MSP430F6659IPZR [TI]

MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x Mixed-Signal Microcontrollers;
MSP430F6659IPZR
型号: MSP430F6659IPZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x Mixed-Signal Microcontrollers

微控制器
文件: 总144页 (文件大小:3707K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658,MSP430F5359, MSP430F5358
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x Mixed-Signal  
Microcontrollers  
– USCI_A0, USCI_A1, and USCI_A2 each  
1 Features  
support:  
Low supply voltage range:  
3.6 V down to 1.8 V  
Enhanced UART with automatic baud-rate  
detection  
Ultra-low power consumption  
– Active mode (AM):  
IrDA encoder and decoder  
Synchronous SPI  
All system clocks active:  
295 µA/MHz at 8 MHz, 3.0 V, flash program  
execution (typical)  
– USCI_B0, USCI_B1, and USCI_B2 each  
support:  
I2C  
– Standby mode (LPM3):  
Synchronous SPI  
Watchdog with crystal, and supply supervisor  
operational, full RAM retention, fast wakeup:  
2.0 µA at 2.2 V, 2.2 µA at 3.0 V (typical)  
– Shutdown, real-time clock (RTC) mode  
(LPM3.5):  
Full-speed universal serial bus (USB)  
– Integrated USB-PHY  
– Integrated 3.3-V and 1.8-V USB power system  
– Integrated USB-PLL  
– Eight input and eight output endpoints  
12-bit analog-to-digital converter (ADC) with  
internal shared reference, sample-and-hold, and  
autoscan feature  
Two 12-bit digital-to-analog converters (DACs) with  
synchronization  
Voltage comparator  
Integrated LCD driver with contrast control for up  
to 160 segments  
Shutdown mode, active RTC with crystal:  
1.1 µA at 3.0 V (typical)  
– Shutdown mode (LPM4.5):  
0.45 µA at 3.0 V (typical)  
Wake up from standby mode in 3 µs (typical)  
16-bit RISC architecture, extended memory, up to  
20-MHz system clock  
Flexible power-management system  
– Fully integrated LDO with programmable  
regulated core supply voltage  
– Supply voltage supervision, monitoring, and  
brownout  
Hardware multiplier supports 32-bit operations  
Serial onboard programming, no external  
programming voltage needed  
6-channel internal DMA  
Unified clock system  
RTC module with supply voltage backup switch  
Device Comparison summarizes the available  
family members  
– FLL control loop for frequency stabilization  
– Low-power low-frequency internal clock source  
(VLO)  
– Low-frequency trimmed internal reference  
source (REFO)  
– 32-kHz crystals (XT1)  
– High-frequency crystals up to 32 MHz (XT2)  
Four 16-bit timers with 3, 5, or 7 capture/compare  
registers  
Three universal serial communication interfaces  
(USCIs)  
2 Applications  
Analog and digital sensor systems  
Digital motor controls  
Remote controls  
Thermostats  
Digital timers  
Hand-held meters  
3 Description  
The TI MSP family of ultra-low-power microcontrollers consists of several devices that feature different sets of  
peripherals targeted for various applications. The architecture, combined with five low-power modes, is  
optimized to achieve extended battery life in portable measurement applications. The device features a powerful  
16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The  
digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in 3 µs  
(typical).  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
The MSP430F665x and MSP430F565x series are microcontroller configurations with four 16-bit timers, a high-  
performance 12-bit ADC, three USCIs, a hardware multiplier, DMA, an RTC module with alarm capabilities, a  
comparator, USB 2.0, and up to 74 I/O pins.  
The MSP430F645x and MSP430F535x series are microcontroller configurations with an integrated 3.3-V LDO,  
four 16-bit timers, a high-performance 12-bit ADC, three USCIs, a hardware multiplier, DMA, an RTC module  
with alarm capabilities, a comparator, and up to 74 I/O pins.  
For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide.  
Device Information  
PART NUMBER(1)  
MSP430F6659IPZ  
PACKAGE  
BODY SIZE(2)  
14 mm × 14 mm  
7 mm × 7 mm  
7 mm × 7 mm  
LQFP (100)  
MSP430F6659IZCA  
nFBGA (113)  
MSP430F6659IZQW(3)  
MicroStar JuniorBGA (113)  
(1) For the most current device, package, and ordering information, see the Package Option Addendum in Section 11, or see the TI  
website at www.ti.com.  
(2) The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 11.  
(3) All orderable part numbers in the ZQW (MicroStar Junior BGA) package have been changed to a status of Last Time Buy. Visit the  
Product life cycle page for details on this status.  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
4 Functional Block Diagrams  
Figure 4-1 shows the functional block diagram for the MSP430F6659 and MSP430F6658 MCUs.  
PA  
PB  
PC  
PD  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
XT2IN  
64KB  
32KB  
RAM  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3, P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5, P6  
2×8 I/Os  
USCI0,  
USCI1,  
USCI2  
I/O Ports  
P7, P8  
1×6 I/Os  
1×8 I/Os  
ACLK  
SMCLK  
SYS  
Power  
Management  
I/O Ports  
P9  
1×8 I/Os  
Unified  
Clock  
System  
USB  
512KB  
384KB  
MID  
XT2OUT  
Watchdog  
Full-speed  
Memory  
Integrity  
Detection  
+2KB RAM  
USB Buffer  
Ax: UART,  
IrDA, SPI  
P2 Port  
Mapping  
Controller  
LDO,  
SVM, SVS,  
Brownout  
PE  
1×8 I/Os  
Flash  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
PD  
1×14 I/Os  
Bx: SPI, I2C  
+8B Backup  
RAM  
CPUXV2  
and  
Working  
Registers  
EEM  
(L: 8+2)  
DMA  
ADC12_A  
TA1, TA2  
RTC_B  
6 Channel  
TA0  
TB0  
DAC12_A  
REF  
LCD_B  
12 bit  
JTAG,  
SBW  
Interface  
2 Timer_A  
each with  
3 CC  
200 ksps  
Timer_A  
5 CC  
Registers  
Timer_B  
7 CC  
Registers  
Comp_B  
12 bit  
2 channels  
voltage out  
MPY32  
CRC16  
Reference  
1.5 V, 2.0 V,  
2.5 V  
160  
Segments  
Battery  
Backup  
System  
16 channels  
(12 ext, 4 int)  
Autoscan  
Registers  
Port PJ  
Functional Block Diagram – MSP430F6659, MSP430F6658  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Figure 4-1 shows the functional block diagram for the MSP430F6459 and MSP430F6458 MCUs  
PA  
PB  
PC  
PD  
PU.0  
PU.1  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
LDOO LDOI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
XT2IN  
64KB  
32KB  
RAM  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3, P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5, P6  
2×8 I/Os  
USCI0,  
USCI1,  
USCI2  
I/O Ports  
P7, P8  
1×6 I/Os  
1×8 I/Os  
ACLK  
SMCLK  
SYS  
Power  
Management  
I/O Ports  
P9  
1×8 I/Os  
Unified  
Clock  
System  
512KB  
384KB  
MID  
PU Port  
LDO  
XT2OUT  
Watchdog  
Memory  
Integrity  
Detection  
+2KB RAM  
Ax: UART,  
IrDA, SPI  
P2 Port  
Mapping  
Controller  
LDO,  
SVM, SVS,  
Brownout  
PE  
1×8 I/Os  
Flash  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
PD  
1×14 I/Os  
Bx: SPI, I2C  
+8B Backup  
RAM  
CPUXV2  
and  
Working  
Registers  
EEM  
(L: 8+2)  
DMA  
ADC12_A  
TA1, TA2  
RTC_B  
6 Channel  
TA0  
TB0  
DAC12_A  
REF  
LCD_B  
12 bit  
JTAG,  
SBW  
Interface  
2 Timer_A  
each with  
3 CC  
200 ksps  
Timer_A  
5 CC  
Registers  
Timer_B  
7 CC  
Registers  
Comp_B  
12 bit  
2 channels  
voltage out  
MPY32  
CRC16  
Reference  
1.5 V, 2.0 V,  
2.5 V  
160  
Segments  
Battery  
Backup  
System  
16 channels  
(12 ext, 4 int)  
Autoscan  
Registers  
Port PJ  
Figure 4-1. Functional Block Diagram – MSP430F6459, MSP430F6458  
Figure 4-2 shows the functional block diagram for the MSP430F5659 and MSP430F5658 MCUs.  
PA  
PB  
PC  
PD  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
XT2IN  
64KB  
32KB  
RAM  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3, P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5, P6  
2×8 I/Os  
USCI0,  
USCI1,  
USCI2  
I/O Ports  
P7, P8  
1×6 I/Os  
1×8 I/Os  
ACLK  
SMCLK  
SYS  
Power  
Management  
I/O Ports  
P9  
1×8 I/Os  
Unified  
Clock  
System  
USB  
512KB  
384KB  
MID  
XT2OUT  
Watchdog  
Full-speed  
Memory  
Integrity  
Detection  
+2KB RAM  
USB Buffer  
Ax: UART,  
IrDA, SPI  
P2 Port  
Mapping  
Controller  
LDO,  
SVM, SVS,  
Brownout  
PE  
1×8 I/Os  
Flash  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
PD  
1×14 I/Os  
Bx: SPI, I2C  
+8B Backup  
RAM  
CPUXV2  
and  
Working  
Registers  
EEM  
(L: 8+2)  
DMA  
ADC12_A  
TA1, TA2  
RTC_B  
6 Channel  
TA0  
TB0  
DAC12_A  
REF  
12 bit  
JTAG,  
SBW  
Interface  
2 Timer_A  
each with  
3 CC  
200 ksps  
Timer_A  
5 CC  
Registers  
Timer_B  
7 CC  
Registers  
Comp_B  
12 bit  
2 channels  
voltage out  
MPY32  
CRC16  
Reference  
1.5 V, 2.0 V,  
2.5 V  
Battery  
Backup  
System  
16 channels  
(12 ext, 4 int)  
Autoscan  
Registers  
Port PJ  
Figure 4-2. Functional Block Diagram – MSP430F5659, MSP430F5658  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Figure 4-3 shows the functional block diagram for the MSP430F5359 and MSP430F5358 MCUs.  
PA  
PB  
PC  
PD  
PU.0  
PU.1  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
LDOO LDOI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
XT2IN  
64KB  
32KB  
RAM  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3, P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5, P6  
2×8 I/Os  
USCI0,  
USCI1,  
USCI2  
I/O Ports  
P7, P8  
1×6 I/Os  
1×8 I/Os  
ACLK  
SMCLK  
SYS  
Power  
Management  
I/O Ports  
P9  
1×8 I/Os  
Unified  
Clock  
System  
512KB  
384KB  
MID  
PU Port  
LDO  
XT2OUT  
Watchdog  
Memory  
Integrity  
Detection  
+2KB RAM  
Ax: UART,  
IrDA, SPI  
P2 Port  
Mapping  
Controller  
LDO,  
SVM, SVS,  
Brownout  
PE  
1×8 I/Os  
Flash  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
PD  
1×14 I/Os  
Bx: SPI, I2C  
+8B Backup  
RAM  
CPUXV2  
and  
Working  
Registers  
EEM  
(L: 8+2)  
DMA  
ADC12_A  
TA1, TA2  
RTC_B  
6 Channel  
TA0  
TB0  
DAC12_A  
REF  
12 bit  
JTAG,  
SBW  
Interface  
2 Timer_A  
each with  
3 CC  
200 ksps  
Timer_A  
5 CC  
Registers  
Timer_B  
7 CC  
Registers  
Comp_B  
12 bit  
2 channels  
voltage out  
MPY32  
CRC16  
Reference  
1.5 V, 2.0 V,  
2.5 V  
Battery  
Backup  
System  
16 channels  
(12 ext, 4 int)  
Autoscan  
Registers  
Port PJ  
Figure 4-3. Functional Block Diagram – MSP430F5359, MSP430F5358  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Functional Block Diagrams............................................ 3  
5 Revision History.............................................................. 7  
6 Device Comparison.........................................................9  
6.1 Related Products...................................................... 10  
7 Terminal Configuration and Functions........................11  
7.1 Pin Diagrams.............................................................11  
7.2 Signal Descriptions................................................... 16  
8 Specifications................................................................ 24  
8.1 Absolute Maximum Ratings...................................... 24  
8.2 ESD Ratings............................................................. 24  
8.3 Recommended Operating Conditions.......................24  
8.4 Active Mode Supply Current Into VCC Excluding  
8.37 12-Bit ADC, Power Supply and Input Range  
Conditions................................................................... 47  
8.38 12-Bit ADC, Timing Parameters..............................48  
8.39 12-Bit ADC, Linearity Parameters Using an  
External Reference Voltage.........................................48  
8.40 12-Bit ADC, Linearity Parameters Using AVCC  
as Reference Voltage..................................................49  
8.41 12-Bit ADC, Linearity Parameters Using the  
Internal Reference Voltage..........................................49  
8.42 12-Bit ADC, Temperature Sensor and Built-In  
VMID ............................................................................49  
8.43 REF, External Reference........................................ 50  
8.44 REF, Built-In Reference.......................................... 51  
8.45 12-Bit DAC, Supply Specifications..........................52  
8.46 12-Bit DAC, Linearity Specifications....................... 53  
8.47 12-Bit DAC, Output Specifications..........................54  
8.48 12-Bit DAC, Reference Input Specifications........... 55  
8.49 12-Bit DAC, Dynamic Specifications.......................55  
8.50 12-Bit DAC, Dynamic Specifications (Continued)...56  
8.51 Comparator_B.........................................................57  
8.52 Ports PU.0 and PU.1...............................................58  
8.53 USB Output Ports DP and DM................................58  
8.54 USB Input Ports DP and DM...................................58  
8.55 USB-PWR (USB Power System)............................59  
8.56 USB-PLL (USB Phase Locked Loop)..................... 59  
8.57 Flash Memory......................................................... 60  
8.58 JTAG and Spy-Bi-Wire Interface.............................60  
9 Detailed Description......................................................61  
9.1 CPU ......................................................................... 61  
9.2 Instruction Set...........................................................62  
9.3 Operating Modes...................................................... 63  
9.4 Interrupt Vector Addresses....................................... 64  
9.5 Memory Organization................................................66  
9.6 Bootloader (BSL)...................................................... 67  
9.7 JTAG Operation........................................................ 68  
9.8 Flash Memory .......................................................... 68  
9.9 Memory Integrity Detection (MID) ............................69  
9.10 RAM .......................................................................69  
9.11 Backup RAM .......................................................... 69  
9.12 Peripherals..............................................................70  
9.13 Input/Output Diagrams............................................95  
9.14 Device Descriptors................................................121  
10 Device and Documentation Support........................122  
10.1 Getting Started and Next Steps............................ 122  
10.2 Device Nomenclature............................................122  
10.3 Tools and Software............................................... 124  
10.4 Documentation Support........................................ 126  
10.5 Related Links........................................................ 128  
10.6 Community Resources..........................................128  
10.7 Trademarks...........................................................128  
10.8 Electrostatic Discharge Caution............................128  
10.9 Export Control Notice............................................128  
10.10 Glossary..............................................................128  
11 Mechanical, Packaging, and Orderable  
External Current.......................................................... 26  
8.5 Low-Power Mode Supply Currents (Into VCC  
)
Excluding External Current..........................................26  
8.6 Low-Power Mode With LCD Supply Currents  
(Into VCC) Excluding External Current.........................28  
8.7 Thermal Resistance Characteristics......................... 28  
8.8 Schmitt-Trigger Inputs – General-Purpose I/O..........29  
8.9 Inputs – Ports P1, P2, P3, and P4............................ 29  
8.10 Leakage Current – General-Purpose I/O................29  
8.11 Outputs – General-Purpose I/O (Full Drive  
Strength)......................................................................29  
8.12 Outputs – General-Purpose I/O (Reduced  
Drive Strength)............................................................ 30  
8.13 Output Frequency – Ports P1, P2, and P3..............30  
8.14 Typical Characteristics – Outputs, Reduced  
Drive Strength (PxDS.y = 0)........................................31  
8.15 Typical Characteristics – Outputs, Full Drive  
Strength (PxDS.y = 1)................................................. 32  
8.16 Crystal Oscillator, XT1, Low-Frequency Mode........33  
8.17 Crystal Oscillator, XT2............................................ 34  
8.18 Internal Very-Low-Power Low-Frequency  
Oscillator (VLO)...........................................................35  
8.19 Internal Reference, Low-Frequency Oscillator  
(REFO)........................................................................35  
8.20 DCO Frequency......................................................36  
8.21 PMM, Brownout Reset (BOR).................................37  
8.22 PMM, Core Voltage.................................................37  
8.23 PMM, SVS High Side..............................................38  
8.24 PMM, SVM High Side............................................. 38  
8.25 PMM, SVS Low Side...............................................39  
8.26 PMM, SVM Low Side..............................................39  
8.27 Wake-up Times From Low-Power Modes...............39  
8.28 Timer_A – Timers TA0, TA1, and TA2.....................40  
8.29 Timer_B – Timer TB0..............................................40  
8.30 Battery Backup........................................................40  
8.31 USCI (UART Mode)................................................ 41  
8.32 USCI (SPI Master Mode)........................................ 41  
8.33 USCI (SPI Slave Mode).......................................... 43  
8.34 USCI (I2C Mode).....................................................45  
8.35 LCD_B Operating Characteristics...........................46  
8.36 LCD_B Electrical Characteristics............................47  
Information.................................................................. 129  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
5 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changed from revision D to revision E  
Changes from September 27, 2018 to September 11, 2020  
Page  
Updated the numbering for sections, tables, figures, and cross-references throughout the document..............1  
Added nFBGA package (ZCA) information throughout document......................................................................1  
Added note about status change for all orderable part numbers in the ZQW package in Device Information .. 1  
Removed package options that are no longer available (MSP430F6658 and MSP430F6458 in the ZQW  
package) in Table 6-1, Device Comparison .......................................................................................................9  
Removed packge options that are no longer available (MSP430F6658IZQW and MSP430F6458IZQW) from  
the caption of Figure 7-5, 113-Pin ZQW Package (Top View) – MSP430F6659IZQW, MSP430F6459IZQW,  
MSP430F5659IZQW, MSP430F5658IZQW, MSP430F5359IZQW, MSP430F5358IZQW ..............................11  
Changed the MAX value of the IERASE and IMERASE, IBANK parameters in Section 8.57, Flash Memory ......... 60  
Corrected the connection of the P7SEL.x signal in Figure 9-11, Port P7 (P7.4 to P7.7) Diagram .................110  
Changes from revision C to revision D  
Changes from October 22, 2013 to September 26, 2018  
Page  
Format and organization changes throughout document, including addition of section numbering...................1  
Added Device Information table..........................................................................................................................1  
Added Section 4 and moved all functional block diagrams to it..........................................................................3  
Added Section 6.1, Related Products ..............................................................................................................10  
Added "Port U is supplied the LDOO rail" to the description of PU.0 and PU.1 in Section 7.2, Signal  
Descriptions .....................................................................................................................................................16  
Added Section 8 and moved all electrical specifications to it........................................................................... 24  
Added typical conditions statements at the beginning of Section 8, Specifications .........................................24  
Added Section 8.2, ESD Ratings .....................................................................................................................24  
Moved Section 8.7, Thermal Resistance Characteristics ................................................................................ 28  
Changed the TYP value of the CL,eff parameter with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to  
1 pF in Section 8.16, Crystal Oscillator, XT1, Low-Frequency Mode .............................................................. 33  
Changed the MIN value of the V(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 8.21, PMM,  
Brownout Reset (BOR) ....................................................................................................................................37  
Updated notes (1) and (2) and added note (3) in Section 8.27, Wake-up Times From Low-Power Modes and  
Reset ............................................................................................................................................................... 39  
Corrected typo in the description of the VBAT3 parameter: changed "VBAT3 ≠ VBAT/3" to "VBAT3 ≈ VBAT/3" in  
Section 8.30, Battery Backup .......................................................................................................................... 40  
Removed ADC12DIV from the formula for the TYP value in the second row of the tCONVERT parameter in  
Section 8.38, 12-Bit ADC, Timing Parameters, because ADC12CLK is after division..................................... 48  
Added the TCSENSOR parameter in Section 8.42, 12-Bit ADC, Temperature Sensor and Built-In VMID ...........49  
Changed the note that starts "The temperature sensor offset ..." from "...offset can be as much as ±20°C" to  
"...offset can be significant"...............................................................................................................................49  
Changed DAC12xDAT to DAC12_xDAT in IL(DAC12) Test Conditions in Section 8.47, 12-Bit DAC, Output  
Specifications ...................................................................................................................................................54  
Removed note from "Ri(VREF+), Ri(VeREF+)" parameter in Section 8.48, 12-Bit DAC, Reference Input  
Specifications ...................................................................................................................................................55  
Changed from fDAC12_0OUT to fDAC12_1OUT in the first row of the Test Conditions for the "Channel-to-channel  
crosstalk" parameter in Section 8.50, 12-Bit DAC, Dynamic Specifications (Continued) ................................ 56  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Changed the value of DAC12_xDAT from 7F7h to F7Fh and changed the x-axis label from fToggle to 1/fToggle in  
Figure 8-22, Crosstalk Test Conditions ............................................................................................................56  
Section 8.51, Comparator_B: Added second row for the tEN_CMP parameter with Test Conditions of  
"CBPWRMD = 10" and MAX value of 100 µs; Removed "CBPWRMD = 10" option in first row of Test  
Conditions.........................................................................................................................................................57  
Added note on RPUR in Section 8.55, USB-PWR (USB Power System) ......................................................... 59  
Removed RTC_B from LPM4.5 wake-up options in Section 9.3, Operating Modes ....................................... 63  
Throughout document, changed "bootstrap loader" to "bootloader".................................................................67  
Added the paragraph that begins "Using the MSP430 RTC_B Module With Battery Backup Supply describes  
how to..." ..........................................................................................................................................................72  
Corrected spelling of NMIIFG in Table 9-12, System Module Interrupt Vector Registers ................................72  
Corrected register names (added "USB" prefix as required) in Table 9-53, USB Control Registers ............... 80  
Added P7SEL.2 and XT2BYPASS inputs with AND and OR gates in Figure 9-10, Port P7 (P7.3) Diagram 109  
Changed P7SEL.3 column from X to 0 for "P7.3 (I/O)" rows in Table 9-63, Port P7 (P7.2 and P7.3) Pin  
Functions ....................................................................................................................................................... 109  
Updated Table 9-67, Port PU.0, PU.1 Functions ............................................................................................116  
Added Section 9.13.14, Port PU.0, PU.1 Ports (F645x, F535x) .................................................................... 118  
Added Section 10, Device and Documentation Support, and moved Development Tools Support, Device and  
Development Tool Nomenclature, Trademarks, and Electrostatic Discharge Caution sections to it.............. 122  
Replaced former section Development Tools Support with Section 10.3, Tools and Software ..................... 124  
Added Section 11, Mechanical, Packaging, and Orderable Information ........................................................129  
The following table lists changes to this data sheet from the original release to revision C.  
REVISION  
COMMENTS  
Added Section 2  
Removed Ordering Information table—refer to the Package Option Addendum  
Table 9-12, Corrected Interrupt Event names for PMMSWBOR (BOR) and PMMSWPOR (POR)  
Table 9-20, Added PM5CTL0 register  
SLAS700C  
October 2013  
Section 8.3, Added note to CVCORE  
Section 8.8, Added note to RPull  
Section 8.54, Corrected VIL and VIH limits  
Ordering Information, Corrected package type for PZ package (LQFP)  
Changed functional block diagrams  
Table 7-1, Added note to the RST/NMI/SBWTDIO pin  
Added Development Tools Support and Device and Development Tool Nomenclature  
Section 8.3, Fixed typo in fSYSTEM conditions  
SLAS700B  
June 2013  
Section 8.20, Added note (1)  
SLAS700A  
December 2012  
PRODUCTION DATA release  
PRODUCT PREVIEW release  
SLAS700  
October 2012  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
6 Device Comparison  
Table 6-1 summarizes the available family members.  
Table 6-1. Device Comparison  
USCI_:  
UART, IrDA,  
SPI  
FLASH SRAM  
USCI_:B:  
SPI, I2C  
ADC12_A  
(channels)  
DAC12_A  
(channels)  
Comp_B  
(channels)  
DEVICE(1)  
Timer_A(3)  
Timer_B(4)  
I/O  
USB  
LCD  
PACKAGE  
(KB)(2)  
(KB)(5)  
100 PZ,  
113 ZCA,  
113 ZQW  
MSP430F6659  
MSP430F6658  
MSP430F6459  
MSP430F6458  
MSP430F5659  
512  
384  
512  
384  
512  
64 + 2  
32 + 2  
66  
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
7
7
7
7
7
3
3
3
3
3
3
3
3
3
3
12 ext, 4 int  
12 ext, 4 int  
12 ext, 4 int  
12 ext, 4 int  
12 ext, 4 int  
2
2
2
2
2
12  
12  
12  
12  
12  
74  
74  
74  
74  
74  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
No  
100 PZ  
100 PZ,  
113 ZCA,  
113 ZQW  
34  
No  
100 PZ  
100 PZ,  
113 ZCA,  
113 ZQW  
64 + 2  
Yes  
100 PZ,  
113 ZCA,  
113 ZQW  
MSP430F5658  
MSP430F5359  
MSP430F5358  
384  
512  
384  
32 + 2  
66  
5, 3, 3  
5, 3, 3  
5, 3, 3  
7
7
7
3
3
3
3
3
3
12 ext, 4 int  
12 ext, 4 int  
12 ext, 4 int  
2
2
2
12  
12  
12  
74  
74  
74  
Yes  
No  
No  
No  
No  
No  
100 PZ,  
113 ZCA,  
113 ZQW  
100 PZ,  
113 ZCA,  
113 ZQW  
34  
(1) For the most current device, package, and ordering information, see the Package Option Addendum in Section 11, or see the TI website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.  
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output  
generators, respectively.  
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output  
generators, respectively.  
(5) The additional 2KB of USB SRAM that is listed can be used as general-purpose SRAM when USB is not in use.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
16-bit and 32-bit microcontrollers  
High-performance, low-power solutions to enable the autonomous future  
Products for MSP430 ultra-low-power sensing & measurement MCUs  
One platform. One ecosystem. Endless possibilities.  
Companion products for MSP430F6659  
Review products that are frequently purchased or used with this product.  
TI reference designs  
Find reference designs leveraging the best in TI technology to solve your system-level challenges  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
Figure 7-1 shows the pinout of the 100-pin PZ package for the MSP430F6659 and MSP430F6658 devices.  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7/S0  
2
P9.6/UCB2SOMI/UCB2SCL/S1  
P9.5/UCB2SIMO/UCB2SDA/S2  
P9.4/UCB2CLK/UCA2STE/S3  
P9.3/UCA2RXD/UCA2SOMI/S4  
P9.2/UCA2TXD/UCA2SIMO/S5  
P9.1/UCB2STE/UCA2CLK/S6  
P9.0/S7  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
P5.0/VREF+/VeREF+  
P5.1/VREF−/VeREF−  
AVCC1  
3
4
5
6
7
8
9
P8.7/S8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL/S9  
P8.5/UCB1SIMO/UCB1SDA/S10  
DVCC2  
AVSS1  
MSP430F6659  
MSP430F6658  
XIN  
DVSS2  
XOUT  
P8.4/UCB1CLK/UCA1STE/S11  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.1/UCB1STE/UCA1CLK/S14  
P8.0/TB0CLK/S15  
AVSS2  
P5.6/ADC12CLK/DMAE0  
P2.0/P2MAP0  
P2.1/P2MAP1  
P4.7/TB0OUTH/SVMOUT/S16  
P4.6/TB0.6/S17  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P4.5/TB0.5/S18  
P2.5/P2MAP5  
P4.4/TB0.4/S19  
P2.6/P2MAP6/R03  
P2.7/P2MAP7/LCDREF/R13  
DVCC1  
P4.3/TB0.3/S20  
P4.2/TB0.2/S21  
P4.1/TB0.1/S22  
Figure 7-1. 100-Pin PZ Package (Top View) – MSP430F6659IPZ, MSP430F6658IPZ  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Figure 7-1 shows the pinout of the 100-pin PZ package for the MSP430F6459 and MSP430F6458 devices.  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7/S0  
2
P9.6/UCB2SOMI/UCB2SCL/S1  
P9.5/UCB2SIMO/UCB2SDA/S2  
P9.4/UCB2CLK/UCA2STE/S3  
P9.3/UCA2RXD/UCA2SOMI/S4  
P9.2/UCA2TXD/UCA2SIMO/S5  
P9.1/UCB2STE/UCA2CLK/S6  
P9.0/S7  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
P5.0/VREF+/VeREF+  
P5.1/VREF−/VeREF−  
AVCC1  
3
4
5
6
7
8
9
P8.7/S8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL/S9  
P8.5/UCB1SIMO/UCB1SDA/S10  
DVCC2  
AVSS1  
MSP430F6459  
MSP430F6458  
XIN  
DVSS2  
XOUT  
P8.4/UCB1CLK/UCA1STE/S11  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.1/UCB1STE/UCA1CLK/S14  
P8.0/TB0CLK/S15  
AVSS2  
P5.6/ADC12CLK/DMAE0  
P2.0/P2MAP0  
P2.1/P2MAP1  
P4.7/TB0OUTH/SVMOUT/S16  
P4.6/TB0.6/S17  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P4.5/TB0.5/S18  
P2.5/P2MAP5  
P4.4/TB0.4/S19  
P2.6/P2MAP6/R03  
P2.7/P2MAP7/LCDREF/R13  
DVCC1  
P4.3/TB0.3/S20  
P4.2/TB0.2/S21  
P4.1/TB0.1/S22  
Figure 7-2. 100-Pin PZ Package (Top View) – MSP430F6459IPZ, MSP430F6458IPZ  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Figure 7-3 shows the pinout of the 100-pin PZ package for the MSP430F5659 and MSP430F5658 devices.  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7  
2
P9.6/UCB2SOMI/UCB2SCL  
P9.5/UCB2SIMO/UCB2SDA  
P9.4/UCB2CLK/UCA2STE  
P9.3/UCA2RXD/UCA2SOMI  
P9.2/UCA2TXD/UCA2SIMO  
P9.1/UCB2STE/UCA2CLK  
P9.0  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
P5.0/VREF+/VeREF+  
P5.1/VREF−/VeREF−  
AVCC1  
3
4
5
6
7
8
9
P8.7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL  
P8.5/UCB1SIMO/UCB1SDA  
DVCC2  
AVSS1  
MSP430F5659  
MSP430F5658  
XIN  
DVSS2  
XOUT  
P8.4/UCB1CLK/UCA1STE  
P8.3/UCA1RXD/UCA1SOMI  
P8.2/UCA1TXD/UCA1SIMO  
P8.1/UCB1STE/UCA1CLK  
P8.0/TB0CLK  
AVSS2  
P5.6/ADC12CLK/DMAE0  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2.6/P2MAP6  
P2.7/P2MAP7  
DVCC1  
P4.7/TB0OUTH/SVMOUT  
P4.6/TB0.6  
P4.5/TB0.5  
P4.4/TB0.4  
P4.3/TB0.3  
P4.2/TB0.2  
P4.1/TB0.1  
Figure 7-3. 100-Pin PZ Package (Top View) – MSP430F5659IPZ, MSP430F5658IPZ  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Figure 7-4 shows the pinout of the 100-pin PZ package for the MSP430F5359 and MSP430F5358 devices.  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7  
2
P9.6/UCB2SOMI/UCB2SCL  
P9.5/UCB2SIMO/UCB2SDA  
P9.4/UCB2CLK/UCA2STE  
P9.3/UCA2RXD/UCA2SOMI  
P9.2/UCA2TXD/UCA2SIMO  
P9.1/UCB2STE/UCA2CLK  
P9.0  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
P5.0/VREF+/VeREF+  
P5.1/VREF−/VeREF−  
AVCC1  
3
4
5
6
7
8
9
P8.7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL  
P8.5/UCB1SIMO/UCB1SDA  
DVCC2  
AVSS1  
MSP430F5359  
MSP430F5358  
XIN  
DVSS2  
XOUT  
P8.4/UCB1CLK/UCA1STE  
P8.3/UCA1RXD/UCA1SOMI  
P8.2/UCA1TXD/UCA1SIMO  
P8.1/UCB1STE/UCA1CLK  
P8.0/TB0CLK  
AVSS2  
P5.6/ADC12CLK/DMAE0  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2.6/P2MAP6  
P2.7/P2MAP7  
DVCC1  
P4.7/TB0OUTH/SVMOUT  
P4.6/TB0.6  
P4.5/TB0.5  
P4.4/TB0.4  
P4.3/TB0.3  
P4.2/TB0.2  
P4.1/TB0.1  
Figure 7-4. 100-Pin PZ Package (Top View) – MSP430F5359IPZ, MSP430F5358IPZ  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Figure 7-4 shows the pinout of the 113-pin ZCA or ZQW package. See Section 7.2 for the pin assignments.  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
H1  
J1  
A2  
B2  
C2  
D2  
E2  
F2  
G2  
H2  
J2  
A3  
B3  
C3  
A4  
B4  
A5  
B5  
A6  
B6  
A7  
B7  
A8  
B8  
A9  
B9  
A10  
B10  
A11  
B11  
C11  
D11  
E11  
F11  
G11  
H11  
J11  
A12  
B12  
C12  
D12  
E12  
F12  
G12  
H12  
J12  
D4  
E4  
F4  
G4  
H4  
J4  
D5  
E5  
F5  
G5  
H5  
J5  
D6  
E6  
D7  
E7  
D8  
E8  
F8  
G8  
H8  
J8  
D9  
E9  
F9  
G9  
H9  
J9  
H6  
J6  
H7  
J7  
K1  
L1  
K2  
L2  
K11  
L11  
M11  
K12  
L12  
M12  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
Figure 7-5. 113-Pin ZCA or ZQW Package (Top View) – MSP430F6659IZCA, MSP430F6459IZCA,  
MSP430F5659IZCA, MSP430F5658IZCA, MSP430F5359IZCA, MSP430F5358IZCA, MSP430F6659IZQW,  
MSP430F6459IZQW, MSP430F5659IZQW, MSP430F5658IZQW, MSP430F5359IZQW, MSP430F5358IZQW  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
7.2 Signal Descriptions  
Table 7-1 describes the signals for all device variants and package options.  
Table 7-1. Signal Descriptions  
TERMINAL  
NO.  
I/O(1)  
DESCRIPTION  
NAME  
ZCA,  
ZQW  
PZ  
General-purpose digital I/O  
Comparator_B input CB4  
Analog input A4 for ADC  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
A1  
B2  
I/O  
I/O  
General-purpose digital I/O  
Comparator_B input CB5  
Analog input A5 for ADC  
2
3
General-purpose digital I/O  
Comparator_B input CB6  
Analog input A6 for ADC  
DAC12.0 output  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
B1  
C2  
I/O  
I/O  
General-purpose digital I/O  
Comparator_B input CB7  
Analog input A7 for ADC  
DAC12.1 output  
4
General-purpose digital I/O  
Comparator_B input CB8  
Analog input A12 for ADC  
P7.4/CB8/A12  
P7.5/CB9/A13  
5
6
C1  
C3  
I/O  
I/O  
General-purpose digital I/O  
Comparator_B input CB9  
Analog input A13 for ADC  
General-purpose digital I/O  
Comparator_B input CB10  
Analog input A14 for ADC  
DAC12.0 output  
P7.6/CB10/A14/DAC0  
7
D2  
D1  
I/O  
I/O  
General-purpose digital I/O  
Comparator_B input CB11  
Analog input A15 for ADC  
DAC12.1 output  
P7.7/CB11/A15/DAC1  
P5.0/VREF+/VeREF+  
8
9
General-purpose digital I/O  
Output of reference voltage to the ADC  
Input for an external reference voltage to the ADC  
D4  
E4  
I/O  
I/O  
General-purpose digital I/O  
P5.1/VREF-/VeREF-  
AVCC1  
10  
11  
Negative terminal for the ADC's reference voltage for both sources, the internal  
reference voltage, or an external applied reference voltage  
E1,  
E2  
Analog power supply  
AVSS1  
XIN  
12  
13  
F2  
F1  
Analog ground supply  
I
Input terminal for crystal oscillator XT1  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.  
ZCA,  
I/O(1)  
DESCRIPTION  
NAME  
PZ  
ZQW  
XOUT  
14  
15  
G1  
O
Output terminal of crystal oscillator XT1  
AVSS2  
G2  
Analog ground supply  
General-purpose digital I/O  
Conversion clock output ADC  
DMA external trigger input  
P5.6/ADC12CLK/DMAE0  
16  
H1  
I/O  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
17  
18  
19  
20  
21  
22  
G4  
H2  
J1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave in, master out; USCI_B0 I2C data  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave out, master in; USCI_B0 I2C clock  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable  
H4  
J2  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in, master out  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_A0 UART receive data; USCI_A0 slave out, master in  
K1  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: no secondary function  
P2.6/P2MAP6/R03  
23  
24  
K2  
L2  
I/O  
I/O  
Input/output port of lowest analog LCD voltage (V5) (not available on F5659,  
F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: no secondary function  
External reference voltage input for regulated LCD voltage (not available on F5659,  
F5658, F5359, F5358 devices)  
P2.7/P2MAP7/LCDREF/R13  
Input/output port of third most positive analog LCD voltage (V3 or V4) (not  
available on F5659, F5658, F5359, F5358 devices)  
DVCC1  
DVSS1  
25  
26  
27  
L1  
M1  
M2  
Digital power supply  
Digital ground supply  
VCORE(2)  
Regulated core power supply (internal use only, no external current loading)  
General-purpose digital I/O  
P5.2/R23  
28  
29  
L3  
I/O  
I/O  
Input/output port of second most positive analog LCD voltage (V2) (not available  
on F5659, F5658, F5359, F5358 devices)  
LCD capacitor connection (not available on F5659, F5658, F5359, F5358 devices)  
LCDCAP/R33  
M3  
Input/output port of most positive analog LCD voltage (V1) (not available on F5659,  
F5658, F5359, F5358 devices)  
DVSS  
COM0  
29  
30  
M3  
J4  
Digital ground supply (not available on F6659, F6658, F6459, and F6458 devices)  
LCD common output COM0 for LCD backplane (not available on F5659, F5658,  
F5359, F5358 devices)  
O
Do not connect. TI strongly recommends leaving this terminal open (not available  
on F6659, F6658, F6459, and F6458 devices)  
DNC  
30  
J4  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.  
ZCA,  
I/O(1)  
DESCRIPTION  
NAME  
PZ  
ZQW  
General-purpose digital I/O  
LCD common output COM1 for LCD backplane (not available on F5659, F5658,  
F5359, F5358 devices)  
P5.3/COM1/S42  
31  
L4  
I/O  
LCD segment output S42 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
LCD common output COM2 for LCD backplane (not available on F5659, F5658,  
F5359, F5358 devices)  
P5.4/COM2/S41  
P5.5/COM3/S40  
32  
33  
M4  
J5  
I/O  
I/O  
LCD segment output S41 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
LCD common output COM3 for LCD backplane (not available on F5659, F5658,  
F5359, F5358 devices)  
LCD segment output S40 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TA0 clock signal TACLK input  
P1.0/TA0CLK/ACLK/S39  
P1.1/TA0.0/S38  
34  
35  
36  
L5  
M5  
J6  
I/O  
I/O  
I/O  
ACLK output (divided by 1, 2, 4, 8, 16, or 32)  
LCD segment output S39 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output  
BSL transmit output  
LCD segment output S38 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output  
BSL receive input  
P1.2/TA0.1/S37  
LCD segment output S37 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output S36 (not available on F5659, F5658, F5359, F5358 devices)  
P1.3/TA0.2/S36  
P1.4/TA0.3/S35  
P1.5/TA0.4/S34  
P1.6/TA0.1/S33  
P1.7/TA0.2/S32  
37  
38  
39  
40  
41  
H6  
M6  
L6  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR3 capture: CCI3A input compare: Out3 output  
LCD segment output S35 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output  
LCD segment output S34 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output  
LCD segment output S33 (not available on F5659, F5658, F5359, F5358 devices)  
J7  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR2 capture: CCI2B input, compare: Out2 output  
LCD segment output S32 (not available on F5659, F5658, F5359, F5358 devices)  
M7  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.  
ZCA,  
I/O(1)  
DESCRIPTION  
NAME  
PZ  
ZQW  
General-purpose digital I/O with port interrupt  
Timer TA1 clock input  
P3.0/TA1CLK/CBOUT/S31  
42  
L7  
I/O  
Comparator_B output  
LCD segment output S31 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TA1 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
LCD segment output S30 (not available on F5659, F5658, F5359, F5358 devices)  
P3.1/TA1.0/S30  
P3.2/TA1.1/S29  
P3.3/TA1.2/S28  
43  
44  
45  
H7  
M8  
L8  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt  
Timer TA1 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
LCD segment output S29 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TA1 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
LCD segment output S28 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TA2 clock input  
P3.4/TA2CLK/SMCLK/S27  
46  
J8  
I/O  
SMCLK output  
LCD segment output S27 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TA2 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
LCD segment output S26 (not available on F5659, F5658, F5359, F5358 devices)  
P3.5/TA2.0/S26  
P3.6/TA2.1/S25  
P3.7/TA2.2/S24  
P4.0/TB0.0/S23  
P4.1/TB0.1/S22  
P4.2/TB0.2/S21  
P4.3/TB0.3/S20  
47  
48  
49  
50  
51  
52  
53  
M9  
L9  
I/O  
I/O  
General-purpose digital I/O with port interrupt  
Timer TA2 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
LCD segment output S25 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TA2 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
LCD segment output S24 (not available on F5659, F5658, F5359, F5358 devices)  
M10 I/O  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
LCD segment output S23 (not available on F5659, F5658, F5359, F5358 devices)  
J9  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
LCD segment output S22 (not available on F5659, F5658, F5359, F5358 devices)  
M11  
L10  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
LCD segment output S21 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output  
LCD segment output S20 (not available on F5659, F5658, F5359, F5358 devices)  
M12 I/O  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.  
ZCA,  
I/O(1)  
DESCRIPTION  
NAME  
PZ  
ZQW  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output  
P4.4/TB0.4/S19  
54  
L12  
I/O  
I/O  
I/O  
LCD segment output S19 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output  
LCD segment output S18 (not available on F5659, F5658, F5359, F5358 devices)  
P4.5/TB0.5/S18  
P4.6/TB0.6/S17  
55  
56  
L11  
K11  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output  
LCD segment output S17 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O with port interrupt  
Timer TB0: Switch all PWM outputs high impedance  
SVM output  
P4.7/TB0OUTH/SVMOUT/S16  
P8.0/TB0CLK/S15  
57  
58  
59  
K12  
J11  
J12  
I/O  
I/O  
I/O  
LCD segment output S16 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
Timer TB0 clock input  
LCD segment output S15 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
USCI_B1 SPI slave transmit enable  
P8.1/UCB1STE/UCA1CLK/S14  
USCI_A1 clock input/output  
LCD segment output S14 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
USCI_A1 UART transmit data  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.4/UCB1CLK/UCA1STE/S11  
60  
61  
62  
H11  
H12  
G11  
I/O  
I/O  
I/O  
USCI_A1 SPI slave in, master out  
LCD segment output S13 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
USCI_A1 UART receive data  
USCI_A1 SPI slave out, master in  
LCD segment output S12 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
USCI_B1 clock input/output  
USCI_A1 SPI slave transmit enable  
LCD segment output S11 (not available on F5659, F5658, F5359, F5358 devices)  
DVSS2  
DVCC2  
63  
64  
G12  
F12  
Digital ground supply  
Digital power supply  
General-purpose digital I/O  
USCI_B1 SPI slave in, master out  
USCI_B1 I2C data  
P8.5/UCB1SIMO/UCB1SDA/S10  
65  
F11  
I/O  
LCD segment output S10 (not available on F5659, F5658, F5359, F5358 devices)  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.  
ZCA,  
I/O(1)  
DESCRIPTION  
NAME  
PZ  
ZQW  
General-purpose digital I/O  
USCI_B1 SPI slave out, master in  
USCI_B1 I2C clock  
P8.6/UCB1SOMI/UCB1SCL/S9  
66  
G9  
I/O  
LCD segment output S9 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
P8.7/S8  
P9.0/S7  
67  
68  
E12  
E11  
I/O  
I/O  
LCD segment output S8 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
LCD segment output S7 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
USCI_B2 SPI slave transmit enable  
P9.1/UCB2STE/UCA2CLK/S6  
P9.2/UCA2TXD/UCA2SIMO/S5  
P9.3/UCA2RXD/UCA2SOMI/S4  
P9.4/UCB2CLK/UCA2STE/S3  
P9.5/UCB2SIMO/UCB2SDA/S2  
P9.6/UCB2SOMI/UCB2SCL/S1  
69  
70  
71  
72  
73  
74  
F9  
D12  
D11  
E9  
I/O  
I/O  
I/O  
I/O  
I/O  
USCI_A2 clock input/output  
LCD segment output S6 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
USCI_A2 UART transmit data  
USCI_A2 SPI slave in, master out  
LCD segment output S5 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
USCI_A2 UART receive data  
USCI_A2 SPI slave out, master in  
LCD segment output S4 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
USCI_B2 clock input/output  
USCI_A2 SPI slave transmit enable  
LCD segment output S3 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
USCI_B2 SPI slave in, master out  
C12  
USCI_B2 I2C data  
LCD segment output S2 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
USCI_B2 SPI slave out, master in  
C11  
D9  
I/O  
I/O  
USCI_B2 I2C clock  
LCD segment output S1 (not available on F5659, F5658, F5359, F5358 devices)  
General-purpose digital I/O  
P9.7/S0  
VSSU  
75  
76  
LCD segment output S0 (not available on F5659, F5658, F5359, F5358 devices)  
B11,  
B12  
USB PHY or PU ground supply  
General-purpose digital I/O – controlled by USB or PU control register (Port U is  
supplied the LDOO rail)  
PU.0/DP  
77  
A12  
I/O  
USB data terminal DP (not available on F6459, F6458, F5359, F5358 devices)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.  
ZCA,  
I/O(1)  
DESCRIPTION  
NAME  
PZ  
ZQW  
USB pullup resistor pin (open drain) (not available on F6459, F6458, F5359, F5358  
devices)  
PUR  
NC  
78  
78  
B10  
I/O  
B10  
Not connected (not available on F6659, F6658, F5659, F5658 devices)  
General-purpose digital I/O – controlled by USB or PU control register (Port U is  
supplied the LDOO rail)  
PU.1/DM  
79  
A11  
I/O  
USB data terminal DM (not available on F6459, F6458, F5359, F5358 devices)  
USB LDO input (connect to USB power source) (not available on F6459, F6458,  
F5359, F5358 devices)  
VBUS  
80  
A10  
LDOI  
80  
81  
81  
A10  
A9  
LDO input (not available on F6659, F6658, F5659, F5658 devices)  
USB LDO output (not available on F6459, F6458, F5359, F5358 devices)  
LDO output (not available on F6659, F6658, F5659, F5658 devices)  
VUSB  
LDOO  
A9  
USB regulated power (internal use only, no external current loading) (not available  
on F6459, F6458, F5359, F5358 devices)  
V18  
82  
B9  
NC  
82  
83  
B9  
A8  
Not connected (not available on F6659, F6658, F5659, F5658 devices)  
Analog ground supply  
AVSS3  
General-purpose digital I/O  
P7.2/XT2IN  
84  
85  
B8  
B7  
I/O  
I/O  
Input terminal for crystal oscillator XT2  
General-purpose digital I/O  
P7.3/XT2OUT  
Output terminal of crystal oscillator XT2  
Capacitor for backup subsystem. Do not load this pin externally. For capacitor  
values, see CBAK in Section 8.3.  
VBAK  
VBAT  
86  
87  
A7  
D8  
Backup supply voltage. If backup voltage is not supplied, connect to DVCC  
externally.  
General-purpose digital I/O  
RTCCLK output  
P5.7/RTCCLK  
88  
D7  
I/O  
DVCC3  
DVSS3  
89  
90  
A6  
A5  
Digital power supply  
Digital ground supply  
Test mode pin – select digital I/O on JTAG pins  
Spy-Bi-Wire input clock  
TEST/SBWTCK  
PJ.0/TDO  
91  
92  
93  
94  
95  
B6  
B5  
A4  
E7  
D6  
I
General-purpose digital I/O  
Test data output port  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
PJ.1/TDI/TCLK  
PJ.2/TMS  
Test data input or test clock input  
General-purpose digital I/O  
Test mode select  
General-purpose digital I/O  
Test clock  
PJ.3/TCK  
Reset input active low(3)  
Nonmaskable interrupt input  
Spy-Bi-Wire data input/output  
RST/NMI/SBWTDIO  
96  
A3  
I/O  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.  
ZCA,  
I/O(1)  
DESCRIPTION  
NAME  
PZ  
ZQW  
General-purpose digital I/O  
Comparator_B input CB0  
Analog input A0 for ADC  
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
97  
B4  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
Comparator_B input CB1  
Analog input A1 for ADC  
98  
99  
B3  
A2  
D5  
General-purpose digital I/O  
Comparator_B input CB2  
Analog input A2 for ADC  
General-purpose digital I/O  
Comparator_B input CB3  
Analog input A3 for ADC  
100  
E5,  
E6,  
E8,  
F4,  
F5,  
F8,  
G5,  
G8,  
H5,  
H8,  
H9  
Reserved BGA package balls. TI recommends connecting to ground (DVSS,  
AVSS).  
Reserved  
N/A  
(1) I = input, O = output, N/A = not available on this package offering  
(2) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended  
capacitor value, CVCORE  
.
(3) When this pin is configured as reset, the internal pullup resistor is enabled by default.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8 Specifications  
All graphs in this section are for typical conditions, unless otherwise noted.  
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
4.1  
UNIT  
V
Voltage applied at VCC to VSS  
–0.3  
–0.3  
Voltage applied to any pin (excluding VCORE, VBUS, V18)(2)  
VCC + 0.3  
±2  
V
Diode current at any device pin  
mA  
°C  
(3)  
Storage temperature, Tstg  
–55  
150  
Maximum junction temperature, TJ  
95  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
8.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as  
±250 V may actually have higher performance.  
8.3 Recommended Operating Conditions  
MIN  
1.8  
2.0  
2.2  
2.4  
1.8  
2.0  
2.2  
2.4  
2.2  
2.4  
NOM  
MAX UNIT  
PMMCOREVx = 0  
3.6  
Supply voltage during program execution and flash  
PMMCOREVx = 0, 1  
PMMCOREVx = 0, 1, 2  
PMMCOREVx = 0, 1, 2, 3  
PMMCOREVx = 0  
3.6  
V
3.6  
VCC  
programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 =  
(1) (2)  
DVCC = VCC  
)
3.6  
3.6  
3.6  
PMMCOREVx = 0, 1  
PMMCOREVx = 0, 1, 2  
PMMCOREVx = 0, 1, 2, 3  
PMMCOREVx = 2  
Supply voltage during USB operation, USB PLL disabled,  
USB_EN = 1, UPLLEN = 0  
3.6  
V
3.6  
VCC,USB  
3.6  
3.6  
V
Supply voltage during USB operation, USB PLL  
enabled(6), USB_EN = 1, UPLLEN = 1  
PMMCOREVx = 2, 3  
VSS  
Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = VSS  
)
0
TA = 0°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
I version  
1.55  
1.70  
1.20  
–40  
–40  
1
3.6  
V
VBAT,RTC  
Backup-supply voltage with RTC operational  
3.6  
VBAT,MEM  
TA  
Backup-supply voltage with backup memory retained.  
Operating free-air temperature  
Operating junction temperature  
Capacitance at pin VBAK  
3.6  
85  
85  
10  
V
°C  
°C  
nF  
nF  
TJ  
I version  
CBAK  
CVCORE  
4.7  
Capacitor at VCORE(3)  
470  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
MIN  
NOM  
MAX UNIT  
CDVCC  
CVCORE  
/
Capacitor ratio of DVCC to VCORE  
10  
PMMCOREVx = 0,  
1.8 V ≤ VCC ≤ 3.6 V  
(default condition)  
0
8.0  
PMMCOREVx = 1,  
2 V ≤ VCC ≤ 3.6 V  
Processor frequency (maximum MCLK frequency)(4) (5)  
(see Figure 8-1)  
0
0
12.0  
MHz  
fSYSTEM  
PMMCOREVx = 2,  
2.2 V ≤ VCC ≤ 3.6 V  
16.0  
20.0  
PMMCOREVx = 3,  
2.4 V ≤ VCC ≤ 3.6 V  
0
fSYSTEM_USB Minimum processor frequency for USB operation  
USB_wait Wait state cycles during USB operation  
1.5  
MHz  
16  
cycles  
(1) TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Section 8.23 threshold parameters for  
the exact values and further details.  
(3) A capacitor tolerance of ±20% or better is required.  
(4) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the  
specified maximum frequency.  
(5) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(6) USB operation with USB PLL enabled requires PMMCOREVx ≥ 2 for proper operation.  
25  
20  
3
16  
2, 3  
2
12  
8
1, 2  
1, 2, 3  
1
0
0, 1  
0, 1, 2  
0, 1, 2, 3  
0
1.8  
2.0  
2.2  
2.4  
3.6  
Supply Voltage - V  
NOTE: The numbers within the fields denote the supported PMMCOREVx settings.  
Figure 8-1. Frequency vs Supply Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.4 Active Mode Supply Current Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3)  
FREQUENCY (fDCO = fMCLK = fSMCLK  
8 MHz 12 MHz  
TYP MAX  
)
EXECUTION  
MEMORY  
PARAMETER  
VCC  
PMMCOREVx  
1 MHz  
20 MHz  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
0
1
2
3
0
1
2
3
0.36  
0.41  
0.46  
0.51  
0.18  
0.20  
0.22  
0.23  
0.45  
2.4  
2.7  
2.9  
3.1  
1.0  
1.2  
1.3  
1.4  
2.7  
4.0  
4.3  
4.5  
4.4  
IAM, Flash  
Flash  
RAM  
3 V  
mA  
7.4  
0.23  
1.3  
1.7  
2.0  
2.2  
1.9  
IAM, RAM  
3 V  
mA  
3.6  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external  
load capacitance are chosen to closely match the required 12.5 pF.  
(3) Characterized with program executing typical data processing. USB disabled (VUSBEN = 0, SLDOEN = 0).  
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.  
8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
–40°C  
TYP MAX  
69  
25°C  
60°C  
TYP MAX  
79  
85°C  
PARAMETER  
VCC  
PMMCOREVx  
UNIT  
TYP MAX  
TYP MAX  
2.2 V  
3 V  
0
3
0
3
0
1
2
0
1
2
3
0
1
2
3
0
1
2
3
73  
83  
95  
120  
9.0  
9.5  
3.3  
85  
96  
125  
155  
32  
ILPM0,1MHz Low-power mode 0(3) (9)  
µA  
79  
87  
2.2 V  
3 V  
6.1  
6.7  
7.1  
2.0  
2.2  
2.4  
2.2  
2.4  
2.6  
2.6  
1.3  
1.5  
1.6  
1.6  
1.3  
1.3  
1.4  
1.4  
8.0  
13  
ILPM2  
Low-power mode 2(4) (9)  
µA  
6.5  
8.5  
14  
34  
1.5  
3.3  
8.2  
8.7  
8.9  
8.6  
9.0  
9.1  
9.1  
7.4  
7.7  
7.8  
7.8  
6.8  
7.0  
7.2  
7.2  
27  
2.2 V  
1.7  
3.6  
1.9  
3.8  
Low-power mode 3,  
crystal mode(5) (9)  
ILPM3,XT1LF  
1.8  
3.5  
3.6  
28  
µA  
µA  
1.9  
3.8  
3 V  
2.1  
4.0  
2.1  
4.2  
2.7  
4.0  
29  
26  
1.0  
2.7  
Low-power mode 3,  
VLO mode, Watchdog  
enabled(6) (9)  
1.1  
2.8  
ILPM3,VLO,  
3 V  
WDT  
1.1  
2.9  
1.1  
3.2  
2.5  
2.9  
30  
26  
0.9  
2.5  
1.0  
2.6  
ILPM4  
Low-power mode 4(7) (9)  
Low-power mode 3.5  
3 V  
3 V  
µA  
µA  
1.0  
2.7  
1.0  
3.1  
2.7  
27  
ILPM3.5,RTC, (LPM3.5) current with  
0.5  
0.75  
1.8  
active RTC into primary  
supply pin DVCC  
VCC  
(10)  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
–40°C  
25°C  
60°C  
85°C  
PARAMETER  
VCC  
PMMCOREVx  
UNIT  
TYP MAX  
TYP MAX  
TYP MAX  
TYP MAX  
Low-power mode 3.5  
ILPM3.5,RTC, (LPM3.5) current with  
3 V  
0.6  
1.1  
0.75  
1.0  
µA  
active RTC into backup  
VBAT  
supply pin VBAT(11)  
Total low-power mode 3.5  
ILPM3.5,RTC,  
(LPM3.5) current with  
3 V  
3 V  
1.0  
0.4  
1.2  
0.5  
1.5  
2.8  
1.8  
µA  
µA  
TOT  
active RTC(12)  
ILPM4.5  
Low-power mode 4.5(8)  
0.45  
0.6  
0.76  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance are chosen to closely match the required 9 pF.  
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz  
USB disabled (VUSBEN = 0, SLDOEN = 0).  
(4) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCO  
setting = 1-MHz operation, DCO bias generator enabled.  
USB disabled (VUSBEN = 0, SLDOEN = 0)  
(5) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
USB disabled (VUSBEN = 0, SLDOEN = 0)  
(6) Current for watchdog timer clocked by VLO included.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fMCLK = fSMCLK = fDCO = 0 MHz  
USB disabled (VUSBEN = 0, SLDOEN = 0)  
(7) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
USB disabled (VUSBEN = 0, SLDOEN = 0)  
(8) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(9) Current for brownout included. Low-side supervisor and monitors disabled (SVSL, SVML). High-side supervisor and monitor disabled  
(SVSH, SVMH). RAM retention enabled.  
(10) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active  
(11) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no  
current drawn on VBAK  
(12) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.6 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
PMMCOREVx  
–40°C  
TYP MAX  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
MAX  
MAX  
MAX  
0
1
2
3
0
1
2
0
1
2
3
2.7  
2.9  
3.0  
3.1  
3.3  
3.5  
3.7  
3.7  
3.6  
3.7  
4.0  
3.5  
3.7  
3.8  
3.9  
4.8  
4.7  
5.0  
5.2  
5.2  
9.5  
9.9  
28  
Low-power mode 3  
(LPM3) current, LCD 4-  
mux mode, internal  
biasing, charge pump  
disabled(1) (2)  
ILPM3 LCD,  
3 V  
µA  
int. bias  
10.2  
10.2  
5.3  
30  
2.2 V  
3 V  
Low-power mode 3  
(LPM3) current, LCD 4-  
mux mode, internal  
biasing, charge pump  
enabled(1) (3)  
ILPM3  
µA  
LCD,CP  
(1) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
Current for brownout included. Low-side supervisor (SVSL) and low-side monitor (SVML) disabled. High-side supervisor (SVSH) and  
high-side monitor (SVMH) disabled. RAM retention enabled.  
(2) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(3) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump  
enabled), VLCDx = 1000 (VLCD = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
8.7 Thermal Resistance Characteristics  
THERMAL METRIC  
PACKAGE  
QFP (PZ)  
VALUE  
122  
108  
83  
UNIT  
θJA  
Junction-to-ambient thermal resistance, still air(1)  
°C/W  
BGA (ZQW)  
QFP (PZ)  
θJC(TOP)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
°C/W  
°C/W  
BGA (ZQW)  
QFP (PZ)  
72  
98  
θJB  
BGA (ZQW)  
76  
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board,  
as specified in JESD51-7, in an environment described in JESD51-2a.  
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.8 Schmitt-Trigger Inputs – General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.80  
1.50  
0.45  
0.75  
0.3  
TYP  
MAX UNIT  
1.40  
V
2.10  
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.8 V  
3 V  
1.00  
V
1.65  
Negative-going input threshold voltage  
1.8 V  
3 V  
0.8  
V
1.0  
Input voltage hysteresis (VIT+ – VIT–  
)
0.4  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI  
Pullup or pulldown resistor(2)  
Input capacitance  
20  
35  
5
50  
kΩ  
pF  
VIN = VSS or VCC  
(1) The same parametrics apply to the clock input pin when the crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).  
(2) Also applies to RST pin when pullup or pulldown resistor is enabled.  
8.9 Inputs – Ports P1, P2, P3, and P4  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Port P1, P2, P3, P4: P1.x to P4.x,  
External trigger pulse duration to set interrupt flag  
t(int)  
External interrupt timing(2)  
2.2 V, 3 V  
20  
ns  
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.  
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
8.10 Leakage Current – General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See (1) (2)  
VCC  
MIN  
MAX UNIT  
Ilkg(Px.y) High-impedance leakage current  
1.8 V, 3 V  
±50 nA  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input, and the pullup or pulldown resistor is  
disabled.  
8.11 Outputs – General-Purpose I/O (Full Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –10 mA(2)  
I(OHmax) = –5 mA(1)  
I(OHmax) = –15 mA(2)  
I(OLmax) = 3 mA(1)  
I(OLmax) = 10 mA(2)  
I(OLmax) = 5 mA(1)  
I(OLmax) = 15 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.12 Outputs – General-Purpose I/O (Reduced Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(3)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –3 mA(2)  
I(OHmax) = –2 mA(1)  
I(OHmax) = –6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) Selecting reduced drive strength may reduce EMI.  
8.13 Output Frequency – Ports P1, P2, and P3  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
VCC = 1.8 V,  
PMMCOREVx = 0  
8
Port output frequency  
(with load)  
P3.4/TA2CLK/SMCLK/S27,  
fPx.y  
MHz  
20  
CL = 20 pF, RL = 1 kΩ (1) or 3.2 kΩ(2) (3)  
VCC = 3 V,  
PMMCOREVx = 3  
VCC = 1.8 V,  
PMMCOREVx = 0  
P1.0/TA0CLK/ACLK/S39,  
P3.4/TA2CLK/SMCLK/S27,  
P2.0/P2MAP0 (P2MAP0 = PM_MCLK),  
CL = 20 pF(3)  
8
fPort_CLK Clock output frequency  
MHz  
20  
VCC = 3 V,  
PMMCOREVx = 3  
(1) Full drive strength of port: A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected  
to the center tap of the divider.  
(2) Reduced drive strength of port: A resistive divider with two 1.6-kΩ resistors between VCC and VSS is used as load. The output is  
connected to the center tap of the divider.  
(3) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.14 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
25.0  
20.0  
15.0  
10.0  
5.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VCC = 3.0 V  
P3.2  
VCC = 1.8 V  
P3.2  
TA = 25°C  
TA = 85°C  
TA = 25°C  
TA = 85°C  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
Figure 8-3. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 8-2. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0.0  
0.0  
VCC = 3.0 V  
P3.2  
VCC = 1.8 V  
P3.2  
−1.0  
−5.0  
−2.0  
−3.0  
−4.0  
−10.0  
−15.0  
TA = 85°C  
−5.0  
TA = 85°C  
−6.0  
−20.0  
TA = 25°C  
TA = 25°C  
−7.0  
−8.0  
−25.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
Figure 8-4. Typical High-Level Output Current vs  
High-Level Output Voltage  
Figure 8-5. Typical High-Level Output Current vs  
High-Level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.15 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
60.0  
24  
VCC = 1.8 V  
P3.2  
VCC = 3.0 V  
P3.2  
TA = 25°C  
TA = 85°C  
55.0  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
TA = 25°C  
TA = 85°C  
20  
16  
12  
8
4
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
Figure 8-6. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 8-7. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0.0  
0
VCC = 1.8 V  
P3.2  
VCC = 3.0 V  
−5.0  
P3.2  
−10.0  
−15.0  
−20.0  
−25.0  
−30.0  
−35.0  
−40.0  
−4  
−8  
−12  
−45.0  
TA = 85°C  
−16  
TA = 85°C  
−50.0  
−55.0  
TA = 25°C  
−60.0  
TA = 25°C  
−20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
Figure 8-8. Typical High-Level Output Current vs  
High-Level Output Voltage  
Figure 8-9. Typical High-Level Output Current vs  
High-Level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.16 Crystal Oscillator, XT1, Low-Frequency Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(5)  
TEST CONDITIONS  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C  
VCC  
MIN  
TYP  
MAX UNIT  
0.075  
Differential XT1 oscillator  
crystal current consumption fOSC = 32768 Hz, XTS = 0,  
from lowest drive setting, LF XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C  
ΔIDVCC,LF  
3 V  
0.170  
0.290  
32768  
µA  
mode  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C  
XT1 oscillator crystal  
XTS = 0, XT1BYPASS = 0  
frequency, LF mode  
fXT1,LF0  
Hz  
XT1 oscillator logic-level  
square-wave input  
frequency, LF mode  
fXT1,LF,SW  
XTS = 0, XT1BYPASS = 1(6) (7)  
10 32.768  
50 kHz  
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0,  
fXT1,LF = 32768 Hz, CL,eff = 6 pF, TA = 25°C  
210  
300  
Oscillation allowance for  
LF crystals(8)  
OALF  
3 V  
kΩ  
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,LF = 32768 Hz, CL,eff = 12 pF, TA = 25°C  
XTS = 0, XCAPx = 0(2)  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
Integrated effective load  
capacitance, LF mode(1)  
CL,eff  
pF  
8.5  
12.0  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30%  
10  
70%  
Oscillator fault frequency,  
LF mode(4)  
fFault,LF  
XTS = 0(3)  
10000  
Hz  
ms  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TA = 25°C, CL,eff = 6 pF  
1000  
500  
tSTART,LF  
Start-up time, LF mode  
3 V  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C, CL,eff = 12 pF  
(1) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the  
effective load capacitance should always match the specification of the used crystal.  
(2) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(3) Measured with logic-level input frequency but also applies to operation with crystals.  
(4) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX specifications might set the flag.  
(5) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(6) When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-trigger Inputs section of this data sheet.  
(7) Maximum frequency of operation of the entire device cannot be exceeded.  
(8) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For XT1DRIVEx = 0, CL,eff ≤ 6 pF  
For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF  
For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF  
For XT1DRIVEx = 3, CL,eff ≥ 6 pF  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.17 Crystal Oscillator, XT2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2) (5)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 0, TA = 25°C  
200  
fOSC = 12 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 1, TA = 25°C  
260  
325  
450  
XT2 oscillator crystal current  
consumption  
IDVCC,XT2  
3 V  
µA  
fOSC = 20 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 2, TA = 25°C  
fOSC = 32 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 3, TA = 25°C  
XT2 oscillator crystal  
frequency, mode 0  
fXT2,HF0  
fXT2,HF1  
fXT2,HF2  
fXT2,HF3  
XT2DRIVEx = 0, XT2BYPASS = 0(7)  
XT2DRIVEx = 1, XT2BYPASS = 0(7)  
XT2DRIVEx = 2, XT2BYPASS = 0(7)  
XT2DRIVEx = 3, XT2BYPASS = 0(7)  
4
8
8
MHz  
XT2 oscillator crystal  
frequency, mode 1  
16 MHz  
24 MHz  
32 MHz  
XT2 oscillator crystal  
frequency, mode 2  
16  
24  
XT2 oscillator crystal  
frequency, mode 3  
XT2 oscillator logic-level  
square-wave input  
frequency  
fXT2,HF,SW  
XT2BYPASS = 1(6) (7)  
0.7  
32 MHz  
XT2DRIVEx = 0, XT2BYPASS = 0,  
fXT2,HF0 = 6 MHz, CL,eff = 15 pF, TA = 25°C  
450  
320  
200  
200  
0.5  
XT2DRIVEx = 1, XT2BYPASS = 0,  
fXT2,HF1 = 12 MHz, CL,eff = 15 pF, TA = 25°C  
Oscillation allowance for  
HF crystals(8)  
OAHF  
3 V  
XT2DRIVEx = 2, XT2BYPASS = 0,  
fXT2,HF2 = 20 MHz, CL,eff = 15 pF, TA = 25°C  
XT2DRIVEx = 3, XT2BYPASS = 0,  
fXT2,HF3 = 32 MHz, CL,eff = 15 pF, TA = 25°C  
fOSC = 6 MHz, XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C, CL,eff = 15 pF  
tSTART,HF  
Start-up time  
3 V  
ms  
pF  
fOSC = 20 MHz, XT2BYPASS = 0, XT2DRIVEx = 3,  
TA = 25°C, CL,eff = 15 pF  
0.3  
Integrated effective load  
CL,eff  
1
capacitance, HF mode(1) (2)  
Duty cycle  
Measured at ACLK, fXT2,HF2 = 20 MHz  
40%  
30  
50%  
60%  
300 kHz  
fFault,HF  
Oscillator fault frequency(4) XT2BYPASS = 1(3)  
(1) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the  
effective load capacitance should always match the specification of the used crystal.  
(2) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(3) Measured with logic-level input frequency but also applies to operation with crystals.  
(4) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX specifications might set the flag.  
(5) To improve EMI on the XT2 oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.  
Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(6) When XT2BYPASS is set, the XT2 circuit is automatically powered down.  
(7) Maximum frequency of operation of the entire device cannot be exceeded.  
(8) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.18 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
9.4  
0.5  
4
MAX UNIT  
14 kHz  
%/°C  
fVLO  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
dfVLO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
Duty cycle  
%/V  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
8.19 Internal Reference, Low-Frequency Oscillator (REFO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
REFO oscillator current  
consumption  
IREFO  
TA = 25°C  
1.8 V to 3.6 V  
3
µA  
REFO frequency calibrated  
Measured at ACLK  
Full temperature range  
TA = 25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
32768  
Hz  
±3.5%  
fREFO  
REFO absolute tolerance  
calibrated  
±1.5%  
dfREFO/dT  
REFO frequency temperature drift Measured at ACLK(1)  
1.8 V to 3.6 V  
0.01  
1.0  
%/°C  
REFO frequency supply voltage  
Measured at ACLK(2)  
drift  
dfREFO/dVCC  
1.8 V to 3.6 V  
%/V  
Duty cycle  
Measured at ACLK  
40%/60% duty cycle  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
40%  
50%  
25  
60%  
µs  
tSTART  
REFO start-up time  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.20 DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DCORSELx = 0, DCOx = 0, MODx = 0  
DCORSELx = 0, DCOx = 31, MODx = 0  
DCORSELx = 1, DCOx = 0, MODx = 0  
DCORSELx = 1, DCOx = 31, MODx = 0  
DCORSELx = 2, DCOx = 0, MODx = 0  
DCORSELx = 2, DCOx = 31, MODx = 0  
DCORSELx = 3, DCOx = 0, MODx = 0  
DCORSELx = 3, DCOx = 31, MODx = 0  
DCORSELx = 4, DCOx = 0, MODx = 0  
DCORSELx = 4, DCOx = 31, MODx = 0  
DCORSELx = 5, DCOx = 0, MODx = 0  
DCORSELx = 5, DCOx = 31, MODx = 0  
DCORSELx = 6, DCOx = 0, MODx = 0  
DCORSELx = 6, DCOx = 31, MODx = 0  
DCORSELx = 7, DCOx = 0, MODx = 0  
DCORSELx = 7, DCOx = 31, MODx = 0  
MIN  
0.07  
0.70  
0.15  
1.47  
0.32  
3.17  
0.64  
6.07  
1.3  
TYP  
MAX UNIT  
0.20 MHz  
1.70 MHz  
0.36 MHz  
3.45 MHz  
0.75 MHz  
7.38 MHz  
1.51 MHz  
14.0 MHz  
3.2 MHz  
fDCO(0,0)  
fDCO(0,31)  
fDCO(1,0)  
fDCO(1,31)  
fDCO(2,0)  
fDCO(2,31)  
fDCO(3,0)  
fDCO(3,31)  
fDCO(4,0)  
fDCO(4,31)  
fDCO(5,0)  
fDCO(5,31)  
fDCO(6,0)  
fDCO(6,31)  
fDCO(7,0)  
fDCO(7,31)  
DCO frequency (0, 0)(1)  
DCO frequency (0, 31)(1)  
DCO frequency (1, 0)(1)  
DCO frequency (1, 31)(1)  
DCO frequency (2, 0)(1)  
DCO frequency (2, 31)(1)  
DCO frequency (3, 0)(1)  
DCO frequency (3, 31)(1)  
DCO frequency (4, 0)(1)  
DCO frequency (4, 31)(1)  
DCO frequency (5, 0)(1)  
DCO frequency (5, 31)(1)  
DCO frequency (6, 0)(1)  
DCO frequency (6, 31)(1)  
DCO frequency (7, 0)(1)  
DCO frequency (7, 31)(1)  
12.3  
2.5  
28.2 MHz  
6.0 MHz  
23.7  
4.6  
54.1 MHz  
10.7 MHz  
88.0 MHz  
19.6 MHz  
135 MHz  
39.0  
8.5  
60  
Frequency step between range  
DCORSEL and DCORSEL + 1  
SDCORSEL  
SDCO  
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)  
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)  
1.2  
2.3 ratio  
Frequency step between tap DCO  
and DCO + 1  
1.02  
40%  
1.12 ratio  
Duty cycle  
Measured at SMCLK  
fDCO = 1 MHz  
50%  
0.1  
60%  
%/°C  
%/V  
dfDCO/dT  
DCO frequency temperature drift  
dfDCO/dVCC DCO frequency voltage drift  
fDCO = 1 MHz  
1.9  
(1) When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the  
range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,  
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31  
(DCOx = 31). This ensures that the target DCO frequency resides within the range selected. If the actual fDCO frequency for the  
selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its  
minimum or maximum tap setting.  
100  
VCC = 3.0 V  
TA = 25°C  
10  
DCOx = 31  
1
DCOx = 0  
0.1  
0
1
2
3
4
5
6
7
DCORSEL  
Figure 8-10. Typical DCO Frequency  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.21 PMM, Brownout Reset (BOR)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s  
MIN  
TYP  
MAX UNIT  
V(DVCC_BOR_IT–)  
V(DVCC_BOR_IT+)  
V(DVCC_BOR_hys)  
tRESET  
BORH on voltage, DVCC falling level  
BORH off voltage, DVCC rising level  
BORH hysteresis  
1.45  
1.50  
250  
V
V
0.80  
50  
2
1.30  
mV  
µs  
Pulse duration required at RST/NMI pin to accept a reset  
8.22 PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Core voltage, active mode,  
PMMCOREV = 3  
VCORE3(AM)  
VCORE2(AM)  
VCORE1(AM)  
VCORE0(AM)  
VCORE3(LPM)  
VCORE2(LPM)  
VCORE1(LPM)  
VCORE0(LPM)  
2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA  
1.90  
V
Core voltage, active mode,  
PMMCOREV = 2  
2.2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA  
2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 17 mA  
1.8 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 13 mA  
2.4 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
2.2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
1.8 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
1.80  
1.60  
1.40  
1.94  
1.84  
1.64  
1.44  
V
V
V
V
V
V
V
Core voltage, active mode,  
PMMCOREV = 1  
Core voltage, active mode,  
PMMCOREV = 0  
Core voltage, low-current mode,  
PMMCOREV = 3  
Core voltage, low-current mode,  
PMMCOREV = 2  
Core voltage, low-current mode,  
PMMCOREV = 1  
Core voltage, low-current mode,  
PMMCOREV = 0  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.23 PMM, SVS High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSHE = 0, DVCC = 3.6 V  
0
nA  
I(SVSH)  
SVS current consumption  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1  
SVSHE = 1, SVSHRVL = 0  
200  
2.0  
µA  
1.59  
1.79  
1.98  
2.10  
1.62  
1.88  
2.07  
2.20  
2.32  
2.56  
2.85  
2.85  
1.64  
1.84  
2.04  
2.16  
1.74  
1.94  
2.14  
2.26  
2.40  
2.70  
3.00  
3.00  
2.5  
1.69  
SVSHE = 1, SVSHRVL = 1  
1.91  
V
V(SVSH_IT–)  
SVSH on voltage level(1)  
SVSHE = 1, SVSHRVL = 2  
2.11  
SVSHE = 1, SVSHRVL = 3  
2.23  
1.81  
2.01  
2.21  
SVSHE = 1, SVSMHRRL = 0  
SVSHE = 1, SVSMHRRL = 1  
SVSHE = 1, SVSMHRRL = 2  
SVSHE = 1, SVSMHRRL = 3  
2.33  
V
V(SVSH_IT+)  
SVSH off voltage level(1)  
SVSHE = 1, SVSMHRRL = 4  
2.48  
SVSHE = 1, SVSMHRRL = 5  
2.84  
3.15  
3.15  
SVSHE = 1, SVSMHRRL = 6  
SVSHE = 1, SVSMHRRL = 7  
SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1  
SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0  
SVSHE = 0→1, SVSHFP = 1  
SVSHE = 0→1, SVSHFP = 0  
tpd(SVSH)  
SVSH propagation delay  
µs  
µs  
20  
12.5  
100  
t(SVSH)  
SVSH on or off delay time  
DVCC rise time  
dVDVCC/dt  
0
1000  
V/s  
(1) The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and usage.  
8.24 PMM, SVM High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVMHE = 0, DVCC = 3.6 V  
0
nA  
I(SVMH)  
SVMH current consumption  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1  
SVMHE = 1, SVSMHRRL = 0  
200  
2.0  
µA  
1.86  
1.65  
1.85  
2.02  
2.18  
2.32  
2.56  
2.85  
2.85  
1.74  
1.94  
2.14  
2.26  
2.40  
2.70  
3.00  
3.00  
3.75  
2.5  
SVMHE = 1, SVSMHRRL = 1  
2.02  
SVMHE = 1, SVSMHRRL = 2  
2.22  
SVMHE = 1, SVSMHRRL = 3  
2.35  
V(SVMH) SVMH on or off voltage level(1)  
SVMHE = 1, SVSMHRRL = 4  
2.48  
2.84  
3.15  
3.15  
V
SVMHE = 1, SVSMHRRL = 5  
SVMHE = 1, SVSMHRRL = 6  
SVMHE = 1, SVSMHRRL = 7  
SVMHE = 1, SVMHOVPE = 1  
SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1  
SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0  
SVMHE = 0→1, SVMHFP = 1  
tpd(SVMH) SVMH propagation delay  
µs  
µs  
20  
12.5  
100  
t(SVMH)  
SVMH on or off delay time  
SVMHE = 0→1, SVMHFP = 0  
(1) The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and usage.  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.25 PMM, SVS Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSLE = 0, PMMCOREV = 2  
0
nA  
µA  
µs  
I(SVSL)  
SVSL current consumption  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
SVSLE = 0→1, SVSLFP = 1  
200  
2.0  
2.5  
20  
tpd(SVSL) SVSL propagation delay  
12.5  
100  
t(SVSL)  
SVSL on or off delay time  
µs  
SVSLE = 0→1, SVSLFP = 0  
8.26 PMM, SVM Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVMLE = 0, PMMCOREV = 2  
0
nA  
µA  
µs  
I(SVML)  
SVML current consumption  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 0  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
SVMLE = 0→1, SVMLFP = 1  
200  
2.0  
2.5  
20  
tpd(SVML) SVML propagation delay  
12.5  
100  
t(SVML)  
SVML on or off delay time  
µs  
SVMLE = 0→1, SVMLFP = 0  
8.27 Wake-up Times From Low-Power Modes  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
3
6.5  
SVSLFP = 1, fMCLK ≥ 4.0 MHz  
Wake-up time from LPM2, LPM3, or  
LPM4 to active mode(1)  
tWAKE-UP-FAST  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
4
8.0  
µs  
SVSLFP = 1, 1 MHz < fMCLK < 4.0 MHz  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 0  
Wake-up time from LPM2, LPM3, or  
LPM4 to active mode(2) (3)  
tWAKE-UP-SLOW  
150  
165  
Wake-up time from LPM3.5 or LPM4.5  
to active mode(4)  
tWAKE-UP LPM5  
tWAKE-UP-RESET  
2
2
3
3
ms  
ms  
Wake-up time from RST or BOR event  
to active mode(4)  
(1) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the  
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in  
full performance mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode  
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx  
Family User's Guide.  
(2) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the  
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in  
normal mode (low current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode  
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx  
Family User's Guide.  
(3) The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by  
the performance mode settings as for LPM2, LPM3, and LPM4.  
(4) This value represents the time from the wake-up event to the reset vector execution.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.28 Timer_A – Timers TA0, TA1, and TA2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
fTA  
Timer_A input clock frequency  
External: TACLK,  
1.8 V, 3 V  
20 MHz  
Duty cycle = 50% ±10%  
All capture inputs, Minimum pulse duration  
required for capture  
tTA,cap  
Timer_A capture timing  
1.8 V, 3 V  
20  
ns  
8.29 Timer_B – Timer TB0  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
fTB  
Timer_B input clock frequency  
External: TBCLK,  
1.8 V, 3 V  
20 MHz  
Duty cycle = 50% ±10%  
All capture inputs, Minimum pulse duration  
required for capture  
tTB,cap  
Timer_B capture timing  
1.8 V, 3 V  
20  
ns  
8.30 Battery Backup  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
TA = –40°C  
0.43  
0.52  
VBAT = 1.7 V,  
DVCC not connected,  
RTC running  
TA = 25°C  
TA = 60°C  
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = 60°C  
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = 60°C  
TA = 85°C  
General  
0.58  
0.66  
0.50  
VBAT = 2.2 V,  
DVCC not connected,  
RTC running  
0.59  
Current into VBAT terminal if no  
primary battery is connected  
IVBAT  
µA  
0.64  
0.72  
0.68  
VBAT = 3 V,  
DVCC not connected,  
RTC running  
0.75  
0.79  
0.87  
VSVSH_IT-  
SVSHRL = 0  
SVSHRL = 1  
SVSHRL = 2  
SVSHRL = 3  
1.59  
1.79  
1.98  
2.10  
1.69  
VSWITCH  
Switch-over level (VCC to VBAT) CVCC = 4.7 µF  
1.91  
2.11  
2.23  
V
On-resistance of switch between  
VBAT = 1.8 V  
RON_VBAT  
0 V  
0.35  
1
kΩ  
V
VBAT and VBAK  
1.8 V  
3 V  
0.6  
1.0  
1.2  
±5%  
±5%  
±5%  
VBAT to ADC input channel 12:  
VBAT divided, VBAT3 ≈ VBAT/3  
VBAT3  
3.6 V  
tSample,  
VBAT to ADC: Sampling time  
required if VBAT3 selected  
ADC12ON = 1,  
Error of conversion result ≤ 2 LSB  
1000  
2.65  
ns  
V
VBAT3  
VCHVx  
Charger end voltage  
CHVx = 2  
CHCx = 1  
CHCx = 2  
CHCx = 3  
2.7  
2.9  
5.2  
RCHARGE  
Charge limiting resistor  
10.2  
20  
kΩ  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.31 USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
1
MHz  
ns  
2.2 V  
3 V  
50  
50  
600  
600  
tτ  
UART receive deglitch time(1)  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
8.32 USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 8-11 and )  
PARAMETERFigure 8-12  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
SMCLK or ACLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
PMMCOREV = 0  
1.8 V  
3 V  
55  
38  
30  
25  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
ns  
2.4 V  
3 V  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
1.8 V  
3 V  
0
tHD,MI  
ns  
2.4 V  
3 V  
0
0
1.8 V  
3 V  
20  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 0  
18  
ns  
16  
tVALID,MO  
2.4 V  
3 V  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 3  
15  
1.8 V  
3 V  
–10  
–8  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
tHD,MO  
ns  
2.4 V  
3 V  
–10  
–8  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 8-11 and Figure 8-12.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure  
8-11 and Figure 8-12.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 8-11. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 8-12. SPI Master Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.33 USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 8-13 and Figure 8-14)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
11  
8
MAX UNIT  
PMMCOREV = 0  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE low to clock  
ns  
2.4 V  
3 V  
7
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
6
1.8 V  
3 V  
1
1
STE lag time, last clock to STE high  
ns  
2.4 V  
3 V  
1
1
1.8 V  
3 V  
66  
50  
ns  
36  
STE access time, STE low to SOMI data out  
2.4 V  
3 V  
30  
30  
1.8 V  
3 V  
30  
ns  
30  
STE disable time, STE high to SOMI high  
impedance  
2.4 V  
3 V  
30  
1.8 V  
3 V  
5
5
2
2
5
5
5
5
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
2.4 V  
3 V  
1.8 V  
3 V  
tHD,SI  
ns  
2.4 V  
3 V  
1.8 V  
3 V  
76  
UCLK edge to SOMI valid,  
CL = 20 pF, PMMCOREV = 0  
60  
ns  
44  
tVALID,SO  
2.4 V  
3 V  
UCLK edge to SOMI valid,  
CL = 20 pF, PMMCOREV = 3  
40  
1.8 V  
3 V  
12  
12  
12  
12  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
tHD,SO  
ns  
2.4 V  
3 V  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 8-13 and Figure 8-14.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure  
8-13 and Figure 8-14.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
SOMI  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 8-13. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 8-14. SPI Slave Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.34 USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see  
Figure 8-15)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3 V  
2.2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
tSU,STO  
Setup time for STOP  
2.2 V, 3 V  
µs  
2.2 V  
3 V  
600  
ns  
600  
tSP  
Pulse duration of spikes suppressed by input filter  
50  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 8-15. I2C Mode Timing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.35 LCD_B Operating Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNIT  
Supply voltage range, charge LCDCPEN = 1, 0000 < VLCDx ≤ 1111  
VCC,LCD_B,CP en,3.6  
VCC,LCD_B,CP en,3.3  
VCC,LCD_B,int. bias  
VCC,LCD_B,ext. bias  
2.2  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
pump enabled, VLCD ≤ 3.6 V  
(charge pump enabled, VLCD ≤ 3.6 V)  
Supply voltage range, charge LCDCPEN = 1, 0000 < VLCDx ≤ 1100  
2.0  
2.4  
2.4  
pump enabled, VLCD ≤ 3.3 V  
(charge pump enabled, VLCD ≤ 3.3 V)  
LCDCPEN = 0, VLCDEXT = 0  
Supply voltage range, internal  
biasing, charge pump disabled  
Supply voltage range, external  
biasing, charge pump disabled  
LCDCPEN = 0, VLCDEXT = 0  
LCDCPEN = 0, VLCDEXT = 1  
Supply voltage range, external  
LCD voltage, internal or  
external biasing, charge pump  
disabled  
VCC,LCD_B,VLCDEXT  
2.0  
2.4  
3.6  
3.6  
V
V
External LCD voltage at  
LCDCAP/R33, internal or  
external biasing, charge pump  
disabled  
VLCDCAP/R33  
LCDCPEN = 0, VLCDEXT = 1  
Capacitor on LCDCAP when  
charge pump enabled  
LCDCPEN = 1, VLCDx > 0000 (charge  
pump enabled)  
CLCDCAP  
fFrame  
4.7  
32  
10  
µF  
Hz  
fLCD = 2 × mux × fFRAME with mux = 1  
(static), 2, 3, 4  
LCD frame frequency range  
0
100  
fACLK,in  
CPanel  
ACLK input frequency range  
Panel capacitance  
30  
40  
kHz  
pF  
100-Hz frame frequency  
10000  
VCC  
0.2  
+
VR33  
Analog input voltage at R33  
Analog input voltage at R23  
LCDCPEN = 0, VLCDEXT = 1  
2.4  
V
V
VR03 + 2/3  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR23,1/3bias  
VR13  
× (VR33  
VR33  
VR03  
)
VR03 + 1/3  
× (VR33  
VR03  
Analog input voltage at R13  
with 1/3 biasing  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR13,1/3bias  
VR03  
)
VR23  
V
V
VR03 + 1/2  
× (VR33  
VR03  
Analog input voltage at R13  
with 1/2 biasing  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 1  
VR13,1/2bias  
VR03  
VR33  
)
VR03  
Analog input voltage at R03  
R0EXT = 1  
VSS  
2.4  
V
V
Voltage difference between  
VLCD and R03  
VCC  
0.2  
+
VLCD-VR03  
LCDCPEN = 0, R0EXT = 1  
External LCD reference  
voltage applied at  
LCDREF/R13  
VLCDREF/R13  
VLCDREFx = 01  
0.8  
1.2  
1.5  
V
Copyright © 2020 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.36 LCD_B Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VLCDx = 0000, VLCDEXT = 0  
LCDCPEN = 1, VLCDx = 0001  
LCDCPEN = 1, VLCDx = 0010  
LCDCPEN = 1, VLCDx = 0011  
LCDCPEN = 1, VLCDx = 0100  
LCDCPEN = 1, VLCDx = 0101  
LCDCPEN = 1, VLCDx = 0110  
LCDCPEN = 1, VLCDx = 0111  
LCDCPEN = 1, VLCDx = 1000  
LCDCPEN = 1, VLCDx = 1001  
LCDCPEN = 1, VLCDx = 1010  
LCDCPEN = 1, VLCDx = 1011  
LCDCPEN = 1, VLCDx = 1100  
LCDCPEN = 1, VLCDx = 1101  
LCDCPEN = 1, VLCDx = 1110  
LCDCPEN = 1, VLCDx = 1111  
VCC  
MIN  
TYP  
VCC  
MAX UNIT  
2.4 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.59  
2.66  
2.72  
2.79  
2.85  
2.92  
2.98  
3.05  
3.10  
3.17  
3.24  
3.30  
3.36  
3.42  
3.48  
VLCD  
LCD voltage  
V
3.6  
µA  
Peak supply currents due to  
charge pump activities  
ICC,Peak,CP  
tLCD,CP,on  
ICP,Load  
LCDCPEN = 1, VLCDx = 1111  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
400  
100  
Time to charge CLCD when  
discharged  
CLCD = 4.7 µF, LCDCPEN = 0→1,  
VLCDx = 1111  
500  
ms  
µA  
kΩ  
kΩ  
Maximum charge pump load  
current  
LCDCPEN = 1, VLCDx = 1111  
50  
LCD driver output impedance,  
segment lines  
LCDCPEN = 1, VLCDx = 1000,  
ILOAD = ±10 µA  
RLCD,Seg  
RLCD,COM  
10  
10  
LCD driver output impedance,  
common lines  
LCDCPEN = 1, VLCDx = 1000,  
ILOAD = ±10 µA  
8.37 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
0
TYP  
MAX UNIT  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
AVCC  
Analog supply voltage  
3.6  
V
V(Ax)  
Analog input voltage range(3) All ADC12 analog input pins Ax  
AVCC  
200  
V
2.2 V  
3 V  
150  
150  
Operating supply current into  
fADC12CLK = 5.0 MHz(1)  
AVCC terminal(4)  
IADC12_A  
µA  
250  
Only one terminal Ax can be selected at one  
time  
CI  
RI  
Input capacitance  
2.2 V  
20  
25  
pF  
Input MUX ON resistance  
0 V ≤ VIN ≤ V(AVCC)  
10  
200  
1900  
(1) ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0  
(2) The leakage current is specified by the digital I/O input leakage.  
(3) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. If the  
reference voltage is supplied by an external source or if the internal voltage is used and REFOUT = 1, then decoupling capacitors are  
required. See Section 8.43 and Section 8.44.  
(4) The internal reference supply current is not included in current consumption parameter IADC12  
.
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.38 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC12 linearity  
parameters using an external reference  
voltage or AVCC as reference(1)  
0.45  
4.8  
5.0  
fADC12CLK  
ADC conversion clock  
For specified performance of ADC12 linearity 2.2 V, 3 V  
parameters using the internal reference(2)  
MHz  
4.0  
0.45  
0.45  
4.2  
2.4  
2.4  
4.8  
For specified performance of ADC12 linearity  
parameters using the internal reference(3)  
2.7  
Internal ADC12  
oscillator(5)  
fADC12OSC  
tCONVERT  
tSample  
ADC12DIV = 0, fADC12CLK = fADC12OSC  
2.2 V, 3 V  
2.2 V, 3 V  
5.4 MHz  
REFON = 0, Internal oscillator,  
ADC12OSC used for ADC conversion clock  
2.4  
3.1  
µs  
Conversion time  
Sampling time  
External fADC12CLK from ACLK, MCLK or  
SMCLK, ADC12SSEL ≠ 0  
13 ×  
1 / fADC12CLK  
RS = 400 Ω, RI = 200 Ω, CI = 20 pF,  
τ = [RS + RI] × CI  
2.2 V, 3 V  
1000  
ns  
(4)  
(1) REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0,  
SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the  
specified performance of the ADC12 linearity is ensured with fADC12CLK maximum of 5.0 MHz.  
(2) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1  
(3) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when  
using the ADC12OSC divided by 2.  
(4) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB:  
tSample = ln(2n+1) x (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance  
(5) The ADC12OSC is sourced directly from MODOSC inside the UCS.  
8.39 12-Bit ADC, Linearity Parameters Using an External Reference Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error(2)  
Differential linearity error(2)  
Offset error(3)  
TEST CONDITIONS  
1.4 V ≤ dVREF ≤ 1.6 V(1)  
1.6 V < dVREF (1)  
See (1)  
VCC  
MIN  
TYP  
MAX UNIT  
±2  
LSB  
±1.7  
EI  
2.2 V, 3 V  
ED  
EO  
EG  
ET  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±1 LSB  
dVREF ≤ 2.2 V(1)  
dVREF > 2.2 V(1)  
See (1)  
±3  
±1.5  
±1  
±5.6  
LSB  
±3.5  
Gain error(3)  
±2.5 LSB  
dVREF ≤ 2.2 V(1)  
dVREF > 2.2 V(1)  
±3.5  
±2  
±7.1  
LSB  
±5  
Total unadjusted error  
(1) The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = VR+ – VR–. VR+ < AVCC. VR–  
>
AVSS. Unless otherwise mentioned dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω and two decoupling  
capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current. Also see the MSP430F5xx and  
MSP430F6xx Family User's Guide.  
(2) Parameters are derived using the histogram method.  
(3) Parameters are derived using a best fit curve.  
Copyright © 2020 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.40 12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error(2)  
Differential linearity error(2)  
Offset error(3)  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
±2.0 LSB  
±1 LSB  
±2 LSB  
±4 LSB  
±5 LSB  
EI  
See (1)  
See (1)  
See (1)  
See (1)  
See (1)  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
ED  
EO  
EG  
ET  
±1  
±2  
±2  
Gain error(3)  
Total unadjusted error  
(1) AVCC as reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 0.  
(2) Parameters are derived using the histogram method.  
(3) Parameters are derived using a best fit curve.  
8.41 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
VCC  
MIN  
TYP  
MAX UNIT  
ADC12SR = 0, REFOUT = 1  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
±2.0  
LSB  
±2.5  
Integral  
EI  
2.2 V, 3 V  
linearity error(2)  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
–1  
–1  
+1.5  
Differential  
ED  
2.2 V, 3 V  
±1 LSB  
+2.5  
linearity error(2)  
±2  
±2  
±1  
±4  
LSB  
±4  
EO  
EG  
ET  
Offset error(3)  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±2.5 LSB  
±1%(4) VREF  
±5 LSB  
Gain error(3)  
±2  
Total unadjusted error  
±1%(4) VREF  
(1) The external reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 1. dVREF = VR+ – VR–  
.
(2) Parameters are derived using the histogram method.  
(3) Parameters are derived using a best fit curve.  
(4) The gain error and the total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In  
this mode, the reference voltage used by the ADC12_A is not available on a pin.  
8.42 12-Bit ADC, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
MAX UNIT  
Temperature sensor voltage(2)  
(see Figure 8-16)  
680  
VSENSOR  
ADC12ON = 1, INCH = 0Ah, TA = 0°C  
mV  
680  
TCSENSOR  
tSENSOR(sample)  
Temperature coefficient of sensor ADC12ON = 1, INCH = 0Ah  
2.2 V, 3V  
2.2 V  
3 V  
2.25(2)  
mV/°C  
µs  
30  
30  
Sample time required if  
channel 10 is selected(3)  
ADC12ON = 1, INCH = 0Ah,  
Error of conversion result ≤ 1 LSB  
2.2 V  
3 V  
1.06  
1.46  
1.1  
1.5  
1.14  
V
1.54  
ADC12ON = 1, INCH = 0Bh,  
VMID ≈ 0.5 × VAVCC  
VMID  
AVCC divider at channel 11  
Sample time required if  
channel 11 is selected(4)  
ADC12ON = 1, INCH = 0Bh,  
Error of conversion result ≤ 1 LSB  
tVMID(sample)  
2.2 V, 3 V  
1000  
ns  
(1) The temperature sensor is provided by the REF module. See the REF module parametric, IREF+, regarding the current consumption of  
the temperature sensor.  
(2) The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor. The TLV structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference  
voltage levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature,°C) + VSENSOR, where TCSENSOR and  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
VSENSOR can be computed from the calibration values for higher accuracy. Also see the MSP430F5xx and MSP430F6xx Family User's  
Guide.  
(3) The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on)  
.
(4) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
-40 -30 -20 -10  
0 10 20 30 40 50 60 70 80  
Ambient Temperature (°C)  
Figure 8-16. Typical Temperature Sensor Voltage  
8.43 REF, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Positive external reference  
voltage input  
(2)  
VeREF+  
VeREF+ > VREF–/VeREF–  
1.4  
AVCC  
1.2  
V
V
V
Negative external reference  
voltage input  
(3)  
(4)  
VREF–/VeREF–  
VeREF+ > VREF–/VeREF–  
0
(VeREF+  
VREF–/VeREF–  
Differential external reference  
voltage input  
VeREF+ > VREF–/VeREF–  
1.4  
AVCC  
)
1.4 V ≤ VeREF+ ≤ VAVCC, VeREF– = 0 V,  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
Conversion rate 200 ksps  
2.2 V, 3 V  
2.2 V, 3 V  
–26  
26  
IVeREF+, IVREF–/  
Static input current  
µA  
VeREF–  
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V,  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
Conversion rate 20 ksps  
–1.2  
10  
+1.2  
Capacitance at VREF+ or  
VREF- terminal(5)  
CVREF+/-  
µF  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is  
also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC12_A. Also see the MSP430F5xx and MSP430F6xx Family User's Guide.  
Copyright © 2020 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.44 REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
REFVSEL = {2} for 2.5 V,  
REFON = REFOUT = 1, IVREF+ = 0 A  
3 V  
2.5  
±1%  
Positive built-in  
reference voltage  
output  
REFVSEL = {1} for 2 V,  
REFON = REFOUT = 1, IVREF+ = 0 A  
VREF+  
3 V  
2.0  
1.5  
±1%  
±1%  
V
V
REFVSEL = {0} for 1.5 V,  
REFON = REFOUT = 1, IVREF+ = 0 A  
2.2 V, 3 V  
AVCC minimum  
voltage, Positive  
built-in reference  
active  
REFVSEL = {0} for 1.5 V  
REFVSEL = {1} for 2 V  
REFVSEL = {2} for 2.5 V  
2.2  
2.3  
2.8  
AVCC(min)  
ADC12SR = 1(8)  
REFON = 1, REFOUT = 0, REFBURST = 0  
,
70  
0.45  
210  
100  
0.75  
310  
1.7  
µA  
mA  
µA  
ADC12SR = 1(8)  
REFON = 1, REFOUT = 1, REFBURST = 0  
,
Operating supply  
current into AVCC  
terminal (2) (7)  
IREF+  
3 V  
ADC12SR = 0(8)  
REFON = 1, REFOUT = 0, REFBURST = 0  
,
ADC12SR = 0(8)  
,
0.95  
mA  
REFON = 1, REFOUT = 1, REFBURST = 0  
REFVSEL = {0, 1, 2},  
IVREF+ = +10 µA or –1000 µA,  
AVCC = AVCC(min) for each reference level,  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1  
Load-current  
regulation, VREF+  
terminal(3)  
IL(VREF+)  
1500  
2500 µV/mA  
Capacitance at  
VREF+ terminal  
REFON = REFOUT = 1(6)  
,
0 mA ≤ IVREF+ ≤ IVREF+(max)  
CVREF+  
2.2 V, 3 V  
2.2 V, 3 V  
20  
100  
pF  
Temperature  
IVREF+ is a constant in the range of  
0 mA ≤ IVREF+ ≤ –1 mA  
TCREF+  
coefficient of built-in  
REFOUT = 0  
REFOUT = 1  
20  
20  
120  
1
ppm/ °C  
reference(4)  
Temperature  
IVREF+ is a constant in the range of  
0 mA ≤ IVREF+ ≤ –1 mA  
TCREF+  
coefficient of built-in  
2.2 V, 3 V  
50 ppm/ °C  
reference(4)  
AVCC = AVCC(min) to AVCC(max), TA = 25°C,  
REFVSEL = {0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
Power supply  
rejection ratio (DC)  
PSRR_DC  
PSRR_AC  
300  
µV/V  
AVCC = AVCC(min) to AVCC(max), TA = 25°C,  
REFVSEL = {0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
Power supply  
rejection ratio (AC)  
mV/V  
AVCC = AVCC(min) to AVCC(max)  
,
REFVSEL = {0, 1, 2}, REFOUT = 0,  
REFON = 0 → 1  
75  
75  
Settling time of  
tSETTLE  
µs  
reference voltage(5)  
AVCC = AVCC(min) to AVCC(max)  
,
CVREF = CVREF(max), REFVSEL = {0, 1, 2},  
REFOUT = 1, REFON = 0 → 1  
(1) The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers,  
one smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal and is  
used as the reference for the conversion and uses the larger buffer. When REFOUT = 0, the reference is only used as the reference  
for the conversion and uses the smaller buffer.  
(2) The internal reference current is supplied from the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless a  
conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current  
contribution of the larger buffer without external load.  
(3) Contribution only due to the reference and buffer including package. This does not include resistance due to PCB trace or other  
causes.  
(4) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).  
(5) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external  
capacitive load when REFOUT = 1.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
(6) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC12_A. Also see the MSP430F5xx and MSP430F6xx Family User's Guide.  
(7) The temperature sensor is provided by the REF module. Its current is supplied from the AVCC terminal and is equivalent to IREF+ with  
REFON = 1 and REFOUT = 0.  
(8) For devices without the ADC12, the parametric with ADC12SR = 0 are applicable.  
8.45 12-Bit DAC, Supply Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC  
Analog supply voltage  
AVCC = DVCC, AVSS = DVSS = 0 V  
2.20  
3.60  
110  
V
DAC12AMPx = 2, DAC12IR = 0, DAC12IOG = 1  
DAC12_xDAT = 0800h  
VeREF+ = VREF+ = 1.5 V  
3 V  
65  
65  
DAC12AMPx = 2, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = VREF+ = AVCC  
110  
300  
Supply current, single  
DAC channel(1) (2)  
IDD  
µA  
DAC12AMPx = 5, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = VREF+ = AVCC  
2.2 V, 3 V  
250  
750  
DAC12AMPx = 7, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
1000  
VeREF+ = VREF+ = AVCC  
DAC12_xDAT = 800h, VeREF+ = 1.5 V,  
ΔAVCC = 100 mV  
2.2 V  
3 V  
70  
70  
Power supply rejection  
ratio(3) (4)  
PSRR  
dB  
DAC12_xDAT = 800h, VeREF+ = 1.5 V or 2.5 V,  
ΔAVCC = 100 mV  
(1) No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.  
(2) Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input  
specifications.  
(3) PSRR = 20 log (ΔAVCC / ΔVDAC12_xOUT  
(4) The internal reference is not used.  
)
Copyright © 2020 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.46 12-Bit DAC, Linearity Specifications  
See Figure 8-17, over recommended ranges of supply voltage and operating free-air temperature (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN TYP MAX UNIT  
Resolution  
12-bit monotonic  
12  
bits  
VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1  
2.2 V  
3 V  
±2  
±2  
±4  
±4  
±1  
±1  
INL  
Integral nonlinearity(1)  
LSB  
2.2 V  
3 V  
±0.4  
±0.4  
DNL  
Differential nonlinearity(1)  
LSB  
VeREF+ = 1.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
2.2 V  
3 V  
±21  
±21  
Without calibration(1) (2)  
VeREF+ = 2.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
EO  
Offset voltage  
mV  
VeREF+ = 1.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
2.2 V  
±1.5  
±1.5  
With calibration(1) (2)  
VeREF+ = 2.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
3 V  
Offset error temperature  
coefficient(1)  
dE(O)/dT  
With calibration  
2.2 V, 3 V  
±10  
10  
µV/°C  
%FSR  
VeREF+ = 1.5 V  
VeREF+ = 2.5 V  
2.2 V  
3 V  
±2.5  
±2.5  
EG  
Gain error  
Gain temperature  
coefficient(1)  
ppm of  
FSR/°C  
dE(G)/dT  
2.2 V, 3 V  
DAC12AMPx = 2  
165  
66  
Time for offset  
calibration(3)  
tOffset_Cal  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
2.2 V, 3 V  
ms  
16.5  
(1) Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b"  
of the first-order equation: y = a + bx. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1.  
(2) The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON  
(3) The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx  
= {0, 1}. TI recommends configuring the DAC12 module before initiating calibration. Port activity during calibration may affect accuracy  
and is not recommended.  
DAC VOUT  
DAC Output  
VR+  
RLoad = ¥  
Ideal transfer  
function  
AVCC  
2
Offset Error  
Positive  
Gain Error  
CLoad = 100 pF  
Negative  
DAC Code  
Figure 8-17. Linearity Test Load Conditions and Gain/Offset Definition  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.47 12-Bit DAC, Output Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
No load, VeREF+ = AVCC, DAC12_xDAT = 0h,  
DAC12IR = 1, DAC12AMPx = 7  
0
0.005  
No load, VeREF+ = AVCC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
,
AVCC  
0.05  
AVCC  
Output voltage  
VO  
range(1) (see Figure  
8-18)  
2.2 V, 3 V  
V
RLoad = 3 kΩ, VeREF+ = AVCC  
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
,
0
0.1  
RLoad = 3 kΩ, VeREF+ = AVCC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
,
AVCC  
0.13  
AVCC  
Maximum DAC12  
load capacitance  
CL(DAC12)  
2.2 V, 3 V  
2.2 V, 3 V  
100  
pF  
DAC12AMPx = 2, DAC12_xDAT = 0FFFh,  
VO/P(DAC12) > AVCC – 0.3  
–1  
Maximum DAC12  
load current  
IL(DAC12)  
mA  
DAC12AMPx = 2, DAC12_xDAT = 0h,  
VO/P(DAC12) < 0.3 V  
1
250  
250  
6
RLoad = 3 kΩ, VO/P(DAC12) < 0.3 V,  
DAC12AMPx = 2, DAC12_xDAT = 0h  
150  
150  
Output resistance  
(see Figure 8-18)  
RLoad = 3 kΩ, VO/P(DAC12) > AVCC – 0.3 V,  
DAC12_xDAT = 0FFFh  
RO/P(DAC12)  
2.2 V, 3 V  
RLoad = 3 kΩ,  
0.3 V ≤ VO/P(DAC12) ≤ AVCC – 0.3 V  
(1) Data is valid after the offset calibration of the output amplifier.  
RO/P(DAC12_x)  
Max  
RLoad  
ILoad  
AVCC  
DAC12  
2
CLoad = 100 pF  
O/P(DAC12_x)  
Min  
0.3  
AVCC – 0.3 V  
VOUT  
AVCC  
Figure 8-18. DAC12_x Output Resistance Tests  
Copyright © 2020 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.48 12-Bit DAC, Reference Input Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC  
+
DAC12IR = 0(1) (2)  
AVCC/3  
0.2  
VeREF+  
Reference input voltage range  
2.2 V, 3 V  
V
AVCC  
+
DAC12IR = 1(3) (4)  
AVCC  
0.2  
DAC12_0 IR = DAC12_1 IR = 0  
DAC12_0 IR = 1, DAC12_1 IR = 0  
DAC12_0 IR = 0, DAC12_1 IR = 1  
20  
MΩ  
52  
52  
Ri(VREF+)  
Ri(VeREF+)  
,
Reference input resistance  
2.2 V, 3 V  
kΩ  
DAC12_0 IR = DAC12_1 IR = 1,  
26  
DAC12_0 SREFx = DAC12_1 SREFx(5)  
(1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).  
(2) The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / [3 × (1 + EG)].  
(3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).  
(4) The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / (1 + EG).  
(5) When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel  
reducing the reference input resistance.  
8.49 12-Bit DAC, Dynamic Specifications  
VREF = VCC, DAC12IR = 1 (see Figure 8-19 and Figure 8-20), over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP MAX UNIT  
DAC12AMPx = 0 → {2, 3, 4}  
60  
15  
120  
30  
DAC12_xDAT = 800h,  
ErrorV(O) < ±0.5 LSB(1)  
(see Figure 8-19)  
tON  
DAC12 on time  
DAC12AMPx = 0 → {5, 6}  
DAC12AMPx = 0 → 7  
DAC12AMPx = 2  
2.2 V, 3 V  
µs  
µs  
µs  
6
12  
100  
40  
200  
80  
DAC12_xDAT =  
80h → F7Fh → 80h  
tS(FS)  
tS(C-C)  
SR  
Settling time, full scale  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
2.2 V, 3 V  
2.2 V, 3 V  
15  
30  
5
DAC12_xDAT =  
3F8h → 408h → 3F8h,  
BF8h → C08h → BF8h  
Settling time, code to  
code  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
2
1
0.05  
0.35  
1.50  
0.35  
1.10  
5.20  
DAC12_xDAT =  
Slew rate  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
2.2 V, 3 V  
2.2 V, 3 V  
V/µs  
nV-s  
80h → F7Fh → 80h(2)  
DAC12_xDAT =  
800h → 7FFh → 800h  
Glitch energy  
DAC12AMPx = 7  
35  
(1) RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 8-19.  
(2) Slew rate applies to output voltage steps ≥200 mV.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Conversion 1  
Conversion 2  
1/2 LꢀS  
Conversion 3  
VOUT  
DAC Output  
Glitch  
Energy  
RLoad = 3 kW  
ILoad  
AVCC  
2
1/2 LꢀS  
CLoad = 100 pF  
RO/P(DAC12.x)  
tsettleLH  
tsettleHL  
Figure 8-19. Settling Time and Glitch Energy Testing  
Conversion 1  
Conversion 2  
Conversion 3  
VOUT  
90%  
90%  
10%  
10%  
tSRLH  
tSRHL  
Figure 8-20. Slew Rate Testing  
8.50 12-Bit DAC, Dynamic Specifications (Continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
TA = 25°C  
40  
3-dB bandwidth,  
VDC = 1.5 V,  
VAC = 0.1 VPP  
(see Figure 8-21)  
DAC12AMPx = {5, 6}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
TA = 25°C  
BW–3dB  
2.2 V, 3 V  
180  
550  
kHz  
DAC12AMPx = 7, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
TA = 25°C  
DAC12_0DAT = 800h, No load,  
DAC12_1DAT = 80h ↔ F7Fh, RLoad = 3 kΩ,  
fDAC12_1OUT = 10 kHz at 50/50 duty cycle,  
TA = 25°C  
–80  
–80  
Channel-to-channel  
crosstalk(1)  
(see Figure 8-22)  
2.2 V, 3 V  
dB  
DAC12_0DAT = 80h ↔ F7Fh, RLoad = 3 kΩ,  
DAC12_1DAT = 800h, No load,  
fDAC12_0OUT = 10 kHz at 50/50 duty cycle,  
TA = 25°C  
(1) RLoad = 3 kΩ, CLoad = 100 pF  
RLoad = 3 kW  
ILoad  
VeREF+  
AVCC  
2
DAC12_x  
DACx  
AC  
DC  
CLoad = 100 pF  
Figure 8-21. Test Conditions for 3-dB Bandwidth Specification  
Copyright © 2020 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
RLoad  
ILoad  
AVCC  
2
DAC12_xDAT  
VOUT  
080h  
080h  
F7Fh  
080h  
F7Fh  
DAC12_0  
DAC12_1  
DAC0  
CLoad = 100 pF  
RLoad  
VREF+  
VDAC12_yOUT  
ILoad  
VDAC12_xOUT  
AVCC  
2
1/fToggle  
DAC1  
CLoad = 100 pF  
Figure 8-22. Crosstalk Test Conditions  
8.51 Comparator_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
Supply voltage  
1.8  
3.6  
40  
50  
65  
30  
0.5  
V
1.8 V  
2.2 V  
CBPWRMD = 00  
30  
40  
Comparator operating supply  
IAVCC_COMP current into AVCC terminal,  
Excludes reference resistor ladder  
3 V  
µA  
CBPWRMD = 01  
CBPWRMD = 10  
2.2 V, 3 V  
2.2 V, 3 V  
10  
0.1  
Quiescent current of local  
IAVCC_REF  
reference voltage amplifier into  
AVCC terminal  
CBREFACC = 1, CBREFLx = 01  
22  
µA  
VIC  
Common mode input range  
0
VCC – 1  
±20  
V
CBPWRMD = 00  
VOFFSET  
CIN  
Input offset voltage  
mV  
CBPWRMD = 01 or 10  
±10  
Input capacitance  
5
3
pF  
kΩ  
On (switch closed)  
4
RSIN  
Series input resistance  
Off (switch open)  
50  
MΩ  
CBPWRMD = 00, CBF = 0  
450  
600  
50  
ns  
µs  
tPD  
Propagation delay, response time CBPWRMD = 01, CBF = 0  
CBPWRMD = 10, CBF = 0  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 00  
0.35  
0.6  
1.0  
1.8  
0.6  
1.0  
1.8  
3.4  
1
1.0  
1.8  
3.4  
6.5  
2
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 01  
tPD,filter  
Propagation delay with filter active  
µs  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 10  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 11  
CBON = 0 to CBON = 1  
CBPWRMD = 00 or 01  
tEN_CMP  
Comparator enable time  
µs  
CBON = 0 to CBON = 1  
CBPWRMD = 10  
100  
tEN_REF  
Resistor reference enable time  
Reference voltage for a given tap  
CBON = 0 to CBON = 1  
0.3  
1.5  
µs  
V
VIN ×  
VIN ×  
VIN ×  
VIN = reference into resistor  
ladder (n = 0 to 31)  
VCB_REF  
(n + 0.5) / (n + 1) / 3 (n + 1.5) /  
32 32  
2
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.52 Ports PU.0 and PU.1  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
TEST CONDITIONS  
VUSB = 3.3 V ±10%, IOH = –25 mA  
VUSB = 3.3 V ±10%, IOL = 25 mA  
VUSB = 3.3 V ±10%  
MIN  
MAX  
UNIT  
VOH  
VOL  
VIH  
VIL  
2.4  
V
V
V
V
0.4  
2.0  
VUSB = 3.3 V ±10%  
0.8  
8.53 USB Output Ports DP and DM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
D+, D- single ended  
D+, D- single ended  
D+, D- impedance  
TEST CONDITIONS  
MIN  
2.8  
0
MAX  
3.6  
0.3  
44  
UNIT  
V
VOH  
USB 2.0 load conditions  
VOL  
USB 2.0 load conditions  
V
Z(DRV)  
Including external series resistor of 27 Ω  
28  
Full speed, differential, CL = 50 pF,  
10%/90%, Rpu on D+  
tRISE  
tFALL  
Rise time  
Fall time  
4
4
20  
20  
ns  
ns  
Full speed, differential, CL = 50 pF,  
10%/90%, Rpu on D+  
8.54 USB Input Ports DP and DM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Differential input common mode range  
Input impedance  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
V(CM)  
Z(IN)  
VCRS  
VIL  
0.8  
2.5  
300  
1.3  
kΩ  
V
Crossover voltage  
2.0  
0.8  
Static SE input logic low level  
Static SE input logic high level  
Differential input voltage  
V
VIH  
2.0  
V
VDI  
0.2  
V
Copyright © 2020 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
8.55 USB-PWR (USB Power System)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VLAUNCH  
VBUS  
VBUS detection threshold  
3.75  
5.5  
V
V
USB bus voltage  
Normal operation  
3.76  
VUSB  
USB LDO output voltage  
3.3  
1.8  
±9%  
V
V18  
Internal USB voltage(1)  
V
IUSB_EXT  
IDET  
Maximum external current from VUSB terminal(2)  
USB LDO current overload detection(3)  
USB LDO is on  
12  
mA  
mA  
60  
100  
USB LDO is on,  
USB PLL disabled  
ISUSPEND  
Operating supply current into VBUS terminal.(4)  
250  
µA  
CBUS  
CUSB  
C18  
VBUS terminal recommended capacitance  
VUSB terminal recommended capacitance  
V18 terminal recommended capacitance  
4.7  
220  
220  
µF  
nF  
nF  
Within 2%,  
recommended capacitances  
tENABLE  
RPUR  
Settling time VUSB and V18  
2
ms  
Pullup resistance of PUR terminal(5)  
70  
110  
150  
(1) This voltage is for internal use only. No external DC loading should be applied.  
(2) This represents additional current that can be supplied to the application from the VUSB terminal beyond the needs of the USB  
operation.  
(3) A current overload will be detected when the total current supplied from the USB LDO, including IUSB_EXT, exceeds this value.  
(4) Does not include current contribution of Rpu and Rpd as outlined in the USB specification.  
(5) This value, in series with an external resistor between PUR and D+, produces the Rpu as outlined in the USB specification.  
8.56 USB-PLL (USB Phase Locked Loop)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
IPLL  
Operating supply current  
PLL frequency  
7
mA  
MHz  
MHz  
ms  
fPLL  
48  
fUPD  
tLOCK  
tJitter  
PLL reference frequency  
PLL lock time  
1.5  
3
2
PLL jitter  
1000  
ps  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
8.57 Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TJ  
MIN  
TYP  
MAX UNIT  
DVCC(PGM/ERASE) Program and erase supply voltage  
1.8  
3.6  
5
V
mA  
IPGM  
Average supply current from DVCC during program  
3
6
6
IERASE  
Average supply current from DVCC during erase  
Average supply current from DVCC during mass erase or bank erase  
Cumulative program time(1)  
19  
19  
16  
mA  
IMERASE, IBANK  
tCPT  
mA  
ms  
Program and erase endurance  
104  
100  
64  
105  
cycles  
years  
µs  
tRetention  
tWord  
Data retention duration  
25°C  
Word or byte program time(2)  
85  
65  
tBlock, 0  
Block program time for first byte or word(2)  
49  
µs  
Block program time for each additional byte or word, except for last byte  
or word(2)  
tBlock, 1–(N–1)  
37  
49  
µs  
tBlock, N  
Block program time for last byte or word(2)  
55  
23  
73  
32  
µs  
tSeg Erase  
Erase time for segment, mass erase, and bank erase when available(2)  
ms  
MCLK frequency in marginal read mode  
(FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1)  
fMCLK,MGR  
0
1
MHz  
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming  
methods: individual word write, individual byte write, and block write modes.  
(2) These values are hardwired into the state machine of the flash controller.  
8.58 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
Spy-Bi-Wire input frequency  
MIN  
TYP  
MAX UNIT  
fSBW  
2.2 V, 3 V  
0
20 MHz  
tSBW,Low  
tSBW, En  
tSBW,Rst  
Spy-Bi-Wire low clock pulse duration  
2.2 V, 3 V  
0.025  
15  
1
µs  
µs  
µs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)(1)  
2.2 V, 3 V  
Spy-Bi-Wire return to normal operation time  
15  
0
100  
5
2.2 V  
3 V  
fTCK  
TCK input frequency for 4-wire JTAG(2)  
Internal pulldown resistance on TEST  
MHz  
kΩ  
0
10  
80  
Rinternal  
2.2 V, 3 V  
45  
60  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2020 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9 Detailed Description  
9.1 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are  
general-purpose registers (see Figure 9-1).  
Peripherals are connected to the CPU using data, address, and control buses. The peripherals can be managed  
with all instructions.  
Program Counter  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Stack Pointer  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
Figure 9-1. Integrated CPU Registers  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.2 Instruction Set  
The instruction set consists of the original 51 instructions with three formats and seven address modes and  
additional instructions for the expanded address range. Each instruction can operate on word and byte data.  
Table 9-1 lists examples of the three types of instruction formats. Table 9-2 lists the address modes.  
Table 9-1. Instruction Word Formats  
INSTRUCTION WORD FORMAT  
Dual operands, source-destination  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
R4 + R5 → R5  
Single operands, destination only  
PC → (TOS), R8 → PC  
Jump-on-equal bit = 0  
Relative jump, unconditional or conditional  
Table 9-2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S(1)  
+
D(1)  
+
SYNTAX  
EXAMPLE  
OPERATION  
MOV Rs,Rd  
MOV R10,R11  
R10 → R11  
Indexed  
+
+
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM, &TCDAT  
MOV @Rn,Y(Rm)  
MOV 2(R5),6(R6)  
M(2+R5) → M(6+R6)  
M(EDE) → M(TONI)  
M(MEM) → M(TCDAT)  
M(R10) → M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
+
+
+
+
Indirect  
+
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) → R11  
R10 + 2 → R10  
Indirect auto-increment  
Immediate  
+
+
MOV @Rn+,Rm  
MOV #X,TONI  
#45 → M(TONI)  
(1) S = source, D = destination  
Copyright © 2020 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.3 Operating Modes  
The MCUs have one active mode and seven software-selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the low-power modes, service the request, and restore back to the  
low-power mode on return from the interrupt program.  
Software can configure the following operating modes:  
Active mode (AM)  
– All clocks are active  
Low-power mode 0 (LPM0)  
– CPU is disabled  
– ACLK and SMCLK remain active, MCLK is disabled  
– FLL loop control remains active  
Low-power mode 1 (LPM1)  
– CPU is disabled  
– FLL loop control is disabled  
– ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 2 (LPM2)  
– CPU is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO remains enabled  
– ACLK remains active  
Low-power mode 3 (LPM3)  
– CPU is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO is disabled  
– ACLK remains active  
Low-power mode 4 (LPM4)  
– CPU is disabled  
– ACLK is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO is disabled  
– Crystal oscillator is stopped  
– Complete data retention  
Low-power mode 3.5 (LPM3.5)  
– Internal regulator disabled  
– No data retention  
– RTC enabled and clocked by low-frequency oscillator  
– Wake-up input from RST/NMI, RTC_B, P1, P2, P3, and P4  
Low-power mode 4.5 (LPM4.5)  
– Internal regulator disabled  
– No data retention  
– Wake-up input from RST/NMI, P1, P2, P3, and P4  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.4 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table  
9-3). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 9-3. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up, External Reset  
Watchdog time-out, key violation  
Flash memory key violation  
WDTIFG, KEYV (SYSRSTIV)(1) (3)  
Reset  
0FFFEh  
0FFFCh  
0FFFAh  
63, highest  
System NMI  
PMM  
Vacant memory access  
JTAG mailbox  
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,  
SVMLVLRIFG, SVMHVLRIFG, VMAIFG,  
JMBINIFG, JMBOUTIFG (SYSSNIV)(1)  
(Non)maskable  
(Non)maskable  
62  
61  
User NMI  
NMI  
Oscillator fault  
NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV)  
(1) (3)  
Flash memory access violation  
Comp_B  
Comparator B interrupt flags (CBIV)(1) (2)  
TB0CCR0 CCIFG0 (2)  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
60  
59  
Timer TB0  
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,  
TB0IFG (TB0IV)(1) (2)  
Timer TB0  
Maskable  
0FFF4h  
58  
Watchdog interval timer mode  
USCI_A0 receive or transmit  
USCI_B0 receive or transmit  
ADC12_A  
WDTIFG  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
0FFEAh  
57  
56  
55  
54  
53  
UCA0RXIFG, UCA0TXIFG (UCA0IV)(1) (2)  
UCB0RXIFG, UCB0TXIFG (UCB0IV)(1) (2)  
ADC12IFG0 to ADC12IFG15 (ADC12IV)(1) (2)  
TA0CCR0 CCIFG0(2)  
Timer TA0  
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,  
TA0IFG (TA0IV)(1) (2)  
Timer TA0  
Maskable  
Maskable  
0FFE8h  
0FFE6h  
52  
51  
USB_UBM(5)  
LDO-PWR (7)  
USB interrupts (USBIV)(1) (2)  
LDOOFFIFG, LDOONIFG, LDOOVLIFG  
DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG,  
DMA4IFG, DMA5IFG (DMAIV)(1) (2)  
DMA  
Maskable  
Maskable  
Maskable  
0FFE4h  
0FFE2h  
0FFE0h  
50  
49  
48  
Timer TA1  
Timer TA1  
TA1CCR0 CCIFG0(2)  
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)(1) (2)  
I/O Port P1  
USCI_A1 receive or transmit  
USCI_B1 receive or transmit  
I/O port P2  
P1IFG.0 to P1IFG.7 (P1IV)(1) (2)  
UCA1RXIFG, UCA1TXIFG (UCA1IV)(1) (2)  
UCB1RXIFG, UCB1TXIFG (UCB1IV)(1) (2)  
P2IFG.0 to P2IFG.7 (P2IV)(1) (2)  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
0FFDAh  
0FFD8h  
0FFD6h  
47  
46  
45  
44  
43  
LCD_B(6)  
LCD_B Interrupt Flags (LCDBIV)(1)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RTC_B  
Maskable  
0FFD4h  
42  
RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV)(1) (2)  
DAC12_A  
Timer TA2  
DAC12_0IFG, DAC12_1IFG(1) (2)  
TA2CCR0 CCIFG0(2)  
Maskable  
Maskable  
0FFD2h  
0FFD0h  
41  
40  
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,  
TA2IFG (TA2IV)(1) (2)  
Timer TA2  
Maskable  
0FFCEh  
39  
I/O port P3  
P3IFG.0 to P3IFG.7 (P3IV)(1) (2)  
P4IFG.0 to P4IFG.7 (P4IV)(1) (2)  
Maskable  
Maskable  
0FFCCh  
0FFCAh  
0FFC8h  
0FFC6h  
38  
37  
36  
35  
I/O Port P4  
USCI_A2 receive or transmit  
USCI_B2 receive or transmit  
UCA2RXIFG, UCA2TXIFG (UCA2IV)(1) (2)  
UCB2RXIFG, UCB2TXIFG (UCB2IV)(1) (2)  
Copyright © 2020 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-3. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
0FFC4h  
34  
Reserved  
Reserved(4)  
0FF80h  
0, lowest  
(1) Multiple source flags  
(2) Interrupt flags are in the module.  
(3) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it.  
(4) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To  
maintain compatibility with other devices, TI recommends reserving these locations.  
(5) Only on devices with peripheral module USB (MSP430F665x and MSP430F565x)  
(6) Only on devices with peripheral module LCD_B (MSP430F665x and MSP430F645x), otherwise reserved (MSP430F535x and  
MSP430F565x)  
(7) Only on devices with peripheral module LDO-PWR (MSP430F535x and MSP430F645x)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.5 Memory Organization  
Table 9-4 summarizes the memory map of all device variants.  
Table 9-4. Memory Organization  
MSP430F6458  
MSP430F5358  
MSP430F6459  
MSP430F5359  
MSP430F6658  
MSP430F5658  
MSP430F6659  
MSP430F5659  
(1)  
Memory (flash)  
Total Size  
384KB  
512KB  
384KB  
512KB  
Main: interrupt vector  
00FFFFh to 00FF80h 00FFFFh to 00FF80h  
00FFFFh to 00FF80h  
00FFFFh to 00FF80h  
128KB  
N/A  
128KB  
087FFFh to 068000h  
Bank 3  
Bank 2  
N/A  
087FFFh to 068000h  
128KB  
128KB  
128KB  
067FFFh to 048000h  
128KB  
067FFFh-48000h  
067FFFh to 048000h  
067FFFh-48000h  
Main: code memory  
128KB  
128KB  
128KB  
047FFFh to 028000h  
128KB  
047FFFh to 028000h  
Bank 1  
047FFFh to 028000h 047FFFh to 028000h  
128KB 128KB  
027FFFh to 008000h 027FFFh to 008000h  
1KB 1KB  
006FFFh to 006C00h 006FFFh to 006C00h  
16KB 16KB  
128KB  
027FFFh to 008000h  
128KB  
027FFFh to 008000h  
Bank 0  
MID support  
software (ROM)  
1KB  
1KB  
Total Size  
Sector 3  
Sector 2  
Sector 1  
006FFFh to 006C00h  
006FFFh to 006C00h  
16KB  
0FBFFFh to 0F8000h  
16KB  
0FBFFFh to 0F8000h  
0FBFFFh to 0F8000h 0FBFFFh to 0F8000h  
16KB  
N/A  
16KB  
0F7FFFh to 0F4000h  
N/A  
N/A  
0F7FFFh to 0F4000h  
16KB  
N/A  
16KB  
0F3FFFh to 0F0000h  
RAM  
0F3FFFh to 0F0000h  
16KB  
0063FFh to 002400h  
Sector 0 (mirrored at address  
range  
16KB  
16KB  
0063FFh to 002400h  
(mirrored at address range (mirrored at address range  
0FFFFFh to 0FC000h)  
16KB  
0063FFh to 002400h  
0063FFh to 002400h  
(mirrored at address  
range  
0FFFFFh to 0FC000h)  
0FFFFFh to 0FC000h) 0FFFFFh to 0FC000h)  
2KB 2KB  
0023FFh to 001C00h 0023FFh to 001C00h  
RAM(3)  
Sector 7  
Sector 7  
Info A  
Info B  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
N/A  
N/A  
2KB  
2KB  
USB RAM(2)  
N/A  
N/A  
0023FFh to 001C00h  
0023FFh to 001C00h  
128 bytes  
0019FFh to 001980h  
128 bytes  
0019FFh to 001980h  
128 bytes  
0019FFh to 001980h  
128 bytes  
0019FFh to 001980h  
128 bytes  
00197Fh to 001900h  
128 bytes  
00197Fh to 001900h  
128 bytes  
00197Fh to 001900h  
128 bytes  
00197Fh to 001900h  
Information memory  
(flash)  
128 bytes  
0018FFh to 001880h  
128 bytes  
0018FFh to 001880h  
128 bytes  
0018FFh to 001880h  
128 bytes  
0018FFh to 001880h  
128 bytes  
00187Fh to 001800h  
128 bytes  
00187Fh to 001800h  
128 bytes  
00187Fh to 001800h  
128 bytes  
00187Fh to 001800h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
Bootloader (BSL)  
memory (flash)  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
4KB  
4KB  
4KB  
4KB  
Peripherals  
000FFFh to 000000h 000FFFh to 000000h  
000FFFh to 000000h  
000FFFh to 000000h  
(1) N/A = Not available  
(2) Only available on F6659, F6658, F5659, F5658 devices. USB RAM can be used as general-purpose RAM when not used for USB  
operation.  
(3) Only available on F6459, F6458, F5359, F5358 devices.  
Copyright © 2020 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.6 Bootloader (BSL)  
The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to the  
device memory by the BSL is protected by an user-defined password. For complete description of the features of  
the BSL and its implementation, see the MSP430 Flash Device Bootloader (BSL) User's Guide.  
9.6.1 USB BSL  
The devices MSP430F565x and MSP430F665x come preprogrammed with the USB BSL. Use of the USB BSL  
requires external access to six pins (see Table 9-5). In addition to these pins, the application must support  
external components necessary for normal USB operation; for example, the proper crystal on XT2IN and  
XT2OUT or proper decoupling.  
Table 9-5. USB BSL Pin Requirements and  
Functions  
DEVICE SIGNAL  
RST/NMI/SBWTDIO  
PU.0/DP  
BSL FUNCTION  
Entry sequence signal  
USB data terminal DP  
USB data terminal DM  
USB pullup resistor terminal  
USB bus power supply  
USB ground supply  
PU.1/DM  
PUR  
VBUS  
VSSU  
Note  
The default USB BSL evaluates the logic level of the PUR pin after a BOR reset. If it is pulled high  
externally, then the BSL is invoked. Therefore, unless the application is invoking the BSL, it is  
important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI  
recommends applying a 1-MΩ resistor to ground.  
9.6.2 UART BSL  
All devices without a USB module (MSP430F535x and MSP430F645x) come preprogrammed with the UART  
BSL. A UART BSL is also available for devices with USB module that can be programmed by the user into the  
BSL memory by replacing the preprogrammed, factory supplied, USB BSL. Use of the UART BSL requires  
external access to six pins (see Table 9-6).  
Table 9-6. UART BSL Pin Requirements and  
Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.1  
P1.2  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.7 JTAG Operation  
9.7.1 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430  
development tools and device programmers. Table 9-7 lists the JTAG pin requirements. For further details on  
interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a  
complete description of the features of the BSL and its implementation, see MSP430 Programming With the  
JTAG Interface.  
Table 9-7. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
PJ.3/TCK  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
9.7.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-  
Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 9-8 lists the  
Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device  
programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the  
JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface.  
Table 9-8. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN  
IN, OUT  
VSS  
Ground supply  
9.8 Flash Memory  
The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the  
flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also  
called information memory.  
Segment A can be locked separately.  
Copyright © 2020 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.9 Memory Integrity Detection (MID)  
The MID is an add-on to the flash memory controller. MID provides additional functionality over the regular flash  
operation methods. The main purpose of the MID function is to gain higher reliability of flash content and overall  
system integrity in harsh environments and in application areas that require such features. The on-chip MID  
ROM contains the factory-programmed MID support software. This software package provides several software  
functions that allow an application to use all of the features of the MID.  
The MID functionality can be enabled for different flash memory ranges. These memory ranges are selectable by  
the cw0 parameter of the MID function MidEnable() (see Table 9-9).  
Table 9-9. Address Range Coverage of cw0 Parameter of MidEnable() Function  
MSP430F6659  
MSP430F6459  
MSP430F5659  
MSP430F5359  
MSP430F6658  
MSP430F6458  
MSP430F5658  
MSP430F5358  
BITS OF cw0 PARAMETER  
cw0.15  
cw0.14  
cw0.13  
cw0.12  
cw0.11  
cw0.10  
cw0.9  
cw0.8  
cw0.7  
cw0.6  
cw0.5  
cw0.4  
cw0.3  
cw0.2  
cw0.1  
cw0.0  
087FFFh to 080000h  
07FFFFh to 078000h  
077FFFh to 070000h  
06FFFFh to 068000h  
067FFFh to 060000h  
05FFFFh to 058000h  
057FFFh to 050000h  
04FFFFh to 048000h  
047FFFh to 040000h  
03FFFFh to 038000h  
037FFFh to 030000h  
02FFFFh to 028000h  
027FFFh to 020000h  
01FFFFh to 018000h  
017FFFh to 010000h  
00FFFFh to 008000h  
N/A  
N/A  
N/A  
N/A  
067FFFh to 060000h  
05FFFFh to 058000h  
057FFFh to 050000h  
04FFFFh to 048000h  
047FFFh to 040000h  
03FFFFh to 038000h  
037FFFh to 030000h  
02FFFFh to 028000h  
027FFFh to 020000h  
01FFFFh to 018000h  
017FFFh to 010000h  
00FFFFh to 008000h  
9.10 RAM  
The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all  
data are lost. Features of the RAM include:  
RAM has n sectors. The size of a sector can be found in Section 9.5.  
Each sector 0 to n can be complete disabled; however, data retention is lost.  
Each sector 0 to n automatically enters low-power retention mode when possible.  
For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required.  
9.11 Backup RAM  
The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during  
operation from a backup supply if the battery backup system module is implemented.  
There are 8 bytes of backup RAM available. It can be word-wise accessed by the control registers BAKMEM0,  
BAKMEM1, BAKMEM2, and BAKMEM3.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed  
using all instructions. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's  
Guide.  
9.12.1 Digital I/O  
Nine 8-bit I/O ports are implemented: P1 through P9 are complete, and port PJ contains four individual I/O ports.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Programmable drive strength on all ports.  
Edge-selectable interrupt input capability for all the eight bits of ports P1, P2, P3, and P4.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PD).  
9.12.2 Port Mapping Controller  
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2. Table  
9-10 lists the available mappings, and Table 9-11 lists the default settings.  
Table 9-10. Port Mapping Mnemonics and Functions  
VALUE  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
0
PM_NONE  
None  
DVSS  
PM_CBOUT  
Comparator_B output  
1
2
PM_TB0CLK  
Timer TB0 clock input  
PM_ADC12CLK  
PM_DMAE0  
ADC12CLK  
DMAE0 Input  
PM_SVMOUT  
SVM output  
3
Timer TB0 high impedance input  
TB0OUTH  
PM_TB0OUTH  
4
5
PM_TB0CCR0B  
PM_TB0CCR1B  
PM_TB0CCR2B  
PM_TB0CCR3B  
PM_TB0CCR4B  
PM_TB0CCR5B  
PM_TB0CCR6B  
PM_UCA0RXD  
PM_UCA0SOMI  
PM_UCA0TXD  
PM_UCA0SIMO  
PM_UCA0CLK  
PM_UCB0STE  
PM_UCB0SOMI  
PM_UCB0SCL  
PM_UCB0SIMO  
PM_UCB0SDA  
PM_UCB0CLK  
PM_UCA0STE  
PM_MCLK  
Timer TB0 CCR0 capture input CCI0B  
Timer TB0 CCR1 capture input CCI1B  
Timer TB0 CCR2 capture input CCI2B  
Timer TB0 CCR3 capture input CCI3B  
Timer TB0 CCR4 capture input CCI4B  
Timer TB0 CCR5 capture input CCI5B  
Timer TB0 CCR6 capture input CCI6B  
Timer TB0: TB0.0 compare output Out0  
Timer TB0: TB0.1 compare output Out1  
Timer TB0: TB0.2 compare output Out2  
Timer TB0: TB0.3 compare output Out3  
Timer TB0: TB0.4 compare output Out4  
Timer TB0: TB0.5 compare output Out5  
Timer TB0: TB0.6 compare output Out6  
6
7
8
9
10  
USCI_A0 UART RXD (Direction controlled by USCI – input)  
11  
12  
13  
14  
15  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
USCI_A0 UART TXD (Direction controlled by USCI – output)  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
USCI_A0 clock input/output (direction controlled by USCI)  
USCI_B0 SPI slave transmit enable (direction controlled by USCI – input)  
USCI_B0 SPI slave out master in (direction controlled by USCI)  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
USCI_B0 SPI slave in master out (direction controlled by USCI)  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
USCI_B0 clock input/output (direction controlled by USCI)  
16  
17  
USCI_A0 SPI slave transmit enable (direction controlled by USCI – input)  
MCLK  
Copyright © 2020 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-10. Port Mapping Mnemonics and Functions (continued)  
VALUE  
18  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
Reserved for test purposes. Do not use this setting.  
Reserved for test purposes. Do not use this setting.  
OUTPUT PIN FUNCTION  
Reserved  
19  
Reserved  
20-30  
Reserved  
None  
DVSS  
Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents  
when applying analog signals  
31 (0FFh)(1)  
PM_ANALOG  
(1) The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide, and the upper bits are  
ignored, which results in a read value of 31.  
Table 9-11. Default Mapping  
PIN  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
USCI_B0 SPI slave transmit enable (direction controlled by USCI – input),  
USCI_A0 clock input/output (direction controlled by USCI)  
PM_UCB0STE,  
PM_UCA0CLK  
P2.0/P2MAP0  
USCI_B0 SPI slave in master out (direction controlled by USCI),  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
PM_UCB0SIMO,  
PM_UCB0SDA  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
USCI_B0 SPI slave out master in (direction controlled by USCI),  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
PM_UCB0SOMI,  
PM_UCB0SCL  
USCI_B0 clock input/output (direction controlled by USCI),  
PM_UCB0CLK,  
PM_UCA0STE  
USCI_A0 SPI slave transmit enable (direction controlled by USCI – input)  
USCI_A0 UART TXD (direction controlled by USCI – output),  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
PM_UCA0TXD,  
PM_UCA0SIMO  
USCI_A0 UART RXD (direction controlled by USCI – input),  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
PM_UCA0RXD,  
PM_UCA0SOMI  
P2.6/P2MAP6/ R03  
PM_NONE  
PM_NONE  
DVSS  
DVSS  
P2.7/P2MAP7/LCDREF/R13  
9.12.3 Oscillator and System Clock  
The clock system is supported by the Unified Clock System (UCS) module that includes support for a 32-kHz  
watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power low-  
frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally  
controlled oscillator (DCO), and a high-frequency crystal oscillator (XT2). The UCS module is designed to meet  
the requirements of both low system cost and low power consumption. The UCS module features digital  
frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency  
to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turnon clock source  
and stabilizes in 3 µs (typical). The UCS module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the  
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally-  
controlled oscillator DCO.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to  
ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
same sources available to ACLK.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.4 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains  
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor  
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is  
implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS  
and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply  
voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not  
automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.  
9.12.5 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations  
with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed  
and unsigned multiply-and-accumulate operations.  
9.12.6 Real-Time Clock (RTC_B)  
The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes,  
hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which  
compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports  
flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in  
LPM3.5 mode and operation from a backup supply.  
Using the MSP430 RTC_B Module With Battery Backup Supply describes how to use the RTC_B with battery  
backup supply functionality to retain the time and keep the RTC counting through loss of main power supply, as  
well as how to handle correct reinitialization when the main power supply is restored.  
9.12.7 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
9.12.8 System Module (SYS)  
The SYS module handles many of the system functions within the device. These include power-on reset and  
power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootloader  
entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange  
mechanism using JTAG called a JTAG mailbox that can be used in the application. Table 9-12 lists the SYS  
module interrupt vector registers.  
Copyright © 2020 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-12. System Module Interrupt Vector Registers  
INTERRUPT VECTOR REGISTER  
INTERRUPT EVENT  
No interrupt pending  
Brownout (BOR)  
RST/NMI (BOR)  
PMMSWBOR (BOR)  
LPM3.5 or LPM4.5 wakeup (BOR)  
Security violation (BOR)  
SVSL (POR)  
WORD ADDRESS  
OFFSET  
00h  
PRIORITY  
02h  
Highest  
04h  
06h  
08h  
0Ah  
0Ch  
SVSH (POR)  
0Eh  
SVML_OVP (POR)  
SVMH_OVP (POR)  
PMMSWPOR (POR)  
WDT time-out (PUC)  
WDT key violation (PUC)  
KEYV flash key violation (PUC)  
Reserved  
10h  
SYSRSTIV, System Reset  
019Eh  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
Peripheral area fetch (PUC)  
PMM key violation (PUC)  
Reserved  
1Eh  
20h  
22h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVMLIFG  
02h  
SVMHIFG  
04h  
DLYLIFG  
06h  
DLYHIFG  
08h  
SYSSNIV, System NMI  
VMAIFG  
019Ch  
0Ah  
JMBINIFG  
0Ch  
JMBOUTIFG  
0Eh  
SVMLVLRIFG  
10h  
SVMHVLRIFG  
Reserved  
12h  
14h to 1Eh  
00h  
Lowest  
Highest  
No interrupt pending  
NMIIFG  
02h  
OFIFG  
04h  
SYSUNIV, User NMI  
019Ah  
0198h  
ACCVIFG  
06h  
BUSIFG  
08h  
Reserved  
0Ah to 1Eh  
00h  
Lowest  
Highest  
No interrupt pending  
USB wait state time-out  
Reserved  
02h  
SYSBERRIV, Bus Error  
04h  
MID error  
06h  
Reserved  
08h to 1Eh  
Lowest  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.9 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM.  
Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces  
system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move  
data to or from a peripheral.  
The USB timestamp generator also uses the channel 0, 1, and 2 DMA trigger assignments described in Table  
9-13. The USB timestamp generator is available only on devices with the USB module (MSP430F565x and  
MSP430F665x).  
Table 9-13. DMA Trigger Assignments  
CHANNEL  
TRIGGE  
R(1)  
0
1
2
3
4
5
0
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TBCCR0 CCIFG  
TBCCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
Reserved  
UCA2RXIFG  
UCA2TXIFG  
UCB2RXIFG  
UCB2TXIFG  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC12IFGx  
DAC12_0IFG  
DAC12_1IFG  
USB FNRXD (2)  
USB ready (2)  
MPY ready  
DMA5IFG  
DMA0IFG  
DMA1IFG  
DMA2IFG  
DMAE0  
DMA3IFG  
DMA4IFG  
(1) Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not  
cause any DMA trigger event when selected.  
(2) Only on devices with peripheral module USB (MSP430F565x and MSP430F665x), otherwise  
reserved (MSP430F535x and MSP430F645x).  
Copyright © 2020 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.12.10 Universal Serial Communication Interface (USCI)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions,  
A and B.  
The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA.  
The USCI_Bn module provides support for SPI (3- or 4-pin) or I2C.  
These MCUs include three complete USCI modules (n = 0 to 2).  
9.12.11 Timer TA0  
Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 supports multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-14). TA0 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/  
compare registers.  
Table 9-14. Timer TA0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZCA, ZQW  
PZ  
ZCA, ZQW  
34-P1.0  
L5-P1.0  
TA0CLK  
ACLK  
SMCLK  
TA0CLK  
TA0.0  
DVSS  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
34-P1.0  
35-P1.1  
L5-P1.0  
M5-P1.1  
35-P1.1  
M5-P1.1  
TA0  
TA0.0  
DVSS  
DVCC  
VCC  
36-P1.2  
40-P1.6  
J6-P1.2  
J7-P1.6  
TA0.1  
TA0.1  
CCI1A  
CCI1B  
36-P1.2  
40-P1.6  
J6-P1.2  
J7-P1.6  
CCR1  
TA1  
TA0.1  
ADC12_A (internal)  
ADC12SHSx = {1}  
DVSS  
GND  
DVCC  
TA0.2  
TA0.2  
DVSS  
DVCC  
TA0.3  
DVSS  
DVSS  
DVCC  
TA0.4  
DVSS  
DVSS  
DVCC  
VCC  
CCI2A  
CCI2B  
GND  
37-P1.3  
41-P1.7  
H6-P1.3  
M7-P1.7  
37-P1.3  
H6-P1.3  
M7-P1.7  
41-P1.7  
CCR2  
CCR3  
CCR4  
TA2  
TA3  
TA4  
TA0.2  
TA0.3  
TA0.4  
VCC  
38-P1.4  
39-P1.5  
M6-P1.4  
L6-P1.5  
CCI3A  
CCI3B  
GND  
38-P1.4  
M6-P1.4  
L6-P1.5  
VCC  
CCI4A  
CCI4B  
GND  
39-P1.5  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.12 Timer TA1  
Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 supports multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-15). TA1 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/  
compare registers.  
Table 9-15. Timer TA1 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZCA, ZQW  
PZ  
ZCA, ZQW  
42-P3.0  
L7-P3.0  
TA1CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
SMCLK  
TA1CLK  
TA1.0  
42-P3.0  
43-P3.1  
L7-P3.0  
H7-P3.1  
43-P3.1  
44-P3.2  
H7-P3.1  
M8-P3.2  
DVSS  
TA0  
TA1.0  
DVSS  
DVCC  
VCC  
44-P3.2  
45-P3.3  
M8-P3.2  
L8-P3.3  
TA1.1  
CCI1A  
DAC12_A  
DAC12_0, DAC12_1  
(internal)  
CBOUT  
(internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA1.1  
TA1.2  
DVSS  
DVCC  
TA1.2  
GND  
VCC  
CCI2A  
45-P3.3  
L8-P3.3  
ACLK  
(internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.12.13 Timer TA2  
Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 supports multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-16). TA2 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/  
compare registers.  
Table 9-16. Timer TA2 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZCA, ZQW  
PZ  
ZCA, ZQW  
46-P3.4  
J8-P3.4  
TA2CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
SMCLK  
TA2CLK  
TA2.0  
46-P3.4  
47-P3.5  
J8-P3.4  
M9-P3.5  
47-P3.5  
48-P3.6  
M9-P3.5  
L9-P3.6  
DVSS  
TA0  
TA2.0  
DVSS  
DVCC  
VCC  
48-P3.6  
49-P3.7  
L9-P3.6  
TA2.1  
CCI1A  
CBOUT  
(internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA2.1  
TA2.2  
DVSS  
DVCC  
TA2.2  
GND  
VCC  
M10-P3.7  
CCI2A  
49-P3.7  
M10-P3.7  
ACLK  
(internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.14 Timer TB0  
Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 supports multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-17). TB0 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/  
compare registers.  
Table 9-17. Timer TB0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZCA, ZQW  
PZ  
ZCA, ZQW  
58-P8.0  
J11-P8.0  
TB0CLK  
TB0CLK  
P2MAPx(1)  
P2MAPx(1)  
ACLK  
ACLK  
Timer  
NA  
NA  
SMCLK  
SMCLK  
58-P8.0  
J11-P8.0  
TB0CLK  
TB0CLK  
P2MAPx(1)  
P2MAPx(1)  
50-P4.0  
J9-P4.0  
TB0.0  
TB0.0  
CCI0A  
CCI0B  
50-P4.0  
J9-P4.0  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
CCR0  
CCR1  
TB0  
TB1  
TB0.0  
TB0.1  
ADC12 (internal)  
ADC12SHSx = {2}  
DVSS  
GND  
DVCC  
TB0.1  
TB0.1  
VCC  
51-P4.1  
M11-P4.1  
CCI1A  
CCI1B  
51-P4.1  
P2MAPx(1)  
M11-P4.1  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
ADC12 (internal)  
ADC12SHSx = {3}  
DVSS  
GND  
DVCC  
TB0.2  
TB0.2  
VCC  
52-P4.2  
L10-P4.2  
CCI2A  
CCI2B  
52-P4.2  
P2MAPx(1)  
L10-P4.2  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
DAC12_A  
DAC12_0, DAC12_1  
(internal)  
CCR2  
TB2  
TB0.2  
DVSS  
GND  
DVCC  
TB0.3  
TB0.3  
DVSS  
DVCC  
TB0.4  
TB0.4  
DVSS  
DVCC  
TB0.5  
TB0.5  
DVSS  
DVCC  
TB0.6  
TB0.6  
DVSS  
DVCC  
VCC  
CCI3A  
CCI3B  
GND  
53-P4.3  
M12-P4.3  
53-P4.3  
M12-P4.3  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
CCR3  
CCR4  
CCR5  
CCR6  
TB3  
TB4  
TB5  
TB6  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
VCC  
54-P4.4  
L12-P4.4  
CCI4A  
CCI4B  
GND  
54-P4.4  
L12-P4.4  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
VCC  
55-P4.5  
L11-P4.5  
CCI5A  
CCI5B  
GND  
55-P4.5  
L11-P4.5  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
VCC  
56-P4.6  
K11-P4.6  
CCI6A  
CCI6B  
GND  
56-P4.6  
K11-P4.6  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
VCC  
(1) Timer functions are selectable through the port mapping controller.  
Copyright © 2020 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.12.15 Comparator_B  
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,  
battery voltage supervision, and monitoring of external analog signals.  
9.12.16 ADC12_A  
The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR  
core, sample select control, reference generator, and a 16 word conversion-and-control buffer. The conversion-  
and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU  
intervention.  
9.12.17 DAC12_A  
The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A may be used in 8-bit or 12-bit  
mode, and may be used in conjunction with the DMA controller. When multiple DAC12_A modules are present,  
they may be grouped together for synchronous operation.  
9.12.18 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
9.12.19 Voltage Reference (REF) Module  
The REF module generates all critical reference voltages that can be used by the various analog peripherals in  
the device.  
9.12.20 LCD_B  
The LCD_B driver generates the segment and common signals that are required to drive a liquid crystal display  
(LCD). The LCD_B controller has dedicated data memories to hold segment drive information. Common and  
segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux LCDs are supported.  
The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is  
possible to control the level of the LCD voltage, and thus contrast, by software. The module also provides an  
automatic blinking capability for individual segments.  
The LCD_B module is available only on the MSP430F665x and MSP430F645x devices.  
9.12.21 USB Universal Serial Bus  
The USB module is a fully integrated USB interface that is compliant with the USB 2.0 specification. The module  
supports full-speed operation of control, interrupt, and bulk transfers. The module includes an integrated LDO,  
PHY, and PLL. The PLL is highly flexible and supports a wide range of input clock frequencies. When USB RAM  
is not used for USB communication, it can be used by the system.  
The USB module is available only on the MSP430F665x and MSP430F565x devices.  
9.12.22 LDO and PU Port  
The integrated 3.3-V power system incorporates an integrated 3.3-V LDO regulator that allows the entire  
MSP430 microcontroller to be powered from nominal 5-V LDOI when it is made available for the system.  
Alternatively, the power system can supply power only to other components within the system, or it can be  
unused altogether.  
The Port U Pins (PU.0 and PU.1) function as general-purpose high-current I/O pins. These pins can only be  
configured together as either both inputs or both outputs. Port U is supplied by the LDOO rail. If the 3.3-V LDO is  
not being used in the system (disabled), the LDOO pin can be supplied externally.  
The LDO-PWR module (LDO and PU Port) is available on only the MSP430F645x and MSP430F535x devices.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.23 Embedded Emulation Module (EEM) (L Version)  
The EEM supports real-time in-system debugging. The L version of the EEM has the following features:  
Eight hardware triggers or breakpoints on memory access  
Two hardware triggers or breakpoints on CPU register write access  
Up to 10 hardware triggers can be combined to form complex triggers or breakpoints  
Two cycle counters  
Sequencer  
State storage  
Clock control on module level  
9.12.24 Peripheral File Map  
Table 9-18 lists the base register address for each available peripheral.  
Table 9-18. Peripherals  
MODULE NAME  
Special Functions (see Table 9-19)  
PMM (see Table 9-20)  
BASE ADDRESS  
OFFSET ADDRESS RANGE(1)  
000h to 01Fh  
000h to 010h  
000h to 00Fh  
000h to 007h  
000h to 001h  
000h to 001h  
000h to 01Fh  
000h to 01Fh  
000h to 001h  
000h to 003h  
000h to 007h  
000h to 01Fh  
000h to 01Fh  
000h to 00Bh  
000h to 00Bh  
000h to 00Bh  
000h to 01Fh  
000h to 02Eh  
000h to 02Eh  
000h to 02Eh  
000h to 02Eh  
000h to 01Fh  
000h to 01Fh  
000h to 02Fh  
000h to 00Fh  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 01Fh  
000h to 01Fh  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
01C0h  
01D0h  
0200h  
0220h  
0240h  
0260h  
0280h  
0320h  
0340h  
0380h  
03C0h  
0400h  
0480h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
0540h  
0550h  
0560h  
05C0h  
05E0h  
Flash Control (see Table 9-21)  
CRC16 (see Table 9-22)  
RAM Control (see Table 9-23)  
Watchdog (see Table 9-24)  
UCS (see Table 9-25)  
SYS (see Table 9-26)  
Shared Reference (see Table 9-27)  
Port Mapping Control (see Table 9-28)  
Port Mapping Port P2 (see Table 9-28)  
Port P1, P2 (see Table 9-29)  
Port P3, P4 (see Table 9-30)  
Port P5, P6 (see Table 9-31)  
Port P7, P8 (see Table 9-32)  
Port P9 (see Table 9-33)  
Port PJ (see Table 9-34)  
Timer TA0 (see Table 9-35)  
Timer TA1 (see Table 9-36)  
Timer TB0 (see Table 9-37)  
Timer TA2 (see Table 9-38)  
Battery Backup (see Table 9-39)  
RTC_B (see Table 9-40)  
32-Bit Hardware Multiplier (see Table 9-41)  
DMA General Control (see Table 9-42)  
DMA Channel 0 (see Table 9-42)  
DMA Channel 1 (see Table 9-42)  
DMA Channel 2 (see Table 9-42)  
DMA Channel 3 (see Table 9-42)  
DMA Channel 4 (see Table 9-42)  
DMA Channel 5 (see Table 9-42)  
USCI_A0 (see Table 9-43)  
USCI_B0 (see Table 9-44)  
Copyright © 2020 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-18. Peripherals (continued)  
MODULE NAME  
USCI_A1 (see Table 9-45)  
USCI_B1 (see Table 9-46)  
USCI_A2 (see Table 9-47)  
USCI_B2 (see Table 9-48)  
ADC12_A (see Table 9-49)  
DAC12_A (see Table 9-50)  
Comparator_B (see Table 9-51)  
USB configuration (see Table 9-52) (2)  
USB control (see Table 9-53) (2)  
BASE ADDRESS  
OFFSET ADDRESS RANGE(1)  
000h to 01Fh  
0600h  
0620h  
0640h  
0660h  
0700h  
0780h  
08C0h  
0900h  
0920h  
0900h  
0A00h  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 03Fh  
000h to 01Fh  
000h to 00Fh  
000h to 014h  
000h to 01Fh  
LDO-PWR; LDO and Port U configuration (see Table 9-54) (3)  
LCD_B control (see Table 9-55) (4)  
000h to 014h  
000h to 05Fh  
(1) For a detailed description of the individual control register offset addresses, see the MSP430F5xx and MSP430F6xx Family User's  
Guide.  
(2) Only on devices with peripheral module USB.  
(3) Only on devices with peripheral module LDO-PWR.  
(4) Only on devices with peripheral module LCD_B.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-19. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
SFRIE1  
00h  
02h  
04h  
SFRIFG1  
SFRRPCR  
SFR reset pin control  
Table 9-20. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
PMMCTL1  
SVSMHCTL  
SVSMLCTL  
PMMIFG  
OFFSET  
00h  
PMM control 0  
PMM control 1  
02h  
SVS high-side control  
SVS low-side control  
PMM interrupt flags  
PMM interrupt enable  
PMM power mode 5 control  
04h  
06h  
0Ch  
0Eh  
PMMIE  
PM5CTL0  
10h  
Table 9-21. Flash Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Flash control 1  
Flash control 3  
Flash control 4  
FCTL1  
FCTL3  
04h  
FCTL4  
06h  
Table 9-22. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
CRC data input  
CRC result  
CRC16DI  
CRC16INIRES  
04h  
Table 9-23. RAM Control Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
RAM control 0  
RCCTL0  
00h  
Table 9-24. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Watchdog timer control  
WDTCTL  
00h  
Table 9-25. UCS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
UCSCTL0  
UCSCTL1  
UCSCTL2  
UCSCTL3  
UCSCTL4  
UCSCTL5  
UCSCTL6  
UCSCTL7  
UCSCTL8  
OFFSET  
00h  
UCS control 0  
UCS control 1  
UCS control 2  
UCS control 3  
UCS control 4  
UCS control 5  
UCS control 6  
UCS control 7  
UCS control 8  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
Table 9-26. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
System control  
SYSCTL  
Bootloader configuration area  
SYSBSLC  
02h  
Copyright © 2020 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-26. SYS Registers (Base Address: 0180h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
OFFSET  
06h  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus error vector generator  
User NMI vector generator  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
System NMI vector generator  
Reset vector generator  
SYSSNIV  
1Ch  
1Eh  
SYSRSTIV  
Table 9-27. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Shared reference control  
REFCTL  
00h  
Table 9-28. Port Mapping Registers  
(Base Address of Port Mapping Control: 01C0h, Port P4: 01D0h)  
REGISTER DESCRIPTION  
REGISTER  
PMAPPWD  
PMAPCTL  
P2MAP0  
P2MAP1  
P2MAP2  
P2MAP3  
P2MAP4  
P2MAP5  
P2MAP6  
P2MAP7  
OFFSET  
00h  
Port mapping password  
Port mapping control  
Port P2.0 mapping  
Port P2.1 mapping  
Port P2.2 mapping  
Port P2.3 mapping  
Port P2.4 mapping  
Port P2.5 mapping  
Port P2.6 mapping  
Port P2.7 mapping  
02h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
Table 9-29. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P1 input  
P1IN  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
P1DS  
02h  
Port P1 direction  
04h  
Port P1 resistor enable  
Port P1 drive strength  
Port P1 selection  
06h  
08h  
P1SEL  
P1IV  
0Ah  
0Eh  
18h  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1IES  
P1IE  
1Ah  
1Ch  
01h  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2DS  
03h  
Port P2 direction  
05h  
Port P2 resistor enable  
Port P2 drive strength  
Port P2 selection  
07h  
09h  
P2SEL  
0Bh  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-29. Port P1, P2 Registers (Base Address: 0200h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IV  
1Eh  
19h  
1Bh  
1Dh  
P2IES  
P2IE  
P2IFG  
Table 9-30. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P3 input  
P3IN  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
P3DS  
Port P3 direction  
Port P3 resistor enable  
Port P3 drive strength  
Port P3 selection  
P3SEL  
P3IV  
Port P3 interrupt vector word  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
Port P4 input  
P3IES  
P3IE  
P3IFG  
P4IN  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4DS  
Port P4 direction  
Port P4 resistor enable  
Port P4 drive strength  
Port P4 selection  
P4SEL  
P4IV  
Port P4 interrupt vector word  
Port P4 interrupt edge select  
Port P4 interrupt enable  
Port P4 interrupt flag  
P4IES  
P4IE  
P4IFG  
Table 9-31. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P5 input  
P5IN  
Port P5 output  
P5OUT  
P5DIR  
P5REN  
P5DS  
02h  
Port P5 direction  
Port P5 resistor enable  
Port P5 drive strength  
Port P5 selection  
Port P6 input  
04h  
06h  
08h  
P5SEL  
P6IN  
0Ah  
01h  
Port P6 output  
P6OUT  
P6DIR  
P6REN  
P6DS  
03h  
Port P6 direction  
Port P6 resistor enable  
Port P6 drive strength  
Port P6 selection  
05h  
07h  
09h  
P6SEL  
0Bh  
Table 9-32. Port P7, P8 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P7 input  
P7IN  
Port P7 output  
P7OUT  
02h  
Copyright © 2020 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-32. Port P7, P8 Registers (Base Address: 0260h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
P7DIR  
P7REN  
P7DS  
OFFSET  
04h  
Port P7 direction  
Port P7 resistor enable  
Port P7 drive strength  
Port P7 selection  
Port P8 input  
06h  
08h  
P7SEL  
P8IN  
0Ah  
01h  
Port P8 output  
P8OUT  
P8DIR  
P8REN  
P8DS  
03h  
Port P8 direction  
05h  
Port P8 resistor enable  
Port P8 drive strength  
Port P8 selection  
07h  
09h  
P8SEL  
0Bh  
Table 9-33. Port P9 Register (Base Address: 0280h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P9 input  
P9IN  
Port P9 output  
P9OUT  
P9DIR  
P9REN  
P9DS  
02h  
Port P9 direction  
Port P9 resistor enable  
Port P9 drive strength  
Port P9 selection  
04h  
06h  
08h  
P9SEL  
0Ah  
Table 9-34. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port PJ input  
PJIN  
Port PJ output  
PJOUT  
PJDIR  
02h  
Port PJ direction  
Port PJ resistor enable  
Port PJ drive strength  
04h  
PJREN  
PJDS  
06h  
08h  
Table 9-35. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
TA0 control  
TA0CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
02h  
04h  
06h  
08h  
0Ah  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
12h  
14h  
16h  
18h  
1Ah  
20h  
TA0 interrupt vector  
TA0IV  
2Eh  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-36. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA1 control  
TA1CTL  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1 interrupt vector  
TA1IV  
Table 9-37. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
TB0 control  
TB0CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0 interrupt vector  
TB0IV  
Table 9-38. TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
TA2 control  
TA2CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA2 counter  
TA2CCTL0  
TA2CCTL1  
TA2CCTL2  
TA2R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2CCR2  
TA2EX0  
12h  
14h  
16h  
20h  
TA2 interrupt vector  
TA2IV  
2Eh  
Copyright © 2020 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-39. Battery Backup Registers (Base Address: 0480h)  
REGISTER DESCRIPTION  
REGISTER  
BAKMEM0  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKCTL  
OFFSET  
00h  
Battery backup memory 0  
Battery backup memory 1  
Battery backup memory 2  
Battery backup memory 3  
Battery backup control  
Battery charger control  
02h  
04h  
06h  
1Ch  
BAKCHCTL  
1Eh  
Table 9-40. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
RTCCTL1  
RTCCTL2  
RTCCTL3  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
OFFSET  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
RTC control 0  
RTC control 1  
RTC control 2  
RTC control 3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTC prescaler 1  
RTC interrupt vector word  
RTC seconds  
RTCPS1  
RTCIV  
RTCSEC  
RTC minutes  
RTCMIN  
RTC hours  
RTCHOUR  
RTCDOW  
RTCDAY  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Eh  
RTC day of week  
RTC days  
RTC month  
RTCMON  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTCAHOUR  
RTCADOW  
RTCADAY  
BIN2BCD  
BCD2BIN  
RTC year low  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTC alarm day of week  
RTC alarm days  
Binary-to-BCD conversion  
BCD-to-binary conversion  
Table 9-41. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
16-bit operand 1 – multiply  
MPY  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
02h  
MAC  
04h  
MACS  
06h  
OP2  
08h  
16 × 16 result low word  
RESLO  
RESHI  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
0Ah  
0Ch  
0Eh  
10h  
16 × 16 result high word  
16 × 16 sum extension  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
12h  
14h  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-41. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
OFFSET  
32-bit operand 1 – signed multiply high word  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control 0  
RES3  
MPY32CTL0  
Table 9-42. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA  
Channel 4: 0550h, DMA Channel 5: 0560h)  
REGISTER DESCRIPTION  
REGISTER  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
DMA general control: DMA module control 0  
DMA general control: DMA module control 1  
DMA general control: DMA module control 2  
DMA general control: DMA module control 3  
DMA general control: DMA module control 4  
DMA general control: DMA interrupt vector  
DMA channel 0 control  
DMA0CTL  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA channel 3 control  
DMA3CTL  
DMA3SAL  
DMA3SAH  
DMA3DAL  
DMA3DAH  
DMA channel 3 source address low  
DMA channel 3 source address high  
DMA channel 3 destination address low  
DMA channel 3 destination address high  
Copyright © 2020 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-42. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA  
Channel 4: 0550h, DMA Channel 5: 0560h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
0Ah  
00h  
DMA channel 3 transfer size  
DMA channel 4 control  
DMA3SZ  
DMA4CTL  
DMA4SAL  
DMA4SAH  
DMA4DAL  
DMA4DAH  
DMA4SZ  
DMA channel 4 source address low  
DMA channel 4 source address high  
DMA channel 4 destination address low  
DMA channel 4 destination address high  
DMA channel 4 transfer size  
02h  
04h  
06h  
08h  
0Ah  
00h  
DMA channel 5 control  
DMA5CTL  
DMA5SAL  
DMA5SAH  
DMA5DAL  
DMA5DAH  
DMA5SZ  
DMA channel 5 source address low  
DMA channel 5 source address high  
DMA channel 5 destination address low  
DMA channel 5 destination address high  
DMA channel 5 transfer size  
02h  
04h  
06h  
08h  
0Ah  
Table 9-43. USCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTL0  
UCA0CTL1  
UCA0BR0  
OFFSET  
00h  
USCI control 0  
USCI control 1  
01h  
USCI baud rate 0  
06h  
USCI baud rate 1  
UCA0BR1  
07h  
USCI modulation control  
USCI status  
UCA0MCTL  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
12h  
13h  
1Ch  
1Dh  
1Eh  
UCA0IFG  
UCA0IV  
Table 9-44. USCI_B0 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTL0  
UCB0CTL1  
UCB0BR0  
OFFSET  
00h  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
01h  
06h  
UCB0BR1  
07h  
UCB0STAT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA  
UCB0I2CSA  
UCB0IE  
0Ah  
0Ch  
0Eh  
10h  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
12h  
1Ch  
1Dh  
USCI interrupt flags  
UCB0IFG  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-44. USCI_B0 Registers (Base Address: 05E0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI interrupt vector word  
UCB0IV  
1Eh  
Table 9-45. USCI_A1 Registers (Base Address: 0600h)  
REGISTER DESCRIPTION  
REGISTER  
UCA1CTL0  
UCA1CTL1  
UCA1BR0  
OFFSET  
00h  
USCI control 0  
USCI control 1  
01h  
USCI baud rate 0  
06h  
USCI baud rate 1  
UCA1BR1  
07h  
USCI modulation control  
USCI status  
UCA1MCTL  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
12h  
13h  
1Ch  
1Dh  
1Eh  
UCA1IFG  
UCA1IV  
Table 9-46. USCI_B1 Registers (Base Address: 0620h)  
REGISTER DESCRIPTION  
REGISTER  
UCB1CTL0  
UCB1CTL1  
UCB1BR0  
UCB1BR1  
UCB1STAT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA  
UCB1I2CSA  
UCB1IE  
OFFSET  
00h  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
12h  
1Ch  
1Dh  
1Eh  
USCI interrupt flags  
UCB1IFG  
USCI interrupt vector word  
UCB1IV  
Table 9-47. USCI_A2 Registers (Base Address: 0640h)  
REGISTER DESCRIPTION  
REGISTER  
UCA2CTL0  
UCA2CTL1  
UCA2BR0  
OFFSET  
00h  
USCI control 0  
USCI control 1  
01h  
USCI baud rate 0  
USCI baud rate 1  
USCI modulation control  
USCI status  
06h  
UCA2BR1  
07h  
UCA2MCTL  
UCA2STAT  
UCA2RXBUF  
UCA2TXBUF  
UCA2ABCTL  
UCA2IRTCTL  
UCA2IRRCTL  
08h  
0Ah  
0Ch  
0Eh  
10h  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
12h  
13h  
Copyright © 2020 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-47. USCI_A2 Registers (Base Address: 0640h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
1Ch  
USCI interrupt enable  
USCI interrupt flags  
UCA2IE  
UCA2IFG  
UCA2IV  
1Dh  
USCI interrupt vector word  
1Eh  
Table 9-48. USCI_B2 Registers (Base Address: 0660h)  
REGISTER DESCRIPTION  
REGISTER  
UCB2CTL0  
UCB2CTL1  
UCB2BR0  
UCB2BR1  
UCB2STAT  
UCB2RXBUF  
UCB2TXBUF  
UCB2I2COA  
UCB2I2CSA  
UCB2IE  
OFFSET  
00h  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
12h  
1Ch  
1Dh  
1Eh  
USCI interrupt flags  
UCB2IFG  
USCI interrupt vector word  
UCB2IV  
Table 9-49. ADC12_A Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
ADC12CTL0  
ADC12CTL1  
ADC12CTL2  
ADC12IFG  
OFFSET  
00h  
02h  
04h  
0Ah  
0Ch  
0Eh  
10h  
11h  
ADC12 control 0  
ADC12 control 1  
ADC12 control 2  
Interrupt flag  
Interrupt enable  
ADC12IE  
Interrupt vector word  
ADC memory control 0  
ADC memory control 1  
ADC memory control 2  
ADC memory control 3  
ADC memory control 4  
ADC memory control 5  
ADC memory control 6  
ADC memory control 7  
ADC memory control 8  
ADC memory control 9  
ADC memory control 10  
ADC memory control 11  
ADC memory control 12  
ADC memory control 13  
ADC memory control 14  
ADC memory control 15  
Conversion memory 0  
Conversion memory 1  
Conversion memory 2  
ADC12IV  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MEM0  
ADC12MEM1  
ADC12MEM2  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
22h  
24h  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-49. ADC12_A Registers (Base Address: 0700h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
OFFSET  
Conversion memory 3  
Conversion memory 4  
Conversion memory 5  
Conversion memory 6  
Conversion memory 7  
Conversion memory 8  
Conversion memory 9  
Conversion memory 10  
Conversion memory 11  
Conversion memory 12  
Conversion memory 13  
Conversion memory 14  
Conversion memory 15  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
Table 9-50. DAC12_A Registers (Base Address: 0780h)  
REGISTER DESCRIPTION  
REGISTER  
DAC12_0CTL0  
DAC12_0CTL1  
DAC12_0DAT  
OFFSET  
00h  
DAC12_A channel 0 control 0  
DAC12_A channel 0 control 1  
DAC12_A channel 0 data  
02h  
04h  
DAC12_A channel 0 calibration control  
DAC12_A channel 0 calibration data  
DAC12_A channel 1 control 0  
DAC12_A channel 1 control 1  
DAC12_A channel 1 data  
DAC12_0CALCTL  
DAC12_0CALDAT  
DAC12_1CTL0  
DAC12_1CTL1  
DAC12_1DAT  
06h  
08h  
10h  
12h  
14h  
DAC12_A channel 1 calibration control  
DAC12_A channel 1 calibration data  
DAC12_A interrupt vector word  
DAC12_1CALCTL  
DAC12_1CALDAT  
DAC12IV  
16h  
18h  
1Eh  
Table 9-51. Comparator_B Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
CBCTL0  
CBCTL1  
CBCTL2  
CBCTL3  
CBINT  
OFFSET  
00h  
Comp_B control 0  
Comp_B control 1  
Comp_B control 2  
Comp_B control 3  
Comp_B interrupt  
02h  
04h  
06h  
0Ch  
Comp_B interrupt vector word  
CBIV  
0Eh  
Table 9-52. USB Configuration Registers (Base Address: 0900h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
USB key/ID  
USBKEYID  
USB module configuration  
USB PHY control  
USBCNF  
02h  
USBPHYCTL  
USBPWRCTL  
USBPWRVSR  
USBPLLCTL  
USBPLLDIV  
04h  
USB power control  
USB power voltage setting  
USB PLL control  
08h  
0Ah  
10h  
USB PLL divider  
12h  
Copyright © 2020 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-52. USB Configuration Registers (Base Address: 0900h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USB PLL interrupts  
USBPLLIR  
14h  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-53. USB Control Registers (Base Address: 0920h)  
REGISTER DESCRIPTION  
REGISTER  
USBIEPCNF_0  
USBIEPCNT_0  
USBOEPCNFG_0  
USBOEPCNT_0  
USBIEPIE  
OFFSET  
Input endpoint_0 configuration  
00h  
01h  
02h  
03h  
0Eh  
0Fh  
10h  
11h  
12h  
16h  
18h  
1Ah  
1Ch  
1Dh  
1Eh  
1Fh  
Input endpoint_0 byte count  
Output endpoint_0 configuration  
Output endpoint _0 byte count  
Input endpoint interrupt enables  
Output endpoint interrupt enables  
Input endpoint interrupt flags  
Output endpoint interrupt flags  
USB interrupt vector  
USBOEPIE  
USBIEPIFG  
USBOEPIFG  
USBIV  
USB maintenance  
USBMAINT  
USBTSREG  
USBFN  
Timestamp  
USB frame number  
USB control  
USBCTL  
USB interrupt enables  
USB interrupt flags  
USBIE  
USBIFG  
Function address  
USBFUNADR  
Table 9-54. LDO and Port U Configuration Registers (Base Address: 0900h)  
REGISTER DESCRIPTION  
REGISTER  
LDOKEYID  
PUCTL  
OFFSET  
00h  
LDO key/ID  
PU port control  
LDO power control  
04h  
LDOPWRCTL  
08h  
Table 9-55. LCD_B Registers (Base Address: 0A00h)  
REGISTER DESCRIPTION  
REGISTER  
LCDBCTL0  
LCDBCTL1  
LCDBBLKCTL  
LCDBMEMCTL  
LCDBVCTL  
LCDBPCTL0  
LCDBPCTL1  
LCDBPCTL2  
LCDBCTL0  
LCDBIV  
OFFSET  
000h  
002h  
004h  
006h  
008h  
00Ah  
00Ch  
00Eh  
012h  
01Eh  
020h  
021h  
LCD_B control 0  
LCD_B control 1  
LCD_B blinking control  
LCD_B memory control  
LCD_B voltage control  
LCD_B port control 0  
LCD_B port control 1  
LCD_B port control 2  
LCD_B charge pump control  
LCD_B interrupt vector word  
LCD_B memory 1  
LCDM1  
LCD_B memory 2  
LCDM2  
LCD_B memory 22  
LCD_B blinking memory 1  
LCD_B blinking memory 2  
LCDM22  
035h  
040h  
041h  
LCDBM1  
LCDBM2  
LCD_B blinking memory 22  
LCDBM22  
055h  
Copyright © 2020 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.13 Input/Output Diagrams  
9.13.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger  
Figure 9-2 shows the port diagram. Table 9-56 summarizes selection of the pin functions.  
Pad Logic  
S32...S39  
LCDS32...LCDS39  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1.0/TA0CLK/ACLK/S39  
P1.1/TA0.0/S38  
P1.2/TA0.1/S37  
P1.3/TA0.2/S36  
P1.4/TA0.3/S35  
P1.5/TA0.4/S34  
P1.6/TA0.1/S33  
P1.7/TA0.2/S32  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
P1IFG.x  
Set  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
Figure 9-2. Port P1 (P1.0 to P1.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-56. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
LCDS32...  
LCDS39  
P1DIR.x  
P1SEL.x  
P1.0 (I/O)  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
Timer TA0.TA0CLK  
0
P1.0/TA0CLK/ACLK/  
S39  
0
ACLK  
1
S39  
X
P1.1 (I/O)  
I: 0; O: 1  
Timer TA0.CCI0A capture input  
Timer TA0.0 output  
S38  
0
P1.1/TA0.0/S38  
P1.2/TA0.1/S37  
P1.3/TA0.2/S36  
P1.4/TA0.3/S35  
P1.5/TA0.4/S34  
P1.6/TA0.1/S33  
1
2
3
4
5
6
7
1
X
P1.2 (I/O)  
I: 0; O: 1  
Timer TA0.CCI1A capture input  
Timer TA0.1 output  
S37  
0
1
X
P1.3 (I/O)  
I: 0; O: 1  
Timer TA0.CCI2A capture input  
Timer TA0.2 output  
S36  
0
1
X
P1.4 (I/O)  
I: 0; O: 1  
Timer TA0.CCI3A capture input  
Timer TA0.3 output  
S35  
0
1
X
P1.5 (I/O)  
I: 0; O: 1  
Timer TA0.CCI4A capture input  
Timer TA0.4 output  
S34  
0
1
X
P1.6 (I/O)  
I: 0; O: 1  
Timer TA0.CCI1B capture input  
Timer TA0.1 output  
S33  
0
1
X
P1.7 (I/O)  
I: 0; O: 1  
Timer TA0.CCI2B capture input  
Timer TA0.2 output  
S32  
0
1
X
P1.7/TA0.2/S32  
(1) X = Don't care  
Copyright © 2020 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.13.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger  
Figure 9-3 shows the port diagram. Table 9-57 summarizes selection of the pin functions.  
Pad Logic  
To LCD_B  
From LCD_B  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
From Port Mapping  
P2OUT.x  
0
1
From Port Mapping  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2IN.x  
P2.6/P2MAP6/R03  
P2.7/P2MAP7/LCDREF/R13  
From Port Mapping  
EN  
D
To Port Mapping  
P2IRQ.x  
P2IE.x  
EN  
Q
P2IFG.x  
Set  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
Figure 9-3. Port P2 (P2.0 to P2.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-57. Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P2.x)  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
x
0
1
2
3
4
5
FUNCTION  
P2DIR.x  
P2SEL.x  
P2MAPx  
P2.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
Mapped secondary digital function  
P2.1 (I/O)  
X
≤ 19  
I: 0; O: 1  
Mapped secondary digital function  
P2.2 (I/O)  
X
≤ 19  
I: 0; O: 1  
Mapped secondary digital function  
P2.3 (I/O)  
X
≤ 19  
I: 0; O: 1  
Mapped secondary digital function  
P2.4 (I/O)  
X
≤ 19  
I: 0; O: 1  
Mapped secondary digital function  
P2.5 (I/O  
X
≤ 19  
I: 0; O: 1  
Mapped secondary digital function  
P2.6 (I/O)  
X
≤ 19  
I: 0; O: 1  
P2.6/P2MAP6/R03  
6 Mapped secondary digital function  
X
≤ 19  
= 31  
R03  
X
P2.7 (I/O)  
I: 0; O: 1  
P2.7/P2MAP7/  
LCDREF/R13  
7 Mapped secondary digital function  
LCDREF/R13  
X
X
≤ 19  
= 31  
(1) X = Don't care  
Copyright © 2020 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.13.3 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger  
Figure 9-4 shows the port diagram. Table 9-58 summarizes selection of the pin functions.  
Pad Logic  
S24...S31  
LCDS24...LCDS31  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
P3OUT.x  
0
1
Module X OUT  
P3.0/TA1CLK/CBOUT/S31  
P3.1/TA1.0/S30  
P3.2/TA1.1/S29  
P3DS.x  
0: Low drive  
1: High drive  
P3SEL.x  
P3IN.x  
P3.3/TA1.2/S28  
P3.4/TA2CLK/SMCLK/S27  
P3.5/TA2.0/S26  
P3.6/TA2.1/S25  
Bus  
Keeper  
EN  
D
P3.7/TA2.2/S24  
Module X IN  
P3IRQ.x  
P3IE.x  
EN  
Q
P3IFG.x  
Set  
P3SEL.x  
P3IES.x  
Interrupt  
Edge  
Select  
Figure 9-4. Port P3 (P3.0 to P3.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-58. Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
LCDS24...  
LCDS31  
P3DIR.x  
P3SEL.x  
P3.0 (I/O)  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
0
0
1
Timer TA1.TA1CLK  
0
P3.0/TA1CLK/  
CBOUT/S31  
0
CBOUT  
1
S31  
X
P3.1 (I/O)  
I: 0; O: 1  
Timer TA1.CCI0A capture input  
0
P3.1/TA1.0/S30  
P3.2/TA1.1/S29  
P3.3/TA1.2/S28  
1
2
3
4
5
6
7
Timer TA1.0 output  
1
S30  
X
P3.2 (I/O)  
I: 0; O: 1  
Timer TA1.CCI1A capture input  
0
Timer TA1.1 output  
1
S29  
X
P3.3 (I/O)  
I: 0; O: 1  
Timer TA1.CCI2A capture input  
0
Timer TA1.2 output  
1
S28  
X
P3.4 (I/O)  
I: 0; O: 1  
Timer TA2.TA2CLK  
0
P3.4/TA2CLK/  
SMCLK/S27  
SMCLK  
1
S27  
X
P3.5 (I/O)  
I: 0; O: 1  
Timer TA2.CCI0A capture input  
Timer TA2.0 output  
S26  
0
P3.5/TA2.0/S26  
P3.6/TA2.1/S25  
1
X
P3.6 (I/O)  
I: 0; O: 1  
Timer TA2.CCI1A capture input  
Timer TA2.1 output  
S25  
0
1
X
P3.7 (I/O)  
I: 0; O: 1  
Timer TA2.CCI2A capture input  
Timer TA2.2 output  
S24  
0
1
X
P3.7/TA2.2/S24  
(1) X = Don't care  
Copyright © 2020 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.13.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger  
Figure 9-5 shows the port diagram. Table 9-59 summarizes selection of the pin functions.  
Pad Logic  
S16...S23  
LCDS16...LCDS23  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
0
1
Module X OUT  
P4.0/TB0.0/S23  
P4.1/TB0.1/S22  
P4.2/TB0.2/S21  
P4.3/TB0.3/S20  
P4.4/TB0.4/S19  
P4.5/TB0.5/S18  
P4DS.x  
0: Low drive  
1: High drive  
P4SEL.x  
P4IN.x  
P4.6/TB0.6/S17  
P4.7/TB0OUTH/SVMOUT/S16  
Bus  
Keeper  
EN  
D
Module X IN  
P4IRQ.x  
P4IE.x  
EN  
Q
P4IFG.x  
Set  
P4SEL.x  
P4IES.x  
Interrupt  
Edge  
Select  
Figure 9-5. Port P4 (P4.0 to P4.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-59. Port P4 (P4.0 to P4.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P4.x)  
x
FUNCTION  
LCDS16...  
LCDS23  
P4DIR.x  
P4SEL.x  
P4.0 (I/O)  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
Timer TB0.CCI0A capture input  
Timer TB0.0 output(2)  
S23  
0
P4.0/TB0.0/S23  
0
1
X
P4.1 (I/O)  
I: 0; O: 1  
Timer TB0.CCI1A capture input  
Timer TB0.1 output(2)  
S22  
0
P4.1/TB0.1/S22  
P4.2/TB0.2/S21  
P4.3/TB0.3/S20  
P4.4/TB0.4/S19  
P4.5/TB0.5/S18  
P4.6/TB0.6/S17  
1
2
3
4
5
6
7
1
X
P4.2 (I/O)  
I: 0; O: 1  
Timer TB0.CCI2A capture input  
Timer TB0.2 output(2)  
S21  
0
1
X
P4.3 (I/O)  
I: 0; O: 1  
Timer TB0.CCI3A capture input  
Timer TB0.3 output(2)  
S20  
0
1
X
P4.4 (I/O)  
I: 0; O: 1  
Timer TB0.CCI4A capture input  
Timer TB0.4 output(2)  
S19  
0
1
X
P4.5 (I/O)  
I: 0; O: 1  
Timer TB0.CCI5A capture input  
Timer TB0.5 output(2)  
S18  
0
1
X
P4.6 (I/O)  
I: 0; O: 1  
Timer TB0.CCI6A capture input  
Timer TB0.6 output(2)  
S17  
0
1
X
P4.7 (I/O)  
I: 0; O: 1  
Timer TB0.TB0OUTH  
SVMOUT  
0
1
X
P4.7/TB0OUTH/  
SVMOUT/S16  
S16  
(1) X = Don't care  
(2) Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance.  
Copyright © 2020 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.13.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger  
Figure 9-6 shows the port diagram. Table 9-60 summarizes selection of the pin functions.  
Pad Logic  
To/From  
Reference  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
P5OUT.x  
0
1
Module X OUT  
P5.0/VREF+/VeREF+  
P5.1/VREF–/VeREF–  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 9-6. Port P5 (P5.0 and P5.1) Diagram  
Table 9-60. Port P5 (P5.0 and P5.1) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
REFOUT  
P5.0 (I/O)(2)  
VeREF+(3)  
VREF+(4)  
I: 0; O: 1  
0
1
1
0
1
1
X
0
1
X
0
1
P5.0/VREF+/VeREF+  
0
X
X
P5.1 (I/O)(2)  
VeREF–(5)  
VREF–(6)  
I: 0; O: 1  
P5.1/VREF–/VeREF–  
1
X
X
(1) X = Don't care  
(2) Default condition  
(3) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A, Comparator_B, or  
DAC12_A.  
(4) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. The ADC12_A, VREF+ reference is available at the pin.  
(5) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A, Comparator_B, or  
DAC12_A.  
(6) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. The ADC12_A, VREF– reference is available at the pin.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.6 Port P5 (P5.2 to P5.7) Input/Output With Schmitt Trigger  
Figure 9-7 shows the port diagram. Table 9-61 summarizes selection of the pin functions.  
Pad Logic  
S40...S42  
LCDS40...LCDS42  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
P5OUT.x  
0
1
Module X OUT  
P5.2/R23  
P5DS.x  
0: Low drive  
1: High drive  
P5.3/COM1/S42  
P5.4/COM2/S41  
P5.5/COM3/S40  
P5.6/ADC12CLK/DMAE0  
P5.7/RTCCLK  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 9-7. Port P5 (P5.2 to P5.7) Diagram  
Table 9-61. Port P5 (P5.2 to P5.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
LCDS40...  
LCDS42  
P5DIR.x  
P5SEL.x  
P5.2 (I/O)  
R23  
I: 0; O: 1  
0
1
0
1
0
0
1
0
0
1
0
0
1
1
0
N/A  
N/A  
0
P5.2/R23  
2
X
P5.3 (I/O)  
COM1  
I: 0; O: 1  
P5.3/COM1/S42  
P5.4/COM2/S41  
P5.5/COM3/S40  
3
4
5
X
X
S42  
X
1
P5.4 (I/O)  
COM2  
I: 0; O: 1  
0
X
X
S41  
X
1
P5.5 (I/O)  
COM3  
I: 0; O: 1  
0
X
X
S40  
X
1
P5.6 (I/O)  
ADC12CLK  
DMAE0  
P5.7 (I/O)  
I: 0; O: 1  
N/A  
N/A  
N/A  
N/A  
P5.6/ADC12CLK/DMAE0  
P5.7/RTCCLK  
6
7
1
0
I: 0; O: 1  
Copyright © 2020 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-61. Port P5 (P5.2 to P5.7) Pin Functions (continued)  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
LCDS40...  
LCDS42  
P5DIR.x  
P5SEL.x  
RTCCLK  
1
1
N/A  
(1) X = Don't care  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.7 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger  
Figure 9-8 shows the port diagram. Table 9-62 summarizes selection of the pin functions.  
Pad Logic  
To ADC12  
INCHx = y  
0
1
2
Dvss  
0 if DAC12AMPx=0  
1 if DAC12AMPx=1  
2 if DAC12AMPx>1  
From DAC12_A  
To Comparator_B  
From Comparator_B  
CBPD.x  
DAC12AMPx>0  
DAC12OPS  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
P6OUT.x  
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
Bus  
Keeper  
Figure 9-8. Port P6 (P6.0 to P6.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-62. Port P6 (P6.0 to P6.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL.x  
CBPD.x  
DAC12OPS  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
X
DAC12AMPx  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
P6.0 (I/O)  
CB0  
I: 0; O: 1  
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
X
0
X
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
X
0
1
X
X
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
0
X
A0(2) (3)  
P6.1 (I/O)  
CB1  
X
I: 0; O: 1  
1
2
3
4
5
X
A1(2) (3)  
P6.2 (I/O)  
CB2  
X
I: 0; O: 1  
X
A2(2) (3)  
P6.3 (I/O)  
CB3  
X
I: 0; O: 1  
X
A3(2) (3)  
P6.4 (I/O)  
CB4  
X
I: 0; O: 1  
X
A4(2) (3)  
P6.5 (I/O)  
CB5  
X
I: 0; O: 1  
X
A5(2) (3)  
P6.6 (I/O)  
CB6  
X
I: 0; O: 1  
X
X
0
P6.6/CB6/A6/DAC0  
6
7
A6(2) (3)  
X
X
0
DAC0  
X
0
>1  
P6.7 (I/O)  
CB7  
I: 0; O: 1  
X
0
X
X
X
X
0
P6.7/CB7/A7/DAC1  
(1) X = Don't care  
A7(2) (3)  
X
0
DAC1  
0
>1  
(2) Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals.  
(3) The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.8 Port P7 (P7.2) Input/Output With Schmitt Trigger  
Figure 9-9 shows the port diagram. Table 9-63 summarizes selection of the pin functions.  
Pad Logic  
To XT2  
P7REN.2  
DVSS  
DVCC  
0
1
1
P7DIR.2  
P7OUT.2  
0
1
P7.2/XT2IN  
P7DS.2  
0: Low drive  
1: High drive  
P7SEL.2  
P7IN.2  
Bus  
Keeper  
Figure 9-9. Port P7 (P7.2) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.13.9 Port P7 (P7.3) Input/Output With Schmitt Trigger  
Figure 9-10 shows the port diagram. Table 9-63 summarizes selection of the pin functions.  
Pad Logic  
To XT2  
P7REN.3  
DVSS  
DVCC  
0
1
1
P7DIR.3  
0
1
P7OUT.3  
P7SEL.2  
P7.3/XT2OUT  
P7DS.3  
0: Low drive  
1: High drive  
XT2BYPASS  
P7SEL.3  
P7IN.3  
Bus  
Keeper  
Figure 9-10. Port P7 (P7.3) Diagram  
Table 9-63. Port P7 (P7.2 and P7.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.2  
P7SEL.3  
XT2BYPASS  
P7.2 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
0
X
0
1
X
0
1
P7.2/XT2IN  
2
XT2IN crystal mode(2)  
XT2IN bypass mode(2)  
P7.3 (I/O)  
X
X
I: 0; O: 1  
P7.3/XT2OUT  
3
XT2OUT crystal mode(3)  
P7.3 (I/O)(3)  
X
X
X
0
(1) X = Don't care  
(2) Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal  
mode or bypass mode.  
(3) Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as  
general-purpose I/O.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.10 Port P7 (P7.4 to P7.7) Input/Output With Schmitt Trigger  
Figure 9-11 shows the port diagram. Table 9-64 summarizes selection of the pin functions.  
0
Pad Logic  
DVSS  
1
2
0 if DAC12AMPx = 0  
1 if DAC12AMPx = 1  
2 if DAC12AMPx > 1  
From DAC12_A  
To ADC12  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
DAC12AMPx>0  
DAC12OPS  
P7REN.x  
P7SEL.x  
P7DIR.x  
DVSS  
DVCC  
0
1
1
P7OUT.x  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
P7DS.x  
0: Low drive  
1: High drive  
P7IN.x  
Bus  
Keeper  
Figure 9-11. Port P7 (P7.4 to P7.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-64. Port P7 (P7.4 to P7.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.x  
CBPD.x  
DAC12OPS  
DAC12AMPx  
P7.4 (I/O)  
I: 0; O: 1  
0
X
1
0
X
1
0
X
1
X
0
1
X
0
1
X
0
1
X
0
1
X
X
0
X
X
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
X
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
P7.4/CB8/A12  
P7.5/CB9/A13  
4
Comparator_B input CB8  
A12(2) (3)  
X
X
P7.5 (I/O)  
I: 0; O: 1  
5
6
7
Comparator_B input CB9  
A13(2) (3)  
X
X
P7.6 (I/O)  
I: 0; O: 1  
Comparator_B input CB10  
A14(2) (3)  
X
X
0
P7.6/CB10/A14/DAC0  
X
X
0
DAC12_A output DAC0  
X
1
>1  
0
P7.7 (I/O)  
I: 0; O: 1  
X
P7.7/CB11/A15/DAC1  
(1) X = Don't care  
A15(2) (3)  
X
X
X
0
DAC12_A output DAC1  
1
>1  
(2) Setting the P7SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals.  
(3) The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.11 Port P8 (P8.0 to P8.7) Input/Output With Schmitt Trigger  
Figure 9-12 shows the port diagram. Table 9-65 summarizes selection of the pin functions.  
Pad Logic  
S8...S15  
LCDS8...LCDS15  
P8REN.x  
DVSS  
DVCC  
0
1
1
P8DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
0
1
P8OUT.x  
Module X OUT  
P8.0/TB0CLK/S15  
P8DS.x  
0: Low drive  
1: High drive  
P8.1/UCB1STE/UCA1CLK/S14  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.4/UCB1CLK/UCA1STE/S11  
P8.5/UCB1SIMO//UCB1SDA/S10  
P8.6/UCB1SOMI/UCB1SCL/S9  
P8.7/S8  
P8SEL.x  
P8IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 9-12. Port P8 (P8.0 to P8.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-65. Port P8 (P8.0 to P8.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P9.x)  
x
FUNCTION  
LCDS8...  
LCDS15  
P8DIR.x  
P8SEL.x  
P8.0 (I/O)  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
X
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
P8.0/TB0CLK/S15  
0
Timer TB0.TB0CLK clock input  
0
S15  
X
P8.1 (I/O)  
I: 0; O: 1  
P8.1/UCB1STE/UCA1CLK/S14  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.4/UCB1CLK/UCA1STE/S11  
P8.5/UCB1SIMO/UCB1SDA/S10  
P8.6/UCB1SOMI/UCB1SCL/S9  
1
2
3
4
5
UCB1STE/UCA1CLK  
X
S14  
X
P8.2 (I/O)  
I: 0; O: 1  
UCA1TXD/UCA1SIMO  
X
S13  
X
P8.3 (I/O)  
I: 0; O: 1  
UCA1RXD/UCA1SOMI  
X
S12  
X
P8.4 (I/O)  
I: 0; O: 1  
UCB1CLK/UCA1STE  
X
S11  
X
P8.5 (I/O)  
I: 0; O: 1  
UCB1SIMO/UCB1SDA  
X
S10  
X
P8.6 (I/O)  
I: 0; O: 1  
6
7
UCB1SOMI/UCB1SCL  
X
S9  
X
I: 0; O: 1  
X
P8.7 (I/O)  
S8  
P8.7/S8  
(1) X = Don't care  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.12 Port P9 (P9.0 to P9.7) Input/Output With Schmitt Trigger  
Figure 9-13 shows the port diagram. Table 9-66 summarizes selection of the pin functions.  
Pad Logic  
S0...S7  
LCDS0...LCDS7  
P9REN.x  
DVSS  
DVCC  
0
1
1
P9DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
0
1
P9OUT.x  
Module X OUT  
P9.0/S7  
P9DS.x  
0: Low drive  
1: High drive  
P9.1/UCB2STE/UCA2CLK/S6  
P9.2/UCA2TXD/UCA2SIMO/S5  
P9.3/UCA2RXD/UCA2SOMI/S4  
P9.4/UCB2CLK/UCA2STE/S3  
P9.5/UCB2SIMO//UCB2SDA/S2  
P9.6/UCB2SOMI/UCB2SCL/S1  
P9.7/S0  
P9SEL.x  
P9IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 9-13. Port P9 (P9.0 to P9.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-66. Port P9 (P9.0 to P9.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P9.x)  
x
FUNCTION  
LCDS0...  
LCDS7  
P9DIR.x  
P9SEL.x  
P9.0 (I/O)  
S7  
I: 0; O: 1  
0
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
X
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
P9.0/S7  
0
X
P9.1 (I/O)  
I: 0; O: 1  
P9.1/UCB2STE/UCA2CLK/S6  
1
2
3
4
5
UCB2STE/UCA2CLK  
X
S6  
X
P9.2 (I/O)  
I: 0; O: 1  
P9.2/UCA2TXD/UCA2SIMO/S5  
P9.3/UCA2RXD/UCA2SOMI/S4  
P9.4/UCB2CLK/UCA2STE/S3  
P9.5/UCB2SIMO/UCB2SDA/S2  
P9.6/UCB2SOMI/UCB2SCLK/S1  
UCA2TXD/UCA2SIMO  
X
S5  
X
P9.3 (I/O)  
I: 0; O: 1  
UCA2RXD/UCA2SOMI  
X
S4  
X
P9.4 (I/O)  
I: 0; O: 1  
UCB2CLK/UCA2STE  
X
S3  
X
P9.5 (I/O)  
I: 0; O: 1  
UCB2SIMO/UCB2SDA  
X
S2  
X
P9.6 (I/O)  
I: 0; O: 1  
6
7
UCB2SOMI/UCB2SCLK  
X
S1  
X
I: 0; O: 1  
X
P9.7 (I/O)  
S0  
P9.7/S0  
(1) X = Don't care  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.13 Port PU (PU.0/DP, PU.1/DM, PUR) USB Ports (F665x, F565x)  
Figure 9-14 shows the port diagram. Table 9-67 and Table 9-68 summarize selection of the pin functions.  
PUSEL  
VUSB  
VSSU  
Pad Logic  
PUOPE  
0
1
USB output enable  
PUOUT0  
0
1
PU.0/DP  
USB DP output  
PUIN0  
USB DP input  
PUIPE  
PUIN1  
USB DM input  
PUOUT1  
0
1
PU.1/DM  
USB DM output  
VUSB  
VSSU  
Pad Logic  
PUREN  
PUR  
“1”  
PUSEL  
PURIN  
Figure 9-14. Port PU (PU.0 and PU.1) Diagram (F665x, F565x)  
Copyright © 2020 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
Table 9-67. Port PU (PU.0, PU.1) Functions (F665x, F565x)  
PUSEL  
PUIPE  
PUOPE  
PUOUT1  
PUOUT0  
PU.1/DM  
Output low  
Output low  
Output high  
Output high  
Input enabled  
Hi-Z  
PU.0/DP  
Output low  
Output high  
Output low  
Output high  
Input enabled  
Hi-Z  
PORT U FUNCTION  
Outputs enabled  
0
0
0
0
0
0
1
0
0
0
0
1
0
X
1
1
1
1
0
0
X
0
0
1
1
X
X
X
0
1
0
1
X
X
X
Outputs enabled  
Outputs enabled  
Outputs enabled  
Inputs enabled  
Outputs and inputs disabled  
Direction set by USB module  
DM  
DP  
Table 9-68. Port PU (PUR) Input Functions (F665x,  
F565x)  
CONTROL BITS  
FUNCTION  
PUSEL  
PUREN  
Input disabled  
Pullup disabled  
0
0
Input disabled  
Pullup enabled  
0
1
1
1
0
1
Input enabled  
Pullup disabled  
Input enabled  
Pullup enabled  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.14 Port PU (PU.0 and PU.1) Ports (F645x, F535x)  
Figure 9-15 shows the port diagram. Table 9-69 summarizes selection of the pin functions.  
LDOO  
VSSU  
Pad Logic  
PUOPE  
PU.0  
PUOUT0  
PUIN0  
PUIPE  
PUIN1  
PUOUT1  
PU.1  
Figure 9-15. Port PU (PU.0 and PU.1) Diagram (F645x, F535x)  
Table 9-69. Port PU (PU.0 and PU.1) Functions (F645x, F535x)  
PUIPE(1)  
PUOPE  
PUOUT1  
PUOUT0  
PU.1  
PU.0  
PORT U FUNCTION  
0
0
0
0
1
0
1
1
1
1
0
0
0
0
1
1
X
X
0
1
0
1
X
X
Output low  
Output low  
Output high  
Output high  
Input enabled  
Hi-Z  
Output low  
Output high  
Output low  
Output high  
Input enabled  
Hi-Z  
Outputs enabled  
Outputs enabled  
Outputs enabled  
Outputs enabled  
Inputs enabled  
Outputs and inputs disabled  
(1) PU.1 and PU.0 inputs and outputs are supplied from LDOO. LDOO can be generated by the device using the integrated 3.3-V LDO  
when enabled. LDOO can also be supplied externally when the 3.3-V LDO is not being used and is disabled.  
Copyright © 2020 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.13.15 Port PJ (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output  
Figure 9-16 shows the port diagram. Table 9-70 summarizes selection of the pin functions.  
Pad Logic  
PJREN.0  
0
1
DVSS  
DVCC  
1
PJDIR.0  
DVCC  
0
1
PJOUT.0  
0
1
From JTAG  
PJ.0/TDO  
PJDS.0  
0: Low drive  
1: High drive  
From JTAG  
PJIN.0  
EN  
D
Figure 9-16. Port PJ (PJ.0) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.16 Port PJ (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or  
Output  
Figure 9-17 shows the port diagram. Table 9-70 summarizes selection of the pin functions.  
Pad Logic  
PJREN.x  
0
1
DVSS  
DVCC  
1
PJDIR.x  
DVSS  
0
1
PJOUT.x  
0
1
From JTAG  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
PJDS.x  
0: Low drive  
1: High drive  
From JTAG  
PJIN.x  
EN  
D
To JTAG  
Figure 9-17. Port PJ (PJ.1 to PJ.3) Diagram  
Table 9-70. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS  
OR SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
I: 0; O: 1  
X
PJ.0 (I/O)(2)  
PJ.0/TDO  
0
1
2
3
TDO(3)  
PJ.1 (I/O)(2)  
TDI/TCLK(3) (4)  
PJ.2 (I/O)(2)  
TMS(3) (4)  
I: 0; O: 1  
X
PJ.1/TDI/TCLK  
PJ.2/TMS  
I: 0; O: 1  
X
PJ.3 (I/O)(2)  
TCK(3) (4)  
I: 0; O: 1  
X
PJ.3/TCK  
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.  
Copyright © 2020 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
9.14 Device Descriptors  
Table 9-71 lists the contents of the device descriptor tag-length-value (TLV) structure for each device type.  
Table 9-71. Device Descriptor Table  
VALUE  
SIZE  
(bytes)  
DESCRIPTION(1)  
Info length  
ADDRESS  
F6659  
06h  
F6658  
06h  
F6459  
06h  
F6458  
06h  
F5659  
06h  
F5658  
06h  
F5359  
06h  
F5358  
06h  
01A00h  
01A01h  
01A02h  
01A04h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
01A14h  
01A15h  
01A16h  
01A18h  
1
1
2
2
1
1
1
1
4
2
2
2
1
1
2
2
CRC length  
CRC value  
06h  
06h  
06h  
06h  
06h  
06h  
06h  
06h  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Info Block  
Device ID  
812Bh  
10h  
812Ch  
10h  
812Dh  
10h  
812Eh  
10h  
8130h  
10h  
8131h  
10h  
8132h  
10h  
8133h  
10h  
Hardware revision  
Firmware revision  
Die record tag  
Die record length  
Lot/wafer ID  
10h  
10h  
10h  
10h  
10h  
10h  
10h  
10h  
08h  
08h  
08h  
08h  
08h  
08h  
08h  
08h  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Die Record  
Die X position  
Die Y position  
Test results  
ADC12 calibration tag  
ADC12 calibration length  
ADC gain factor  
ADC offset  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
ADC 1.5-V reference  
temperature sensor 30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
ADC 1.5-V reference  
temperature sensor 85°C  
ADC12  
Calibration  
ADC 2.0-V reference  
temperature sensor 30°C  
ADC 2.0-V reference  
temperature sensor 85°C  
ADC 2.5-V reference  
temperature sensor 30°C  
ADC 2.5-V reference  
temperature sensor 85°C  
REF calibration tag  
REF calibration length  
01A26h  
01A27h  
01A28h  
01A2Ah  
01A2Ch  
1
1
2
2
2
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
REF  
Calibration  
REF 1.5-V reference factor  
REF 2.0-V reference factor  
REF 2.5-V reference factor  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
Per unit Per unit Per unit Per unit Per unit Per unit Per unit Per unit  
(1) N/A = Not applicable  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
10 Device and Documentation Support  
10.1 Getting Started and Next Steps  
For more information on the MSP430family of devices and the tools and libraries that are available to help with  
your development, visit the MSP430 ultra-low-power sensing and measurement MCUs overview.  
10.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS – Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP – Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. Figure 10-1 provides a legend for reading the complete device  
name.  
Copyright © 2020 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
MSP 430 F 5 438 A I PM T -EP  
Processor Family  
MCU Platform  
Device Type  
Series  
Feature Set  
Optional: Additional Features  
Optional: Tape and Reel  
Packaging  
Optional: Temperature Range  
Optional: Revision  
Processor Family  
CC = Embedded RF Radio  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
PMS = Prototype Device  
MCU Platform  
Device Type  
430 = MSP430 low-power microcontroller platform  
Memory Type  
C = ROM  
F = Flash  
FR = FRAM  
G = Flash  
L = No nonvolatile memory  
Specialized Application  
AFE = Analog front end  
BQ = Contactless power  
CG = ROM medical  
FE = Flash energy meter  
FG = Flash medical  
FW = Flash electronic flow meter  
Series  
1 = Up to 8 MHz  
2 = Up to 16 MHz  
3 = Legacy  
4 = Up to 16 MHz with LCD driver  
5 = Up to 25 MHz  
6 = Up to 25 MHz with LCD driver  
0 = Low-voltage series  
Feature Set  
Various levels of integration within a series  
Updated version of the base part number  
Optional: Revision  
Optional: Temperature Range S = 0°C to 50°C  
C = 0°C to 70°C  
I = –40°C to 85°C  
T = –40°C to 105°C  
Packaging  
http://www.ti.com/packaging  
Optional: Tape and Reel  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
Optional: Additional Features -EP = Enhanced product (–40°C to 105°C)  
-HT = Extreme temperature parts (–55°C to 150°C)  
-Q1 = Automotive Q100 qualified  
Figure 10-1. Device Nomenclature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
10.3 Tools and Software  
All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are  
available from TI and various third parties. See them all at MSP430 ultra-low-power MCUs – Design &  
development.  
Table 10-1 lists the debug features of the MSP430F665x, MSP430F645x, MSP430F565x, and MSP430F535x  
MCUs. See the Code Composer Studio IDE for MSP430 MCUs User's Guide for details on the available  
features.  
Table 10-1. Hardware Debug Features  
BREAK-  
POINTS  
(N)  
RANGE  
BREAK-  
POINTS  
LPMx.5  
DEBUGGING  
SUPPORT  
MSP430  
ARCHITECTURE  
4-WIRE  
JTAG  
2-WIRE  
JTAG  
CLOCK  
CONTROL SEQUENCER  
STATE  
TRACE  
BUFFER  
MSP430Xv2  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
Yes  
Design Kits and Evaluation Modules  
MSP-TS430PZ100USB - 100-pin Target Development Board for MSP430F5x and MSP430F6x MCUs  
The MSP-TS430PZ100USB is a stand-alone 100-pin ZIF socket target board used to program and debug the  
MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.  
100-pin Target Development Board and MSP-FET Programmer Bundle for MSP430F5x and MSP430F6x MCUs  
The MSP-TS430PZ100USB is a stand-alone 100-pin ZIF socket target board used to program and debug the  
MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. The MSP-FET is  
a powerful flash emulation tool to quickly begin application development on the MSP430 MCU. It includes USB  
debugging interface used to program and debug the MSP430 in-system through the JTAG interface or the pin  
saving Spy Bi-Wire (2-wire JTAG) protocol.  
MSP430F5529 USB LaunchPad Evaluation Kit  
Develop low power, PC-connected applications with integrated Full-speed USB 2.0 (HID/MSC/CDC). The MSP-  
EXP430F5529LP LaunchPad is an inexpensive, simple microcontroller development kit for the MSP430F5529  
USB microcontroller. It’s an easy way to start developing on the MSP430 MCU, with an on-board emulation for  
programming and debugging, as well as buttons and LEDs for simple user interface.  
Software  
MSP430WareSoftware  
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all  
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 MCU design resources, MSP430Ware software also includes a high-level API called MSP Driver  
Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a  
component of CCS or as a stand-alone package.  
MSP430F665x, MSP430F565x Code Examples  
C code examples that configure each of the integrated peripherals for various application needs.  
MSP Driver Library  
Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easy-  
to-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details  
on each function call and the recognized parameters. Developers can use Driver Library functions to write  
complete projects with minimal overhead.  
Copyright © 2020 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
MSP EnergyTraceTechnology  
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and  
displays the application's energy profile and helps to optimize it for ultra-low-power consumption.  
ULP (Ultra-Low Power) Advisor  
ULP Advisorsoftware is a tool for guiding developers to write more efficient code to fully utilize the unique  
ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new  
microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every  
last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to  
highlight areas of your code that can be further optimized for lower power.  
IEC 60730 Software Package  
The IEC 60730 MSP430 software package was developed to be useful in assisting customers in complying with  
IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General  
Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters,  
power tools, e-bikes, and many others. The IEC 60730 MSP430 software package can be embedded in  
customer applications running on MSP430s to help simplify the customer’s certification efforts of functional  
safety-compliant consumer devices to IEC 60730-1:2010 Class B.  
Fixed Point Math Library for MSP  
The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical  
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and  
MSP432 devices. These routines are typically used in computationally intensive real-time applications where  
optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath  
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably  
lower than equivalent code written using floating-point math.  
Floating Point Math Library for MSP430  
Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB.  
Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you  
up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated  
in both Code Composer Studio and IAR IDEs. Read the user’s guide for an in depth look at the math library and  
relevant benchmarks.  
Development Tools  
Code Composer StudioIntegrated Development Environment for MSP Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports all MSP microcontroller  
devices. Code Composer Studio comprises a suite of embedded software utilities used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through  
each step of the application development flow. Familiar utilities and interfaces allow users to get started faster  
than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with  
advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment  
for embedded developers. When using CCS with an MSP MCU, a unique and powerful set of plugins and  
embedded software utilities are made available to fully leverage the MSP microcontroller.  
Command-Line Programmer  
MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET  
programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary  
files (.txt or .hex) files directly to the MSP microcontroller without an IDE.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
MSP MCU Programmer and Debugger  
The MSP-FET is a powerful emulation development tool – often called a debug probe – which allows users to  
quickly begin application development on MSP low-power microcontrollers (MCU). Creating MCU software  
usually requires downloading the resulting binary program to the MSP device for validation and debugging. The  
MSP-FET provides a debug communication pathway between a host computer and the target MSP.  
Furthermore, the MSP-FET also provides a Backchannel UART connection between the computer's USB  
interface and the MSP UART. This affords the MSP programmer a convenient method for communicating serially  
between the MSP and a terminal running on the computer. It also supports loading programs (often called  
firmware) to the MSP target using the BSL (bootloader) through the UART and I2C communication protocols.  
MSP-GANG Production Programmer  
The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight  
identical MSP430 or MSP432 Flash or FRAM devices at the same time. The MSP Gang Programmer connects  
to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow  
the user to fully customize the process. The MSP Gang Programmer is provided with an expansion board, called  
the Gang Splitter, that implements the interconnections between the MSP Gang Programmer and multiple target  
devices. Eight cables are provided that connect the expansion board to eight target devices (through JTAG or  
Spy-Bi-Wire connectors). The programming can be done with a PC or as a stand-alone device. A PC-side  
graphical user interface is also available and is DLL-based.  
10.4 Documentation Support  
The following documents describe the MSP430F665x, MSP430F645x, MSP430F565x, and MSP430F535x  
MCUs. Copies of these documents are available on the Internet at www.ti.com.  
Receiving Notification of Document Updates  
To receive notification of documentation updates—including silicon errata—go to the product folder for your  
device on ti.com (for links to the product folders, see Section 10.5). In the upper right corner, click the "Alert me"  
button. This registers you to receive a weekly digest of product information that has changed (if any). For change  
details, check the revision history of any revised document.  
Errata  
MSP430F6659 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of this device.  
MSP430F6658 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of this device.  
MSP430F6459 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of this device.  
MSP430F6458 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of this device.  
MSP430F5659 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of this device.  
MSP430F5658 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of this device.  
MSP430F5359 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of this device.  
MSP430F5358 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of this device.  
Copyright © 2020 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
User's Guides  
MSP430F5xx and MSP430F6xx Family User's Guide  
Detailed information on the modules and peripherals available in this device family.  
MSP430 Flash Devices Bootloader (BSL) User's Guide  
The MSP430 bootloader (BSL) lets users communicate with embedded memory in the MSP430 microcontroller  
during the prototyping phase, final production, and in service. Both the programmable memory (flash memory)  
and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap  
loader programs found in some digital signal processors (DSPs) that automatically load program code (and data)  
from external memory to the internal memory of the DSP.  
MSP430 Programming With the JTAG Interface  
This document describes the functions that are required to erase, program, and verify the memory module of the  
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition,  
it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This  
document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG  
interface, which is also referred to as Spy-Bi-Wire (SBW).  
MSP430 Hardware Tools User's Guide  
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the  
program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the  
parallel port interface and the USB interface, are described.  
Application Reports  
MSP430 32-kHz Crystal Oscillators  
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal  
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the  
correct crystal for ultra-low-power operation. In addition, hints and examples for correct board layout are given.  
The document also contains detailed information on the possible oscillator tests to ensure stable oscillator  
operation in mass production.  
MSP430 System-Level ESD Considerations  
System-level ESD has become increasingly demanding as silicon technology scales to lower voltages and the  
need for designing cost-effective and ultra-low-power components. This application report addresses ESD topics  
to help board designers and OEMs understand and design robust system-level designs. A few real-world  
system-level ESD protection design examples and their results are discussed.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
www.ti.com  
10.5 Related Links  
Table 10-2 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to sample or buy.  
Table 10-2. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
MSP430F6659  
MSP430F6658  
MSP430F6459  
MSP430F6458  
MSP430F5659  
MSP430F5658  
MSP430F5359  
MSP430F5358  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
10.6 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2ECommunity  
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com,  
you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.  
TI Embedded Processors Wiki  
Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded  
processors from Texas Instruments and to foster innovation and growth of general knowledge about the  
hardware and software surrounding these devices.  
10.7 Trademarks  
MicroStar Junior, MSP430, MSP430Ware, EnergyTrace, ULP Advisor, Code Composer Studio, and  
E2Eare trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
10.8 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.9 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
10.10 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
 
 
 
 
 
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458  
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358  
www.ti.com  
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659  
MSP430F5658 MSP430F5359 MSP430F5358  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430F5358IPZ  
MSP430F5358IPZR  
MSP430F5358IZCAR  
MSP430F5358IZCAT  
MSP430F5358IZQWR  
ACTIVE  
LQFP  
LQFP  
PZ  
100  
100  
113  
113  
113  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
F5358  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PZ  
1000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
F5358  
F5358  
F5358  
F5358  
NFBGA  
NFBGA  
ZCA  
ZCA  
ZQW  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
2500  
Green (RoHS  
& no Sb/Br)  
MSP430F5358IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
F5358  
MSP430F5359IPZ  
MSP430F5359IPZR  
MSP430F5359IZCAR  
MSP430F5359IZCAT  
MSP430F5359IZQWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
PZ  
PZ  
100  
100  
113  
113  
113  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
F5359  
F5359  
F5359  
F5359  
F5359  
LQFP  
1000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
NFBGA  
NFBGA  
ZCA  
ZCA  
ZQW  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
2500  
Green (RoHS  
& no Sb/Br)  
MSP430F5359IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
F5359  
MSP430F5658IPZ  
MSP430F5658IPZR  
ACTIVE  
ACTIVE  
LQFP  
PZ  
PZ  
100  
100  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
F5658  
F5658  
LQFP  
1000  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430F5658IZQWR  
MSP430F5658IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
113  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
F5658  
ACTIVE  
BGA  
ZQW  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
-40 to 85  
F5658  
MICROSTAR  
JUNIOR  
MSP430F5659IPZ  
MSP430F5659IPZR  
MSP430F5659IZCAR  
MSP430F5659IZCAT  
MSP430F5659IZQWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
PZ  
PZ  
100  
100  
113  
113  
113  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
F5659  
F5659  
F5659  
F5659  
F5659  
LQFP  
1000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
NFBGA  
NFBGA  
ZCA  
ZCA  
ZQW  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
2500  
Green (RoHS  
& no Sb/Br)  
MSP430F5659IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
F5659  
MSP430F6458IPZ  
MSP430F6459IPZ  
MSP430F6459IPZR  
MSP430F6459IZQWT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
100  
113  
90  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
F6458  
F6459  
F6459  
F6459  
Green (RoHS  
& no Sb/Br)  
PZ  
1000  
250  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
Green (RoHS  
& no Sb/Br)  
MSP430F6658IPZ  
MSP430F6659IPZ  
MSP430F6659IPZR  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
PZ  
100  
100  
100  
90  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
F6658  
F6659  
F6659  
Green (RoHS  
& no Sb/Br)  
1000  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430F6659IZCAR  
MSP430F6659IZCAT  
MSP430F6659IZQWR  
ACTIVE  
NFBGA  
NFBGA  
ZCA  
113  
113  
113  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
F6659  
ACTIVE  
ACTIVE  
ZCA  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
F6659  
F6659  
BGA  
ZQW  
2500  
Green (RoHS  
& no Sb/Br)  
MICROSTAR  
JUNIOR  
MSP430F6659IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
F6659  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Sep-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F5358IPZR  
MSP430F5358IZCAR  
MSP430F5358IZCAT  
LQFP  
NFBGA  
NFBGA  
PZ  
100  
113  
113  
113  
1000  
2500  
250  
330.0  
330.0  
180.0  
330.0  
24.4  
16.4  
16.4  
16.4  
17.0  
7.3  
7.3  
7.3  
17.0  
7.3  
7.3  
7.3  
2.1  
1.5  
1.5  
1.5  
20.0  
12.0  
12.0  
12.0  
24.0  
16.0  
16.0  
16.0  
Q2  
Q1  
Q1  
Q1  
ZCA  
ZCA  
ZQW  
MSP430F5358IZQWR BGA MI  
2500  
CROSTA  
R JUNI  
OR  
MSP430F5358IZQWT BGA MI  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
OR  
MSP430F5359IPZR  
MSP430F5359IZCAR  
MSP430F5359IZCAT  
LQFP  
NFBGA  
NFBGA  
PZ  
100  
113  
113  
113  
1000  
2500  
250  
330.0  
330.0  
180.0  
330.0  
24.4  
16.4  
16.4  
16.4  
17.0  
7.3  
7.3  
7.3  
17.0  
7.3  
7.3  
7.3  
2.1  
1.5  
1.5  
1.5  
20.0  
12.0  
12.0  
12.0  
24.0  
16.0  
16.0  
16.0  
Q2  
Q1  
Q1  
Q1  
ZCA  
ZCA  
ZQW  
MSP430F5359IZQWR BGA MI  
2500  
CROSTA  
R JUNI  
OR  
MSP430F5359IZQWT BGA MI  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Sep-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OR  
MSP430F5658IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
330.0  
330.0  
24.4  
16.4  
17.0  
7.3  
17.0  
7.3  
2.1  
1.5  
20.0  
12.0  
24.0  
16.0  
Q2  
Q1  
MSP430F5658IZQWR BGA MI  
ZQW  
CROSTA  
R JUNI  
OR  
MSP430F5658IZQWT BGA MI  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
OR  
MSP430F5659IPZR  
MSP430F5659IZCAR  
MSP430F5659IZCAT  
LQFP  
NFBGA  
NFBGA  
PZ  
100  
113  
113  
113  
1000  
2500  
250  
330.0  
330.0  
180.0  
330.0  
24.4  
16.4  
16.4  
16.4  
17.0  
7.3  
7.3  
7.3  
17.0  
7.3  
7.3  
7.3  
2.1  
1.5  
1.5  
1.5  
20.0  
12.0  
12.0  
12.0  
24.0  
16.0  
16.0  
16.0  
Q2  
Q1  
Q1  
Q1  
ZCA  
ZCA  
ZQW  
MSP430F5659IZQWR BGA MI  
2500  
CROSTA  
R JUNI  
OR  
MSP430F5659IZQWT BGA MI  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
OR  
MSP430F6459IPZR  
LQFP  
PZ  
100  
113  
1000  
250  
330.0  
180.0  
24.4  
16.4  
17.0  
7.3  
17.0  
7.3  
2.1  
1.5  
20.0  
12.0  
24.0  
16.0  
Q2  
Q1  
MSP430F6459IZQWT BGA MI  
ZQW  
CROSTA  
R JUNI  
OR  
MSP430F6659IPZR  
MSP430F6659IZCAR  
MSP430F6659IZCAT  
LQFP  
NFBGA  
NFBGA  
PZ  
100  
113  
113  
113  
1000  
2500  
250  
330.0  
330.0  
180.0  
330.0  
24.4  
16.4  
16.4  
16.4  
17.0  
7.3  
7.3  
7.3  
17.0  
7.3  
7.3  
7.3  
2.1  
1.5  
1.5  
1.5  
20.0  
12.0  
12.0  
12.0  
24.0  
16.0  
16.0  
16.0  
Q2  
Q1  
Q1  
Q1  
ZCA  
ZCA  
ZQW  
MSP430F6659IZQWR BGA MI  
2500  
CROSTA  
R JUNI  
OR  
MSP430F6659IZQWT BGA MI  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
OR  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Sep-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F5358IPZR  
MSP430F5358IZCAR  
MSP430F5358IZCAT  
LQFP  
NFBGA  
NFBGA  
PZ  
100  
113  
113  
113  
1000  
2500  
250  
350.0  
350.0  
213.0  
350.0  
350.0  
350.0  
191.0  
350.0  
43.0  
43.0  
55.0  
43.0  
ZCA  
ZCA  
ZQW  
MSP430F5358IZQWR BGA MICROSTAR  
JUNIOR  
2500  
MSP430F5358IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
113  
250  
213.0  
191.0  
55.0  
MSP430F5359IPZR  
MSP430F5359IZCAR  
MSP430F5359IZCAT  
LQFP  
NFBGA  
NFBGA  
PZ  
100  
113  
113  
113  
1000  
2500  
250  
350.0  
350.0  
213.0  
350.0  
350.0  
350.0  
191.0  
350.0  
43.0  
43.0  
55.0  
43.0  
ZCA  
ZCA  
ZQW  
MSP430F5359IZQWR BGA MICROSTAR  
JUNIOR  
2500  
MSP430F5359IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
113  
250  
213.0  
191.0  
55.0  
MSP430F5658IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
MSP430F5658IZQWR BGA MICROSTAR  
JUNIOR  
ZQW  
MSP430F5658IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
113  
250  
213.0  
191.0  
55.0  
MSP430F5659IPZR  
MSP430F5659IZCAR  
MSP430F5659IZCAT  
LQFP  
NFBGA  
NFBGA  
PZ  
100  
113  
113  
1000  
2500  
250  
350.0  
350.0  
213.0  
350.0  
350.0  
191.0  
43.0  
43.0  
55.0  
ZCA  
ZCA  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Sep-2020  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F5659IZQWR BGA MICROSTAR  
JUNIOR  
ZQW  
113  
2500  
350.0  
350.0  
43.0  
MSP430F5659IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
113  
250  
213.0  
191.0  
55.0  
MSP430F6459IPZR  
LQFP  
PZ  
100  
113  
1000  
250  
350.0  
213.0  
350.0  
191.0  
43.0  
55.0  
MSP430F6459IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
MSP430F6659IPZR  
MSP430F6659IZCAR  
MSP430F6659IZCAT  
LQFP  
NFBGA  
NFBGA  
PZ  
100  
113  
113  
113  
1000  
2500  
250  
350.0  
350.0  
213.0  
350.0  
350.0  
350.0  
191.0  
350.0  
43.0  
43.0  
55.0  
43.0  
ZCA  
ZCA  
ZQW  
MSP430F6659IZQWR BGA MICROSTAR  
JUNIOR  
2500  
MSP430F6659IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
113  
250  
213.0  
191.0  
55.0  
Pack Materials-Page 4  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OUTLINE  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
A
7.1  
6.9  
B
BALL A1 CORNER  
7.1  
6.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.25  
0.15  
BALL TYP  
5.5  
TYP  
(0.75) TYP  
SYMM  
M
L
K
J
(0.75) TYP  
H
G
F
E
D
C
SYMM  
5.5  
TYP  
0.35  
0.25  
113X Ø  
B
A
0.15  
0.05  
C
C
A B  
1
2
3
4
5
6
7
8
9 10 11 12  
0.5 TYP  
0.5 TYP  
4225149/A 08/2019  
NanoFree is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
(0.5) TYP  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10 11 12  
A
B
C
D
E
F
113X (Ø0.25)  
SYMM  
G
H
J
K
L
M
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 10X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
(Ø 0.25)  
METAL  
(Ø 0.25)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225149/A 08/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
(0.5) TYP  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10 11 12  
A
B
C
D
E
F
(R0.05)  
SYMM  
G
H
J
METAL TYP  
113X ( 0.25)  
K
L
M
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
SCALE: 10X  
4225149/A 08/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY