  
DCO frequency (2, 31)(1)  
DCO frequency (3, 0)(1)  
DCO frequency (3, 31)(1)  
DCO frequency (4, 0)(1)  
DCO frequency (4, 31)(1)  
DCO frequency (5, 0)(1)  
DCO frequency (5, 31)(1)  
DCO frequency (6, 0)(1)  
DCO frequency (6, 31)(1)  
DCO frequency (7, 0)(1)  
DCO frequency (7, 31)(1)  
12.3  
2.5  
28.2 MHz  
6.0 MHz  
23.7  
4.6  
54.1 MHz  
10.7 MHz  
88.0 MHz  
19.6 MHz  
135 MHz  
39.0  
8.5  
60  
Frequency step between range  
DCORSEL and DCORSEL + 1  
SDCORSEL  
SDCO  
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)  
1.2  
2.3 ratio  
Frequency step between tap  
DCO and DCO + 1  
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)  
Measured at SMCLK  
1.02  
40%  
1.12 ratio  
60%  
Duty cycle  
50%  
0.1  
DCO frequency temperature  
drift(2)  
dfDCO/dT  
fDCO = 1 MHz  
%/°C  
dfDCO/dVCC  
DCO frequency voltage drift(3)  
fDCO = 1 MHz  
1.9  
%/V  
(1) When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the  
range of fDCO(n, 0),MAX fDCO fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,  
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx  
= 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual fDCO  
frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the  
selected range is at its minimum or maximum tap setting.  
(2) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(3) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
100  
VCC = 3.0 V  
TA = 25°C  
10  
DCOx = 31  
1
DCOx = 0  
0.1  
0
1
2
3
4
5
6
7
DCORSEL  
Figure 5-12. Typical DCO Frequency  
36  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.26 PMM, Brownout Reset (BOR)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s  
MIN  
TYP  
MAX UNIT  
VDVCC_BOR_IT–  
VDVCC_BOR_IT+  
VDVCC_BOR_hys  
BORH on voltage, DVCC falling level  
BORH off voltage, DVCC rising level  
BORH hysteresis  
1.45  
1.50  
250  
V
V
0.80  
50  
1.30  
mV  
Pulse duration required at RST/NMI pin to accept  
a reset  
tRESET  
2
µs  
5.27 PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Core voltage, active mode,  
PMMCOREV = 3  
VCORE3(AM)  
VCORE2(AM)  
VCORE1(AM)  
VCORE0(AM)  
VCORE3(LPM)  
VCORE2(LPM)  
VCORE1(LPM)  
VCORE0(LPM)  
2.4 V DVCC 3.6 V  
1.90  
V
Core voltage, active mode,  
PMMCOREV = 2  
2.2 V DVCC 3.6 V  
2.0 V DVCC 3.6 V  
1.8 V DVCC 3.6 V  
2.4 V DVCC 3.6 V  
2.2 V DVCC 3.6 V  
2.0 V DVCC 3.6 V  
1.8 V DVCC 3.6 V  
1.80  
1.60  
1.40  
1.94  
1.84  
1.64  
1.44  
V
V
V
V
V
V
V
Core voltage, active mode,  
PMMCOREV = 1  
Core voltage, active mode,  
PMMCOREV = 0  
Core voltage, low-current mode,  
PMMCOREV = 3  
Core voltage, low-current mode,  
PMMCOREV = 2  
Core voltage, low-current mode,  
PMMCOREV = 1  
Core voltage, low-current mode,  
PMMCOREV = 0  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
37  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.28 PMM, SVS High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVSHE = 0, DVCC = 3.6 V  
MIN  
TYP  
0
MAX UNIT  
nA  
I(SVSH)  
SVS current consumption  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1  
SVSHE = 1, SVSHRVL = 0  
200  
1.5  
µA  
1.57  
1.79  
1.98  
2.10  
1.62  
1.88  
2.07  
2.20  
2.32  
2.52  
2.90  
2.90  
1.68  
1.88  
2.08  
2.18  
1.74  
1.94  
2.14  
2.30  
2.40  
2.70  
3.10  
3.10  
1.78  
SVSHE = 1, SVSHRVL = 1  
1.98  
V
V(SVSH_IT–)  
SVSH on voltage level(1)  
SVSHE = 1, SVSHRVL = 2  
2.21  
SVSHE = 1, SVSHRVL = 3  
2.31  
1.85  
2.07  
2.28  
SVSHE = 1, SVSMHRRL = 0  
SVSHE = 1, SVSMHRRL = 1  
SVSHE = 1, SVSMHRRL = 2  
SVSHE = 1, SVSMHRRL = 3  
SVSHE = 1, SVSMHRRL = 4  
SVSHE = 1, SVSMHRRL = 5  
SVSHE = 1, SVSMHRRL = 6  
SVSHE = 1, SVSMHRRL = 7  
2.42  
V
V(SVSH_IT+)  
SVSH off voltage level(1)  
2.55  
2.88  
3.23  
3.23  
SVSHE = 1, dVDVCC/dt = 10 mV/µs,  
SVSHFP = 1  
2.5  
20  
tpd(SVSH)  
SVSH propagation delay  
µs  
µs  
SVSHE = 1, dVDVCC/dt = 1 mV/µs,  
SVSHFP = 0  
SVSHE = 0 1, dVDVCC/dt = 10 mV/µs,  
SVSHFP = 1  
12.5  
100  
t(SVSH)  
SVSH on or off delay time  
DVCC rise time  
SVSHE = 0 1, dVDVCC/dt = 1 mV/µs,  
SVSHFP = 0  
dVDVCC/dt  
0
1000  
V/s  
(1) The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and use.  
38  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.29 PMM, SVM High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVMHE = 0, DVCC = 3.6 V  
MIN  
TYP  
0
MAX UNIT  
nA  
I(SVMH)  
SVMH current consumption  
SVMHE= 1, DVCC = 3.6 V, SVMHFP = 0  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1  
SVMHE = 1, SVSMHRRL = 0  
SVMHE = 1, SVSMHRRL = 1  
SVMHE = 1, SVSMHRRL = 2  
SVMHE = 1, SVSMHRRL = 3  
SVMHE = 1, SVSMHRRL = 4  
SVMHE = 1, SVSMHRRL = 5  
SVMHE = 1, SVSMHRRL = 6  
SVMHE = 1, SVSMHRRL = 7  
SVMHE = 1, SVMHOVPE = 1  
200  
1.5  
µA  
1.85  
1.62  
1.88  
2.07  
2.20  
2.32  
2.52  
2.90  
2.90  
1.74  
1.94  
2.14  
2.30  
2.40  
2.70  
3.10  
3.10  
3.75  
2.07  
2.28  
2.42  
V(SVMH)  
SVMH on or off voltage level(1)  
2.55  
2.88  
3.23  
3.23  
V
SVMHE = 1, dVDVCC/dt = 10 mV/µs,  
SVMHFP = 1  
2.5  
20  
tpd(SVMH)  
SVMH propagation delay  
SVMH on or off delay time  
µs  
µs  
SVMHE = 1, dVDVCC/dt = 1 mV/µs,  
SVMHFP = 0  
SVMHE = 0 1, dVDVCC/dt = 10 mV/µs,  
SVMHFP = 1  
12.5  
100  
t(SVMH)  
SVMHE = 0 1, dVDVCC/dt = 1 mV/µs,  
SVMHFP = 0  
(1) The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and use.  
5.30 PMM, SVS Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVSLE = 0, PMMCOREV = 2  
MIN  
TYP  
0
MAX UNIT  
nA  
µA  
µs  
I(SVSL)  
SVSL current consumption  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0  
200  
1.5  
2.5  
20  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
SVSLE = 0 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 0 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
tpd(SVSL)  
SVSL propagation delay  
SVSL on or off delay time  
12.5  
100  
t(SVSL)  
µs  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.31 PMM, SVM Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVMLE = 0, PMMCOREV = 2  
MIN  
TYP  
0
MAX UNIT  
nA  
µA  
µs  
I(SVML)  
SVML current consumption  
SVMLE= 1, PMMCOREV = 2, SVMLFP = 0  
200  
1.5  
2.5  
20  
SVMLE= 1, PMMCOREV = 2, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
SVMLE = 0 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 0 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
tpd(SVML) SVML propagation delay  
12.5  
100  
t(SVML)  
SVML on or off delay time  
µs  
5.32 Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
f
MCLK 4.0 MHz  
3.5  
7.5  
Wake-up time from LPM2,  
LPM3, or LPM4 to active  
mode(1)  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 1  
tWAKE-UP-FAST  
µs  
9
1.0 MHz < fMCLK  
4.0 MHz  
<
4.5  
Wake-up time from LPM2,  
LPM3, or LPM4 to active  
mode(2)(3)  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 0  
tWAKE-UP-SLOW  
150  
175  
µs  
Wake-up time from LPM4.5  
to active mode(4)  
tWAKE-UP-LPM5  
tWAKE-UP-RESET  
2
2
3
3
ms  
ms  
Wake-up time from RST or  
BOR event to active mode(4)  
(1) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance  
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in full performance  
mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in  
the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx Family User's Guide.  
(2) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance  
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in normal mode (low  
current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the  
Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx Family User's Guide.  
(3) The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the  
performance mode settings as for LPM2, LPM3, and LPM4.  
(4) This value represents the time from the wake-up event to the reset vector execution.  
40  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.33 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
VIO  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TACLK,  
Duty cycle = 50% ±10%  
1.8 V  
1.62 V to 1.8 V  
25  
fTA  
Timer_A input clock frequency  
MHz  
3.0 V  
1.8 V  
3.0 V  
1.62 V to 1.98 V  
1.62 V to 1.8 V  
1.62 V to 1.98 V  
25  
All capture inputs,  
Minimum pulse duration  
required for capture  
20  
20  
tTA,cap Timer_A capture timing(1)  
ns  
(1) The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter  
than tTA,cap  
.
5.34 Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
VIO  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
Duty cycle = 50% ±10%  
1.8 V  
1.62 V to 1.8 V  
25  
fTB  
Timer_B input clock frequency  
MHz  
3.0 V  
1.8 V  
3.0 V  
1.62 V to 1.98 V  
1.62 V to 1.8 V  
1.62 V to 1.98 V  
25  
All capture inputs,  
Minimum pulse duration  
required for capture  
20  
20  
tTB,cap Timer_B capture timing(1)  
ns  
(1) The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter  
than tTB,cap  
.
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
41  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.35 USCI (UART Mode), Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
1
MHz  
5.36 USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
VIO  
MIN  
MAX UNIT  
1.62 V to  
1.80 V  
1.8 V  
50  
50  
600  
ns  
tτ  
UART receive deglitch time(1)  
1.62 V to  
1.98 V  
3.0 V  
600  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
5.37 USCI (SPI Master Mode), Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
Internal: SMCLK or ACLK,  
Duty cycle = 50% ±10%  
MIN  
MAX UNIT  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
5.38 USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 5-13 and Figure 5-14)  
PARAMETER  
TEST CONDITIONS  
VCC  
VIO  
MIN  
MAX UNIT  
SMCLK or ACLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM  
MHz  
Duty cycle = 50% ±10%  
PMMCOREV = 0  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
1.62 V to 1.80 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.80 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.80 V  
55  
55  
35  
35  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
ns  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
0
tHD,MI  
ns  
ns  
ns  
0
0
UCLK edge to SIMO valid,  
CL = 20 pF,  
PMMCOREV = 0  
20  
20  
16  
16  
3.0 V  
2.4 V  
3.0 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
tVALID,MO  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
UCLK edge to SIMO valid,  
CL = 20 pF,  
PMMCOREV = 3  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.62 V to 1.80 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
–10  
–10  
–10  
–10  
CL = 20 pF,  
PMMCOREV = 0  
tHD,MO  
CL = 20 pF,  
PMMCOREV = 3  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-13 and Figure 5-14.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-  
13 and Figure 5-14.  
42  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 5-13. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 5-14. SPI Master Mode, CKPH = 1  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.39 USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 5-15 and Figure 5-16)  
PARAMETER  
TEST CONDITIONS  
VCC  
VIO  
MIN  
12  
12  
10  
10  
6
MAX UNIT  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
PMMCOREV = 0  
tSTE,LEAD STE lead time, STE low to clock  
ns  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
6
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lag time, Last clock to STE high  
ns  
6
6
65  
65  
ns  
45  
STE access time, STE low to SOMI  
data out  
45  
35  
35  
ns  
25  
STE disable time, STE high to SOMI  
high impedance  
25  
5
5
5
5
5
5
5
5
SIMO input data setup time  
SIMO input data hold time  
ns  
tHD,SI  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF,  
PMMCOREV = 0  
75  
75  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
tVALID,SO SOMI output data valid time(2)  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF,  
PMMCOREV = 3  
50  
50  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
18  
18  
10  
10  
CL = 20 pF,  
PMMCOREV = 0  
tHD,SO  
SOMI output data hold time(3)  
ns  
CL = 20 pF,  
PMMCOREV = 3  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-15 and Figure 5-16.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-15  
and Figure 5-16.  
44  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
SOMI  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 5-15. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 5-16. SPI Slave Mode, CKPH = 1  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.40 USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
VIO  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
Duty cycle = 50% ±10%  
fUSCI  
USCI input clock frequency  
fSYSTEM  
400  
MHz  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
0
4.0  
0.6  
4.7  
0.6  
0
kHz  
µs  
f
SCL 100 kHz  
fSCL > 100 kHz  
SCL 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
f
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
1.62 V to 1.98 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3 V  
2.2 V, 3 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
ns  
ns  
250  
4.0  
0.6  
fSCL 100 kHz  
tSU,STO  
tSP  
Setup time for STOP  
2.2 V, 3 V  
2.2 V, 3 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
µs  
ns  
fSCL > 100 kHz  
Pulse duration of spikes  
suppressed by input filter  
50  
600  
(1) In all test conditions, VIO VCC  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 5-17. I2C Mode Timing  
46  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.41 10-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
AVCC  
V(Ax)  
Analog supply voltage  
1.8  
3.6  
V
V
All ADC10_A pins: P1.0 to P1.5 and P3.6 and  
P3.7 terminals  
Analog input voltage range(2)  
0
AVCC  
Operating supply current into  
AVCC terminal, REF module  
and reference buffer off  
fADC10CLK = 5.0 MHz, ADC10ON = 1,  
REFON = 0, SHT0 = 0, SHT1 = 0,  
ADC10DIV = 0, ADC10SREF = 00  
2.2 V  
3 V  
60  
75  
100  
110  
Operating supply current into  
AVCC terminal, REF module  
on, reference buffer on  
fADC10CLK = 5.0 MHz, ADC10ON = 1,  
REFON = 1, SHT0 = 0, SHT1 = 0,  
ADC10DIV = 0, ADC10SREF = 01  
3 V  
3 V  
113  
105  
150  
140  
fADC10CLK = 5.0 MHz, ADC10ON = 1,  
REFON = 0, SHT0 = 0, SHT1 = 0,  
ADC10DIV = 0, ADC10SREF = 10,  
VEREF = 2.5 V  
IADC10_A  
µA  
Operating supply current into  
AVCC terminal, REF module  
off, reference buffer on  
fADC10CLK = 5.0 MHz, ADC10ON = 1,  
REFON = 0, SHT0 = 0, SHT1 = 0,  
ADC10DIV = 0, ADC10SREF = 11,  
VEREF = 2.5 V  
Operating supply current into  
AVCC terminal, REF module  
off, reference buffer off  
3 V  
70  
110  
Only one terminal Ax can be selected at one  
time from the pad to the ADC10_A capacitor  
array including wiring and pad.  
CI  
RI  
Input capacitance  
2.2 V  
3.5  
pF  
AVCC > 2 V, 0 V VAx AVCC  
36  
96  
Input MUX ON resistance  
kΩ  
1.8 V < AVCC < 2 V, 0 V VAx AVCC  
(1) The leakage current is defined in the leakage current table with P6.x/Ax parameter.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The external  
reference voltage requires decoupling capacitors. See ()  
.
5.42 10-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC10_A linearity  
parameters  
fADC10CLK  
fADC10OSC  
Input clock frequency  
2.2 V, 3 V  
0.45  
5
5.5 MHz  
Internal ADC10_A  
oscillator(1)  
ADC10DIV = 0, fADC10CLK = fADC10OSC  
2.2 V, 3 V  
2.2 V, 3 V  
4.2  
2.4  
4.8  
5.4 MHz  
REFON = 0, Internal oscillator, 12 ADC10CLK  
cycles, 10-bit mode,  
fADC10OSC = 4 MHz to 5 MHz  
3.0  
µs  
tCONVERT  
Conversion time  
External fADC10CLK from ACLK, MCLK or  
12 ×  
SMCLK, ADC10SSEL 0  
1 / fADC10CLK  
Turn on settling time of  
the ADC  
(2)  
tADC10ON  
tSample  
See  
100  
ns  
1.8 V  
3.0 V  
3
1
µs  
µs  
Sampling time  
RS = 1000 , RI = 96 k , CI = 3.5 pF(3)  
(1) The ADC10OSC is sourced directly from MODOSC inside the UCS.  
(2) The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
(3) Approximately 8 Tau (τ) are needed to get an error of less than ±0.5 LSB  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
47  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
MAX UNIT  
5.43 10-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
1.4 V (VeREF+ – VeREF–) 1.6 V, CVeREF+ = 20 pF  
1.6 V < (VeREF+ – VeREF–) VAVCC, CVeREF+ = 20 pF  
±1.0  
LSB  
±1.0  
Integral  
linearity error  
EI  
2.2 V, 3 V  
Differential  
linearity error  
ED  
EO  
EG  
ET  
1.4 V (VeREF+ – VeREF–), CVeREF+ = 20 pF  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±1.0 LSB  
±1.0 LSB  
±1.0 LSB  
±2.0 LSB  
1.4 V (VeREF+ – VeREF–), CVeREF+ = 20 pF  
Internal impedance of source RS < 100 Ω  
Offset error  
Gain error  
1.4 V (VeREF+ – VeREF–), CVeREF+ = 20 pF,  
ADC10SREFx = 11b  
Total unadjusted  
error  
1.4 V (VeREF+ – VeREF–), CVeREF+ = 20 pF,  
ADC10SREFx = 11b  
±1.0  
5.44 REF, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Positive external  
reference voltage input  
(2)  
VeREF+  
VeREF+ > VeREF–  
1.4  
AVCC  
1.2  
V
V
V
Negative external  
reference voltage input  
(3)  
(4)  
VeREF–  
VeREF+ > VeREF–  
VeREF+ > VeREF–  
0
(VeREF+  
Differential external  
reference voltage input  
1.4  
AVCC  
VeREF–  
)
1.4 V VeREF+ VAVCC , VeREF– = 0 V,  
fADC10CLK = 5 MHz, ADC10SHTx = 0x0001,  
Conversion rate = 200 ksps  
2.2 V, 3 V  
2.2 V, 3 V  
–26  
26  
1
IVeREF+  
IVeREF–  
,
Static input current  
µA  
1.4 V VeREF+ VAVCC , VeREF– = 0 V,  
fADC10CLK = 5 MHZ, ADC10SHTX = 0x1000,  
Conversion rate = 20 ksps  
–1  
10  
CVREF+  
CVREF-  
,
Capacitance at VeREF+  
or VeREF- terminal  
(5)  
µF  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance (CI) is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC10_A. See also the MSP430F5xx and MSP430F6xx Family User's Guide.  
48  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.45 REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
REFVSEL = {2} for 2.5 V, REFON = 1  
REFVSEL = {1} for 2.0 V, REFON = 1  
REFVSEL = {0} for 1.5 V, REFON = 1  
REFVSEL = {0} for 1.5 V  
VCC  
3 V  
MIN  
2.472  
1.96  
TYP  
2.51 2.548  
1.99 2.02  
MAX UNIT  
Positive built-in reference  
voltage  
VREF+  
3 V  
V
V
2.2 V, 3 V  
1.472 1.495 1.518  
1.8  
2.2  
2.7  
AVCC minimum voltage,  
Positive built-in reference  
active  
AVCC(min)  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
fADC10CLK = 5.0 MHz,  
REFON = 1, REFBURST = 0,  
REFVSEL = {2} for 2.5 V  
3 V  
3 V  
3 V  
18  
24  
21  
fADC10CLK = 5.0 MHz,  
REFON = 1, REFBURST = 0,  
REFVSEL = {1} for 2.0 V  
Operating supply current  
into AVCC terminal(2)  
IREF+  
15.5  
µA  
fADC10CLK = 5.0 MHz,  
REFON = 1, REFBURST = 0,  
REFVSEL = {0} for 1.5 V  
13.5  
30  
21  
50  
Temperature coefficient of  
built-in reference(3)  
IVREF+ = 0 A,  
REFVSEL = (0, 1, 2}, REFON = 1  
ppm/  
°C  
TCREF+  
ISENSOR  
2.2 V  
3 V  
20  
20  
22  
22  
Operating supply current  
into AVCC terminal(4)  
REFON = 0, INCH = 0Ah,  
ADC10ON = N A, TA = 30°C  
µA  
mV  
V
2.2 V  
3 V  
770  
770  
1.1  
1.5  
ADC10ON = 1, INCH = 0Ah,  
TA = 30°C  
(5)  
VSENSOR  
See  
2.2 V  
3 V  
1.06  
1.46  
1.14  
1.54  
ADC10ON = 1, INCH = 0Bh,  
VMID  
tSENSOR(sample)  
tVMID(sample)  
AVCC divider at channel 11  
VMID 0.5 × VAVCC  
Sample time required if  
channel 10 is selected(6)  
ADC10ON = 1, INCH = 0Ah,  
Error of conversion result 1 LSB  
30  
1
µs  
µs  
Sample time required if  
channel 11 is selected(7)  
ADC10ON = 1, INCH = 0Bh,  
Error of conversion result 1 LSB  
AVCC = AVCC (min) to AVCC(max)  
TA = 25°C,  
,
Power supply rejection ratio  
(DC)  
PSRR_DC  
120  
µV/V  
REFVSEL = {0, 1, 2}, REFON = 1  
AVCC = AVCC (min) to AVCC(max)  
,
Power supply rejection ratio  
(AC)  
PSRR_AC  
tSETTLE  
TA = 25°C, f = 1 kHz, ΔVpp = 100 mV  
REFVSEL = {0, 1, 2}, REFON = 1  
6.4  
75  
mV/V  
µs  
Settling time of reference  
voltage(8)  
AVCC = AVCC (min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 0 1  
(1) The leakage current is defined in the leakage current table with P6.x/Ax parameter.  
(2) The internal reference current is supplied from terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables to settle the built-in reference before starting an analog-to-digital conversion.  
(3) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).  
(4) The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is  
high). When REFON = 1, ISENSOR is already included in IREF+  
.
(5) The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor.  
(6) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
(7) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
(8) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
.
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
49  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
MAX UNIT  
5.46 Comparator_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
VCC  
Supply voltage  
1.8  
3.6  
38  
38  
39  
V
1.8 V  
2.2 V  
3 V  
CBPWRMD = 00, CBON = 1,  
CBRSx = 00  
31  
32  
Comparator operating supply  
IAVCC_COMP current into AVCC, excludes  
reference resistor ladder  
µA  
CBPWRMD = 01, CBON = 1,  
CBRSx = 00  
2.2 V,  
3 V  
10  
17  
CBPWRMD = 10, CBON = 1,  
CBRSx = 00  
2.2 V,  
3 V  
0.2  
0.85  
CBREFLx = 01, CBREFACC = 0  
CBREFLx = 10, CBREFACC = 0  
CBREFLx = 11, CBREFACC = 0  
1.8 V  
2.2 V  
3.0 V  
1.44  
1.92  
2.39  
±2.5%  
±2.5%  
±2.5%  
VREF  
Reference voltage level  
V
CBREFACC = 1, CBREFLx = 01,  
CBRSx = 10, REFON = 0, CBON = 0  
2.2 V,  
3 V  
17  
33  
22  
40  
Quiescent current of resistor  
ladder into AVCC, including  
REF module current  
IAVCC_REF  
µA  
CBREFACC = 0, CBREFLx = 01,  
CBRSx = 10, REFON = 0, CBON = 0  
2.2 V,  
3 V  
VIC  
Common mode input range  
Input offset voltage  
0
–20  
–10  
VCC – 1  
20  
V
CBPWRMD = 00  
VOFFSET  
CIN  
mV  
CBPWRMD = 01 or 10  
10  
Input capacitance  
5
3
pF  
kΩ  
On (switch closed)  
4
RSIN  
Series input resistance  
Off (switch open)  
50  
MΩ  
CBPWRMD = 00, CBF = 0  
CBPWRMD = 01, CBF = 0  
CBPWRMD = 10, CBF = 0  
450  
600  
50  
ns  
µs  
Propagation delay, response  
time  
tPD  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 00  
0.35  
0.6  
0.6  
1.0  
1.8  
3.4  
1
1.5  
1.8  
3.4  
6.5  
2
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 01  
Propagation delay with filter  
active  
tPD,filter  
µs  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 10  
1.0  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 11  
1.8  
CBON = 0 1, CBPWRMD = 00 or  
01  
tEN_CMP  
Comparator enable time  
µs  
µs  
CBON = 0 1, CBPWRMD = 10  
100  
1.5  
tEN_REF  
Resistor reference enable time CBON = 0 1  
1.0  
Temperature coefficient  
reference of VCB_REF  
ppm/  
°C  
TCCB_REF  
50  
VIN  
(n + 0.5)  
/ 32  
×
VIN  
(n + 1) (n + 1.5)  
/ 32 / 32  
×
VIN ×  
Reference voltage for a given  
tap  
VIN = reference into resistor ladder,  
n = 0 to 31  
VCB_REF  
V
50  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.47 Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TJ  
MIN  
TYP  
MAX UNIT  
DVCC(PGM/ERASE) Program and erase supply voltage  
1.8  
3.6  
5
V
mA  
IPGM  
Average supply current from DVCC during program  
3
6
6
IERASE  
Average supply current from DVCC during erase  
Average supply current from DVCC during mass erase or bank erase  
Cumulative program time(1)  
11  
11  
16  
mA  
IMERASE, IBANK  
tCPT  
mA  
ms  
Program and erase endurance  
104  
100  
64  
105  
cycles  
years  
µs  
tRetention  
tWord  
Data retention duration  
Word or byte program time(2)  
Block program time for first byte or word(2)  
25°C  
85  
65  
tBlock, 0  
49  
µs  
Block program time for each additional byte or word, except for last byte or  
word(2)  
tBlock, 1–(N–1)  
37  
49  
µs  
tBlock, N  
tErase  
Block program time for last byte or word(2)  
Erase time for segment, mass erase, and bank erase when available(2)  
55  
23  
73  
32  
µs  
ms  
MCLK frequency in marginal read mode  
(FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1)  
fMCLK,MGR  
0
1
MHz  
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming  
methods: individual word or byte write mode and block write mode.  
(2) These values are hardwired into the state machine of the flash controller.  
5.48 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
VIO  
MIN  
TYP  
MAX UNIT  
1.62 V to  
1.98 V  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V, 3 V  
0
20  
15  
1
MHz  
µs  
1.62 V to  
1.98 V  
tSBW,Low Spy-Bi-Wire low clock pulse duration  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V  
0.025  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
1.62 V to  
1.98 V  
tSBW, En  
edge)(1)  
µs  
1.62 V to  
1.98 V  
tSBW,Rst  
Spy-Bi-Wire return to normal operation time  
TCK input frequency for 4-wire JTAG(2)  
Internal pulldown resistance on TEST  
15  
0
100  
5
µs  
1.62 V to  
1.98 V  
fTCK  
MHz  
1.62 V to  
1.98 V  
3 V  
0
10  
80  
1.62 V to  
1.98 V  
Rinternal  
2.2 V, 3 V  
45  
60  
kΩ  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Specifications  
51  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.49 DVIO BSL Entry  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
tSU, BSLEN Setup time BSLEN to RST/NMI(1)  
tHO, BSLEN Hold time BSLEN to RST/NMI(2)  
VCC  
VIO  
MIN  
100  
350  
MAX UNIT  
2.2 V, 3 V 1.62 V to 1.98 V  
2.2 V, 3 V 1.62 V to 1.98 V  
ns  
µs  
(1) AVCC, DVCC, and DVIO stable and within specification.  
(2) BSLEN must remain logic high long enough for the boot code to detect its level and enter the BSL sequence. After the minimum hold  
time is achieved, BSLEN is a don't care.  
BSLEN  
VIT+  
VIT-  
tHO,BSLEN  
VIT+  
VIT-  
RST/NMI  
(DVIO domain)  
t
tSU,BSLEN  
Figure 5-18. DVIO BSL Entry Timing  
52  
Specifications  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6 Detailed Description  
6.1 CPU (Link to user's guide)  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and  
constant generator, respectively. The remaining registers are general-purpose registers (see Figure 6-1).  
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be handled  
with all instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes  
and additional instructions for the expanded address range. Each instruction can operate on word and  
byte data.  
Program Counter  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Stack Pointer  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
Figure 6-1. CPU Registers  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.2 Operating Modes  
These MCUs have one active mode and six software selectable low-power modes of operation. An  
interrupt event can wake up the device from any of the low-power modes, service the request, and restore  
back to the low-power mode on return from the interrupt program.  
Software can configure the following operating modes:  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
FLL loop control remains active  
Low-power mode 1 (LPM1)  
CPU is disabled  
FLL loop control is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DCO dc-generator remains enabled  
ACLK remains active  
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DCO dc generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DCO dc generator is disabled  
Crystal oscillator is stopped  
Complete data retention  
Low-power mode 4.5 (LPM4.5)  
Internal regulator disabled  
No data retention  
Wake-up signal from RST/NMI, P1, and P2  
54  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.3 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see  
Table 6-1). The vector contains the 16-bit address of the appropriate interrupt-handler instruction  
sequence.  
Table 6-1. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up  
External reset  
Watchdog time-out, password  
violation  
WDTIFG, KEYV (SYSRSTIV)(1)(2)  
Reset  
0FFFEh  
63, highest  
Flash memory password violation  
PMM password violation  
System NMI  
PMM  
Vacant memory access  
JTAG mailbox  
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,  
VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG,  
JMBOUTIFG (SYSSNIV)(1)  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
62  
61  
User NMI  
NMI  
Oscillator fault  
NMIIFG, OFIFG, ACCVIFG, BUSIFG  
(SYSUNIV)(1)(2)  
Flash memory access violation  
COMP_B  
TB0  
Comparator B interrupt flags (CBIV)(1)(3)  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
60  
59  
(3)  
TB0CCR0 CCIFG0  
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,  
TB0IFG (TB0IV)(1)(3)  
TB0  
Maskable  
Maskable  
0FFF4h  
0FFF2h  
58  
57  
Watchdog timer interval timer  
mode  
WDTIFG  
USCI_A0 receive or transmit  
USCI_B0 receive or transmit  
ADC10_A  
UCA0RXIFG, UCA0TXIFG (UCA0IV)(1)(3)  
UCB0RXIFG, UCB0TXIFG (UCB0IV)(1)(3)  
ADC10IFG0(1)(3)(4)  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF0h  
0FFEEh  
0FFECh  
0FFEAh  
56  
55  
54  
53  
TA0  
TA0CCR0 CCIFG0(3)  
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,  
TA0IFG (TA0IV)(1)(3)  
TA0  
Maskable  
0FFE8h  
52  
Reserved  
DMA  
Reserved  
Maskable  
Maskable  
Maskable  
0FFE6h  
0FFE4h  
0FFE2h  
51  
50  
49  
DMA0IFG, DMA1IFG, DMA2IFG (DMAIV)(1)(3)  
TA1CCR0 CCIFG0(3)  
TA1  
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)(1)(3)  
TA1  
Maskable  
0FFE0h  
48  
I/O Port P1  
USCI_A1 receive or transmit  
USCI_B1 receive or transmit  
TA2  
P1IFG.0 to P1IFG.7 (P1IV)(1)(3)  
UCA1RXIFG, UCA1TXIFG (UCA1IV)(1)(3)  
UCB1RXIFG, UCB1TXIFG (UCB1IV)(1)(3)  
TA2CCR0 CCIFG0(3)  
Maskable  
Maskable  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
0FFDAh  
0FFD8h  
47  
46  
45  
44  
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,  
TA2IFG (TA2IV)(1)(3)  
TA2  
Maskable  
Maskable  
Maskable  
0FFD6h  
0FFD4h  
0FFD2h  
43  
42  
41  
I/O port P2  
RTC_A  
P2IFG.0 to P2IFG.7 (P2IV)(1)(3)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RT0PSIFG, RT1PSIFG (RTCIV)(1)(3)  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
(3) Interrupt flags are located in the module.  
(4) Only on devices with ADC, otherwise reserved  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
PRIORITY  
Table 6-1. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
0FFD0h  
40  
Reserved  
Reserved(5)  
0FF80h  
0, lowest  
(5) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain  
compatibility with other devices, TI recommends reserving these locations.  
6.4 Memory Organization  
Table 6-2 summarizes the memory map.  
Table 6-2. Memory Organization(1)  
MSP430F5227  
MSP430F5222  
MSP430F5217  
MSP430F5212  
MSP430F5229  
MSP430F5224  
MSP430F5219  
MSP430F5214  
Memory (flash)  
Main: interrupt vector  
64KB  
00FFFFh to 00FF80h  
128KB  
00FFFFh to 00FF80h  
Total Size  
Bank D  
Bank C  
Bank B  
Bank A  
Sector 3  
Sector 2  
Sector 1  
Sector 0  
A
32KB  
0243FFh to 01C400h  
N/A  
N/A  
32KB  
01C3FFh to 014400h  
Main: code memory  
32KB  
0143FFh to 00C400h  
32KB  
0143FFh to 00C400h  
32KB  
00C3FFh to 004400h  
32KB  
00C3FFh to 004400h  
2KB  
2KB  
0043FFh to 003C00h  
0043FFh to 003C00h  
2KB  
2KB  
003BFFh to 003400h  
003BFFh to 003400h  
RAM  
2KB  
2KB  
0033FFh to 002C00h  
0033FFh to 002C00h  
2KB  
2KB  
002BFFh to 002400h  
002BFFh to 002400h  
128 B  
001BFFh to 001B80h  
128 B  
001BFFh to 001B80h  
128 B  
001B7Fh to 001B00h  
128 B  
001B7Fh to 001B00h  
B
TI factory memory (ROM)  
128 B  
001AFFh to 001A80h  
128 B  
001AFFh to 001A80h  
C
128 B  
001A7Fh to 001A00h  
128 B  
001A7Fh to 001A00h  
D
128 B  
0019FFh to 001980h  
128 B  
0019FFh to 001980h  
Info A  
Info B  
Info C  
Info D  
128 B  
00197Fh to 001900h  
128 B  
00197Fh to 001900h  
Information memory (flash)  
128 B  
0018FFh to 001880h  
128 B  
0018FFh to 001880h  
128 B  
00187Fh to 001800h  
128 B  
00187Fh to 001800h  
(1) N/A = Not available  
56  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-2. Memory Organization(1) (continued)  
MSP430F5227  
MSP430F5229  
MSP430F5224  
MSP430F5219  
MSP430F5214  
MSP430F5222  
MSP430F5217  
MSP430F5212  
512 B  
0017FFh to 001600h  
512 B  
0017FFh to 001600h  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
512 B  
0015FFh to 001400h  
512 B  
0015FFh to 001400h  
Bootloader (BSL) memory (flash)  
512 B  
0013FFh to 001200h  
512 B  
0013FFh to 001200h  
512 B  
0011FFh to 001000h  
512 B  
0011FFh to 001000h  
4KB  
000FFFh to 0h  
4KB  
000FFFh to 0h  
Peripherals  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.5 Bootloader (BSL)  
The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the  
device memory by the BSL is protected by an user-defined password. Because the F522x and F521x  
have split I/O power domains, it is possible to interface with the BSL from either the DVCC or DVIO supply  
domains. This is useful when the MSP430 is interfacing to a host on the DVIO supply domain. The BSL  
interface on the DVIO supply domain (see Table 6-3) uses the USCI_A0 module configured as a UART.  
The BSL interface on the DVCC supply domain (see Table 6-4) uses a timer-based UART.  
NOTE  
Devices from TI come factory programmed with the timer-based UART BSL only. If the  
USCI-based BSL is preferred, it is also available, but it must be programmed by the user.  
When using the DVIO supply domain for the BSL, entry to the BSL requires a specific sequence on the  
RST/NMI and BSLEN pins. Table 6-3 shows the required pins and their functions. For further details on  
interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide.  
For a complete description of the features of the BSL and its implementation, see the MSP430 Flash  
Device Bootloader (BSL) User's Guide. The BSL on the DVIO supply domain uses the USCI_A0 module  
configured as a UART.  
NOTE  
To invoke the BSL from the DVIO domain, the RST/NMI and BSLEN pins must be used for  
the entry sequence (see Section 5.49). It is critical not to confuse the RST/NMI pin with the  
RSTDVCC/SBWTDIO pin. In other MSP430 devices, SBWTDIO is shared with the RST/NMI  
pin and RSTDVCC does not exist. Additional information can be found in Designing With  
MSP430F522x and MSP430F521x Devices.  
Table 6-3. DVIO BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RST/NMI  
BSLEN  
BSL FUNCTION  
External reset  
Enable BSL  
P3.3  
Data transmit  
P3.4  
Data receive  
DVCC, AVCC  
DVIO  
Device power supply  
I/O power supply  
Ground supply  
DVSS  
For applications in which it is desirable to have BSL communication based on the DVCC supply domain,  
entry to the BSL requires a specific sequence on the RSTDVCC/SBWTDIO and TEST/SBWTCK pins.  
Table 6-4 shows the required pins and their function.  
NOTE  
To invoke the BSL from the DVCC domain, the RSTDVCC/SBWTDIO and TEST/SBWTCK  
pins must be used for the entry sequence. It is critical not to confuse the RST/NMI pin with  
the RSTDVCC/SBWTDIO pin. In other MSP430 devices, SBWTDIO is shared with the  
RST/NMI pin and RSTDVCC does not exist. Additional information can be found in  
Designing With MSP430F522x and MSP430F521x Devices.  
58  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-4. DVCC BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RSTDVCC/SBWTDIO  
TEST/SBWTCK  
P1.1  
BSL FUNCTION  
External reset  
Enable BSL  
Data transmit  
P1.2  
Data receive  
DVCC, AVCC  
DVIO  
Device power supply  
I/O power supply  
Ground supply  
DVSS  
6.6 JTAG Operation  
6.6.1 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and  
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to  
enable the JTAG signals. In addition to these signals, the RSTDVCC/SBWTDIO is required to interface  
with MSP430 development tools and device programmers. The JTAG pin requirements are shown in  
Table 6-5. For further details on interfacing to development tools and device programmers, see the  
MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface  
and its implementation, see MSP430 Programming With the JTAG Interface. Additional information can be  
found in Designing With MSP430F522x and MSP430F521x Devices.  
NOTE  
All JTAG I/O pins are supplied by DVCC.  
NOTE  
On other MSP430 devices, the RST/NMI pin has been used for SBWTDIO, so care must be  
taken not to mistakenly use the incorrect pin. On the F522x and F521x series of devices,  
RSTDVCC is used for SBWTDIO as shown in Table 6-5. Additional information can be found  
in Designing With MSP430F522x and MSP430F521x Devices.  
Table 6-5. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RSTDVCC/SBWTDIO  
DVCC, AVCC  
DVIO  
IN  
Device power supply  
I/O power supply  
DVSS  
Ground supply  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.6.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the 2-wire Spy-Bi-Wire interface.  
Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-  
Bi-Wire interface pin requirements are shown in Table 6-6. For further details on interfacing to  
development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a  
complete description of the features of the JTAG interface and its implementation, see MSP430  
Programming With the JTAG Interface.Additional information can be found in Designing With  
MSP430F522x and MSP430F521x Devices.  
NOTE  
All SBW I/O pins are supplied by DVCC.  
NOTE  
On other MSP430 devices, the RST/NMI pin has been used for SBWTDIO, so care must be  
taken not to mistakenly use the incorrect pin. On the F522x and F521x series of devices,  
RSTDVCC is used for SBWTDIO as shown in Table 6-6. Additional information can be found  
in Designing With MSP430F522x and MSP430F521x Devices.  
Table 6-6. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RSTDVCC/SBWTDIO  
DVCC, AVCC  
DVIO  
DIRECTION  
IN  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Device power supply  
I/O power supply  
IN, OUT  
DVSS  
Ground supply  
6.7 Flash Memory (Link to user's guide)  
The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system  
by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory.  
Features of the flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually. Segments A to D are also called information memory.  
Segment A can be locked separately.  
6.8 RAM (Link to user's guide)  
The RAM is made up of n sectors. Each sector can be completely powered down to reduce leakage;  
however, all data is lost during power down. Features of the RAM include:  
RAM has n sectors. The sizes of the sectors can be found in Section 6.4.  
Each sector 0 to n can be complete disabled; however, all data in a sector is lost when it is disabled.  
Each sector 0 to n automatically enters low-power retention mode when possible.  
60  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be  
managed using all instructions. For complete module descriptions, see the MSP430F5xx and  
MSP430F6xx Family User's Guide.  
6.9.1 Digital I/O (Link to user's guide)  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Pullup or pulldown on all ports is programmable.  
Drive strength on all ports is programmable.  
Edge-selectable interrupt and LPM4.5 wakeup input capability is available for all bits of ports P1 and  
P2.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise in pairs.  
6.9.2 Port Mapping Controller (Link to user's guide)  
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P4.  
Table 6-7 lists the valid settings.  
Table 6-7. Port Mapping Mnemonics and Functions  
VALUE  
PxMAPy MNEMONIC  
PM_NONE  
INPUT PIN FUNCTION  
None  
OUTPUT PIN FUNCTION  
DVSS  
0
PM_CBOUT0  
COMP_B output  
1
2
3
PM_TB0CLK  
TB0 clock input  
PM_ADC10CLK  
PM_DMAE0  
ADC10CLK  
DMAE0 input  
PM_SVMOUT  
PM_TB0OUTH  
PM_TB0CCR0A  
PM_TB0CCR1A  
PM_TB0CCR2A  
PM_TB0CCR3A  
PM_TB0CCR4A  
PM_TB0CCR5A  
PM_TB0CCR6A  
PM_UCA1RXD  
PM_UCA1SOMI  
PM_UCA1TXD  
PM_UCA1SIMO  
PM_UCA1CLK  
PM_UCB1STE  
PM_UCB1SOMI  
PM_UCB1SCL  
PM_UCB1SIMO  
PM_UCB1SDA  
PM_UCB1CLK  
PM_UCA1STE  
PM_CBOUT1  
SVM output  
TB0 high-impedance input TB0OUTH  
TB0 CCR0 capture input CCI0A  
TB0 CCR1 capture input CCI1A  
TB0 CCR2 capture input CCI2A  
TB0 CCR3 capture input CCI3A  
TB0 CCR4 capture input CCI4A  
TB0 CCR5 capture input CCI5A  
TB0 CCR6 capture input CCI6A  
4
5
TB0 CCR0 compare output Out0  
TB0 CCR1 compare output Out1  
TB0 CCR2 compare output Out2  
TB0 CCR3 compare output Out3  
TB0 CCR4 compare output Out4  
TB0 CCR5 compare output Out5  
TB0 CCR6 compare output Out6  
6
7
8
9
10  
USCI_A1 UART RXD (direction controlled by USCI – input)  
USCI_A1 SPI slave out master in (direction controlled by USCI)  
USCI_A1 UART TXD (direction controlled by USCI – output)  
USCI_A1 SPI slave in master out (direction controlled by USCI)  
USCI_A1 clock input/output (direction controlled by USCI)  
USCI_B1 SPI slave transmit enable (direction controlled by USCI)  
USCI_B1 SPI slave out master in (direction controlled by USCI)  
USCI_B1 I2C clock (open drain and direction controlled by USCI)  
USCI_B1 SPI slave in master out (direction controlled by USCI)  
USCI_B1 I2C data (open drain and direction controlled by USCI)  
USCI_B1 clock input/output (direction controlled by USCI)  
USCI_A1 SPI slave transmit enable (direction controlled by USCI)  
11  
12  
13  
14  
15  
16  
17  
18  
None  
None  
COMP_B output  
MCLK  
PM_MCLK  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-7. Port Mapping Mnemonics and Functions (continued)  
VALUE  
PxMAPy MNEMONIC  
PM_RTCCLK  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
RTCCLK output  
19  
None  
PM_UCA0RXD  
PM_UCA0SOMI  
PM_UCA0TXD  
PM_UCA0SIMO  
PM_UCA0CLK  
PM_UCB0STE  
PM_UCB0SOMI  
PM_UCB0SCL  
PM_UCB0SIMO  
PM_UCB0SDA  
PM_UCB0CLK  
PM_UCA0STE  
Reserved  
USCI_A0 UART RXD (direction controlled by USCI - input)  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
USCI_A0 UART TXD (direction controlled by USCI - output)  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
USCI_A0 clock input/output (direction controlled by USCI)  
USCI_B0 SPI slave transmit enable (direction controlled by USCI)  
USCI_B0 SPI slave out master in (direction controlled by USCI)  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
USCI_B0 SPI slave in master out (direction controlled by USCI)  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
USCI_B0 clock input/output (direction controlled by USCI)  
USCI_A0 SPI slave transmit enable (direction controlled by USCI)  
20  
21  
22  
23  
24  
25  
26 - 30  
None  
DVSS  
Disables the output driver and the input Schmitt trigger to prevent parasitic  
cross currents when applying analog signals  
31 (0FFh)(1)  
PM_ANALOG  
(1) The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored,  
resulting in a read out value of 31.  
Table 6-8. Default Mapping  
PIN  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
USCI_B1 SPI slave transmit enable (direction controlled by USCI)  
USCI_A1 clock input/output (direction controlled by USCI)  
P4.0/P4MAP0  
PM_UCB1STE/PM_UCA1CLK  
USCI_B1 SPI slave in master out (direction controlled by USCI)  
USCI_B1 I2C data (open drain and direction controlled by USCI)  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
PM_UCB1SIMO/PM_UCB1SDA  
PM_UCB1SOMI/PM_UCB1SCL  
PM_UCB1CLK/PM_UCA1STE  
PM_UCA1TXD/PM_UCA1SIMO  
PM_UCA1RXD/PM_UCA1SOMI  
USCI_B1 SPI slave out master in (direction controlled by USCI)  
USCI_B1 I2C clock (open drain and direction controlled by USCI)  
USCI_A1 SPI slave transmit enable (direction controlled by USCI)  
USCI_B1 clock input/output (direction controlled by USCI)  
USCI_A1 UART TXD (Direction controlled by USCI - output)  
USCI_A1 SPI slave in master out (direction controlled by USCI)  
USCI_A1 UART RXD (Direction controlled by USCI - input)  
USCI_A1 SPI slave out master in (direction controlled by USCI)  
P4.6/P4MAP6  
P4.7/P4MAP7(1)  
PM_NONE  
PM_NONE  
None  
None  
DVSS  
DVSS  
(1) Not available on all devices  
62  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9.3 Oscillator and System Clock (Link to user's guide)  
The clock system in the MSP430F522x and MSP430F521x family of devices is supported by the Unified  
Clock System (UCS) module, which includes support for a 32-kHz watch crystal oscillator (XT1 LF mode)  
(XT1 HF mode is not supported), an internal very-low-power low-frequency oscillator (VLO), an internal  
trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a  
high-frequency crystal oscillator (XT2). The UCS module is designed to meet the requirements of both low  
system cost and low power consumption. The UCS module features digital frequency locked loop (FLL)  
hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable  
multiple of the selected FLL reference frequency. The internal DCO provides a fast turnon clock source  
and stabilizes in 3.5 µs (typical). The UCS module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the  
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal  
digitally controlled oscillator DCO.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made  
available to ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be  
sourced by same sources made available to ACLK.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.  
6.9.4 Power-Management Module (PMM) (Link to user's guide)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and  
contains programmable output levels to provide for power optimization. The PMM also includes supply  
voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, and brownout protection. The  
brownout circuit is implemented to provide the proper internal reset signal to the device during power-on  
and power-off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable  
level and supports both supply voltage supervision (the device is automatically reset) and supply voltage  
monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary  
supply and core supply.  
6.9.5 Hardware Multiplier (Link to user's guide)  
The multiplication operation is supported by a dedicated peripheral module. The module performs  
operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication  
as well as signed and unsigned multiply-and-accumulate operations.  
6.9.6 Real-Time Clock (RTC_A) (Link to user's guide)  
The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated  
real-time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit  
timers that can be cascaded to form a 16-bit timer or counter. Both timers can be read and written by  
software. Calendar mode integrates an internal calendar that compensates for months with less than  
31 days and includes leap year correction. The RTC_A also supports flexible alarm functions and offset-  
calibration hardware.  
6.9.7 Watchdog Timer (WDT_A) (Link to user's guide)  
The primary function of the WDT_A module is to perform a controlled system restart after a software  
problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function  
is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9.8 System Module (SYS) (Link to user's guide)  
The SYS module handles many of the system functions within the device. These include power-on reset  
(POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector  
generators, bootloader (BSL) entry mechanisms, and configuration management (device descriptors). It  
also includes a data exchange mechanism when using JTAG that is called a JTAG mailbox and that can  
be used in the application. Table 6-9 lists the SYS module interrupt vector registers.  
Table 6-9. System Module Interrupt Vector Registers  
INTERRUPT VECTOR REGISTER  
ADDRESS  
INTERRUPT EVENT  
No interrupt pending  
Brownout (BOR)  
RST/NMI (BOR)  
PMMSWBOR (BOR)  
Wakeup from LPMx.5  
Security violation (BOR)  
SVSL (POR)  
VALUE  
00h  
PRIORITY  
02h  
Highest  
04h  
06h  
08h  
0Ah  
0Ch  
SVSH (POR)  
0Eh  
SVML_OVP (POR)  
SVMH_OVP (POR)  
PMMSWPOR (POR)  
WDT time-out (PUC)  
WDT password violation (PUC)  
KEYV flash password violation (PUC)  
Reserved  
10h  
SYSRSTIV, System Reset  
019Eh  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
Peripheral area fetch (PUC)  
PMM password violation (PUC)  
Reserved  
1Eh  
20h  
22h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVMLIFG  
02h  
SVMHIFG  
04h  
SVSMLDLYIFG  
SVSMHDLYIFG  
VMAIFG  
06h  
08h  
SYSSNIV, System NMI  
019Ch  
0Ah  
JMBINIFG  
0Ch  
JMBOUTIFG  
0Eh  
SVMLVLRIFG  
10h  
SVMHVLRIFG  
12h  
Reserved  
14h to 1Eh  
00h  
Lowest  
Highest  
No interrupt pending  
NMIIFG  
02h  
OFIFG  
04h  
SYSUNIV, User NMI  
019Ah  
ACCVIFG  
06h  
Reserved  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
64  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9.9 DMA Controller (Link to user's guide)  
The DMA controller allows movement of data from one memory address to another without CPU  
intervention. For example, the DMA controller can be used to move data from the ADC10_A conversion  
memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA  
controller reduces system power consumption by allowing the CPU to remain in sleep mode, without  
having to awaken to move data to or from a peripheral. Table 6-10 lists the trigger assignments.  
Table 6-10. DMA Trigger Assignments(1)  
CHANNEL  
TRIGGER  
0
1
2
0
DMAREQ  
DMAREQ  
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC10IFG0(2)  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC10IFG0(2)  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC10IFG0(2)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MPY ready  
MPY ready  
MPY ready  
DMA2IFG  
DMA0IFG  
DMA1IFG  
DMAE0  
DMAE0  
DMAE0  
(1) If a reserved trigger source is selected, no trigger is generated.  
(2) Only on devices with ADC; reserved on devices without ADC  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9.10 Universal Serial Communication Interface (USCI) (Links to user's guide: UART  
Mode, SPI Mode, I2C Mode)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols  
such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module  
contains two portions, A and B.  
The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA.  
The USCI_Bn module provides support for SPI (3- or 4-pin) or I2C.  
The MSP430F522x and MSP430F521x series include two complete USCI modules (n = 0, 1).  
66  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9.11 TA0 (Link to user's guide)  
TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple  
captures or compares, PWM outputs, and interval timing (see Table 6-11). TA0 also has extensive  
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each  
of the capture/compare registers.  
Table 6-11. TA0 Signal Connections  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
MODULE  
BLOCK  
RGC, ZQE,  
RGZ  
RGC, ZQE, YFF  
RGZ  
YFF  
18, H2, B7-  
13-P1.0  
P1.0  
TA0CLK  
TACLK  
ACLK  
ACLK  
(internal)  
Timer  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
TACLK  
CCI0A  
18, H2, B7-  
13-P1.0  
P1.0  
TA0CLK  
TA0.0  
19, H3, C7-  
14-P1.1  
P1.1  
19, H3, C7-P1.1  
20, J3, C8-P1.2  
14-P1.1  
15-P1.2  
DVSS  
DVSS  
DVCC  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
TA0.0  
TA0.1  
20, J3, C8-  
15-P1.2  
P1.2  
TA0.1  
CCI1A  
ADC10 (internal) ADC10 (internal)  
ADC10SHSx =  
{1}  
CBOUT  
(internal)  
CCI1B  
ADC10SHSx =  
{1}  
DVSS  
DVCC  
GND  
VCC  
21, G4, C6-  
16-P1.3  
P1.3  
TA0.2  
CCI2A  
CCI2B  
21, G4, C6-P1.3  
16-P1.3  
ACLK  
(internal)  
CCR2  
TA2  
TA0.2  
DVSS  
DVCC  
GND  
VCC  
22, H4, C5-  
17-P1.4  
P1.4  
TA0.3  
CCI3A  
22, H4, C5-P1.4  
23, J4, D8-P1.5  
17-P1.4  
18-P1.5  
DVSS  
DVSS  
DVCC  
CCI3B  
GND  
VCC  
CCR3  
CCR4  
TA3  
TA4  
TA0.3  
TA0.4  
23, J4, D8-  
18-P1.5  
P1.5  
TA0.4  
CCI4A  
DVSS  
DVSS  
DVCC  
CCI4B  
GND  
VCC  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9.12 TA1 (Link to user's guide)  
TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 can support  
multiple captures or compares, PWM outputs, and interval timing (see Table 6-12). TA1 also has  
extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and  
from each of the capture/compare registers.  
Table 6-12. TA1 Signal Connections  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
MODULE  
BLOCK  
RGC, ZQE,  
RGZ  
RGC, ZQE,  
RGZ  
YFF  
YFF  
24, G5, D7-  
19-P1.6  
P1.6  
TA1CLK  
TACLK  
ACLK  
ACLK  
(internal)  
Timer  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
TACLK  
CCI0A  
24, G5, D7-  
19-P1.6  
P1.6  
TA1CLK  
TA1.0  
25, H5, D6-  
20-P1.7  
P1.7  
25, H5, D6-  
20-P1.7  
P1.7  
DVSS  
DVSS  
DVCC  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
TA1.0  
TA1.1  
26, J5, E8-  
P2.0  
26, J5, E8-  
P2.0  
TA1.1  
CCI1A  
CCI1B  
CBOUT  
(internal)  
DVSS  
DVCC  
GND  
VCC  
27, G6, D5-  
P2.1  
27, G6, D5-  
P2.1  
TA1.2  
CCI2A  
CCI2B  
ACLK  
(internal)  
CCR2  
TA2  
TA1.2  
DVSS  
DVCC  
GND  
VCC  
68  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9.13 TA2 (Link to user's guide)  
TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 can support  
multiple captures or compares, PWM outputs, and interval timing (see Table 6-13). TA2 also has  
extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and  
from each of the capture/compare registers.  
Table 6-13. TA2 Signal Connections  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
MODULE  
BLOCK  
RGC, ZQE,  
RGZ  
RGC, ZQE,  
RGZ  
YFF  
YFF  
28, J6, E7-  
P2.2  
TA2CLK  
TACLK  
ACLK  
ACLK  
(internal)  
Timer  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
TACLK  
CCI0A  
28, J6, E7-  
P2.2  
TA2CLK  
TA2.0  
29, H6, F8-  
P2.3  
29, H6, F8-  
P2.3  
DVSS  
DVSS  
DVCC  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
TA2.0  
TA2.1  
30, J7, E6-  
P2.4  
30, J7, E6-  
P2.4  
TA2.1  
CCI1A  
CCI1B  
CBOUT  
(internal)  
DVSS  
DVCC  
GND  
VCC  
31, J8, F7-  
P2.5  
31, J8, F7-  
P2.5  
TA2.2  
CCI2A  
CCI2B  
ACLK  
(internal)  
CCR2  
TA2  
TA2.2  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
69  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9.14 TB0 (Link to user's guide)  
TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 can support  
multiple captures or compares, PWM outputs, and interval timing (see Table 6-14). TB0 also has  
extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and  
from each of the capture/compare registers.  
Table 6-14. TB0 Signal Connections  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
MODULE  
BLOCK  
RGC, ZQE,  
RGZ  
RGC, ZQE, YFF  
RGZ  
YFF  
(1)  
(1)  
TB0CLK  
TBCLK  
ACLK  
ACLK  
(internal)  
Timer  
CCR0  
CCR1  
CCR2  
CCR3  
CCR4  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
TBCLK  
CCI0A  
(1)  
(1)  
(1)  
TB0CLK  
TB0.0  
49, B8(9), H1-  
P7.0(1)  
49, B8(9), H1-  
P7.0(1)  
(1)  
49, B8(9), H1-  
P7.0(1)  
ADC10 (internal)  
ADC10SHSx = {2}  
ADC10 (internal)  
ADC10SHSx = {2}  
(1)  
TB0.0  
CCI0B  
TB0  
TB1  
TB2  
TB3  
TB4  
TB0.0  
TB0.1  
TB0.2  
TB0.3  
TB0.4  
DVSS  
DVCC  
GND  
VCC  
50, A9, G2-  
P7.1(1)  
(1)  
(1)  
TB0.1  
CCI1A  
CCI1B  
50, A9, G2-P7.1(1)  
CBOUT  
(internal)  
ADC10 (internal)  
ADC10SHSx = {3}  
ADC10 (internal)  
ADC10SHSx = {3}  
DVSS  
DVCC  
GND  
VCC  
51, B7, F3-  
P7.2(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
TB0.2  
TB0.2  
CCI2A  
CCI2B  
51, B7, F3-P7.2(1)  
52, A8, G1-P7.3(1)  
53, A7, F2-P7.4(1)  
51, B7, F3-  
P7.2(1)  
DVSS  
DVCC  
GND  
VCC  
52, A8, G1-  
P7.3(1)  
(1)  
(1)  
TB0.3  
TB0.3  
CCI3A  
CCI3B  
52, A8, G1-  
P7.3(1)  
DVSS  
DVCC  
GND  
VCC  
53, A7, F2-  
P7.4(1)  
(1)  
(1)  
TB0.4  
TB0.4  
CCI4A  
CCI4B  
53, A7, F2-  
P7.4(1)  
DVSS  
DVCC  
GND  
VCC  
54, A6, F1-  
P7.5(1)  
(1)  
(1)  
(1)  
TB0.5  
TB0.5  
CCI5A  
CCI5B  
54, A6, F1-P7.5(1)  
54, A6, F1-  
P7.5(1)  
CCR5  
CCR6  
TB5  
TB6  
TB0.5  
TB0.6  
DVSS  
DVCC  
TB0.6  
GND  
VCC  
(1)  
(1)  
(1)  
(1)  
CCI6A  
ACLK  
(internal)  
CCI6B  
DVSS  
DVCC  
GND  
VCC  
(1) Timer functions can be assigned by the port mapping controller.  
70  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9.15 Comparator_B (Link to user's guide)  
The primary function of the Comparator_B module is to support precision slope analog-to-digital  
conversions, battery voltage supervision, and monitoring of external analog signals.  
6.9.16 ADC10_A (Link to user's guide)  
The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit  
SAR core, sample select control, reference generator, and a conversion result buffer. A window  
comparator with lower and upper limits allows CPU-independent result monitoring with three window  
comparator interrupt flags.  
6.9.17 CRC16 (Link to user's guide)  
The CRC16 module produces a signature based on a sequence of entered data values and can be used  
for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
6.9.18 REF Voltage Reference (Link to user's guide)  
The REF is responsible for generation of all critical reference voltages that can be used by the various  
analog peripherals in the device.  
6.9.19 Embedded Emulation Module (EEM) (S Version) (Link to user's guide)  
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
71  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9.20 Peripheral File Map  
Table 6-15 lists the base address for the registers of each peripheral.  
Table 6-15. Peripherals  
OFFSET ADDRESS  
RANGE  
MODULE NAME  
BASE ADDRESS  
Special Functions (see Table 6-16)  
PMM (see Table 6-17)  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
01C0h  
01E0h  
0200h  
0220h  
0240h  
0260h  
0320h  
0340h  
0380h  
03C0h  
0400h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
05C0h  
05E0h  
0600h  
0620h  
0740h  
08C0h  
000h-01Fh  
000h-010h  
000h-00Fh  
000h-007h  
000h-001h  
000h-001h  
000h-01Fh  
000h-01Fh  
000h-001h  
000h-002h  
000h-007h  
000h-01Fh  
000h-00Bh  
000h-00Bh  
000h-00Bh  
000h-01Fh  
000h-02Eh  
000h-02Eh  
000h-02Eh  
000h-02Eh  
000h-01Bh  
000h-02Fh  
000h-00Fh  
000h-00Ah  
000h-00Ah  
000h-00Ah  
000h-01Fh  
000h-01Fh  
000h-01Fh  
000h-01Fh  
000h-01Fh  
000h-00Fh  
Flash Control (see Table 6-18)  
CRC16 (see Table 6-19)  
RAM Control (see Table 6-20)  
Watchdog (see Table 6-21)  
UCS (see Table 6-22)  
SYS (see Table 6-23)  
Shared Reference (see Table 6-24)  
Port Mapping Control (see Table 6-25)  
Port Mapping Port P4 (see Table 6-25)  
Port P1, P2 (see Table 6-26)  
Port P3, P4 (see Table 6-27)  
Port P5, P6 (see Table 6-28)  
Port P7 (see Table 6-29)  
Port PJ (see Table 6-30)  
TA0 (see Table 6-31)  
TA1 (see Table 6-32)  
TB0 (see Table 6-33)  
TA2 (see Table 6-34)  
Real-Time Clock (RTC_A) (see Table 6-35)  
32-Bit Hardware Multiplier (see Table 6-36)  
DMA General Control (see Table 6-37)  
DMA Channel 0 (see Table 6-37)  
DMA Channel 1 (see Table 6-37)  
DMA Channel 2 (see Table 6-37)  
USCI_A0 (see Table 6-38)  
USCI_B0 (see Table 6-39)  
USCI_A1 (see Table 6-40)  
USCI_B1 (see Table 6-41)  
ADC10_A (see Table 6-42)  
Comparator_B (see Table 6-43)  
72  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-16. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
Table 6-17. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
OFFSET  
PMM control 0  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
10h  
PMM control 1  
PMMCTL1  
SVSMHCTL  
SVSMLCTL  
PMMIFG  
SVS high-side control  
SVS low-side control  
PMM interrupt flags  
PMM interrupt enable  
PMM power mode 5 control  
PMMIE  
PM5CTL0  
Table 6-18. Flash Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Flash control 1  
Flash control 3  
Flash control 4  
FCTL1  
FCTL3  
FCTL4  
00h  
04h  
06h  
Table 6-19. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC16DI  
OFFSET  
CRC data input  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
Table 6-20. RAM Control Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
RCCTL0  
OFFSET  
OFFSET  
OFFSET  
RAM control 0  
00h  
00h  
Table 6-21. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
WDTCTL  
Watchdog timer control  
Table 6-22. UCS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
UCSCTL0  
UCS control 0  
UCS control 1  
UCS control 2  
UCS control 3  
UCS control 4  
UCS control 5  
UCS control 6  
UCS control 7  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
UCSCTL1  
UCSCTL2  
UCSCTL3  
UCSCTL4  
UCSCTL5  
UCSCTL6  
UCSCTL7  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
73  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-22. UCS Registers (Base Address: 0160h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
UCSCTL8  
UCSCTL9  
OFFSET  
UCS control 8  
UCS control 9  
10h  
12h  
Table 6-23. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
SYSCTL  
OFFSET  
System control  
00h  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
1Ah  
1Ch  
1Eh  
Bootloader configuration area  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSUNIV  
SYSSNIV  
SYSRSTIV  
Table 6-24. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
REFCTL  
OFFSET  
OFFSET  
Shared reference control  
00h  
Table 6-25. Port Mapping Registers  
(Base Address of Port Mapping Control: 01C0h, Port P4: 01E0h)  
REGISTER DESCRIPTION  
REGISTER  
PMAPKEYID  
Port mapping key/ID  
Port mapping control  
Port P4.0 mapping  
Port P4.1 mapping  
Port P4.2 mapping  
Port P4.3 mapping  
Port P4.4 mapping  
Port P4.5 mapping  
Port P4.6 mapping  
Port P4.7 mapping  
00h  
02h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
PMAPCTL  
P4MAP0  
P4MAP1  
P4MAP2  
P4MAP3  
P4MAP4  
P4MAP5  
P4MAP6  
P4MAP7  
Table 6-26. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
P1DS  
P1SEL  
P1IV  
Port P1 direction  
Port P1 resistor enable  
Port P1 drive strength  
Port P1 selection  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
P1IES  
P1IE  
P1IFG  
74  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-26. Port P1, P2 Registers (Base Address: 0200h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P2 input  
P2IN  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2DS  
P2SEL  
P2IV  
Port P2 direction  
Port P2 resistor enable  
Port P2 drive strength  
Port P2 selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
Table 6-27. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
P3DS  
Port P3 direction  
Port P3 resistor enable  
Port P3 drive strength  
Port P3 selection  
Port P4 input  
P3SEL  
P4IN  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4DS  
Port P4 direction  
Port P4 resistor enable  
Port P4 drive strength  
Port P4 selection  
P4SEL  
Table 6-28. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P5 output  
P5OUT  
P5DIR  
P5REN  
P5DS  
Port P5 direction  
Port P5 resistor enable  
Port P5 drive strength  
Port P5 selection  
Port P6 input  
P5SEL  
P6IN  
Port P6 output  
P6OUT  
P6DIR  
P6REN  
P6DS  
Port P6 direction  
Port P6 resistor enable  
Port P6 drive strength  
Port P6 selection  
P6SEL  
Table 6-29. Port P7 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P7 input  
P7IN  
00h  
02h  
04h  
Port P7 output  
Port P7 direction  
P7OUT  
P7DIR  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
75  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-29. Port P7 Registers (Base Address: 0260h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P7 resistor enable  
Port P7 drive strength  
Port P7 selection  
P7REN  
P7DS  
06h  
08h  
0Ah  
P7SEL  
Table 6-30. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
08h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
PJDS  
Port PJ direction  
Port PJ resistor enable  
Port PJ drive strength  
Table 6-31. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
TA0CTL  
OFFSET  
TA0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
TA0 interrupt vector  
TA0IV  
Table 6-32. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
TA1CTL  
OFFSET  
TA1 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1 interrupt vector  
TA1IV  
Table 6-33. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
TB0CTL  
TB0CCTL0  
OFFSET  
TB0 control  
00h  
02h  
Capture/compare control 0  
76  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-33. TB0 Registers (Base Address: 03C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
TB0CCTL1  
OFFSET  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 counter  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0 interrupt vector  
TB0IV  
Table 6-34. TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
TA2CTL  
OFFSET  
TA2 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA2 counter  
TA2CCTL0  
TA2CCTL1  
TA2CCTL2  
TA2R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2CCR2  
TA2EX0  
TA2 interrupt vector  
TA2IV  
Table 6-35. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
OFFSET  
RTC control 0  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
RTC control 1  
RTCCTL1  
RTC control 2  
RTCCTL2  
RTC control 3  
RTCCTL3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTC prescaler 1  
RTCPS1  
RTC interrupt vector word  
RTC seconds/counter 1  
RTC minutes/counter 2  
RTC hours/counter 3  
RTC day of week/counter 4  
RTC days  
RTCIV  
RTCSEC/RTCNT1  
RTCMIN/RTCNT2  
RTCHOUR/RTCNT3  
RTCDOW/RTCNT4  
RTCDAY  
RTC month  
RTCMON  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
77  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-35. Real-Time Clock Registers (Base Address: 04A0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
RTCYEARL  
OFFSET  
RTC year low  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
RTC year high  
RTCYEARH  
RTCAMIN  
RTC alarm minutes  
RTC alarm hours  
RTC alarm day of week  
RTC alarm days  
RTCAHOUR  
RTCADOW  
RTCADAY  
Table 6-36. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control 0  
RES3  
MPY32CTL0  
Table 6-37. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)  
REGISTER DESCRIPTION  
REGISTER  
DMA0CTL  
OFFSET  
DMA channel 0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
78  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-37. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
DMA1SZ  
OFFSET  
DMA channel 1 transfer size  
DMA channel 2 control  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Eh  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA module control 0  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA module control 1  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
Table 6-38. USCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTL1  
OFFSET  
USCI control 1  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 0  
UCA0CTL0  
UCA0BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA0BR1  
USCI modulation control  
USCI status  
UCA0MCTL  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA0IFG  
UCA0IV  
Table 6-39. USCI_B0 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTL1  
OFFSET  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB0CTL0  
UCB0BR0  
UCB0BR1  
UCB0STAT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA  
UCB0I2CSA  
UCB0IE  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB0IFG  
USCI interrupt vector word  
UCB0IV  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
79  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-40. USCI_A1 Registers (Base Address: 0600h)  
REGISTER DESCRIPTION  
REGISTER  
UCA1CTL1  
OFFSET  
USCI control 1  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 0  
UCA1CTL0  
UCA1BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA1BR1  
USCI modulation control  
USCI status  
UCA1MCTL  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA1IFG  
UCA1IV  
Table 6-41. USCI_B1 Registers (Base Address: 0620h)  
REGISTER DESCRIPTION  
REGISTER  
UCB1CTL1  
OFFSET  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB1CTL0  
UCB1BR0  
UCB1BR1  
UCB1STAT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA  
UCB1I2CSA  
UCB1IE  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB1IFG  
USCI interrupt vector word  
UCB1IV  
Table 6-42. ADC10_A Registers (Base Address: 0740h)  
REGISTER DESCRIPTION  
REGISTER  
ADC10CTL0  
OFFSET  
ADC10_A control 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC10_A control 1  
ADC10CTL1  
ADC10CTL2  
ADC10LO  
ADC10_A control 2  
ADC10_A window comparator low threshold  
ADC10_A window comparator high threshold  
ADC10_A memory control 0  
ADC10_A conversion memory  
ADC10_A interrupt enable  
ADC10_A interrupt flags  
ADC10HI  
ADC10MCTL0  
ADC10MEM0  
ADC10IE  
ADC10IGH  
ADC10IV  
ADC10_A interrupt vector word  
80  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-43. Comparator_B Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
CBCTL0  
OFFSET  
Comp_B control 0  
Comp_B control 1  
Comp_B control 2  
Comp_B control 3  
Comp_B interrupt  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
CBCTL1  
CBCTL2  
CBCTL3  
CBINT  
Comp_B interrupt vector word  
CBIV  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
81  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.10 Input/Output Diagrams  
6.10.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger  
Figure 6-2 shows the port diagram. Table 6-44 summarizes the selection of the port function.  
Pad Logic  
P1REN.x  
DVSS  
0
1
1
(P1.0 to P1.3) DVCC  
(P1.4 to P1.7) DVIO  
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P1OUT.x  
0
1
From module  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3/TA0.2  
P1.4/TA0.3  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
P1.5/TA0.4  
P1.6/TA1CLK/CBOUT  
P1.7/TA1.0  
EN  
D
To module  
P1IRQ.x  
P1IE.x  
EN  
Q
P1IFG.x  
Set  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
Figure 6-2. Port P1 (P1.0 to P1.7) Diagram  
82  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-44. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0 (I/O)  
TA0CLK  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
0
0
ACLK  
1
P1.1 (I/O)  
TA0.CCI0A  
TA0.0  
I: 0; O: 1  
1
2
3
4
5
6
7
0
1
P1.2 (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
P1.2/TA0.1  
0
1
P1.3 (I/O)  
TA0.CCI2A  
TA0.2  
I: 0; O: 1  
P1.3/TA0.2  
0
1
P1.4 (I/O)  
TA0.CCI3A  
TA0.3  
I: 0; O: 1  
P1.4/TA0.3  
0
1
P1.5 (I/O)  
TA0.CCI4A  
TA0.4  
I: 0; O: 1  
P1.5/TA0.4  
0
1
P1.6 (I/O)  
TA1CLK  
I: 0; O: 1  
P1.6/TA1CLK/CBOUT  
P1.7/TA1.0  
0
CBOUT comparator B  
P1.7 (I/O)  
TA1.CCI0A  
TA1.0  
1
I: 0; O: 1  
0
1
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
83  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.10.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger  
Figure 6-3 shows the port diagram. Table 6-45 summarizes the selection of the port function.  
Pad Logic  
P2REN.x  
DVSS  
DVIO  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P2OUT.x  
0
1
From module  
P2.0/TA1.1  
P2.1/TA1.2  
P2.2/TA2CLK/SMCLK  
P2.3/TA2.0  
P2.4/TA2.1  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2IN.x  
P2.5/TA2.2  
P2.6/RTCCLK/DMAE0  
P2.7/UB0STE/UCA0CLK  
EN  
D
To module  
To module  
P2IE.x  
EN  
Q
P2IFG.x  
Set  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
Figure 6-3. Port P2 (P2.0 to P2.7) Diagram  
84  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-45. Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.0 (I/O)  
TA1.CCI1A  
TA1.1  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
P2.0/TA1.1(2)  
0
0
1
P2.1 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
P2.1/TA1.2(2)  
1
2
3
4
5
0
1
P2.2 (I/O)  
TA2CLK  
I: 0; O: 1  
P2.2/TA2CLK/SMCLK(2)  
P2.3/TA2.0(2)  
0
SMCLK  
1
P2.3 (I/O)  
TA2.CCI0A  
TA2.0  
I: 0; O: 1  
0
1
P2.4 (I/O)  
TA2.CCI1A  
TA2.1  
I: 0; O: 1  
P2.4/TA2.1(2)  
0
1
P2.5 (I/O)  
TA2.CCI2A  
TA2.2  
I: 0; O: 1  
P2.5/TA2.2(2)  
0
1
P2.6 (I/O)  
DMAE0  
I: 0; O: 1  
P2.6/RTCCLK/DMAE0(2)  
6
7
0
RTCCLK  
P2.7 (I/O)  
UCB0STE/UCA0CLK(3) (4)  
1
I: 0; O: 1  
X
P2.7/UCB0STE/UCA0CLK  
(1) X = Don't care  
(2) Not available on RGZ package types.  
(3) The pin direction is controlled by the USCI module.  
(4) UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI_B0 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
85  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.10.3 Port P3 (P3.0 to P3.4) Input/Output With Schmitt Trigger  
Figure 6-4 shows the port diagram. Table 6-46 summarizes the selection of the port function.  
Pad Logic  
P3REN.x  
DVSS  
DVIO  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P3OUT.x  
0
1
From module  
P3.0/UCB0SIMO/UCB0SDA  
P3.1/UCB0SOMI/UCB0SCL  
P3.2/UCB0CLK/UCA0STE  
P3.3/UCA0TXD/UCA0SIMO  
P3.4/UCA0RXD/UCA0SOMI  
P3DS.x  
0: Low drive  
1: High drive  
P3SEL.x  
P3IN.x  
EN  
D
To module  
Figure 6-4. Port P3 (P3.0 to P3.4) Diagram  
Table 6-46. Port P3 (P3.0 to P3.4) Pin Functions  
FUNCTION  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P3.x)  
x
0
1
2
3
4
P3DIR.x  
P3SEL.x  
P3.0 (I/O)  
UCB0SIMO/UCB0SDA(2) (3)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
P3.0/UCB0SIMO/UCB0SDA  
P3.1/UCB0SOMI/UCB0SCL  
P3.2/UCB0CLK/UCA0STE  
P3.3/UCA0TXD/UCA0SIMO  
X
P3.1 (I/O)  
I: 0; O: 1  
UCB0SOMI/UCB0SCL(2) (3)  
P3.2 (I/O)  
UCB0CLK/UCA0STE(2) (4)  
X
I: 0; O: 1  
X
I: 0; O: 1  
X
P3.3 (I/O)  
UCA0TXD/UCA0SIMO(2)  
P3.4 (I/O)  
UCA0RXD/UCA0SOMI(2)  
I: 0; O: 1  
X
P3.4/UCA0RXD/UCA0SOMI  
(1) X = Don't care  
(2) The pin direction is controlled by the USCI module.  
(3) If the I2C functionality is selected, the output drives only the logical 0 to VSS level.  
(4) UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
86  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.10.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger  
Figure 6-5 shows the port diagram. Table 6-47 summarizes the selection of the port function.  
Pad Logic  
P4REN.x  
DVSS  
DVIO  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
From Port Mapping Control  
P4OUT.x  
0
1
From Port Mapping Control  
P4.0/P4MAP0  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
P4.6/P4MAP6  
P4.7/P4MAP7  
P4DS.x  
0: Low drive  
1: High drive  
P4SEL.x  
P4IN.x  
EN  
D
To Port Mapping Control  
Figure 6-5. Port P4 (P4.0 to P4.7) Diagram  
Table 6-47. Port P4 (P4.0 to P4.7) Pin Functions  
FUNCTION  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P4.x)  
P4.0/P4MAP0  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
P4.6/P4MAP6  
x
0
1
2
3
4
5
6
7
P4DIR.x(2)  
P4SEL.x  
P4MAPx  
P4.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
30  
X
Mapped secondary digital function  
P4.1 (I/O)  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.2 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.3 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.4 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.5 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.6 (I/O)  
X
I: 0; O: 1  
X
30  
X
Mapped secondary digital function  
P4.7 (I/O)  
30  
X
I: 0; O: 1  
X
P4.7/P4MAP7(3)  
Mapped secondary digital function  
30  
(1) X = Don't care  
(2) The direction of some mapped secondary functions are controlled directly by the module. See Table 6-7 for specific direction control  
information of mapped secondary functions.  
(3) Not available on RGZ package types.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
87  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.10.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger  
Figure 6-6 shows the port diagram. Table 6-48 summarizes the selection of the port function.  
Pad Logic  
To or from Reference  
(not available on F521x)  
(not available on F521x)  
to ADC10  
(not available on F521x)  
INCHx = x  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
P5OUT.x  
0
1
From module  
P5.0/(A8/VeREF+)  
P5.1/(A9/VeREF–)  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
To module  
Figure 6-6. Port P5 (P5.0 and P5.1) Diagram  
Table 6-48. Port P5 (P5.0 and P5.1) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
REFOUT(2)  
P5.0 (I/O)(3)  
A8/VeREF+(4)  
P5.1 (I/O)(3)  
A9/VeREF(5)  
I: 0; O: 1  
0
1
0
1
X
0
X
0
P5.0/A8/VeREF+  
0
1
X
I: 0; O: 1  
X
P5.1/A9/VeREF–  
(1) X = Don't care  
(2) REFOUT resides in the REF module.  
(3) Default condition  
(4) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC10_A. Channel A8, when selected with  
the INCHx bits, is connected to the VeREF+ pin.  
(5) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals. An external voltage can be applied to VeREF- and used as the reference for the ADC10_A. Channel A9, when selected with the  
INCHx bits, is connected to the VeREF- pin.  
88  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.10.6 Port P5 (P5.2) Input/Output With Schmitt Trigger  
Figure 6-7 shows the port diagram. Table 6-49 summarizes the selection of the port function.  
Pad Logic  
To XT2  
P5REN.2  
DVSS  
DVCC  
0
1
1
P5DIR.2  
0
1
P5OUT.2  
0
1
Module X OUT  
P5.2/XT2IN  
P5DS.2  
0: Low drive  
1: High drive  
P5SEL.2  
P5IN.2  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 6-7. Port P5 (P5.2) Diagram  
6.10.7 Port P5 (P5.3) Input/Output With Schmitt Trigger  
Figure 6-8 shows the port diagram. Table 6-49 summarizes the selection of the port function.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
89  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Pad Logic  
To XT2  
P5REN.3  
DVSS  
DVCC  
0
1
1
P5DIR.3  
0
1
P5OUT.3  
0
1
Module X OUT  
P5SEL.2  
P5.3/XT2OUT  
P5DS.3  
0: Low drive  
1: High drive  
XT2BYPASS  
P5SEL.3  
P5IN.3  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 6-8. Port P5 (P5.3) Diagram  
Table 6-49. Port P5 (P5.2 and P5.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.2  
P5SEL.3  
XT2BYPASS  
P5.2 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
0
X
0
1
X
0
1
P5.2/XT2IN  
2
XT2IN crystal mode(2)  
XT2IN bypass mode(2)  
P5.3 (I/O)  
XT2OUT crystal mode(3)  
P5.3 (I/O)(3)  
X
X
I: 0; O: 1  
P5.3/XT2OUT  
3
X
X
X
0
(1) X = Don't care  
(2) Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal  
mode or bypass mode.  
(3) Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as  
general-purpose I/O.  
90  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.10.8 Port P5 (P5.4 and P5.5) Input/Output With Schmitt Trigger  
Figure 6-9 and Figure 6-10 show the port diagrams. Table 6-50 summarizes the selection of the port  
function.  
Pad Logic  
to XT1  
P5REN.4  
DVSS  
DVCC  
0
1
1
P5DIR.4  
0
1
P5OUT.4  
0
1
Module X OUT  
P5.4/XIN  
P5DS.4  
0: Low drive  
1: High drive  
P5SEL.4  
P5IN.4  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 6-9. Port P5 (P5.4) Diagram  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
91  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Pad Logic  
to XT1  
P5REN.5  
DVSS  
DVCC  
0
1
1
P5DIR.5  
0
1
P5OUT.5  
0
1
Module X OUT  
P5.5/XOUT  
P5SEL.4  
P5DS.5  
0: Low drive  
1: High drive  
XT1BYPASS  
P5SEL.5  
P5IN.5  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 6-10. Port P5 (P5.5) Diagram  
Table 6-50. Port P5 (P5.4 and P5.5) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.4  
P5SEL.5  
XT1BYPASS  
P5.4 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
0
X
0
1
X
0
1
P5.4/XIN  
4
XIN crystal mode(2)  
XIN bypass mode(2)  
P5.5 (I/O)  
XOUT crystal mode(3)  
P5.5 (I/O)(3)  
X
X
I: 0; O: 1  
P5.5/XOUT  
5
X
X
X
0
(1) X = Don't care  
(2) Setting P5SEL.4 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.4 is configured for crystal  
mode or bypass mode.  
(3) Setting P5SEL.4 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.5 can be used as  
general-purpose I/O.  
92  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.10.9 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger  
Figure 6-11 shows the port diagram. Table 6-51 summarizes the selection of the port function.  
Pad Logic  
to ADC10  
(n/a MSPF430F521x)  
INCHx = x  
(n/a MSPF430F521x)  
to Comparator_B  
from Comparator_B  
CBPD.x  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
P6OUT.x  
0
1
From module  
P6.0/CB0/(A0)  
P6.1/CB1/(A1)  
P6.2/CB2/(A2)  
P6.3/CB3/(A3)  
P6.4/CB4/(A4)  
P6.5/CB5/(A5)  
P6.6/CB6/(A6)  
P6.7/CB7/(A7)  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
Bus  
Keeper  
EN  
D
To module  
Figure 6-11. Port P6 (P6.0 to P6.7) Diagram  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
93  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-51. Port P6 (P6.0 to P6.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL.x  
CBPD  
0
P6.0 (I/O)  
A0  
CB0(1)  
P6.1 (I/O)  
A1  
CB1(1)  
P6.2 (I/O)  
A2  
CB2(1)  
P6.3 (I/O)  
A3  
CB3(1)  
P6.4 (I/O)  
A4  
CB4(1)  
P6.5 (I/O)  
A5  
CB5(1)  
P6.6 (I/O)  
A6  
CB6(1)  
P6.7 (I/O)  
A7  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
P6.0/CB0/(A0)  
0
X
X
1
X
I: 0; O: 1  
0
P6.1/CB1/(A1)  
P6.2/CB2/(A2)  
P6.3/CB3/(A3)  
P6.4/CB4/(A4)  
P6.5/CB5/(A5)  
P6.6/CB6/(A6)(2)  
P6.7/CB7/(A7)(2)  
1
2
3
4
5
6
7
X
X
1
X
I: 0; O: 1  
0
X
X
1
X
I: 0; O: 1  
0
X
X
1
X
I: 0; O: 1  
0
X
X
1
X
I: 0; O: 1  
0
X
X
1
X
I: 0; O: 1  
0
X
X
1
X
I: 0; O: 1  
0
X
X
X
1
CB7(1)  
(1) Setting the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input buffer  
for that pin, regardless of the state of the associated CBPD.x bit.  
(2) Not available on RGZ package types.  
94  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.10.10 Port P7 (P7.0 to P7.5) Input/Output With Schmitt Trigger  
Figure 6-12 shows the port diagram. Table 6-52 summarizes the selection of the port function.  
Pad Logic  
P7REN.x  
DVSS  
DVIO  
0
1
1
P7DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P7OUT.x  
0
1
P7.0/TB0.0  
P7.1/TB0.1  
P7.2/TB0.2  
P7.3/TB0.3  
P7.4/TB0.4  
P7.5/TB0.5  
P7DS.x  
0: Low drive  
1: High drive  
P7SEL.x  
P7IN.x  
EN  
D
To module  
Figure 6-12. Port P7 (P7.0 to P7.5) Diagram  
Table 6-52. Port P7 (P7.0 to P7.5) Pin Functions  
FUNCTION  
CONTROL BITS OR SIGNALS  
PIN NAME (P7.x)  
x
P7DIR.x  
P7SEL.x  
P7.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
P7.0/TB0.0(1)  
0
TB0.CCI0A  
TB0.0  
0
1
P7.1 (I/O)  
TB0.CCI1A  
TB0.1  
I: 0; O: 1  
P7.1/TB0.1(1)  
P7.2/TB0.2(1)  
P7.3/TB0.3(1)  
P7.4/TB0.4(1)  
P7.5/TB0.5(1)  
1
2
3
4
5
0
1
P7.2 (I/O)  
TB0.CCI2A  
TB0.2  
I: 0; O: 1  
0
1
P7.3 (I/O)  
TB0.CCI3A  
TB0.3  
I: 0; O: 1  
0
1
P7.4 (I/O)  
TB0.CCI4A  
TB0.4  
I: 0; O: 1  
0
1
P7.5 (I/O)  
TB0.CCI5A  
TB0.5  
I: 0; O: 1  
0
1
(1) Not available on RGZ package types.  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
95  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.10.11 Port PJ (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output  
Figure 6-13 shows the port diagram. Table 6-53 summarizes the selection of the port function.  
Pad Logic  
PJREN.0  
0
1
DVSS  
DVCC  
1
PJDIR.0  
DVCC  
0
1
PJOUT.0  
0
1
From JTAG  
PJ.0/TDO  
PJDS.0  
0: Low drive  
1: High drive  
From JTAG  
PJIN.0  
EN  
D
Figure 6-13. Port PJ (PJ.0) Diagram  
6.10.12 Port PJ (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt  
Trigger or Output  
Figure 6-14 shows the port diagram. Table 6-53 summarizes the selection of the port function.  
96  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Pad Logic  
PJREN.x  
0
1
DVSS  
DVCC  
1
PJDIR.x  
DVSS  
0
1
PJOUT.x  
0
1
From JTAG  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
PJDS.x  
0: Low drive  
1: High drive  
From JTAG  
PJIN.x  
EN  
D
To JTAG  
Figure 6-14. Port PJ (PJ.1 to PJ.3) Diagram  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
97  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-53. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS OR  
SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJ.0 (I/O)(2)  
TDO(3)  
PJ.1 (I/O)(2)  
TDI/TCLK(3) (4)  
PJ.2 (I/O)(2)  
TMS(3) (4)  
I: 0; O: 1  
PJ.0/TDO  
0
1
2
3
X
I: 0; O: 1  
PJ.1/TDI/TCLK  
PJ.2/TMS  
X
I: 0; O: 1  
X
PJ.3 (I/O)(2)  
TCK(3) (4)  
I: 0; O: 1  
X
PJ.3/TCK  
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.  
98  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.11 Device Descriptors  
Table 6-54 and Table 6-55 list the contents of the device descriptor tag-length-value (TLV) structure for  
each device type.  
Table 6-54. MSP430F522x Device Descriptor Table(1)  
VALUE  
SIZE  
(BYTES)  
DESCRIPTION  
Info length  
ADDRESS  
F5229  
06h  
F5227  
06h  
F5224  
06h  
F5222  
06h  
01A00h  
01A01h  
01A02h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
01A14h  
01A15h  
01A16h  
01A18h  
1
1
2
1
1
1
1
1
1
4
2
2
2
1
1
2
2
CRC length  
CRC value  
06h  
06h  
06h  
06h  
Per unit  
51h  
Per unit  
4Fh  
Per unit  
4Ch  
Per unit  
4Ah  
Info Block  
Device ID  
Device ID  
81h  
81h  
81h  
81h  
Hardware revision  
Firmware revision  
Die record tag  
Die record length  
Lot/wafer ID  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
0Ah  
0Ah  
0Ah  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Die Record  
Die X position  
Die Y position  
Test results  
ADC10 calibration tag  
ADC10 calibration length  
ADC gain factor  
ADC offset  
10h  
10h  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
ADC 1.5-V reference  
Temperature sensor 30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
ADC 1.5-V reference  
Temperature sensor 85°C  
ADC10  
Calibration  
ADC 2.0-V reference  
Temperature sensor 30°C  
ADC 2.0-V reference  
Temperature sensor 85°C  
ADC 2.5-V reference  
Temperature sensor 30°C  
ADC 2.5-V reference  
Temperature sensor 85°C  
REF calibration tag  
REF calibration length  
01A26h  
01A27h  
01A28h  
01A2Ah  
01A2Ch  
1
1
2
2
2
12h  
12h  
12h  
12h  
06h  
06h  
06h  
06h  
REF Calibration  
REF 1.5-V reference factor  
REF 2.0-V reference factor  
REF 2.5-V reference factor  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
(1) NA = Not applicable  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
99  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-54. MSP430F522x Device Descriptor Table(1) (continued)  
VALUE  
SIZE  
(BYTES)  
DESCRIPTION  
ADDRESS  
F5229  
02h  
F5227  
02h  
F5224  
02h  
F5222  
02h  
Peripheral descriptor tag  
01A2Eh  
01A2Fh  
1
1
Peripheral descriptor length  
Memory 1  
5Fh  
5Fh  
5Dh  
5Dh  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
2
2
2
2
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
Memory 2  
Memory 3  
Memory 4  
12h  
2Eh  
12h  
2Eh  
12h  
2Eh  
12h  
2Eh  
22h  
96h  
22h  
94h  
22h  
96h  
22h  
94h  
Memory 5  
Memory 6  
2
1/2  
1
N/A  
N/A  
00h  
20h  
N/A  
N/A  
00h  
20h  
N/A  
N/A  
00h  
1Fh  
N/A  
N/A  
00h  
1Fh  
Delimiter  
Peripheral count  
1
00h  
23h  
00h  
23h  
00h  
23h  
00h  
23h  
MSP430CPUXV2  
JTAG  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
00h  
09h  
00h  
09h  
00h  
09h  
00h  
09h  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
SBW  
00h  
03h  
00h  
03h  
00h  
03h  
00h  
05h  
EEM-S  
TI BSL  
00h  
FCh  
00h  
FCh  
00h  
FCh  
00h  
FCh  
10h  
41h  
10h  
41h  
10h  
41h  
10h  
41h  
SFR  
Peripheral  
Descriptor  
02h  
30h  
02h  
30h  
02h  
30h  
02h  
30h  
PMM  
02h  
38h  
02h  
38h  
02h  
38h  
02h  
38h  
FCTL  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
CRC16  
CRC16_RB  
RAMCTL  
WDT_A  
UCS  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
40h  
00h  
40h  
00h  
40h  
00h  
40h  
01h  
48h  
01h  
48h  
01h  
48h  
01h  
48h  
02h  
42h  
02h  
42h  
02h  
42h  
02h  
42h  
SYS  
03h  
A0h  
03h  
A0h  
03h  
A0h  
03h  
A0h  
REF  
01h  
10h  
01h  
10h  
01h  
10h  
01h  
10h  
Port mapping  
Port 1/2  
Port 3/4  
Port 5/6  
04h  
51h  
04h  
51h  
04h  
51h  
04h  
51h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
53h  
02h  
53h  
02h  
53h  
02h  
53h  
100  
Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-54. MSP430F522x Device Descriptor Table(1) (continued)  
VALUE  
SIZE  
(BYTES)  
DESCRIPTION  
Port 7/8  
ADDRESS  
F5229  
F5227  
F5224  
F5222  
02h  
54h  
02h  
54h  
2
2
2
2
2
2
2
2
2
2
2
2
2
N/A  
N/A  
0Ch  
5Fh  
0Ch  
5Fh  
0Eh  
5Fh  
0Eh  
5Fh  
JTAG  
TA0  
02h  
62h  
02h  
62h  
02h  
62h  
02h  
62h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
TA1  
04h  
67h  
04h  
67h  
04h  
67h  
04h  
67h  
TB0  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
TA2  
Peripheral  
Descriptor  
(continued)  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
RTC  
02h  
85h  
02h  
85h  
02h  
85h  
02h  
85h  
MPY32  
DMA-3  
USCI_A/B  
USCI_A/B  
ADC10_A  
COMP_B  
04h  
47h  
04h  
47h  
04h  
47h  
04h  
47h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
04h  
90h  
04h  
90h  
04h  
90h  
04h  
90h  
14h  
D3h  
14h  
D3h  
14h  
D3h  
14h  
D3h  
18h  
A8h  
18h  
A8h  
18h  
A8h  
18h  
A8h  
COMP_B  
TB0.CCIFG0  
TB0.CCIFG1..6  
WDTIFG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
01h  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
01h  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
01h  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
01h  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
USCI_A0  
USCI_B0  
ADC10_A  
TA0.CCIFG0  
TA0.CCIFG1..4  
Reserved  
DMA  
Interrupts  
TA1.CCIFG0  
TA1.CCIFG1..2  
P1  
USCI_A1  
USCI_B1  
TA1.CCIFG0  
TA1.CCIFG1..2  
P2  
RTC_A  
Delimiter  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
101  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-55. MSP430F521x Device Descriptor Table(1)  
VALUE  
SIZE  
(BYTES)  
DESCRIPTION  
Info length  
ADDRESS  
F5219  
06h  
F5217  
06h  
F5214  
06h  
F5212  
06h  
01A00h  
01A01h  
01A02h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
01A14h  
01A15h  
01A16h  
01A18h  
1
1
2
1
1
1
1
1
1
4
2
2
2
1
1
2
2
CRC length  
CRC value  
06h  
06h  
06h  
06h  
Per unit  
47h  
Per unit  
45h  
Per unit  
42h  
Per unit  
40h  
Info Block  
Device ID  
Device ID  
81h  
81h  
81h  
81h  
Hardware revision  
Firmware revision  
Die record tag  
Die record length  
Lot/wafer ID  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
0Ah  
0Ah  
0Ah  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Die Record  
Die X position  
Die Y position  
Test results  
ADC10 calibration tag  
ADC10 calibration length  
ADC gain factor  
ADC offset  
10h  
10h  
10h  
10h  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
ADC 1.5-V reference  
Temperature sensor 30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
Blank  
ADC 1.5-V Reference  
Temperature sensor 85°C  
ADC10  
Calibration  
ADC 2.0-V reference  
Temperature sensor 30°C  
ADC 2.0-V reference  
Temperature sensor 85°C  
ADC 2.5-V reference  
Temperature sensor 30°C  
ADC 2.5-V reference  
Temperature sensor 85°C  
REF calibration tag  
REF calibration length  
01A26h  
01A27h  
01A28h  
01A2Ah  
01A2Ch  
1
1
2
2
2
12h  
12h  
12h  
12h  
06h  
06h  
06h  
06h  
REF Calibration  
REF 1.5-V reference factor  
REF 2.0-V reference factor  
REF 2.5-V reference factor  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
(1) NA = Not applicable, Blank = unused and reads FFh  
102 Detailed Description  
Copyright © 2012–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-55. MSP430F521x Device Descriptor Table(1) (continued)  
VALUE  
SIZE  
(BYTES)  
DESCRIPTION  
ADDRESS  
F5219  
02h  
F5217  
02h  
F5214  
02h  
F5212  
02h  
Peripheral descriptor tag  
01A2Eh  
01A2Fh  
1
1
Peripheral descriptor length  
Memory 1  
5Dh  
5Dh  
5Bh  
5Bh  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
2
2
2
2
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
Memory 2  
Memory 3  
Memory 4  
12h  
2Eh  
12h  
2Eh  
12h  
2Eh  
12h  
2Eh  
22h  
96h  
22h  
94h  
22h  
96h  
22h  
94h  
Memory 5  
Memory 6  
2
1/2  
1
N/A  
N/A  
00h  
1Fh  
N/A  
N/A  
00h  
1Fh  
N/A  
N/A  
00h  
1Eh  
N/A  
N/A  
00h  
1Eh  
Delimiter  
Peripheral count  
1
00h  
23h  
00h  
23h  
00h  
23h  
00h  
23h  
MSP430CPUXV2  
JTAG  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
00h  
09h  
00h  
09h  
00h  
09h  
00h  
09h  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
SBW  
00h  
03h  
00h  
03h  
00h  
03h  
00h  
05h  
EEM-S  
TI BSL  
00h  
FCh  
00h  
FCh  
00h  
FCh  
00h  
FCh  
10h  
41h  
10h  
41h  
10h  
41h  
10h  
41h  
SFR  
Peripheral  
Descriptor  
02h  
30h  
02h  
30h  
02h  
30h  
02h  
30h  
PMM  
02h  
38h  
02h  
38h  
02h  
38h  
02h  
38h  
FCTL  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
CRC16  
CRC16_RB  
RAMCTL  
WDT_A  
UCS  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
40h  
00h  
40h  
00h  
40h  
00h  
40h  
01h  
48h  
01h  
48h  
01h  
48h  
01h  
48h  
02h  
42h  
02h  
42h  
02h  
42h  
02h  
42h  
SYS  
03h  
A0h  
03h  
A0h  
03h  
A0h  
03h  
A0h  
REF  
01h  
10h  
01h  
10h  
01h  
10h  
01h  
10h  
Port mapping  
Port 1/2  
Port 3/4  
Port 5/6  
04h  
51h  
04h  
51h  
04h  
51h  
04h  
51h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
53h  
02h  
53h  
02h  
53h  
02h  
53h  
Copyright © 2012–2018, Texas Instruments Incorporated  
Detailed Description  
103  
Submit Documentation Feedback  
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-55. MSP430F521x Device Descriptor Table(1) (continued)  
VALUE  
SIZE  
(BYTES)  
DESCRIPTION  
Port 7/8  
ADDRESS  
F5219  
F5217  
F5214  
F5212  
02h  
54h  
02h  
54h  
2
2
2
2
2
2
2
2
2
2
N/A  
N/A  
0Ch  
5Fh  
0Ch  
5Fh  
0Eh  
5Fh  
0Eh  
5Fh  
JTAG  
TA0  
02h  
62h  
02h  
62h  
02h  
62h  
02h  
62h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
TA1  
04h  
67h  
04h  
67h  
04h  
67h  
04h  
67h  
TB0  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
TA2  
Peripheral  
Descriptor  
(continued)  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
RTC  
02h  
85h  
02h  
85h  
02h  
85h  
02h  
85h  
MPY32  
DMA-3  
USCI_A/B  
04h  
47h  
04h  
47h  
04h  
47h  
04h  
47h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
04h  
90h  
04h  
90h  
04h  
90h  
04h  
90h  
USCI_A/B  
ADC10_A  
COMP_B  
2
2
2
N/A  
N/A  
N/A  
N/A  
2Ch  
A8h  
2Ch  
A8h  
2Ch  
A8h  
2Ch  
A8h  
COMP_B  
TB0.CCIFG0  
TB0.CCIFG1..6  
WDTIFG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A8h  
64h  
65h  
40h  
90h  
91h  
01h  
60h  
61h  
01h  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
01h  
60h  
61h  
01h  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
01h  
60h  
61h  
01h  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
01h  
60h  
61h  
01h  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
USCI_A0  
USCI_B0  
Reserved  
TA0.CCIFG0  
TA0.CCIFG1..4  
Reserved  
DMA  
Interrupts  
TA1.CCIFG0  
TA1.CCIFG1..2  
P1  
USCI_A1  
USCI_B1  
TA2.CCIFG0  
TA2.CCIFG1..2  
P2  
RTC_A  
Delimiter  
104  
Detailed Description  
版权 © 2012–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
7 器件和文档支持  
7.1 开始使用  
有关 MSP430 系列器件以及开发协助工具和库的更多信息,请访问 MSP430 超低功耗传感和测量 MCU 概  
。  
7.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS.  
These prefixes represent evolutionary stages of product development from engineering prototypes (XMS)  
through fully qualified production devices (MSP).  
XMS – Experimental device that is not necessarily representative of the final device's electrical  
specifications  
MSP – Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been  
demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production  
devices. TI recommends that these devices not be used in any production system because their expected  
end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
temperature range, package type, and distribution format. 7-1 provides a legend for reading the  
complete device name.  
版权 © 2012–2018, Texas Instruments Incorporated  
器件和文档支持  
105  
提交文档反馈意见  
产品主页链接: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
MSP 430 F 5 438 A I ZQW T -EP  
Processor Family  
MCU Platform  
Device Type  
Series  
Feature Set  
Optional: Additional Features  
Optional: Tape and Reel  
Packaging  
Optional: Temperature Range  
Optional: A = Revision  
Processor Family  
CC = Embedded RF Radio  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
PMS = Prototype Device  
MCU Platform  
Device Type  
430 = MSP430 low-power microcontroller platform  
Memory Type  
C = ROM  
Specialized Application  
AFE = Analog Front End  
BQ = Contactless Power  
CG = ROM Medical  
F = Flash  
FR = FRAM  
G = Flash or FRAM (Value Line)  
L = No Nonvolatile Memory  
FE = Flash Energy Meter  
FG = Flash Medical  
FW = Flash Electronic Flow Meter  
Series  
1 = Up to 8 MHz  
5 = Up to 25 MHz  
6 = Up to 25 MHz with LCD  
0 = Low-Voltage Series  
2 = Up to 16 MHz  
3 = Legacy  
4 = Up to 16 MHz with LCD  
Feature Set  
Various levels of integration within a series  
N/A  
Optional: A = Revision  
Optional: Temperature Range S = 0°C to 50°C  
C = 0°C to 70°C  
I = –40°C to 85°C  
T = –40°C to 105°C  
Packaging  
http://www.ti.com/packaging  
Optional: Tape and Reel  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
Optional: Additional Features -EP = Enhanced Product (–40°C to 105°C)  
-HT = Extreme Temperature Parts (–55°C to 150°C)  
-Q1 = Automotive Q100 Qualified  
7-1. Device Nomenclature  
106  
器件和文档支持  
版权 © 2012–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
7.3 工具与软件  
所有 MSP 微控制器均受多种软件和硬件开发工具的支持。相关工具由 TI 以及多家第三方供应商提供。请参  
MSP430 超低功耗 MCU – 工具与软件,了解所有工具。  
7-1 列出了 MSP430F522x MSP430F521x MCU 的 调试 功能。请参阅《适用于 MSP430 Code  
Composer Studio 用户指南》,以了解可用功能的 详细信息。  
7-1. 硬件调试 特性  
四线制  
JTAG  
两线制  
JTAG  
断点  
(N)  
状态序列发生  
LPMx.5 调试支 EnergyTrace++ 技  
MSP430 架构  
范围断点  
时钟控制  
跟踪缓冲器  
MSP430Xv2  
3
设计套件与评估模块  
MSP-TS430RGC64C - 适用于 MSP430F5x MCU 64 引脚目标开发板 MSP-TS430RGC64C 是一款独  
立的 64 引脚 ZIF 插座目标板,用于通过 JTAG 接口或 Spy-Bi-Wire(两线制 JTAG)协议在  
系统内对 MSP430 MCU 进行编程和调试。  
Bluetooth® MSP430 音频源参考设计电路板 客户可以使用蓝牙和 MSP430 音频源参考设计为适用于玩  
具、投影仪、智能遥控器 和所有 音频流配件等应用的 低端 低功耗音频源解决方案创建各种应  
用。  
带有集成天线的双模蓝牙 CC2564 模块评估板 CC2564MODAEM 评估板包含蓝牙 BR/EDR/LE HCI 解决方  
案。bCC2564MODA 基于 TI CC2564B 双模蓝牙单芯片器件,旨在用于评估和设计,能够  
减少设计工作量,实现产品快速上市。  
软件  
MSP430Ware™ 软件 MSP430Ware 软件集合了所有 MSP430 器件的代码示例、数据表以及其他设计资  
源,打包提供给用户。除了提供已有 MSP430 MCU 设计资源的完整集合外,MSP430Ware  
软件还包含名为 MSP 驱动程序库的高级 API。借助该库可以轻松地对 MSP430 硬件进行编  
程。MSP430Ware 软件以 CCS 组件或独立软件包两种形式提供。  
MSP430F522xMSP430F521x 代码示例 根据不同应用需求配置各集成外设的 C 代码示例。  
MSP 驱动程序库 MSP 驱动程序库的抽象 API 提供易用的函数调用,无需直接操纵 MSP430 硬件的位与字  
节。完整的文档通过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证的  
参数的详细信息。开发人员可以使用驱动程序库功能,以最低开销编写完整项目。  
MSP EnergyTrace™ 技术 适用于 MSP430 微控制器的 EnergyTrace 技术是基于电能的代码分析工具,适  
用于测量和显示应用的电能系统配置并帮助优化应用以实现超低功耗。  
ULP(超低功耗)Advisor ULP Advisor™软件是一款辅助工具,旨在指导开发人员编写更为高效的代码,  
从而充分利用 MSP430 MSP432 微控制器 独特 功能。ULP Advisor 的目标人群是微控制器  
的资深开发者和开发新手,可以根据详尽的 ULP 检验表检查代码,以便最大限度地减少应用  
程序的能耗。在编译时,ULP Advisor 会提供通知和备注以突出显示代码中可以进一步优化的  
区域,进而实现更低功耗。  
IEC60730 软件包 IEC60730 MSP430 软件包经过专门开发,用于协助客户达到 IEC 60730-1:2010(家用  
及类似用途的自动化电气控制 - 1 部分:一般要求)B 类产品的要求。其中涵盖家用电器、  
电弧检测器、电源转换器、电动工具、电动自行车及其他诸多产品。IEC60730 MSP430 软件  
包可以嵌入在 MSP430 MCU 中 运行的客户应用, 从而帮助客户简化其消费类器件在功能安  
全方面遵循 IEC 60730-1:2010 B 类规范的认证工作。  
适用于 MSP 的定点数学运算库 MSP IQmath Qmath 库是为 C 语言开发者提供的一套经过高度优化的高  
精度数学运算函数集合,能够将浮点算法无缝嵌入 MSP430 MSP432 器件的定点代码中。  
这些例程通常用于计算密集型实时 应用, 而优化的执行速度、高精度以及超低能耗通常是影  
响这些实时应用的关键因素。与使用浮点数学算法编写的同等代码相比,使用  
Qmath 库可以大幅提高执行速度并显著降低能耗。  
IQmath  
适用于 MSP430 的浮点数学运算库  
TI  
在低功耗和低成本微控制器领域锐意创新,为您提供  
MSPMATHLIB。此标量函数的浮点数学运算库,能够充分利用器件的智能外设,使速度最高  
达到标准 MSP430 数学函数的 26 倍。Mathlib 能够轻松集成到您的设计中。该运算库免费使  
用并集成在 Code Composer Studio IDE IAR Embedded Workbench IDE 中。  
开发工具  
适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境 Code Composer Studio (CCS) 集成开  
发环境 (IDE) 支持所有 MSP 微控制器器件。CCS 含一整套用于开发和调试嵌入式 应用的  
版权 © 2012–2018, Texas Instruments Incorporated  
器件和文档支持  
107  
提交文档反馈意见  
产品主页链接: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
嵌入式软件实用程序。CCS 包含了优化的 C/C++ 编译器、源代码编辑器、项目构建环境、调  
试器、描述器以及其他众多 功能。  
命令行编程器 MSP Flasher 是一款基于 shell 的开源接口,可使用 JTAG Spy-Bi-Wire (SBW) 通信通过  
FET 编程器或 eZ430 MSP 微控制器进行编程。MSP Flasher 可用于将二进制文件(.txt 或  
.hex 文件)直接下载到 MSP 微控制器,而无需使用 IDE。  
MSP MCU 编程器和调试器 MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可帮助用户在  
MSP 低功耗微控制器 (MCU) 中快速开发应用。创建 MCU 软件通常需要将生成的二进制程序  
下载到 MSP 器件中,从而进行验证和调试。  
MSP-GANG 生产编程器 MSP Gang 编程器是一款 MSP430 MSP432 器件编程器,可同时对多达八个  
完全相同的 MSP430 MSP432 闪存或 FRAM 器件进行编程。MSP Gang 编程器可使用标  
准的 RS-232 USB 连接与主机 PC 相连并提供灵活的编程选项,允许用户完全自定义流  
程。  
7.4 文档支持  
以下文档对 MSP430F522x MSP430F521x MCU 进行了介绍。www.ti.com.cn 网站上提供了这些文档的  
副本。  
接收文档更新通知  
要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹(请参见7.5  
获取产品文件夹链接)。请单击右上角的通知我按钮。点击注册后,即可收到产品信息更改每周摘要(如  
有)。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
勘误  
MSP430F5229 器件勘误表》 说明了针对 MSP430F5229 器件功能技术规格的已知例外情况。  
MSP430F5227 器件勘误表》 说明了针对 MSP430F5227 器件功能技术规格的已知例外情况。  
MSP430F5224 器件勘误表》 说明了针对 MSP430F5224 器件功能技术规格的已知例外情况。  
MSP430F5222 器件勘误表》 说明了针对 MSP430F5222 器件功能技术规格的已知例外情况。  
MSP430F5219 器件勘误表》 说明了针对 MSP430F5219 器件功能技术规格的已知例外情况。  
MSP430F5217 器件勘误表》 说明了针对 MSP430F5217 器件功能技术规格的已知例外情况。  
MSP430F5214 器件勘误表》 说明了针对 MSP430F5214 器件功能技术规格的已知例外情况。  
MSP430F5212 器件勘误表》 说明了针对 MSP430F5212 器件功能技术规格的已知例外情况。  
用户指南  
MSP430F5xx MSP430F6xx 系列用户指南》 详细介绍了该器件系列提供的模块和外设。  
MSP430 闪存器件引导加载程序 (BSL) 用户指南》 MSP430 引导加载程序(bootloader,简称 BSL,以  
前称为 bootstrap loader)允许用户在原型设计、最终生产和投用阶段与 MSP430 微控制器中  
的嵌入式存储器进行通信。可编程存储器(闪存)和数据存储器 (RAM) 能够按照要求进行变  
更。不要将此处的引导加载程序与某些数字信号处理器 (DSP) 中将外部存储器中的程序代码  
(和数据)自动加载到 DSP 内部存储器的引导装载程序混为一谈。  
《通过 JTAG 接口对 MSP430 进行编程》  
此文档介绍了使用 JTAG 通信端口擦除、编程和验证基于  
MSP430 闪存和 FRAM 的微控制器系列的存储器模块所需的功能。此外,该文档还介绍了如  
何编程所有 MSP430 器件上均具备的 JTAG 访问安全保险丝。此文档介绍了使用标准四线制  
JTAG 接口和两线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))的器件访问。  
MSP430 硬件工具用户指南》 此手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针对  
MSP430 超低功耗微控制器的程序开发工具。  
应用报告  
《使用 MSP430F522x MSP430F521x 器件进行设计》 MSP430F522x MSP430F521x 器件支持双电  
I/O 系统,在要求 MCU 连接工作电压电平与 MCU 器件电源不同的外部器件(如传感器或  
其他处理器)的系统中,该 I/O 系统至关重要。此外,F522x F521x 器件的双电源输入电压  
范围低至 1.62V(请参阅器件数据表规格),这样就允许使用标称 1.8V I/O 接口,无需外  
部电平转换。该应用报告介绍了在应用中设计 F522x F521x 器件时需要牢记的各种设计注  
意事项。  
《对 MSP ADC 进行一般过采样以获得更高分辨率》 多个 MSP 超低功耗微控制器可以提供用于将物理量  
108  
器件和文档支持  
版权 © 2012–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
转换成数字(这是一种广泛用于大量应用的功能)的模数 转换器 (ADC)。但是,有时客户设计  
要求的分辨率会高于所选 MSP 可提供的 ADC 分辨率。该应用报告基于之前发布的《对  
ADC12 进行过采样以实现更高的分辨率》(SLAA323),因此介绍了如何结合过采样方法来提  
ADC 分辨率,使其超过当前可用的位数。  
MSP430 32kHz 晶体振荡器》 对于稳定的晶体振荡器,选择合适的晶振、正确的负载电路和适当的电路  
板布局布线至关重要。该应用报告总结了晶体振荡器的功能,介绍了用于选择合适的晶体以实  
MSP430 超低功耗运行的参数。此外,还给出了正确电路板布局的提示和示例。此外,为  
了确保振荡器在大规模生产后能够稳定运行,还可能需要进行一些振荡器测试,该文档中提供  
了有关这些测试的详细信息。  
MSP430 系统级 ESD 注意事项》  
随着芯片技术向更低电压方向发展以及设计具有成本效益的超低功耗  
组件的需求的出现,系统级 ESD 要求变得越来越苛刻。该应用报告阐述了三个不同的 ESD 主  
题,以帮助电路板设计人员和 OEM 了解并实现强大的系统级设计:(1) 组件级 ESD 测试和系  
统级 ESD 测试;(2) 实现系统级 ESD 保护的通用设计指南;(3) 系统高效 ESD 设计 (SEED)  
简介,这是一种板载和片上 ESD 保护协同设计方法。该应用报告介绍了一些真实的系统级  
ESD 保护设计示例及其结果。  
版权 © 2012–2018, Texas Instruments Incorporated  
器件和文档支持  
109  
提交文档反馈意见  
产品主页链接: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222  
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212  
ZHCSAJ5H NOVEMBER 2012REVISED SEPTEMBER 2018  
www.ti.com.cn  
7.5 相关链接  
7-2 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品  
的快速链接。  
7-2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
MSP430F5229  
MSP430F5227  
MSP430F5224  
MSP430F5222  
MSP430F5219  
MSP430F5217  
MSP430F5214  
MSP430F5212  
7.6 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参见 TI 《使用条款》。  
TI E2E™ 社区  
TI 的工程师交流 (E2E) 社区. 此社区的创建目的是为了促进工程师之间协作。在 e2e.ti.com 中,您可以提  
问、共享知识、拓展思路,在同领域工程师的帮助下解决问题。  
TI 嵌入式处理器维基网页  
德州仪器 (TI) 嵌入式处理器维基网页。此网站的建立是为了帮助开发人员熟悉德州仪器 (TI) 的嵌入式处理  
器,并且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。  
7.7 商标  
MSP430, MSP430Ware, EnergyTrace, ULP Advisor, 适用于 MSP 微控制器的 Code Composer Studio,  
E2E are trademarks of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG.  
All other trademarks are the property of their respective owners.  
7.8 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
7.9 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
8 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
110  
机械、封装和可订购信息  
版权 © 2012–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217  
MSP430F5214 MSP430F5212  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430F5212IRGZT  
MSP430F5214IRGZR  
MSP430F5217IRGCT  
MSP430F5217IYFFR  
MSP430F5219IYFFT  
MSP430F5222IRGZR  
MSP430F5222IRGZT  
MSP430F5224IRGZR  
MSP430F5229IRGCR  
MSP430F5229IRGCT  
MSP430F5229IYFFR  
MSP430F5229IYFFT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
DSBGA  
DSBGA  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
DSBGA  
DSBGA  
RGZ  
RGZ  
RGC  
YFF  
YFF  
RGZ  
RGZ  
RGZ  
RGC  
RGC  
YFF  
YFF  
48  
48  
64  
64  
64  
48  
48  
48  
64  
64  
64  
64  
250  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
F5212  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
F5214  
F5217  
M430F5217  
M430F5219  
F5222  
F5222  
2500 RoHS & Green  
2000 RoHS & Green  
F5224  
F5229  
250  
2500 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
F5229  
M430F5229  
M430F5229  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Jan-2021  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F5212IRGZT  
MSP430F5214IRGZR  
MSP430F5217IRGCT  
MSP430F5217IYFFR  
MSP430F5219IYFFT  
MSP430F5222IRGZR  
MSP430F5222IRGZT  
MSP430F5224IRGZR  
MSP430F5229IRGCR  
MSP430F5229IRGCT  
MSP430F5229IYFFR  
MSP430F5229IYFFT  
VQFN  
VQFN  
VQFN  
DSBGA  
DSBGA  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
DSBGA  
DSBGA  
RGZ  
RGZ  
RGC  
YFF  
YFF  
RGZ  
RGZ  
RGZ  
RGC  
RGC  
YFF  
YFF  
48  
48  
64  
64  
64  
48  
48  
48  
64  
64  
64  
64  
250  
2500  
250  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
180.0  
16.4  
16.4  
16.4  
12.4  
12.4  
16.4  
16.4  
16.4  
16.4  
16.4  
12.4  
12.4  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
12.0  
12.0  
12.0  
8.0  
16.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
9.3  
9.3  
1.1  
2500  
250  
3.54  
3.54  
7.3  
3.66  
3.66  
7.3  
0.81  
0.81  
1.1  
8.0  
2500  
250  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
7.3  
7.3  
1.1  
2500  
2000  
250  
7.3  
7.3  
1.1  
9.3  
9.3  
1.1  
9.3  
9.3  
1.1  
2500  
250  
3.54  
3.54  
3.66  
3.66  
0.81  
0.81  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F5212IRGZT  
MSP430F5214IRGZR  
MSP430F5217IRGCT  
MSP430F5217IYFFR  
MSP430F5219IYFFT  
MSP430F5222IRGZR  
MSP430F5222IRGZT  
MSP430F5224IRGZR  
MSP430F5229IRGCR  
MSP430F5229IRGCT  
MSP430F5229IYFFR  
MSP430F5229IYFFT  
VQFN  
VQFN  
VQFN  
DSBGA  
DSBGA  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
DSBGA  
DSBGA  
RGZ  
RGZ  
RGC  
YFF  
YFF  
RGZ  
RGZ  
RGZ  
RGC  
RGC  
YFF  
YFF  
48  
48  
64  
64  
64  
48  
48  
48  
64  
64  
64  
64  
250  
2500  
250  
210.0  
367.0  
210.0  
335.0  
210.0  
367.0  
210.0  
367.0  
367.0  
210.0  
335.0  
182.0  
185.0  
367.0  
185.0  
335.0  
185.0  
367.0  
185.0  
367.0  
367.0  
185.0  
335.0  
182.0  
35.0  
38.0  
35.0  
25.0  
35.0  
38.0  
35.0  
38.0  
38.0  
35.0  
25.0  
20.0  
2500  
250  
2500  
250  
2500  
2000  
250  
2500  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
RGC0064B  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.15  
8.85  
A
B
PIN 1 INDEX AREA  
9.15  
8.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
17  
32  
16  
33  
65  
SYMM  
2X 7.5  
4.25 0.1  
60X  
0.5  
1
48  
0.30  
0.18  
64X  
49  
64  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
64X  
0.05  
4219010/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.25)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.18) TYP  
(8.8)  
65  
SYMM  
(0.695) TYP  
(
0.2) TYP  
VIA  
33  
16  
32  
17  
(0.695) TYP  
(1.18) TYP  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219010/A 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
9X ( 1.19)  
65  
SYMM  
(8.8)  
(1.39)  
33  
16  
17  
32  
(1.39)  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
71% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219010/A 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
D: Max = 3.565 mm, Min =3.505 mm  
E: Max = 3.445 mm, Min =3.385 mm  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY