MSP430F5255 [TI]

具有 128KB 闪存、32KB SRAM、10 位 ADC、比较器、DMA 和 1.8V 双电源 I/O 的 25MHz MCU;
MSP430F5255
型号: MSP430F5255
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 128KB 闪存、32KB SRAM、10 位 ADC、比较器、DMA 和 1.8V 双电源 I/O 的 25MHz MCU

静态存储器 比较器 闪存
文件: 总112页 (文件大小:3972K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
MSP430F525x 混合信号微控制器  
• 单一时钟系统  
1 特性  
– 针对频率稳定的锁相(FLL) 控制环路  
– 低功耗低频内部时钟(VLO)  
– 低频修整内部基准(REFO)  
32kHz 手表晶(XT1)  
• 双电源电压器件  
– 主电源AVCCDVCC)  
• 由外部电源供电:  
– 高32MHz 的高频晶(XT2)  
• 配有五个捕捉/比较寄存器16 位计时TA0,  
Timer_A  
3.6V 1.8V  
• 多18 个通I/O支持多8 个外部中断  
– 低压接口电(DVIO)  
• 配有三个捕捉/比较寄存器16 位计时TA1,  
Timer_A  
• 配有三个捕捉/比较寄存器16 位计时TA2,  
Timer_A  
• 由单独的外部电源供电1.62 V 1.98 V  
• 多35 个通I/O支持多16 个外部中  
• 串行通信  
• 具有七个捕捉/比较影子寄存器16 位计时器  
TB0Timer_B  
• 四个通用串行通信接口  
• 超低功耗  
– 工作模(AM):  
所有系统时钟均工作  
USCI_A0A1A2 A3 均支持:  
8MHz3.0V 且闪存程序执行时为  
290µA/MHz典型值)  
8MHz3.0V RAM 程序执行时为  
• 具有自动波特率检测功能的增强型通用异步  
收发(UART)  
• 红外数据通(IrDA) 编码器和解码器  
• 同SPI  
150µA/MHz典型值)  
– 待机模(LPM3):  
USCI_B0B1B2 B3 均支持:  
含晶体的实时时(RTC)、看门狗、电源监控器  
可用RAM 保持快速唤醒:  
2.2V 2.1µA3.0V 2.3µA典型值)  
低功耗振荡(VLO)、通用计数器、看门狗、电  
源监控器可用RAM 保持快速唤醒:  
3.0V 1.6µA典型值)  
I2C  
• 同步串行外设接(SPI)  
• 带内部基准、采样保持功能10 位模数转换器  
(ADC)  
• 比较器  
• 硬件乘法器支32 位运算  
• 串行板上编程无需外部编程电压  
3 通道内DMA  
• 具RTC 功能的基本定时器  
器件比较汇总了可用的产品系列成员和封装  
– 关闭模(LPM4):  
RAM 保持、电源监控器可用、快速唤醒:  
3.0V 1.3µA典型值)  
– 关断模(LPM4.5):  
3.0V 0.18µA典型值)  
3.5μs典型值内从待机模式唤醒  
16 RISC 架构扩展存储器25MHz 的系  
统时钟  
2 应用  
• “常开型”系统控制器  
• 电源管理集线器  
Bluetooth® 控制器  
• 模拟和数字传感器融合系统  
• 数据记录器  
• 灵活的电源管理系统  
– 具有可编程稳压内核电源电压的完全集LDO  
– 电源电压监控、监视和欠压保护  
• 通用应用  
3 说明  
使用一款“始终开启”的超低功耗系统控制器可为手机和平板电脑等便携式设备显著降低功耗。当高耗电的应  
用处理器和触摸屏控制器关闭时这些控制器可充当传感器集线器并监视用户激励信号例如读取惯性传感器  
或触摸传感器和重要的系统参数例如电池健康状况和温度。之后微控制器会根据用户输入或者在出现  
故障需CPU 干预时“唤醒”系统。  
MSP430F525x 系列是 1.8V 双电源 I/O 产品系列中最新推出的产品以前仅提供 MSP430F522x),专为“常开  
型”系统控制器应用而设计。凭借 1.8V I/O无需进行外部电平转换即可无缝连接至应用处理器和其他器件同  
MCU 的主电源可处于更高的电压轨上。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLAS903  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
MSP430F522x 相比MSP430F525x RAM 容量翻了两番 (32KB)串行接口数量也翻了一倍四个  
USCI_A 和四个 USCI_BMSP430F525x 还采用 4 16 位计时器、1 个高性能 10 ADC1 个硬件乘法  
器、DMA1 个比较器和 1 个具有警报功能的 RTC 模块。MSP430F525x 在工作模式下从闪存运行的电流消  
耗为 290 µA/MHz典型值),在待机模式 (LPM3) 下的电流消耗为 1.6µA典型值MSP430F525x 可在  
3.5µs典型值内切换至工作模式因此非常适合“常开型”低功耗应用。  
MSP430F525x 的主要优势如下:  
• 高32KB RAM支持复杂的传感器集线器算法以及键盘控制和电源管理等高级聚合。  
• 四USCI_A 和四USCI_B 模块支持八个专用硬件串行接口例如I2C 和四SPI并行工作从  
而快速而稳定地与传感器或外设进行通信。  
• 多35 个可1.8V 电压轨中使用I/O。  
有关完整的模块说明请参阅 MSP430F5xx MSP430F6xx 系列用户指南。有关设计指南请参阅使用  
MSP430F522x MSP430F521x 器件进行设计。  
器件信息  
器件型号(1)  
MSP430F5259IRGC  
MSP430F5252IZXH  
MSP430F5252IZQE(3)  
封装尺寸(2)  
9mm x 9mm  
5mm × 5mm  
5mm × 5mm  
封装  
VQFN (64)  
nFBGA (80)  
MicroStar JuniorBGA (80)  
(1) 如需获得所有可用器件的最新部件、封装和订购信息请参阅封装选项附录11或浏TI 网站  
www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸请参阅机械数据11 。  
(3) ZQE (MicroStar Junior BGA) 封装的所有可订购器件型号均已更改为“最后可采购期限”状  
态。有关此状态的详细信息请访问产品生命周期页面。  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
4 Functional Block Diagram  
4-1 shows the functional block diagram.  
DVCC AVCC  
DVSS AVSS  
PB  
PC  
PD  
PJ  
PA  
XIN XOUT  
DVIO VCORE  
RSTDVCC RST/NMI BSLEN  
P1.x P2.x P3.x P4.x P5.x P6.x  
P7.x PJ.x  
P6(1)  
1×8 I/Os  
P1(1)(2)  
1×8 I/Os  
P3  
P4 P5  
1×8 I/Os 1×6 I/Os  
P7  
1×6 I/Os  
XT2IN  
P2(1)(2)  
SYS  
4x  
ACLK  
Power  
Management  
1×8 I/Os1×5 I/Os  
Unified  
Clock  
System  
USCI_Ax:  
UART,  
IrDA, SPI  
PA(1)(2)  
1×16 I/Os  
128KB  
Flash  
32KB  
16KB  
PB  
1×13 I/Os  
PC  
1×14 I/Os  
PD PJ  
1×6 I/Os 1×4 I/Os  
Watchdog  
XT2OUT  
SMCLK  
Port Map  
Control  
(P4)  
I/O Ports  
LDO  
SVM, SVS  
Brownout  
4x  
USCI_Bx:  
SPI, I2C  
RAM  
MCLK  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
ADC10_A  
TA0  
TA1  
TA2  
TB0  
10 Bit  
200 ksps  
12 Channels  
(10 ext, 2 int)  
JTAG,  
SBW  
Interface  
COMP_B  
RTC_A  
MPY32  
CRC16  
REF  
Timer_A  
5 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_B  
7 CC  
Registers  
8 Channels  
I/O are supplied by DVIO  
(1) Interrupt capability  
(2) Wakeup capability  
Copyright © 2016, Texas Instruments Incorporated  
4-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
8.21 Crystal Oscillator, XT1, Low-Frequency Mode........27  
8.22 Crystal Oscillator, XT2............................................ 28  
8.23 Internal Very-Low-Power Low-Frequency  
Oscillator (VLO)...........................................................29  
8.24 Internal Reference, Low-Frequency Oscillator  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................7  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagrams.............................................................. 8  
7.2 Signal Descriptions................................................... 10  
8 Specifications................................................................ 15  
8.1 Absolute Maximum Ratings...................................... 15  
8.2 ESD Ratings............................................................. 15  
8.3 Recommended Operating Conditions.......................15  
8.4 Active Mode Supply Current Into VCC Excluding  
(REFO)........................................................................29  
8.25 DCO Frequency......................................................30  
8.26 PMM, Brownout Reset (BOR).................................31  
8.27 PMM, Core Voltage.................................................31  
8.28 PMM, SVS High Side..............................................31  
8.29 PMM, SVM High Side............................................. 32  
8.30 PMM, SVS Low Side...............................................32  
8.31 PMM, SVM Low Side..............................................33  
8.32 Wake-up Times From Low-Power Modes and  
Reset...........................................................................33  
8.33 Timer_A...................................................................34  
8.34 Timer_B...................................................................34  
8.35 USCI (UART Mode) Clock Frequency.................... 35  
8.36 USCI (UART Mode)................................................ 35  
8.37 USCI (SPI Master Mode) Clock Frequency............ 35  
8.38 USCI (SPI Master Mode)........................................ 35  
8.39 USCI (SPI Slave Mode).......................................... 37  
8.40 USCI (I2C Mode).....................................................39  
8.41 10-Bit ADC, Power Supply and Input Range  
Conditions................................................................... 40  
8.42 10-Bit ADC, Timing Parameters..............................40  
8.43 10-Bit ADC, Linearity Parameters...........................41  
8.44 REF, External Reference........................................ 41  
8.45 REF, Built-In Reference.......................................... 42  
8.46 Comparator_B.........................................................43  
8.47 Flash Memory......................................................... 44  
8.48 JTAG and Spy-Bi-Wire Interface.............................44  
8.49 DVIO BSL Entry......................................................45  
9 Detailed Description......................................................46  
9.1 CPU.......................................................................... 46  
9.2 Operating Modes...................................................... 47  
9.3 Interrupt Vector Addresses....................................... 48  
9.4 Memory Organization................................................49  
9.5 Bootloader (BSL)...................................................... 50  
9.6 JTAG Operation........................................................ 52  
9.7 Flash Memory........................................................... 54  
9.8 RAM..........................................................................54  
9.9 Peripherals................................................................55  
9.10 Input/Output Diagrams............................................78  
9.11 Device Descriptors..................................................94  
10 Device and Documentation Support..........................96  
10.1 Getting Started and Next Steps.............................. 96  
10.2 Device Nomenclature..............................................96  
10.3 Tools and Software................................................. 98  
10.4 Documentation Support........................................ 100  
10.5 Related Links........................................................ 102  
10.6 支持资源................................................................102  
10.7 Trademarks...........................................................102  
10.8 静电放电警告........................................................ 102  
10.9 Export Control Notice............................................102  
10.10 术语表................................................................. 102  
11 Mechanical, Packaging, and Orderable  
External Current.......................................................... 18  
8.5 Low-Power Mode Supply Currents (Into VCC  
)
Excluding External Current..........................................19  
8.6 Thermal Resistance Characteristics......................... 20  
8.7 Schmitt-Trigger Inputs General-Purpose I/O  
DVCC Domain (P5.0 to P5.5, P6.0 to P6.7, PJ.0  
to PJ.3, RSTDVCC).....................................................21  
8.8 Schmitt-Trigger Inputs General-Purpose I/O  
DVIO Domain (P1.0 to P1.7, P2.0 to P2.7, P3.0 to  
P3.4, P4.0 to P4.7, P7.0 to P7.5, RST/NMI, BSLEN)..21  
8.9 Inputs Interrupts DVCC Domain Port P6  
(P6.0 to P6.7).............................................................. 21  
8.10 Inputs Interrupts DVIO Domain Ports P1 and  
P2 (P1.0 to P1.7, P2.0 to P2.7)...................................21  
8.11 Leakage Current General-Purpose I/O  
DVCC Domain (P5.0 to P5.5, P6.0 to P6.7, PJ.0  
to PJ.3)........................................................................22  
8.12 Leakage Current General-Purpose I/O DVIO  
Domain (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4,  
P4.0 to P4.7, P7.0 to P7.5)..........................................22  
8.13 Outputs General-Purpose I/O DVCC  
Domain (Full Drive Strength) (P5.0 to P5.5, P6.0  
to P6.7, PJ.0 to PJ.3).................................................. 22  
8.14 Outputs General-Purpose I/O DVCC  
Domain (Reduced Drive Strength) (P5.0 to P5.5,  
P6.0 to P6.7, PJ.0 to PJ.3)..........................................23  
8.15 Outputs General-Purpose I/O DVIO Domain  
(Full Drive Strength) (P1.0 to P1.7, P2.0 to P2.7,  
P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)....................23  
8.16 Outputs General-Purpose I/O DVIO Domain  
(Reduced Drive Strength) (P1.0 to P1.7, P2.0 to  
P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5).......... 23  
8.17 Output Frequency General-Purpose I/O  
DVCC Domain (P5.0 to P5.5, P6.0 to P6.7, PJ.0  
to PJ.3)........................................................................24  
8.18 Output Frequency General-Purpose I/O  
DVIO Domain (P1.0 to P1.7, P2.0 to P2.7, P3.0 to  
P3.4, P4.0 to P4.7, P7.0 to P7.5)................................ 24  
8.19 Typical Characteristics Outputs, Reduced  
Drive Strength (PxDS.y = 0)........................................25  
8.20 Typical Characteristics Outputs, Full Drive  
Strength (PxDS.y = 1)................................................. 26  
Information.................................................................. 103  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from revision C to revision D  
Changes from September 28, 2018 to October 20, 2020  
Page  
• 更新了整个文档中的章节、表格、图和交叉参考的编号..................................................................................... 1  
• 通篇添加nFBGA (ZXH) 信息..................................................................................................................1  
器件信息中添加了有关采ZQE 封装的所有可订购器件型号的状态变化说明...................................................1  
Corrected the description of the P2.3/UCB3SOMI/UCB3SCL signals in 7-1, Terminal Functions ..............10  
Changed the MAX value of the IERASE and IMERASE, IBANK parameters in 8.47, Flash Memory ..................44  
Changes from revision B to revision C  
Changes from November 26, 2015 to September 27, 2018  
Page  
Added 6.1, Related Products ........................................................................................................................ 7  
Added color to P1.0 (pin H2) and DVSS (pin F9) to indicate supply from DVIO in 7-2, 80-Pin ZXH or ZQE  
Package (Top View) ...........................................................................................................................................8  
Added typical conditions statements at the beginning of 8, Specifications .................................................15  
Changed the MIN value of the V(DVCC_BOR_hys) parameter from 60 mV to 50 mV in 8.26, PMM, Brownout  
Reset (BOR) .................................................................................................................................................... 31  
Updated notes (1) and (2) and added note (3) in 8.32, Wake-up Times From Low-Power Modes and Reset  
..........................................................................................................................................................................33  
Removed ADC10DIV from the formula for the TYP value in the second row of the tCONVERT parameter in 节  
8.42, 10-Bit ADC, Timing Parameters, because ADC10CLK is after division.................................................. 40  
Added second row for tEN_CMP with Test Conditions of "CBPWRMD = 10" and MAX value of 100 µs in 节  
8.46, Comparator_B ........................................................................................................................................ 43  
Renamed FCTL4.MGR0 and MGR1 bits in the fMCLK,MGR parameter in 8.47, Flash Memory, to be  
consistent with header files ..............................................................................................................................44  
Added links to the custom BSL430 package download in 9.5, Bootloader (BSL) .......................................50  
Replaced former section Development Tools Support with 10.3, Tools and Software ................................98  
Updated list of related documentation in 10.4, Documentation Support ...................................................100  
Changes from revision A to revision B  
Changes from July 31, 2013 to November 25, 2015  
Page  
• 通篇更改了格式和结构包括添加了章节编号....................................................................................................1  
• 添加了器件信..............................................................................................................................................1  
Moved 4, Functional Block Diagram ............................................................................................................. 3  
Added 16KB RAM option in 4-1, Functional Block Diagram ......................................................................... 3  
Added 6, Device Comparison, and moved 6-1 to it...................................................................................7  
Added 7, Terminal Configuration and Functions, and moved pinout drawings and terminal functions table  
to it .....................................................................................................................................................................8  
Added indication of terminals powered by DVIO in RGC pinout ........................................................................8  
Added indication of terminals powered by DVIO in ZQE pinout......................................................................... 8  
Removed preview YFF pinout............................................................................................................................ 8  
Added SUPPLY column and removed YFF column in 7-1, Terminal Functions ..........................................10  
Added 8.2, ESD Ratings ............................................................................................................................. 15  
Added note on CVCORE .................................................................................................................................... 15  
Added 8.6, Thermal Resistance Characteristics .........................................................................................20  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
Moved note on RPull from 8.7 to 8.8 ........................................................................................................21  
Changed TYP value of CL,eff with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to 1 pF in 8.21,  
Crystal Oscillator, XT1, Low-Frequency Mode ................................................................................................ 27  
Corrected Test Conditions (removed VREF) for all parameters in 8.43 ..................................................... 41  
Updated Test Conditions for all parameters in 8.43, 10-Bit ADC, Linearity Parameters: changed from  
"CVREF+ = 20 pF" to "CVeREF+ = 20 pF"; changed from "(VeREF+ VeREF)min (VeREF+ VeREF)" to  
"1.4 V (VeREF+ VeREF)".......................................................................................................................... 41  
Added "CVeREF+ = 20 pF" to EI Test Conditions................................................................................................41  
Added "ADC10SREFx = 11b" to Test Conditions for EG and ET ......................................................................41  
Corrected Test Conditions (removed VREF) for VeREF+, VeREF, and (VeREF+ VeREF) parameters in 节  
8.44, REF, External Reference ........................................................................................................................ 41  
Changed MIN value of AVCC(min) with Test Conditions of "REFVSEL = {0} for 1.5 V" from 2.2 V to 1.8 V in 节  
8.45, REF, Built-In Reference .......................................................................................................................... 42  
Corrected spelling of MRG bits in fMCLK,MRG parameter symbol and description............................................. 44  
Throughout document, changed all instances of "bootstrap loader" to "bootloader"........................................50  
Added note to clarify that all JTAG pins are on DVCC......................................................................................52  
Added note to indicate that all SBW pins are on DVCC................................................................................... 53  
Corrected spelling of NMIIFG in 9-10, System Module Interrupt Vector Registers .....................................58  
Removed YFF package information from 9-12, TA0 Signal Connections ...................................................60  
Removed YFF package information from 9-13, TA1 Signal Connections ...................................................61  
Removed YFF package information from 9-14, TA2 Signal Connections ...................................................62  
Removed YFF package information from 9-15, TB0 Signal Connections ...................................................63  
Changed 9-8, Port P5 (P5.3) Diagram (added P5SEL.2 and XT2BYPASS inputs with AND and OR gates)  
..........................................................................................................................................................................85  
Changed P5SEL.3 column from X to 0 for "P5.3 (I/O)" rows............................................................................85  
Changed 9-10, Port P5 (P5.5) Diagram (added P5SEL.5 input and OR gate)............................................ 87  
Changed P5SEL.5 column from X to 0 for "P5.5 (I/O)" rows............................................................................87  
Added 10 and moved Development Tools Support, Device and Development Tool Nomenclature,  
Trademarks, and Electrostatic Discharge Caution sections to it.......................................................................96  
Added 11, Mechanical, Packaging, and Orderable Information ................................................................103  
Changes from initial release to revision A  
REVISION  
CHANGES  
Updated PRODUCT PREVIEW release.  
Added 2.  
SLAS903A  
July 2013  
Changed 3.  
Added Development Tools Support and 10.2.  
SLAS903  
July 2013  
PRODUCT PREVIEW release  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
6 Device Comparison  
6-1 summarizes the available family members.  
6-1. Device Comparison  
USCI  
ADC10  
_A  
(Ch)  
COMP  
_B  
(Ch)  
CHANNEL  
A:  
UART,  
FLASH SRAM  
I/Os  
I/Os  
BSL  
TYPE  
DEVICE(1) (2)  
Timer_A(3) Timer_B(4)  
PACKAGE  
CHANNEL  
B:  
(KB)  
(KB)  
DVCC(5) DVIO(6)  
SPI, I2C  
IrDA, SPI  
64 RGC,  
80 ZXH,  
80 ZQE  
10 ext,  
2 int  
MSP430F5259  
MSP430F5258  
MSP430F5257  
MSP430F5256  
MSP430F5255  
MSP430F5254  
MSP430F5253  
MSP430F5252  
128  
128  
128  
128  
128  
128  
128  
128  
32  
32  
16  
16  
32  
32  
16  
16  
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
7
7
7
7
7
7
7
7
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
8
8
8
8
8
8
8
8
18  
18  
18  
18  
18  
18  
18  
18  
35  
35  
35  
35  
35  
35  
35  
35  
I2C  
I2C  
64 RGC,  
80 ZXH,  
80 ZQE  
N/A  
64 RGC,  
80 ZXH,  
80 ZQE  
10 ext,  
2 int  
I2C  
64 RGC,  
80 ZXH,  
80 ZQE  
N/A  
I2C  
64 RGC,  
80 ZXH,  
80 ZQE  
10 ext,  
2 int  
UART  
UART  
UART  
UART  
64 RGC,  
80 ZXH,  
80 ZQE  
N/A  
64 RGC,  
80 ZXH,  
80 ZQE  
10 ext,  
2 int  
64 RGC,  
80 ZXH,  
80 ZQE  
N/A  
(1) For the most current package and ordering information, see the Package Option Addendum in 11, or see the TI website at  
www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/  
packaging.  
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and  
PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and  
PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
(5) All of these I/Os are on a single voltage rail supplied by DVCC.  
(6) All of these I/Os are on a single voltage rail supplied by DVIO.  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
16-bit and 32-bit microcontrollers  
High-performance, low-power solutions to enable the autonomous future  
Products for MSP430 ultra-low-power microcontrollers  
One platform. One ecosystem. Endless possibilities.  
Companion products for MSP430F5259  
Review products that are frequently purchased or used in conjunction with this product.  
Reference designs  
Find reference designs that leverage the best in TI technology to solve your system-level challenges.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
7-1 shows the pinout of the 64-pin RGC package.  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P6.0/TA2CLK/SMCLK/CB0/A0  
P6.1/TA2.0/CB1/A1  
P6.2/TA2.1/CB2/A2  
P6.3/TA2.2/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6.6/CB6/A6  
P6.7/CB7/A7  
P5.0/A8/VeREF+  
P5.1/A9/VeREF-  
AVCC  
1
2
3
4
5
6
7
8
9
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P4.7/PM_UCA3RXD/PM_UCA3SOMI  
P4.6/PM_UCA3TXD/PM_UCA3SIMO  
P4.5/PM_UCA1RXD/PM_UCA1SOMI  
P4.4/PM_UCA1TXD/PM_UCA1SIMO  
P4.3/PM_UCB1CLK/PM_UCA1STE  
P4.2/PM_UCB1SOMI/PM_UCB1SCL  
P4.1/PM_UCB1SIMO/PM_UCB1SDA  
P4.0/PM_UCB1STE/PM_UCA1CLK  
DVIO  
10  
11  
12  
13  
14  
15  
16  
DVSS  
P3.4/UCA0RXD/UCA0SOMI  
P3.3/UCA0TXD/UCA0SIMO  
P3.2/UCB0CLK/UCA0STE  
P3.1/UCB0SOMI/UCB0SCL  
P3.0/UCB0SIMO/UCB0SDA  
P2.7/UCB0STE/UCA0CLK  
P5.4/XIN  
P5.5/XOUT  
AVSS  
DVCC  
DVSS  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Supplied by DVIO  
7-1. 64-Pin RGC Package (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
7-2 shows the pinout of the 80-pin ZXH or ZQE package.  
TEST RST/NMI P7.5  
P7.4  
A7  
P7.3  
A8  
P7.1  
A9  
P6.0 RSTDVCC PJ.2  
A1  
A2  
A3  
A4  
A5  
A6  
P6.2  
B1  
P6.1  
B2  
PJ.3  
B3  
P5.3  
B4  
P5.2 BSLEN P7.2  
P7.0  
B5  
B6  
C6  
D6  
E6  
F6  
B7  
B8  
B9  
P6.4  
C1  
P6.3  
C2  
PJ.1  
C4  
PJ.0  
C5  
P4.7  
C7  
P4.6  
C8  
P4.5  
C9  
P6.6  
D1  
P6.5  
D2  
P4.4  
D7  
P4.3  
D8  
P4.2  
D9  
P6.7  
D3  
D4  
E4  
F4  
D5  
E5  
F5  
DVIO  
E9  
P4.0  
E8  
P4.1  
E7  
P5.0  
E1  
P5.1  
E2  
E3  
F3  
G3  
P5.4 AVCC  
F1 F2  
DVSS  
F9  
F7  
F8  
P5.5 AVSS  
G1 G2  
P1.3  
G4  
P1.6  
G5  
P2.1  
G6  
P3.4  
G7  
P3.2  
G8  
P3.3  
G9  
DVCC P1.0  
P1.1  
H3  
P1.4  
H4  
P1.7  
H5  
P2.3  
H6  
P2.7  
H7  
P3.0  
H8  
P3.1  
H9  
H1  
H2  
DVSS  
J1  
VCORE P1.2  
J2 J3  
P1.5  
J4  
P2.0  
J5  
P2.2  
J6  
P2.4  
J7  
P2.5  
J8  
P2.6  
J9  
Supplied by DVIO  
7-2. 80-Pin ZXH or ZQE Package (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
7.2 Signal Descriptions  
7-1 describes the device signals.  
7-1. Terminal Functions  
TERMINAL  
NO.(2)  
I/O(1)  
SUPPLY  
DESCRIPTION  
NAME  
ZXH,  
ZQE  
RGC  
General-purpose digital I/O with port interrupt  
TA2 clock signal TA2CLK input  
SMCLK output  
P6.0/TA2CLK/SMCLK/CB0/A0  
1
A1  
I/O  
DVCC  
Comparator_B input CB0  
Analog input A0 for ADC (not available on all device types)  
General-purpose digital I/O with port interrupt  
TA2 CCR0 capture: CCI0A input, compare: Out0 output  
Comparator_B input CB1  
P6.1/TA2.0/CB1/A1  
2
B2  
I/O  
DVCC  
Analog input A1 for ADC (not available on all device types)  
BSL transmit output  
General-purpose digital I/O with port interrupt  
TA2 CCR1 capture: CCI1A input, compare: Out1 output  
Comparator_B input CB2  
P6.2/TA2.1/CB2/A2  
P6.3/TA2.2/CB3/A3  
3
4
B1  
C2  
I/O  
I/O  
DVCC  
DVCC  
Analog input A2 for ADC (not available on all device types)  
BSL receive input  
General-purpose digital I/O with port interrupt  
TA2 CCR2 capture: CCI2A input, compare: Out2 output  
Comparator_B input CB3  
Analog input A3 for ADC (not available on all device types)  
General-purpose digital I/O with port interrupt  
Comparator_B input CB4  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6.6/CB6/A6  
P6.7/CB7/A7  
5
6
7
8
C1  
D2  
D1  
D3  
I/O  
I/O  
I/O  
I/O  
DVCC  
DVCC  
DVCC  
DVCC  
Analog input A4 for ADC (not available on all device types)  
General-purpose digital I/O with port interrupt  
Comparator_B input CB5  
Analog input A5 for ADC (not available on all device types)  
General-purpose digital I/O with port interrupt  
Comparator_B input CB6  
Analog input A6 for ADC (not available on all device types)  
General-purpose digital I/O with port interrupt  
Comparator_B input CB7  
Analog input A7 for ADC (not available on all device types)  
General-purpose digital I/O  
Analog input A8 for ADC (not available on all device types)  
P5.0/A8/VeREF+  
9
E1  
I/O  
I/O  
DVCC  
DVCC  
Input for an external reference voltage to the ADC (not  
available on all device types)  
General-purpose digital I/O  
Analog input A9 for ADC (not available on all device types)  
P5.1/A9/VeREF-  
AVCC  
10  
11  
E2  
F2  
Negative terminal for the ADC reference voltage for an external  
applied reference voltage (not available on all device types)  
Analog power supply  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
7-1. Terminal Functions (continued)  
TERMINAL  
NO.(2)  
I/O(1)  
SUPPLY  
DESCRIPTION  
NAME  
ZXH,  
ZQE  
RGC  
General-purpose digital I/O  
P5.4/XIN  
12  
F1  
I/O  
I/O  
DVCC  
DVCC  
Input terminal for crystal oscillator XT1(3)  
General-purpose digital I/O  
Output terminal of crystal oscillator XT1  
Analog ground supply  
P5.5/XOUT  
13  
G1  
AVSS  
DVCC  
DVSS  
14  
15  
16  
G2  
H1  
J1  
Digital power supply  
Digital ground supply  
Regulated core power supply output (internal use only, no  
external current loading)  
VCORE(4)  
17  
J2  
DVCC  
DVIO  
General-purpose digital I/O with port interrupt  
TA0 clock signal TA0CLK input  
P1.0/TA0CLK/ACLK(5)  
18  
H2  
I/O  
ACLK output (divided by 1, 2, 4, 8, 16, or 32)  
General-purpose digital I/O with port interrupt  
TA0 CCR0 capture: CCI0A input, compare: Out0 output  
General-purpose digital I/O with port interrupt  
TA0 CCR1 capture: CCI1A input, compare: Out1 output  
General-purpose digital I/O with port interrupt  
TA0 CCR2 capture: CCI2A input, compare: Out2 output  
General-purpose digital I/O with port interrupt  
TA0 CCR3 capture: CCI3A input compare: Out3 output  
General-purpose digital I/O with port interrupt  
TA0 CCR4 capture: CCI4A input, compare: Out4 output  
General-purpose digital I/O with port interrupt  
TA1 clock signal TA1CLK input  
P1.1/TA0.0(5)  
P1.2/TA0.1(5)  
P1.3/TA0.2(5)  
P1.4/TA0.3(5)  
P1.5/TA0.4(5)  
19  
20  
21  
22  
23  
H3  
J3  
I/O  
I/O  
I/O  
I/O  
I/O  
DVIO  
DVIO  
DVIO  
DVIO  
DVIO  
G4  
H4  
J4  
P1.6/TA1CLK/CBOUT(5)  
24  
G5  
I/O  
DVIO  
Comparator_B output  
General-purpose digital I/O with port interrupt  
TA1 CCR0 capture: CCI0A input, compare: Out0 output  
General-purpose digital I/O with port interrupt  
TA1 CCR1 capture: CCI1A input, compare: Out1 output  
General-purpose digital I/O with port interrupt  
TA1 CCR2 capture: CCI2A input, compare: Out2 output  
General-purpose digital I/O with port interrupt  
Slave in, master out USCI_B3 SPI mode  
I2C data USCI_B3 I2C mode  
P1.7/TA1.0(5)  
P2.0/TA1.1(5)  
P2.1/TA1.2(5)  
25  
26  
27  
H5  
J5  
I/O  
I/O  
I/O  
DVIO  
DVIO  
DVIO  
G6  
P2.2/UCB3SIMO/UCB3SDA(5)  
P2.3/UCB3SOMI/UCB3SCL(5)  
28  
29  
J6  
I/O  
I/O  
DVIO  
DVIO  
General-purpose digital I/O with port interrupt  
Slave out, master in USCI_B3 SPI mode  
I2C clock USCI_B3 I2C mode  
H6  
General-purpose digital I/O with port interrupt  
Clock signal input USCI_B3 SPI slave mode  
Clock signal output USCI_B3 SPI master mode  
Slave transmit enable USCI_A3 SPI mode  
P2.4/UCB3CLK/UCA3STE(5)  
30  
J7  
I/O  
DVIO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
7-1. Terminal Functions (continued)  
TERMINAL  
NO.(2)  
I/O(1)  
SUPPLY  
DESCRIPTION  
NAME  
ZXH,  
ZQE  
RGC  
General-purpose digital I/O with port interrupt  
Slave transmit enable USCI_B3 SPI mode  
Clock signal input USCI_A3 SPI slave mode  
Clock signal output USCI_A3 SPI master mode  
General-purpose digital I/O with port interrupt  
RTC clock output for calibration  
P2.5/UCB3STE/UCA3CLK(5)  
P2.6/RTCCLK/DMAE0(5)  
31  
J8  
I/O  
I/O  
I/O  
DVIO  
DVIO  
DVIO  
32  
33  
J9  
DMA external trigger input  
General-purpose digital I/O  
Slave transmit enable USCI_B0 SPI mode  
Clock signal input USCI_A0 SPI slave mode  
Clock signal output USCI_A0 SPI master mode  
General-purpose digital I/O  
P2.7/UCB0STE/UCA0CLK(5)  
H7  
P3.0/UCB0SIMO/UCB0SDA(5)  
P3.1/UCB0SOMI/UCB0SCL(5)  
34  
35  
H8  
H9  
I/O  
I/O  
DVIO  
DVIO  
Slave in, master out USCI_B0 SPI mode  
I2C data USCI_B0 I2C mode  
General-purpose digital I/O  
Slave out, master in USCI_B0 SPI mode  
I2C clock USCI_B0 I2C mode  
General-purpose digital I/O  
Clock signal input USCI_B0 SPI slave mode  
Clock signal output USCI_B0 SPI master mode  
Slave transmit enable USCI_A0 SPI mode  
General-purpose digital I/O  
P3.2/UCB0CLK/UCA0STE(5)  
36  
G8  
I/O  
DVIO  
P3.3/UCA0TXD/UCA0SIMO(5)  
P3.4/UCA0RXD/UCA0SOMI(5)  
37  
38  
G9  
G7  
I/O  
I/O  
DVIO  
DVIO  
Transmit data USCI_A0 UART mode  
Slave in, master out USCI_A0 SPI mode  
General-purpose digital I/O  
Receive data USCI_A0 UART mode  
Slave out, master in USCI_A0 SPI mode  
Digital ground supply  
DVSS  
39  
40  
F9  
E9  
DVIO(6)  
Digital I/O power supply  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
Default mapping: Slave transmit enable USCI_B1 SPI mode  
P4.0/PM_UCB1STE/  
PM_UCA1CLK(5)  
41  
42  
E8  
E7  
I/O  
I/O  
DVIO  
DVIO  
Default mapping: Clock signal input USCI_A1 SPI slave  
mode  
Default mapping: Clock signal output USCI_A1 SPI master  
mode  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.1/PM_UCB1SIMO/  
PM_UCB1SDA(5)  
Default mapping: Slave in, master out USCI_B1 SPI mode  
Default mapping: I2C data USCI_B1 I2C mode  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
7-1. Terminal Functions (continued)  
TERMINAL  
NO.(2)  
I/O(1)  
SUPPLY  
DESCRIPTION  
NAME  
ZXH,  
ZQE  
RGC  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.2/PM_UCB1SOMI/  
PM_UCB1SCL(5)  
43  
D9  
I/O  
DVIO  
Default mapping: Slave out, master in USCI_B1 SPI mode  
Default mapping: I2C clock USCI_B1 I2C mode  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
Default mapping: Clock signal input USCI_B1 SPI slave  
mode  
P4.3/PM_UCB1CLK/  
PM_UCA1STE(5)  
44  
D8  
I/O  
DVIO  
Default mapping: Clock signal output USCI_B1 SPI master  
mode  
Default mapping: Slave transmit enable USCI_A1 SPI mode  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.4/PM_UCA1TXD/  
PM_UCA1SIMO(5)  
45  
46  
47  
48  
D7  
C9  
C8  
C7  
I/O  
I/O  
I/O  
I/O  
DVIO  
DVIO  
DVIO  
DVIO  
Default mapping: Transmit data USCI_A1 UART mode  
Default mapping: Slave in, master out USCI_A1 SPI mode  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.5/PM_UCA1RXD/  
PM_UCA1SOMI(5)  
Default mapping: Receive data USCI_A1 UART mode  
Default mapping: Slave out, master in USCI_A1 SPI mode  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.6/PM_UCA3TXD/  
PM_UCA3SIMO(5)  
Default mapping: Transmit data USCI_A3 UART mode  
Default mapping: Slave in, master out USCI_A3 SPI mode  
General-purpose digital I/O with reconfigurable port mapping  
secondary function  
P4.7/PM_UCA3RXD/  
PM_UCA3SOMI(5)  
Default mapping: Receive data USCI_A3 UART mode  
Default mapping: Slave out, master in USCI_A3 SPI mode  
General-purpose digital I/O  
P7.0/UCA2TXD/UCA2SIMO(5)  
P7.1/UCA2RXD/UCA2SOMI(5)  
49  
50  
B8, B9  
A9  
I/O  
I/O  
DVIO  
DVIO  
Transmit data USCI_A2 UART mode  
Slave in, master out USCI_A2 SPI mode  
General-purpose digital I/O  
Receive data USCI_A2 UART mode  
Slave out, master in USCI_A2 SPI mode  
General-purpose digital I/O  
Clock signal input USCI_B2 SPI slave mode  
Clock signal output USCI_B2 SPI master mode  
Slave transmit enable USCI_A2 SPI mode  
General-purpose digital I/O  
P7.2/UCB2CLK/UCA2STE(5)  
51  
B7  
I/O  
DVIO  
P7.3/UCB2SIMO/UCB2SDA(5)  
P7.4/UCB2SOMI/UCB2SCL(5)  
52  
53  
A8  
A7  
I/O  
I/O  
DVIO  
DVIO  
Slave in, master out USCI_B2 SPI mode  
I2C data USCI_B2 I2C mode  
General-purpose digital I/O  
Slave out, master in USCI_B2 SPI mode  
I2C clock USCI_B2 I2C mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
7-1. Terminal Functions (continued)  
TERMINAL  
NO.(2)  
I/O(1)  
SUPPLY  
DESCRIPTION  
NAME  
ZXH,  
ZQE  
RGC  
General-purpose digital I/O  
Slave transmit enable USCI_B2 SPI mode  
Clock signal input USCI_A2 SPI slave mode  
Clock signal output USCI_A2 SPI master mode  
BSL enable with internal pulldown  
Reset input active low(7) (8)  
P7.5/UCB2STE/UCA2CLK(5)  
54  
A6  
I/O  
DVIO  
BSLEN(5)  
55  
56  
B6  
A5  
I
I
DVIO  
DVIO  
RST/NMI(5)  
Nonmaskable interrupt input(7)  
General-purpose digital I/O  
Input terminal for crystal oscillator XT2(9)  
P5.2/XT2IN  
57  
58  
59  
60  
61  
62  
63  
B5  
B4  
A4  
C5  
C4  
A3  
B3  
I/O  
I/O  
I
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
General-purpose digital I/O  
P5.3/XT2OUT  
TEST/SBWTCK(10)  
PJ.0/TDO(11)  
Output terminal of crystal oscillator XT2  
Test mode pin Selects four wire JTAG operation  
Spy-Bi-Wire input clock when Spy-Bi-Wire operation activated  
General-purpose digital I/O  
I/O  
I/O  
I/O  
I/O  
JTAG test data output port  
General-purpose digital I/O  
PJ.1/TDI/TCLK(11)  
PJ.2/TMS(11)  
JTAG test data input or test clock input  
General-purpose digital I/O  
JTAG test mode select  
General-purpose digital I/O  
PJ.3/TCK(11)  
JTAG test clock  
Reset input active low(12)  
RSTDVCC/SBWTDIO(11)  
64  
A2  
I/O  
DVCC  
Spy-Bi-Wire data input/output when Spy-Bi-Wire operation  
activated  
(13)  
Reserved  
QFN Pad  
N/A  
Pad  
Reserved  
N/A  
QFN package pad. Connection to VSS recommended.  
(1) I = input, O = output  
(2) N/A = not available  
(3) When in crystal bypass mode, XIN can be configured so that it can support an input digital waveform with swing levels from DVSS to  
DVCC or DVSS to DVIO. In this case, the pin must be configured properly for the intended input swing.  
(4) VCORE is for internal use only. No external current loading is possible. VCORE should be connected only to the recommended  
capacitor value, CVCORE (see 8.3).  
(5) This pin function is supplied by DVIO. See 8.8 for input and output requirements.  
(6) The voltage on DVIO is not supervised or monitored.  
(7) This pin is configurable as reset or NMI and resides on the DVIO supply domain. When driven from external, the input swing levels  
from DVSS to DVIO are required.  
(8) When this pin is configured as reset, the internal pullup resistor is enabled by default.  
(9) When in crystal bypass mode, XT2IN can be configured so that it can support an input digital waveform with swing levels from DVSS  
to DVCC or DVSS to DVIO. In this case, the must pin be configured properly for the intended input swing.  
(10) See 9.5.1 and 9.6 for use with BSL and JTAG functions, respectively.  
(11) See 9.6 for use with JTAG function.  
(12) This nonconfigurable reset resides on the DVCC supply domain and has an internal pullup to DVCC. When driven from external, input  
swing levels from DVSS to DVCC are required. This reset must be used for Spy-Bi-Wire communication and is not the same RST/NMI  
reset as found on other devices in the MSP430 family. Refer to 9.5.1 and 9.6 for details regarding the use of this pin.  
(13) C6, D4, D5, D6, E3, E4, E5, E6, F3, F4, F5, F6, F7, F8, G3 are reserved and should be connected to ground.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8 Specifications  
All graphs in this section are for typical conditions, unless otherwise noted.  
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
MAX  
4.1  
UNIT  
V
Voltage applied at VCC to VSS  
0.3  
0.3  
0.3  
0.3  
Voltage applied at VIO to VSS  
2.2  
V
Voltage applied to any pin (excluding VCORE and VIO pins)(2)  
Voltage applied to VIO pins  
VCC + 0.3  
VIO + 0.2  
±2  
V
V
Diode current at any device pin  
mA  
°C  
(3)  
Storage temperature, Tstg  
150  
55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
8.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as  
±250 V may actually have higher performance.  
8.3 Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
PMMCOREVx = 0  
1.8  
2.0  
3.6  
3.6  
Supply voltage during program execution  
PMMCOREVx = 0, 1  
PMMCOREVx = 0, 1, 2  
(1) (2)  
VCC  
and flash programming (AVCC = DVCC  
)
V
(3)  
2.2  
3.6  
PMMCOREVx = 0, 1, 2, 3  
2.4  
3.6  
(2)  
VIO  
Supply voltage applied to DVIO referenced to VSS  
Supply voltage (AVSS = DVSS  
1.62  
1.98  
V
V
VSS  
TA  
)
0
Operating free-air temperature  
Operating junction temperature  
Recommended capacitor at VCORE(4)  
85  
85  
°C  
°C  
nF  
40  
40  
470  
TJ  
CVCORE  
CDVCC  
CVCORE  
/
Capacitor ratio of DVCC to VCORE  
10  
0
PMMCOREVx = 0 (default condition),  
1.8 V VCC 3.6 V  
8.0  
Processor frequency (maximum MCLK  
frequency)(5) (see 8-3)  
0
0
0
12.0  
20.0  
25.0  
PMMCOREVx = 1, 2.0 V VCC 3.6 V  
PMMCOREVx = 2, 2.2 V VCC 3.6 V  
PMMCOREVx = 3, 2.4 V VCC 3.6 V  
fSYSTEM  
MHz  
(1) TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
(2) During VCC and VIO power up, it is required that VIO VCC during the ramp up phase of VIO. During VCC and VIO power down, it is  
required that VIO VCC during the ramp down phase of VIO (see 8-1).  
(3) The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the 8.28 threshold parameters for the  
exact values and further details.  
(4) TI recommends a capacitor tolerance of ±20% or better.  
(5) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
VCC  
VIO  
VIO,min  
VSS  
t
VCC VIO  
VIO VCC  
VCC VIO  
while VIO < VIO,min  
while VIO < VIO,min  
NOTE: The device supports continuous operation with VCC = VSS while VIO is fully within its specification. During this time, the general-  
purpose I/Os that reside on the VIO supply domain are configured as inputs and pulled down to VSS through their internal pulldown  
resistors. RST/NMI is high impedance. BSLEN is configured as an input and is pulled down to VSS through its internal pulldown resistor.  
When VCC reaches above the BOR threshold, the general-purpose I/Os become high-impedance inputs (no pullup or pulldown  
enabled), RST/NMI becomes an input pulled up to VIO through its internal pullup resistor, and BSLEN remains pulled down to VSS  
through its internal pulldown resistor.  
NOTE: Under certain condtions during the rising transition of VCC, the general-purpose I/Os that reside on the VIO supply domain may  
actively transition high momentarily before settling to high-impedance inputs. These voltage transitions are temporary (typically  
resolving to high impedance inputs when VCC exceeds approximately 0.9 V) and are bounded by the VIO supply.  
8-1. VCC and VIO Power Sequencing  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
VCC  
V(SVSH_+), min  
tWAKE_UP_RESET  
tWAKE_UP_RESET  
tWAKE_UP_RESET  
DVCC  
VCC  
VIT+  
RSTDVCC  
VCC VRSTDVCC  
VRSTDVCC = VCC  
VIO  
tWAKE_UP_RESET  
tWAKE_UP_RESET  
DVIO  
VIO  
VIT+  
RST  
VIO VRST  
VRST = VIO  
t
NOTE:The device remains in reset based on the conditions of the RSTDVCC and RST pins and the voltage present on DVCC voltage  
supply. If RSTDVCC or RST is held at a logic low or if DVCC is below the SVSH_+ minimum threshold, the device remains in its reset  
condition; that is, these conditions form a logical OR with respect to device reset.  
8-2. Reset Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
25  
20  
12  
3
2, 3  
2
1, 2  
1, 2, 3  
1
8
0
0, 1  
0, 1, 2  
0, 1, 2, 3  
0
1.8  
2.0  
2.2  
2.4  
3.6  
Supply Voltage - V  
NOTE: The numbers within the fields denote the supported PMMCOREVx settings.  
8-3. Maximum System Frequency  
8.4 Active Mode Supply Current Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3)  
FREQUENCY (fDCO = fMCLK = fSMCLK  
8 MHz 12 MHz 20 MHz  
TYP MAX TYP MAX  
)
EXECUTION  
MEMORY  
PARAMETER  
VCC  
PMMCOREVx  
1 MHz  
25 MHz  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
10.1  
5.3  
MAX  
11.0  
6.2  
0
1
2
3
0
1
2
3
0.36  
0.40  
0.44  
0.46  
0.20  
0.22  
0.24  
0.26  
0.47  
2.32  
2.65  
2.90  
3.10  
1.20  
1.35  
1.50  
1.60  
2.60  
4.0  
4.3  
4.6  
4.4  
IAM, Flash  
Flash  
3.0 V  
mA  
7.1  
7.6  
7.7  
4.2  
0.29  
1.30  
2.0  
2.2  
2.4  
2.2  
IAM, RAM  
RAM  
3.0 V  
mA  
3.7  
3.9  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external  
load capacitance are chosen to closely match the required 12.5 pF.  
(3) Characterized with program executing typical data processing.  
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
PMMCOREVx  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
40°C  
TYP  
MAX  
MAX  
91  
MAX  
MAX  
103  
124  
29  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0
3
0
3
0
1
2
0
1
2
3
0
1
2
3
0
1
2
3
73  
89  
78  
95  
84  
101  
10.6  
11.6  
3.4  
3.6  
3.8  
3.6  
3.8  
3.9  
4.0  
2.6  
2.8  
2.9  
2.9  
2.6  
2.7  
2.8  
2.8  
0.26  
93  
112  
13  
ILPM0,1MHz  
Low-power mode 0(3) (9)  
Low-power mode 2(4) (9)  
µA  
µA  
105  
12  
6.7  
7.2  
1.8  
1.9  
2.0  
2.0  
2.1  
2.2  
2.3  
1.3  
1.3  
1.4  
1.5  
1.1  
1.3  
1.4  
1.5  
0.15  
6.7  
7.2  
2.1  
2.2  
2.4  
2.3  
2.5  
2.6  
2.7  
1.6  
1.6  
1.7  
1.8  
1.3  
1.4  
1.4  
1.5  
0.18  
ILPM2  
13  
14  
30  
8.4  
8.7  
9.0  
8.6  
8.9  
9.2  
9.2  
8.5  
8.8  
9.2  
9.2  
7.5  
7.7  
7.9  
7.9  
0.5  
2.2 V  
Low-power mode 3, crystal  
mode(5) (9)  
ILPM3,XT1LF  
3.1  
24  
µA  
µA  
3.0 V  
4.1  
2.9  
25  
24  
Low-power mode 3,  
VLO mode(6) (9)  
ILPM3,VLO  
3.0 V  
3.2  
1.7  
25  
22  
ILPM4  
Low-power mode 4(7) (9)  
Low-power mode 4.5(8)  
3.0 V  
3.0 V  
µA  
µA  
1.8  
23  
ILPM4.5  
0.35  
1.0  
Current supplied from DVIO  
while DVCC = AVCC = 0 V,  
DVIO = 1.62 V to 1.98 V,  
All DVIO I/O floating  
including BSLEN and  
RST/NMI  
IDVIO_START  
0 V  
1.40  
1.40  
2.0  
1.45  
1.5  
2.1  
µA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external  
load capacitance are chosen to closely match the required 12.5 pF.  
(3) Current for the watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz  
(4) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCO setting = 1-  
MHz operation, DCO bias generator enabled.)  
(5) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
(6) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz  
(7) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(8) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(9) Current for brownout and high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor  
(SVML) disabled. High-side monitor (SVMH) disabled. RAM retention enabled.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.6 Thermal Resistance Characteristics  
THERMAL METRIC(1) (2)  
VALUE  
29.3  
52.0  
14.2  
23.9  
1.1  
UNIT  
VQFN 64 (RGC)  
BGA 80 (ZQE)  
VQFN 64 (RGC)  
BGA 80 (ZQE)  
VQFN 64 (RGC)  
BGA 80 (ZQE)  
VQFN 64 (RGC)  
BGA 80 (ZQE)  
VQFN 64 (RGC)  
BGA 80 (ZQE)  
VQFN 64 (RGC)  
BGA 80 (ZQE)  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
°C/W  
RθJA  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(TOP)  
RθJC(BOTTOM)  
RθJB  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal resistance  
N/A(3)  
8.2  
29.3  
0.2  
Junction-to-package-top thermal characterization parameter  
Junction-to-board thermal characterization parameter  
ΨJT  
0.5  
8.1  
ΨJB  
29.3  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(3) N/A = not applicable  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.7 Schmitt-Trigger Inputs General-Purpose I/O DVCC Domain  
(P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3, RSTDVCC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.80  
1.50  
0.45  
0.75  
0.3  
TYP  
MAX UNIT  
1.40  
V
2.10  
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.8 V  
3 V  
1.00  
V
1.65  
Negative-going input threshold voltage  
1.8 V  
3 V  
0.8  
V
1.0  
Input voltage hysteresis (VIT+ VIT–  
)
0.4  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
,
RPull  
CI  
Pullup or pulldown resistor  
Input capacitance  
20  
35  
5
50  
kΩ  
VIN = VSS or VCC  
pF  
(1) These same parametrics apply to the clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).  
8.8 Schmitt-Trigger Inputs General-Purpose I/O DVIO Domain  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5, RST/NMI, BSLEN)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VIO  
MIN  
0.8  
1.1  
0.3  
0.5  
0.3  
TYP  
MAX UNIT  
1.62 V  
1.25  
V
1.40  
VIT+  
Positive-going input threshold voltage  
VCC = 3.0 V  
1.98 V  
1.62 V  
0.7  
V
1.0  
VIT–  
Negative-going input threshold voltage  
VCC = 3.0 V  
1.98 V  
Vhys  
RPull  
CI  
VCC = 3.0 V  
1.62 V to 1.98 V  
0.8  
50  
V
Input voltage hysteresis (VIT+ VIT–  
Pullup or pulldown resistor(1)  
Input capacitance  
)
For pullup: VIN = VSS  
,
20  
35  
5
kΩ  
For pulldown: VIN = VIO  
VIN = VSS or VIO  
pF  
(1) Also applies to the RST pin when the pullup or pulldown resistor is enabled.  
8.9 Inputs Interrupts DVCC Domain Port P6  
(P6.0 to P6.7)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
t(int)  
External interrupt timing(1)  
External trigger pulse duration to set interrupt flag  
1.8 V, 3 V  
20  
ns  
(1) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
8.10 Inputs Interrupts DVIO Domain Ports P1 and P2  
(P1.0 to P1.7, P2.0 to P2.7)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(2)  
PARAMETER  
TEST CONDITIONS  
VIO  
MIN  
MAX UNIT  
External trigger pulse duration to set interrupt flag,  
VCC = 1.8 V or 3.0 V  
t(int)  
External interrupt timing(1)  
1.62 V to 1.98 V  
20  
ns  
(1) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
(2) In all test conditions, VIO VCC  
.
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.11 Leakage Current General-Purpose I/O DVCC Domain  
(P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See (1) (2)  
VCC  
MIN  
MAX UNIT  
50 nA  
Ilkg(Px.y)  
High-impedance leakage current  
1.8 V, 3 V  
50  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
8.12 Leakage Current General-Purpose I/O DVIO Domain  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
See (2) (3)  
VIO  
MIN  
MAX UNIT  
50 nA  
Ilkg(Px.y)  
High-impedance leakage current  
1.62 V to 1.98 V  
50  
(1) In all test conditions, VIO VCC  
.
(2) The leakage current is measured with VSS or VIO applied to the corresponding pins, unless otherwise noted.  
(3) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
8.13 Outputs General-Purpose I/O DVCC Domain (Full Drive Strength)  
(P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = 3 mA(1)  
VCC  
MIN  
VCC 0.25  
VCC 0.60  
VCC 0.25  
VCC 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = 10 mA(2)  
I(OHmax) = 5 mA(1)  
I(OHmax) = 15 mA(2)  
I(OLmax) = 3 mA(1)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
I(OLmax) = 10 mA(2)  
I(OLmax) = 5 mA(1)  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
I(OLmax) = 15 mA(2)  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.14 Outputs General-Purpose I/O DVCC Domain (Reduced Drive Strength)  
(P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(3)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = 1 mA(1)  
VCC  
MIN  
VCC 0.25  
VCC 0.60  
VCC 0.25  
VCC 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = 3 mA(2)  
I(OHmax) = 2 mA(1)  
I(OHmax) = 6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3.0 V  
1.8 V  
3.0 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) Selecting reduced drive strength may reduce EMI.  
8.15 Outputs General-Purpose I/O DVIO Domain (Full Drive Strength)  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(2)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = 100 µA(1)  
VIO  
MIN  
VIO 0.05  
VIO 0.25  
VIO 0.50  
MAX UNIT  
VIO  
I(OHmax) = 3 mA(1)  
I(OHmax) = 6 mA(1)  
I(OLmax) = 3 mA(1)  
I(OLmax) = 6 mA(1)  
VOH  
High-level output voltage  
1.62 V to 1.98 V  
VIO  
VIO  
V
V
VSS VSS + 0.25  
VSS VSS + 0.50  
VOL  
Low-level output voltage  
1.62 V to 1.98 V  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) In all test conditions, VIO VCC  
.
8.16 Outputs General-Purpose I/O DVIO Domain (Reduced Drive Strength)  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2)  
(3)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = 100 µA(1)  
VIO  
MIN  
VIO 0.05  
VIO 0.25  
VIO 0.50  
MAX UNIT  
VIO  
I(OHmax) = 1 mA(1)  
I(OHmax) = 2 mA(1)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 2 mA(1)  
VOH  
High-level output voltage  
1.62 V to 1.98 V  
VIO  
VIO  
V
V
VSS VSS + 0.25  
VSS VSS + 0.50  
VOL  
Low-level output voltage  
1.62 V to 1.98 V  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) Selecting reduced drive strength may reduce EMI.  
(3) In all test conditions, VIO VCC  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.17 Output Frequency General-Purpose I/O DVCC Domain  
(P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
VCC = 1.8 V,  
PMMCOREVx = 0  
16  
Port output frequency  
(with load)  
fPx.y  
See (1) (2)  
MHz  
25  
VCC = 3 V,  
PMMCOREVx = 3  
VCC = 1.8 V,  
PMMCOREVx = 0  
16  
ACLK, SMCLK, or MCLK,  
CL = 20 pF(2)  
fPort_CLK  
Clock output frequency  
MHz  
25  
VCC = 3 V,  
PMMCOREVx = 3  
(1) A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full  
drive strength, R1 = 550 . For reduced drive strength, R1 = 1.6 k. CL = 20 pF is connected to the output to VSS  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
.
8.18 Output Frequency General-Purpose I/O DVIO Domain  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
VIO = 1.62 V to 1.98 V(3)  
PMMCOREVx = 0  
,
,
,
,
16  
Port output frequency  
(with load)  
fPx.y  
See (1) (2)  
MHz  
25  
VIO = 1.62 V to 1.98 V(3)  
PMMCOREVx = 3  
VIO = 1.62 V to 1.98 V(3)  
PMMCOREVx = 0  
16  
ACLK, SMCLK, or MCLK,  
CL = 20 pF(2)  
fPort_CLK  
Clock output frequency  
MHz  
25  
VIO = 1.62 V to 1.98 V(3)  
PMMCOREVx = 3  
(1) A resistive divider with 2 × R1 between VIO and VSS is used as load. The output is connected to the center tap of the divider. For full  
drive strength, R1 = 550 . For reduced drive strength, R1 = 1.6 k. CL = 20 pF is connected to the output to VSS  
(2) The output voltage reaches at least 10% and 90% VIO at the specified toggle frequency.  
.
(3) In all test conditions, VIO VCC  
.
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.19 Typical Characteristics Outputs, Reduced Drive Strength (PxDS.y = 0)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
25.0  
20.0  
15.0  
10.0  
5.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
TA = 25°C  
TA = 85°C  
VCC = 3.0 V  
Px.y  
VCC = 1.8 V  
Px.y  
TA = 25°C  
TA = 85°C  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
8-5. Typical Low-Level Output Current vs  
8-4. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Low-Level Output Voltage  
0.0  
0.0  
VCC = 1.8 V  
VCC = 3.0 V  
Px.y  
Px.y  
−1.0  
−5.0  
−2.0  
−3.0  
−4.0  
−10.0  
TA = 85°C  
−5.0  
−15.0  
TA = 85°C  
−6.0  
TA = 25°C  
−20.0  
TA = 25°C  
−7.0  
−8.0  
−25.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
8-6. Typical High-Level Output Current vs  
8-7. Typical High-Level Output Current vs  
High-Level Output Voltage  
High-Level Output Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.20 Typical Characteristics Outputs, Full Drive Strength (PxDS.y = 1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
60.0  
24  
20  
16  
12  
8
TA = 25°C  
TA = 85°C  
VCC = 1.8 V  
Px.y  
VCC = 3.0 V  
Px.y  
55.0  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
TA = 25°C  
TA = 85°C  
4
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
8-8. Typical Low-Level Output Current vs  
8-9. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Low-Level Output Voltage  
0.0  
0
VCC = 1.8 V  
Px.y  
VCC = 3.0 V  
−5.0  
Px.y  
−10.0  
−15.0  
−20.0  
−25.0  
−30.0  
−35.0  
−40.0  
−4  
−8  
−12  
−45.0  
TA = 85°C  
−16  
TA = 85°C  
−50.0  
−55.0  
TA = 25°C  
−60.0  
TA = 25°C  
−20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
8-10. Typical High-Level Output Current vs  
8-11. Typical High-Level Output Current vs  
High-Level Output Voltage  
High-Level Output Voltage  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.21 Crystal Oscillator, XT1, Low-Frequency Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
TA = 25°C  
0.075  
Differential XT1 oscillator crystal  
current consumption from lowest  
drive setting, LF mode  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 2,  
TA = 25°C  
3.0 V  
0.170  
µA  
ΔIDVCC.LF  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C  
0.290  
XT1 oscillator crystal frequency,  
LF mode  
fXT1,LF0  
XTS = 0, XT1BYPASS = 0  
32768  
Hz  
XT1 oscillator logic-level square-  
wave input frequency, LF mode  
XTS = 0, XT1BYPASS = 1(2) (3)  
XT1BYPASSLV = 0 or 1  
fXT1,LF,SW  
10 32.768  
210  
50 kHz  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
fXT1,LF = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(4)  
OALF  
kΩ  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,LF = 32768 Hz, CL,eff = 12 pF  
300  
XTS = 0, XCAPx = 0(6)  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
Integrated effective load  
capacitance, LF mode(5)  
CL,eff  
pF  
8.5  
12.0  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30%  
70%  
XTS = 0,  
Oscillator fault frequency,  
LF mode(7)  
fFault,LF  
XT1BYPASS = 1(8)  
,
10  
10000  
Hz  
ms  
XT1BYPASSLV = 0 or 1  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TA = 25°C, CL,eff = 6 pF  
1000  
500  
tSTART,LF  
Start-up time, LF mode  
3.0 V  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C, CL,eff = 12 pF  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square-wave with parametrics defined  
in the Schmitt-Trigger Inputs section of this data sheet. When in crystal bypass mode, XIN can be configured so that it can support an  
input digital waveform with swing levels from DVSS to DVCC (XT1BYPASSLV = 0) or DVSS to DVIO (XT1BYPASSLV = 1). In this  
case, it is required that the pin be configured properly for the intended input swing.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but each application should be evaluated based on the actual crystal selected:  
For XT1DRIVEx = 0, CL,eff 6 pF  
For XT1DRIVEx = 1, 6 pF CL,eff 9 pF  
For XT1DRIVEx = 2, 6 pF CL,eff 10 pF  
For XT1DRIVEx = 3, CL,eff 6 pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
(5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the  
effective load capacitance should always match the specification of the used crystal.  
(6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX specifications might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
8.22 Crystal Oscillator, XT2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz, XT2OFF = 0, TA = 25°C,  
XT2BYPASS = 0, XT2DRIVEx = 0,  
200  
fOSC = 12 MHz, XT2OFF = 0, TA = 25°C,  
XT2BYPASS = 0, XT2DRIVEx = 1,  
260  
325  
450  
XT2 oscillator crystal current  
consumption  
IDVCC.XT2  
3.0 V  
µA  
fOSC = 20 MHz, XT2OFF = 0, TA = 25°C,  
XT2BYPASS = 0, XT2DRIVEx = 2,  
fOSC = 32 MHz, XT2OFF = 0, TA = 25°C,  
XT2BYPASS = 0, XT2DRIVEx = 3,  
XT2 oscillator crystal  
frequency, mode 0  
fXT2,HF0  
fXT2,HF1  
fXT2,HF2  
fXT2,HF3  
XT2DRIVEx = 0, XT2BYPASS = 0(3)  
XT2DRIVEx = 1, XT2BYPASS = 0(3)  
XT2DRIVEx = 2, XT2BYPASS = 0(3)  
XT2DRIVEx = 3, XT2BYPASS = 0(3)  
4
8
8
MHz  
XT2 oscillator crystal  
frequency, mode 1  
16 MHz  
24 MHz  
32 MHz  
XT2 oscillator crystal  
frequency, mode 2  
16  
24  
XT2 oscillator crystal  
frequency, mode 3  
XT2 oscillator logic-level  
square-wave input frequency,  
bypass mode  
XT2BYPASS = 1(4) (3)  
XT2BYPASSLV = 0 or 1  
fXT2,HF,SW  
0.7  
32 MHz  
XT2DRIVEx = 0, XT2BYPASS = 0,  
fXT2,HF0 = 6 MHz, CL,eff = 15 pF  
450  
320  
200  
200  
XT2DRIVEx = 1, XT2BYPASS = 0,  
fXT2,HF1 = 12 MHz, CL,eff = 15 pF  
Oscillation allowance for  
HF crystals(5)  
OAHF  
XT2DRIVEx = 2, XT2BYPASS = 0,  
fXT2,HF2 = 20 MHz, CL,eff = 15 pF  
XT2DRIVEx = 3, XT2BYPASS = 0,  
fXT2,HF3 = 32 MHz, CL,eff = 15 pF  
fOSC = 6 MHz,  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C, CL,eff = 15 pF  
0.5  
0.3  
tSTART,HF  
Start-up time  
3.0 V  
ms  
pF  
fOSC = 20 MHz,  
XT2BYPASS = 0, XT2DRIVEx = 2,  
TA = 25°C, CL,eff = 15 pF  
Integrated effective load  
CL,eff  
1
capacitance, HF mode(6) (1)  
Duty cycle  
Measured at ACLK, fXT2,HF2 = 20 MHz  
40%  
30  
50%  
60%  
300  
XT2BYPASS = 1(8)  
XT2BYPASSLV = 0 or 1  
,
fFault,HF  
Oscillator fault frequency(7)  
kHz  
(1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(2) To improve EMI on the XT2 oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.  
Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(3) This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device  
operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.  
(4) When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square-wave with parametrics defined  
in the Schmitt-trigger Inputs section of this data sheet. When in crystal bypass mode, XT2IN can be configured so that it can support  
an input digital waveform with swing levels from DVSS to DVCC (XT2BYPASSLV = 0) or DVSS to DVIO (XT2BYPASSLV = 1). In this  
case, it is required that the pin be configured properly for the intended input swing.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the  
effective load capacitance should always match the specification of the used crystal.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX specifications might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals. Typically, an effective load capacitance of up to 18  
pF can be supported.  
8.23 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
9.4  
0.5  
4
MAX UNIT  
14 kHz  
%/°C  
fVLO  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
dfVLO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
Duty cycle  
%/V  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C) / (85°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)  
8.24 Internal Reference, Low-Frequency Oscillator (REFO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
3
MAX UNIT  
µA  
IREFO  
REFO oscillator current consumption  
REFO frequency calibrated  
TA = 25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
Measured at ACLK  
Full temperature range  
TA = 25°C  
32768  
Hz  
3.5%  
1.5%  
%/°C  
%/V  
fREFO  
3.5%  
1.5%  
REFO absolute tolerance calibrated  
REFO frequency temperature drift  
dfREFO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
40%/60% duty cycle  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
0.01  
1.0  
dfREFO/dVCC REFO frequency supply voltage drift  
Duty cycle  
40%  
50%  
25  
60%  
tSTART  
REFO start-up time  
µs  
(1) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C) / (85°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.25 DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DCORSELx = 0, DCOx = 0, MODx = 0  
DCORSELx = 0, DCOx = 31, MODx = 0  
DCORSELx = 1, DCOx = 0, MODx = 0  
DCORSELx = 1, DCOx = 31, MODx = 0  
DCORSELx = 2, DCOx = 0, MODx = 0  
DCORSELx = 2, DCOx = 31, MODx = 0  
DCORSELx = 3, DCOx = 0, MODx = 0  
DCORSELx = 3, DCOx = 31, MODx = 0  
DCORSELx = 4, DCOx = 0, MODx = 0  
DCORSELx = 4, DCOx = 31, MODx = 0  
DCORSELx = 5, DCOx = 0, MODx = 0  
DCORSELx = 5, DCOx = 31, MODx = 0  
DCORSELx = 6, DCOx = 0, MODx = 0  
DCORSELx = 6, DCOx = 31, MODx = 0  
DCORSELx = 7, DCOx = 0, MODx = 0  
DCORSELx = 7, DCOx = 31, MODx = 0  
MIN  
0.07  
0.70  
0.15  
1.47  
0.32  
3.17  
0.64  
6.07  
1.3  
TYP  
MAX UNIT  
0.20 MHz  
1.70 MHz  
0.36 MHz  
3.45 MHz  
0.75 MHz  
7.38 MHz  
1.51 MHz  
14.0 MHz  
3.2 MHz  
fDCO(0,0)  
fDCO(0,31)  
fDCO(1,0)  
fDCO(1,31)  
fDCO(2,0)  
fDCO(2,31)  
fDCO(3,0)  
fDCO(3,31)  
fDCO(4,0)  
fDCO(4,31)  
fDCO(5,0)  
fDCO(5,31)  
fDCO(6,0)  
fDCO(6,31)  
fDCO(7,0)  
fDCO(7,31)  
DCO frequency (0, 0)(1)  
DCO frequency (0, 31)(1)  
DCO frequency (1, 0)(1)  
DCO frequency (1, 31)(1)  
DCO frequency (2, 0)(1)  
DCO frequency (2, 31)(1)  
DCO frequency (3, 0)(1)  
DCO frequency (3, 31)(1)  
DCO frequency (4, 0)(1)  
DCO frequency (4, 31)(1)  
DCO frequency (5, 0)(1)  
DCO frequency (5, 31)(1)  
DCO frequency (6, 0)(1)  
DCO frequency (6, 31)(1)  
DCO frequency (7, 0)(1)  
DCO frequency (7, 31)(1)  
12.3  
2.5  
28.2 MHz  
6.0 MHz  
23.7  
4.6  
54.1 MHz  
10.7 MHz  
88.0 MHz  
19.6 MHz  
135 MHz  
39.0  
8.5  
60  
Frequency step between range  
DCORSEL and DCORSEL + 1  
SDCORSEL  
SDCO  
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)  
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)  
1.2  
2.3 ratio  
Frequency step between tap DCO  
and DCO + 1  
1.02  
40%  
1.12 ratio  
Duty cycle  
Measured at SMCLK  
fDCO = 1 MHz  
50%  
0.1  
60%  
%/°C  
%/V  
dfDCO/dT  
DCO frequency temperature drift(2)  
dfDCO/dVCC DCO frequency voltage drift(3)  
fDCO = 1 MHz  
1.9  
(1) When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the  
range of fDCO(n, 0),MAX fDCO fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO  
frequency, range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n,  
tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the  
actual fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report  
that the selected range is at its minimum or maximum tap setting.  
(2) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C) / (85°C (40°C))  
(3) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)  
100  
VCC = 3.0 V  
TA = 25°C  
10  
DCOx = 31  
1
DCOx = 0  
0.1  
0
1
2
3
4
5
6
7
DCORSEL  
8-12. Typical DCO Frequency  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.26 PMM, Brownout Reset (BOR)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s  
MIN TYP MAX UNIT  
VDVCC_BOR_IT–  
VDVCC_BOR_IT+  
VDVCC_BOR_hys  
tRESET  
BORH on voltage, DVCC falling level  
BORH off voltage, DVCC rising level  
BORH hysteresis  
1.45  
V
V
0.80 1.30 1.50  
50  
2
250 mV  
µs  
Pulse duration required at RST/NMI pin to accept a reset  
8.27 PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
2.4 V DVCC 3.6 V  
2.2 V DVCC 3.6 V  
2.0 V DVCC 3.6 V  
1.8 V DVCC 3.6 V  
2.4 V DVCC 3.6 V  
2.2 V DVCC 3.6 V  
2.0 V DVCC 3.6 V  
1.8 V DVCC 3.6 V  
MIN  
TYP  
1.90  
1.80  
1.60  
1.40  
1.94  
1.84  
1.64  
1.44  
MAX UNIT  
VCORE3(AM)  
VCORE2(AM)  
VCORE1(AM)  
VCORE0(AM)  
VCORE3(LPM)  
VCORE2(LPM)  
VCORE1(LPM)  
VCORE0(LPM)  
Core voltage, active mode, PMMCOREV = 3  
Core voltage, active mode, PMMCOREV = 2  
Core voltage, active mode, PMMCOREV = 1  
Core voltage, active mode, PMMCOREV = 0  
Core voltage, low-current mode, PMMCOREV = 3  
Core voltage, low-current mode, PMMCOREV = 2  
Core voltage, low-current mode, PMMCOREV = 1  
Core voltage, low-current mode, PMMCOREV = 0  
V
V
V
V
V
V
V
V
8.28 PMM, SVS High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSHE = 0, DVCC = 3.6 V  
0
nA  
I(SVSH)  
SVS current consumption  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1  
SVSHE = 1, SVSHRVL = 0  
200  
1.5  
µA  
1.57  
1.79  
1.98  
2.10  
1.62  
1.88  
2.07  
2.20  
2.32  
2.52  
2.90  
2.90  
1.68  
1.88  
2.08  
2.18  
1.74  
1.94  
2.14  
2.30  
2.40  
2.70  
3.10  
3.10  
2.5  
1.78  
SVSHE = 1, SVSHRVL = 1  
1.98  
V
V(SVSH_IT) SVSH on voltage level(1)  
SVSHE = 1, SVSHRVL = 2  
2.21  
SVSHE = 1, SVSHRVL = 3  
2.31  
1.85  
2.07  
2.28  
SVSHE = 1, SVSMHRRL = 0  
SVSHE = 1, SVSMHRRL = 1  
SVSHE = 1, SVSMHRRL = 2  
SVSHE = 1, SVSMHRRL = 3  
2.42  
V
V(SVSH_IT+) SVSH off voltage level(1)  
SVSHE = 1, SVSMHRRL = 4  
2.55  
SVSHE = 1, SVSMHRRL = 5  
2.88  
3.23  
3.23  
SVSHE = 1, SVSMHRRL = 6  
SVSHE = 1, SVSMHRRL = 7  
SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1  
SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0  
SVSHE = 0 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1  
SVSHE = 0 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0  
tpd(SVSH)  
SVSH propagation delay  
SVSH on or off delay time  
µs  
µs  
20  
12.5  
100  
t(SVSH)  
dVDVCC/dt DVCC rise time  
0
1000  
V/s  
(1) The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and use.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.29 PMM, SVM High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0
MAX UNIT  
SVMHE = 0, DVCC = 3.6 V  
nA  
I(SVMH)  
SVMH current consumption  
SVMHE= 1, DVCC = 3.6 V, SVMHFP = 0  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1  
SVMHE = 1, SVSMHRRL = 0  
200  
1.5  
µA  
1.85  
1.62  
1.88  
2.07  
2.20  
2.32  
2.52  
2.90  
2.90  
1.74  
1.94  
2.14  
2.30  
2.40  
2.70  
3.10  
3.10  
3.75  
2.5  
SVMHE = 1, SVSMHRRL = 1  
2.07  
SVMHE = 1, SVSMHRRL = 2  
2.28  
SVMHE = 1, SVSMHRRL = 3  
2.42  
V(SVMH)  
SVMH on or off voltage level(1)  
SVMHE = 1, SVSMHRRL = 4  
2.55  
2.88  
3.23  
3.23  
V
SVMHE = 1, SVSMHRRL = 5  
SVMHE = 1, SVSMHRRL = 6  
SVMHE = 1, SVSMHRRL = 7  
SVMHE = 1, SVMHOVPE = 1  
SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1  
SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0  
SVMHE = 0 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1  
SVMHE = 0 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0  
tpd(SVMH)  
SVMH propagation delay  
SVMH on or off delay time  
µs  
µs  
20  
12.5  
100  
t(SVMH)  
(1) The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and use.  
8.30 PMM, SVS Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSLE = 0, PMMCOREV = 2  
0
nA  
µA  
µs  
I(SVSL)  
SVSL current consumption  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0  
200  
1.5  
2.5  
20  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
SVSLE = 0 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 0 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
tpd(SVSL)  
SVSL propagation delay  
SVSL on or off delay time  
12.5  
100  
t(SVSL)  
µs  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.31 PMM, SVM Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVMLE = 0, PMMCOREV = 2  
0
nA  
µA  
µs  
I(SVML)  
SVML current consumption  
SVMLE= 1, PMMCOREV = 2, SVMLFP = 0  
200  
1.5  
2.5  
20  
SVMLE= 1, PMMCOREV = 2, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
SVMLE = 0 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 0 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
tpd(SVML)  
SVML propagation delay  
SVML on or off delay time  
12.5  
100  
t(SVML)  
µs  
8.32 Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
3.5  
7.5  
f
MCLK 4.0 MHz  
Wake-up time from LPM2,  
LPM3, or LPM4 to active  
mode(1)  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 1  
tWAKE-UP-FAST  
µs  
9
1.0 MHz < fMCLK  
4.0 MHz  
<
4.5  
Wake-up time from LPM2,  
LPM3 or LPM4 to active  
mode(2) (3)  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 0  
tWAKE-UP-SLOW  
150  
175  
µs  
Wake-up time from LPM4.5  
to active mode(4)  
tWAKE-UP-LPM5  
tWAKE-UP-RESET  
2
2
3
3
ms  
ms  
Wake-up time from RST or  
BOR event to active mode(4)  
(1) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the  
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in  
full performance mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode  
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx  
Family User's Guide.  
(2) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the  
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in  
normal mode (low current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode  
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx  
Family User's Guide.  
(3) The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by  
the performance mode settings as for LPM2, LPM3, and LPM4.  
(4) This value represents the time from the wake-up event to the reset vector execution.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.33 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
VIO  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TACLK,  
Duty cycle = 50% ±10%  
1.8 V  
1.62 V to 1.8 V  
25  
fTA  
Timer_A input clock frequency  
MHz  
3.0 V  
1.8 V  
3.0 V  
1.62 V to 1.98 V  
1.62 V to 1.8 V  
1.62 V to 1.98 V  
25  
All capture inputs, minimum  
pulse duration required for  
capture  
20  
20  
tTA,cap Timer_A capture timing(1)  
ns  
(1) The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter  
than tTA,cap  
.
8.34 Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
VIO  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
Duty cycle = 50% ±10%  
1.8 V  
1.62 V to 1.8 V  
25  
fTB  
Timer_B input clock frequency  
MHz  
3.0 V  
1.8 V  
3.0 V  
1.62 V to 1.98 V  
1.62 V to 1.8 V  
1.62 V to 1.98 V  
25  
All capture inputs, minimum  
pulse duration required for  
capture  
20  
20  
tTB,cap Timer_B capture timing(1)  
ns  
(1) The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter  
than tTB,cap  
.
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.35 USCI (UART Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
fBITCLK BITCLK clock frequency (equals baud rate in MBaud)  
1
MHz  
8.36 USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
1.8 V  
3.0 V  
VIO  
MIN  
MAX UNIT  
1.62 V to 1.80 V  
1.62 V to 1.98 V  
50  
600  
ns  
600  
tτ  
UART receive deglitch time(1)  
50  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
8.37 USCI (SPI Master Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
MAX UNIT  
fUSCI  
USCI input clock frequency  
Internal: SMCLK or ACLK, Duty cycle = 50% ±10%  
fSYSTEM MHz  
8.38 USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see 8-13 and 8-14)  
PARAMETER  
TEST CONDITIONS  
SMCLK or ACLK,  
VCC  
VIO  
MIN  
MAX UNIT  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.62 V to 1.80 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.80 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.80 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.80 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
55  
55  
35  
35  
0
PMMCOREV = 0  
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time(2)  
ns  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
0
tHD,MI  
ns  
0
0
20  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 0  
20  
ns  
16  
tVALID,MO  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 3  
16  
10  
10  
10  
10  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
tHD,MO  
SIMO output data hold time(3)  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in 8-13 and 8-14.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in 8-13  
and 8-14.  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
8-13. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
8-14. SPI Master Mode, CKPH = 1  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.39 USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see 8-15 and 8-16)  
PARAMETER  
TEST CONDITIONS  
PMMCOREV = 0  
VCC  
VIO  
MIN  
12  
12  
10  
10  
6
MAX UNIT  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
1.8 V 1.62 V to 1.80 V  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE low to clock  
ns  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
6
STE lag time, Last clock to STE high  
ns  
6
6
65  
65  
ns  
45  
STE access time, STE low to SOMI  
data out  
45  
35  
35  
ns  
25  
STE disable time, STE high to SOMI  
high impedance  
25  
5
5
5
5
5
5
5
5
SIMO input data setup time  
SIMO input data hold time  
ns  
tHD,SI  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF,  
PMMCOREV = 0  
75  
75  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
tVALID,SO  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF,  
PMMCOREV = 3  
50  
50  
1.8 V 1.62 V to 1.80 V  
3.0 V 1.62 V to 1.98 V  
2.4 V 1.62 V to 1.98 V  
3.0 V 1.62 V to 1.98 V  
10  
10  
10  
10  
CL = 20 pF,  
PMMCOREV = 0  
tHD,SO  
ns  
CL = 20 pF,  
PMMCOREV = 3  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in 8-15 and 8-16.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in 8-15  
and 8-16.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
SOMI  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
8-15. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
8-16. SPI Slave Mode, CKPH = 1  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.40 USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 8-17)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
VIO  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
f
SCL 100 kHz  
fSCL > 100 kHz  
SCL 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
f
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
1.62 V to 1.98 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3 V  
2.2 V, 3 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
ns  
ns  
250  
4.0  
0.6  
f
SCL 100 kHz  
tSU,STO  
Setup time for STOP  
2.2 V, 3 V  
2.2 V, 3 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
µs  
fSCL > 100 kHz  
Pulse duration of spikes  
suppressed by input filter  
tSP  
50  
600  
ns  
(1) In all test conditions, VIO VCC  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
8-17. I2C Mode Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
MAX UNIT  
8.41 10-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
AVCC  
V(Ax)  
Analog supply voltage  
1.8  
3.6  
V
V
All ADC10_A pins: P1.0 to P1.5 and P3.6 and  
P3.7 terminals  
Analog input voltage range(2)  
0
AVCC  
Operating supply current into fADC10CLK = 5.0 MHz, ADC10ON = 1,  
AVCC terminal, REF module REFON = 0, SHT0 = 0, SHT1 = 0,  
2.2 V  
3 V  
60  
75  
100  
110  
µA  
and reference buffer off  
ADC10DIV = 0, ADC10SREF = 00  
Operating supply current into fADC10CLK = 5.0 MHz, ADC10ON = 1,  
AVCC terminal, REF module REFON = 1, SHT0 = 0, SHT1 = 0,  
3 V  
3 V  
113  
105  
150  
140  
µA  
µA  
on, reference buffer on  
ADC10DIV = 0, ADC10SREF = 01  
fADC10CLK = 5.0 MHz, ADC10ON = 1,  
REFON = 0, SHT0 = 0, SHT1 = 0,  
ADC10DIV = 0, ADC10SREF = 10,  
VEREF = 2.5 V  
IADC10_A  
Operating supply current into  
AVCC terminal, REF module  
off, reference buffer on  
fADC10CLK = 5.0 MHz, ADC10ON = 1,  
REFON = 0, SHT0 = 0, SHT1 = 0,  
ADC10DIV = 0, ADC10SREF = 11,  
VEREF = 2.5 V  
Operating supply current into  
AVCC terminal, REF module  
off, reference buffer off  
3 V  
70  
110  
µA  
Only one terminal Ax can be selected at one  
time from the pad to the ADC10_A capacitor  
array including wiring and pad  
CI  
RI  
Input capacitance  
2.2 V  
3.5  
pF  
36  
96  
AVCC > 2 V, 0 V VAx AVCC  
Input MUX ON resistance  
kΩ  
1.8 V < AVCC < 2 V, 0 V VAx AVCC  
(1) The leakage current is defined in the leakage current table with P6.x/Ax parameter.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VRfor valid conversion results. The  
external reference voltage requires decoupling capacitors. See 8.44.  
8.42 10-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC10_A  
linearity parameters  
fADC10CLK  
fADC10OSC  
2.2 V, 3 V  
0.45  
5
5.5 MHz  
Internal ADC10_A  
oscillator(3)  
ADC10DIV = 0, fADC10CLK = fADC10OSC  
2.2 V, 3 V  
2.2 V, 3 V  
4.2  
2.4  
4.8  
5.4 MHz  
REFON = 0, Internal oscillator,  
12 ADC10CLK cycles, 10-bit mode  
fADC10OSC = 4 MHz to 5 MHz  
3.0  
µs  
tCONVERT  
Conversion time  
External fADC10CLK from ACLK, MCLK or  
12 ×  
1 / fADC10CLK  
SMCLK, ADC10SSEL 0  
Turnon settling time of  
the ADC  
tADC10ON  
See (1)  
100  
ns  
1.8 V  
3.0 V  
3
1
µs  
µs  
RS = 1000 , RI = 96 k , CI = 3.5 pF(2)  
tSample  
Sampling time  
(1) The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
(2) Approximately 8 Tau (τ) are needed to get an error of less than ±0.5 LSB  
(3) The ADC10OSC is sourced directly from MODOSC inside the UCS.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.43 10-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
±1.0  
LSB  
±1.0  
1.4 V (VeREF+ VeREF) 1.6 V, CVeREF+ = 20 pF  
1.6 V < (VeREF+ VeREF) VAVCC, CVeREF+ = 20 pF  
Integral  
linearity error  
EI  
2.2 V, 3 V  
Differential  
linearity error  
ED  
EO  
EG  
ET  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±1.0 LSB  
±1.0 LSB  
±1.0 LSB  
±2.0 LSB  
1.4 V (VeREF+ VeREF), CVeREF+ = 20 pF  
1.4 V (VeREF+ VeREF), CVeREF+ = 20 pF,  
Internal impedance of source RS < 100 Ω  
Offset error  
Gain error  
1.4 V (VeREF+ VeREF), CVeREF+ = 20 pF,  
ADC10SREFx = 11b  
Total unadjusted  
error  
1.4 V (VeREF+ VeREF), CVeREF+ = 20 pF,  
ADC10SREFx = 11b  
±1.0  
8.44 REF, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Positive external reference  
voltage input  
(2)  
VeREF+  
VeREF+ > VeREF–  
1.4  
AVCC  
1.2  
V
V
V
Negative external reference  
voltage input  
(3)  
(4)  
VeREF–  
VeREF+ > VeREF–  
VeREF+ > VeREF–  
0
Differential external reference  
voltage input  
(VeREF+  
VeREF–  
)
1.4  
AVCC  
1.4 V VeREF+ VAVCC , VeREF= 0 V,  
fADC10CLK = 5 MHz, ADC10SHTx = 0x0001,  
Conversion rate 200 ksps  
2.2 V, 3 V  
2.2 V, 3 V  
26  
1
µA  
26  
IVeREF+  
IVeREF–  
,
Static input current  
1.4 V VeREF+ VAVCC , VeREF= 0 V,  
fADC10CLK = 5 MHZ, ADC10SHTX = 0x1000,  
Conversion rate 20 ksps  
µA  
µF  
1  
CVREF+  
CVREF-  
,
Capacitance at VeREF+ or  
VeREF- terminal  
See (5)  
10  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is  
also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC10_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
MAX UNIT  
8.45 REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.445 2.486 2.527  
1.94 1.97 2.01  
TYP  
REFVSEL = {2} for 2.5 V  
REFON = 1  
3 V  
Positive built-in reference  
voltage  
REFVSEL = {1} for 2.0 V  
REFON = 1  
VREF+  
3 V  
V
V
REFVSEL = {0} for 1.5 V  
REFON = 1  
2.2 V, 3 V  
1.461 1.485 1.511  
REFVSEL = {0} for 1.5 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
1.8  
2.2  
2.7  
AVCC minimum voltage,  
Positive built-in reference  
active  
AVCC(min)  
fADC10CLK = 5.0 MHz  
REFON = 1, REFBURST = 0,  
REFVSEL = {2} for 2.5 V  
3 V  
3 V  
3 V  
18  
24  
21  
µA  
µA  
µA  
fADC10CLK = 5.0 MHz  
REFON = 1, REFBURST = 0,  
REFVSEL = {1} for 2.0 V  
Operating supply current  
into AVCC terminal(1)  
IREF+  
15.5  
fADC10CLK = 5.0 MHz  
REFON = 1, REFBURST = 0,  
REFVSEL = {0} for 1.5 V  
13.5  
30  
21  
50  
Temperature coefficient of IVREF+ = 0 A  
ppm/  
°C  
TCREF+  
built-in reference(2)  
REFVSEL = {0, 1, 2}, REFON = 1  
2.2 V  
3 V  
20  
20  
22  
22  
Operating supply current  
into AVCC terminal(4)  
REFON = 0, INCH = 0Ah,  
ADC10ON = N/A, TA = 30°C  
ISENSOR  
µA  
mV  
V
2.2 V  
3 V  
770  
770  
1.1  
1.5  
ADC10ON = 1, INCH = 0Ah,  
TA = 30°C  
VSENSOR  
See (5)  
2.2 V  
3 V  
1.06  
1.46  
1.14  
1.54  
ADC10ON = 1, INCH = 0Bh,  
VMID  
AVCC divider at channel 11  
V
MID 0.5 × VAVCC  
ADC10ON = 1, INCH = 0Ah,  
Error of conversion result 1 LSB  
Sample time required if  
channel 10 is selected(6)  
tSENSOR(sample)  
tVMID(sample)  
PSRR_DC  
30  
1
µs  
µs  
ADC10ON = 1, INCH = 0Bh,  
Error of conversion result 1 LSB  
Sample time required if  
channel 11 is selected(7)  
Power supply rejection ratio AVCC = AVCC(min) to AVCC(max),  
120  
6.4  
75  
µV/V  
(DC)  
TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1  
AVCC = AVCC(min) to AVCC(max),  
TA = 25°C, f = 1 kHz, ΔVpp = 100 mV,  
REFVSEL = {0, 1, 2}, REFON = 1  
Power supply rejection ratio  
(AC)  
PSRR_AC  
tSETTLE  
mV/V  
µs  
AVCC = AVCC(min) to AVCC(max),  
REFVSEL = {0, 1, 2}, REFON = 0 1  
Settling time of reference  
voltage(3)  
(1) The internal reference current is supplied from terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.  
(2) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C)/(85°C (40°C)).  
(3) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
(4) The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is  
high). When REFON = 1, ISENSOR is already included in IREF+  
.
(5) The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor.  
(6) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
(7) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
.
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.46 Comparator_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
Supply voltage  
1.8  
3.6  
38  
38  
39  
V
1.8 V  
2.2 V  
3 V  
CBPWRMD = 00, CBON = 1,  
CBRSx = 00  
31  
32  
Comparator operating  
supply current into AVCC,  
Excludes reference  
resistor ladder  
IAVCC_COMP  
µA  
CBPWRMD = 01, CBON = 1,  
CBRSx = 00  
2.2 V, 3 V  
2.2 V, 3 V  
10  
17  
CBPWRMD = 10, CBON = 1,  
CBRSx = 00  
0.2  
0.85  
CBREFLx = 01, CBREFACC = 0  
CBREFLx = 10, CBREFACC = 0  
CBREFLx = 11, CBREFACC = 0  
1.400  
1.864  
2.32  
1.43  
1.90  
2.37  
1.472  
1.960  
2.44  
1.8V  
2.2V  
3.0V  
VREF  
Reference voltage level  
V
CBREFACC = 0, CBREFLx = 01,  
CBRSx = 10, REFON = 0, CBON = 0  
Quiescent current of  
resistor ladder into AVCC,  
Includes REF module  
current  
2.2 V, 3 V  
2.2 V, 3 V  
33  
17  
40  
22  
IAVCC_REF  
µA  
CBREFACC = 1, CBREFLx = 01,  
CBRSx = 10, REFON = 0, CBON = 0  
Common mode input  
range  
VIC  
0
V
VCC 1  
CBPWRMD = 00  
20  
10  
20  
10  
VOFFSET  
CIN  
Input offset voltage  
Input capacitance  
mV  
CBPWRMD = 01, 10  
5
3
pF  
kΩ  
On (switch closed)  
4
RSIN  
Series input resistance  
Off (switch open)  
50  
MΩ  
CBPWRMD = 00, CBF = 0  
CBPWRMD = 01, CBF = 0  
CBPWRMD = 10, CBF = 0  
450  
600  
50  
ns  
µs  
Propagation delay,  
response time  
tPD  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 00  
0.35  
0.6  
1.0  
1.8  
0.6  
1.0  
1.8  
3.4  
1
1.5  
1.8  
3.4  
6.5  
2
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 01  
Propagation delay with  
filter active  
tPD,filter  
µs  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 10  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 11  
CBON = 0 1,  
CBPWRMD = 00 or 01  
tEN_CMP  
Comparator enable time  
µs  
µs  
CBON = 0 1,  
CBPWRMD = 10  
100  
1.5  
Resistor reference enable  
time  
tEN_REF  
TCREF  
1.0  
CBON = 0 1  
Temperature coefficient  
reference  
50 ppm/ °C  
VIN ×  
VIN ×  
VIN ×  
Reference voltage for a  
given tap  
VIN = reference into resistor ladder,  
n = 0 to 31  
VCB_REF  
(n + 0.5) / (n + 1) / (n + 1.5) /  
32 32 32  
V
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
MAX UNIT  
8.47 Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TJ  
MIN  
TYP  
DVCC(PGM/ERASE) Program and erase supply voltage  
1.8  
3.6  
5
V
mA  
IPGM  
Average supply current from DVCC during program  
3
6
6
IERASE  
Average supply current from DVCC during erase  
Average supply current from DVCC during mass erase or bank erase  
Cumulative program time(1)  
15  
15  
16  
mA  
IMERASE, IBANK  
tCPT  
mA  
ms  
Program and erase endurance  
104  
100  
64  
105  
cycles  
years  
µs  
tRetention  
tWord  
Data retention duration  
25°C  
Word or byte program time(2)  
85  
65  
tBlock, 0  
Block program time for first byte or word(2)  
49  
µs  
Block program time for each additional byte or word, except for last byte  
or word(2)  
tBlock, 1(N1)  
37  
49  
µs  
tBlock, N  
tErase  
Block program time for last byte or word(2)  
55  
23  
73  
32  
µs  
Erase time for segment, mass erase, and bank erase when available(2)  
ms  
MCLK frequency in marginal read mode  
(FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1)  
fMCLK,MGR  
0
1
MHz  
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming  
methods: individual word or byte write mode and block write mode.  
(2) These values are hardwired into the state machine of the flash controller.  
8.48 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
VIO  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V, 3 V 1.62 V to 1.98 V  
2.2 V, 3 V 1.62 V to 1.98 V  
0
20 MHz  
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.025  
15  
1
µs  
µs  
µs  
Spy-Bi-Wire enable time (TEST high to acceptance of first  
clock edge)(1)  
tSBW, En  
tSBW,Rst  
1.62 V to 1.98 V  
Spy-Bi-Wire return to normal operation time  
TCK input frequency for 4-wire JTAG(2)  
Internal pulldown resistance on TEST  
2.2 V, 3 V 1.62 V to 1.98 V  
15  
0
100  
5
2.2 V  
3 V  
1.62 V to 1.98 V  
1.62 V to 1.98 V  
fTCK  
MHz  
0
10  
80  
Rinternal  
2.2 V, 3 V 1.62 V to 1.98 V  
45  
60  
kΩ  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
8.49 DVIO BSL Entry  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 8-18)  
PARAMETER  
Setup time, BSLEN to RST/NMI(1)  
Hold time, BSLEN to RST/NMI(2)  
VCC  
VIO  
MIN  
100  
350  
MAX UNIT  
tSU, BSLEN  
tHO, BSLEN  
2.2 V, 3 V 1.62 V to 1.98 V  
2.2 V, 3 V 1.62 V to 1.98 V  
ns  
µs  
(1) AVCC, DVCC, DVIO stable and within specification.  
(2) BSLEN must remain logic high long enough for the boot code to detect its level and enter the BSL sequence. After the minimum hold  
time is achieved, BSLEN is a don't care.  
BSLEN  
VIT+  
VIT-  
tHO,BSLEN  
VIT+  
VIT-  
RST/NMI  
(DVIO domain)  
t
tSU,BSLEN  
8-18. DVIO BSL Entry Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9 Detailed Description  
9.1 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are  
general-purpose registers (see 9-1).  
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with  
all instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes and  
additional instructions for the expanded address range. Each instruction can operate on word and byte data.  
Program Counter  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Stack Pointer  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
9-1. Integrated CPU Registers  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.2 Operating Modes  
These MCUs have one active mode and six software-selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the low-power modes, service the request, and restore back to the  
low-power mode on return from the interrupt program.  
Software can configure the following seven operating modes:  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
FLL loop control remains active  
Low-power mode 1 (LPM1)  
CPU is disabled  
FLL loop control is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK and FLL loop control and DCOCLK are disabled  
DC generator of the DCO remains enabled  
ACLK remains active  
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DC generator of the DCO is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DC generator of the DCO is disabled  
Crystal oscillator is stopped  
Complete data retention  
Low-power mode 4.5 (LPM4.5)  
Internal regulator disabled  
No data retention  
Wake-up input from RST/NMI, P1, or P2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.3 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see 9-1).  
The vector contains the 16-bit address of the interrupt-handler instruction sequence.  
9-1. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up  
External reset  
Watchdog time-out, password  
violation  
WDTIFG, KEYV (SYSRSTIV)(1) (3)  
Reset  
0FFFEh  
63, highest  
Flash memory password violation  
PMM password violation  
System NMI  
PMM  
Vacant memory access  
JTAG mailbox  
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,  
VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG,  
JMBOUTIFG (SYSSNIV)(1)  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
62  
61  
User NMI  
NMI  
Oscillator fault  
NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV)  
(1) (3)  
Flash memory access violation  
COMP_B  
USCI_A0 receive or transmit  
USCI_B0 receive or transmit  
Watchdog timer interval timer mode  
USCI_A1 receive or transmit  
USCI_B1 receive or transmit  
ADC10_A  
Comparator B interrupt flags (CBIV)(1) (2)  
UCA0RXIFG, UCA0TXIFG (UCA0IV)(1) (2)  
UCB0RXIFG, UCB0TXIFG (UCB0IV)(1) (2)  
WDTIFG  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
0FFEAh  
0FFE8h  
0FFE6h  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
UCA1RXIFG, UCA1TXIFG (UCA1IV)(1) (2)  
UCB1RXIFG, UCB1TXIFG (UCB1IV)(1) (2)  
ADC10IFG0(1) (2) (5)  
USCI_A2 receive or transmit  
USCI_B2 receive or transmit  
TA0  
UCA2RXIFG, UCA2TXIFG (UCA2IV)(1) (2)  
UCB2RXIFG, UCB2TXIFG (UCB2IV)(1) (2)  
TA0CCR0 CCIFG0(2)  
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,  
TA0IFG (TA0IV)(1) (2)  
TA0  
Maskable  
0FFE4h  
50  
Reserved  
DMA  
Reserved(4)  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFE2h  
0FFE0h  
0FFDEh  
0FFDCh  
0FFDAh  
49  
48  
47  
46  
45  
DMA0IFG, DMA1IFG, DMA2IFG (DMAIV)(1) (2)  
UCA3RXIFG, UCA3TXIFG (UCA3IV)(1) (2)  
UCB3RXIFG, UCB3TXIFG (UCB3IV)(1) (2)  
TB0CCR0 CCIFG0 (2)  
USCI_A3 receive or transmit  
USCI_B3 receive or transmit  
TB0  
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,  
TB0IFG (TB0IV)(1) (2)  
TB0  
TA1  
TA1  
Maskable  
Maskable  
Maskable  
0FFD8h  
0FFD6h  
0FFD4h  
44  
43  
42  
TA1CCR0 CCIFG0(2)  
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)(1) (2)  
I/O port P1  
TA2  
P1IFG.0 to P1IFG.7 (P1IV)(1) (2)  
TA2CCR0 CCIFG0(2)  
Maskable  
Maskable  
0FFD2h  
0FFD0h  
41  
40  
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,  
TA2IFG (TA2IV)(1) (2)  
TA2  
Maskable  
Maskable  
Maskable  
Maskable  
0FFCEh  
0FFCCh  
0FFCAh  
0FFC8h  
39  
38  
37  
36  
I/O port P2  
RTC_A  
P2IFG.0 to P2IFG.7 (P2IV)(1) (2)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RT0PSIFG, RT1PSIFG (RTCIV)(1) (2)  
I/O Port P6  
P6IFG.0 to P6IFG.7 (P6IV)(1) (2)  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-1. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
0FFC6h  
35  
Reserved  
Reserved(4)  
0FF80h  
0, lowest  
(1) Multiple source flags  
(2) Interrupt flags are in the module.  
(3) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it.  
(4) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To  
maintain compatibility with other devices, TI recommends reserving these locations.  
(5) Only on devices with ADC, otherwise reserved  
9.4 Memory Organization  
9-2 summarizes the memory map of the microcontrollers.  
9-2. Memory Organization  
MSP430F5259, MSP430F5258,  
MSP430F5255, MSP430F5254  
MSP430F5257, MSP430F5256,  
MSP430F5253, MSP430F5252  
Memory (flash)  
Total Size  
128KB  
128KB  
Main: interrupt vector  
00FFFFh to 00FF80h  
00FFFFh to 00FF80h  
32KB  
32KB  
Bank D  
Bank C  
Bank B  
Bank A  
Sector 7  
Sector 6  
Sector 5  
Sector 4  
Sector 3  
Sector 2  
Sector 1  
Sector 0  
A
002A3FFh to 0022400h  
002A3FFh to 0022400h  
32KB  
32KB  
00223FFh to 001A400h  
00223FFh to 001A400h  
Main: code memory  
32KB  
32KB  
001A3FFh to 0012400h  
001A3FFh to 0012400h  
32KB  
32KB  
00123FFh to 00A400h  
00123FFh to 00A400h  
4KB  
N/A(1)  
00A3FFh to 009400h  
4KB  
N/A  
0093FFh to 008400h  
4KB  
N/A  
0083FFh to 007400h  
4KB  
N/A  
0073FFh to 006400h  
RAM  
4KB  
4KB  
0063FFh to 005400h  
0063FFh to 005400h  
4KB  
4KB  
0053FFh to 004400h  
0053FFh to 004400h  
4KB  
4KB  
0043FFh to 003400h  
0043FFh to 003400h  
4KB  
4KB  
0033FFh to 002400h  
0033FFh to 002400h  
128 bytes  
001BFFh to 001B80h  
128 bytes  
001BFFh to 001B80h  
128 bytes  
001B7Fh to 001B00h  
128 bytes  
001B7Fh to 001B00h  
B
TI factory memory (ROM)  
128 bytes  
001AFFh to 001A80h  
128 bytes  
001AFFh to 001A80h  
C
128 bytes  
001A7Fh to 001A00h  
128 bytes  
001A7Fh to 001A00h  
D
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-2. Memory Organization (continued)  
MSP430F5259, MSP430F5258,  
MSP430F5255, MSP430F5254  
MSP430F5257, MSP430F5256,  
MSP430F5253, MSP430F5252  
128 bytes  
0019FFh to 001980h  
128 bytes  
0019FFh to 001980h  
Info A  
Info B  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
128 bytes  
00197Fh to 001900h  
128 bytes  
00197Fh to 001900h  
Information memory (flash)  
128 bytes  
0018FFh to 001880h  
128 bytes  
0018FFh to 001880h  
128 bytes  
00187Fh to 001800h  
128 bytes  
00187Fh to 001800h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
Bootloader (BSL) memory (flash)  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
4KB  
000FFFh to 0h  
4KB  
000FFFh to 0h  
Peripherals  
(1) N/A = Not available  
9.5 Bootloader (BSL)  
Note  
Devices from TI come factory programmed with either an I2C-based BSL or a timer-based UART BSL.  
See 6-1 to determine which BSL type is implemented.  
9.5.1 Bootloader I2C  
The I2C BSL enables users to program the flash memory or RAM using a I2C serial interface. Access to the  
device memory through the BSL is protected by an user-defined password.  
When using the BSL, it requires a specific entry sequence on the RST/NMI and BSLEN pins. 9-3 lists the  
required pins and their functions. For further details on interfacing to development tools and device  
programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the  
BSL and its implementation, see the MSP430 Flash Devices Bootloader (BSL) User's Guide. BSL firmware  
images are available for download in the Custom BSL430 package.  
Note  
To invoke the BSL from the DVIO domain, the RST/NMI pin and BSLEN pins must be used for the  
entry sequence. It is critical not to confuse the RST/NMI pin with the RSTDVCC/SBWTDIO pin. In  
many other MSP430 devices, SBWTDIO is shared with the RST/NMI pin, and RSTDVCC does not  
exist. Additional information can be found in Designing With MSP430F522x and MSP430F521x  
Devices.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-3. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
External reset  
Enable BSL  
RST/NMI  
BSLEN  
P4.1/PM_UCB1SDA  
P4.2/ PM_UCB1SCL  
DVCC, AVCC  
DVIO  
I2C data  
I2C clock  
Device power supply  
I/O power supply  
Ground supply  
DVSS  
9.5.2 Bootloader UART  
The UART BSL enables users to program the flash memory or RAM using a UART serial interface. Access to  
the device memory through the BSL is protected by an user-defined password. Because the F525x have split I/O  
power domains, it is possible to interface with the BSL from either the DVCC or DVIO supply domains. This is  
useful when the MSP430 is interfacing to a host on the DVIO supply domain. The BSL interface on the DVIO  
supply domain (see 9-5) uses the USCI_A0 module configured as a UART. The BSL interface on the DVCC  
supply domain (see 9-4) uses a timer-based UART.  
For applications that have BSL communication based on the DVCC supply domain, entry to the BSL requires a  
specific sequence on the RSTDVCC/SBWTDIO and TEST/SBWTCK pins.  
Note  
Devices that are factory programmed with an UART BSL use the DVCC power supply domain pin  
configuration per default (see 9-4).  
Note  
To invoke the BSL from the DVCC domain, the RSTDVCC/SBWTDIO pin and TEST/SBWTCK pin  
must be used for the entry sequence. It is critical not to confuse the RST/NMI pin with the RSTDVCC/  
SBWTDIO pin. In many other MSP430 devices, SBWTDIO is shared with the RST/NMI pin, and  
RSTDVCC does not exist. Additional information can be found in Designing With MSP430F522x and  
MSP430F521x Devices.  
9-4. DVCC BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RSTDVCC/SBWTDIO  
TEST/SBWTCK  
P6.1  
BSL FUNCTION  
External reset  
Enable BSL  
Data transmit  
P6.2  
Data receive  
DVCC, AVCC  
DVIO  
Device power supply  
I/O power supply  
Ground supply  
DVSS  
When using the DVIO supply domain for the BSL, entry to the BSL requires a specific sequence on the RST/NMI  
and BSLEN pins. 9-5 lists the required pins and their functions. For further details on interfacing to  
development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete  
description of the features of the BSL and its implementation, see the MSP430 Flash Device Bootloader (BSL)  
User's Guide. BSL firmware images are available for download in the Custom BSL430 package. The BSL on the  
DVIO supply domain uses the USCI_A0 module configured as a UART.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
Note  
To invoke the BSL from the DVIO domain, the RST/NMI pin and the BSLEN pin must be used for the  
entry sequence (see 8.49). It is critical not to confuse the RST/NMI pin with the RSTDVCC/  
SBWTDIO pin. In many other MSP430 devices, SBWTDIO is shared with the RST/NMI pin, and  
RSTDVCC does not exist. Additional information can be found in Designing With MSP430F522x and  
MSP430F521x Devices.  
9-5. DVIO BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RST/NMI  
BSLEN  
BSL FUNCTION  
External reset  
Enable BSL  
P3.3  
Data transmit  
P3.4  
Data receive  
DVCC, AVCC  
DVIO  
Device power supply  
I/O power supply  
Ground supply  
DVSS  
9.6 JTAG Operation  
9.6.1 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RSTDVCC/SBWTDIO is required to interface with MSP430  
development tools and device programmers. 9-6 lists the JTAG pin requirements. For further details on  
interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a  
complete description of the features of the JTAG interface and its implementation, see MSP430 Programming  
With the JTAG Interface. Additional information can be found in Designing With MSP430F522x and  
MSP430F521x Devices.  
Note  
All JTAG I/O pins are supplied by DVCC.  
Note  
Traditionally, on other MSP430 devices, the RST/NMI pin is used for SBWTDIO, so care must be  
taken not to mistakenly use the incorrect pin. On the F525x series of devices, it is required to use  
RSTDVCC for SBWTDIO as shown in 9-6. Additional information can be found in Designing With  
MSP430F522x and MSP430F521x Devices.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-6. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
DIRECTION  
FUNCTION  
PJ.3/TCK  
IN  
IN  
JTAG clock input  
PJ.2/TMS  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RSTDVCC/SBWTDIO  
DVCC, AVCC  
DVIO  
IN  
Device power supply  
I/O power supply  
Ground supply  
DVSS  
9.6.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-  
Bi-Wire can be used to interface with MSP430 development tools and device programmers. 9-7 lists the Spy-  
Bi-Wire interface pin requirements. For further details on interfacing to development tools and device  
programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the  
JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface. Additional  
information can be found in Designing With MSP430F522x and MSP430F521x Devices.  
Note  
All SBW I/O pins are supplied by DVCC.  
Note  
Traditionally, on other MSP430 devices, the RST/NMI pin is used for SBWTDIO, so care must be  
taken not to mistakenly use the incorrect pin. On the F525x series of devices, it is required to use  
RSTDVCC for SBWTDIO as shown in 9-7. Additional information can be found in Designing With  
MSP430F522x and MSP430F521x Devices.  
9-7. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RSTDVCC/SBWTDIO  
DVCC, AVCC  
DVIO  
DIRECTION  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Device power supply  
I/O power supply  
IN  
IN, OUT  
DVSS  
Ground supply  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.7 Flash Memory  
The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the  
flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually. Segments A to D are also called information memory.  
Segment A can be locked separately.  
9.8 RAM  
The RAM is made up of n sectors. Each sector can be completely powered down to reduce leakage; however, all  
data are lost during power down.  
Features of the RAM include:  
RAM memory has n sectors. The sizes of the sectors can be found in 9.4, Memory Organization.  
Each sector 0 to n can be complete disabled; however, all data in a sector are lost when it is disabled.  
Each sector 0 to n automatically enters low-power retention mode when possible.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.9 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed  
using all instructions. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's  
Guide.  
9.9.1 Digital I/O  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Pullup or pulldown on all ports is programmable.  
Drive strength on all ports is programmable.  
Edge-selectable interrupt and LPM4.5 wake-up input capability is available for all bits of ports P1, P2.  
All bits of port P6 support edge-selectable interrupt input.  
All instructions support read and write access to port-control registers.  
Ports can be accessed byte-wise or word-wise in pairs.  
9.9.2 Port Mapping Controller  
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P4 (see 表  
9-8).  
9-8. Port Mapping Mnemonics and Functions  
VALUE  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
DVSS  
0
PM_NONE  
None  
PM_CBOUT0  
COMP_B output  
1
2
3
PM_TB0CLK  
TB0 clock input  
PM_ADC10CLK  
PM_DMAE0  
ADC10CLK  
DMAE0 input  
PM_SVMOUT  
PM_TB0OUTH  
PM_TB0CCR0A  
PM_TB0CCR1A  
PM_TB0CCR2A  
PM_TB0CCR3A  
PM_TB0CCR4A  
PM_TB0CCR5A  
PM_TB0CCR6A  
PM_UCA1RXD  
PM_UCA1SOMI  
PM_UCA1TXD  
PM_UCA1SIMO  
PM_UCA1CLK  
PM_UCB1STE  
PM_UCB1SOMI  
PM_UCB1SCL  
PM_UCB1SIMO  
PM_UCB1SDA  
PM_UCB1CLK  
PM_UCA1STE  
PM_CBOUT1  
SVM output  
TB0 high-impedance input TB0OUTH  
TB0 CCR0 capture input CCI0A  
TB0 CCR1 capture input CCI1A  
TB0 CCR2 capture input CCI2A  
TB0 CCR3 capture input CCI3A  
TB0 CCR4 capture input CCI4A  
TB0 CCR5 capture input CCI5A  
TB0 CCR6 capture input CCI6A  
4
5
TB0 CCR0 compare output Out0  
TB0 CCR1 compare output Out1  
TB0 CCR2 compare output Out2  
TB0 CCR3 compare output Out3  
TB0 CCR4 compare output Out4  
TB0 CCR5 compare output Out5  
TB0 CCR6 compare output Out6  
6
7
8
9
10  
USCI_A1 UART RXD (direction controlled by USCI input)  
USCI_A1 SPI slave out master in (direction controlled by USCI)  
USCI_A1 UART TXD (direction controlled by USCI output)  
USCI_A1 SPI slave in master out (direction controlled by USCI)  
USCI_A1 clock input/output (direction controlled by USCI)  
USCI_B1 SPI slave transmit enable (direction controlled by USCI)  
USCI_B1 SPI slave out master in (direction controlled by USCI)  
USCI_B1 I2C clock (open drain and direction controlled by USCI)  
USCI_B1 SPI slave in master out (direction controlled by USCI)  
USCI_B1 I2C data (open drain and direction controlled by USCI)  
USCI_B1 clock input/output (direction controlled by USCI)  
USCI_A1 SPI slave transmit enable (direction controlled by USCI)  
11  
12  
13  
14  
15  
16  
17  
18  
None  
None  
COMP_B output  
MCLK  
PM_MCLK  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-8. Port Mapping Mnemonics and Functions (continued)  
VALUE  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
19  
PM_RTCCLK  
None  
RTCCLK output  
PM_UCA0RXD  
PM_UCA0SOMI  
PM_UCA0TXD  
PM_UCA0SIMO  
PM_UCA0CLK  
PM_UCB0STE  
PM_UCB0SOMI  
PM_UCB0SCL  
PM_UCB0SIMO  
PM_UCB0SDA  
PM_UCB0CLK  
PM_UCA0STE  
PM_UCA3RXD  
PM_UCA3SOMI  
PM_UCA3TXD  
PM_UCA3SIMO  
PM_UCB3SIMO  
PM_UCB3SDA  
PM_UCB3SOMI  
PM_UCB3SCL  
Reserved  
USCI_A0 UART RXD (direction controlled by USCI input)  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
USCI_A0 UART TXD (direction controlled by USCI output)  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
USCI_A0 clock input/output (direction controlled by USCI)  
USCI_B0 SPI slave transmit enable (direction controlled by USCI)  
USCI_B0 SPI slave out master in (direction controlled by USCI)  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
USCI_B0 SPI slave in master out (direction controlled by USCI)  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
USCI_B0 clock input/output (direction controlled by USCI)  
USCI_A0 SPI slave transmit enable (direction controlled by USCI)  
USCI_A3 UART RXD (direction controlled by USCI input)  
USCI_A3 SPI slave out master in (direction controlled by USCI)  
USCI_A3 UART TXD (direction controlled by USCI output)  
USCI_A3 SPI slave in master out (direction controlled by USCI)  
USCI_B3 SPI slave in master out (direction controlled by USCI)  
USCI_B3 I2C data (open drain and direction controlled by USCI)  
USCI_B3 SPI slave out master in (direction controlled by USCI)  
USCI_B3 I2C clock (open drain and direction controlled by USCI)  
Reserved  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Disables the output driver and the input Schmitt trigger to prevent parasitic  
cross currents when applying analog signals  
31 (0FFh)(1)  
PM_ANALOG  
(1) The value of the PM_ANALOG mnemonic is 0FFh. The port mapping registers are only 5 bits wide, and the upper bits are ignored,  
which results in a read value of 31.  
9-9 lists the default settings for all pins that support port mapping.  
9-9. Default Mapping  
PIN  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
USCI_B1 SPI slave transmit enable (direction controlled by USCI)  
USCI_A1 clock input/output (direction controlled by USCI)  
P4.0/P4MAP0  
PM_UCB1STE/PM_UCA1CLK  
USCI_B1 SPI slave in master out (direction controlled by USCI)  
USCI_B1 I2C data (open drain and direction controlled by USCI)  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
P4.6/P4MAP6  
P4.7/P4MAP7  
PM_UCB1SIMO/PM_UCB1SDA  
PM_UCB1SOMI/PM_UCB1SCL  
PM_UCB1CLK/PM_UCA1STE  
PM_UCA1TXD/PM_UCA1SIMO  
PM_UCA1RXD/PM_UCA1SOMI  
PM_UCA3TXD/PM_UCA3SIMO  
PM_UCA3RXD/PM_UCA3SOMI  
USCI_B1 SPI slave out master in (direction controlled by USCI)  
USCI_B1 I2C clock (open drain and direction controlled by USCI)  
USCI_A1 SPI slave transmit enable (direction controlled by USCI)  
USCI_B1 clock input/output (direction controlled by USCI)  
USCI_A1 UART TXD (Direction controlled by USCI output)  
USCI_A1 SPI slave in master out (direction controlled by USCI)  
USCI_A1 UART RXD (Direction controlled by USCI input)  
USCI_A1 SPI slave out master in (direction controlled by USCI)  
USCI_A3 UART TXD (Direction controlled by USCI output)  
USCI_A3 SPI slave in master out (direction controlled by USCI)  
USCI_A3 UART RXD (Direction controlled by USCI input)  
USCI_A3 SPI slave out master in (direction controlled by USCI)  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.9.3 Oscillator and System Clock  
The clock system is supported by the Unified Clock System (UCS) module, which includes support for a 32-kHz  
watch crystal oscillator (XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power low-  
frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally  
controlled oscillator (DCO), and a high-frequency crystal oscillator (XT2). The UCS module is designed to meet  
the requirements of both low system cost and low power consumption. The UCS module features digital  
frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency  
to a programmable multiple of the selected FLL reference frequency. The internal DCO provides a fast turnon  
clock source and stabilizes in 3.5 µs (typical). The UCS module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the  
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally  
controlled oscillator DCO.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made  
available to ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
same sources made available to ACLK.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.  
9.9.4 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains  
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor  
(SVS) and supply voltage monitoring (SVM) circuitry, and brownout protection. The brownout circuit is  
implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS  
and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply  
voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not  
automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.  
9.9.5 Hardware Multiplier  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations  
with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed  
and unsigned multiply-and-accumulate operations.  
9.9.6 Real-Time Clock (RTC_A)  
The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated real-  
time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit timers that  
can be cascaded to form a 16-bit timer or counter. Both timers can be read and written by software. Calendar  
mode integrates an internal calendar that compensates for months with less than 31 days and includes leap year  
correction. The RTC_A also supports flexible alarm functions and offset-calibration hardware.  
9.9.7 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.9.8 System Module (SYS)  
The SYS module handles many of the system functions within the device. These functions include power-on  
reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector  
generators, bootloader (BSL) entry mechanisms, and configuration management (device descriptors). The SYS  
module also includes a data exchange mechanism using JTAG that is called a JTAG mailbox and that can be  
used in the application. 9-10 lists the SYS module interrupt vector registers.  
9-10. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
Brownout (BOR)  
RST/NMI (BOR)  
PMMSWBOR (BOR)  
Wakeup from LPMx.5  
Security violation (BOR)  
SVSL (POR)  
00h  
02h  
Highest  
04h  
06h  
08h  
0Ah  
0Ch  
SVSH (POR)  
0Eh  
SVML_OVP (POR)  
SVMH_OVP (POR)  
PMMSWPOR (POR)  
WDT time-out (PUC)  
WDT password violation (PUC)  
KEYV flash password violation (PUC)  
Reserved  
10h  
SYSRSTIV, System Reset  
019Eh  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
Peripheral area fetch (PUC)  
PMM password violation (PUC)  
Reserved  
1Eh  
20h  
22h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVMLIFG  
02h  
SVMHIFG  
04h  
SVSMLDLYIFG  
SVSMHDLYIFG  
VMAIFG  
06h  
08h  
SYSSNIV, System NMI  
019Ch  
0Ah  
JMBINIFG  
0Ch  
JMBOUTIFG  
0Eh  
SVMLVLRIFG  
10h  
SVMHVLRIFG  
12h  
Reserved  
14h to 1Eh  
00h  
Lowest  
Highest  
No interrupt pending  
NMIIFG  
02h  
OFIFG  
04h  
SYSUNIV, User NMI  
019Ah  
ACCVIFG  
06h  
Reserved  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.9.9 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
For example, the DMA controller can be used to move data from the ADC10_A conversion memory to RAM.  
Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces  
system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move  
data to or from a peripheral (see 9-11).  
9-11. DMA Trigger Assignments  
CHANNEL  
TRIGGER(1)  
0
1
2
0
DMAREQ  
DMAREQ  
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
UCA2RXIFG  
UCA2TXIFG  
UCB2RXIFG  
UCB2TXIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
UCA2RXIFG  
UCA2TXIFG  
UCB2RXIFG  
UCB2TXIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
UCA2RXIFG  
UCA2TXIFG  
UCB2RXIFG  
UCB2TXIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC10IFG0(2)  
UCA3RXIFG  
UCA3TXIFG  
UCB3RXIFG  
UCB3TXIFG  
MPY ready  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC10IFG0(2)  
UCA3RXIFG  
UCA3TXIFG  
UCB3RXIFG  
UCB3TXIFG  
MPY ready  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC10IFG0(2)  
UCA3RXIFG  
UCA3TXIFG  
UCB3RXIFG  
UCB3TXIFG  
MPY ready  
DMA2IFG  
DMA0IFG  
DMA1IFG  
DMAE0  
DMAE0  
DMAE0  
(1) If a reserved trigger source is selected, no trigger is generated.  
(2) Only on devices with ADC; reserved on devices without ADC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.9.10 Universal Serial Communication Interface (USCI)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baud-rate detection, and IrDA. Each USCI module contains two portions,  
A and B.  
The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA.  
The USCI_Bn module provides support for SPI (3- or 4-pin) or I2C.  
The MSP430F525x include four complete USCI modules (n = 0, 1, 2, 3).  
9.9.11 TA0  
TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 supports multiple captures  
or compares, PWM outputs, and interval timing (see 9-12). TA0 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
9-12. TA0 Signal Connections  
INPUT PIN  
NUMBER  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
RGC, ZXH, ZQE  
DEVICE INPUT MODULE INPUT  
MODULE  
BLOCK  
SIGNAL  
SIGNAL  
RGC, ZXH, ZQE  
18, H2 - P1.0  
TA0CLK  
ACLK (internal)  
SMCLK (internal)  
TA0CLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
18, H2 - P1.0  
19, H3 - P1.1  
TA0.0  
19, H3 - P1.1  
20, J3 - P1.2  
DVSS  
TA0  
TA0.0  
DVSS  
DVCC  
VCC  
20, J3 - P1.2  
TA0.1  
CCI1A  
CBOUT  
(internal)  
ADC10 (internal)  
ADC10SHSx = {1}  
CCI1B  
CCR1  
TA1  
TA0.1  
DVSS  
DVCC  
GND  
VCC  
21, G4 - P1.3  
22, H4 - P1.4  
23, J4 - P1.5  
TA0.2  
CCI2A  
CCI2B  
GND  
VCC  
21, G4 - P1.3  
22, H4 - P1.4  
23, J4 - P1.5  
ACLK (internal)  
DVSS  
CCR2  
CCR3  
CCR4  
TA2  
TA3  
TA4  
TA0.2  
TA0.3  
TA0.4  
DVCC  
TA0.3  
CCI3A  
CCI3B  
GND  
VCC  
DVSS  
DVSS  
DVCC  
TA0.4  
CCI4A  
CCI4B  
GND  
VCC  
DVSS  
DVSS  
DVCC  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.9.12 TA1  
TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 supports multiple  
captures or compares, PWM outputs, and interval timing (see 9-13). TA1 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/  
compare registers.  
9-13. TA1 Signal Connections  
INPUT PIN  
NUMBER  
OUTPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
MODULE BLOCK  
RGC, ZQE  
RGC, ZQE  
24, G5 - P1.6  
TA1CLK  
ACLK (internal)  
SMCLK (internal)  
TA1CLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
TA0  
TA1  
TA2  
NA  
24, G5 - P1.6  
25, H5 - P1.7  
TA1.0  
25, H5 - P1.7  
26, J5 - P2.0  
27, G6 - P2.1  
DVSS  
CCR0  
CCR1  
CCR2  
TA1.0  
TA1.1  
TA1.2  
DVSS  
DVCC  
VCC  
26, J5 - P2.0  
27, G6 - P2.1  
TA1.1  
CCI1A  
CCI1B  
GND  
CBOUT (internal)  
DVSS  
DVCC  
VCC  
TA1.2  
CCI2A  
CCI2B  
GND  
ACLK (internal)  
DVSS  
DVCC  
VCC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.9.13 TA2  
TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 supports multiple  
captures or compares, PWM outputs, and interval timing (see 9-14). TA2 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/  
compare registers.  
9-14. TA2 Signal Connections  
INPUT PIN  
NUMBER  
OUTPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
MODULE BLOCK  
RGC, ZXH, ZQE  
RGC, ZXH, ZQE  
1, A1 - P6.0  
TA2CLK  
ACLK (internal)  
SMCLK (internal)  
TA2CLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
TA0  
TA1  
TA2  
NA  
1, A1 - P6.0  
2, B2 - P6.1  
TA2.0  
2, B2 - P6.1  
3, B1 - P6.2  
4, C2 - P6.3  
DVSS  
CCR0  
CCR1  
CCR2  
TA2.0  
TA2.1  
TA2.2  
DVSS  
DVCC  
VCC  
3, B1 - P6.2  
4, C2 - P6.3  
TA2.1  
CCI1A  
CCI1B  
GND  
CBOUT (internal)  
DVSS  
DVCC  
VCC  
TA2.2  
CCI2A  
CCI2B  
GND  
ACLK (internal)  
DVSS  
DVCC  
VCC  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.9.14 TB0  
TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 supports multiple  
captures or compares, PWM outputs, and interval timing (see 9-15). TB0 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/  
compare registers.  
9-15. TB0 Signal Connections  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
RGC, ZXH, ZQE  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE OUTPUT DEVICE OUTPUT  
MODULE BLOCK  
SIGNAL  
SIGNAL  
RGC, ZXH, ZQE  
(1)  
TB0CLK  
ACLK (internal)  
SMCLK (internal)  
TB0CLK  
TBCLK  
ACLK  
Timer  
NA  
NA  
SMCLK  
TBCLK  
CCI0A  
(1)  
(1)  
(1)  
TB0.0  
ADC10 (internal)  
ADC10SHSx = {2}  
(1)  
TB0.0  
CCI0B  
CCR0  
CCR1  
TB0  
TB1  
TB0.0  
TB0.1  
DVSS  
DVCC  
TB0.1  
GND  
VCC  
(1)  
(1)  
CCI1A  
ADC10 (internal)  
ADC10SHSx = {3}  
CBOUT (internal)  
CCI1B  
DVSS  
DVCC  
TB0.2  
GND  
VCC  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
CCI2A  
CCI2B  
GND  
VCC  
TB0.2  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
TB2  
TB3  
TB4  
TB5  
TB6  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
DVSS  
DVCC  
TB0.3  
(1)  
(1)  
CCI3A  
CCI3B  
GND  
VCC  
TB0.3  
DVSS  
DVCC  
TB0.4  
(1)  
(1)  
CCI4A  
CCI4B  
GND  
VCC  
TB0.4  
DVSS  
DVCC  
TB0.5  
(1)  
(1)  
CCI5A  
CCI5B  
GND  
VCC  
TB0.5  
DVSS  
DVCC  
TB0.6  
(1)  
CCI6A  
CCI6B  
GND  
VCC  
ACLK (internal)  
DVSS  
DVCC  
(1) Timer functions can be selected by the port mapping controller.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.9.15 Comparator_B  
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,  
battery voltage supervision, and monitoring of external analog signals.  
9.9.16 ADC10_A  
The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator, and a conversion result buffer. A window comparator with lower  
and upper limits allows CPU-independent result monitoring with three window comparator interrupt flags.  
9.9.17 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
9.9.18 Reference (REF) Module Voltage Reference  
The REF module generates all of the critical reference voltages that can be used by the various analog  
peripherals in the device.  
9.9.19 Embedded Emulation Module (EEM) (S Version)  
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.9.20 Peripheral File Map  
9-16 lists the base address for the registers of each peripheral module.  
9-16. Peripherals  
OFFSET ADDRESS  
RANGE  
MODULE NAME  
BASE ADDRESS  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
01C0h  
01E0h  
0200h  
0220h  
0240h  
0260h  
0320h  
0340h  
0380h  
03C0h  
0400h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
05C0h  
05E0h  
0600h  
0620h  
0640h  
0660h  
0680h  
06A0h  
0740h  
08C0h  
000h to 01Fh  
000h to 010h  
000h to 00Fh  
000h to 007h  
000h to 001h  
000h to 001h  
000h to 01Fh  
000h to 01Fh  
000h to 001h  
000h to 002h  
000h to 007h  
000h to 01Fh  
000h to 00Bh  
000h to 01Fh  
000h to 00Bh  
000h to 01Fh  
000h to 02Eh  
000h to 02Eh  
000h to 02Eh  
000h to 02Eh  
000h to 01Bh  
000h to 02Fh  
000h to 00Fh  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 00Fh  
Special Functions (see 9-17)  
PMM (see 9-18)  
Flash Control (see 9-19)  
CRC16 (see 9-20)  
RAM Control (see 9-21)  
Watchdog (see 9-22)  
UCS (see 9-23)  
SYS (see 9-24)  
Shared Reference (see 9-25)  
Port Mapping Control (see 9-26)  
Port Mapping Port P4 (see 9-26)  
Port P1, P2 (see 9-27)  
Port P3, P4 (see 9-28)  
Port P5, P6 (see 9-29)  
Port P7 (see 9-30)  
Port PJ (see 9-31)  
TA0 (see 9-32)  
TA1 (see 9-33)  
TB0 (see 9-34)  
TA2 (see 9-35)  
Real-Time Clock (RTC_A) (see 9-36)  
32-Bit Hardware Multiplier (see 9-37)  
DMA General Control (see 9-38)  
DMA Channel 0 (see 9-38)  
DMA Channel 1 (see 9-38)  
DMA Channel 2 (see 9-38)  
USCI_A0 (see 9-39)  
USCI_B0 (see 9-40)  
USCI_A1 (see 9-41)  
USCI_B1 (see 9-42)  
USCI_A2 (see 9-39)  
USCI_B2 (see 9-40)  
USCI_A3 (see 9-41)  
USCI_B3 (see 9-42)  
ADC10_A (see 9-47)  
Comparator_B (see 9-48)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-17. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
SFRIE1  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
9-18. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
PMM control 0  
PMMCTL0  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
10h  
PMM control 1  
PMMCTL1  
SVSMHCTL  
SVSMLCTL  
PMMIFG  
SVS high-side control  
SVS low-side control  
PMM interrupt flags  
PMM interrupt enable  
PMM power mode 5 control  
PMMIE  
PM5CTL0  
9-19. Flash Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
Flash control 1  
Flash control 3  
Flash control 4  
FCTL1  
FCTL3  
FCTL4  
00h  
04h  
06h  
9-20. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC data input  
CRC16DI  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
9-21. RAM Control Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
RAM control 0  
RCCTL0  
00h  
00h  
9-22. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
Watchdog timer control  
WDTCTL  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-23. UCS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
UCS control 0  
UCS control 1  
UCS control 2  
UCS control 3  
UCS control 4  
UCS control 5  
UCS control 6  
UCS control 7  
UCS control 8  
UCS control 9  
UCSCTL0  
UCSCTL1  
UCSCTL2  
UCSCTL3  
UCSCTL4  
UCSCTL5  
UCSCTL6  
UCSCTL7  
UCSCTL8  
UCSCTL9  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
9-24. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
System control  
SYSCTL  
00h  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
1Ah  
1Ch  
1Eh  
Bootloader configuration area  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSUNIV  
SYSSNIV  
SYSRSTIV  
9-25. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
Shared reference control  
REFCTL  
00h  
9-26. Port Mapping Registers  
(Base Address of Port Mapping Control: 01C0h, Port P4: 01E0h)  
REGISTER DESCRIPTION  
REGISTER  
Port mapping key/ID  
Port mapping control  
Port P4.0 mapping  
Port P4.1 mapping  
Port P4.2 mapping  
Port P4.3 mapping  
Port P4.4 mapping  
Port P4.5 mapping  
Port P4.6 mapping  
Port P4.7 mapping  
PMAPKEYID  
00h  
02h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
PMAPCTL  
P4MAP0  
P4MAP1  
P4MAP2  
P4MAP3  
P4MAP4  
P4MAP5  
P4MAP6  
P4MAP7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-27. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
P1DS  
P1SEL  
P1IV  
Port P1 direction  
Port P1 resistor enable  
Port P1 drive strength  
Port P1 selection  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2DS  
P2SEL  
P2IV  
Port P2 direction  
Port P2 resistor enable  
Port P2 drive strength  
Port P2 selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
9-28. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
P3DS  
Port P3 direction  
Port P3 resistor enable  
Port P3 drive strength  
Port P3 selection  
Port P4 input  
P3SEL  
P4IN  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4DS  
Port P4 direction  
Port P4 resistor enable  
Port P4 drive strength  
Port P4 selection  
P4SEL  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-29. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P5 output  
P5OUT  
P5DIR  
P5REN  
P5DS  
P5SEL  
P6IN  
Port P5 direction  
Port P5 resistor enable  
Port P5 drive strength  
Port P5 selection  
Port P6 input  
Port P6 output  
P6OUT  
P6DIR  
P6REN  
P6DS  
P6SEL  
P6IV  
Port P6 direction  
Port P6 resistor enable  
Port P6 drive strength  
Port P6 selection  
Port P6 interrupt vector word  
Port P6 interrupt edge select  
Port P6 interrupt enable  
Port P6 interrupt flag  
P6IES  
P6IE  
P6IFG  
9-30. Port P7 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P7 input  
P7IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
Port P7 output  
P7OUT  
P7DIR  
P7REN  
P7DS  
Port P7 direction  
Port P7 resistor enable  
Port P7 drive strength  
Port P7 selection  
P7SEL  
9-31. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
08h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
PJDS  
Port PJ direction  
Port PJ resistor enable  
Port PJ drive strength  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-32. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA0 control  
TA0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
TA0 interrupt vector  
TA0IV  
9-33. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA1 control  
TA1CTL  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1 interrupt vector  
TA1IV  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-34. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TB0 control  
TB0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0 interrupt vector  
TB0IV  
9-35. TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA2 control  
TA2CTL  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA2 counter  
TA2CCTL0  
TA2CCTL1  
TA2CCTL2  
TA2R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2CCR2  
TA2EX0  
TA2 interrupt vector  
TA2IV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-36. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
RTC control 0  
RTCCTL0  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
RTC control 1  
RTCCTL1  
RTC control 2  
RTCCTL2  
RTC control 3  
RTCCTL3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTC prescaler 1  
RTCPS1  
RTC interrupt vector word  
RTC seconds/counter 1  
RTC minutes/counter 2  
RTC hours/counter 3  
RTC day of week/counter 4  
RTC days  
RTCIV  
RTCSEC/RTCNT1  
RTCMIN/RTCNT2  
RTCHOUR/RTCNT3  
RTCDOW/RTCNT4  
RTCDAY  
RTC month  
RTCMON  
RTC year low  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTC alarm day of week  
RTC alarm days  
RTCAHOUR  
RTCADOW  
RTCADAY  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-37. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 multiply  
MPYS  
MAC  
16-bit operand 1 signed multiply  
16-bit operand 1 multiply accumulate  
16-bit operand 1 signed multiply accumulate  
16-bit operand 2  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 multiply low word  
32-bit operand 1 multiply high word  
32-bit operand 1 signed multiply low word  
32-bit operand 1 signed multiply high word  
32-bit operand 1 multiply accumulate low word  
32-bit operand 1 multiply accumulate high word  
32-bit operand 1 signed multiply accumulate low word  
32-bit operand 1 signed multiply accumulate high word  
32-bit operand 2 low word  
OP2H  
32-bit operand 2 high word  
RES0  
32 × 32 result 0 least significant word  
32 × 32 result 1  
RES1  
32 × 32 result 2  
RES2  
RES3  
32 × 32 result 3 most significant word  
MPY32 control 0  
MPY32CTL0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-38. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
DMA channel 0 control  
DMA0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Eh  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA module control 0  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA module control 1  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
9-39. USCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI control 1  
UCA0CTL1  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 0  
UCA0CTL0  
UCA0BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA0BR1  
USCI modulation control  
USCI status  
UCA0MCTL  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA0IFG  
UCA0IV  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-40. USCI_B0 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
UCB0CTL1  
UCB0CTL0  
UCB0BR0  
UCB0BR1  
UCB0STAT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA  
UCB0I2CSA  
UCB0IE  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB0IFG  
USCI interrupt vector word  
UCB0IV  
9-41. USCI_A1 Registers (Base Address: 0600h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI control 1  
UCA1CTL1  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 0  
UCA1CTL0  
UCA1BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA1BR1  
USCI modulation control  
USCI status  
UCA1MCTL  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA1IFG  
UCA1IV  
9-42. USCI_B1 Registers (Base Address: 0620h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
UCB1CTL1  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB1CTL0  
UCB1BR0  
UCB1BR1  
UCB1STAT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA  
UCB1I2CSA  
UCB1IE  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB1IFG  
USCI interrupt vector word  
UCB1IV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-43. USCI_A2 Registers (Base Address: 0640h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI control 1  
UCA2CTL1  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 0  
UCA2CTL0  
UCA2BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA2BR1  
USCI modulation control  
USCI status  
UCA2MCTL  
UCA2STAT  
UCA2RXBUF  
UCA2TXBUF  
UCA2ABCTL  
UCA2IRTCTL  
UCA2IRRCTL  
UCA2IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA2IFG  
UCA2IV  
9-44. USCI_B2 Registers (Base Address: 0660h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
UCB2CTL1  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB2CTL0  
UCB2BR0  
UCB2BR1  
UCB2STAT  
UCB2RXBUF  
UCB2TXBUF  
UCB2I2COA  
UCB2I2CSA  
UCB2IE  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB2IFG  
USCI interrupt vector word  
UCB2IV  
9-45. USCI_A3 Registers (Base Address: 0680h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI control 1  
UCA3CTL1  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
USCI control 0  
UCA3CTL0  
UCA3BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA3BR1  
USCI modulation control  
USCI status  
UCA3MCTL  
UCA3STAT  
UCA3RXBUF  
UCA3TXBUF  
UCA3ABCTL  
UCA3IRTCTL  
UCA3IRRCTL  
UCA3IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
UCA3IFG  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-45. USCI_A3 Registers (Base Address: 0680h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
USCI interrupt vector word  
UCA3IV  
1Eh  
9-46. USCI_B3 Registers (Base Address: 06A0h)  
REGISTER DESCRIPTION  
REGISTER  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
UCB3CTL1  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB3CTL0  
UCB3BR0  
UCB3BR1  
UCB3STAT  
UCB3RXBUF  
UCB3TXBUF  
UCB3I2COA  
UCB3I2CSA  
UCB3IE  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB3IFG  
USCI interrupt vector word  
UCB3IV  
9-47. ADC10_A Registers (Base Address: 0740h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
ADC10_A control 0  
ADC10CTL0  
00h  
02h  
04h  
06h  
08h  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC10_A control 1  
ADC10CTL1  
ADC10CTL2  
ADC10LO  
ADC10_A control 2  
ADC10_A window comparator low threshold  
ADC10_A window comparator high threshold  
ADC10_A memory control 0  
ADC10_A conversion memory  
ADC10_A interrupt enable  
ADC10_A interrupt flags  
ADC10HI  
ADC10MCTL0  
ADC10MEM0  
ADC10IE  
ADC10IGH  
ADC10IV  
ADC10_A interrupt vector word  
9-48. Comparator_B Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Comp_B control 0  
Comp_B control 1  
Comp_B control 2  
Comp_B control 3  
Comp_B interrupt  
CBCTL0  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
CBCTL1  
CBCTL2  
CBCTL3  
CBINT  
Comp_B interrupt vector word  
CBIV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.10 Input/Output Diagrams  
9.10.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger  
9-2 shows the port diagram. 9-49 summarizes the selection of the pin function.  
Pad Logic  
P1REN.x  
DVSS  
DVIO  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P1OUT.x  
0
1
From module  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3/TA0.2  
P1.4/TA0.3  
P1.5/TA0.4  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
P1.6/TA1CLK/CBOUT  
P1.7/TA1.0  
EN  
D
To module  
P1IRQ.x  
P1IE.x  
EN  
Q
P1IFG.x  
Set  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
9-2. Port P1 (P1.0 to P1.7) Diagram  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-49. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0 (I/O)  
TA0CLK  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
0
0
ACLK  
1
P1.1 (I/O)  
TA0.CCI0A  
TA0.0  
I: 0; O: 1  
1
2
3
4
5
6
7
0
1
P1.2 (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
P1.2/TA0.1  
0
1
P1.3 (I/O)  
TA0.CCI2A  
TA0.2  
I: 0; O: 1  
P1.3/TA0.2  
0
1
P1.4 (I/O)  
TA0.CCI3A  
TA0.3  
I: 0; O: 1  
P1.4/TA0.3  
0
1
P1.5 (I/O)  
TA0.CCI4A  
TA0.4  
I: 0; O: 1  
P1.5/TA0.4  
0
1
P1.6 (I/O)  
TA1CLK  
I: 0; O: 1  
P1.6/TA1CLK/CBOUT  
P1.7/TA1.0  
0
CBOUT comparator B  
P1.7 (I/O)  
TA1.CCI0A  
TA1.0  
1
I: 0; O: 1  
0
1
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.10.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger  
9-3 shows the port diagram. 9-50 summarizes the selection of the pin function.  
Pad Logic  
P2REN.x  
DVSS  
DVIO  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P2OUT.x  
0
1
From module  
P2.0/TA1.1  
P2.1/TA1.2  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2IN.x  
P2.2/UCB3SIMO/UCB3SDA  
P2.3/UCB3SOMI/UCB3SCL  
P2.4/UCB3CLK/UCA3STE  
P2.5/UCB3STE/UCA3CLK  
P2.6/RTCCLK/DMAE0  
EN  
D
P2.7/UB0STE/UCA0CLK  
To module  
To module  
P2IE.x  
EN  
Q
P2IFG.x  
Set  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
9-3. Port P2 (P2.0 to P2.7) Diagram  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-50. Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
0
1
0
1
0
1
0
1
1
0
1
P2.0/TA1.1  
P2.1/TA1.2  
0
TA1.CCI1A  
TA1.1  
0
1
P2.1 (I/O)  
I: 0; O: 1  
1
TA1.CCI2A  
TA1.2  
0
1
P2.2 (I/O)  
I: 0; O: 1  
P2.2/UCB3SIMO/UCB3SDA  
P2.3/UCB3SOMI/UCB3SCL  
P2.4/UCB3CLK/UCA3STE  
P2.5/UCB3STE/UCA3CLK  
2
3
4
5
UCB3SIMO/UCB3SDA  
P2.3 (I/O)  
X
I: 0; O: 1  
UCB3SOMI/UCB3SCL  
X
P2.4 (I/O)  
I: 0; O: 1  
UCB3CLK/UCA3STE(2) (3)  
P2.5 (I/O)  
X
I: 0; O: 1  
UCB3STE/UCA3CLK(2) (4)  
X
P2.6 (I/O)  
I: 0; O: 1  
P2.6/RTCCLK/DMAE0  
6
7
DMAE0  
0
RTCCLK  
1
I: 0; O: 1  
X
P2.7 (I/O)  
P2.7/UCB0STE/UCA0CLK  
(1) X = Don't care  
UCB0STE/UCA0CLK(2) (5)  
(2) The pin direction is controlled by the USCI module.  
(3) UCB3CLK function takes precedence over UCA3STE function. If the pin is required as UCB3CLK input or output, USCI A3 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
(4) UCA3CLK function takes precedence over UCB3STE function. If the pin is required as UCA3CLK input or output, USCI_B3 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
(5) UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI_B0 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.10.3 Port P3 (P3.0 to P3.4) Input/Output With Schmitt Trigger  
9-4 shows the port diagram. 9-51 summarizes the selection of the pin function.  
Pad Logic  
P3REN.x  
DVSS  
DVIO  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P3OUT.x  
0
1
From module  
P3.0/UCB0SIMO/UCB0SDA  
P3.1/UCB0SOMI/UCB0SCL  
P3.2/UCB0CLK/UCA0STE  
P3.3/UCA0TXD/UCA0SIMO  
P3.4/UCA0RXD/UCA0SOMI  
P3DS.x  
0: Low drive  
1: High drive  
P3SEL.x  
P3IN.x  
EN  
D
To module  
9-4. Port P3 (P3.0 to P3.4) Diagram  
9-51. Port P3 (P3.0 to P3.4) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P3.x)  
P3.0/UCB0SIMO/UCB0SDA  
P3.1/UCB0SOMI/UCB0SCL  
P3.2/UCB0CLK/UCA0STE  
P3.3/UCA0TXD/UCA0SIMO  
x
0
1
2
3
4
FUNCTION  
P3DIR.x  
P3SEL.x  
P3.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
UCB0SIMO/UCB0SDA(2) (3)  
X
P3.1 (I/O)  
I: 0; O: 1  
UCB0SOMI/UCB0SCL(2) (3)  
P3.2 (I/O)  
X
I: 0; O: 1  
UCB0CLK/UCA0STE(2) (4)  
X
I: 0; O: 1  
X
P3.3 (I/O)  
UCA0TXD/UCA0SIMO(2)  
P3.4 (I/O)  
I: 0; O: 1  
X
P3.4/UCA0RXD/UCA0SOMI  
(1) X = Don't care  
UCA0RXD/UCA0SOMI(2)  
(2) The pin direction is controlled by the USCI module.  
(3) If the I2C functionality is selected, the output drives only the logical 0 to VSS level.  
(4) UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.10.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger  
9-5 shows the port diagram. 9-52 summarizes the selection of the pin function.  
Pad Logic  
P4REN.x  
DVSS  
DVIO  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
From Port Mapping Control  
P4OUT.x  
0
1
From Port Mapping Control  
P4.0/P4MAP0  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
P4.6/P4MAP6  
P4.7/P4MAP7  
P4DS.x  
0: Low drive  
1: High drive  
P4SEL.x  
P4IN.x  
EN  
D
To Port Mapping Control  
9-5. Port P4 (P4.0 to P4.7) Diagram  
9-52. Port P4 (P4.0 to P4.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P4.x)  
P4.0/P4MAP0  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
P4.6/P4MAP6  
x
0
1
2
3
4
5
6
7
FUNCTION  
P4DIR.x(2)  
P4SEL.x  
P4MAPx  
P4.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
30  
X
Mapped secondary digital function  
P4.1 (I/O)  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.2 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.3 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.4 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.5 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.6 (I/O)  
X
I: 0; O: 1  
X
30  
X
Mapped secondary digital function  
P4.7 (I/O)  
30  
X
I: 0; O: 1  
X
P4.7/P4MAP7  
Mapped secondary digital function  
30  
(1) X= Don't care  
(2) The direction of some mapped secondary functions are controlled directly by the module. See 9-8 for specific direction control  
information of mapped secondary functions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.10.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger  
9-6 shows the port diagram. 9-53 summarizes the selection of the pin function.  
Pad Logic  
To or from Reference (1)  
To ADC10 (1)  
INCHx = x (1)  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
P5OUT.x  
0
1
From module  
P5.0/(A8/VeREF+)  
P5.1/(A9/VeREF–)  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
To module  
(1) not available for MSPF430F5258  
MSPF430F5256  
MSPF430F5254  
MSPF430F5252  
9-6. Port P5 (P5.0 and P5.1) Diagram  
9-53. Port P5 (P5.0 and P5.1) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
0
1
FUNCTION  
P5DIR.x  
P5SEL.x  
REFOUT(3)  
P5.0 (I/O)(2)  
I: 0; O: 1  
0
1
0
1
X
0
X
0
P5.0/A8/VeREF+  
A8/VeREF+(4)  
P5.1 (I/O)(2)  
X
I: 0; O: 1  
X
P5.1/A9/VeREF–  
A9/VeREF(5)  
(1) X = Don't care  
(2) Default condition  
(3) REFOUT resides in the REF module.  
(4) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC10_A. Channel A8, when  
selected with the INCHx bits, is connected to the VeREF+ pin.  
(5) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC10_A. Channel A9, when selected  
with the INCHx bits, is connected to the VeREF- pin.  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.10.6 Port P5 (P5.2 and P5.3) Input/Output With Schmitt Trigger  
9-7 and 9-8 show the port diagrams. 9-54 summarizes the selection of the pin function.  
Pad Logic  
To XT2  
P5REN.2  
DVSS  
DVCC  
0
1
1
P5DIR.2  
0
1
P5OUT.2  
0
1
Module X OUT  
P5.2/XT2IN  
P5DS.2  
0: Low drive  
1: High drive  
P5SEL.2  
P5IN.2  
Bus  
Keeper  
EN  
D
Module X IN  
9-7. Port P5 (P5.2) Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
Pad Logic  
To XT2  
P5REN.3  
DVSS  
DVCC  
0
1
1
P5DIR.3  
0
1
P5OUT.3  
0
1
Module X OUT  
P5SEL.2  
P5.3/XT2OUT  
P5DS.3  
0: Low drive  
1: High drive  
XT2BYPASS  
P5SEL.3  
P5IN.3  
Bus  
Keeper  
EN  
D
Module X IN  
9-8. Port P5 (P5.3) Diagram  
9-54. Port P5 (P5.2 and P5.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.2  
P5SEL.3  
XT2BYPASS  
P5.2 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
0
X
0
1
X
0
1
P5.2/XT2IN  
2
XT2IN crystal mode(2)  
XT2IN bypass mode(2)  
P5.3 (I/O)  
X
X
I: 0; O: 1  
P5.3/XT2OUT  
3
XT2OUT crystal mode(3)  
P5.3 (I/O)(3)  
X
X
X
0
(1) X = Don't care  
(2) Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal  
mode or bypass mode.  
(3) Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as  
general-purpose I/O.  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.10.7 Port P5 (P5.4 and P5.5) Input/Output With Schmitt Trigger  
9-9 and 9-10 show the port diagrams. 9-55 summarizes the selection of the pin function.  
Pad Logic  
to XT1  
P5REN.4  
DVSS  
DVCC  
0
1
1
P5DIR.4  
0
1
P5OUT.4  
0
1
Module X OUT  
P5.4/XIN  
P5DS.4  
0: Low drive  
1: High drive  
P5SEL.4  
P5IN.4  
Bus  
Keeper  
EN  
D
Module X IN  
9-9. Port P5 (P5.4) Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
Pad Logic  
to XT1  
P5REN.5  
DVSS  
DVCC  
0
1
1
P5DIR.5  
0
1
P5OUT.5  
0
1
Module X OUT  
P5.5/XOUT  
P5SEL.4  
P5DS.5  
0: Low drive  
1: High drive  
XT1BYPASS  
P5SEL.5  
P5IN.5  
Bus  
Keeper  
EN  
D
Module X IN  
9-10. Port P5 (P5.5) Diagram  
9-55. Port P5 (P5.4 and P5.5) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.4  
P5SEL.5  
XT1BYPASS  
P5.4 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
0
X
0
1
X
0
1
P5.4/XIN  
4
XIN crystal mode(2)  
XIN bypass mode(2)  
P5.5 (I/O)  
X
X
I: 0; O: 1  
P5.5/XOUT  
5
XOUT crystal mode(3)  
P5.5 (I/O)(3)  
X
X
X
0
(1) X = Don't care  
(2) Setting P5SEL.4 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.4 is configured for crystal  
mode or bypass mode.  
(3) Setting P5SEL.4 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.5 can be used as  
general-purpose I/O.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.10.8 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger  
9-11 shows the port diagram. 9-56 summarizes the selection of the pin function.  
Pad Logic  
To ADC10 (1)  
INCHx = x (1)  
To Comparator_B  
From Comparator_B  
CBPD.x  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
P6OUT.x  
0
1
From module  
P6.0/TA2CLK/CB0/(A0)  
P6.1/TA2.0/CB1/(A1)  
P6.2/TA2.1/CB2/(A2)  
P6.3/TA2.2/CB3/(A3)  
P6.4/CB4/(A4)  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
P6.5/CB5/(A5)  
P6.6/CB6/(A6)  
P6.7/CB7/(A7)  
Bus  
Keeper  
EN  
D
To module  
P6IE.x  
EN  
Set  
P6IRQ.x  
Q
P6IFG.x  
(1) not available for MSPF430F5258  
MSPF430F5256  
MSPF430F5254  
P6SEL.x  
P6IES.x  
Interrupt  
Edge  
Select  
MSPF430F5252  
9-11. Port P6 (P6.0 to P6.7) Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-56. Port P6 (P6.0 to P6.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL.x  
CBPD  
0
P6.0 (I/O)  
TA2CLK  
SMCLK  
A0  
I: 0; O: 1  
0
1
0
0
P6.0/TA2CLK/SMCLK/CB0/(A0)  
0
1
1
0
X
X
X
0
1
CB0(1)  
P6.1 (I/O)  
TA2.CCI0A  
TA2.0  
X
1
I: 0; O: 1  
0
0
1
0
P6.1/TA2.0/CB1/(A1)  
P6.2/TA2.1/CB2/(A2)  
P6.3/TA2.1/CB3/(A3)  
1
2
3
1
1
0
A1  
X
X
X
0
1
CB1(1)  
P6.2 (I/O)  
TA2.CCI1A  
TA2.1  
X
1
I: 0; O: 1  
0
0
1
0
1
1
0
A2  
X
X
X
0
1
CB2(1)  
P6.3 (I/O)  
TA2.CCI2A  
TA2.2  
X
1
I: 0; O: 1  
0
0
1
0
1
1
0
A3  
X
X
X
0
1
CB3(1)  
P6.4 (I/O)  
A4  
X
1
I: 0; O: 1  
0
P6.4/CB4/(A4)  
P6.5/CB5/(A5)  
P6.6/CB6/(A6)  
P6.7/CB7/(A7)  
4
5
6
7
X
X
X
0
1
CB4(1)  
P6.5 (I/O)  
A5  
X
1
I: 0; O: 1  
0
X
X
X
0
1
CB5(1)  
P6.6 (I/O)  
A6  
X
1
I: 0; O: 1  
0
X
X
X
0
1
CB6(1)  
P6.7 (I/O)  
A7  
X
1
I: 0; O: 1  
0
X
X
X
X
1
CB7(1)  
1
(1) Setting the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input  
buffer for that pin, regardless of the state of the associated CBPD.x bit.  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.10.9 Port P7 (P7.0 to P7.5) Input/Output With Schmitt Trigger  
9-12 shows the port diagram. 9-57 summarizes the selection of the pin function.  
Pad Logic  
P7REN.x  
DVSS  
DVIO  
0
1
1
P7DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P7OUT.x  
0
1
P7.0/UCA2TXD/UCA2SIMO  
P7.1/UCA2RXD/UCA2SOMI  
P7.2/UCB2CLK/UCA2STE  
P7.3/UCB2SIMO/UCB2SDA  
P7.4/UCB2SOMI/UCB2SCL  
P7.5/UCB2STE/UCA2CLK  
P7DS.x  
0: Low drive  
1: High drive  
P7SEL.x  
P7IN.x  
EN  
D
To module  
9-12. Port P7 (P7.0 to P7.5) Diagram  
9-57. Port P7 (P7.0 to P7.5) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P7.x)  
x
0
1
2
3
4
5
FUNCTION  
P7DIR.x  
P7SEL.x  
P7.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
P7.0/UCA2TXD/UCA2SIMO(2)  
P7.1/UCA2RXD/UCA2SOMI(2)  
P7.2/UCB2CLK/UCA2STE(2)  
P7.3/UCB2SIMO/UCB2SDA(2)  
P7.4/UCB2SOMI/UCB2SCL(2)  
P7.5/UCB2STE/UCA2CLK(2)  
UCA2TXD/UCA2SIMO(1)  
X
P7.1 (I/O)  
I: 0; O: 1  
UCA2RXD/UCA2SOMI(1)  
P7.2 (I/O)  
X
I: 0; O: 1  
UCB2CLK/UCA2STE(1) (3)  
X
P7.3 (I/O)  
I: 0; O: 1  
UCB2SIMO/UCB2SDA(1) (4)  
P7.4 (I/O)  
X
I: 0; O: 1  
X
UCB2SOMI/UCB2SCL(1) (4)  
P7.5 (I/O)  
I: 0; O: 1  
X
UCB2STE/UCA2CLK(1)  
(1) Setting P7SEL.x bit disables the output driver and the input Schmitt trigger.  
(2) The pin direction is controlled by the USCI module.  
(3) UCB2CLK function takes precedence over UCA2STE function. If the pin is required as UCB2CLK input or output, USCI_A2 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
(4) If the I2C functionality is selected, the output drives only the logical 0 to VSS level.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.10.10 Port J (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output  
9-13 shows the port diagram. 9-58 summarizes the selection of the pin function.  
Pad Logic  
PJREN.0  
0
1
DVSS  
DVCC  
1
PJDIR.0  
DVCC  
0
1
PJOUT.0  
0
1
From JTAG  
PJ.0/TDO  
PJDS.0  
0: Low drive  
1: High drive  
From JTAG  
PJIN.0  
EN  
D
9-13. Port PJ (PJ.0) Diagram  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.10.11 Port J (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output  
9-14 shows the port diagram. 9-58 summarizes the selection of the pin function.  
Pad Logic  
PJREN.x  
0
1
DVSS  
DVCC  
1
PJDIR.x  
DVSS  
0
1
PJOUT.x  
0
1
From JTAG  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
PJDS.x  
0: Low drive  
1: High drive  
From JTAG  
PJIN.x  
EN  
D
To JTAG  
9-14. Port PJ (PJ.1 to PJ.3) Diagram  
9-58. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS  
OR SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
I: 0; O: 1  
X
PJ.0 (I/O)(2)  
PJ.0/TDO  
0
1
2
3
TDO(3)  
PJ.1 (I/O)(2)  
TDI/TCLK(3) (4)  
PJ.2 (I/O)(2)  
TMS(3) (4)  
I: 0; O: 1  
X
PJ.1/TDI/TCLK  
PJ.2/TMS  
I: 0; O: 1  
X
PJ.3 (I/O)(2)  
TCK(3) (4)  
I: 0; O: 1  
X
PJ.3/TCK  
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9.11 Device Descriptors  
9-59 and 9-60 list the contents of the device descriptor tag-length-value (TLV) structure for each device  
type.  
9-59. MSP430F5259, MSP430F5257, MSP430F5255, MSP430F5253 Device Descriptor Table  
VALUE  
SIZE  
(bytes)  
DESCRIPTION(1)  
ADDRESS  
F5259  
06h  
F5257  
06h  
F5255  
06h  
F5253  
06h  
Info length  
01A00h  
01A01h  
01A02h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
01A14h  
01A15h  
01A16h  
01A18h  
1
1
2
1
1
1
1
1
1
4
2
2
2
1
1
2
2
CRC length  
CRC value  
06h  
06h  
06h  
06h  
Per unit  
FF  
Per unit  
01  
Per unit  
03  
Per unit  
05  
Info Block  
Device ID  
Device ID  
81  
82  
82  
82  
Hardware revision  
Firmware revision  
Die record tag  
Die record length  
Lot/wafer ID  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
0Ah  
0Ah  
0Ah  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Die Record  
Die X position  
Die Y position  
Test results  
ADC10 calibration tag  
ADC10 calibration length  
ADC gain factor  
ADC offset  
10h  
10h  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
ADC 1.5-V reference  
Temperature sensor 30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
ADC 1.5-V reference  
Temperature sensor 85°C  
ADC10  
Calibration  
ADC 2.0-V reference  
Temperature sensor 30°C  
ADC 2.0-V reference  
Temperature sensor 85°C  
ADC 2.5-V reference  
Temperature sensor 30°C  
ADC 2.5-V reference  
Temperature sensor 85°C  
REF calibration tag  
REF calibration length  
01A26h  
01A27h  
01A28h  
01A2Ah  
01A2Ch  
1
1
2
2
2
12h  
12h  
12h  
12h  
06h  
06h  
06h  
06h  
REF Calibration  
REF 1.5-V reference factor  
REF 2.0-V reference factor  
REF 2.5-V reference factor  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
(1) NA = Not applicable, blank = unused and reads FFh.  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
9-60. MSP430F5258, MSP430F5256, MSP430F5254, MSP430F5252 Device Descriptor Table  
VALUE  
SIZE  
(bytes)  
DESCRIPTION(1)  
ADDRESS  
F5258  
06h  
F5256  
06h  
F5254  
06h  
F5252  
06h  
Info length  
01A00h  
01A01h  
01A02h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
01A14h  
01A15h  
01A16h  
01A18h  
1
1
2
1
1
1
1
1
1
4
2
2
2
1
1
2
2
CRC length  
CRC value  
06h  
06h  
06h  
06h  
Per unit  
00  
Per unit  
02  
Per unit  
04  
Per unit  
06  
Info Block  
Device ID  
Device ID  
82  
82  
82  
82  
Hardware revision  
Firmware revision  
Die record tag  
Die record length  
Lot/wafer ID  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
0Ah  
0Ah  
0Ah  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Per unit  
Per unit  
Per unit  
Per unit  
13h  
Die Record  
Die X position  
Die Y position  
Test results  
ADC10 calibration tag  
ADC10 calibration length  
ADC gain factor  
ADC offset  
10h  
10h  
10h  
10h  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
ADC 1.5-V reference  
Temperature sensor 30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
blank  
ADC 1.5-V reference  
Temperature sensor 85°C  
ADC10  
Calibration  
ADC 2.0-V reference  
Temperature sensor 30°C  
ADC 2.0-V reference  
Temperature sensor 85°C  
ADC 2.5-V reference  
Temperature sensor 30°C  
ADC 2.5-V reference  
Temperature sensor 85°C  
REF calibration tag  
REF calibration length  
01A26h  
01A27h  
01A28h  
01A2Ah  
01A2Ch  
1
1
2
2
2
12h  
12h  
12h  
12h  
06h  
06h  
06h  
06h  
REF Calibration  
REF 1.5-V reference factor  
REF 2.0-V reference factor  
REF 2.5-V reference factor  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
(1) NA = Not applicable, blank = unused and reads FFh.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Getting Started and Next Steps  
For more information on the MSP430family of devices and the tools and libraries that are available to help with  
your development, visit the MSP430 ultra-low-power sensing and measurement MCUs overview.  
10.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. 10-1 provides a legend for reading the complete device name.  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
MSP 430 F 5 438 A I PM T -EP  
Processor Family  
MCU Platform  
Device Type  
Series  
Feature Set  
Optional: Additional Features  
Optional: Tape and Reel  
Packaging  
Optional: Temperature Range  
Optional: Revision  
Processor Family  
CC = Embedded RF Radio  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
PMS = Prototype Device  
MCU Platform  
Device Type  
430 = MSP430 low-power microcontroller platform  
Memory Type  
C = ROM  
F = Flash  
FR = FRAM  
G = Flash  
L = No nonvolatile memory  
Specialized Application  
AFE = Analog front end  
BQ = Contactless power  
CG = ROM medical  
FE = Flash energy meter  
FG = Flash medical  
FW = Flash electronic flow meter  
Series  
1 = Up to 8 MHz  
2 = Up to 16 MHz  
3 = Legacy  
4 = Up to 16 MHz with LCD driver  
5 = Up to 25 MHz  
6 = Up to 25 MHz with LCD driver  
0 = Low-voltage series  
Feature Set  
Various levels of integration within a series  
Updated version of the base part number  
Optional: Revision  
Optional: Temperature Range S = 0°C to 50°C  
C = 0°C to 70°C  
I = –40°C to 85°C  
T = –40°C to 105°C  
Packaging  
http://www.ti.com/packaging  
Optional: Tape and Reel  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
Optional: Additional Features -EP = Enhanced product (–40°C to 105°C)  
-HT = Extreme temperature parts (–55°C to 150°C)  
-Q1 = Automotive Q100 qualified  
10-1. Device Nomenclature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
10.3 Tools and Software  
All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are  
available from TI and various third parties. See them all at MSP430 ultra-low-power MCUs Tools & software.  
10-1 lists the debug features of the MSP430F522x MCUs. See the Code Composer Studio IDE for MSP430  
MCUs User's Guide for details on the available features.  
10-1. Hardware Debug Features  
BREAK-  
POINTS  
(N)  
RANGE  
BREAK-  
POINTS  
LPMx.5  
DEBUGGING  
SUPPORT  
MSP430  
ARCHITECTURE  
4-WIRE  
JTAG  
2-WIRE  
JTAG  
CLOCK  
CONTROL SEQUENCER  
STATE  
TRACE  
BUFFER  
MSP430Xv2  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
No  
Design Kits and Evaluation Modules  
64-pin target development board and MSP-FET programmer bundle for MSP430F5x MCUs  
The MSP-FET430U64C is a powerful tool that includes the hardware and software required to complete much of  
your application development work. The flash memory can be erased and programmed in seconds with only a  
few keystrokes, and since the MSP430 flash is extremely low power, no external power supply is required.  
64-pin target development board for MSP430F5x MCUs  
The MSP-TS430RGC64C is a stand-alone 64-pin ZIF socket target board used to program and debug the  
MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.  
Dual-mode Bluetooth CC2564 module with integrated antenna evaluation board  
The CC2564MODAEM evaluation board contains the Bluetooth BR/EDR/LE HCI solution. Based on TI's  
CC2564B dual-mode Bluetooth single-chip device, the CC2564MODA is intended for evaluation and design  
purposes, reducing design effort and enabling fast time to market.  
Software  
MSP430WareSoftware  
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all  
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 MCU design resources, MSP430Ware software also includes a high-level API called MSP Driver  
Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a  
component of CCS or as a stand-alone package.  
MSP430F525x Code Examples  
C code examples that configure each of the integrated peripherals for various application needs.  
MSP Driver Library  
Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easy-  
to-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details  
on each function call and the recognized parameters. Developers can use Driver Library functions to write  
complete projects with minimal overhead.  
MSP EnergyTraceTechnology  
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and  
displays the application's energy profile and helps to optimize it for ultra-low-power consumption.  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
ULP (Ultra-Low Power) Advisor  
ULP Advisorsoftware is a tool for guiding developers to write more efficient code to fully utilize the unique  
ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new  
microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every  
last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to  
highlight areas of your code that can be further optimized for lower power.  
IEC 60730 Software Package  
The IEC 60730 MSP430 software package was developed to be useful in assisting customers in complying with  
IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use Part 1: General  
Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters,  
power tools, e-bikes, and many others. The IEC 60730 MSP430 software package can be embedded in  
customer applications running on MSP430s to help simplify the customer's certification efforts of functional  
safety-compliant consumer devices to IEC 60730-1:2010 Class B.  
Fixed Point Math Library for MSP  
The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical  
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and  
MSP432 devices. These routines are typically used in computationally intensive real-time applications where  
optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath  
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably  
lower than equivalent code written using floating-point math.  
Floating Point Math Library for MSP430  
Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB.  
Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you  
up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated  
in both Code Composer Studio and IAR IDEs. Read the user's guide for an in depth look at the math library and  
relevant benchmarks.  
Development Tools  
Code Composer StudioIntegrated Development Environment for MSP Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports all MSP microcontroller  
devices. Code Composer Studio comprises a suite of embedded software utilities used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features.  
Command-Line Programmer  
MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET  
programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary  
files (.txt or .hex) files directly to the MSP microcontroller without an IDE.  
MSP MCU Programmer and Debugger  
The MSP-FET is a powerful emulation development tool often called a debug probe which allows users to  
quickly begin application development on MSP low-power microcontrollers (MCU). Creating MCU software  
usually requires downloading the resulting binary program to the MSP device for validation and debugging. The  
MSP-FET provides a debug communication pathway between a host computer and the target MSP.  
Furthermore, the MSP-FET also provides a Backchannel UART connection between the computer's USB  
interface and the MSP UART. This affords the MSP programmer a convenient method for communicating serially  
between the MSP and a terminal running on the computer.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
MSP-GANG Production Programmer  
The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight  
identical MSP430 or MSP432 Flash or FRAM devices at the same time. The MSP Gang Programmer connects  
to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow  
the user to fully customize the process. The MSP Gang Programmer is provided with an expansion board, called  
the Gang Splitter, that implements the interconnections between the MSP Gang Programmer and multiple target  
devices.  
10.4 Documentation Support  
The following documents describe the MSP430F525x devices. Copies of these documents are available on the  
Internet at www.ti.com.  
Receiving Notification of Document Updates  
To receive notification of documentation updatesincluding silicon erratago to the product folder for your  
device on ti.com (for links to the product folders, see 10.5). In the upper right corner, click the "Alert me"  
button. This registers you to receive a weekly digest of product information that has changed (if any). For change  
details, see the revision history of any revised document.  
Errata  
MSP430F5259 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430F5258 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430F5257 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430F5256 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430F5255 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430F5254 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430F5253 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430F5252 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
User's Guides  
MSP430F5xx and MSP430F6xx Family User's Guide  
Detailed information on the modules and peripherals available in this device family.  
MSP430 Flash Devices Bootloader (BSL) User's Guide  
The MSP430 bootloader (BSL, formerly known as the bootstrap loader) allows users to communicate with  
embedded memory in the MSP430 microcontroller during the prototyping phase, final production, and in service.  
Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required. Do  
not confuse the bootloader with the bootstrap loader programs found in some digital signal processors (DSPs)  
that automatically load program code (and data) from external memory to the internal memory of the DSP.  
MSP430 Programming With the JTAG Interface  
This document describes the functions that are required to erase, program, and verify the memory module of the  
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition,  
it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This  
document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG  
interface, which is also referred to as Spy-Bi-Wire (SBW).  
MSP430 Hardware Tools User's Guide  
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the  
program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the  
parallel port interface and the USB interface, are described.  
Application Reports  
MSP430 32-kHz Crystal Oscillators  
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal  
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the  
correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout  
are given. The document also contains detailed information on the possible oscillator tests to ensure stable  
oscillator operation in mass production.  
MSP430 System-Level ESD Considerations  
System-Level ESD has become increasingly demanding as silicon technology scales to lower voltages and the  
need for designing cost-effective and ultra-low-power components. This application report addresses three ESD  
topics to help board designers and OEMs understand and design robust system-level designs: (1) Component-  
level ESD testing and system-level ESD testing; (2) General design guidelines for system-level ESD protection;  
(3) Introduction to System Efficient ESD Design (SEED), a co-design methodology of on-board and on-chip ESD  
protection.  
Designing With MSP430F522x and MSP430F521x Devices  
The MSP430F522x and MSP430F521x devices support a split supply I/O system that is essential in systems in  
which the MCU is required to interface with external devices (such as sensors or other processors) that operate  
at different voltage level compared to the MCU device supply. Additionally, the split supply input voltage range of  
the F522x and F521x devices starts as low as 1.62 V (see the device data sheet specifications), and this allows  
for nominal 1.8-V I/O interface without the need for external level translation. This application report describes  
the various design considerations to keep in mind while designing the F522x and F521x devices in an  
application.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
10.5 Related Links  
10-2 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to sample or buy.  
10-2. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
MSP430F5259  
MSP430F5258  
MSP430F5257  
MSP430F5256  
MSP430F5255  
MSP430F5254  
MSP430F5253  
MSP430F5252  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
10.6 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.7 Trademarks  
MicroStar Junior, MSP430, MSP430Ware, EnergyTrace, ULP Advisor, Code Composer Studio, and TI  
E2Eare trademarks of Texas Instruments.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
所有商标均为其各自所有者的财产。  
10.8 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.9 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
10.10 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
 
 
 
 
 
 
MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256  
MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252  
ZHCSER2D MAY 2013 REVISED OCTOBER 2020  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: MSP430F5259 MSP430F5258 MSP430F5257 MSP430F5256 MSP430F5255  
MSP430F5254 MSP430F5253 MSP430F5252  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430F5252IRGCR  
MSP430F5252IRGCT  
MSP430F5253IRGCR  
MSP430F5253IRGCT  
MSP430F5254IRGCR  
MSP430F5254IRGCT  
MSP430F5255IRGCR  
MSP430F5255IRGCT  
MSP430F5256IRGCR  
MSP430F5256IRGCT  
MSP430F5257IRGCR  
MSP430F5257IRGCT  
MSP430F5258IRGCR  
MSP430F5258IRGCT  
MSP430F5259IRGCR  
MSP430F5259IRGCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
F5252  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
F5252  
F5253  
F5253  
F5254  
F5254  
F5255  
F5255  
F5256  
F5256  
F5257  
F5257  
F5258  
F5258  
F5259  
F5259  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Sep-2021  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F5252IRGCR  
MSP430F5252IRGCT  
MSP430F5253IRGCR  
MSP430F5253IRGCT  
MSP430F5254IRGCR  
MSP430F5254IRGCT  
MSP430F5255IRGCR  
MSP430F5255IRGCT  
MSP430F5256IRGCR  
MSP430F5256IRGCT  
MSP430F5257IRGCR  
MSP430F5257IRGCT  
MSP430F5258IRGCR  
MSP430F5258IRGCT  
MSP430F5259IRGCR  
MSP430F5259IRGCT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
2000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
2000  
250  
2000  
250  
2000  
250  
2000  
250  
2000  
250  
2000  
250  
2000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F5252IRGCR  
MSP430F5252IRGCT  
MSP430F5253IRGCR  
MSP430F5253IRGCT  
MSP430F5254IRGCR  
MSP430F5254IRGCT  
MSP430F5255IRGCR  
MSP430F5255IRGCT  
MSP430F5256IRGCR  
MSP430F5256IRGCT  
MSP430F5257IRGCR  
MSP430F5257IRGCT  
MSP430F5258IRGCR  
MSP430F5258IRGCT  
MSP430F5259IRGCR  
MSP430F5259IRGCT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
2000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
2000  
250  
2000  
250  
2000  
250  
2000  
250  
2000  
250  
2000  
250  
2000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
RGC0064B  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.15  
8.85  
A
B
PIN 1 INDEX AREA  
9.15  
8.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
17  
32  
16  
33  
65  
SYMM  
2X 7.5  
4.25 0.1  
60X  
0.5  
1
48  
0.30  
0.18  
64X  
49  
64  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
64X  
0.05  
4219010/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.25)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.18) TYP  
(8.8)  
65  
SYMM  
(0.695) TYP  
(
0.2) TYP  
VIA  
33  
16  
32  
17  
(0.695) TYP  
(1.18) TYP  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219010/A 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
9X ( 1.19)  
65  
SYMM  
(8.8)  
(1.39)  
33  
16  
17  
32  
(1.39)  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
71% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219010/A 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY