MSP430F5635IZCAT [TI]

MSP430F563x Mixed-Signal Microcontrollers;
MSP430F5635IZCAT
型号: MSP430F5635IZCAT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MSP430F563x Mixed-Signal Microcontrollers

微控制器
文件: 总127页 (文件大小:3489K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
MSP430F563x Mixed-Signal Microcontrollers  
– USCI_A0 and USCI_A1 each support:  
1 Features  
Enhanced UART supports automatic baud-  
rate detection  
Low supply voltage range: 1.8 V to 3.6 V  
Ultra-low power consumption  
– Active mode (AM):  
IrDA encoder and decoder  
Synchronous SPI  
All system clocks active:  
270 µA/MHz at 8 MHz, 3.0 V, flash program  
execution (typical)  
– USCI_B0 and USCI_B1 each support:  
I2C  
Synchronous SPI  
– Standby mode (LPM3):  
Full-speed universal serial bus (USB)  
– Integrated USB-PHY  
– Integrated 3.3-V and 1.8-V USB power system  
– Integrated USB-PLL  
– Eight input and eight output endpoints  
12-bit analog-to-digital converter (ADC) with  
internal shared reference, sample-and-hold, and  
autoscan feature  
Dual 12-bit digital-to-analog converters (DACs)  
with synchronization  
Watchdog with crystal and supply supervisor  
operational, full RAM retention, fast wakeup:  
1.8 µA at 2.2 V, 2.1 µA at 3.0 V (typical)  
– Shutdown real-time clock (RTC) mode  
(LPM3.5):  
Shutdown mode, active RTC with crystal:  
1.1 µA at 3.0 V (typical)  
– Shutdown mode (LPM4.5):  
0.3 µA at 3.0 V (typical)  
Wake up from standby mode in 3 µs (typical)  
16-bit RISC architecture, extended memory, up to  
20-MHz system clock  
Voltage comparator  
Hardware multiplier supports 32-bit operations  
Serial onboard programming, no external  
programming voltage needed  
Flexible power-management system  
– Fully integrated LDO with programmable  
regulated core supply voltage  
– Supply voltage supervision, monitoring, and  
brownout  
6-channel internal DMA  
RTC module with supply voltage backup switch  
Table 6-1 summarizes the available family  
members  
Unified clock system  
– FLL control loop for frequency stabilization  
– Low-power low-frequency internal clock source  
(VLO)  
– Low-frequency trimmed internal reference  
source (REFO)  
2 Applications  
Analog and digital sensor systems  
Digital motor control  
Remote controls  
Thermostats  
Digital timers  
– 32-kHz crystals (XT1)  
– High-frequency crystals up to 32 MHz (XT2)  
Four 16-bit timers with 3, 5, or 7 capture/compare  
registers  
Hand-held meters  
Two universal serial communication interfaces  
(USCIs)  
3 Description  
The TI MSP430family of ultra-low-power microcontrollers consists of several devices featuring different sets of  
peripherals targeted for various applications. The architecture, combined with five low-power modes, is  
optimized to achieve extended battery life in portable measurement applications. The device features a powerful  
16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The  
digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in 3 µs  
(typical).  
The MSP430F563x devices are microcontrollers with a high-performance 12-bit ADC, a comparator, two USCIs,  
USB 2.0, a hardware multiplier, DMA, four 16-bit timers, an RTC module with alarm capabilities, and up to 74 I/O  
pins.  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide.  
Device Information  
PART NUMBER(1)  
MSP430F5638IPZ  
PACKAGE  
BODY SIZE(2)  
14 mm × 14 mm  
7 mm × 7 mm  
7 mm × 7 mm  
LQFP (100)  
MSP430F5638IZCA  
nFBGA (113)  
MSP430F5638IZQW(3)  
MicroStar JuniorBGA (113)  
(1) For the most current device, package, and ordering information, see the Package Option  
Addendum in Section 11, or see the TI website at www.ti.com.  
(2) The sizes shown here are approximations. For the package dimensions with tolerances, see the  
Mechanical Data in Section 11.  
(3) All orderable part numbers in the ZQW (MicroStar Junior BGA) package have been changed to a  
status of Last Time Buy. Visit the Product life cycle page for details on this status.  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
4 Functional Block Diagrams  
Figure 4-1 shows the functional block diagram for the MSP430F5638, MSP430F5637, and MSP430F5636  
devices.  
PA  
PB  
PC  
PD  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
XT2IN  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3, P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5, P6  
2×8 I/Os  
16KB  
RAM  
I/O Ports  
P7, P8  
1×6 I/Os  
1×8 I/Os  
ACLK  
SYS  
Power  
Management  
I/O Ports  
P9  
1×8 I/Os  
Unified  
Clock  
System  
USCI0,  
USCI1  
USB  
256KB  
192KB  
128KB  
XT2OUT  
Watchdog  
Full-speed  
SMCLK  
+2KB RAM  
USB Buffer  
Ax: UART,  
IrDA, SPI  
P2 Port  
Mapping  
Controller  
LDO,  
SVM, SVS,  
Brownout  
Flash  
PE  
1×8 I/Os  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
Bx: SPI, I2C  
+8B Backup  
RAM  
PD  
1×14 I/Os  
CPUXV2  
and  
Working  
Registers  
EEM  
(L: 8+2)  
ADC12_A  
DMA  
TA1 and  
TA2  
RTC_B  
DAC12_A  
REF  
TA0  
TB0  
12 bit  
6 Channel  
200 ksps  
JTAG,  
SBW  
Interface  
12 bit  
2 channels  
voltage out  
Comp_B  
Reference  
1.5 V, 2.0 V,  
2.5 V  
MPY32  
CRC16  
2 Timer_A  
each with  
3 CC  
Timer_A  
5 CC  
Registers  
Timer_B  
7 CC  
Registers  
Battery  
Backup  
System  
16 channels  
(12 ext, 4 int)  
Autoscan  
Registers  
Port PJ  
Figure 4-1. Functional Block Diagram – MSP430F5638, MSP430F5637, MSP430F5636  
Figure 4-2 shows the functional block diagram for the MSP430F5635, MSP430F5634, and MSP430F5633  
devices.  
PA  
PB  
PC  
PD  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
XT2IN  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3, P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5, P6  
2×8 I/Os  
16KB  
RAM  
I/O Ports  
P7, P8  
1×6 I/Os  
1×8 I/Os  
ACLK  
Power  
Management  
SYS  
I/O Ports  
P9  
1×8 I/Os  
Unified  
Clock  
System  
USCI0,  
USCI1  
USB  
256KB  
192KB  
128KB  
XT2OUT  
Watchdog  
Full-speed  
SMCLK  
+2KB RAM  
USB Buffer  
Ax: UART,  
IrDA, SPI  
LDO,  
SVM, SVS,  
Brownout  
P2 Port  
Mapping  
Controller  
Flash  
PE  
1×8 I/Os  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
Bx: SPI, I2C  
+8B Backup  
RAM  
PD  
1×14 I/Os  
CPUXV2  
and  
Working  
Registers  
EEM  
(L: 8+2)  
ADC12_A  
DMA  
TA1 and  
TA2  
RTC_B  
REF  
TA0  
TB0  
12 bit  
6 Channel  
200 ksps  
JTAG,  
SBW  
Interface  
Comp_B  
Reference  
1.5 V, 2.0 V,  
2.5 V  
MPY32  
CRC16  
2 Timer_A  
each with  
3 CC  
Timer_A  
5 CC  
Registers  
Timer_B  
7 CC  
Registers  
Battery  
Backup  
System  
16 channels  
(12 ext, 4 int)  
Autoscan  
Registers  
Port PJ  
Figure 4-2. Functional Block Diagram – MSP430F5635, MSP430F5634, MSP430F5633  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Figure 4-3 shows the functional block diagram for the MSP430F5632, MSP430F5631, and MSP430F5630  
devices.  
PA  
PB  
PC  
PD  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
XT2IN  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3, P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5, P6  
2×8 I/Os  
16KB  
RAM  
I/O Ports  
P7, P8  
1×6 I/Os  
1×8 I/Os  
ACLK  
Power  
Management  
SYS  
I/O Ports  
P9  
1×8 I/Os  
Unified  
Clock  
System  
USCI0,  
USCI1  
USB  
256KB  
192KB  
128KB  
XT2OUT  
Watchdog  
Full-speed  
SMCLK  
+2KB RAM  
USB Buffer  
Ax: UART,  
IrDA, SPI  
LDO,  
SVM, SVS,  
Brownout  
P2 Port  
Mapping  
Controller  
Flash  
PE  
1×8 I/Os  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
Bx: SPI, I2C  
+8B Backup  
RAM  
PD  
1×14 I/Os  
CPUXV2  
and  
Working  
Registers  
EEM  
(L: 8+2)  
DMA  
TA1 and  
TA2  
RTC_B  
TA0  
TB0  
REF  
6 Channel  
JTAG,  
SBW  
Interface  
Timer_A  
5 CC  
Registers  
2 Timer_A  
each with  
3 CC  
Timer_B  
7 CC  
Registers  
Comp_B  
Reference  
1.5 V, 2.0 V,  
2.5 V  
MPY32  
CRC16  
Battery  
Backup  
System  
Registers  
Port PJ  
Figure 4-3. Functional Block Diagram – MSP430F5632, MSP430F5631, MSP430F5630  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Functional Block Diagrams............................................ 3  
5 Revision History.............................................................. 6  
6 Device Comparison.........................................................8  
6.1 Related Products........................................................ 8  
7 Terminal Configuration and Functions..........................9  
7.1 Pin Diagrams.............................................................. 9  
7.2 Signal Descriptions................................................... 13  
8 Specifications................................................................ 19  
8.1 Absolute Maximum Ratings...................................... 19  
8.2 ESD Ratings............................................................. 19  
8.3 Recommended Operating Conditions.......................19  
8.4 Active Mode Supply Current Into VCC Excluding  
8.35 12-Bit ADC, Timing Parameters..............................41  
8.36 12-Bit ADC, Linearity Parameters Using an  
External Reference Voltage.........................................42  
8.37 12-Bit ADC, Linearity Parameters Using AVCC  
as Reference Voltage..................................................42  
8.38 12-Bit ADC, Linearity Parameters Using the  
Internal Reference Voltage..........................................42  
8.39 12-Bit ADC, Temperature Sensor and Built-In  
VMID ............................................................................43  
8.40 REF, External Reference........................................ 44  
8.41 REF, Built-In Reference.......................................... 45  
8.42 12-Bit DAC, Supply Specifications..........................46  
8.43 12-Bit DAC, Linearity Specifications....................... 47  
8.44 12-Bit DAC, Output Specifications..........................48  
8.45 12-Bit DAC, Reference Input Specifications........... 49  
8.46 12-Bit DAC, Dynamic Specifications.......................49  
8.47 12-Bit DAC, Dynamic Specifications (Continued)...50  
8.48 Comparator_B.........................................................51  
8.49 Ports PU.0 and PU.1...............................................52  
8.50 USB Output Ports DP and DM................................52  
8.51 USB Input Ports DP and DM...................................52  
8.52 USB-PWR (USB Power System)............................53  
8.53 USB-PLL (USB Phase-Locked Loop)..................... 53  
8.54 Flash Memory......................................................... 54  
8.55 JTAG and Spy-Bi-Wire Interface.............................54  
9 Detailed Description......................................................55  
9.1 Overview...................................................................55  
9.2 CPU.......................................................................... 55  
9.3 Instruction Set...........................................................56  
9.4 Operating Modes...................................................... 57  
9.5 Interrupt Vector Addresses....................................... 58  
9.6 Memory.....................................................................59  
9.7 Bootloader (BSL)...................................................... 60  
9.8 JTAG Operation........................................................ 60  
9.9 Flash Memory .......................................................... 61  
9.10 RAM .......................................................................62  
9.11 Backup RAM........................................................... 62  
9.12 Peripherals..............................................................62  
9.13 Input/Output Diagrams............................................84  
9.14 Device Descriptors................................................105  
10 Device and Documentation Support........................106  
10.1 Getting Started and Next Steps............................ 106  
10.2 Device Nomenclature............................................106  
10.3 Tools and Software............................................... 108  
10.4 Documentation Support........................................ 110  
10.5 Related Links........................................................ 112  
10.6 Support Resources............................................... 112  
10.7 Trademarks........................................................... 112  
10.8 Electrostatic Discharge Caution............................112  
10.9 Export Control Notice............................................112  
10.10 Glossary..............................................................112  
11 Mechanical, Packaging, and Orderable  
External Current.......................................................... 21  
8.5 Low-Power Mode Supply Currents (Into VCC  
)
Excluding External Current..........................................21  
8.6 Thermal Resistance Characteristics......................... 22  
8.7 Schmitt-Trigger Inputs – General-Purpose I/O..........23  
8.8 Inputs – Ports P1, P2, P3, and P4............................ 23  
8.9 Leakage Current – General-Purpose I/O..................23  
8.10 Outputs – General-Purpose I/O (Full Drive  
Strength)......................................................................23  
8.11 Outputs – General-Purpose I/O (Reduced Drive  
Strength)......................................................................24  
8.12 Output Frequency – Ports P1, P2, and P3..............24  
8.13 Typical Characteristics – Outputs, Reduced  
Drive Strength (PxDS.y = 0)........................................25  
8.14 Typical Characteristics – Outputs, Full Drive  
Strength (PxDS.y = 1)................................................. 26  
8.15 Crystal Oscillator, XT1, Low-Frequency Mode........27  
8.16 Crystal Oscillator, XT2............................................ 28  
8.17 Internal Very-Low-Power Low-Frequency  
Oscillator (VLO)...........................................................29  
8.18 Internal Reference, Low-Frequency Oscillator  
(REFO)........................................................................29  
8.19 DCO Frequency......................................................30  
8.20 PMM, Brownout Reset (BOR).................................31  
8.21 PMM, Core Voltage.................................................31  
8.22 PMM, SVS High Side..............................................32  
8.23 PMM, SVM High Side............................................. 32  
8.24 PMM, SVS Low Side...............................................33  
8.25 PMM, SVM Low Side..............................................33  
8.26 Wake-up Times From Low-Power Modes and  
Reset...........................................................................33  
8.27 Timer_A, Timers TA0, TA1, and TA2.......................34  
8.28 Timer_B, Timer TB0................................................34  
8.29 Battery Backup........................................................35  
8.30 USCI (UART Mode)................................................ 36  
8.31 USCI (SPI Master Mode)........................................ 36  
8.32 USCI (SPI Slave Mode).......................................... 38  
8.33 USCI (I2C Mode).....................................................40  
8.34 12-Bit ADC, Power Supply and Input Range  
Information.................................................................. 113  
Conditions................................................................... 41  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
5 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from revision F to revision G  
Changes from September 18, 2018 to September 10, 2020  
Page  
Updated the numbering for sections, tables, figures, and cross-references throughout the document..............1  
Added nFBGA package (ZCA) information throughout document......................................................................1  
Removed package options that are no longer available in Table 6-1, Device Comparison (MSP430F5637 and  
MSP430F5631 in ZQW) .................................................................................................................................... 8  
Updated the list of devices available in the 113-Pin ZQW package in the caption of Figure 7-4 .......................9  
Changed the MAX value of the IERASE and IMERASE, IBANK parameters in Section 8.54, Flash Memory ......... 54  
Corrected the connection of the P7SEL.x signal in Figure 9-11, Port P7 (P7.4 to P7.7) Diagram .................. 98  
Changes from revision E to revision F  
Changes from December 9, 2015 to September 17, 2018  
Page  
Added Section 6.1, Related Products ................................................................................................................8  
Added typical conditions statements at the beginning of Section 8, Specifications .........................................19  
Changed the MIN value of the V(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 8.20, PMM,  
Brownout Reset (BOR) ....................................................................................................................................31  
Updated notes (1) and (2) and added note (3) in Section 8.26, Wake-up Times From Low-Power Modes and  
Reset ............................................................................................................................................................... 33  
Removed ADC12DIV from the formula for the TYP value in the second row of the tCONVERT parameter in  
Section 8.35, 12-Bit ADC, Timing Parameters, because ADC12CLK is after division..................................... 41  
Removed the note that started "This impedance depends on..." from the "Reference input resistance"  
parameter in Section 8.45, 12-Bit DAC, Reference Input Specifications .........................................................49  
Added second row for tEN_CMP with Test Conditions of "CBPWRMD = 10" and MAX value of 100 µs in Section  
8.48, Comparator_B ........................................................................................................................................ 51  
Renamed FCTL4.MGR0 and MGR1 in the fMCLK,MGR parameter in Section 8.54, Flash Memory to be  
consistent with header files ..............................................................................................................................54  
Replaced former section Development Tools Support with Section 10.3, Tools and Software ..................... 108  
Changes from revision D to revision E  
Changes from August 6, 2013 to December 8, 2015  
Page  
Document format and organization changes throughout, including addition of section numbering....................1  
Moved all functional block diagrams to Section 4, Functional Block Diagrams .................................................3  
Added USB column to Table 6-1, Family Members ...........................................................................................8  
Added Section 6, Device Comparison, and moved Table 6-1 to it......................................................................8  
Added "Port U is supplied by the LDOO rail" to the PU.0 and PU.1 descriptions in Section 7.2, Signal  
Descriptions .....................................................................................................................................................13  
Added Section 8.2, ESD Ratings .....................................................................................................................19  
Added note to CVCORE ..................................................................................................................................... 19  
Added note to RPull .......................................................................................................................................... 23  
Changed TYP value of CL,eff with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to 1 pF.......................27  
In VBAT3 parameter description, changed from "VBAT3 ≠ VBAT/3" to "VBAT3 = VBAT/3"....................................... 35  
Changed from fDAC12_0OUT to fDAC12_1OUT in the first row of the Test Conditions for the "Channel-to-channel  
crosstalk" parameter.........................................................................................................................................50  
Changed the value of DAC12_xDAT from 7F7h to F7Fh and changed the x-axis label from fToggle to 1/fToggle in  
Figure 8-22, Crosstalk Test Conditions ............................................................................................................50  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Added note to RPUR ......................................................................................................................................... 53  
Corrected the spelling of the MRG bits in the fMCLK,MRG parameter in Section 8.54, Flash Memory .............. 54  
Removed RTC_B from LPM4.5 wake-up options.............................................................................................57  
Throughout document, changed all instances of "bootstrap loader" to "bootloader" .......................................60  
Added the paragraph that starts "Using the MSP430 RTC_B Module With Battery Backup Supply describes  
how..." .............................................................................................................................................................. 64  
Corrected names of interrupt events PMMSWBOR (BOR) and PMMSWPOR (POR) in Table 9-11, System  
Module Interrupt Vector Registers ................................................................................................................... 65  
Corrected spelling of NMIIFG (added missing "I") in Table 9-11, System Module Interrupt Vector Registers ....  
65  
Corrected register acronyms (added "USB" prefix as required) in Table 9-50, USB Control Registers .......... 72  
Added P7SEL.2 and XT2BYPASS inputs with AND and OR gates in Figure 9-10, Port P7 (P7.3) Diagram .. 97  
Changed P7SEL.3 column from X to 0 for "P7.3 (I/O)" rows............................................................................97  
Added Section 10 and moved Development Tools Support, Device and Development Tool Nomenclature,  
Trademarks, and Electrostatic Discharge Caution sections to it.....................................................................106  
Added Section 11, Mechanical, Packaging, and Orderable Information ........................................................113  
The following table lists the changes to this data sheet from the original release through revision D.  
REVISION  
COMMENTS  
Signal Descriptions, Added note regarding pullup resistor to RST/NMI/SBWTDIO pin.  
Added Applications, Development Tools Support, and Device and Development Tool Nomenclature  
Section 9.12.1, Changed the description of the number of I/Os in each port.  
Table 9-19, Added PM5CTL0 register.  
SLAS650D  
August 2013  
Section 8.42, Fixed typo in IDD Test Conditions (changed from DAC12IOG to DAC12OG).  
Section 8.51, Corrected VIL and VIH limits.  
Section 8.54, Changed IERASE and IMERASE, IBANK limits.  
Changed description of ACLK and PUR in Signal Descriptions.  
Changed typos to Interrupt Flag names on Timer TA2 rows in Table 9-3.  
Changed SYSRSTIV, System Reset offset 1Ch to Reserved in Table 9-11.  
Corrected names of SVMLVLRIFG and SVMHVLRIFG bits in Table 9-11.  
Corrected right-most column in Table 9-4.  
SLAS650C  
August 2012  
Added note regarding evaluation of PUR in Section 9.7.1.  
Changed notes on Section 8.41.  
Changed tSENSOR(sample) MIN to 100 µs in Section 8.39.  
Changed note (2) in Section 8.39.  
Editorial changes throughout.  
SLAS650B  
August 2011  
Production Data release  
SLAS650A  
July 2010  
Updated Product Preview including electrical specifications  
Product Preview release  
SLAS650  
May 2010  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
6 Device Comparison  
Table 6-1 summarizes the available family members.  
Table 6-1. Device Comparison  
USCI_A:  
UART,  
IrDA, SPI  
FLASH SRAM  
(KB)  
USCI_B:  
SPI, I2C  
ADC12_A DAC12_A Comp_B  
DEVICE(1) (2)  
Timer_A(3) Timer_B(4)  
USB  
I/O  
PACKAGE  
(KB)(5)  
(Ch)  
(Ch)  
(Ch)  
100 PZ,  
113 ZCA,  
113 ZQW  
MSP430F5638  
MSP430F5637  
MSP430F5636  
256  
192  
128  
16 + 2  
16 + 2  
16 + 2  
5, 3, 3  
5, 3, 3  
5, 3, 3  
7
7
7
2
2
2
2
2
2
12 ext, 4 int  
12 ext, 4 int  
12 ext, 4 int  
2
2
2
12  
12  
12  
Yes  
Yes  
Yes  
74  
74  
74  
100 PZ  
100 PZ,  
113 ZCA,  
113 ZQW  
100 PZ,  
113 ZCA,  
113 ZQW  
MSP430F5635  
MSP430F5634  
MSP430F5633  
256  
192  
128  
16 + 2  
16 + 2  
16 + 2  
5, 3, 3  
5, 3, 3  
5, 3, 3  
7
7
7
2
2
2
2
2
2
12 ext, 4 int  
12 ext, 4 int  
12 ext, 4 int  
12  
12  
12  
Yes  
Yes  
Yes  
74  
74  
74  
100 PZ,  
113 ZCA,  
113 ZQW  
100 PZ,  
113 ZCA,  
113 ZQW  
100 PZ,  
113 ZCA,  
113 ZQW  
MSP430F5632  
MSP430F5631  
MSP430F5630  
256  
192  
128  
16 + 2  
16 + 2  
16 + 2  
5, 3, 3  
5, 3, 3  
5, 3, 3  
7
7
7
2
2
2
2
2
2
12  
12  
12  
Yes  
Yes  
Yes  
74  
74  
74  
100 PZ  
100 PZ,  
113 ZCA,  
113 ZQW  
(1) For the most current package and ordering information, see the Package Option Addendum in Section 11, or see the TI website at  
www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/  
packaging.  
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and  
PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first  
instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.  
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and  
PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first  
instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.  
(5) The additional 2KB of USB SRAM that is listed can be used as general-purpose SRAM when USB is not in use.  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers  
High-performance, low-power solutions to enable the autonomous future  
Products for MSP430 ultra-low-power sensing & measurement MCUs  
One platform. One ecosystem. Endless possibilities.  
Companion products for MSP430F5638  
Review products that are frequently purchased or used in conjunction with this product.  
Reference designs  
Find reference designs leveraging the best in TI technology to solve your system-level challenges  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
Figure 7-1 shows the pinout for the MSP430F5638, MSP430F5637, and MSP430F5636 devices in the 100-pin  
PZ package.  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7  
2
P9.6  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
P5.0/VREF+/VeREF+  
P5.1/VREF−/VeREF−  
AVCC1  
3
P9.5  
4
P9.4  
5
P9.3  
6
P9.2  
7
P9.1  
8
P9.0  
9
P8.7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL  
P8.5/UCB1SIMO/UCB1SDA  
DVCC2  
AVSS1  
MSP430F5638  
MSP430F5637  
MSP430F5636  
XIN  
DVSS2  
XOUT  
P8.4/UCB1CLK/UCA1STE  
P8.3/UCA1RXD/UCA1SOMI  
P8.2/UCA1TXD/UCA1SIMO  
P8.1/UCB1STE/UCA1CLK  
P8.0/TB0CLK  
P4.7/TB0OUTH/SVMOUT  
P4.6/TB0.6  
AVSS2  
P5.6/ADC12CLK/DMAE0  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2.6/P2MAP6  
P2.7/P2MAP7  
DVCC1  
P4.5/TB0.5  
P4.4/TB0.4  
P4.3/TB0.3  
P4.2/TB0.2  
P4.1/TB0.1  
NOTE: DNC = Do not connect  
Figure 7-1. 100-Pin PZ Package (Top View) – MSP430F5638, MSP430F5637, MSP430F5636  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Figure 7-2 shows the pinout for the MSP430F5635, MSP430F5634, and MSP430F5633 devices in the 100-pin  
PZ package.  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6.6/CB6/A6  
P6.7/CB7/A7  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14  
P7.7/CB11/A15  
P5.0/VREF+/VeREF+  
P5.1/VREF−/VeREF−  
AVCC1  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7  
2
P9.6  
3
P9.5  
4
P9.4  
5
P9.3  
6
P9.2  
7
P9.1  
8
P9.0  
9
P8.7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL  
P8.5/UCB1SIMO/UCB1SDA  
DVCC2  
AVSS1  
MSP430F5635  
MSP430F5634  
MSP430F5633  
XIN  
DVSS2  
XOUT  
P8.4/UCB1CLK/UCA1STE  
P8.3/UCA1RXD/UCA1SOMI  
P8.2/UCA1TXD/UCA1SIMO  
P8.1/UCB1STE/UCA1CLK  
P8.0/TB0CLK  
P4.7/TB0OUTH/SVMOUT  
P4.6/TB0.6  
AVSS2  
P5.6/ADC12CLK/DMAE0  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2.6/P2MAP6  
P2.7/P2MAP7  
DVCC1  
P4.5/TB0.5  
P4.4/TB0.4  
P4.3/TB0.3  
P4.2/TB0.2  
P4.1/TB0.1  
NOTE: DNC = Do not connect  
Figure 7-2. 100-Pin PZ Package (Top View) – MSP430F5635, MSP430F5634, MSP430F5633  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Figure 7-3 shows the pinout for the MSP430F5632, MSP430F5631, and MSP430F5630 devices in the 100-pin  
PZ package.  
P6.4/CB4  
P6.5/CB5  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7  
2
P9.6  
P6.6/CB6  
3
P9.5  
P6.7/CB7  
4
P9.4  
P7.4/CB8  
5
P9.3  
P7.5/CB9  
6
P9.2  
P7.6/CB10  
P7.7/CB11  
P5.0/VREF+/VeREF+  
P5.1/VREF−/VeREF−  
AVCC1  
7
P9.1  
8
P9.0  
9
P8.7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL  
P8.5/UCB1SIMO/UCB1SDA  
DVCC2  
AVSS1  
MSP430F5632  
MSP430F5631  
MSP430F5630  
XIN  
DVSS2  
XOUT  
P8.4/UCB1CLK/UCA1STE  
P8.3/UCA1RXD/UCA1SOMI  
P8.2/UCA1TXD/UCA1SIMO  
P8.1/UCB1STE/UCA1CLK  
P8.0/TB0CLK  
P4.7/TB0OUTH/SVMOUT  
P4.6/TB0.6  
AVSS2  
P5.6/DMAE0  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2.6/P2MAP6  
P2.7/P2MAP7  
DVCC1  
P4.5/TB0.5  
P4.4/TB0.4  
P4.3/TB0.3  
P4.2/TB0.2  
P4.1/TB0.1  
NOTE: DNC = Do not connect  
Figure 7-3. 100-Pin PZ Package (Top View) – MSP430F5632, MSP430F5631, MSP430F5630  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Figure 7-4 shows the pinout for all devices in the 113-pin ZCA or ZQW package. See Table 7-1 for pin  
assignments and descriptions.  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
H1  
J1  
A2  
B2  
C2  
D2  
E2  
F2  
G2  
H2  
J2  
A3  
B3  
C3  
A4  
B4  
A5  
B5  
A6  
B6  
A7  
B7  
A8  
B8  
A9  
B9  
A10  
B10  
A11  
B11  
C11  
D11  
E11  
F11  
G11  
H11  
J11  
A12  
B12  
C12  
D12  
E12  
F12  
G12  
H12  
J12  
D4  
E4  
F4  
G4  
H4  
J4  
D5  
E5  
F5  
G5  
H5  
J5  
D6  
E6  
D7  
E7  
D8  
E8  
F8  
G8  
H8  
J8  
D9  
E9  
F9  
G9  
H9  
J9  
H6  
J6  
H7  
J7  
K1  
L1  
K2  
L2  
K11  
L11  
M11  
K12  
L12  
M12  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
NOTE: For terminal assignments, see Table 7-1.  
Figure 7-4. 113-Pin ZCA or ZQW Package (Top View) – MSP430F5638, MSP430F5636, MSP430F5635,  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5630  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
7.2 Signal Descriptions  
Table 7-1 describes the signals for all device variants and packages.  
Table 7-1. Signal Descriptions  
TERMINAL  
NO.(4)  
I/O(1)  
DESCRIPTION  
NAME  
ZCA,  
PZ  
ZQW  
General-purpose digital I/O  
Comparator_B input CB4  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
A1  
B2  
I/O  
I/O  
Analog input A4 – ADC (not available on F5632, F5631, and F5630 devices)  
General-purpose digital I/O  
Comparator_B input CB5  
2
3
Analog input A5 – ADC (not available on F5632, F5631, and F5630 devices)  
General-purpose digital I/O  
Comparator_B input CB6  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
B1  
C2  
I/O  
I/O  
Analog input A6 – ADC (not available on F5632, F5631, and F5630 devices)  
DAC12.0 output (not available on F5635, F5634, F5633, F5632, F5631, and F5630  
devices)  
General-purpose digital I/O  
Comparator_B input CB7  
4
Analog input A7 – ADC (not available on F5632, F5631, and F5630 devices)  
DAC12.1 output (not available on F5635, F5634, F5633, F5632, F5631, and F5630  
devices)  
General-purpose digital I/O  
Comparator_B input CB8  
P7.4/CB8/A12  
P7.5/CB9/A13  
5
6
C1  
C3  
I/O  
I/O  
Analog input A12 –ADC (not available on F5632, F5631, and F5630 devices)  
General-purpose digital I/O  
Comparator_B input CB9  
Analog input A13 – ADC (not available on F5632, F5631, and F5630 devices)  
General-purpose digital I/O  
Comparator_B input CB10  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
7
8
D2  
D1  
I/O  
I/O  
Analog input A14 – ADC (not available on F5632, F5631, and F5630 devices)  
DAC12.0 output (not available on F5635, F5634, F5633, F5632, F5631, and F5630  
devices)  
General-purpose digital I/O  
Comparator_B input CB11  
Analog input A15 – ADC (not available on F5632, F5631, and F5630 devices)  
DAC12.1 output (not available on F5635, F5634, F5633, F5632, F5631, and F5630  
devices)  
General-purpose digital I/O  
Output of reference voltage to the ADC  
Input for an external reference voltage to the ADC  
P5.0/VREF+/VeREF+  
P5.1/VREF-/VeREF-  
9
D4  
E4  
I/O  
I/O  
General-purpose digital I/O  
10  
Negative terminal for the reference voltage of the ADC for both sources, the  
internal reference voltage, or an external applied reference voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.(4)  
I/O(1)  
DESCRIPTION  
NAME  
ZCA,  
ZQW  
PZ  
E1,  
E2  
AVCC1  
11  
Analog power supply  
AVSS1  
XIN  
12  
13  
14  
15  
F2  
F1  
G1  
G2  
Analog ground supply  
I
Input terminal for crystal oscillator XT1  
Output terminal of crystal oscillator XT1  
Analog ground supply  
XOUT  
AVSS2  
O
General-purpose digital I/O  
Conversion clock output ADC (not available on F5632, F5631, and F5630 devices)  
DMA external trigger input  
P5.6/ADC12CLK/DMAE0  
16  
H1  
I/O  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2.6/P2MAP6  
P2.7/P2MAP7  
17  
18  
19  
20  
21  
22  
23  
24  
G4  
H2  
J1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave in/master out; USCI_B0 I2C data  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave out/master in; USCI_B0 I2C clock  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable  
H4  
J2  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in/master out  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_A0 UART receive data; USCI_A0 slave out/master in  
K1  
K2  
L2  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: no secondary function  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: no secondary function  
DVCC1  
DVSS1  
VCORE(2)  
P5.2  
25  
26  
27  
28  
29  
30  
31  
32  
33  
L1  
M1  
M2  
L3  
Digital power supply  
Digital ground supply  
Regulated core power supply (internal use only, no external current loading)  
I/O General-purpose digital I/O  
DVSS  
DNC  
M3  
J4  
Digital ground supply  
Do not connect. It is strongly recommended to leave this terminal open.  
I/O General-purpose digital I/O  
P5.3  
L4  
P5.4  
M4  
J5  
I/O General-purpose digital I/O  
P5.5  
I/O General-purpose digital I/O  
General-purpose digital I/O with port interrupt  
Timer TA0 clock signal TACLK input  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
34  
35  
L5  
I/O  
I/O  
ACLK output (divided by 1, 2, 4, 8, 16, or 32)  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output  
BSL transmit output  
M5  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.(4)  
I/O(1)  
DESCRIPTION  
NAME  
ZCA,  
ZQW  
PZ  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output  
BSL receive input  
P1.2/TA0.1  
36  
J6  
I/O  
General-purpose digital I/O with port interrupt  
P1.3/TA0.2  
P1.4/TA0.3  
P1.5/TA0.4  
P1.6/TA0.1  
P1.7/TA0.2  
37  
38  
39  
40  
41  
H6  
M6  
L6  
I/O  
I/O  
I/O  
I/O  
I/O  
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR3 capture: CCI3A input compare: Out3 output  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output  
General-purpose digital I/O with port interrupt  
J7  
Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output  
General-purpose digital I/O with port interrupt  
M7  
Timer TA0 CCR2 capture: CCI2B input, compare: Out2 output  
General-purpose digital I/O with port interrupt  
Timer TA1 clock input  
P3.0/TA1CLK/CBOUT  
42  
L7  
I/O  
Comparator_B output  
General-purpose digital I/O with port interrupt  
P3.1/TA1.0  
P3.2/TA1.1  
P3.3/TA1.2  
43  
44  
45  
H7  
M8  
L8  
I/O  
I/O  
I/O  
Timer TA1 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
General-purpose digital I/O with port interrupt  
Timer TA1 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
General-purpose digital I/O with port interrupt  
Timer TA1 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
General-purpose digital I/O with port interrupt  
Timer TA2 clock input  
P3.4/TA2CLK/SMCLK  
46  
J8  
I/O  
SMCLK output  
General-purpose digital I/O with port interrupt  
P3.5/TA2.0  
P3.6/TA2.1  
P3.7/TA2.2  
P4.0/TB0.0  
P4.1/TB0.1  
P4.2/TB0.2  
47  
48  
49  
50  
51  
52  
M9  
L9  
I/O  
I/O  
Timer TA2 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
General-purpose digital I/O with port interrupt  
Timer TA2 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
General-purpose digital I/O with port interrupt  
M10 I/O  
Timer TA2 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
General-purpose digital I/O with port interrupt  
J9  
I/O  
I/O  
I/O  
Timer TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
General-purpose digital I/O with port interrupt  
M11  
L10  
Timer TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.(4)  
I/O(1)  
DESCRIPTION  
NAME  
ZCA,  
ZQW  
PZ  
General-purpose digital I/O with port interrupt  
P4.3/TB0.3  
P4.4/TB0.4  
P4.5/TB0.5  
P4.6/TB0.6  
53  
M12 I/O  
Timer TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output  
General-purpose digital I/O with port interrupt  
54  
55  
56  
L12  
L11  
K11  
I/O  
I/O  
I/O  
Timer TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output  
General-purpose digital I/O with port interrupt  
Timer TB0: Switch all PWM outputs high impedance  
SVM output  
P4.7/TB0OUTH/SVMOUT  
57  
K12  
I/O  
General-purpose digital I/O  
Timer TB0 clock input  
P8.0/TB0CLK  
58  
59  
60  
J11  
J12  
H11  
I/O  
I/O  
I/O  
General-purpose digital I/O  
P8.1/UCB1STE/UCA1CLK  
P8.2/UCA1TXD/UCA1SIMO  
USCI_B1 SPI slave transmit enable; USCI_A1 clock input/output  
General-purpose digital I/O  
USCI_A1 UART transmit data; USCI_A1 SPI slave in/master out  
General-purpose digital I/O  
P8.3/UCA1RXD/UCA1SOMI  
P8.4/UCB1CLK/UCA1STE  
61  
62  
H12  
G11  
I/O  
I/O  
USCI_A1 UART receive data; USCI_A1 SPI slave out/master in  
General-purpose digital I/O  
USCI_B1 clock input/output; USCI_A1 SPI slave transmit enable  
DVSS2  
DVCC2  
63  
64  
G12  
F12  
Digital ground supply  
Digital power supply  
General-purpose digital I/O  
P8.5/UCB1SIMO/UCB1SDA  
P8.6/UCB1SOMI/UCB1SCL  
65  
66  
F11  
G9  
I/O  
I/O  
USCI_B1 SPI slave in/master out; USCI_B1 I2C data  
General-purpose digital I/O  
USCI_B1 SPI slave out/master in; USCI_B1 I2C clock  
P8.7  
P9.0  
P9.1  
P9.2  
67  
68  
69  
70  
E12  
E11  
F9  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
D12  
P9.3  
71  
D11  
I/O General-purpose digital I/O  
P9.4  
P9.5  
P9.6  
P9.7  
72  
73  
74  
75  
E9  
C12  
C11  
D9  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
B11,  
B12  
VSSU  
76  
USB PHY ground supply  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.(4)  
I/O(1)  
DESCRIPTION  
NAME  
ZCA,  
ZQW  
PZ  
General-purpose digital I/O, controlled by USB control register. Port U is supplied  
by the LDOO rail.  
PU.0/DP  
PUR  
77  
A12  
I/O  
USB data terminal DP  
USB pullup resistor pin (open drain). The voltage level at the PUR pin is used to  
I/O invoke the default USB BSL. TI recommends a 1-MΩ resistor to ground. See  
Section 9.7.1 for more information.  
78  
79  
B10  
A11  
General-purpose digital I/O, controlled by USB control register. Port U is supplied  
by the LDOO rail.  
PU.1/DM  
I/O  
USB data terminal DM  
VBUS  
VUSB  
V18  
80  
81  
82  
83  
A10  
A9  
USB LDO input (connect to USB power source)  
USB LDO output  
B9  
USB regulated power (internal use only, no external current loading)  
Analog ground supply  
AVSS3  
A8  
General-purpose digital I/O  
P7.2/XT2IN  
84  
85  
B8  
B7  
I/O  
Input terminal for crystal oscillator XT2  
General-purpose digital I/O  
P7.3/XT2OUT  
I/O  
Output terminal of crystal oscillator XT2  
Capacitor for backup subsystem. Do not load this pin externally. For capacitor  
values, see CBAK in Section 8.3.  
VBAK  
VBAT  
86  
87  
A7  
D8  
Backup or secondary supply voltage. If backup voltage is not supplied, connect to  
DVCC externally.  
General-purpose digital I/O  
P5.7/RTCCLK  
88  
D7  
I/O  
RTCCLK output  
DVCC3  
DVSS3  
89  
90  
A6  
A5  
Digital power supply  
Digital ground supply  
Test mode pin; selects digital I/O on JTAG pins  
TEST/SBWTCK  
PJ.0/TDO  
91  
92  
93  
94  
95  
B6  
B5  
A4  
E7  
D6  
I
Spy-Bi-Wire input clock  
General-purpose digital I/O  
I/O  
Test data output port  
General-purpose digital I/O  
PJ.1/TDI/TCLK  
PJ.2/TMS  
I/O  
Test data input or test clock input  
General-purpose digital I/O  
I/O  
Test mode select  
General-purpose digital I/O  
PJ.3/TCK  
I/O  
Test clock  
Reset input (active low)(3)  
Nonmaskable interrupt input  
Spy-Bi-Wire data input/output  
RST/NMI/SBWTDIO  
P6.0/CB0/A0  
96  
97  
A3  
B4  
I/O  
I/O  
General-purpose digital I/O  
Comparator_B input CB0  
Analog input A0 – ADC (not available on F5632, F5631, and F5630 devices)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.(4)  
I/O(1)  
DESCRIPTION  
NAME  
ZCA,  
ZQW  
PZ  
General-purpose digital I/O  
Comparator_B input CB1  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
98  
B3  
A2  
D5  
I/O  
I/O  
I/O  
Analog input A1 – ADC (not available on F5632, F5631, and F5630 devices)  
General-purpose digital I/O  
Comparator_B input CB2  
99  
Analog input A2 – ADC (not available on F5632, F5631, and F5630 devices)  
General-purpose digital I/O  
Comparator_B input CB3  
100  
Analog input A3 – ADC (not available on F5632, F5631, and F5630 devices)  
E5,  
E6,  
E8,  
F4,  
F5,  
F8,  
G5,  
G8,  
H5,  
H8,  
H9  
Reserved  
N/A  
Reserved. TI recommends connecting to ground (DVSS, AVSS).  
(1) I = input, O = output, N/A = not available on this package offering  
(2) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended  
capacitor value, CVCORE  
.
(3) When this pin is configured as reset, the internal pullup resistor is enabled by default.  
(4) See the Package Option Addendum in Section 11 to determine which devices are available in each package.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8 Specifications  
All graphs in this section are for typical conditions, unless otherwise noted.  
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
MAX  
4.1  
UNIT  
V
Voltage applied at VCC to VSS  
–0.3  
–0.3  
Voltage applied to any pin (excluding VCORE, VBUS, V18)(2)  
VCC + 0.3  
±2  
V
Diode current at any device pin  
mA  
°C  
Maximum junction temperature, TJ  
95  
(3)  
Storage temperature, Tstg  
–55  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
8.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as  
±250 V may actually have higher performance.  
8.3 Recommended Operating Conditions  
MIN  
1.8  
2.0  
2.2  
2.4  
1.8  
2.0  
2.2  
2.4  
2.2  
2.4  
NOM  
MAX UNIT  
PMMCOREVx = 0  
3.6  
Supply voltage during program execution and flash  
PMMCOREVx = 0, 1  
PMMCOREVx = 0, 1, 2  
PMMCOREVx = 0, 1, 2, 3  
PMMCOREVx = 0  
3.6  
V
3.6  
VCC  
programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 =  
(1) (2)  
DVCC = VCC  
)
3.6  
3.6  
3.6  
PMMCOREVx = 0, 1  
PMMCOREVx = 0, 1, 2  
PMMCOREVx = 0, 1, 2, 3  
PMMCOREVx = 2  
Supply voltage during USB operation, USB PLL disabled  
(USB_EN = 1, UPLLEN = 0)  
3.6  
V
3.6  
VCC,USB  
Supply voltage during USB operation, USB PLL enabled(6)  
(USB_EN = 1, UPLLEN = 1)  
3.6  
3.6  
PMMCOREVx = 2, 3  
Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 =  
VSS  
0
V
DVSS2 = DVSS3 = VSS  
)
TA = 0°C to 85°C  
TA = –40°C to +85°C  
TA = –40°C to +85°C  
I version  
1.55  
1.70  
1.20  
–40  
–40  
1
3.6  
V
VBAT,RTC  
Backup-supply voltage with RTC operational  
3.6  
VBAT,MEM  
TA  
Backup-supply voltage with backup memory retained  
Operating free-air temperature  
3.6  
85  
85  
10  
V
°C  
°C  
nF  
TJ  
Operating junction temperature  
I version  
CBAK  
Capacitance at pin VBAK  
4.7  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.3 Recommended Operating Conditions (continued)  
MIN  
NOM  
MAX UNIT  
CVCORE  
CDVCC  
CVCORE  
Capacitor at VCORE(4)  
470  
nF  
/
Capacitor ratio of DVCC to VCORE  
10  
0
PMMCOREVx = 0,  
1.8 V ≤ VCC ≤ 3.6 V  
(default condition)  
8.0  
PMMCOREVx = 1,  
2 V ≤ VCC ≤ 3.6 V  
Processor frequency (maximum MCLK frequency)(3) (5)  
(see Figure 8-1)  
0
0
12.0  
MHz  
fSYSTEM  
PMMCOREVx = 2,  
2.2 V ≤ VCC ≤ 3.6 V  
16.0  
20.0  
PMMCOREVx = 3,  
2.4 V ≤ VCC ≤ 3.6 V  
0
fSYSTEM_USB Minimum processor frequency for USB operation  
USB_wait Wait state cycles during USB operation  
1.5  
MHz  
16  
cycles  
(1) TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Section 8.22  
for the exact values and more details.  
(3) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the  
specified maximum frequency.  
(4) A capacitor tolerance of ±20% or better is required.  
(5) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(6) USB operation with USB PLL enabled requires PMMCOREVx ≥ 2 for proper operation.  
25  
20  
3
16  
2, 3  
2
12  
8
1, 2  
1, 2, 3  
1
0
0, 1  
0, 1, 2  
0, 1, 2, 3  
0
1.8  
2.0  
2.2  
2.4  
3.6  
Supply Voltage - V  
NOTE: The numbers within the fields denote the supported PMMCOREVx settings.  
Figure 8-1. Frequency vs Supply Voltage  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.4 Active Mode Supply Current Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3)  
FREQUENCY (fDCO = fMCLK = fSMCLK  
8 MHz 12 MHz  
TYP MAX  
)
EXECUTION  
MEMORY  
PARAMETER  
VCC  
PMMCOREVx  
1 MHz  
20 MHz  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
0
1
2
3
0
1
2
3
0.32  
0.36  
0.37  
0.39  
0.18  
0.20  
0.22  
0.23  
0.36  
2.1  
2.4  
2.5  
2.7  
1.0  
1.2  
1.3  
1.4  
2.4  
3.6  
3.8  
4.0  
4.0  
IAM, Flash  
Flash  
RAM  
3 V  
mA  
6.6  
0.21  
1.2  
1.7  
2.0  
2.1  
1.9  
IAM, RAM  
3 V  
mA  
3.6  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external  
load capacitance are chosen to closely match the required 12.5 pF.  
(3) Characterized with program executing typical data processing. USB disabled (VUSBEN = 0, SLDOEN = 0).  
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.  
8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
PMMCOREVx  
–40°C  
TYP MAX  
71  
25°C  
60°C  
TYP MAX  
81  
85°C  
UNIT  
TYP MAX  
TYP MAX  
2.2 V  
3 V  
0
3
0
3
0
1
2
0
1
2
3
0
1
2
3
0
1
2
3
75  
83  
87  
98  
85  
94  
99  
108  
16  
ILPM0,1MHz Low-power mode 0(3) (9)  
µA  
µA  
78  
89  
2.2 V  
3 V  
6.3  
6.7  
7.0  
1.8  
1.9  
2.0  
2.1  
2.1  
2.2  
2.2  
1.2  
1.2  
1.3  
1.3  
1.1  
1.1  
1.2  
1.2  
9.9  
11  
9.0  
11  
ILPM2  
Low-power mode 2(4) (9)  
6.6  
10  
12  
18  
1.6  
2.4  
4.7  
6.5  
6.6  
6.7  
6.8  
7.0  
7.1  
7.3  
5.9  
6.0  
6.1  
6.3  
5.8  
5.9  
6.1  
6.2  
10.5  
2.2 V  
1.6  
4.8  
1.7  
4.9  
Low-power mode 3,  
crystal mode(5) (9)  
ILPM3,XT1LF  
1.9  
2.7  
5.0  
10.8  
µA  
µA  
1.9  
5.1  
3 V  
2.0  
5.2  
2.0  
2.9  
1.9  
5.4  
12.6  
10.3  
0.9  
4.0  
Low-power mode 3,  
VLO mode, Watchdog  
enabled(6) (9)  
0.9  
4.1  
ILPM3,  
3 V  
VLO,WDT  
1.0  
4.2  
1.0  
2.2  
1.8  
4.3  
11.3  
10  
0.9  
3.9  
0.9  
4.0  
ILPM4  
Low-power mode 4(7) (9)  
3 V  
3 V  
µA  
µA  
1.0  
4.1  
1.0  
2.1  
4.2  
11  
Low-power mode 3.5  
(LPM3.5) current with  
active RTC into primary  
ILPM3.5,  
0.5  
0.8  
1.4  
RTC,VCC  
(10)  
supply pin DVCC  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
PMMCOREVx  
–40°C  
25°C  
60°C  
85°C  
UNIT  
TYP MAX  
TYP MAX  
TYP MAX  
TYP MAX  
Low-power mode 3.5  
(LPM3.5) current with  
active RTC into backup  
supply pin VBAT(11)  
ILPM3.5,  
3 V  
0.6  
1.1  
0.8  
1.4  
µA  
RTC,VBAT  
Total low-power mode 3.5  
(LPM3.5) current with  
active RTC(12)  
ILPM3.5,  
3 V  
3 V  
1.0  
0.2  
1.3  
0.7  
1.6  
0.9  
2.8  
1.4  
µA  
µA  
RTC,TOT  
Low-power mode 4.5  
(LPM4.5)(8)  
ILPM4.5  
0.3  
0.6  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance are chosen to closely match the required 9 pF.  
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz  
USB disabled (VUSBEN = 0, SLDOEN = 0).  
(4) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO  
setting = 1 MHz operation, DCO bias generator enabled.  
USB disabled (VUSBEN = 0, SLDOEN = 0).  
(5) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
USB disabled (VUSBEN = 0, SLDOEN = 0).  
(6) Current for watchdog timer clocked by VLO included.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fMCLK = fSMCLK = fDCO = 0 MHz  
USB disabled (VUSBEN = 0, SLDOEN = 0).  
(7) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
USB disabled (VUSBEN = 0, SLDOEN = 0).  
(8) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(9) Current for brownout included. Low-side supervisor (SVSL) and low-side monitor (SVML) disabled. High-side supervisor (SVSH) and  
high-side monitor (SVMH) disabled. RAM retention enabled.  
(10) VVBAT = VCC – 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active  
(11) VVBAT = VCC – 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no  
current drawn on VBAK  
(12) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK  
8.6 Thermal Resistance Characteristics  
PARAMETER  
VALUE  
122  
108  
83  
UNIT  
LQFP (PZ)  
BGA (ZQW)  
LQFP (PZ)  
BGA (ZQW)  
LQFP (PZ)  
BGA (ZQW)  
JA  
Junction-to-ambient thermal resistance, still air(1)  
°C/W  
JC(TOP)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
°C/W  
°C/W  
72  
98  
JB  
76  
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board,  
as specified in JESD51-7, in an environment described in JESD51-2a.  
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.7 Schmitt-Trigger Inputs – General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.80  
1.50  
0.45  
0.75  
0.3  
TYP  
MAX UNIT  
1.40  
V
2.10  
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.8 V  
3 V  
1.00  
V
1.65  
Negative-going input threshold voltage  
1.8 V  
3 V  
0.8  
V
1.0  
Input voltage hysteresis (VIT+ – VIT–  
)
0.4  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI  
Pullup or pulldown resistor(2)  
Input capacitance  
20  
35  
5
50  
kΩ  
pF  
VIN = VSS or VCC  
(1) Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).  
(2) Also applies to RST pin when pullup or pulldown resistor is enabled.  
8.8 Inputs – Ports P1, P2, P3, and P4  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Port P1, P2, P3, P4: P1.x to P4.x,  
External trigger pulse duration to set interrupt flag  
t(int)  
External interrupt timing(2)  
2.2 V, 3 V  
20  
ns  
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.  
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
8.9 Leakage Current – General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See (1) (2)  
VCC  
MIN  
MAX UNIT  
Ilkg(Px.x)  
High-impedance leakage current  
1.8 V, 3 V  
±50 nA  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
8.10 Outputs – General-Purpose I/O (Full Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –10 mA(2)  
I(OHmax) = –5 mA(1)  
I(OHmax) = –15 mA(2)  
I(OLmax) = 3 mA(1)  
I(OLmax) = 10 mA(2)  
I(OLmax) = 5 mA(1)  
I(OLmax) = 15 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.11 Outputs – General-Purpose I/O (Reduced Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(3)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –3 mA(2)  
I(OHmax) = –2 mA(1)  
I(OHmax) = –6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) Selecting reduced drive strength may reduce EMI.  
8.12 Output Frequency – Ports P1, P2, and P3  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
VCC = 1.8 V,  
PMMCOREVx = 0  
8
Port output frequency  
(with load)  
P3.4/TA2CLK/SMCLK/S27,  
fPx.y  
MHz  
20  
CL = 20 pF, RL = 1 kΩ(1) or 3.2 kΩ(2) (3)  
VCC = 3 V,  
PMMCOREVx = 3  
VCC = 1.8 V,  
PMMCOREVx = 0  
P1.0/TA0CLK/ACLK/S39,  
P3.4/TA2CLK/SMCLK/S27,  
P2.0/P2MAP0 (P2MAP0 = PM_MCLK ),  
CL = 20 pF(3)  
8
fPort_CLK  
Clock output frequency  
MHz  
20  
VCC = 3 V,  
PMMCOREVx = 3  
(1) Full drive strength of port: A resistive divider with 2 × 0.5 kΩ between VCC and VSS is used as load. The output is connected to the  
center tap of the divider.  
(2) Reduced drive strength of port: A resistive divider with 2 × 1.6 kΩ between VCC and VSS is used as load. The output is connected to  
the center tap of the divider.  
(3) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.13 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
25.0  
20.0  
15.0  
10.0  
5.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VCC = 3.0 V  
P3.2  
VCC = 1.8 V  
P3.2  
TA = 25°C  
TA = 85°C  
TA = 25°C  
TA = 85°C  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
Figure 8-3. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 8-2. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0.0  
0.0  
VCC = 3.0 V  
P3.2  
VCC = 1.8 V  
P3.2  
−1.0  
−5.0  
−2.0  
−3.0  
−4.0  
−10.0  
−15.0  
TA = 85°C  
−5.0  
TA = 85°C  
−6.0  
−20.0  
TA = 25°C  
TA = 25°C  
−7.0  
−8.0  
−25.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
Figure 8-4. Typical High-Level Output Current vs  
High-Level Output Voltage  
Figure 8-5. Typical High-Level Output Current vs  
High-Level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.14 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
60.0  
24  
VCC = 1.8 V  
P3.2  
VCC = 3.0 V  
P3.2  
TA = 25°C  
TA = 85°C  
55.0  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
TA = 25°C  
TA = 85°C  
20  
16  
12  
8
4
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
Figure 8-6. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 8-7. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0.0  
0
VCC = 1.8 V  
P3.2  
VCC = 3.0 V  
−5.0  
P3.2  
−10.0  
−15.0  
−20.0  
−25.0  
−30.0  
−35.0  
−40.0  
−4  
−8  
−12  
−45.0  
TA = 85°C  
−16  
TA = 85°C  
−50.0  
−55.0  
TA = 25°C  
−60.0  
TA = 25°C  
−20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
Figure 8-8. Typical High-Level Output Current vs  
High-Level Output Voltage  
Figure 8-9. Typical High-Level Output Current vs  
High-Level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.15 Crystal Oscillator, XT1, Low-Frequency Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(5)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
TA = 25°C  
0.075  
Differential XT1 oscillator crystal fOSC = 32768 Hz, XTS = 0,  
ΔIDVCC,LF  
current consumption from lowest XT1BYPASS = 0, XT1DRIVEx = 2,  
3 V  
0.170  
µA  
drive setting, LF mode  
TA = 25°C  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C  
0.290  
XT1 oscillator crystal frequency,  
LF mode  
fXT1,LF0  
XTS = 0, XT1BYPASS = 0  
32768  
Hz  
XT1 oscillator logic-level square-  
wave input frequency, LF mode  
fXT1,LF,SW  
XTS = 0, XT1BYPASS = 1(6) (7)  
10 32.768  
210  
50 kHz  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
fXT1,LF = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(8)  
OALF  
kΩ  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,LF = 32768 Hz, CL,eff = 12 pF  
300  
XTS = 0, XCAPx = 0(2)  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
Integrated effective load  
capacitance, LF mode(1)  
CL,eff  
pF  
8.5  
12.0  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30%  
10  
70%  
Oscillator fault frequency,  
LF mode(4)  
fFault,LF  
XTS = 0(3)  
10000  
Hz  
ms  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TA = 25°C,  
1000  
500  
CL,eff = 6 pF  
tSTART,LF  
Start-up time, LF mode  
3 V  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C,  
CL,eff = 12 pF  
(1) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(2) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(3) Measured with logic-level input frequency but also applies to operation with crystals.  
(4) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(5) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(6) When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-trigger Inputs section of this datasheet.  
(7) Maximum frequency of operation of the entire device cannot be exceeded.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
(8) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For XT1DRIVEx = 0, CL,eff ≤ 6 pF.  
For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF.  
For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF.  
For XT1DRIVEx = 3, CL,eff ≥ 6 pF.  
8.16 Crystal Oscillator, XT2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2) (5)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C  
200  
fOSC = 12 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 1,  
TA = 25°C  
260  
325  
450  
XT2 oscillator crystal current  
consumption  
IDVCC,XT2  
3 V  
µA  
fOSC = 20 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 2,  
TA = 25°C  
fOSC = 32 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 3,  
TA = 25°C  
XT2 oscillator crystal frequency,  
mode 0  
fXT2,HF0  
fXT2,HF1  
fXT2,HF2  
fXT2,HF3  
fXT2,HF,SW  
XT2DRIVEx = 0, XT2BYPASS = 0(7)  
XT2DRIVEx = 1, XT2BYPASS = 0(7)  
XT2DRIVEx = 2, XT2BYPASS = 0(7)  
XT2DRIVEx = 3, XT2BYPASS = 0(7)  
XT2BYPASS = 1(6) (7)  
4
8
8
MHz  
XT2 oscillator crystal frequency,  
mode 1  
16 MHz  
24 MHz  
32 MHz  
32 MHz  
XT2 oscillator crystal frequency,  
mode 2  
16  
24  
0.7  
XT2 oscillator crystal frequency,  
mode 3  
XT2 oscillator logic-level square-  
wave input frequency  
XT2DRIVEx = 0, XT2BYPASS = 0,  
fXT2,HF0 = 6 MHz, CL,eff = 15 pF  
450  
320  
200  
200  
XT2DRIVEx = 1, XT2BYPASS = 0,  
fXT2,HF1 = 12 MHz, CL,eff = 15 pF  
Oscillation allowance for  
HF crystals(8)  
OAHF  
XT2DRIVEx = 2, XT2BYPASS = 0,  
fXT2,HF2 = 20 MHz, CL,eff = 15 pF  
XT2DRIVEx = 3, XT2BYPASS = 0,  
fXT2,HF3 = 32 MHz, CL,eff = 15 pF  
fOSC = 6 MHz  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C, CL,eff = 15 pF  
0.5  
0.3  
tSTART,HF  
Start-up time  
3 V  
ms  
pF  
fOSC = 20 MHz  
XT2BYPASS = 0, XT2DRIVEx = 3,  
TA = 25°C, CL,eff = 15 pF  
Integrated effective load  
CL,eff  
1
capacitance, HF mode(1) (2)  
Duty cycle  
Measured at ACLK, fXT2,HF2 = 20 MHz  
XT2BYPASS = 1(3)  
40%  
30  
50%  
60%  
300 kHz  
fFault,HF  
Oscillator fault frequency(4)  
(1) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(2) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(3) Measured with logic-level input frequency but also applies to operation with crystals.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
(4) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX specifications might set the flag.  
(5) To improve EMI on the XT2 oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.  
Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(6) When XT2BYPASS is set, the XT2 circuit is automatically powered down.  
(7) Maximum frequency of operation of the entire device cannot be exceeded.  
(8) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
8.17 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
9.4  
0.5  
4
MAX UNIT  
14 kHz  
%/°C  
fVLO  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
dfVLO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
Duty cycle  
%/V  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to +85°C) – MIN(–40°C to +85°C)) / MIN(–40°C to +85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
8.18 Internal Reference, Low-Frequency Oscillator (REFO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
REFO oscillator current  
consumption  
IREFO  
TA = 25°C  
1.8 V to 3.6 V  
3
µA  
REFO frequency calibrated  
Measured at ACLK  
Full temperature range  
TA = 25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
32768  
Hz  
±3.5%  
fREFO  
REFO absolute tolerance  
calibrated  
±1.5%  
dfREFO/dT  
REFO frequency temperature drift Measured at ACLK(1)  
1.8 V to 3.6 V  
0.01  
1.0  
%/°C  
REFO frequency supply voltage  
Measured at ACLK(2)  
drift  
dfREFO/dVCC  
1.8 V to 3.6 V  
%/V  
Duty cycle  
Measured at ACLK  
40%/60% duty cycle  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
40%  
50%  
25  
60%  
µs  
tSTART  
REFO start-up time  
(1) Calculated using the box method: (MAX(–40°C to +85°C) – MIN(–40°C to +85°C)) / MIN(–40°C to +85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.19 DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DCORSELx = 0, DCOx = 0, MODx = 0  
DCORSELx = 0, DCOx = 31, MODx = 0  
DCORSELx = 1, DCOx = 0, MODx = 0  
DCORSELx = 1, DCOx = 31, MODx = 0  
DCORSELx = 2, DCOx = 0, MODx = 0  
DCORSELx = 2, DCOx = 31, MODx = 0  
DCORSELx = 3, DCOx = 0, MODx = 0  
DCORSELx = 3, DCOx = 31, MODx = 0  
DCORSELx = 4, DCOx = 0, MODx = 0  
DCORSELx = 4, DCOx = 31, MODx = 0  
DCORSELx = 5, DCOx = 0, MODx = 0  
DCORSELx = 5, DCOx = 31, MODx = 0  
DCORSELx = 6, DCOx = 0, MODx = 0  
DCORSELx = 6, DCOx = 31, MODx = 0  
DCORSELx = 7, DCOx = 0, MODx = 0  
DCORSELx = 7, DCOx = 31, MODx = 0  
MIN  
0.07  
0.70  
0.15  
1.47  
0.32  
3.17  
0.64  
6.07  
1.3  
TYP  
MAX UNIT  
0.20 MHz  
1.70 MHz  
0.36 MHz  
3.45 MHz  
0.75 MHz  
7.38 MHz  
1.51 MHz  
14.0 MHz  
3.2 MHz  
fDCO(0,0)  
fDCO(0,31)  
fDCO(1,0)  
fDCO(1,31)  
fDCO(2,0)  
fDCO(2,31)  
fDCO(3,0)  
fDCO(3,31)  
fDCO(4,0)  
fDCO(4,31)  
fDCO(5,0)  
fDCO(5,31)  
fDCO(6,0)  
fDCO(6,31)  
fDCO(7,0)  
fDCO(7,31)  
DCO frequency (0, 0)  
DCO frequency (0, 31)  
DCO frequency (1, 0)  
DCO frequency (1, 31)  
DCO frequency (2, 0)  
DCO frequency (2, 31)  
DCO frequency (3, 0)  
DCO frequency (3, 31)  
DCO frequency (4, 0)  
DCO frequency (4, 31)  
DCO frequency (5, 0)  
DCO frequency (5, 31)  
DCO frequency (6, 0)  
DCO frequency (6, 31)  
DCO frequency (7, 0)  
DCO frequency (7, 31)  
12.3  
2.5  
28.2 MHz  
6.0 MHz  
23.7  
4.6  
54.1 MHz  
10.7 MHz  
88.0 MHz  
19.6 MHz  
135 MHz  
39.0  
8.5  
60  
Frequency step between range  
DCORSEL and DCORSEL + 1  
SDCORSEL  
SDCO  
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)  
1.2  
2.3 ratio  
Frequency step between tap  
DCO and DCO + 1  
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)  
Measured at SMCLK  
1.02  
40%  
1.12 ratio  
Duty cycle  
50%  
0.1  
60%  
%/°C  
%/V  
dfDCO/dT  
DCO frequency temperature drift fDCO = 1 MHz  
dfDCO/dVCC  
DCO frequency voltage drift  
fDCO = 1 MHz  
1.9  
100  
VCC = 3.0 V  
TA = 25°C  
10  
DCOx = 31  
1
DCOx = 0  
0.1  
0
1
2
3
4
5
6
7
DCORSEL  
Figure 8-10. Typical DCO Frequency  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.20 PMM, Brownout Reset (BOR)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s  
MIN  
TYP  
MAX UNIT  
BORH on voltage,  
DVCC falling level  
V(DVCC_BOR_IT–)  
1.45  
1.50  
V
V
BORH off voltage,  
DVCC rising level  
V(DVCC_BOR_IT+)  
V(DVCC_BOR_hys)  
tRESET  
0.80  
50  
2
1.30  
BORH hysteresis  
250 mV  
µs  
Pulse duration required at RST/NMI pin to accept  
a reset  
8.21 PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Core voltage, active mode,  
PMMCOREV = 3  
VCORE3(AM)  
VCORE2(AM)  
VCORE1(AM)  
VCORE0(AM)  
VCORE3(LPM)  
VCORE2(LPM)  
VCORE1(LPM)  
VCORE0(LPM)  
2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA  
1.90  
V
Core voltage, active mode,  
PMMCOREV = 2  
2.2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA  
2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 17 mA  
1.8 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 13 mA  
2.4 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
2.2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
1.8 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
1.80  
1.60  
1.40  
1.94  
1.84  
1.64  
1.44  
V
V
V
V
V
V
V
Core voltage, active mode,  
PMMCOREV = 1  
Core voltage, active mode,  
PMMCOREV = 0  
Core voltage, low-current  
mode, PMMCOREV = 3  
Core voltage, low-current  
mode, PMMCOREV = 2  
Core voltage, low-current  
mode, PMMCOREV = 1  
Core voltage, low-current  
mode, PMMCOREV = 0  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.22 PMM, SVS High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSHE = 0, DVCC = 3.6 V  
0
nA  
I(SVSH)  
SVS current consumption  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1  
SVSHE = 1, SVSHRVL = 0  
200  
2.0  
µA  
1.59  
1.79  
1.98  
2.10  
1.62  
1.88  
2.07  
2.20  
2.32  
2.56  
2.85  
2.85  
1.64  
1.84  
2.04  
2.16  
1.74  
1.94  
2.14  
2.26  
2.40  
2.70  
3.00  
3.00  
2.5  
1.69  
SVSHE = 1, SVSHRVL = 1  
1.91  
V
V(SVSH_IT–)  
SVSH on voltage level(1)  
SVSHE = 1, SVSHRVL = 2  
2.11  
SVSHE = 1, SVSHRVL = 3  
2.23  
1.81  
2.01  
2.21  
SVSHE = 1, SVSMHRRL = 0  
SVSHE = 1, SVSMHRRL = 1  
SVSHE = 1, SVSMHRRL = 2  
SVSHE = 1, SVSMHRRL = 3  
2.33  
V
V(SVSH_IT+)  
SVSH off voltage level(1)  
SVSHE = 1, SVSMHRRL = 4  
2.48  
SVSHE = 1, SVSMHRRL = 5  
2.84  
3.15  
3.15  
SVSHE = 1, SVSMHRRL = 6  
SVSHE = 1, SVSMHRRL = 7  
SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1  
SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0  
SVSHE = 0→1, SVSHFP = 1  
SVSHE = 0→1, SVSHFP = 0  
tpd(SVSH)  
SVSH propagation delay  
µs  
µs  
20  
12.5  
100  
t(SVSH)  
SVSH on or off delay time  
DVCC rise time  
dVDVCC/dt  
0
1000  
V/s  
(1) The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and usage.  
8.23 PMM, SVM High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVMHE = 0, DVCC = 3.6 V  
0
nA  
I(SVMH)  
SVMH current consumption  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1  
SVMHE = 1, SVSMHRRL = 0  
200  
2.0  
µA  
1.86  
1.65  
1.85  
2.02  
2.18  
2.32  
2.56  
2.85  
2.85  
1.74  
1.94  
2.14  
2.26  
2.40  
2.70  
3.00  
3.00  
3.75  
2.5  
SVMHE = 1, SVSMHRRL = 1  
2.02  
SVMHE = 1, SVSMHRRL = 2  
2.22  
SVMHE = 1, SVSMHRRL = 3  
2.35  
V(SVMH)  
SVMH on or off voltage level(1)  
SVMHE = 1, SVSMHRRL = 4  
2.48  
2.84  
3.15  
3.15  
V
SVMHE = 1, SVSMHRRL = 5  
SVMHE = 1, SVSMHRRL = 6  
SVMHE = 1, SVSMHRRL = 7  
SVMHE = 1, SVMHOVPE = 1  
SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1  
SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0  
SVMHE = 0→1, SVSMFP = 1  
tpd(SVMH)  
SVMH propagation delay  
SVMH on or off delay time  
µs  
µs  
20  
12.5  
100  
t(SVMH)  
SVMHE = 0→1, SVMHFP = 0  
(1) The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and usage.  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.24 PMM, SVS Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSLE = 0, PMMCOREV = 2  
0
nA  
µA  
µs  
I(SVSL)  
SVSL current consumption  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
SVSLE = 0→1, SVSLFP = 1  
200  
2.0  
2.5  
20  
tpd(SVSL)  
SVSL propagation delay  
SVSL on or off delay time  
12.5  
100  
t(SVSL)  
µs  
SVSLE = 0→1, SVSLFP = 0  
8.25 PMM, SVM Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVMLE = 0, PMMCOREV = 2  
0
nA  
µA  
µs  
I(SVML)  
SVML current consumption  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 0  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
SVMLE = 0→1, SVMLFP = 1  
200  
2.0  
2.5  
20  
tpd(SVML) SVML propagation delay  
12.5  
100  
t(SVML)  
SVML on or off delay time  
µs  
SVMLE = 0→1, SVMLFP = 0  
8.26 Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fMCLK ≥ 4 MHz  
3
6.5  
Wake-up time from LPM2,  
LPM3, or LPM4 to active  
mode(1)  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 1  
tWAKE-UP-FAST  
µs  
1 MHz < fMCLK  
4 MHz  
<
4
8.0  
Wake-up time from LPM2,  
LPM3, or LPM4 to active  
mode(2) (3)  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 0  
tWAKE-UP-SLOW  
150  
165  
µs  
Wake-up time from LPM3.5 or  
LPM4.5 to active mode(4)  
tWAKE-UP-LPM5  
tWAKE-UP-RESET  
2
2
3
3
ms  
ms  
Wake-up time from RST or  
BOR event to active mode(4)  
(1) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the  
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in  
full performance mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode  
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx  
Family User's Guide.  
(2) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the  
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in  
normal mode (low current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode  
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx  
Family User's Guide.  
(3) The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by  
the performance mode settings as for LPM2, LPM3, and LPM4.  
(4) This value represents the time from the wake-up event to the reset vector execution.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.27 Timer_A, Timers TA0, TA1, and TA2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TACLK,  
fTA  
Timer_A input clock frequency  
1.8 V, 3 V  
20 MHz  
Duty cycle = 50% ±10%  
All capture inputs, Minimum pulse  
duration required for capture  
tTA,cap  
Timer_A capture timing  
1.8 V, 3 V  
20  
ns  
8.28 Timer_B, Timer TB0  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
fTB  
Timer_B input clock frequency  
1.8 V, 3 V  
20 MHz  
Duty cycle = 50% ±10%  
All capture inputs, Minimum pulse  
duration required for capture  
tTB,cap  
Timer_B capture timing  
1.8 V, 3 V  
20  
ns  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.29 Battery Backup  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
0.43  
MAX UNIT  
TA = –40°C  
VBAT = 1.7 V,  
DVCC not connected,  
RTC running  
TA = 25°C  
TA = 60°C  
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = 60°C  
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = 60°C  
TA = 85°C  
General  
0.52  
0.58  
0.64  
0.50  
VBAT = 2.2 V,  
DVCC not connected,  
RTC running  
0.59  
Current into VBAT terminal if no  
primary battery is connected  
IVBAT  
µA  
0.64  
0.71  
0.68  
VBAT = 3 V,  
DVCC not connected,  
RTC running  
0.75  
0.79  
0.86  
VSVSH_IT-  
SVSHRL = 0  
SVSHRL = 1  
SVSHRL = 2  
SVSHRL = 3  
1.59  
1.79  
1.98  
2.10  
1.69  
VSWITCH  
Switch-over level (VCC to VBAT) CVCC = 4.7 µF  
1.91  
2.11  
2.23  
V
ON-resistance of switch between  
VBAT = 1.8 V  
RON_VBAT  
0 V  
0.35  
1
kΩ  
V
VBAT and VBAK  
1.8 V  
3 V  
0.6  
1.0  
1.2  
±5%  
±5%  
±5%  
VBAT to ADC input channel 12:  
VBAT divided, VBAT3 = VBAT/3  
VBAT3  
3.6 V  
tSample,  
VBAT to ADC: Sampling time  
required if VBAT3 selected  
ADC12ON = 1,  
Error of conversion result ≤ 1 LSB  
1000  
2.65  
ns  
V
VBAT3  
VCHVx  
Charger end voltage  
CHVx = 2  
CHCx = 1  
CHCx = 2  
CHCx = 3  
2.7  
2.9  
5
RCHARGE  
Charge limiting resistor  
10  
20  
kΩ  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.30 USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
1
MHz  
ns  
2.2 V  
3 V  
50  
50  
600  
600  
tτ  
UART receive deglitch time(1)  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
8.31 USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 8-11 and Figure 8-12)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
SMCLK or ACLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
PMMCOREV = 0  
1.8 V  
3 V  
55  
38  
30  
25  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
ns  
2.4 V  
3 V  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
1.8 V  
3 V  
0
tHD,MI  
ns  
2.4 V  
3 V  
0
0
1.8 V  
3 V  
20  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 0  
18  
ns  
16  
tVALID,MO SIMO output data valid time(2)  
2.4 V  
3 V  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 3  
15  
1.8 V  
3 V  
–10  
–8  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
tHD,MO  
SIMO output data hold time(3)  
ns  
2.4 V  
3 V  
–10  
–8  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 8-11 and Figure 8-12.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure  
8-11 and Figure 8-12.  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 8-11. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 8-12. SPI Master Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.32 USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 8-13 and Figure 8-14)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
11  
8
MAX UNIT  
PMMCOREV = 0  
tSTE,LEAD STE lead time, STE low to clock  
ns  
2.4 V  
3 V  
7
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
6
1.8 V  
3 V  
3
3
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lag time, Last clock to STE high  
STE access time, STE low to SOMI data out  
STE disable time, STE high to SOMI high impedance  
SIMO input data setup time  
ns  
2.4 V  
3 V  
3
3
1.8 V  
3 V  
66  
50  
ns  
36  
2.4 V  
3 V  
30  
30  
1.8 V  
3 V  
23  
ns  
16  
2.4 V  
3 V  
13  
1.8 V  
3 V  
5
5
2
2
5
5
5
5
ns  
2.4 V  
3 V  
1.8 V  
3 V  
tHD,SI  
SIMO input data hold time  
ns  
2.4 V  
3 V  
UCLK edge to SOMI valid,  
CL = 20 pF,  
PMMCOREV = 0  
1.8 V  
76  
60  
3 V  
2.4 V  
3 V  
tVALID,SO  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF,  
PMMCOREV = 3  
44  
40  
1.8 V  
3 V  
18  
12  
10  
8
CL = 20 pF,  
PMMCOREV = 0  
tHD,SO  
ns  
2.4 V  
3 V  
CL = 20 pF,  
PMMCOREV = 3  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 8-13 and Figure 8-14.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure  
8-13 and Figure 8-14.  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
SOMI  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 8-13. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 8-14. SPI Slave Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.33 USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see  
Figure 8-15)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3 V  
2.2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
tSU,STO  
Setup time for STOP  
2.2 V, 3 V  
µs  
2.2 V  
3 V  
600  
ns  
600  
Pulse duration of spikes suppressed by  
input filter  
tSP  
50  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 8-15. I2C Mode Timing  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.34 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
0
TYP  
MAX UNIT  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
AVCC  
Analog supply voltage  
3.6  
V
V(Ax)  
Analog input voltage range(3) All ADC12 analog input pins Ax  
AVCC  
200  
V
2.2 V  
3 V  
150  
150  
Operating supply current into  
fADC12CLK = 5 MHz(1)  
AVCC terminal(4)  
IADC12_A  
µA  
250  
Only one terminal Ax can be selected at one  
time  
CI  
RI  
Input capacitance  
2.2 V  
20  
25  
pF  
Input MUX ON resistance  
0 V ≤ VIN ≤ V(AVCC)  
10  
200  
1900  
(1) ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0  
(2) The leakage current is specified by the digital I/O input leakage.  
(3) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. If the  
reference voltage is supplied by an external source or if the internal voltage is used and REFOUT = 1, then decoupling capacitors are  
required. See Section 8.40 and Section 8.41.  
(4) The internal reference supply current is not included in current consumption parameter IADC12  
.
8.35 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC12 linearity  
parameters using an external reference  
voltage or AVCC as reference(1)  
0.45  
4.8  
5.0  
fADC12CLK  
ADC conversion clock  
For specified performance of ADC12 linearity 2.2 V, 3 V  
parameters using the internal reference(2)  
MHz  
4.0  
0.45  
0.45  
4.2  
2.4  
2.4  
4.8  
For specified performance of ADC12 linearity  
parameters using the internal reference(3)  
2.7  
Internal ADC12  
oscillator(5)  
fADC12OSC  
tCONVERT  
tSample  
ADC12DIV = 0, fADC12CLK = fADC12OSC  
2.2 V, 3 V  
2.2 V, 3 V  
5.4 MHz  
REFON = 0, Internal oscillator,  
ADC12OSC used for ADC conversion clock  
2.4  
3.1  
µs  
Conversion time  
Sampling time  
External fADC12CLK from ACLK, MCLK or  
SMCLK, ADC12SSEL ≠ 0  
13 ×  
1 / fADC12CLK  
RS = 400 Ω, RI = 200 Ω, CI = 20 pF,  
τ = (RS + RI) × CI  
2.2 V, 3 V  
1000  
ns  
(4)  
(1) REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0,  
SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the  
specified performance of the ADC12 linearity is ensured with fADC12CLK maximum of 5 MHz.  
(2) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1  
(3) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when  
using the ADC12OSC divided by 2.  
(4) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB:  
tSample = ln(2n+1) x (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance  
(5) The ADC12OSC is sourced directly from MODOSC inside the UCS.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.36 12-Bit ADC, Linearity Parameters Using an External Reference Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error(2)  
Differential linearity error(2)  
Offset error(3)  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
1.4 V ≤ dVREF ≤ 1.6 V(1)  
±2  
LSB  
±1.7  
EI  
2.2 V, 3 V  
1.6 V < dVREF (1)  
See (1)  
ED  
EO  
EG  
ET  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±1  
±5.6  
±3.5  
±2.5  
±7.1  
±5  
LSB  
LSB  
LSB  
LSB  
dVREF ≤ 2.2 V(1)  
dVREF > 2.2 V(1)  
See (1)  
±3  
±1.5  
±1  
Gain error(3)  
dVREF ≤ 2.2 V(1)  
dVREF > 2.2 V(1)  
±3.5  
±2  
Total unadjusted error  
(1) The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = VR+ - VR-. VR+ < AVCC. VR- > AVSS.  
Unless otherwise mentioned, dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω, and two decoupling capacitors,  
10 µF and 100 nF, should be connected to VREF+/VREF- to decouple the dynamic current. See also the MSP430F5xx and  
MSP430F6xx Family User's Guide.  
(2) Parameters are derived using the histogram method.  
(3) Parameters are derived using a best fit curve.  
8.37 12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
EI  
Integral linearity error(2)  
See (1)  
See (1)  
See (1)  
See (1)  
See (1)  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±1.7  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
ED  
EO  
EG  
ET  
Differential linearity error(2)  
Offset error(3)  
±1  
±2  
±2  
±2  
Gain error(3)  
±4  
Total unadjusted error  
±5  
(1) AVCC as reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 0.  
(2) Parameters are derived using the histogram method.  
(3) Parameters are derived using a best fit curve.  
8.38 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
VCC  
MIN  
TYP  
MAX UNIT  
ADC12SR = 0, REFOUT = 1  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
±1.7  
LSB  
±2.5  
EI  
Integral linearity error(2)  
2.2 V, 3 V  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
–1  
–1  
+1.5  
Differential  
ED  
2.2 V, 3 V  
±1  
+2.5  
±4  
LSB  
linearity error(2)  
±2  
±2  
±1  
EO  
EG  
ET  
Offset error(3)  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
LSB  
LSB  
±4  
±2.5  
Gain error(3)  
±1%(4) VREF  
±5 LSB  
±1%(4) VREF  
±2  
Total unadjusted error  
(1) The external reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 1. dVREF = VR+ - VR-  
.
(2) Parameters are derived using the histogram method.  
(3) Parameters are derived using a best fit curve.  
(4) The gain error and the total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In  
this mode the reference voltage used by the ADC12_A is not available on a pin.  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.39 12-Bit ADC, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
MAX UNIT  
Temperature sensor voltage(2)  
(see )Figure 8-16  
ADC12ON = 1, INCH = 0Ah,  
TA = 0°C  
680  
VSENSOR  
mV  
680  
2.2 V  
3 V  
2.25  
2.25  
Temperature coefficient of  
sensor(2)  
TCSENSOR  
ADC12ON = 1, INCH = 0Ah  
mV/°C  
µs  
2.2 V  
3 V  
100  
100  
Sample time required if  
channel 10 is selected(3)  
ADC12ON = 1, INCH = 0Ah,  
Error of conversion result ≤ 1 LSB  
tSENSOR(sample)  
2.2 V  
3 V  
1.06  
1.46  
1.1  
1.5  
1.14  
V
1.54  
ADC12ON = 1, INCH = 0Bh,  
VMID ≈ 0.5 × VAVCC  
VMID  
AVCC divider at channel 11  
Sample time required if  
channel 11 is selected(4)  
ADC12ON = 1, INCH = 0Bh,  
Error of conversion result ≤ 1 LSB  
tVMID(sample)  
2.2 V, 3 V  
1000  
ns  
(1) The temperature sensor is provided by the REF module. See the REF module parametric, IREF+, regarding the current consumption of  
the temperature sensor.  
(2) The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor. The TLV structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference  
voltage levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature,°C) + VSENSOR, where TCSENSOR and  
VSENSOR can be computed from the calibration values for higher accuracy. See also the MSP430F5xx and MSP430F6xx Family User's  
Guide.  
(3) The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on)  
(4) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
.
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
-40 -30 -20 -10  
0 10 20 30 40 50 60 70 80  
Ambient Temperature (°C)  
Figure 8-16. Typical Temperature Sensor Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.40 REF, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Positive external reference  
voltage input  
(2)  
VeREF+  
VeREF+ > VREF-/VeREF-  
1.4  
AVCC  
1.2  
V
V
V
Negative external  
reference voltage input  
(3)  
(4)  
VREF-/VeREF-  
VeREF+ > VREF-/VeREF-  
VeREF+ > VREF-/VeREF-  
0
VeREF+  
VREF-/VeREF-  
Differential external  
reference voltage input  
1.4  
AVCC  
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF- = 0 V,  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
Conversion rate 200 ksps  
2.2 V, 3 V  
2.2 V, 3 V  
–26  
26  
IVeREF+, IVREF-/  
Static input current  
µA  
VeREF-  
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF- = 0 V,  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
Conversion rate 20 ksps  
–1.2  
10  
+1.2  
Capacitance at VREF+ or  
VREF- terminal(5)  
CVREF+/-  
µF  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is  
also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to let the charge settle for 12-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Connect two decoupling capacitors, 10 µF and 100 nF, to VREF to decouple the dynamic current required for an external reference  
source if it is used for the ADC12_A. Also see the MSP430F5xx and MSP430F6xx Family User's Guide.  
Copyright © 2020 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.41 REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
REFVSEL = {2} for 2.5 V,  
3 V  
2.5  
±1%  
REFON = REFOUT = 1 , IVREF+ = 0 A  
REFVSEL = {1} for 2 V,  
Positive built-in  
VREF+  
3 V  
2.0  
1.5  
±1%  
±1%  
V
reference voltage output REFON = REFOUT = 1, IVREF+ = 0 A  
REFVSEL = {0} for 1.5 V,  
REFON = REFOUT = 1, IVREF+ = 0 A  
2.2 V, 3 V  
REFVSEL = {0} for 1.5 V  
AVCC minimum voltage,  
2.2  
2.3  
2.8  
AVCC(min)  
Positive built-in  
reference active  
REFVSEL = {1} for 2 V  
V
REFVSEL = {2} for 2.5 V  
ADC12SR = 1(8), REFON = 1, REFOUT = 0,  
REFBURST = 0  
70  
0.45  
210  
100  
µA  
ADC12SR = 1(8), REFON = 1, REFOUT = 1,  
REFBURST = 0  
0.75 mA  
310 µA  
Operating supply current  
into AVCC terminal (2) (7)  
IREF+  
3 V  
ADC12SR = 0(8), REFON = 1, REFOUT = 0,  
REFBURST = 0  
ADC12SR = 0(8), REFON = 1, REFOUT = 1,  
REFBURST = 0  
0.95  
1.7 mA  
REFVSEL = {0, 1, 2},  
Load-current regulation, IVREF+ = +10 µA , –1000 µA,  
IL(VREF+)  
1500  
2500 µV/mA  
VREF+ terminal(3)  
AVCC = AVCC(min) for each reference level,  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1  
Capacitance at VREF+  
terminal  
REFON = REFOUT = 1(6)  
0 mA ≤ IVREF+ ≤ IVREF+(max)  
,
CVREF+  
TCREF+  
TCREF+  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
20  
100  
50  
pF  
Temperature coefficient IVREF+ is a constant in the range  
of built-in reference(4)  
of 0 mA ≤ IVREF+ ≤ –1 mA  
ppm/  
°C  
REFOUT = 0  
REFOUT = 1  
20  
20  
Temperature coefficient IVREF+ is a constant in the range  
ppm/  
°C  
of built-in reference(4)  
of 0 mA ≤ IVREF+ ≤ –1 mA  
AVCC = AVCC(min) to AVCC(max),  
TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
Power supply rejection  
ratio (DC)  
PSRR_DC  
PSRR_AC  
120  
1
300 µV/V  
mV/V  
AVCC = AVCC(min) to AVCC(max),  
TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
Power supply rejection  
ratio (AC)  
AVCC = AVCC(min) to AVCC(max),  
REFVSEL = {0, 1, 2}, REFOUT = 0,  
REFON = 0 → 1  
75  
75  
Settling time of reference  
voltage(5)  
tSETTLE  
µs  
AVCC = AVCC(min) to AVCC(max),  
CVREF = CVREF(max), REFVSEL = {0, 1, 2},  
REFOUT = 1, REFON = 0 → 1  
(1) The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers,  
one smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal, as well  
as, used as the reference for the conversion and uses the larger buffer. When REFOUT = 0, the reference is only used as the  
reference for the conversion and uses the smaller buffer.  
(2) The internal reference current is supplied by the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless a  
conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current  
contribution of the larger buffer without external load.  
(3) Contribution only due to the reference and buffer including package. This does not include resistance due to PCB traces or other  
external factors.  
(4) Calculated using the box method: (MAX(–40°C to +85°C) – MIN(–40°C to +85°C)) / MIN(–40°C to +85°C)/(85°C – (–40°C)).  
(5) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external  
capacitive load when REFOUT = 1.  
(6) Connect two decoupling capacitors, 10 µF and 100 nF, to VREF to decouple the dynamic current required for an external reference  
source if it is used for the ADC12_A. Also see the MSP430F5xx and MSP430F6xx Family User's Guide.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
(7) The temperature sensor is provided by the REF module. Its current is supplied by terminal AVCC and is equivalent to IREF+ with  
REFON = 1 and REFOUT = 0.  
(8) For devices without the ADC12, the parametric with ADC12SR = 0 are applicable.  
8.42 12-Bit DAC, Supply Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC Analog supply voltage  
AVCC = DVCC, AVSS = DVSS = 0 V  
2.20  
3.60  
110  
V
DAC12AMPx = 2, DAC12IR = 0,  
DAC12OG = 1, DAC12_xDAT = 0800h,  
VeREF+ = VREF+ = 1.5 V  
3 V  
65  
125  
250  
750  
DAC12AMPx = 2, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = VREF+ = AVCC  
165  
350  
Supply current, single DAC  
IDD  
µA  
channel(1) (2)  
DAC12AMPx = 5, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = VREF+ = AVCC  
2.2 V, 3 V  
DAC12AMPx = 7, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
1100  
VeREF+ = VREF+ = AVCC  
DAC12_xDAT = 800h,  
VeREF+ = 1.5 V, ΔAVCC = 100 mV  
2.2 V  
3 V  
70  
70  
PSRR Power supply rejection ratio(3) (4)  
dB  
DAC12_xDAT = 800h,  
VeREF+ = 1.5 V or 2.5 V, ΔAVCC = 100 mV  
(1) No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.  
(2) Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input  
specifications.  
(3) PSRR = 20 log (ΔAVCC / ΔVDAC12_xOUT  
(4) The internal reference is not used.  
)
Copyright © 2020 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.43 12-Bit DAC, Linearity Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see  
Figure 8-17)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Resolution  
12-bit monotonic  
12  
bits  
VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1  
2.2 V  
3 V  
±2  
±2  
±4(1)  
LSB  
±4  
INL  
Integral nonlinearity(2)  
2.2 V  
3 V  
±0.4  
±0.4  
±1(1)  
LSB  
±1  
DNL  
Differential nonlinearity(2)  
VeREF+ = 1.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
2.2 V  
3 V  
±21(1)  
Without calibration(2) (3)  
VeREF+ = 2.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
±21  
mV  
EO  
Offset voltage  
VeREF+ = 1.5 V,  
DAC12AMPx = 7,  
2.2 V  
±1.5(1)  
DAC12IR = 1  
With calibration(2) (3)  
VeREF+ = 2.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
3 V  
±1.5  
Offset error temperature  
coefficient(2)  
dE(O)/dT  
With calibration  
2.2 V, 3 V  
±10  
10  
µV/°C  
VeREF+ = 1.5 V  
VeREF+ = 2.5 V  
2.2 V  
3 V  
±2.5  
EG  
Gain error  
%FSR  
±2.5  
ppm of  
FSR/  
°C  
Gain temperature  
coefficient(2)  
dE(G)/dT  
2.2 V, 3 V  
2.2 V, 3 V  
DAC12AMPx = 2  
165  
Time for offset  
calibration(4)  
tOffset_Cal  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
66  
ms  
16.5  
(1) This parameter is not production tested.  
(2) Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b"  
of the first-order equation: y = a + bx. VDAC12_xOUT = EO + (1 + EG) × (VeREF+ / 4095) × DAC12_xDAT, DAC12IR = 1.  
(3) The offset calibration works on the output operational amplifier. Offset calibration is triggered by setting the DAC12CALON bit.  
(4) The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx  
= {0, 1}. TI recommends configuring the DAC12 module before initiating calibration. Port activity during calibration may effect accuracy  
and is not recommended.  
DAC VOUT  
DAC Output  
VR+  
RLoad = ¥  
Ideal transfer  
function  
AVCC  
2
Offset Error  
Positive  
Gain Error  
CLoad = 100 pF  
Negative  
DAC Code  
Figure 8-17. Linearity Test Load Conditions and Gain and Offset Definitions  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.44 12-Bit DAC, Output Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
No load, VeREF+ = AVCC  
,
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
0
0.005  
No load, VeREF+ = AVCC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
,
AVCC  
0.05  
AVCC  
Output voltage range(1)  
(see Figure 8-18)  
VO  
2.2 V, 3 V  
V
RLoad = 3 kΩ, VeREF+ = AVCC  
,
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
0
0.1  
RLoad = 3 kΩ, VeREF+ = AVCC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
,
AVCC  
0.13  
AVCC  
Maximum DAC12 load  
capacitance  
CL(DAC12)  
2.2 V, 3 V  
2.2 V, 3 V  
100  
pF  
DAC12AMPx = 2, DAC12_xDAT = 0FFFh,  
VO/P(DAC12) > AVCC – 0.3  
–1  
Maximum DAC12 load  
current  
IL(DAC12)  
mA  
DAC12AMPx = 2, DAC12_xDAT = 0h,  
VO/P(DAC12) < 0.3 V  
1
250  
250  
6
RLoad = 3 kΩ, VO/P(DAC12) < 0.3 V,  
DAC12AMPx = 2, DAC12_xDAT = 0h  
150  
150  
Output resistance (see RLoad = 3 kΩ, VO/P(DAC12) > AVCC – 0.3 V,  
Figure 8-18)  
RO/P(DAC12)  
2.2 V, 3 V  
DAC12_xDAT = 0FFFh  
RLoad = 3 kΩ,  
0.3 V ≤ VO/P(DAC12) ≤ AVCC – 0.3 V  
(1) Data is valid after the offset calibration of the output amplifier.  
RO/P(DAC12_x)  
Max  
RLoad  
ILoad  
AVCC  
DAC12  
2
CLoad = 100 pF  
O/P(DAC12_x)  
Min  
0.3  
AVCC – 0.3 V  
VOUT  
AVCC  
Figure 8-18. DAC12_x Output Resistance Tests  
Copyright © 2020 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.45 12-Bit DAC, Reference Input Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DAC12IR = 0(1) (2)  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC / 3 AVCC + 0.2  
AVCC AVCC + 0.2  
Reference input voltage  
range  
VeREF+  
2.2 V, 3 V  
V
DAC12IR = 1(3) (4)  
DAC12_0 IR = DAC12_1 IR = 0  
DAC12_0 IR = 1, DAC12_1 IR = 0  
DAC12_0 IR = 0, DAC12_1 IR = 1  
20  
MΩ  
48  
48  
Ri(VREF+)  
Ri(VeREF+)  
,
Reference input resistance  
2.2 V, 3 V  
kΩ  
DAC12_0 IR = DAC12_1 IR = 1,  
24  
DAC12_0 SREFx = DAC12_1 SREFx(5)  
(1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).  
(2) The maximum voltage applied at reference input voltage terminal VeREF+ = (AVCC – VE(O)) / (3 × (1 + EG)).  
(3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).  
(4) The maximum voltage applied at reference input voltage terminal VeREF+ = (AVCC – VE(O)) / (1 + EG).  
(5) When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel  
reducing the reference input resistance.  
8.46 12-Bit DAC, Dynamic Specifications  
VREF = VCC, DAC12IR = 1 (see Figure 8-19 and Figure 8-20), over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DAC12AMPx = 0 → {2, 3, 4}  
60  
120  
DAC12_xDAT = 800h,  
ErrorV(O) < ±0.5 LSB(1)  
(see Figure 8-19)  
tON  
DAC12 on time  
DAC12AMPx = 0 → {5, 6}  
DAC12AMPx = 0 → 7  
DAC12AMPx = 2  
2.2 V, 3 V  
15  
30  
12  
µs  
µs  
µs  
6
100  
40  
200  
80  
DAC12_xDAT =  
80h → F7Fh → 80h  
tS(FS)  
tS(C-C)  
SR  
Settling time, full scale  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
2.2 V, 3 V  
2.2 V, 3 V  
15  
30  
5
DAC12_xDAT =  
3F8h → 408h → 3F8h,  
BF8h → C08h → BF8h  
Settling time, code to  
code  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
2
1
0.05  
0.35  
1.50  
0.35  
1.10  
5.20  
DAC12_xDAT =  
Slew rate  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
2.2 V, 3 V  
2.2 V, 3 V  
V/µs  
nV-s  
80h → F7Fh → 80h(2)  
DAC12_xDAT =  
800h → 7FFh → 800h  
Glitch energy  
DAC12AMPx = 7  
35  
(1) RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 8-19.  
(2) Slew rate applies to output voltage steps ≥ 200 mV.  
Conversion 1  
Conversion 2  
1/2 LꢀS  
Conversion 3  
VOUT  
DAC Output  
Glitch  
Energy  
RLoad = 3 kW  
ILoad  
AVCC  
2
1/2 LꢀS  
CLoad = 100 pF  
RO/P(DAC12.x)  
tsettleLH  
tsettleHL  
Figure 8-19. Settling Time and Glitch Energy Testing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Conversion 1  
Conversion 2  
Conversion 3  
VOUT  
90%  
90%  
10%  
10%  
tSRLH  
tSRHL  
Figure 8-20. Slew Rate Testing  
8.47 12-Bit DAC, Dynamic Specifications (Continued)  
over recommended ranges of supply voltage and TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
40  
3-dB bandwidth,  
VDC = 1.5 V,  
VAC = 0.1 VPP  
(see Figure 8-21)  
DAC12AMPx = {5, 6}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
BW–3dB  
2.2 V, 3 V  
180  
550  
kHz  
DAC12AMPx = 7, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
DAC12_0DAT = 800h, No load,  
DAC12_1DAT = 80h ↔ F7Fh, RLoad = 3 kΩ,  
fDAC12_1OUT = 10 kHz at 50/50 duty cycle  
–80  
–80  
Channel-to-channel  
crosstalk(1) (see Figure  
8-22)  
2.2 V, 3 V  
dB  
DAC12_0DAT = 80h ↔ F7Fh, RLoad = 3 kΩ,  
DAC12_1DAT = 800h, No load,  
fDAC12_0OUT = 10 kHz at 50/50 duty cycle  
(1) RLoad = 3 kΩ, CLoad = 100 pF  
RLoad = 3 kW  
ILoad  
VeREF+  
AVCC  
2
DAC12_x  
DACx  
AC  
DC  
CLoad = 100 pF  
Figure 8-21. Test Conditions for 3-dB Bandwidth Specification  
RLoad  
ILoad  
AVCC  
DAC12_xDAT  
VOUT  
080h  
080h  
F7Fh  
080h  
F7Fh  
DAC12_0  
DAC12_1  
2
DAC0  
CLoad = 100 pF  
RLoad  
VREF+  
VDAC12_yOUT  
ILoad  
VDAC12_xOUT  
AVCC  
2
1/fToggle  
DAC1  
CLoad = 100 pF  
Figure 8-22. Crosstalk Test Conditions  
Copyright © 2020 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.48 Comparator_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
Supply voltage  
1.8  
3.6  
40  
50  
V
1.8 V  
2.2 V  
CBPWRMD = 00  
30  
40  
Comparator operating supply current  
IAVCC_COMP into AVCC terminal, excludes  
reference resistor ladder  
3 V  
65 µA  
30  
CBPWRMD = 01  
CBPWRMD = 10  
2.2 V, 3 V  
2.2 V, 3 V  
10  
0.1  
0.5  
Quiescent current of local reference  
IAVCC_REF  
CBREFACC = 1, CBREFLx = 01  
22 µA  
voltage amplifier into AVCC terminal  
VIC  
Common-mode input range  
Input offset voltage  
0
VCC – 1  
V
CBPWRMD = 00  
±20  
±10  
VOFFSET  
CIN  
mV  
CBPWRMD = 01, 10  
Input capacitance  
5
3
pF  
kΩ  
On (switch closed)  
4
RSIN  
Series input resistance  
Off (switch open)  
50  
MΩ  
CBPWRMD = 00, CBF = 0  
CBPWRMD = 01, CBF = 0  
CBPWRMD = 10, CBF = 0  
450  
600  
50  
ns  
µs  
tPD  
Propagation delay, response time  
Propagation delay with filter active  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 00  
0.35  
0.6  
1.0  
1.8  
0.6  
1.0  
1.8  
3.4  
1
1.0  
1.8  
3.4  
6.5  
2
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 01  
tPD,filter  
µs  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 10  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 11  
CBON = 0 to CBON = 1,  
CBPWRMD = 00, 01  
tEN_CMP  
Comparator enable time, settling time  
µs  
CBON = 0 to CBON = 1,  
CBPWRMD = 10  
100  
tEN_REF  
Resistor reference enable time  
Reference voltage for a given tap  
CBON = 0 to CBON = 1  
0.3  
1.5  
µs  
V
VIN ×  
(n + 0.5)  
/ 32  
VIN ×  
(n + 1) (n + 1.5)  
/ 32 / 32  
VIN ×  
VIN = reference into resistor  
ladder, n = 0 to 31  
VCB_REF  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.49 Ports PU.0 and PU.1  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
TEST CONDITIONS  
VUSB = 3.3 V ±10%, IOH = –25 mA  
VUSB = 3.3 V ±10%, IOL = 25 mA  
VUSB = 3.3 V ±10%  
MIN  
MAX  
UNIT  
VOH  
VOL  
VIH  
VIL  
2.4  
V
V
V
V
0.4  
2.0  
VUSB = 3.3 V ±10%  
0.8  
8.50 USB Output Ports DP and DM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
D+, D– single ended  
D+, D– single ended  
D+, D– impedance  
Rise time  
TEST CONDITIONS  
MIN  
2.8  
0
MAX UNIT  
VOH  
USB 2.0 load conditions  
USB 2.0 load conditions  
3.6  
0.3  
44  
V
V
VOL  
Z(DRV)  
tRISE  
tFALL  
Including external series resistor of 27 Ω  
28  
4
Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+  
Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+  
20  
ns  
ns  
Fall time  
4
20  
8.51 USB Input Ports DP and DM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
MAX UNIT  
V(CM)  
Z(IN)  
VCRS  
VIL  
Differential input common-mode range  
0.8  
2.5  
V
kΩ  
V
Input impedance  
300  
1.3  
Crossover voltage  
2.0  
0.8  
Static SE input logic low level  
Static SE input logic high level  
Differential input voltage  
V
VIH  
2.0  
V
VDI  
0.2  
V
Copyright © 2020 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
8.52 USB-PWR (USB Power System)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VLAUNCH  
VBUS  
VBUS detection threshold  
3.75  
5.5  
V
V
V
V
USB bus voltage  
Normal operation  
3.76  
VUSB  
USB LDO output voltage  
3.3  
1.8  
±9%  
V18  
Internal USB voltage(1)  
IUSB_EXT  
IDET  
Maximum external current from VUSB terminal(2)  
USB LDO current overload detection(3)  
USB LDO is on  
12 mA  
60  
100 mA  
USB LDO is on,  
USB PLL disabled  
ISUSPEND  
Operating supply current into VBUS terminal.(4)  
250  
µA  
CBUS  
CUSB  
C18  
VBUS terminal recommended capacitance  
VUSB terminal recommended capacitance  
V18 terminal recommended capacitance  
4.7  
220  
220  
µF  
nF  
nF  
Within 2%,  
recommended capacitances  
tENABLE  
RPUR  
Settling time VUSB and V18  
2
ms  
Pullup resistance of PUR terminal(5)  
70  
110  
150  
(1) This voltage is for internal use only. No external DC loading should be applied.  
(2) This represents additional current that can be supplied to the application from the VUSB terminal beyond the needs of the USB  
operation.  
(3) A current overload is detected when the total current supplied from the USB LDO, including IUSB_EXT, exceeds this value.  
(4) Does not include current contribution of Rpu and Rpd as outlined in the USB specification.  
(5) This value, in series with an external resistor between PUR and D+, produces the Rpu as outlined in the USB specification.  
8.53 USB-PLL (USB Phase-Locked Loop)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
IPLL  
Operating supply current  
PLL frequency  
7
mA  
MHz  
MHz  
ms  
fPLL  
48  
fUPD  
tLOCK  
tJitter  
PLL reference frequency  
PLL lock time  
1.5  
3
2
PLL jitter  
1000  
ps  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.54 Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TJ  
MIN  
TYP  
MAX UNIT  
DVCC(PGM/ERASE) Program and erase supply voltage  
1.8  
3.6  
5
V
mA  
IPGM  
Average supply current from DVCC during program  
3
6
6
IERASE  
Average supply current from DVCC during erase  
Average supply current from DVCC during mass erase or bank erase  
Cumulative program time(1)  
15  
15  
16  
mA  
IMERASE, IBANK  
tCPT  
mA  
ms  
Program and erase endurance  
104  
100  
64  
105  
cycles  
years  
µs  
tRetention  
tWord  
Data retention duration  
25°C  
Word or byte program time(2)  
85  
65  
tBlock, 0  
Block program time for first byte or word(2)  
49  
µs  
Block program time for each additional byte or word, except for last byte  
or word(2)  
tBlock, 1–(N–1)  
37  
49  
µs  
tBlock, N  
Block program time for last byte or word(2)  
55  
23  
73  
32  
µs  
tSeg Erase  
Erase time for segment, mass erase, and bank erase when available(2)  
ms  
MCLK frequency in marginal read mode  
(FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1)  
fMCLK,MGR  
0
1
MHz  
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming  
methods: individual word or byte write and block write modes.  
(2) These values are hardwired into the state machine of the flash controller.  
8.55 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V, 3 V  
0
20 MHz  
tSBW,Low Spy-Bi-Wire low clock pulse duration  
2.2 V, 3 V  
0.025  
15  
1
µs  
µs  
tSBW, En  
tSBW,Rst  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)(1)  
Spy-Bi-Wire return to normal operation time  
2.2 V, 3 V  
15  
0
100  
5
µs  
2.2 V  
3 V  
MHz  
fTCK  
TCK input frequency (4-wire JTAG)(2)  
Internal pulldown resistance on TEST  
0
10 MHz  
80 kΩ  
Rinternal  
2.2 V, 3 V  
45  
60  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2020 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
9 Detailed Description  
9.1 Overview  
The MSP430F563x devices include a high-performance 12-bit ADC, a comparator, two USCIs, USB 2.0, a  
hardware multiplier, DMA, four 16-bit timers, an RTC module with alarm capabilities, and up to 74 I/O pins.  
9.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant  
generator, respectively. The remaining registers are general-purpose registers (see Figure 9-1).  
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with  
all instructions.  
Program Counter  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Stack Pointer  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
Figure 9-1. Integrated CPU Registers  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.3 Instruction Set  
The instruction set consists of the original 51 instructions with three formats and seven address modes and  
additional instructions for the expanded address range. Each instruction can operate on word and byte data.  
Table 9-1 lists examples of the three types of instruction formats; Table 9-2 lists the address modes.  
Table 9-1. Instruction Word Formats  
INSTRUCTION WORD FORMAT  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
R4 + R5 → R5  
PC → (TOS), R8 → PC  
Jump-on-equal bit = 0  
Table 9-2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S(1)  
+
D(1)  
+
SYNTAX  
EXAMPLE  
OPERATION  
R10 → R11  
MOV Rs,Rd  
MOV R10,R11  
Indexed  
+
+
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM, &TCDAT  
MOV @Rn,Y(Rm)  
MOV 2(R5),6(R6)  
M(2+R5) → M(6+R6)  
M(EDE) → M(TONI)  
M(MEM) → M(TCDAT)  
M(R10) → M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
+
+
+
+
Indirect  
+
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) → R11  
R10 + 2 → R10  
Indirect auto-increment  
Immediate  
+
+
MOV @Rn+,Rm  
MOV #X,TONI  
#45 → M(TONI)  
(1) S = source, D = destination  
Copyright © 2020 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
9.4 Operating Modes  
These devices have one active mode and seven software-selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the low-power modes, service the request, and restore back to the  
low-power mode on return from the interrupt program.  
Software can configure the following operating modes:  
Active mode (AM)  
– All clocks are active  
Low-power mode 0 (LPM0)  
– CPU is disabled  
– ACLK and SMCLK remain active, MCLK is disabled  
– FLL loop control remains active  
Low-power mode 1 (LPM1)  
– CPU is disabled  
– FLL loop control is disabled  
– ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 2 (LPM2)  
– CPU is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO remains enabled  
– ACLK remains active  
Low-power mode 3 (LPM3)  
– CPU is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO is disabled  
– ACLK remains active  
Low-power mode 4 (LPM4)  
– CPU is disabled  
– ACLK is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO is disabled  
– Crystal oscillator is stopped  
– Complete data retention  
Low-power mode 3.5 (LPM3.5)  
– Internal regulator disabled  
– No data retention  
– RTC enabled and clocked by low-frequency oscillator  
– Wake-up signal from RST/NMI, RTC_B, P1, P2, P3, and P4  
Low-power mode 4.5 (LPM4.5)  
– Internal regulator disabled  
– No data retention  
– Wake-up signal from RST/NMI, P1, P2, P3, and P4  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.5 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table  
9-3). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 9-3. Interrupt Sources, Flags, and Vectors of MSP430F563x Configurations  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
PRIORITY  
System Reset  
Power-Up, External Reset  
Watchdog Time-out, Key Violation  
Flash Memory Key Violation  
WDTIFG, KEYV (SYSRSTIV)(1) (3)  
Reset  
0FFFEh  
63, highest  
System NMI  
PMM  
Vacant Memory Access  
JTAG Mailbox  
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG,  
VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV)  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
62  
61  
(1)  
User NMI  
NMI  
Oscillator Fault  
NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV)(1) (3)  
Flash Memory Access Violation  
Comp_B  
Comparator B interrupt flags (CBIV)(1) (2)  
TB0CCR0 CCIFG0(2)  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
60  
59  
Timer TB0  
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,  
TB0IFG (TBIV)(1) (2)  
Timer TB0  
Maskable  
0FFF4h  
58  
Watchdog Interval Timer Mode  
USCI_A0 Receive or Transmit  
USCI_B0 Receive or Transmit  
ADC12_A(5)  
WDTIFG  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
0FFEAh  
57  
56  
55  
54  
53  
UCA0RXIFG, UCA0TXIFG (UCA0IV)(1) (2)  
UCB0RXIFG, UCB0TXIFG (UCB0IV)(1) (2)  
ADC12IFG0 to ADC12IFG15 (ADC12IV)(1) (2)  
TA0CCR0 CCIFG0(2)  
Timer TA0  
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,  
TA0IFG (TA0IV)(1) (2)  
Timer TA0  
USB_UBM  
DMA  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
52  
51  
50  
49  
48  
USB interrupts (USBIV)(1) (2)  
DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG, DMA4IFG,  
DMA5IFG (DMAIV)(1) (2)  
Timer TA1  
Timer TA1  
TA1CCR0 CCIFG0(2)  
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)(1) (2)  
I/O Port P1  
USCI_A1 Receive or Transmit  
USCI_B1 Receive or Transmit  
I/O Port P2  
P1IFG.0 to P1IFG.7 (P1IV)(1) (2)  
UCA1RXIFG, UCA1TXIFG (UCA1IV)(1) (2)  
UCB1RXIFG, UCB1TXIFG (UCB1IV)(1) (2)  
P2IFG.0 to P2IFG.7 (P2IV)(1) (2)  
Reserved  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
0FFDAh  
0FFD8h  
0FFD6h  
47  
46  
45  
44  
43  
Reserved  
RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG,  
RT1PSIFG, RTCOFIFG (RTCIV)(1) (2)  
RTC_B  
Maskable  
0FFD4h  
42  
DAC12_A(6)  
Timer TA2  
DAC12_0IFG, DAC12_1IFG(1) (2)  
TA2CCR0 CCIFG0(2)  
Maskable  
Maskable  
0FFD2h  
0FFD0h  
41  
40  
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,  
TA2IFG (TA2IV)(1) (2)  
Timer TA2  
Maskable  
0FFCEh  
39  
I/O Port P3  
I/O Port P4  
P3IFG.0 to P3IFG.7 (P3IV)(1) (2)  
P4IFG.0 to P4IFG.7 (P4IV)(1) (2)  
Maskable  
Maskable  
0FFCCh  
0FFCAh  
0FFC8h  
38  
37  
36  
Reserved  
Reserved(4)  
0FF80h  
0, lowest  
(1) Multiple source flags  
(2) Interrupt flags are in the module.  
(3) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
(4) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To  
maintain compatibility with other devices, TI recommends reserving these locations.  
Copyright © 2020 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
(5) Only on devices with peripheral module ADC12_A, otherwise reserved.  
(6) Only on devices with peripheral module DAC12_A, otherwise reserved.  
9.6 Memory  
Table 9-4 summarizes the memory map for all device variants.  
Table 9-4. Memory Organization  
MSP430F5636  
MSP430F5633  
MSP430F5630  
MSP430F5637  
MSP430F5634  
MSP430F5631  
MSP430F5638  
MSP430F5635  
MSP430F5632  
(1) (3)  
Memory (flash)  
Main: interrupt vector  
128KB  
00FFFFh to 00FF80h  
192KB  
00FFFFh to 00FF80h  
256KB  
00FFFFh to 00FF80h  
Total Size  
Bank 3  
64KB  
047FFFh to 038000h  
N/A  
N/A  
N/A  
64KB  
037FFFh to 028000h  
64KB  
037FFFh to 028000h  
Bank 2  
Main: code memory  
64KB  
027FFFh to 018000h  
64KB  
027FFFh to 018000h  
64KB  
027FFFh to 018000h  
Bank 1  
64KB  
017FFFh to 008000h  
64KB  
017FFFh to 008000h  
64KB  
017FFFh to 008000h  
Bank 0  
4KB  
4KB  
4KB  
Sector 3  
Sector 2  
Sector 1  
Sector 0  
0063FFh to 005400h  
0063FFh to 005400h  
0063FFh to 005400h  
4KB  
4KB  
4KB  
0053FFh to 004400h  
0053FFh to 004400h  
0053FFh to 004400h  
RAM  
4KB  
4KB  
4KB  
0043FFh to 003400h  
0043FFh to 003400h  
0043FFh to 003400h  
4KB  
4KB  
4KB  
0033FFh to 002400h  
0033FFh to 002400h  
0033FFh to 002400h  
Size  
RAM  
2KB  
2KB  
2KB  
USB RAM(2)  
0023FFh to 001C00h  
0023FFh to 001C00h  
0023FFh to 001C00h  
128 bytes  
0019FFh to 001980h  
128 bytes  
0019FFh to 001980h  
128 bytes  
0019FFh to 001980h  
Info A  
Info B  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
128 bytes  
00197Fh to 001900h  
128 bytes  
00197Fh to 001900h  
128 bytes  
00197Fh to 001900h  
Information memory  
(flash)  
128 bytes  
0018FFh to 001880h  
128 bytes  
0018FFh to 001880h  
128 bytes  
0018FFh to 001880h  
128 bytes  
00187Fh to 001800h  
128 bytes  
00187Fh to 001800h  
128 bytes  
00187Fh to 001800h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
Bootloader (BSL)  
memory (flash)  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
4KB  
4KB  
4KB  
Peripherals  
000FFFh to 000000h  
000FFFh to 000000h  
000FFFh to 000000h  
(1) N/A = Not available.  
(2) USB RAM can be used as general-purpose RAM when not used for USB operation.  
(3) Backup RAM is accessed through the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.7 Bootloader (BSL)  
The BSL lets users program the flash memory or RAM using various serial interfaces. Access to the device  
memory by the BSL is protected by an user-defined password. For complete description of the features of the  
BSL and its implementation, see MSP430™ Flash Devices Bootloader (BSL) User's Guide.  
9.7.1 USB BSL  
All devices come preprogrammed with the USB BSL. Use of the USB BSL requires external access to six pins  
(see Table 9-5). In addition to these pins, the application must support external components necessary for  
normal USB operation; for example, the proper crystal on XT2IN and XT2OUT or proper decoupling.  
Table 9-5. USB BSL Pin Requirements and  
Functions  
DEVICE SIGNAL  
RST/NMI/SBWTDIO  
PU.0/DP  
BSL FUNCTION  
Entry sequence signal  
USB data terminal DP  
USB data terminal DM  
USB pullup resistor terminal  
USB bus power supply  
USB ground supply  
PU.1/DM  
PUR  
VBUS  
VSSU  
Note  
The default USB BSL evaluates the logic level of the PUR pin after a BOR reset. If the PUR pin is  
pulled high externally, the BSL is invoked. Therefore, unless the application is invoking the BSL, it is  
important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI  
recommends applying a 1-MΩ resistor to ground.  
9.7.2 UART BSL  
A UART BSL is also available that can be programmed by the user into the BSL memory by replacing the  
preprogrammed, factory supplied, USB BSL. Use of the UART BSL requires external access to six pins (see  
Table 9-6).  
Table 9-6. UART BSL Pin Requirements and  
Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.1  
P1.2  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
9.8 JTAG Operation  
9.8.1 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430  
development tools and device programmers. Table 9-7 lists the JTAG pin requirements. For further details on  
interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a  
complete description of the features of the JTAG interface and its implementation, see MSP430 Programming  
With the JTAG Interface.  
Copyright © 2020 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-7. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
PJ.3/TCK  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
9.8.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-  
Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 9-8 lists the  
Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device  
programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the  
JTAG interface and its implementation, see MSP430 pRogramming With the JTAG Interface.  
Table 9-8. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN  
IN, OUT  
VSS  
Ground supply  
9.9 Flash Memory  
The flash memory can be programmed by the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the  
flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also  
called information memory.  
Segment A can be locked separately.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.10 RAM  
The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all  
data is lost. Features of the RAM include:  
RAM has n sectors. The size of a sector can be found in Section 9.6.  
Each sector 0 to n can be complete disabled; however, data retention is lost.  
Each sector 0 to n automatically enters low power retention mode when possible.  
For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required.  
9.11 Backup RAM  
The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during  
operation from a backup supply if the Battery Backup System module is implemented.  
Eight bytes of backup RAM are available. The backup RAM can be wordwise accessed by the control registers  
BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.  
9.12 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed  
using all instructions. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's  
Guide.  
9.12.1 Digital I/O  
Up to nine 8-bit I/O ports are implemented: P1 through P6, P8, and P9 are complete, P7 contains six individual  
I/O ports, and PJ contains four individual I/O ports.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Programmable drive strength on all ports.  
All eight bits of ports P1, P2, P3, and P4 support edge-selectable interrupt input.  
All instructions support read and write access to port-control registers.  
Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PD).  
9.12.2 Port Mapping Controller  
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2. Table  
9-9 lists the mnemonic for each function that can be assigned.  
Table 9-9. Port Mapping Mnemonics and Functions  
VALUE  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
0
PM_NONE  
None  
DVSS  
PM_CBOUT  
Comparator_B output  
1
2
PM_TB0CLK  
Timer TB0 clock input  
PM_ADC12CLK  
PM_DMAE0  
ADC12CLK  
DMAE0 Input  
PM_SVMOUT  
SVM output  
3
Timer TB0 high-impedance input  
TB0OUTH  
PM_TB0OUTH  
4
5
6
7
8
9
PM_TB0CCR0B  
PM_TB0CCR1B  
PM_TB0CCR2B  
PM_TB0CCR3B  
PM_TB0CCR4B  
PM_TB0CCR5B  
Timer TB0 CCR0 capture input CCI0B  
Timer TB0 CCR1 capture input CCI1B  
Timer TB0 CCR2 capture input CCI2B  
Timer TB0 CCR3 capture input CCI3B  
Timer TB0 CCR4 capture input CCI4B  
Timer TB0 CCR5 capture input CCI5B  
Timer TB0: TB0.0 compare output Out0  
Timer TB0: TB0.1 compare output Out1  
Timer TB0: TB0.2 compare output Out2  
Timer TB0: TB0.3 compare output Out3  
Timer TB0: TB0.4 compare output Out4  
Timer TB0: TB0.5 compare output Out5  
Copyright © 2020 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-9. Port Mapping Mnemonics and Functions (continued)  
VALUE  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
Timer TB0 CCR6 capture input CCI6B  
USCI_A0 UART RXD (Direction controlled by USCI – input)  
OUTPUT PIN FUNCTION  
10  
PM_TB0CCR6B  
PM_UCA0RXD  
PM_UCA0SOMI  
PM_UCA0TXD  
PM_UCA0SIMO  
PM_UCA0CLK  
PM_UCB0STE  
PM_UCB0SOMI  
PM_UCB0SCL  
PM_UCB0SIMO  
PM_UCB0SDA  
PM_UCB0CLK  
PM_UCA0STE  
PM_MCLK  
Timer TB0: TB0.6 compare output Out6  
11  
12  
13  
14  
15  
16  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
USCI_A0 UART TXD (Direction controlled by USCI – output)  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
USCI_A0 clock input/output (direction controlled by USCI)  
USCI_B0 SPI slave transmit enable (direction controlled by USCI – input)  
USCI_B0 SPI slave out master in (direction controlled by USCI)  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
USCI_B0 SPI slave in master out (direction controlled by USCI)  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
USCI_B0 clock input/output (direction controlled by USCI)  
USCI_A0 SPI slave transmit enable (direction controlled by USCI – input)  
17  
18  
MCLK  
Reserved  
Reserved for test purposes. Do not use this setting.  
Reserved for test purposes. Do not use this setting.  
19  
Reserved  
20–30  
Reserved  
None  
DVSS  
Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents  
when applying analog signals.  
31 (0FFh)(1)  
PM_ANALOG  
(1) The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are 5 bits wide, and the upper bits are ignored,  
which results in a maximum value of 31.  
Table 9-10 lists the default values for all pins that support port mapping.  
Table 9-10. Default Mapping  
PxMAPy  
MNEMONIC  
PIN  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
PM_UCB0STE,  
PM_UCA0CLK  
USCI_B0 SPI slave transmit enable (direction controlled by USCI – input),  
USCI_A0 clock input/output (direction controlled by USCI)  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
PM_UCB0SIMO,  
PM_UCB0SDA  
USCI_B0 SPI slave in master out (direction controlled by USCI),  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
PM_UCB0SOMI,  
PM_UCB0SCL  
USCI_B0 SPI slave out master in (direction controlled by USCI),  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
PM_UCB0CLK,  
PM_UCA0STE  
USCI_B0 clock input/output (direction controlled by USCI),  
USCI_A0 SPI slave transmit enable (direction controlled by USCI – input)  
PM_UCA0TXD,  
PM_UCA0SIMO  
USCI_A0 UART TXD (direction controlled by USCI – output),  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
PM_UCA0RXD,  
PM_UCA0SOMI  
USCI_A0 UART RXD (direction controlled by USCI – input),  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
P2.6/P2MAP6  
P2.7/P2MAP7  
PM_NONE  
PM_NONE  
DVSS  
DVSS  
9.12.3 Oscillator and System Clock  
The clock system is supported by the Unified Clock System (UCS) module that includes support for a 32-kHz  
watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power low-  
frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally  
controlled oscillator (DCO), and a high-frequency crystal oscillator XT2. The UCS module is designed to meet  
the requirements of both low system cost and low power consumption. The UCS module features digital  
frequency-locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
to a programmable multiple of the watch-crystal frequency. The internal DCO provides a fast turnon clock source  
and stabilizes in 3 µs (typical). The UCS module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the  
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally-  
controlled oscillator DCO.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to  
ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
same sources available to ACLK.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.  
9.12.4 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains  
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor  
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is  
implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS  
and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply  
voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not  
automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.  
9.12.5 Hardware Multiplier (MPY) (Link to User's Guide)  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations  
with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed  
and unsigned multiply-and-accumulate operations.  
9.12.6 Real-Time Clock (RTC_B)  
The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes,  
hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which  
compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports  
flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in  
LPM3.5 mode and operation from a backup supply.  
Using the MSP430 RTC_B Module With Battery Backup Supply describes how to use the RTC_B with battery  
backup supply functionality to retain the time and keep the RTC counting through loss of main power supply, and  
how to perform correct reinitialization when the main power supply is restored.  
9.12.7 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
Copyright © 2020 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
9.12.8 System Module (SYS)  
The SYS module handles many of the system functions within the device. These include power-on reset and  
power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootloader  
entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange  
mechanism through JTAG called a JTAG mailbox that can be used in the application.  
Table 9-11 lists the SYS interrupt vector registers.  
Table 9-11. System Module Interrupt Vector Registers  
INTERRUPT VECTOR REGISTER  
INTERRUPT EVENT  
No interrupt pending  
Brownout (BOR)  
RST/NMI (BOR)  
PMMSWBOR (BOR)  
LPM3.5 or LPM4.5 wakeup (BOR)  
Security violation (BOR)  
SVSL (POR)  
WORD ADDRESS  
OFFSET  
00h  
PRIORITY  
02h  
Highest  
04h  
06h  
08h  
0Ah  
0Ch  
SVSH (POR)  
0Eh  
SVML_OVP (POR)  
SVMH_OVP (POR)  
PMMSWPOR (POR)  
WDT time-out (PUC)  
WDT key violation (PUC)  
KEYV flash key violation (PUC)  
Reserved  
10h  
SYSRSTIV, System Reset  
019Eh  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
Peripheral area fetch (PUC)  
PMM key violation (PUC)  
Reserved  
1Eh  
20h  
22h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVMLIFG  
02h  
SVMHIFG  
04h  
DLYLIFG  
06h  
DLYHIFG  
08h  
SYSSNIV, System NMI  
VMAIFG  
019Ch  
0Ah  
JMBINIFG  
0Ch  
JMBOUTIFG  
0Eh  
SVMLVLRIFG  
10h  
SVMHVLRIFG  
12h  
Reserved  
14h to 1Eh  
00h  
Lowest  
Highest  
No interrupt pending  
NMIIFG  
02h  
OFIFG  
04h  
SYSUNIV, User NMI  
019Ah  
0198h  
ACCVIFG  
06h  
BUSIFG  
08h  
Reserved  
0Ah to 1Eh  
00h  
Lowest  
No interrupt pending  
USB wait state time-out  
Reserved  
SYSBERRIV, Bus Error  
02h  
Highest  
Lowest  
04h to 1Eh  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.9 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM.  
Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces  
system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move  
data to or from a peripheral. Table 9-12 lists the trigger assignments for each DMA channel.  
The USB timestamp generator also uses the channel 0, 1, and 2 DMA trigger assignments.  
Table 9-12. DMA Trigger Assignments  
CHANNEL  
TRIGGE  
R(1)  
0
1
2
3
4
5
0
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TBCCR0 CCIFG  
TBCCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC12IFGx(2)  
DAC12_0IFG(3)  
DAC12_1IFG(3)  
USB FNRXD  
USB ready  
MPY ready  
DMA5IFG  
DMA0IFG  
DMA1IFG  
DMA2IFG  
DMAE0  
DMA3IFG  
DMA4IFG  
(1) Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers will not  
cause any DMA trigger event when selected.  
(2) Only on devices with peripheral module ADC12_A. Reserved on devices without ADC.  
(3) Only on devices with peripheral module DAC12_A. Reserved on devices without DAC.  
Copyright © 2020 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
9.12.10 Universal Serial Communication Interface (USCI)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions,  
A and B.  
The USCI_An module provides support for SPI (3 or 4 pin), UART, enhanced UART, or IrDA.  
The USCI_Bn module provides support for SPI (3 or 4 pin) or I2C.  
The MSP430F563x series includes two complete USCI modules (n = 0 or 1).  
9.12.11 Timer TA0  
Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-13). TA0 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/  
compare register.  
Table 9-13. Timer TA0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZQW  
PZ  
ZQW  
34-P1.0  
L5-P1.0  
TA0CLK  
ACLK  
SMCLK  
TA0CLK  
TA0.0  
DVSS  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
34-P1.0  
35-P1.1  
L5-P1.0  
M5-P1.1  
35-P1.1  
M5-P1.1  
TA0  
TA0.0  
DVSS  
DVCC  
VCC  
36-P1.2  
40-P1.6  
J6-P1.2  
J7-P1.6  
TA0.1  
TA0.1  
CCI1A  
CCI1B  
36-P1.2  
40-P1.6  
J6-P1.2  
J7-P1.6  
ADC12_A (internal)(1)  
ADC12SHSx = {1}  
CCR1  
TA1  
TA0.1  
DVSS  
GND  
DVCC  
TA0.2  
TA0.2  
DVSS  
DVCC  
TA0.3  
DVSS  
DVSS  
DVCC  
TA0.4  
DVSS  
DVSS  
DVCC  
VCC  
CCI2A  
CCI2B  
GND  
37-P1.3  
41-P1.7  
H6-P1.3  
M7-P1.7  
37-P1.3  
41-P1.7  
H6-P1.3  
M7-P1.7  
CCR2  
CCR3  
CCR4  
TA2  
TA3  
TA4  
TA0.2  
TA0.3  
TA0.4  
VCC  
38-P1.4  
39-P1.5  
M6-P1.4  
L6-P1.5  
CCI3A  
CCI3B  
GND  
38-P1.4  
39-P1.5  
M6-P1.4  
L6-P1.5  
VCC  
CCI4A  
CCI4B  
GND  
VCC  
(1) Only on devices with peripheral module ADC12_A.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.12 Timer TA1  
Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 supports multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-14). TA1 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/  
compare register.  
Table 9-14. Timer TA1 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZCA, ZQW  
PZ  
ZCA, ZQW  
42-P3.0  
L7-P3.0  
TA1CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
SMCLK  
TA1CLK  
TA1.0  
42-P3.0  
43-P3.1  
L7-P3.0  
H7-P3.1  
43-P3.1  
44-P3.2  
H7-P3.1  
M8-P3.2  
DVSS  
TA0  
TA1.0  
DVSS  
DVCC  
VCC  
44-P3.2  
45-P3.3  
M8-P3.2  
L8-P3.3  
TA1.1  
CCI1A  
DAC12_A(1)  
DAC12_0, DAC12_1  
(internal)  
CBOUT  
(internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA1.1  
TA1.2  
DVSS  
DVCC  
TA1.2  
GND  
VCC  
CCI2A  
45-P3.3  
L8-P3.3  
ACLK  
(internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with peripheral module DAC12_A.  
Copyright © 2020 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
9.12.13 Timer TA2  
Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 supports multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-15). TA2 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/  
compare register.  
Table 9-15. Timer TA2 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZCA, ZQW  
PZ  
ZCA, ZQW  
46-P3.4  
J8-P3.4  
TA2CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
SMCLK  
TA2CLK  
TA2.0  
46-P3.4  
47-P3.5  
J8-P3.4  
M9-P3.5  
47-P3.5  
48-P3.6  
M9-P3.5  
L9-P3.6  
DVSS  
TA0  
TA2.0  
DVSS  
DVCC  
VCC  
48-P3.6  
49-P3.7  
L9-P3.6  
TA2.1  
CCI1A  
CBOUT  
(internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA2.1  
TA2.2  
DVSS  
DVCC  
TA2.2  
GND  
VCC  
M10-P3.7  
CCI2A  
49-P3.7  
M10-P3.7  
ACLK  
(internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.14 Timer TB0  
Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 supports multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-16). TB0 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/  
compare register.  
Table 9-16. Timer TB0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZCA, ZQW  
PZ  
ZCA, ZQW  
58-P8.0  
J11-P8.0  
TB0CLK  
TB0CLK  
P2MAPx(3)  
P2MAPx(3)  
ACLK  
ACLK  
Timer  
NA  
NA  
SMCLK  
SMCLK  
58-P8.0  
J11-P8.0  
TB0CLK  
TB0CLK  
P2MAPx(3)  
P2MAPx(3)  
50-P4.0  
J9-P4.0  
TB0.0  
TB0.0  
CCI0A  
CCI0B  
50-P4.0  
J9-P4.0  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
ADC12 (internal) (1)  
ADC12SHSx = {2}  
CCR0  
CCR1  
TB0  
TB1  
TB0.0  
TB0.1  
DVSS  
GND  
DVCC  
TB0.1  
TB0.1  
VCC  
51-P4.1  
M11-P4.1  
CCI1A  
CCI1B  
51-P4.1  
P2MAPx(3)  
M11-P4.1  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
ADC12 (internal) (1)  
ADC12SHSx = {3}  
DVSS  
GND  
DVCC  
TB0.2  
TB0.2  
VCC  
52-P4.2  
L10-P4.2  
CCI2A  
CCI2B  
52-P4.2  
P2MAPx(3)  
L10-P4.2  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
DAC12_A(2)  
DAC12_0, DAC12_1  
(internal)  
CCR2  
TB2  
TB0.2  
DVSS  
GND  
DVCC  
TB0.3  
TB0.3  
DVSS  
DVCC  
TB0.4  
TB0.4  
DVSS  
DVCC  
TB0.5  
TB0.5  
DVSS  
DVCC  
TB0.6  
TB0.6  
DVSS  
DVCC  
VCC  
CCI3A  
CCI3B  
GND  
53-P4.3  
M12-P4.3  
53-P4.3  
M12-P4.3  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
CCR3  
CCR4  
CCR5  
CCR6  
TB3  
TB4  
TB5  
TB6  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
VCC  
54-P4.4  
L12-P4.4  
CCI4A  
CCI4B  
GND  
54-P4.4  
L12-P4.4  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
VCC  
55-P4.5  
L11-P4.5  
CCI5A  
CCI5B  
GND  
55-P4.5  
L11-P4.5  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
VCC  
56-P4.6  
K11-P4.6  
CCI6A  
CCI6B  
GND  
56-P4.6  
K11-P4.6  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
P2MAPx(3)  
VCC  
(1) Only on devices with peripheral module ADC12_A.  
(2) Only on devices with peripheral module DAC12_A.  
(3) Timer functions selectable by the port mapping controller.  
Copyright © 2020 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
9.12.15 Comparator_B  
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,  
battery voltage supervision, and monitoring of external analog signals.  
9.12.16 ADC12_A  
The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR  
core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-  
and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU  
intervention.  
The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A may be used in 8-bit or 12-bit  
mode, and may be used with the DMA controller. When multiple DAC12_A modules are present, they may be  
grouped together for synchronous operation.  
9.12.18 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
9.12.19 Voltage Reference (REF) Module  
The REF module generates all of the critical reference voltages that can be used by the various analog  
peripherals in the device.  
9.12.20 USB Universal Serial Bus  
The USB module is a fully integrated USB interface that is compliant with the USB 2.0 specification. The module  
supports full-speed operation of control, interrupt, and bulk transfers. The module includes an integrated LDO,  
PHY, and PLL. The PLL is highly flexible and can support a wide range of input clock frequencies. USB RAM,  
when not used for USB communication, can be used by the system.  
9.12.21 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The L version of the EEM has the following features:  
Eight hardware triggers or breakpoints on memory access  
Two hardware triggers or breakpoints on CPU register write access  
Up to 10 hardware triggers can be combined to form complex triggers or breakpoints  
Two cycle counters  
Sequencer  
State storage  
Clock control on module level  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.22 Peripheral File Map  
Table 9-17 lists the register base address for all of the available peripheral modules.  
Table 9-17. Peripherals  
MODULE NAME  
Special Functions (see Table 9-18)  
PMM (see Table 9-19)  
BASE ADDRESS  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
01C0h  
01D0h  
0200h  
0220h  
0240h  
0260h  
0280h  
0320h  
0340h  
0380h  
03C0h  
0400h  
0480h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
0540h  
0550h  
0560h  
05C0h  
05E0h  
0600h  
0620h  
0700h  
0780h  
08C0h  
0900h  
0920h  
OFFSET ADDRESS RANGE(1)  
000h to 01Fh  
000h to 010h  
000h to 00Fh  
000h to 007h  
000h to 001h  
000h to 001h  
000h to 01Fh  
000h to 01Fh  
000h to 001h  
000h to 003h  
000h to 007h  
000h to 01Fh  
000h to 01Fh  
000h to 00Bh  
000h to 00Bh  
000h to 00Bh  
000h to 01Fh  
000h to 02Eh  
000h to 02Eh  
000h to 02Eh  
000h to 02Eh  
000h to 01Fh  
000h to 01Fh  
000h to 02Fh  
000h to 00Fh  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 03Fh  
000h to 01Fh  
000h to 00Fh  
000h to 014h  
000h to 01Fh  
Flash Control (see Table 9-20)  
CRC16 (see Table 9-21)  
RAM Control (see Table 9-22)  
Watchdog (see Table 9-23)  
UCS (see Table 9-24)  
SYS (see Table 9-25)  
Shared Reference (see Table 9-26)  
Port Mapping Control (see Table 9-27)  
Port Mapping Port P2 (see Table 9-27)  
Port P1, P2 (see Table 9-28)  
Port P3, P4 (see Table 9-29)  
Port P5, P6 (see Table 9-30)  
Port P7, P8 (see Table 9-31)  
Port P9 (see Table 9-32)  
Port PJ (see Table 9-33)  
Timer TA0 (see Table 9-34)  
Timer TA1 (see Table 9-35)  
Timer TB0 (see Table 9-36)  
Timer TA2 (see Table 9-37)  
Battery Backup (see Table 9-38)  
RTC_B (see Table 9-39)  
32-bit Hardware Multiplier (see Table 9-40)  
DMA General Control (see Table 9-41)  
DMA Channel 0 (see Table 9-41)  
DMA Channel 1 (see Table 9-41)  
DMA Channel 2 (see Table 9-41)  
DMA Channel 3 (see Table 9-41)  
DMA Channel 4 (see Table 9-41)  
DMA Channel 5 (see Table 9-41)  
USCI_A0 (see Table 9-42)  
USCI_B0 (see Table 9-43)  
USCI_A1 (see Table 9-44)  
USCI_B1 (see Table 9-45)  
ADC12_A (see Table 9-46)  
DAC12_A (see Table 9-47)  
Comparator_B (see Table 9-48)  
USB configuration (see Table 9-49)  
USB control (see Table 9-50)  
(1) For a detailed description of the individual control register offset addresses, see the MSP430F5xx and MSP430F6xx Family User's  
Guide.  
Copyright © 2020 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-18. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
SFRIE1  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
Table 9-19. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
PMM control 0  
PMMCTL0  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
10h  
PMM control 1  
PMMCTL1  
SVSMHCTL  
SVSMLCTL  
PMMIFG  
SVS high-side control  
SVS low-side control  
PMM interrupt flags  
PMM interrupt enable  
PMM power mode 5 control  
PMMIE  
PM5CTL0  
Table 9-20. Flash Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
Flash control 1  
Flash control 3  
Flash control 4  
FCTL1  
FCTL3  
FCTL4  
00h  
04h  
06h  
Table 9-21. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC data input  
CRC result  
CRC16DI  
00h  
04h  
CRC16INIRES  
Table 9-22. RAM Control Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
OFFSET  
RAM control 0  
RCCTL0  
00h  
00h  
Table 9-23. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
Watchdog timer control  
WDTCTL  
Table 9-24. UCS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
UCS control 0  
UCS control 1  
UCS control 2  
UCS control 3  
UCS control 4  
UCS control 5  
UCS control 6  
UCS control 7  
UCS control 8  
UCSCTL0  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
UCSCTL1  
UCSCTL2  
UCSCTL3  
UCSCTL4  
UCSCTL5  
UCSCTL6  
UCSCTL7  
UCSCTL8  
Table 9-25. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
System control  
SYSCTL  
00h  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-25. SYS Registers (Base Address: 0180h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Bootloader configuration area  
SYSBSLC  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
JTAG mailbox control  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
SYSSNIV  
SYSRSTIV  
Table 9-26. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
Shared reference control  
REFCTL  
00h  
Table 9-27. Port Mapping Registers  
(Base Address of Port Mapping Control: 01C0h, Port P2: 01D0h)  
REGISTER DESCRIPTION  
REGISTER  
Port mapping password  
Port mapping control  
Port P2.0 mapping  
Port P2.1 mapping  
Port P2.2 mapping  
Port P2.3 mapping  
Port P2.4 mapping  
Port P2.5 mapping  
Port P2.6 mapping  
Port P2.7 mapping  
PMAPPWD  
00h  
02h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
PMAPCTL  
P2MAP0  
P2MAP1  
P2MAP2  
P2MAP3  
P2MAP4  
P2MAP5  
P2MAP6  
P2MAP7  
Table 9-28. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P1 output  
Port P1 direction  
P1OUT  
P1DIR  
P1REN  
P1DS  
P1SEL  
P1IV  
Port P1 pullup/pulldown enable  
Port P1 drive strength  
Port P1 selection  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2DS  
P2SEL  
Port P2 direction  
Port P2 pullup/pulldown enable  
Port P2 drive strength  
Port P2 selection  
Copyright © 2020 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-28. Port P1, P2 Registers (Base Address: 0200h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IV  
1Eh  
19h  
1Bh  
1Dh  
P2IES  
P2IE  
P2IFG  
Table 9-29. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P3 output  
Port P3 direction  
P3OUT  
P3DIR  
P3REN  
P3DS  
P3SEL  
P3IV  
Port P3 pullup/pulldown enable  
Port P3 drive strength  
Port P3 selection  
Port P3 interrupt vector word  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
P3IES  
P3IE  
P3IFG  
P4IN  
Port P4 input  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4DS  
P4SEL  
P4IV  
Port P4 direction  
Port P4 pullup/pulldown enable  
Port P4 drive strength  
Port P4 selection  
Port P4 interrupt vector word  
Port P4 interrupt edge select  
Port P4 interrupt enable  
Port P4 interrupt flag  
P4IES  
P4IE  
P4IFG  
Table 9-30. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P5 output  
P5OUT  
P5DIR  
P5REN  
P5DS  
Port P5 direction  
Port P5 pullup/pulldown enable  
Port P5 drive strength  
Port P5 selection  
P5SEL  
P6IN  
Port P6 input  
Port P6 output  
P6OUT  
P6DIR  
P6REN  
P6DS  
Port P6 direction  
Port P6 pullup/pulldown enable  
Port P6 drive strength  
Port P6 selection  
P6SEL  
Table 9-31. Port P7, P8 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P7 input  
P7IN  
00h  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-31. Port P7, P8 Registers (Base Address: 0260h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P7 output  
P7OUT  
P7DIR  
P7REN  
P7DS  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P7 direction  
Port P7 pullup/pulldown enable  
Port P7 drive strength  
Port P7 selection  
P7SEL  
P8IN  
Port P8 input  
Port P8 output  
P8OUT  
P8DIR  
P8REN  
P8DS  
Port P8 direction  
Port P8 pullup/pulldown enable  
Port P8 drive strength  
Port P8 selection  
P8SEL  
Table 9-32. Port P9 Register (Base Address: 0280h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P9 input  
P9IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
Port P9 output  
P9OUT  
P9DIR  
P9REN  
P9DS  
Port P9 direction  
Port P9 pullup/pulldown enable  
Port P9 drive strength  
Port P9 selection  
P9SEL  
Table 9-33. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
08h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
PJDS  
Port PJ direction  
Port PJ pullup/pulldown enable  
Port PJ drive strength  
Table 9-34. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA0 control  
TA0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
TA0 interrupt vector  
TA0IV  
Copyright © 2020 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-35. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA1 control  
TA1CTL  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1 interrupt vector  
TA1IV  
Table 9-36. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TB0 control  
TB0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0 interrupt vector  
TB0IV  
Table 9-37. TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA2 control  
TA2CTL  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA2 counter  
TA2CCTL0  
TA2CCTL1  
TA2CCTL2  
TA2R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2CCR2  
TA2EX0  
TA2 interrupt vector  
TA2IV  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-38. Battery Backup Registers (Base Address: 0480h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Battery backup memory 0  
Battery backup memory 1  
Battery backup memory 2  
Battery backup memory 3  
Battery backup control  
Battery charger control  
BAKMEM0  
00h  
02h  
04h  
06h  
1Ch  
1Eh  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKCTL  
BAKCHCTL  
Table 9-39. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
RTC control 0  
RTCCTL0  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Eh  
RTC control 1  
RTCCTL1  
RTCCTL2  
RTCCTL3  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTC control 2  
RTC control 3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTC prescaler 1  
RTC interrupt vector word  
RTC seconds  
RTCPS1  
RTCIV  
RTCSEC  
RTC minutes  
RTCMIN  
RTC hours  
RTCHOUR  
RTCDOW  
RTCDAY  
RTC day of week  
RTC days  
RTC month  
RTCMON  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTCAHOUR  
RTCADOW  
RTCADAY  
BIN2BCD  
BCD2BIN  
RTC year low  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTC alarm day of week  
RTC alarm days  
Binary-to-BCD conversion  
BCD-to-binary conversion  
Table 9-40. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
Copyright © 2020 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-40. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
MPYS32H  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control 0  
RES3  
MPY32CTL0  
Table 9-41. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA  
Channel 4: 0550h, DMA Channel 5: 0560h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
DMA general control: DMA module control 0  
DMACTL0  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
DMA general control: DMA module control 1  
DMA general control: DMA module control 2  
DMA general control: DMA module control 3  
DMA general control: DMA module control 4  
DMA general control: DMA interrupt vector  
DMA channel 0 control  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA0CTL  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA channel 3 control  
DMA3CTL  
DMA3SAL  
DMA3SAH  
DMA3DAL  
DMA3DAH  
DMA channel 3 source address low  
DMA channel 3 source address high  
DMA channel 3 destination address low  
DMA channel 3 destination address high  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-41. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA  
Channel 4: 0550h, DMA Channel 5: 0560h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
DMA channel 3 transfer size  
DMA channel 4 control  
DMA3SZ  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
DMA4CTL  
DMA4SAL  
DMA4SAH  
DMA4DAL  
DMA4DAH  
DMA4SZ  
DMA channel 4 source address low  
DMA channel 4 source address high  
DMA channel 4 destination address low  
DMA channel 4 destination address high  
DMA channel 4 transfer size  
DMA channel 5 control  
DMA5CTL  
DMA5SAL  
DMA5SAH  
DMA5DAL  
DMA5DAH  
DMA5SZ  
DMA channel 5 source address low  
DMA channel 5 source address high  
DMA channel 5 destination address low  
DMA channel 5 destination address high  
DMA channel 5 transfer size  
Table 9-42. USCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI control 0  
UCA0CTL0  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 1  
UCA0CTL1  
UCA0BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA0BR1  
USCI modulation control  
USCI status  
UCA0MCTL  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA0IFG  
UCA0IV  
Table 9-43. USCI_B0 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
UCB0CTL0  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
UCB0CTL1  
UCB0BR0  
UCB0BR1  
UCB0STAT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA  
UCB0I2CSA  
UCB0IE  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB0IFG  
Copyright © 2020 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-43. USCI_B0 Registers (Base Address: 05E0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
USCI interrupt vector word  
UCB0IV  
1Eh  
Table 9-44. USCI_A1 Registers (Base Address: 0600h)  
REGISTER DESCRIPTION  
REGISTER  
USCI control 0  
UCA1CTL0  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 1  
UCA1CTL1  
UCA1BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA1BR1  
USCI modulation control  
USCI status  
UCA1MCTL  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA1IFG  
UCA1IV  
Table 9-45. USCI_B1 Registers (Base Address: 0620h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
UCB1CTL0  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB1CTL1  
UCB1BR0  
UCB1BR1  
UCB1STAT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA  
UCB1I2CSA  
UCB1IE  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB1IFG  
USCI interrupt vector word  
UCB1IV  
Table 9-46. ADC12_A Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
ADC12 control 0  
ADC12CTL0  
00h  
02h  
04h  
0Ah  
0Ch  
0Eh  
10h  
11h  
12h  
13h  
ADC12 control 1  
ADC12CTL1  
ADC12CTL2  
ADC12IFG  
ADC12 control 2  
Interrupt flag  
Interrupt enable  
ADC12IE  
Interrupt vector word  
ADC memory control 0  
ADC memory control 1  
ADC memory control 2  
ADC memory control 3  
ADC12IV  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-46. ADC12_A Registers (Base Address: 0700h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
ADC memory control 4  
ADC memory control 5  
ADC memory control 6  
ADC memory control 7  
ADC memory control 8  
ADC memory control 9  
ADC memory control 10  
ADC memory control 11  
ADC memory control 12  
ADC memory control 13  
ADC memory control 14  
ADC memory control 15  
Conversion memory 0  
Conversion memory 1  
Conversion memory 2  
Conversion memory 3  
Conversion memory 4  
Conversion memory 5  
Conversion memory 6  
Conversion memory 7  
Conversion memory 8  
Conversion memory 9  
Conversion memory 10  
Conversion memory 11  
Conversion memory 12  
Conversion memory 13  
Conversion memory 14  
Conversion memory 15  
ADC12MCTL4  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MEM0  
ADC12MEM1  
ADC12MEM2  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
Table 9-47. DAC12_A Registers (Base Address: 0780h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
DAC12_A channel 0 control 0  
DAC12_A channel 0 control 1  
DAC12_A channel 0 data  
DAC12_0CTL0  
00h  
02h  
04h  
06h  
08h  
10h  
12h  
14h  
16h  
18h  
1Eh  
DAC12_0CTL1  
DAC12_0DAT  
DAC12_A channel 0 calibration control  
DAC12_A channel 0 calibration data  
DAC12_A channel 1 control 0  
DAC12_A channel 1 control 1  
DAC12_A channel 1 data  
DAC12_0CALCTL  
DAC12_0CALDAT  
DAC12_1CTL0  
DAC12_1CTL1  
DAC12_1DAT  
DAC12_A channel 1 calibration control  
DAC12_A channel 1 calibration data  
DAC12_A interrupt vector word  
DAC12_1CALCTL  
DAC12_1CALDAT  
DAC12IV  
Table 9-48. Comparator_B Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Comp_B control 0  
CBCTL0  
00h  
Copyright © 2020 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-48. Comparator_B Registers (Base Address: 08C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Comp_B control 1  
Comp_B control 2  
Comp_B control 3  
Comp_B interrupt  
CBCTL1  
02h  
04h  
06h  
0Ch  
0Eh  
CBCTL2  
CBCTL3  
CBINT  
CBIV  
Comp_B interrupt vector word  
Table 9-49. USB Configuration Registers (Base Address: 0900h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USB key/ID  
USBKEYID  
00h  
02h  
04h  
08h  
0Ah  
10h  
12h  
14h  
USB module configuration  
USB PHY control  
USBCNF  
USBPHYCTL  
USBPWRCTL  
USBPWRVSR  
USBPLLCTL  
USBPLLDIV  
USBPLLIR  
USB power control  
USB power voltage setting  
USB PLL control  
USB PLL divider  
USB PLL interrupts  
Table 9-50. USB Control Registers (Base Address: 0920h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Input endpoint_0 configuration  
Input endpoint_0 byte count  
Output endpoint_0 configuration  
Output endpoint_0 byte count  
Input endpoint interrupt enables  
Output endpoint interrupt enables  
Input endpoint interrupt flags  
Output endpoint interrupt flags  
USB interrupt vector  
USBIEPCNF_0  
00h  
01h  
02h  
03h  
0Eh  
0Fh  
10h  
11h  
12h  
16h  
18h  
1Ah  
1Ch  
1Dh  
1Eh  
1Fh  
USBIEPCNT_0  
USBOEPCNF_0  
USBOEPCNT_0  
USBIEPIE  
USBOEPIE  
USBIEPIFG  
USBOEPIFG  
USBIV  
USB maintenance  
USBMAINT  
USBTSREG  
USBFN  
Timestamp  
USB frame number  
USB control  
USBCTL  
USB interrupt enables  
USB interrupt flags  
USBIE  
USBIFG  
Function address  
USBFUNADR  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13 Input/Output Diagrams  
9.13.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger  
Figure 9-2 shows the pin diagram. Table 9-51 summarizes how to select the pin function.  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
Direction  
0: Input  
1: Output  
P1DIR.x  
P1OUT.x  
0
1
Module X OUT  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3/TA0.2  
P1.4/TA0.3  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
P1.5/TA0.4  
P1.6/TA0.1  
P1.7/TA0.2  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
P1IFG.x  
Set  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
Figure 9-2. Port P1 (P1.0 to P1.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-51. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS OR SIGNALS  
FUNCTION  
PIN NAME (P1.x)  
x
P1DIR.x  
P1SEL.x  
P1.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
0
Timer TA0.TA0CLK  
ACLK  
0
1
P1.1 (I/O)  
I: 0; O: 1  
1
2
3
4
5
6
7
Timer TA0.CCI0A capture input  
Timer TA0.0 output  
P1.2 (I/O)  
0
1
I: 0; O: 1  
P1.2/TA0.1  
Timer TA0.CCI1A capture input  
Timer TA0.1 output  
P1.3 (I/O)  
0
1
I: 0; O: 1  
P1.3/TA0.2  
Timer TA0.CCI2A capture input  
Timer TA0.2 output  
P1.4 (I/O)  
0
1
I: 0; O: 1  
P1.4/TA0.3  
Timer TA0.CCI3A capture input  
Timer TA0.3 output  
P1.5 (I/O)  
0
1
I: 0; O: 1  
P1.5/TA0.4  
Timer TA0.CCI4A capture input  
Timer TA0.4 output  
P1.6 (I/O)  
0
1
I: 0; O: 1  
P1.6/TA0.1  
Timer TA0.CCI1B capture input  
Timer TA0.1 output  
P1.7 (I/O)  
0
1
I: 0; O: 1  
P1.7/TA0.2  
Timer TA0.CCI2B capture input  
Timer TA0.2 output  
0
1
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger  
Figure 9-3 shows the pin diagram. Table 9-52 summarizes how to select the pin function.  
Pad Logic  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
From Port Mapping  
P2OUT.x  
0
1
From Port Mapping  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2.6/P2MAP6  
P2.7/P2MAP7  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2IN.x  
EN  
D
To Port Mapping  
P2IRQ.x  
P2IE.x  
EN  
Q
P2IFG.x  
Set  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
Figure 9-3. Port P2 (P2.0 to P2.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-52. Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
FUNCTION  
PIN NAME (P2.x)  
x
0
1
2
3
4
5
6
7
P2DIR.x  
P2SEL.x  
P2MAPx  
P2.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2.6/P2MAP6  
P2.7/P2MAP7  
Mapped secondary digital function  
P2.1 (I/O)  
X
≤ 19  
I: 0; O: 1  
Mapped secondary digital function  
P2.2 (I/O)  
X
≤ 19  
I: 0; O: 1  
Mapped secondary digital function  
P2.3 (I/O)  
X
≤ 19  
I: 0; O: 1  
Mapped secondary digital function  
P2.4 (I/O)  
X
≤ 19  
I: 0; O: 1  
Mapped secondary digital function  
P2.5 (I/O  
X
≤ 19  
I: 0; O: 1  
Mapped secondary digital function  
P2.6 (I/O)  
X
I: 0; O: 1  
X
≤ 19  
Mapped secondary digital function  
P2.7 (I/O)  
≤ 19  
I: 0; O: 1  
X
Mapped secondary digital function  
≤ 19  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.3 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger  
Figure 9-4 shows the pin diagram. Table 9-53 summarizes how to select the pin function.  
Pad Logic  
P3REN.x  
DVSS  
DVCC  
0
1
1
Direction  
0: Input  
1: Output  
P3DIR.x  
P3OUT.x  
0
1
Module X OUT  
P3.0/TA1CLK/CBOUT  
P3.1/TA1.0  
P3.2/TA1.1  
P3DS.x  
0: Low drive  
1: High drive  
P3SEL.x  
P3IN.x  
P3.3/TA1.2  
P3.4/TA2CLK/SMCLK  
P3.5/TA2.0  
P3.6/TA2.1  
EN  
D
P3.7/TA2.2  
Module X IN  
P3IRQ.x  
P3IE.x  
EN  
Q
P3IFG.x  
Set  
P3SEL.x  
P3IES.x  
Interrupt  
Edge  
Select  
Figure 9-4. Port P3 (P3.0 to P3.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-53. Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS OR SIGNALS  
FUNCTION  
PIN NAME (P3.x)  
x
P3DIR.x  
P3SEL.x  
P3.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
P3.0/TA1CLK/CBOUT  
P3.1/TA1.0  
0
Timer TA1.TA1CLK  
CBOUT  
0
1
P3.1 (I/O)  
I: 0; O: 1  
1
2
3
4
5
6
7
Timer TA1.CCI0A capture input  
Timer TA1.0 output  
P3.2 (I/O)  
0
1
I: 0; O: 1  
P3.2/TA1.1  
Timer TA1.CCI1A capture input  
Timer TA1.1 output  
P3.3 (I/O)  
0
1
I: 0; O: 1  
P3.3/TA1.2  
Timer TA1.CCI2A capture input  
Timer TA1.2 output  
P3.4 (I/O)  
0
1
I: 0; O: 1  
P3.4/TA2CLK/SMCLK  
P3.5/TA2.0  
Timer TA2.TA2CLK  
SMCLK  
0
1
P3.5 (I/O)  
I: 0; O: 1  
Timer TA2.CCI0A capture input  
Timer TA2.0 output  
P3.6 (I/O)  
0
1
I: 0; O: 1  
P3.6/TA2.1  
Timer TA2.CCI1A capture input  
Timer TA2.1 output  
P3.7 (I/O)  
0
1
I: 0; O: 1  
P3.7/TA2.2  
Timer TA2.CCI2A capture input  
Timer TA2.2 output  
0
1
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger  
Figure 9-5 shows the pin diagram. Table 9-54 summarizes how to select the pin function.  
Pad Logic  
P4REN.x  
DVSS  
DVCC  
0
1
1
Direction  
0: Input  
1: Output  
P4DIR.x  
P4OUT.x  
0
1
Module X OUT  
P4.0/TB0.0  
P4.1/TB0.1  
P4.2/TB0.2  
P4.3/TB0.3  
P4.4/TB0.4  
P4.5/TB0.5  
P4.6/TB0.6  
P4DS.x  
0: Low drive  
1: High drive  
P4SEL.x  
P4IN.x  
EN  
D
P4.7/TB0OUTH/SVMOUT  
Module X IN  
P4IRQ.x  
P4IE.x  
EN  
Q
P4IFG.x  
Set  
P4SEL.x  
P4IES.x  
Interrupt  
Edge  
Select  
Figure 9-5. Port P4 (P4.0 to P4.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-54. Port P4 (P4.0 to P4.7) Pin Functions  
CONTROL BITS OR SIGNALS  
FUNCTION  
PIN NAME (P4.x)  
x
P4DIR.x  
P4SEL.x  
P4.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
P4.0/TB0.0  
0
Timer TB0.CCI0A capture input  
Timer TB0.0 output(1)  
P4.1 (I/O)  
0
1
I: 0; O: 1  
P4.1/TB0.1  
1
2
3
4
5
6
7
Timer TB0.CCI1A capture input  
Timer TB0.1 output(1)  
P4.2 (I/O)  
0
1
I: 0; O: 1  
P4.2/TB0.2  
Timer TB0.CCI2A capture input  
Timer TB0.2 output(1)  
P4.3 (I/O)  
0
1
I: 0; O: 1  
P4.3/TB0.3  
Timer TB0.CCI3A capture input  
Timer TB0.3 output(1)  
P4.4 (I/O)  
0
1
I: 0; O: 1  
P4.4/TB0.4  
Timer TB0.CCI4A capture input  
Timer TB0.4 output(1)  
P4.5 (I/O)  
0
1
I: 0; O: 1  
P4.5/TB0.5  
Timer TB0.CCI5A capture input  
Timer TB0.5 output(1)  
P4.6 (I/O)  
0
1
I: 0; O: 1  
P4.6/TB0.6  
Timer TB0.CCI6A capture input  
Timer TB0.6 output(1)  
P4.7 (I/O)  
0
1
I: 0; O: 1  
P4.7/TB0OUTH/ SVMOUT  
Timer TB0.TB0OUTH  
SVMOUT  
0
1
(1) Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger  
Figure 9-6 shows the pin diagram. Table 9-55 summarizes how to select the pin function.  
Pad Logic  
To/From  
Reference  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
P5OUT.x  
0
1
Module X OUT  
P5.0/VREF+/VeREF+  
P5.1/VREF–/VeREF–  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 9-6. Port P5 (P5.0 and P5.1) Diagram  
Table 9-55. Port P5 (P5.0 and P5.1) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
REFOUT  
P5.0 (I/O)(2)  
VeREF+(3)  
VREF+(4)  
I: 0; O: 1  
0
1
1
0
1
1
X
0
1
X
0
1
P5.0/VREF+/VeREF+  
0
X
X
P5.1 (I/O)(2)  
VeREF-(5)  
VREF-(6)  
I: 0; O: 1  
P5.1/VREF-/VeREF-  
1
X
X
(1) X = Don't care  
(2) Default condition  
(3) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A, Comparator_B, or  
DAC12_A.  
(4) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. The ADC12_A VREF+ reference is available at the pin.  
(5) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A, Comparator_B, or  
DAC12_A.  
(6) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. The ADC12_A VREF- reference is available at the pin.  
Copyright © 2020 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
9.13.6 Port P5 (P5.2 to P5.7) Input/Output With Schmitt Trigger  
Figure 9-7 shows the pin diagram. Table 9-56 summarizes how to select the pin function.  
Pad Logic  
P5REN.x  
DVSS  
DVCC  
0
1
1
Direction  
0: Input  
1: Output  
P5DIR.x  
P5OUT.x  
0
1
Module X OUT  
P5.2  
P5.3  
P5.4  
P5.5  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
P5.6/ADC12CLK/DMAE0  
P5.7/RTCCLK  
EN  
D
Module X IN  
Figure 9-7. Port P5 (P5.2 to P5.7) Diagram  
Table 9-56. Port P5 (P5.2 to P5.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
1
P5SEL.x  
P5.2  
P5.3  
P5.4  
P5.5  
2
3
4
5
P5.2 (I/O)  
P5.3 (I/O)  
P5.4 (I/O)  
P5.5 (I/O)  
P5.6 (I/O)  
ADC12CLK  
DMAE0  
0
0
0
0
0
1
1
0
1
P5.6/ADC12CLK/DMAE0  
P5.7/RTCCLK  
6
7
0
P5.7 (I/O)  
RTCCLK  
I: 0; O: 1  
1
9.13.7 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger  
Figure 9-8 shows the pin diagram. Table 9-57 summarizes how to select the pin function.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Pad Logic  
To ADC12  
INCHx = y  
0
Dvss  
1
2
0 if DAC12AMPx=0  
1 if DAC12AMPx=1  
2 if DAC12AMPx>1  
From DAC12_A  
To Comparator_B  
From Comparator_B  
CBPD.x  
DAC12AMPx>0  
DAC12OPS  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
P6OUT.x  
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
Bus  
Keeper  
Figure 9-8. Port P6 (P6.0 to P6.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-57. Port P6 (P6.0 to P6.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
FUNCTION  
PIN NAME (P6.x)  
x
P6DIR.x  
P6SEL.x  
CBPD.x  
DAC12OPS  
DAC12AMPx  
P6.0 (I/O)  
CB0  
I: 0; O: 1  
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
X
0
X
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
X
0
1
X
X
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
X
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
0
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
0
X
A0(1) (2)  
P6.1 (I/O)  
CB1  
X
I: 0; O: 1  
1
2
3
4
5
X
A1(1) (2)  
P6.2 (I/O)  
CB2  
X
I: 0; O: 1  
X
A2(1) (2)  
P6.3 (I/O)  
CB3  
X
I: 0; O: 1  
X
A3(1) (2)  
P6.4 (I/O)  
CB4  
X
I: 0; O: 1  
X
A4(1) (2)  
P6.5 (I/O)  
CB5  
X
I: 0; O: 1  
X
A5 (1) (2)  
P6.6 (I/O)  
CB6  
X
I: 0; O: 1  
X
X
0
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
6
7
A6(1) (2)  
X
X
0
DAC0  
X
0
>1  
0
P6.7 (I/O)  
CB7  
I: 0; O: 1  
X
X
X
X
X
0
A7(1) (2)  
X
0
DAC1  
0
>1  
(1) Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals.  
(2) The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.8 Port P7 (P7.2) Input/Output With Schmitt Trigger  
Figure 9-9 shows the pin diagram. Table 9-58 summarizes how to select the pin function.  
Pad Logic  
To XT2  
P7REN.2  
DVSS  
DVCC  
0
1
1
P7DIR.2  
P7OUT.2  
0
1
P7.2/XT2IN  
P7DS.2  
0: Low drive  
1: High drive  
P7SEL.2  
P7IN.2  
Bus  
Keeper  
Figure 9-9. Port P7 (P7.2) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
9.13.9 Port P7 (P7.3) Input/Output With Schmitt Trigger  
Figure 9-10 shows the pin diagram. Table 9-58 summarizes how to select the pin function.  
Pad Logic  
To XT2  
P7REN.3  
DVSS  
DVCC  
0
1
1
P7DIR.3  
0
1
P7OUT.3  
P7SEL.2  
P7.3/XT2OUT  
P7DS.3  
0: Low drive  
1: High drive  
XT2BYPASS  
P7SEL.3  
P7IN.3  
Bus  
Keeper  
Figure 9-10. Port P7 (P7.3) Diagram  
Table 9-58. Port P7 (P7.2 and P7.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.2  
P7SEL.3  
XT2BYPASS  
P7.2 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
0
X
0
1
X
0
1
P7.2/XT2IN  
2
XT2IN crystal mode(1)  
XT2IN bypass mode(1)  
P7.3 (I/O)  
X
X
I: 0; O: 1  
P7.3/XT2OUT  
3
XT2OUT crystal mode(2)  
P7.3 (I/O)(2)  
X
X
X
0
(1) Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal  
mode or bypass mode.  
(2) Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as  
general-purpose I/O.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.10 Port P7 (P7.4 to P7.7) Input/Output With Schmitt Trigger  
Figure 9-11 shows the pin diagram. Table 9-59 summarizes how to select the pin function.  
0
Pad Logic  
DVSS  
1
2
0 if DAC12AMPx = 0  
1 if DAC12AMPx = 1  
2 if DAC12AMPx > 1  
From DAC12_A  
To ADC12  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
DAC12AMPx>0  
DAC12OPS  
P7REN.x  
P7SEL.x  
P7DIR.x  
DVSS  
DVCC  
0
1
1
P7OUT.x  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
P7DS.x  
0: Low drive  
1: High drive  
P7IN.x  
Bus  
Keeper  
Figure 9-11. Port P7 (P7.4 to P7.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-59. Port P7 (P7.4 to P7.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
FUNCTION  
PIN NAME (P7.x)  
x
P7DIR.x  
P7SEL.x  
CBPD.x  
DAC12OPS  
DAC12AMPx  
P7.4 (I/O)  
I: 0; O: 1  
0
X
1
0
X
1
0
X
1
X
0
X
1
X
0
1
X
0
1
X
0
1
X
X
0
1
X
X
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
X
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
0
P7.4/CB8/A12  
P7.5/CB9/A13  
4
Comparator_B input CB8  
A12(1) (2)  
X
X
P7.5 (I/O)  
I: 0; O: 1  
5
6
Comparator_B input CB9  
A13(1) (2)  
X
X
P7.6 (I/O)  
I: 0; O: 1  
Comparator_B input CB10  
A14(1) (2)  
X
X
0
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
X
X
0
DAC12_A output DAC0  
P7.7 (I/O)  
X
1
>1  
0
I: 0; O: 1  
X
Comparator_B input CB11  
A15(1) (2)  
X
X
X
X
0
7
X
0
DAC12_A output DAC1  
1
>1  
(1) Setting the P7SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals.  
(2) The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.11 Port P8 (P8.0 to P8.7) Input/Output With Schmitt Trigger  
Figure 9-12 shows the pin diagram. Table 9-60 summarizes how to select the pin function.  
Pad Logic  
P8REN.x  
DVSS  
DVCC  
0
1
1
P8DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
0
1
P8OUT.x  
Module X OUT  
P8.0/TB0CLK  
P8DS.x  
0: Low drive  
1: High drive  
P8.1/UCB1STE/UCA1CLK  
P8.2/UCA1TXD/UCA1SIMO  
P8.3/UCA1RXD/UCA1SOMI  
P8.4/UCB1CLK/UCA1STE  
P8.5/UCB1SIMO//UCB1SDA  
P8.6/UCB1SOMI/UCB1SCL  
P8.7  
P8SEL.x  
P8IN.x  
EN  
D
Module X IN  
Figure 9-12. Port P8 (P8.0 to P8.7) Diagram  
Table 9-60. Port P8 (P8.0 to P8.7) Pin Functions  
CONTROL BITS OR  
SIGNALS(1)  
PIN NAME (P9.x)  
x
FUNCTION  
P8DIR.x  
P8SEL.x  
P8.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
P8.0/TB0CLK  
0
1
2
3
4
5
Timer TB0.TB0CLK clock input  
P8.1 (I/O)  
0
I: 0; O: 1  
X
P8.1/UCB1STE/UCA1CLK  
P8.2/UCA1TXD/UCA1SIMO  
P8.3/UCA1RXD/UCA1SOMI  
P8.4/UCB1CLK/UCA1STE  
P8.5/UCB1SIMO/UCB1SDA  
UCB1STE/UCA1CLK  
P8.2 (I/O)  
I: 0; O: 1  
X
UCA1TXD/UCA1SIMO  
P8.3 (I/O)  
I: 0; O: 1  
X
UCA1RXD/UCA1SOMI  
P8.4 (I/O)  
I: 0; O: 1  
X
UCB1CLK/UCA1STE  
P8.5 (I/O)  
I: 0; O: 1  
X
UCB1SIMO/UCB1SDA  
P8.6 (I/O)  
I: 0; O: 1  
X
P8.6/UCB1SOMI/UCB1SCL  
P8.7  
6
7
UCB1SOMI/UCB1SCL  
P8.7 (I/O)  
I: 0; O: 1  
Copyright © 2020 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
9.13.12 Port P9 (P9.0 to P9.7) Input/Output With Schmitt Trigger  
Figure 9-13 shows the pin diagram. Table 9-61 summarizes how to select the pin function.  
Pad Logic  
P9REN.x  
0
1
DVSS  
DVCC  
1
Direction  
0: Input  
1: Output  
P9DIR.x  
P9OUT.x  
P9.0  
P9.1  
P9.2  
P9.3  
P9.4  
P9.5  
P9.6  
P9.7  
P9DS.x  
0: Low drive  
1: High drive  
P9IN.x  
Figure 9-13. Port P9 (P9.0 to P9.7) Diagram  
Table 9-61. Port P9 (P9.0 to P9.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P9.x)  
x
FUNCTION  
P9DIR.x  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
P9SEL.x  
P9.0  
0
1
2
3
4
5
6
7
P9.0 (I/O)  
P9.1 (I/O)  
P9.2 (I/O)  
P9.3 (I/O)  
P9.4 (I/O)  
P9.5 (I/O)  
P9.6 (I/O)  
P9.7 (I/O)  
0
0
0
0
0
0
0
0
P9.1  
P9.2  
P9.3  
P9.4  
P9.5  
P9.6  
P9.7  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.13 Port PU (PU.0/DP, PU.1/DM, PUR) USB Ports  
Figure 9-14 shows the pin diagram. Table 9-62 summarizes how to select the pin function.  
PUSEL  
VUSB  
VSSU  
Pad Logic  
PUOPE  
0
1
USB output enable  
PUOUT0  
0
1
PU.0/DP  
USB DP output  
PUIN0  
USB DP input  
PUIPE  
PUIN1  
USB DM input  
PUOUT1  
0
1
PU.1/DM  
USB DM output  
VUSB  
VSSU  
Pad Logic  
PUREN  
PUR  
“1”  
PUSEL  
PURIN  
Figure 9-14. Port PU (PU.0 and PU.1) Diagram  
Table 9-62. Port PU.0/DP and PU.1/DM Output Functions  
CONTROL BITS  
PIN NAME  
FUNCTION  
PUSEL  
PUDIR  
PUOUT1  
PUOUT0  
PU.1/DM  
PU.0/DP  
0
0
0
0
0
1
0
1
1
1
1
X
X
0
0
1
1
X
X
0
1
0
1
X
Hi-Z  
0
Hi-Z  
0
Outputs off  
Outputs enabled  
Outputs enabled  
Outputs enabled  
Outputs enabled  
0
1
1
0
1
1
DM  
DP  
Direction set by USB module  
Copyright © 2020 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
Table 9-63. Port PUR Input Functions  
CONTROL BITS  
FUNCTION  
PUSEL  
PUREN  
Input disabled  
Pullup disabled  
0
0
1
1
0
Input disabled  
Pullup enabled  
1
0
1
Input enabled  
Pullup disabled  
Input enabled  
Pullup enabled  
9.13.14 Port PJ (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output  
Figure 9-15 shows the pin diagram. Table 9-64 summarizes how to select the pin function.  
Pad Logic  
PJREN.0  
0
1
DVSS  
DVCC  
1
PJDIR.0  
DVCC  
0
1
PJOUT.0  
0
1
From JTAG  
PJ.0/TDO  
PJDS.0  
0: Low drive  
1: High drive  
From JTAG  
PJIN.0  
EN  
D
Figure 9-15. Port J (PJ.0) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.15 Port PJ (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or  
Output  
Figure 9-16 shows the pin diagram. Table 9-64 summarizes how to select the pin function.  
Pad Logic  
PJREN.x  
0
1
DVSS  
DVCC  
1
PJDIR.x  
DVSS  
0
1
PJOUT.x  
0
1
From JTAG  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
PJDS.x  
0: Low drive  
1: High drive  
From JTAG  
PJIN.x  
EN  
D
To JTAG  
Figure 9-16. Port PJ (PJ.1 to PJ.3) Diagram  
Table 9-64. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS  
OR SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
I: 0; O: 1  
X
PJ.0 (I/O)(1)  
PJ.0/TDO  
0
1
2
3
TDO(2)  
PJ.1 (I/O)(1)  
TDI/TCLK(2) (3)  
PJ.2 (I/O)(1)  
TMS(2) (3)  
I: 0; O: 1  
X
PJ.1/TDI/TCLK  
PJ.2/TMS  
I: 0; O: 1  
X
PJ.3 (I/O)(1)  
TCK(2) (3)  
I: 0; O: 1  
X
PJ.3/TCK  
(1) Default condition  
(2) The pin direction is controlled by the JTAG module.  
(3) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
Copyright © 2020 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
9.14 Device Descriptors  
Table 9-65 list the contents of the device descriptor tag-length-value (TLV) structure.  
Table 9-65. MSP430F563x Device Descriptor Table  
VALUE  
SIZE  
(bytes)  
DESCRIPTION(1)  
Info length  
ADDRESS  
F5638  
06h  
F5637  
06h  
F5636  
06h  
F5635  
06h  
F5634  
06h  
F5633  
06h  
F5632  
06h  
F5631  
06h  
F5630  
06h  
01A00h  
01A01h  
01A02h  
01A04h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
01A14h  
01A15h  
01A16h  
01A18h  
1
1
2
2
1
1
1
1
4
2
2
2
1
1
2
2
CRC length  
CRC value  
06h  
06h  
06h  
06h  
06h  
06h  
06h  
06h  
06h  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
8014h 8012h 8010h 800Eh 8044h 8042h 8040h 803Eh 803Ch  
Info Block  
Device ID  
Hardware revision  
Firmware revision  
Die record tag  
Die record length  
Lot/wafer ID  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
08h  
0Ah  
08h  
0Ah  
08h  
0Ah  
08h  
0Ah  
08h  
0Ah  
08h  
0Ah  
08h  
0Ah  
08h  
0Ah  
08h  
0Ah  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Die Record  
Die X position  
Die Y position  
Test results  
ADC12 calibration tag  
ADC12 calibration length  
ADC gain factor  
ADC offset  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
ADC 1.5-V reference  
temp. l 30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
ADC 1.5-V reference  
Temperature sensor 85°C  
ADC12  
Calibration  
ADC 2.0-V reference  
Temperature sensor 30°C  
ADC 2.0-V reference  
Temperature sensor 85°C  
ADC 2.5-V reference  
Temperature sensor 30°C  
ADC 2.5-V reference  
Temperature sensor 85°C  
(1) NA = Not applicable  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
10 Device and Documentation Support  
10.1 Getting Started and Next Steps  
For more information on the MSP430family of devices and the tools and libraries that are available to help with  
your development, visit the MSP430 ultra-low-power sensing & measurement MCUs overview.  
10.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS – Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP – Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. Figure 10-1 provides a legend for reading the complete device  
name.  
Copyright © 2020 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
MSP 430 F 5 438 A I PM T -EP  
Processor Family  
MCU Platform  
Device Type  
Series  
Feature Set  
Optional: Additional Features  
Optional: Tape and Reel  
Packaging  
Optional: Temperature Range  
Optional: Revision  
Processor Family  
CC = Embedded RF Radio  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
PMS = Prototype Device  
MCU Platform  
Device Type  
430 = MSP430 low-power microcontroller platform  
Memory Type  
C = ROM  
F = Flash  
FR = FRAM  
G = Flash  
L = No nonvolatile memory  
Specialized Application  
AFE = Analog front end  
BQ = Contactless power  
CG = ROM medical  
FE = Flash energy meter  
FG = Flash medical  
FW = Flash electronic flow meter  
Series  
1 = Up to 8 MHz  
2 = Up to 16 MHz  
3 = Legacy  
4 = Up to 16 MHz with LCD driver  
5 = Up to 25 MHz  
6 = Up to 25 MHz with LCD driver  
0 = Low-voltage series  
Feature Set  
Various levels of integration within a series  
Updated version of the base part number  
Optional: Revision  
Optional: Temperature Range S = 0°C to 50°C  
C = 0°C to 70°C  
I = –40°C to 85°C  
T = –40°C to 105°C  
Packaging  
http://www.ti.com/packaging  
Optional: Tape and Reel  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
Optional: Additional Features -EP = Enhanced product (–40°C to 105°C)  
-HT = Extreme temperature parts (–55°C to 150°C)  
-Q1 = Automotive Q100 qualified  
Figure 10-1. Device Nomenclature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
10.3 Tools and Software  
All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are  
available from TI and various third parties. See them all at MSP430 ultra-low-power MCUs – Design &  
development.  
Table 10-1 lists the debug features of the MSP430F563x MCUs. See the Code Composer Studio™ IDE for  
MSP430™ MCUs User's Guide for details on the available features.  
Table 10-1. Hardware Debug Features  
BREAK-  
POINTS  
(N)  
RANGE  
BREAK-  
POINTS  
LPMx.5  
DEBUGGING  
SUPPORT  
MSP430  
ARCHITECTURE  
4-WIRE  
JTAG  
2-WIRE  
JTAG  
CLOCK  
CONTROL SEQUENCER  
STATE  
TRACE  
BUFFER  
MSP430Xv2  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
No  
Design Kits and Evaluation Modules  
MSP-TS430PZ100USB - 100-pin Target Development Board for MSP430F5x and MSP430F6x MCUs  
The MSP-TS430PZ100USB is a stand-alone 100-pin ZIF socket target board used to program and debug the  
MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.  
100-pin Target Development Board and MSP-FET Programmer Bundle for MSP430F5x and MSP430F6x MCUs  
The MSP-FET is a powerful flash emulation tool to quickly begin application development on the MSP430 MCU.  
It includes USB debugging interface used to program and debug the MSP430 in-system through the JTAG  
interface or the pin saving Spy Bi-Wire (2-wire JTAG) protocol. The flash memory can be erased and  
programmed in seconds with only a few keystrokes, and because the MSP430 flash is ultra-low power, no  
external power supply is required.  
Software  
MSP430WareSoftware  
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all  
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 design resources, MSP430Ware software also includes a high-level API called MSP430 Driver Library.  
This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of  
CCS or as a stand-alone package.  
MSP430F563x, MSP430F663x Code Examples  
C code examples are available for every MSP device that configures each of the integrated peripherals for  
various application needs.  
MSP Driver Library  
Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easy-  
to-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details  
on each function call and the recognized parameters. Developers can use Driver Library functions to write  
complete projects with minimal overhead.  
MSP EnergyTraceTechnology  
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and  
displays the application's energy profile and helps to optimize it for ultra-low-power consumption.  
Copyright © 2020 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
ULP (Ultra-Low Power) Advisor  
ULP Advisorsoftware is a tool for guiding developers to write more efficient code to fully utilize the unique  
ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new  
microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every  
last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to  
highlight areas of your code that can be further optimized for lower power.  
IEC 60730 Software Package  
The IEC 60730 MSP430 software package was developed to be useful in assisting customers in complying with  
IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General  
Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters,  
power tools, e-bikes, and many others. The IEC 60730 MSP430 software package can be embedded in  
customer applications running on MSP430s to help simplify the customer’s certification efforts of functional  
safety-compliant consumer devices to IEC 60730-1:2010 Class B.  
Fixed Point Math Library for MSP  
The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical  
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430  
MCUs. These routines are typically used in computationally intensive real-time applications where optimal  
execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is  
possible to achieve execution speeds considerably faster and energy consumption considerably lower than  
equivalent code written using floating-point math.  
Floating Point Math Library for MSP430  
Continuing to innovate in the low-power and low-cost microcontroller space, TI brings you MSPMATHLIB.  
Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you  
up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated  
in both Code Composer Studio and IAR IDEs. Read the user’s guide for an in depth look at the math library and  
relevant benchmarks.  
Development Tools  
Code Composer StudioIntegrated Development Environment for MSP Microcontrollers  
The Code Composer Studio integrated development environment (IDE) supports all MSP microcontroller  
devices. The Code Composer Studio IDE comprises a suite of embedded software utilities used to develop and  
debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build  
environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface  
taking you through each step of the application development flow. Familiar utilities and interfaces allow users to  
get started faster than ever before. The Code Composer Studio IDE combines the advantages of the Eclipse  
software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich  
development environment for embedded developers. When using the Code Composer Studio IDE with an  
MSP430 MCU, a unique and powerful set of plugins and embedded software utilities are made available to fully  
leverage the MSP430 microcontroller.  
Command-Line Programmer  
MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET  
programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary  
files (.txt or .hex) files directly to the MSP microcontroller without an IDE.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
MSP MCU Programmer and Debugger  
The MSP-FET is a powerful emulation development tool – often called a debug probe – that lets users quickly  
begin application development on MSP low-power microcontrollers (MCU). Creating MCU software usually  
requires downloading the resulting binary program to the MSP device for validation and debugging. The MSP-  
FET provides a debug communication pathway between a host computer and the target MSP. Furthermore, the  
MSP-FET also provides a Backchannel UART connection between the computer's USB interface and the MSP  
UART. This gives the MSP programmer a convenient method to communicate serially between the MSP and a  
terminal running on the computer. It also supports loading programs (often called firmware) to the MSP target  
using the BSL (bootloader) through the UART and I2C communication protocols.  
MSP-GANG Production Programmer  
The MSP Gang Programmer is a device programmer that can program up to eight identical MSP430 or MSP432  
flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard  
RS-232 or USB connection and provides flexible programming options that allow the user to fully customize the  
process. The MSP Gang Programmer is provided with an expansion board, called the Gang Splitter, that  
implements the interconnections between the MSP Gang Programmer and multiple target devices. Eight cables  
are provided that connect the expansion board to eight target devices (through JTAG or Spy-Bi-Wire  
connectors). The programming can be done with a PC or as a stand-alone device. A PC-side graphical user  
interface is also available and is DLL-based.  
10.4 Documentation Support  
The following documents describe the MSP430F563x MCUs. Copies of these documents are available on the  
Internet at www.ti.com.  
Receiving Notification of Document Updates  
To receive notification of documentation updates—including silicon errata—go to the product folder for your  
device on ti.com (for links to the product folders, see Section 10.5). In the upper right corner, click the "Alert me"  
button. This registers you to receive a weekly digest of product information that has changed (if any). For change  
details, check the revision history of any revised document.  
Errata  
MSP430F5638 Device Erratasheet  
Describes the known exceptions to the functional specifications for this device.  
MSP430F5637 Device Erratasheet  
Describes the known exceptions to the functional specifications for this device.  
MSP430F5636 Device Erratasheet  
Describes the known exceptions to the functional specifications for this device.  
MSP430F5635 Device Erratasheet  
Describes the known exceptions to the functional specifications for this device.  
MSP430F5634 Device Erratasheet  
Describes the known exceptions to the functional specifications for this device.  
MSP430F5633 Device Erratasheet  
Describes the known exceptions to the functional specifications for this device.  
MSP430F5632 Device Erratasheet  
Describes the known exceptions to the functional specifications for this device.  
Copyright © 2020 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
MSP430F5631 Device Erratasheet  
Describes the known exceptions to the functional specifications for this device.  
MSP430F5630 Device Erratasheet  
Describes the known exceptions to the functional specifications for this device.  
User's Guides  
MSP430x5xx and MSP430x6xx Family User's Guide  
Detailed information on the modules and peripherals available in this device family.  
IAR Embedded Workbench IDE for MSP430 MCUs User's Guide  
This manual describes the use of IAR Embedded Workbench (EW430) with the MSP430 ultra-low-power  
microcontrollers.  
MSP430™ Flash Devices Bootloader (BSL) User's Guide  
The MSP430 BSL lets users communicate with embedded memory in the MSP430 microcontroller during the  
prototyping phase, final production, and in service. Both the programmable memory (flash memory) and the data  
memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap loader programs  
found in some digital signal processors (DSPs) that automatically load program code (and data) from external  
memory to the internal memory of the DSP.  
MSP430 Programming With the JTAG Interface  
This document describes the functions that are required to erase, program, and verify the memory module of the  
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition,  
it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This  
document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG  
interface, which is also referred to as Spy-Bi-Wire (SBW).  
MSP430 Hardware Tools User's Guide  
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the  
program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the  
parallel port interface and the USB interface, are described.  
Application Reports  
MSP430 32-kHz Crystal Oscillators  
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal  
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the  
correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout  
are given. The document also contains detailed information on the possible oscillator tests to ensure stable  
oscillator operation in mass production.  
MSP430 System-Level ESD Considerations  
System-level ESD has become increasingly demanding with silicon technology scaling towards lower voltages  
and the need for designing cost-effective and ultra-low-power components. This application report addresses  
three different ESD topics to help board designers and OEMs understand and design robust system-level  
designs.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
10.5 Related Links  
Table 10-2 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to sample or buy.  
Table 10-2. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
MSP430F5638  
MSP430F5637  
MSP430F5636  
MSP430F5635  
MSP430F5634  
MSP430F5633  
MSP430F5632  
MSP430F5631  
MSP430F5630  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
10.6 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.7 Trademarks  
MSP430, MicroStar Junior, MSP430Ware, EnergyTrace, ULP Advisor, Code Composer Studio, and TI  
E2Eare trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
10.8 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.9 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
10.10 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
 
 
 
 
 
 
MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635  
MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630  
www.ti.com  
SLAS650G – MAY 2010 – REVISED SEPTEMBER 2020  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634  
MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430F5630IPZ  
ACTIVE  
LQFP  
PZ  
100  
113  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
M430F5630  
MSP430F5630IZQWR  
ACTIVE  
NRND  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
M430F5630  
M430F5630  
MSP430F5630IZQWT  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168 HR  
-40 to 85  
MSP430F5631IPZ  
MSP430F5632IPZ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
PZ  
PZ  
100  
100  
100  
113  
113  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
M430F5631  
M430F5632  
M430F5632  
F5632  
LQFP  
90  
Green (RoHS  
& no Sb/Br)  
MSP430F5632IPZR  
MSP430F5632IZCAR  
MSP430F5632IZQWR  
LQFP  
PZ  
1000  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
NFBGA  
ZCA  
ZQW  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
Green (RoHS  
& no Sb/Br)  
M430F5632  
MSP430F5633IPZ  
MSP430F5633IPZR  
MSP430F5633IZQWR  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
PZ  
PZ  
100  
100  
113  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
M430F5633  
M430F5633  
M430F5633  
LQFP  
1000  
2500  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
Green (RoHS  
& no Sb/Br)  
MSP430F5633IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
M430F5633  
MSP430F5634IPZ  
ACTIVE  
NRND  
LQFP  
PZ  
100  
113  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
M430F5634  
M430F5634  
MSP430F5634IZQWT  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430F5635IPZ  
MSP430F5635IPZR  
MSP430F5635IZCAR  
MSP430F5635IZCAT  
MSP430F5635IZQWR  
ACTIVE  
LQFP  
LQFP  
PZ  
100  
100  
113  
113  
113  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
M430F5635  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PZ  
1000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
M430F5635  
F5635  
NFBGA  
NFBGA  
ZCA  
ZCA  
ZQW  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
F5635  
BGA  
MICROSTAR  
JUNIOR  
2500  
Green (RoHS  
& no Sb/Br)  
M430F5635  
MSP430F5635IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
M430F5635  
MSP430F5636IPZ  
MSP430F5636IPZR  
MSP430F5637IPZ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
NFBGA  
NFBGA  
PZ  
PZ  
100  
100  
100  
100  
100  
100  
113  
113  
113  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
M430F5636  
M430F5636  
M430F5637  
M430F5637  
M430F5638  
M430F5638  
F5638  
1000  
90  
Green (RoHS  
& no Sb/Br)  
PZ  
Green (RoHS  
& no Sb/Br)  
MSP430F5637IPZR  
MSP430F5638IPZ  
PZ  
1000  
90  
Green (RoHS  
& no Sb/Br)  
PZ  
Green (RoHS  
& no Sb/Br)  
MSP430F5638IPZR  
MSP430F5638IZCAR  
MSP430F5638IZCAT  
MSP430F5638IZQWR  
PZ  
1000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
ZCA  
ZCA  
ZQW  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
F5638  
BGA  
MICROSTAR  
JUNIOR  
2500  
Green (RoHS  
& no Sb/Br)  
M430F5638  
MSP430F5638IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
M430F5638  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2020  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Sep-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F5630IZQWR BGA MI  
ZQW  
113  
2500  
330.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
OR  
MSP430F5630IZQWT BGA MI  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
OR  
MSP430F5632IPZR  
MSP430F5632IZCAR  
LQFP  
PZ  
100  
113  
113  
1000  
2500  
2500  
330.0  
330.0  
330.0  
24.4  
16.4  
16.4  
17.0  
7.3  
17.0  
7.3  
2.1  
1.5  
1.5  
20.0  
12.0  
12.0  
24.0  
16.0  
16.0  
Q2  
Q1  
Q1  
NFBGA  
ZCA  
ZQW  
MSP430F5632IZQWR BGA MI  
7.3  
7.3  
CROSTA  
R JUNI  
OR  
MSP430F5633IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
330.0  
330.0  
24.4  
16.4  
17.0  
7.3  
17.0  
7.3  
2.1  
1.5  
20.0  
12.0  
24.0  
16.0  
Q2  
Q1  
MSP430F5633IZQWR BGA MI  
ZQW  
CROSTA  
R JUNI  
OR  
MSP430F5633IZQWT BGA MI  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Sep-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OR  
MSP430F5634IZQWT BGA MI  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
OR  
MSP430F5635IPZR  
MSP430F5635IZCAR  
MSP430F5635IZCAT  
LQFP  
NFBGA  
NFBGA  
PZ  
100  
113  
113  
113  
1000  
2500  
250  
330.0  
330.0  
180.0  
330.0  
24.4  
16.4  
16.4  
16.4  
17.0  
7.3  
7.3  
7.3  
17.0  
7.3  
7.3  
7.3  
2.1  
1.5  
1.5  
1.5  
20.0  
12.0  
12.0  
12.0  
24.0  
16.0  
16.0  
16.0  
Q2  
Q1  
Q1  
Q1  
ZCA  
ZCA  
ZQW  
MSP430F5635IZQWR BGA MI  
2500  
CROSTA  
R JUNI  
OR  
MSP430F5635IZQWT BGA MI  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
OR  
MSP430F5637IPZR  
MSP430F5638IZCAR  
MSP430F5638IZCAT  
LQFP  
NFBGA  
NFBGA  
PZ  
100  
113  
113  
113  
1000  
2500  
250  
330.0  
330.0  
180.0  
330.0  
24.4  
16.4  
16.4  
16.4  
17.0  
7.3  
7.3  
7.3  
17.0  
7.3  
7.3  
7.3  
2.1  
1.5  
1.5  
1.5  
20.0  
12.0  
12.0  
12.0  
24.0  
16.0  
16.0  
16.0  
Q2  
Q1  
Q1  
Q1  
ZCA  
ZCA  
ZQW  
MSP430F5638IZQWR BGA MI  
2500  
CROSTA  
R JUNI  
OR  
MSP430F5638IZQWT BGA MI  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
OR  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Sep-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F5630IZQWR BGA MICROSTAR  
JUNIOR  
ZQW  
113  
2500  
350.0  
350.0  
43.0  
MSP430F5630IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
113  
250  
213.0  
191.0  
55.0  
MSP430F5632IPZR  
MSP430F5632IZCAR  
LQFP  
PZ  
100  
113  
113  
1000  
2500  
2500  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
NFBGA  
ZCA  
ZQW  
MSP430F5632IZQWR BGA MICROSTAR  
JUNIOR  
MSP430F5633IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
MSP430F5633IZQWR BGA MICROSTAR  
JUNIOR  
ZQW  
MSP430F5633IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
ZQW  
113  
113  
250  
250  
213.0  
213.0  
191.0  
191.0  
55.0  
55.0  
MSP430F5634IZQWT BGA MICROSTAR  
JUNIOR  
MSP430F5635IPZR  
MSP430F5635IZCAR  
MSP430F5635IZCAT  
LQFP  
NFBGA  
NFBGA  
PZ  
100  
113  
113  
113  
1000  
2500  
250  
350.0  
350.0  
213.0  
350.0  
350.0  
350.0  
191.0  
350.0  
43.0  
43.0  
55.0  
43.0  
ZCA  
ZCA  
ZQW  
MSP430F5635IZQWR BGA MICROSTAR  
JUNIOR  
2500  
MSP430F5635IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
PZ  
113  
100  
250  
213.0  
350.0  
191.0  
350.0  
55.0  
43.0  
MSP430F5637IPZR  
LQFP  
1000  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Sep-2020  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F5638IZCAR  
MSP430F5638IZCAT  
NFBGA  
NFBGA  
ZCA  
ZCA  
ZQW  
113  
113  
113  
2500  
250  
350.0  
213.0  
350.0  
350.0  
191.0  
350.0  
43.0  
55.0  
43.0  
MSP430F5638IZQWR BGA MICROSTAR  
JUNIOR  
2500  
MSP430F5638IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
113  
250  
213.0  
191.0  
55.0  
Pack Materials-Page 4  
PACKAGE OUTLINE  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
A
7.1  
6.9  
B
BALL A1 CORNER  
7.1  
6.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.25  
0.15  
BALL TYP  
5.5  
TYP  
(0.75) TYP  
SYMM  
M
L
K
J
(0.75) TYP  
H
G
F
E
D
C
SYMM  
5.5  
TYP  
0.35  
0.25  
113X Ø  
B
A
0.15  
0.05  
C
C
A B  
1
2
3
4
5
6
7
8
9 10 11 12  
0.5 TYP  
0.5 TYP  
4225149/A 08/2019  
NanoFree is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
(0.5) TYP  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10 11 12  
A
B
C
D
E
F
113X (Ø0.25)  
SYMM  
G
H
J
K
L
M
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 10X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
(Ø 0.25)  
METAL  
(Ø 0.25)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225149/A 08/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
(0.5) TYP  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10 11 12  
A
B
C
D
E
F
(R0.05)  
SYMM  
G
H
J
METAL TYP  
113X ( 0.25)  
K
L
M
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
SCALE: 10X  
4225149/A 08/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY