MSP430FG6626IZQW [TI]

MSP430FG662x, MSP430FG642x Mixed-Signal Microcontrollers;
MSP430FG6626IZQW
型号: MSP430FG6626IZQW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MSP430FG662x, MSP430FG642x Mixed-Signal Microcontrollers

微控制器
文件: 总186页 (文件大小:5140K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
MSP430FG662x, MSP430FG642x Mixed-Signal Microcontrollers  
Enhanced UART with automatic baud-rate  
detection  
1 Features  
Low supply voltage range:  
3.6 V down to 1.8 V  
IrDA encoder and decoder  
Synchronous SPI  
High-performance integrated signal chain  
– Continuous-time sigma-delta 16-bit analog-to-  
digital converter (ADC) with internal reference  
with 10 external analog inputs, 6 single-ended  
and 4 selectable as differential or single-ended  
– Dual operational amplifiers  
– Quad low-impedance ground switches  
– Voltage comparator  
Dual 12-bit digital-to-analog converters (DACs)  
with synchronization  
Integrated LCD driver with contrast control for up  
to 160 segments  
MSP430FG662x: Full-speed universal serial bus  
(USB)  
– Integrated USB-PHY  
– Integrated 3.3-V and 1.8-V USB power system  
– Integrated USB-PLL  
– Eight input and eight output endpoints  
Ultra-low power consumption  
– USCI_B0 and USCI_B1  
I2C  
Synchronous SPI  
RTC with calibration logic for time offset correction,  
operation in LPM 3.5  
16-bit RISC architecture, extended memory, up to  
20-MHz system clock  
Flexible power-management system  
– Fully integrated LDO with programmable  
regulated core supply voltage  
– Supply voltage supervision, monitoring, and  
brownout  
Unified clock system  
– FLL control loop for frequency stabilization  
– Low-power low-frequency internal clock source  
(VLO)  
– Low-frequency trimmed internal reference  
source (REFO)  
– 32-kHz crystals (XT1)  
– Active mode (AM),  
– High-frequency crystals up to 32 MHz (XT2)  
Separate voltage supply for backup subsystem  
– 32-kHz low-frequency oscillator (XT1)  
– RTC  
– Backup memory (8 bytes)  
Development tools and software (also see Tools  
and Software)  
MSP-TS430PZ100AUSB 100-pin target  
development board  
MSP430Warecode examples  
Wake up from standby mode in 3 µs (typical)  
Serial onboard programming, no external  
programming voltage needed  
all system clocks active:  
250 µA/MHz at 8 MHz, 3.0 V, flash program  
execution (typical)  
– Standby mode (LPM3):  
watchdog with crystal, and supply supervisor  
operational, full RAM retention, fast wakeup:  
3.2 µA at 2.2 V, 3.4 µA at 3.0 V (typical)  
– Shutdown RTC mode (LPM3.5):  
shutdown mode, active RTC with crystal:  
0.9 µA at 3.0 V (typical)  
– Shutdown mode (LPM4.5):  
0.2 µA at 3.0 V (typical)  
Intelligent digital peripherals  
Available in 100-pin LQFP and 113-pin Microstar  
JuniorBGA packages  
Device Comparison summarizes the available  
family members  
– Two 16-bit timers with three capture/compare  
registers each  
– One 16-bit timer with five capture/compare  
registers  
– One 16-bit timer with seven capture/compare  
registers  
– 6-channel internal DMA  
– Hardware multiplier supports 32-bit operations  
Four universal serial communication interfaces  
(USCIs)  
2 Applications  
Analog sensor systems  
Digital sensor systems  
Hand-held meters  
Medical diagnostic meters  
Hand-held industrial testers  
Measurement equipment  
– USCI_A0 and USCI_A1  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
3 Description  
The Texas Instruments MSP430FG662x and MSP430FG642x microcontrollers (MCUs) are part of the  
MSP430TM Metrology and Monitoring portfolio. The architecture and integrated peripherals, combined with five  
extensive low-power modes, are optimized to achieve extended battery life in portable and battery-powered  
measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant  
generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the  
devices to wake up from low-power modes to active mode in less than 5 µs.  
The MSP430FG662x MCUs are targeted at small signal-monitoring applications and include a 16-bit sigma-delta  
ADC, dual low-power operational amplifiers, dual 12-bit DACs, voltage comparator, four USCIs (two USCI_A  
modules and two USCI_B modules), four 16-bit timers, a hardware multiplier, a DMA module, an RTC module,  
an LCD driver with integrated contrast control for up to 160 segments, integrated full-speed USB, an auxiliary  
supply system, up to 128KB flash, 10KB SRAM and 73 I/O pins in 100pin devices and 113pin devices.  
The MSP430FG642x MCUs are targeted at small-signal monitoring applications and include a 16-bit sigma-delta  
ADC, dual low-power operational amplifiers, dual 12-bit DACs, voltage comparator, four USCIs (two USCI_A  
modules and two USCI_B modules), four 16-bit timers, a hardware multiplier, a DMA module, an RTC module,  
an LCD driver with integrated contrast control for up to 160 segments, an auxiliary supply system, up to 128KB  
of flash, 10KB of SRAM, and 73 I/O pins in 100pin devices and 113pin devices.  
Typical applications for these microcontrollers include small signal-monitoring applications such as handheld test  
and measurement equipment, field transmitters, and blood glucose meters. These microcontrollers can reduce  
overall system cost through high analog integration and enable long battery life by low-power operation.  
The MSP430FG662x and MSP430FG642x MCUs are supported by an extensive hardware and software  
ecosystem with reference designs and code examples to get your design started quickly. Development kits  
include the MSP-TS430PZ100AUSB 100-pin target development board. TI also provides free MSP430Ware™  
software, which is available as a component of Code Composer StudioIDE desktop and cloud versions within  
TI Resource Explorer. The MSP430 MCUs are also supported by extensive online collateral, training, and online  
support through the TI E2Esupport forums.  
For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide.  
Device Information  
PART NUMBER(1)  
MSP430FG6626IPZ  
PACKAGE  
BODY SIZE(2)  
14 mm × 14 mm  
7 mm × 7 mm  
7 mm × 7 mm  
PZ (100)  
MSP430FG6626IZCA  
nFBGA (113)  
MSP430FG6626IZQW(3)  
MicroStar JuniorBGA (113)  
(1) For the most current part, package, and ordering information for all available devices, see the  
Package Option Addendum in Section 12, or see the TI website at www.ti.com.  
(2) The sizes shown here are approximations. For the package dimensions with tolerances, see the  
Mechanical Data in Section 12.  
(3) All orderable part numbers in the ZQW (MicroStar Junior BGA) package have been changed to a  
status of Last Time Buy. Visit the Product life cycle page for details on this status.  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
4 Functional Block Diagrams  
Figure 4-1 shows the functional block diagram for the MSP430FG6626 and MSP430FG6625 devices.  
PA  
PB  
PC  
PD  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
VCORE  
NR  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
DP, DM, PUR  
XT2IN  
8KB  
RAM  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3, P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5, P6  
1×7 I/Os  
1×8 I/Os  
I/O Ports  
P7, P8  
1×6 I/Os  
1×8 I/Os  
I/O Ports  
P9  
1×8 I/Os  
USCI0,1  
USB  
ACLK  
SYS  
Power  
Management  
Unified  
Clock  
System  
128KB  
64KB  
Ax: UART,  
IrDA, SPI  
Full-Speed  
XT2OUT  
Watchdog  
SMCLK  
+2KB RAM  
USB Buffer  
P2 Port  
Mapping  
Controller  
LDO  
SVM, SVS  
Brownout  
PE  
1×8 I/Os  
Bx: SPI, I2C  
Flash  
MCLK  
+8B Backup  
RAM  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×15 I/Os  
PD  
1×14 I/Os  
CPUXV2  
and  
DMA  
Working  
Registers  
6 Channel  
EEM  
(L: 8+2)  
CTSD16  
Sigma-Delta  
ADC  
Operational  
Amplifiers  
OA0, OA1  
Reference  
TA1 and  
TA2  
RTC_B  
TA0  
TB0  
DAC12_A  
LCD_B  
JTAG,  
SBW  
Interface  
1.5 V,  
2.0 V,  
2.5 V  
Timer_A  
5 CC  
Registers  
Timer_B  
7 CC  
Registers  
Comp_B  
12 bit  
2 channels  
voltage out  
MPY32  
CRC16  
2 Timer_A  
each with  
3 CC  
14 inputs  
(6 SE ext,  
4 SE/diff ext,  
4 int)  
160  
Segments  
Quad  
Ground  
Switches  
Battery  
Backup  
System  
Port PJ  
Registers  
1.16 V  
VREFBG  
Figure 4-1. Functional Block Diagram – MSP430FG6626, MSP430FG6625  
Figure 4-2 shows the functional block diagram for the MSP430FG6426 and MSP430FG6425 devices.  
PU.0,  
PU.1  
PA  
PB  
PC  
PD  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
VCORE  
NR  
LDOO LDOI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
XT2IN  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3, P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5, P6  
1×7 I/Os  
1×8 I/Os  
I/O Ports  
P7, P8  
1×6 I/Os  
1×8 I/Os  
I/O Ports  
P9  
1×8 I/Os  
USCI0,1  
PU Port  
LDO  
ACLK  
SYS  
Power  
Management  
Unified  
Clock  
System  
128KB  
64KB  
10KB  
RAM  
Ax: UART,  
IrDA, SPI  
XT2OUT  
Watchdog  
SMCLK  
P2 Port  
Mapping  
Controller  
LDO  
SVM, SVS  
Brownout  
+8B Backup  
RAM  
PE  
1×8 I/Os  
Bx: SPI, I2C  
Flash  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×15 I/Os  
PD  
1×14 I/Os  
CPUXV2  
and  
DMA  
Working  
Registers  
6 Channel  
EEM  
(L: 8+2)  
CTSD16  
Sigma-Delta  
ADC  
Reference  
Operational  
Amplifiers  
OA0, OA1  
LCD_B  
TA1 and  
TA2  
RTC_B  
DAC12_A  
TA0  
TB0  
1.5 V,  
2.0 V,  
2.5 V  
JTAG,  
SBW  
Interface  
160  
Segments  
12 bit  
2 channels  
voltage out  
Comp_B  
MPY32  
CRC16  
2 Timer_A  
each with  
3 CC  
Timer_A  
5 CC  
Registers  
Timer_B  
7 CC  
Registers  
14 inputs  
(6 SE ext,  
4 SE/dif ext,  
4 int)  
Quad  
Ground  
Switches  
Battery  
Backup  
System  
Port PJ  
Registers  
1.16 V  
VREFBG  
Figure 4-2. Functional Block Diagram – MSP430FG6426, MSP430FG6425  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................2  
4 Functional Block Diagrams............................................ 3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................6  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagrams.............................................................. 8  
7.2 Pin Attributes.............................................................11  
7.3 Signal Descriptions................................................... 18  
7.4 Pin Multiplexing.........................................................25  
7.5 Buffer Type................................................................25  
7.6 Connection of Unused Pins...................................... 26  
8 Specifications................................................................ 27  
8.1 Absolute Maximum Ratings ..................................... 27  
8.2 ESD Ratings............................................................. 27  
8.3 Recommended Operating Conditions.......................27  
8.4 Active Mode Supply Current Into VCC Excluding  
9.5 Interrupt Vector Addresses....................................... 79  
9.6 USB BSL...................................................................80  
9.7 UART BSL................................................................ 80  
9.8 JTAG Operation........................................................ 81  
9.9 Flash Memory........................................................... 81  
9.10 RAM........................................................................81  
9.11 Backup RAM........................................................... 82  
9.12 Peripherals..............................................................82  
9.13 Input/Output Diagrams............................................96  
9.14 Device Descriptors................................................136  
9.15 Memory.................................................................136  
9.16 Identification..........................................................152  
10 Applications, Implementation, and Layout............. 153  
10.1 Device Connection and Layout Fundamentals..... 153  
10.2 Peripheral- and Interface-Specific Design  
Information................................................................ 157  
11 Device and Documentation Support........................168  
11.1 Getting Started......................................................168  
11.2 Device Nomenclature............................................168  
11.3 Tools and Software................................................170  
11.4 Documentation Support........................................ 172  
11.5 Related Links........................................................ 173  
11.6 Support Resources............................................... 173  
11.7 Trademarks........................................................... 173  
11.8 Electrostatic Discharge Caution............................173  
11.9 Export Control Notice............................................173  
11.10 Glossary..............................................................174  
12 Mechanical, Packaging, and Orderable  
External Current.......................................................... 29  
8.5 Low-Power Mode Supply Currents (Into VCC  
)
Excluding External Current..........................................30  
8.6 Low-Power Mode With LCD Supply Currents  
(Into VCC) Excluding External Current.........................31  
8.7 Thermal Resistance Characteristics ........................ 32  
8.8 Timing and Switching Characteristics....................... 32  
9 Detailed Description......................................................76  
9.1 Overview...................................................................76  
9.2 CPU.......................................................................... 76  
9.3 Instruction Set...........................................................77  
9.4 Operating Modes...................................................... 78  
Information.................................................................. 175  
12.1 Packaging Information.......................................... 175  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
5 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from revision A to revision B  
Changes from September 27, 2018 to September 11, 2020  
Page  
Updated the numbering for sections, tables, figures, and cross-references throughout the document..............1  
Updated Section 1, Features .............................................................................................................................1  
Added nFBGA package (ZCA) information throughout document......................................................................2  
Added note about status change for all orderable part numbers in the ZQW package in Device Information .. 2  
Updated Section 3, Description ......................................................................................................................... 2  
Corrected the signal name and description (changed DVCC to AVCC) on pin 16 (or H1, G2) in Table 7-2,  
Signal Descriptions ..........................................................................................................................................18  
Changed the MAX value of the IERASE and IMERASE, IBANK parameters in Section 8.8.19.1, Flash Memory ... 75  
Changes from initial release to revision A  
Changes from May 22, 2015 to September 26, 2018  
Page  
Added Section 6.1, Related Products ................................................................................................................7  
Added typical conditions statements at the beginning of Section 8, Specifications .........................................27  
Updated notes (1) and (2) and added note (3) in Section 8.8.4.1, Wake-up Times From Low-Power Modes  
and Reset ........................................................................................................................................................ 37  
Removed duplicate symbol and removed note (5) on Ri(VREFBG), Ri(VeREF+) parameter in Section 8.8.13.4, 12-  
Bit DAC, Reference Input Specifications ......................................................................................................... 64  
Added "CBPWRMD = 00 or 01" to Test Conditions of the first row of the tEN_CMP parameter; Added second  
row for tEN_CMP with Test Conditions of "CBPWRMD = 10" and MAX value of 100 µs in Section 8.8.16.1,  
Comparator_B ................................................................................................................................................. 70  
Added Section 8.8.18, LDO-PWR (LDO Power System) ................................................................................ 74  
Throughout document, changed all instances of "bootstrap loader" to "bootloader"........................................85  
Changed decoupling capacitor recommendation from "one 10 µF and one 100 nF" to "one 1 µF and one  
100 nF" for consistency with Section 10.1.1 ..................................................................................................157  
Changed decoupling capacitor recommendation from "one 10 µF and one 100 nF" to "one 1 µF and one  
100 nF" for consistency with Section 10.1.1 ..................................................................................................158  
Changed decoupling capacitor recommendation from "one 10 µF and one 100 nF" to "one 1 µF and one  
100 nF" for consistency with Section 10.1.1 ..................................................................................................161  
Added Section 10.2.5, DAC12 Peripheral ..................................................................................................... 165  
Added Section 10.2.6, USB Module .............................................................................................................. 166  
Added Section 10.2.7, LDO Module .............................................................................................................. 167  
Replaced former section Development Tools Support with Section 11.3, Tools and Software ......................170  
Changed format and added content to Section 11.4, Documentation Support ..............................................172  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
6 Device Comparison  
Table 6-1 summarizes the available family members.  
Table 6-1. Device Comparison  
USCI_A:  
FLASH  
(KB)  
SRAM  
(KB)(3)  
USCI_B:  
SPI, I2C  
CTSD16  
(Ch)(6)  
DAC12_A  
(Ch)  
Comp_B  
(channels)  
DEVICE(1) (2)  
MSP430FG6626  
MSP430FG6625  
MSP430FG6426  
MSP430FG6425  
Timer_A(4) Timer_B(5) UART, IrDA,  
SPI  
OA  
2
USB  
I/Os  
73  
PACKAGE  
100 PZ,  
113 ZCA  
113 ZQW  
10 ext,  
5 int  
128  
64  
8 + 2  
8 + 2  
10  
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
7
7
7
7
2
2
2
2
2
2
2
2
2
2
2
2
12  
12  
12  
12  
1
1
0
0
100 PZ,  
113 ZCA  
113 ZQW  
10 ext,  
5 int  
2
73  
100 PZ,  
113 ZCA  
113 ZQW  
10 ext,  
5 int  
128  
64  
2
73  
100 PZ,  
113 ZCA  
113 ZQW  
10 ext,  
5 int  
10  
2
73  
(1) For the most current package and ordering information, see the Package Option Addendum in Section 12, or see the TI website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.  
(3) The additional 2KB of USB SRAM that is listed can be used as general-purpose SRAM when USB is not in use.  
(4) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output  
generators, respectively.  
(5) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output  
generators, respectively.  
(6) ADC inputs consist of a mix of single ended and differential. See the pinning for available input pairs and types.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
Products for TI microcontrollers  
TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a  
broad range of applications.  
Products for MSP430 ultra-low-power microcontrollers  
One platform. One ecosystem. Endless possibilities. Enabling the connected world with innovations in ultra-low-  
power microcontrollers with advanced peripherals for precise sensing and measurement.  
Companion products for MSP430FG6626  
Review products that are frequently purchased or used with this product.  
Reference designs for MSP430FG6626  
Find reference designs that leverage the best in TI technology to solve your system-level challenges.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
Figure 7-1 shows the pinout for the MSP430FG6626 and MSP430FG6625 devices in the 100-pin PZ package.  
P6.4/CB4/AD0+/OA0O  
P6.5/CB5/AD0-/OA0IN0  
P6.6/CB6/AD1+/G0SW0  
P6.7/CB7/AD1-/G0SW1  
P7.4/CB8/AD2+/OA1O  
P7.5/CB9/AD2-/OA1IN0  
P7.6/CB10/AD3+/G1SW0  
P7.7/CB11/AD3-/G1SW1  
P5.0/VREFBG/VeREF+  
P5.1/A4/DAC0  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7/S0  
2
P9.6/S1  
3
P9.5/S2  
4
P9.4/S3  
5
P9.3/S4  
6
P9.2/S5  
7
P9.1/S6  
8
P9.0/S7  
9
P8.7/S8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL/S9  
P8.5/UCB1SIMO/UCB1SDA/S10  
DVCC2  
P5.6/A5/DAC1  
NR  
MSP430FG6626  
MSP430FG6625  
DVSS2  
AVSS1  
XOUT  
XIN  
P8.4/UCB1CLK/UCA1STE/S11  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.1/UCB1STE/UCA1CLK/S14  
P8.0/TB0CLK/S15  
P4.7/TB0OUTH/SVMOUT/S16  
P4.6/TB0.6/S17  
P4.5/TB0.5/S18  
P4.4/TB0.4/S19  
P4.3/TB0.3/S20  
P4.2/TB0.2/S21  
P4.1/TB0.1/S22  
AVCC  
CPCAP  
P2.0/P2MAP0/DAC0  
P2.1/P2MAP1/DAC1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4/R03  
P2.5/P2MAP5  
P2.6/P2MAP6/LCDREF/R13  
P2.7/P2MAP7/R23  
CAUTION: LCDCAP/R33 must be connected to DVSS if not used.  
Figure 7-1. 100-Pin PZ Package (Top View), MSP430FG6626IPZ, MSP430FG6625IPZ  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Figure 7-2 shows the pinout for the MSP430FG6426 and MSP430FG6425 devices in the 100-pin PZ package.  
P6.4/CB4/AD0+/OA0O  
P6.5/CB5/AD0-/OA0IN0  
P6.6/CB6/AD1+/G0SW0  
P6.7/CB7/AD1-/G0SW1  
P7.4/CB8/AD2+/OA1O  
P7.5/CB9/AD2-/OA1IN0  
P7.6/CB10/AD3+/G1SW0  
P7.7/CB11/AD3-/G1SW1  
P5.0/VREFBG/VeREF+  
P5.1/A4/DAC0  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7/S0  
2
P9.6/S1  
3
P9.5/S2  
4
P9.4/S3  
5
P9.3/S4  
6
P9.2/S5  
7
P9.1/S6  
8
P9.0/S7  
9
P8.7/S8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL/S9  
P8.5/UCB1SIMO/UCB1SDA/S10  
DVCC2  
P5.6/A5/DAC1  
NR  
MSP430FG6426  
MSP430FG6425  
DVSS2  
AVSS1  
XOUT  
XIN  
P8.4/UCB1CLK/UCA1STE/S11  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.1/UCB1STE/UCA1CLK/S14  
P8.0/TB0CLK/S15  
P4.7/TB0OUTH/SVMOUT/S16  
P4.6/TB0.6/S17  
P4.5/TB0.5/S18  
P4.4/TB0.4/S19  
P4.3/TB0.3/S20  
P4.2/TB0.2/S21  
P4.1/TB0.1/S22  
AVCC  
CPCAP  
P2.0/P2MAP0/DAC0  
P2.1/P2MAP1/DAC1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4/R03  
P2.5/P2MAP5  
P2.6/P2MAP6/LCDREF/R13  
P2.7/P2MAP7/R23  
A. CAUTION: LCDCAP/R33 must be connected to DVSS if not used.  
Figure 7-2. 100-Pin PZ Package (Top View), MSP430FG6426IPZ, MSP430FG6425IPZ  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Figure 7-3 shows the pinout for the 113-pin ZCA or ZQW package.  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
H1  
J1  
A2  
B2  
C2  
D2  
E2  
F2  
G2  
H2  
J2  
A3  
B3  
C3  
A4  
B4  
A5  
B5  
A6  
B6  
A7  
B7  
A8  
B8  
A9  
B9  
A10  
B10  
A11  
B11  
C11  
D11  
E11  
F11  
G11  
H11  
J11  
A12  
B12  
C12  
D12  
E12  
F12  
G12  
H12  
J12  
D4  
E4  
F4  
G4  
H4  
J4  
D5  
E5  
F5  
G5  
H5  
J5  
D6  
E6  
D7  
E7  
D8  
E8  
F8  
G8  
H8  
J8  
D9  
E9  
F9  
G9  
H9  
J9  
H6  
J6  
H7  
J7  
K1  
L1  
K2  
L2  
K11  
L11  
M11  
K12  
L12  
M12  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
NOTE: For terminal assignments, see Section 7.3.  
Figure 7-3. 113-Pin ZCA or ZQW Package (Top View), MSP430FG6626IZCA, MSP430FG6625IZCA,  
MSP430FG6426IZCA, MSP430FG6425IZCA, MSP430FG6626IZQW, MSP430FG6625IZQW,  
MSP430FG6426IZQW, MSP430FG6425IZQW  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
7.2 Pin Attributes  
Table 7-1 describes the attributes of the pins.  
Table 7-1. Pin Attributes  
PIN NO.  
ZCA, ZQW  
POWER  
RESET STATE  
SIGNAL NAME (1) (2)  
SIGNAL TYPE (3) BUFFER TYPE (4)  
SOURCE(5)  
AFTER BOR (6) (7)  
PZ  
P6.4  
I/O  
LVCMOS  
Analog  
Analog  
Analog  
LVCMOS  
Analog  
Analog  
Analog  
LVCMOS  
Analog  
Analog  
Analog  
LVCMOS  
Analog  
Analog  
Analog  
LVCMOS  
Analog  
Analog  
Analog  
LVCMOS  
Analog  
Analog  
Analog  
LVCMOS  
Analog  
Analog  
Analog  
LVCMOS  
Analog  
Analog  
Analog  
LVCMOS  
Analog  
Analog  
LVCMOS  
Analog  
Analog  
LVCMOS  
Analog  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
CB4  
I
1
A1  
B2  
B1  
C3  
C2  
C1  
D4  
D2  
AD0+  
OA0O  
P6.5  
I
O
I/O  
CB5  
I
2
3
4
5
6
7
8
AD0-  
OA0IN0  
P6.6  
I
I
I/O  
CB6  
I
AD1+  
G0SW0  
P6.7  
I
I
I/O  
CB7  
I
AD1-  
G0SW1  
P7.4  
I
I
I/O  
CB8  
I
AD2+  
OA1O  
P7.5  
I
O
I/O  
CB9  
I
AD2-  
OA1IN0  
P7.6  
I
I
I/O  
CB10  
AD3+  
G1SW0  
P7.7  
I
I
I
I/O  
I
CB11  
AD3-  
G1SW1  
P5.0  
I
I
I/O  
O
I
9
D1  
E4  
E2  
VREFBG  
VeREF+  
P5.1  
I/O  
I
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
10  
11  
A4  
DAC0  
P5.6  
O
I/O  
I
A5  
DAC1  
O
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
PIN NO.  
ZCA, ZQW  
POWER  
RESET STATE  
SIGNAL NAME (1) (2)  
SIGNAL TYPE (3) BUFFER TYPE (4)  
SOURCE(5)  
AFTER BOR (6) (7)  
PZ  
12  
13  
14  
15  
16  
17  
E1  
F2  
NR  
I
Analog  
Power  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
OFF  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
AVSS1  
XOUT  
XIN  
P
N/A  
F1  
O
Analog  
N/A  
G1  
I
Analog  
N/A  
H1, G2  
G4  
AVCC  
CPCAP  
P2.0  
P
Power  
N/A  
I/O  
I/O  
I/O  
O
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
N/A  
LVCMOS  
LVCMOS  
Analog  
18  
19  
H2  
J1  
P2MAP0  
DAC0  
P2.1  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
P2MAP1  
DAC1  
P2.2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
20  
21  
H4  
J2  
P2MAP2  
P2.3  
P2MAP3  
P2.4  
22  
23  
K1  
K2  
P2MAP4  
R03  
P2.5  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
P2MAP5  
P2.6  
P2MAP6  
LCDREF  
R13  
24  
L2  
I/O  
I/O  
I/O  
I/O  
P
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
N/A  
P2.7  
LVCMOS  
LVCMOS  
Analog  
25  
L3  
P2MAP7  
R23  
26  
27  
28  
L1  
M1  
M2  
DVCC1  
DVSS1  
VCORE  
LCDCAP  
R33  
Power  
P
Power  
N/A  
P
Power  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
I/O  
I/O  
O
Analog  
29  
30  
M3  
J4  
Analog  
COM0  
P5.3  
Analog  
I/O  
O
LVCMOS  
Analog  
31  
32  
L4  
COM1  
S42  
O
Analog  
P5.4  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
M4  
COM2  
S41  
O
P5.5  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
33  
34  
J5  
L5  
COM3  
S40  
P1.0  
I/O  
LVCMOS  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
PIN NO.  
POWER  
RESET STATE  
SIGNAL NAME (1) (2)  
SIGNAL TYPE (3) BUFFER TYPE (4)  
SOURCE(5)  
AFTER BOR (6) (7)  
PZ  
ZCA, ZQW  
TA0CLK  
ACLK  
S39  
I
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
O
O
P1.1  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
TA0.0  
BSLTX  
S38  
35  
36  
M5  
J6  
O
P1.2  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
TA0.1  
BSLRX  
S37  
O
P1.3  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
37  
38  
39  
40  
41  
H6  
M6  
L6  
TA0.2  
S36  
P1.4  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TA0.3  
S35  
P1.5  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TA0.4  
S34  
P1.6  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
J7  
TA0.1  
S33  
P1.7  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
M7  
TA0.2  
S32  
P3.0  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
TA1CLK  
CBOUT  
S31  
42  
L7  
O
O
P3.1  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
43  
44  
45  
H7  
M8  
L8  
TA1.0  
S30  
P3.2  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TA1.1  
S29  
P3.3  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TA1.2  
S28  
P3.4  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
TA2CLK  
SMCLK  
S27  
46  
47  
J8  
O
O
M9  
P3.5  
I/O  
LVCMOS  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
PIN NO.  
ZCA, ZQW  
POWER  
RESET STATE  
SIGNAL NAME (1) (2)  
SIGNAL TYPE (3) BUFFER TYPE (4)  
SOURCE(5)  
AFTER BOR (6) (7)  
PZ  
TA2.0  
I/O  
O
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
S26  
P3.6  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
48  
49  
50  
51  
52  
53  
54  
55  
56  
L9  
M10  
J9  
TA2.1  
S25  
P3.7  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TA2.2  
S24  
P4.0  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TB0.0  
S23  
P4.1  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
M11  
L10  
M12  
L12  
L11  
K11  
TB0.1  
S22  
P4.2  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TB0.2  
S21  
P4.3  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TB0.3  
S20  
P4.4  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TB0.4  
S19  
P4.5  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TB0.5  
S18  
P4.6  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TB0.6  
S17  
P4.7  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
TB0OUTH  
SVMOUT  
S16  
57  
58  
59  
K12  
J11  
J12  
O
O
P8.0  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
TB0CLK  
S15  
O
P8.1  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
UCB1STE  
UCA1CLK  
S14  
P8.2  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
UCA1TXD  
UCA1SIMO  
S13  
60  
H11  
I/O  
O
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
PIN NO.  
POWER  
RESET STATE  
SIGNAL NAME (1) (2)  
SIGNAL TYPE (3) BUFFER TYPE (4)  
SOURCE(5)  
AFTER BOR (6) (7)  
PZ  
ZCA, ZQW  
P8.3  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
OFF  
N/A  
OFF  
N/A  
OFF  
N/A  
OFF  
N/A  
OFF  
N/A  
OFF  
N/A  
OFF  
N/A  
OFF  
N/A  
N/A  
HiZ  
UCA1RXD  
UCA1SOMI  
S12  
61  
H12  
I/O  
O
P8.4  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
UCB1CLK  
UCA1STE  
S11  
62  
G11  
63  
64  
G12  
F12  
DVSS2  
DVCC2  
P8.5  
P
Power  
P
Power  
N/A  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
N/A  
UCB1SIMO  
UCB1SDA  
S10  
65  
66  
F11  
G9  
P8.6  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
UCB1SOMI  
UCB1SCL  
S9  
P8.7  
I/O  
O
LVCMOS  
Analog  
67  
68  
69  
70  
71  
72  
73  
74  
E12  
E11  
F9  
S8  
P9.0  
I/O  
O
LVCMOS  
Analog  
S7  
P9.1  
I/O  
O
LVCMOS  
Analog  
S6  
P9.2  
I/O  
O
LVCMOS  
Analog  
D12  
D11  
E9  
S5  
P9.3  
I/O  
O
LVCMOS  
Analog  
S4  
P9.4  
I/O  
O
LVCMOS  
Analog  
S3  
P9.5  
I/O  
O
LVCMOS  
Analog  
C12  
C11  
S2  
P9.6  
I/O  
O
LVCMOS  
Analog  
S1  
P9.7  
I/O  
O
LVCMOS  
Analog  
75  
76  
77  
D9  
B11, B12  
A12  
S0  
VSSU  
PU.0  
P
Power  
I/O  
I/O  
HVCMOS  
HVCMOS  
VBUS  
VBUS  
DP  
N/A  
HVCMOS/open-  
drain  
PUR (FG662x only)  
I/O  
VBUS  
HiZ  
78  
79  
B10  
A11  
NC (FG642x only)  
I/O  
I/O  
I/O  
N/A  
N/A  
N/A  
HiZ  
N/A  
PU.1  
DM  
HVCMOS  
HVCMOS  
VBUS  
VBUS  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
PIN NO.  
ZCA, ZQW  
POWER  
RESET STATE  
SIGNAL NAME (1) (2)  
SIGNAL TYPE (3) BUFFER TYPE (4)  
SOURCE(5)  
AFTER BOR (6) (7)  
PZ  
VBUS  
I
I
Power  
Analog  
Power  
N/A  
External  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
80  
A10  
A9  
LDOI  
VUSB  
O
O
O
81  
LDOO  
Analog  
Power  
VBUS  
N/A  
V18 (FG662x only)  
NC (FG642x only)  
AVSS2  
82  
83  
84  
B9  
A8  
B8  
N/A  
N/A  
P
Power  
N/A  
P7.2  
I/O  
I
LVCMOS  
Analog  
LVCMOS  
Analog  
Analog  
Power  
DVCC  
DVCC  
DVCC  
DVCC  
N/A  
XT2IN  
P7.3  
I/O  
O
I/O  
P
85  
B7  
XT2OUT  
VBAK  
86  
87  
A7  
D8  
VBAT  
N/A  
P5.7  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Power  
DVCC  
DVCC  
DVCC  
N/A  
88  
D7  
DMAE0  
RTCCLK  
DVCC3  
DVSS3  
O
P
89  
90  
A6  
A5  
P
Power  
N/A  
No Emu: PD  
Emu: PD  
TEST  
I
LVCMOS  
DVCC  
91  
92  
B6  
B5  
SBWTCK  
PJ.0  
I
LVCMOS  
LVCMOS  
DVCC  
DVCC  
N/A  
I/O  
OFF  
No Emu: OFF  
Emu: DRIVE0  
TDO  
PJ.1  
TDI  
O
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
DVCC  
DVCC  
DVCC  
OFF  
No Emu: OFF  
Emu: PU  
93  
A4  
No Emu: OFF  
Emu: OFF  
TCLK  
PJ.2  
TMS  
PJ.3  
TCK  
I
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
94  
95  
E7  
D6  
No Emu: OFF  
Emu: PU  
I/O  
I
OFF  
No Emu: OFF  
Emu: PU  
RST  
NMI  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
PU  
N/A  
PU  
96  
97  
A3  
B4  
I
SBWTDIO  
P6.0  
CB0  
A0  
I/O  
I/O  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
I
I
Analog  
P6.1  
CB1  
A1  
I/O  
LVCMOS  
Analog  
98  
99  
B3  
A2  
I
I
Analog  
P6.2  
CB2  
I/O  
I
LVCMOS  
Analog  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
PIN NO.  
POWER  
RESET STATE  
SIGNAL NAME (1) (2)  
SIGNAL TYPE (3) BUFFER TYPE (4)  
SOURCE(5)  
AFTER BOR (6) (7)  
PZ  
ZCA, ZQW  
A2  
I
Analog  
Analog  
LVCMOS  
Analog  
Analog  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OA0IP0  
P6.3  
CB3  
I
I/O  
I
I
I
100  
N/A  
D5  
A3  
OA1IP0  
E5, E6, E8,  
F4, F5, F8,  
G5, G8, H5,  
H8, H9  
Reserved  
-
(1) For each multiplexed pin, the signal that is listed first in this table is the reset default.  
(2) To determine the pin mux encodings for each pin, refer to Section 9.13.  
(3) Signal Types: I = Input, O = Output, I/O = Input or Output, P = power  
(4) Buffer Types: LVCMOS, HVCMOS, Analog, or Power (see Table 7-3 for details).  
(5) The power source shown in this table is the I/O power source, which may differ from the module power source.  
(6) Reset States:  
OFF = High-impedance input with pullup or pulldown disabled (if available)  
HiZ = High-impedance (neither input nor output)  
PD = High-impedance input with pulldown enabled  
PU = High-impedance input with pullup enabled  
DRIVE0 = Drive output low  
DRIVE1 = Drive output high  
N/A = Not applicable  
(7) For Debug pins: Emu = with emulator attached at reset, No Emu = without emulator attached at reset  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
7.3 Signal Descriptions  
Table 7-2 describes the signals for all device variants and package options.  
Table 7-2. Signal Descriptions  
PIN NO.  
SIGNAL  
NAME  
PIN  
FUNCTION  
DESCRIPTION  
TYPE(1)  
ZCA,  
ZQW  
PZ  
A0  
A1  
A2  
A3  
A4  
A5  
97  
98  
99  
100  
10  
11  
1
B4  
B3  
A2  
D5  
E4  
E2  
A1  
B2  
B1  
C3  
C2  
C1  
D4  
D2  
D1  
J6  
I
I
ADC analog single ended input A0  
ADC analog single ended input A1  
I
ADC analog single ended input A2  
I
ADC analog single ended input A3  
I
ADC analog single ended input A4  
I
ADC analog single ended input A5  
AD0+  
AD0-  
I
ADC positive analog differential input AD0+  
ADC negative analog differential input AD0-  
ADC positive analog differential input AD1+  
ADC negative analog differential input AD1-  
ADC positive analog differential input AD2+  
ADC negative analog differential input AD2-  
ADC positive analog differential input AD3+  
ADC negative analog differential input AD3-  
Input for an external reference voltage to the ADC and DAC  
BSL receive input  
ADC  
2
I
AD1+  
AD1-  
3
I
4
I
AD2+  
AD2-  
5
I
6
I
AD3+  
AD3-  
7
I
8
I
VeREF+  
BSLRX  
BSLTX  
9
I
36  
35  
I
BSL  
M5  
O
BSL transmit output  
Capacitor for backup subsystem. Do not load this pin externally. For  
capacitor values, see CBAK in Section 8.3.  
VBAK  
VBAT  
86  
87  
A7  
D8  
I/O  
P
Backup  
Backup or secondary supply voltage. If backup voltage is not supplied,  
connect to DVCC externally.  
Charge Pump CPCAP  
ACLK  
17  
34  
88  
46  
15  
14  
84  
85  
97  
98  
99  
100  
1
G4  
L5  
I/O  
O
O
O
I
Capacitor for op amp and CTSD16 rail-to-rail charge pump  
ACLK output (divided by 1, 2, 4, 8, 16, or 32)  
RTCCLK output  
RTCCLK  
D7  
J8  
SMCLK  
SMCLK output  
Clock  
XIN  
G1  
F1  
B8  
B7  
B4  
B3  
A2  
D5  
A1  
B2  
B1  
C3  
C2  
C1  
D4  
D2  
L7  
Input terminal for crystal oscillator XT1  
Output terminal of crystal oscillator XT1  
Input terminal for crystal oscillator XT2  
Output terminal of crystal oscillator XT2  
Comparator_B input CB0  
XOUT  
XT2IN  
XT2OUT  
CB0  
O
I
O
I
CB1  
I
Comparator_B input CB1  
CB2  
I
Comparator_B input CB2  
CB3  
I
Comparator_B input CB3  
CB4  
I
Comparator_B input CB4  
CB5  
2
I
Comparator_B input CB5  
Comparator  
CB6  
3
I
Comparator_B input CB6  
CB7  
4
I
Comparator_B input CB7  
CB8  
5
I
Comparator_B input CB8  
CB9  
6
I
Comparator_B input CB9  
CB10  
CB11  
CBOUT  
7
I
Comparator_B input CB10  
8
I
Comparator_B input CB11  
42  
O
Comparator_B output  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
www.ti.com  
FUNCTION  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
SIGNAL  
NAME  
PIN  
DESCRIPTION  
TYPE(1)  
ZCA,  
ZQW  
PZ  
10  
18  
E4  
H2  
DAC0  
O
O
DAC output channel 0  
DAC output channel 1  
DAC  
DMA  
11  
19  
E2  
J1  
DAC1  
DMAE0  
SBWTCK  
TCK  
88  
91  
95  
93  
93  
92  
91  
94  
96  
34  
35  
36  
37  
38  
39  
40  
41  
D7  
B6  
D6  
A4  
A4  
B5  
B6  
E7  
A3  
L5  
I
DMA external trigger input  
Spy-Bi-Wire input clock  
Test clock  
I
I
TCLK  
TDI  
I
Test clock input  
I
Test data input  
Debug  
TDO  
O
Test data output  
TEST  
TMS  
I
Test mode pin; selects digital I/O on JTAG pins  
Test mode select  
I
SBWTDIO  
P1.0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Spy-Bi-Wire data input/output  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
P1.1  
M5  
J6  
P1.2  
P1.3  
H6  
M6  
L6  
P1.4  
P1.5  
P1.6  
J7  
P1.7  
M7  
General-purpose digital I/O with port interrupt and mappable secondary  
function  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
18  
19  
20  
21  
22  
23  
24  
25  
H2  
J1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and mappable secondary  
function  
General-purpose digital I/O with port interrupt and mappable secondary  
function  
H4  
J2  
General-purpose digital I/O with port interrupt and mappable secondary  
function  
GPIO  
General-purpose digital I/O with port interrupt and mappable secondary  
function  
K1  
K2  
L2  
L3  
General-purpose digital I/O with port interrupt and mappable secondary  
function  
General-purpose digital I/O with port interrupt and mappable secondary  
function  
General-purpose digital I/O with port interrupt and mappable secondary  
function  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P4.0  
42  
43  
44  
45  
46  
47  
48  
49  
50  
L7  
H7  
M8  
L8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
J8  
M9  
L9  
M10  
J9  
GPIO  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
SIGNAL  
NAME  
PIN  
FUNCTION  
DESCRIPTION  
TYPE(1)  
ZCA,  
PZ  
ZQW  
M11  
L10  
M12  
L12  
L11  
K11  
K12  
D1  
P4.1  
51  
52  
53  
54  
55  
56  
57  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
General-purpose digital I/O  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
P7.2  
P7.3  
P7.4  
P7.5  
P7.6  
P7.7  
P8.0  
P8.1  
P8.2  
P8.3  
P8.4  
P8.5  
P8.6  
P8.7  
P9.0  
P9.1  
P9.2  
P9.3  
P9.4  
P9.5  
P9.6  
P9.7  
10  
31  
32  
33  
11  
88  
97  
98  
99  
100  
1
E4  
General-purpose digital I/O  
L4  
General-purpose digital I/O  
M4  
J5  
General-purpose digital I/O  
General-purpose digital I/O  
E2  
General-purpose digital I/O  
D7  
General-purpose digital I/O  
B4  
General-purpose digital I/O  
B3  
General-purpose digital I/O  
A2  
General-purpose digital I/O  
D5  
General-purpose digital I/O  
A1  
General-purpose digital I/O  
2
B2  
General-purpose digital I/O  
3
B1  
General-purpose digital I/O  
4
C3  
General-purpose digital I/O  
84  
85  
5
B8  
General-purpose digital I/O  
B7  
General-purpose digital I/O  
C2  
General-purpose digital I/O  
6
C1  
General-purpose digital I/O  
7
D4  
General-purpose digital I/O  
8
D2  
General-purpose digital I/O  
58  
59  
60  
61  
62  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
J11  
J12  
H11  
H12  
G11  
F11  
G9  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
E12  
E11  
F9  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
D12  
D11  
E9  
General-purpose digital I/O  
General-purpose digital I/O  
GPIO  
General-purpose digital I/O  
C12  
C11  
D9  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
www.ti.com  
FUNCTION  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
SIGNAL  
NAME  
PIN  
DESCRIPTION  
TYPE(1)  
ZCA,  
ZQW  
PZ  
PJ.0  
92  
93  
94  
95  
B5  
A4  
E7  
D6  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
PJ.1  
PJ.2  
PJ.3  
General-purpose digital I/O - controlled by USB control register (FG662x  
devices) or PU control register  
PU.0  
77  
79  
3
A12  
A11  
B1  
I/O  
General-purpose digital I/O - controlled by USB control register (FG662x  
devices) or PU control register  
PU.1  
I/O  
Analog switch to AVSS. Internally connected to ADC positive analog  
differential input AD1+.  
G0SW0  
G0SW1  
G1SW0  
G1SW1  
I
I
I
I
Analog switch to AVSS. Internally connected to ADC negative analog  
differential input AD1-.  
4
C3  
Ground Switch  
Analog switch to AVSS. Internally connected to ADC positive analog  
differential input AD3+.  
7
D4  
Analog switch to AVSS. Internally connected to ADC negative analog  
differential input AD3-.  
8
D2  
UCB1SCL  
UCB1SDA  
COM0  
66  
65  
30  
31  
32  
33  
G9  
F11  
J4  
I/O  
I/O  
O
USCI_B1 I2C clock  
I2C  
USCI_B1 I2C data  
LCD common output COM0 for LCD backplane  
LCD common output COM1 for LCD backplane  
LCD common output COM2 for LCD backplane  
LCD common output COM3 for LCD backplane  
COM1  
L4  
O
COM2  
M4  
J5  
O
COM3  
I/O  
LCD capacitor connection  
CAUTION: LCDCAP/R33 must be connected to DVSS if not used.  
LCDCAP  
29  
M3  
I/O  
LCDREF  
R03  
24  
22  
24  
25  
L2  
K1  
L2  
L3  
I
External reference voltage input for regulated LCD voltage  
Input/output port of lowest analog LCD voltage (V5)  
I/O  
I/O  
I/O  
R13  
Input/output port of third most positive analog LCD voltage (V3 or V4)  
Input/output port of second most positive analog LCD voltage (V2)  
LCD  
R23  
Input/output port of most positive analog LCD voltage (V1)  
CAUTION: LCDCAP/R33 must be connected to DVSS if not used.  
R33  
29  
M3  
I/O  
S0  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
62  
61  
60  
59  
58  
D9  
C11  
C12  
E9  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LCD segment output S0  
LCD segment output S1  
LCD segment output S2  
LCD segment output S3  
LCD segment output S4  
LCD segment output S5  
LCD segment output S6  
LCD segment output S7  
LCD segment output S8  
LCD segment output S9  
LCD segment output S10  
LCD segment output S11  
LCD segment output S12  
LCD segment output S13  
LCD segment output S14  
LCD segment output S15  
S1  
S2  
S3  
S4  
D11  
D12  
F9  
S5  
S6  
S7  
E11  
E12  
G9  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
F11  
G11  
H12  
H11  
J12  
J11  
LCD  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
SIGNAL  
NAME  
PIN  
FUNCTION  
DESCRIPTION  
TYPE(1)  
ZCA,  
PZ  
ZQW  
K12  
K11  
L11  
L12  
M12  
L10  
M11  
J9  
S16  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LCD segment output S16  
LCD segment output S17  
LCD segment output S18  
LCD segment output S19  
LCD segment output S20  
LCD segment output S21  
LCD segment output S22  
LCD segment output S23  
LCD segment output S24  
LCD segment output S25  
LCD segment output S26  
LCD segment output S27  
LCD segment output S28  
LCD segment output S29  
LCD segment output S30  
LCD segment output S31  
LCD segment output S32  
LCD segment output S33  
LCD segment output S34  
LCD segment output S35  
LCD segment output S36  
LCD segment output S37  
LCD segment output S38  
LCD segment output S39  
LCD segment output S40  
LCD segment output S41  
LCD segment output S42  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
M10  
L9  
M9  
J8  
L8  
M8  
H7  
L7  
M7  
J7  
L6  
M6  
H6  
J6  
M5  
L5  
J5  
M4  
L4  
Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock  
input/output  
P2MAP0  
18  
H2  
I/O  
Mapping Options: See Table 9-8  
Default mapping: USCI_B0 SPI slave in/master out; USCI_B0 I2C data  
Mapping Options: See Table 9-8  
P2MAP1  
P2MAP2  
19  
20  
J1  
I/O  
I/O  
Default mapping: USCI_B0 SPI slave out/master in; USCI_B0 I2C clock  
Mapping Options: See Table 9-8  
H4  
Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave  
transmit enable  
Mapping Options: See Table 9-8  
P2MAP3  
P2MAP4  
P2MAP5  
21  
22  
23  
J2  
K1  
K2  
I/O  
I/O  
I/O  
Mappable  
Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in/  
master out  
Mapping Options: See Table 9-8  
Default mapping: USCI_A0 UART receive data; USCI_A0 slave out/  
master in  
Mapping Options: See Table 9-8  
Default mapping: no secondary function  
Mapping Options: See Table 9-8  
P2MAP6  
P2MAP7  
24  
25  
L2  
L3  
I/O  
I/O  
Default mapping: no secondary function  
Mapping Options: See Table 9-8  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
www.ti.com  
FUNCTION  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
SIGNAL  
NAME  
PIN  
DESCRIPTION  
TYPE(1)  
ZCA,  
ZQW  
PZ  
12  
6
Noise  
Reduction  
NR  
E1  
C1  
I
I
Noise reduction. Connect pin to analog ground.  
OA1 negative input internally connected to ADC negative analog  
differential input AD2-  
OA1IN0  
OA0 negative input internally connected to ADC negative analog  
differential input AD0-  
OA0IN0  
OA0IP0  
OA0O  
2
99  
1
B2  
A2  
A1  
D5  
C2  
I
I
OA0 positive input internally connected to ADC analog input A2  
Op Amp  
OA0 output internally connected to ADC positive analog differential input  
AD0+  
O
I
OA1IP0  
OA1O  
100  
5
OA1 positive input internally connected to ADC analog input A3  
OA1 output internally connected to ADC positive analog differential input  
AD2+  
O
AVSS1  
AVSS2  
AVCC  
13  
83  
16  
26  
64  
89  
27  
63  
90  
80  
81  
F2  
A8  
P
P
P
P
P
P
P
P
P
I
Analog ground supply  
Analog ground supply  
H1, G2  
L1  
Analog power supply  
DVCC1  
DVCC2  
DVCC3  
DVSS1  
DVSS2  
DVSS3  
LDOI  
Digital power supply  
F12  
A6  
Digital power supply  
Digital power supply  
Power  
M1  
Digital ground supply  
G12  
A5  
Digital ground supply  
Digital ground supply  
A10  
A9  
LDO input (not available on FG662x devices)  
LDO output (not available on FG662x devices)  
LDOO  
O
Regulated core power supply (internal use only, no external current  
loading)  
VCORE(2)  
VREFBG  
NC  
28  
9
M2  
D1  
O
O
REF  
Output of reference voltage to the ADC and DAC  
Not connected (not available on FG662x devices)  
78  
82  
B10  
B9  
I/O  
E5, E6,  
E8, F4,  
F5, F8,  
G5, G8,  
H5, H8,  
H9  
Reserved  
Reserved. Internally connected to DVSS. TI recommends external  
connection to ground (DVSS).  
Reserved  
UCA1CLK  
UCA1SIMO  
UCA1SOMI  
UCA1STE  
UCB1CLK  
UCB1SIMO  
UCB1SOMI  
UCB1STE  
NMI  
59  
60  
61  
62  
62  
65  
66  
59  
96  
96  
57  
35  
36  
J12  
H11  
H12  
G11  
G11  
F11  
G9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
USCI_A1 clock input/output  
USCI_A1 SPI slave in/master out  
USCI_A1 SPI slave out/master in  
USCI_A1 SPI slave transmit enable  
USCI_B1 clock input/output  
SPI  
USCI_B1 SPI slave in/master out  
USCI_B1 SPI slave out/master in  
USCI_B1 SPI slave transmit enable  
Nonmaskable interrupt input  
J12  
A3  
System  
RST  
A3  
I/O  
O
Reset input (active low)(3)  
SVMOUT  
TA0.0  
K12  
M5  
SVM output  
I/O  
I/O  
Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output  
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output  
Timer_A  
TA0.1  
J6  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
PIN NO.  
SIGNAL  
NAME  
PIN  
FUNCTION  
DESCRIPTION  
TYPE(1)  
ZCA,  
PZ  
ZQW  
J7  
40  
37  
41  
38  
39  
34  
43  
44  
45  
42  
47  
48  
49  
46  
50  
51  
52  
53  
54  
55  
56  
58  
57  
59  
61  
60  
79  
77  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output  
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output  
Timer TA0 CCR2 capture: CCI2B input, compare: Out2 output  
Timer TA0 CCR3 capture: CCI3A input compare: Out3 output  
Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output  
Timer TA0 clock signal TACLK input  
H6  
TA0.2  
M7  
M6  
L6  
TA0.3  
TA0.4  
TA0CLK  
TA1.0  
L5  
H7  
I/O  
I/O  
I/O  
I
Timer TA1 capture CCR0: CCI0A input, compare: Out0 output  
Timer TA1 capture CCR1: CCI1A input, compare: Out1 output  
Timer TA1 capture CCR2: CCI2A input, compare: Out2 output  
Timer TA1 clock input  
TA1.1  
M8  
L8  
TA1.2  
TA1CLK  
TA2.0  
L7  
M9  
L9  
I/O  
I/O  
I/O  
I
Timer TA2 capture CCR0: CCI0A input, compare: Out0 output  
Timer TA2 capture CCR1: CCI1A input, compare: Out1 output  
Timer TA2 capture CCR2: CCI2A input, compare: Out2 output  
Timer TA2 clock input  
TA2.1  
TA2.2  
M10  
J8  
TA2CLK  
TB0.0  
J9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Timer TB0 capture CCR0: CCI0A input, compare: Out0 output  
Timer TB0 capture CCR1: CCI1A input, compare: Out1 output  
Timer TB0 capture CCR2: CCI2A input, compare: Out2 output  
Timer TB0 capture CCR3: CCI3A input, compare: Out3 output  
Timer TB0 capture CCR4: CCI4A input, compare: Out4 output  
Timer TB0 capture CCR5: CCI5A input, compare: Out5 output  
Timer TB0 capture CCR6: CCI6A input, compare: Out6 output  
Timer TB0 clock input  
TB0.1  
M11  
L10  
M12  
L12  
L11  
K11  
J11  
K12  
J12  
H12  
H11  
A11  
A12  
TB0.2  
TB0.3  
Timer_B  
TB0.4  
TB0.5  
TB0.6  
TB0CLK  
TB0OUTH  
UCA1CLK  
UCA1RXD  
UCA1TXD  
DM  
I
Timer TB0: switch all PWM outputs to high impedance  
USCI_A1 clock input/output  
I/O  
I
UART  
USCI_A1 UART receive data  
O
USCI_A1 UART transmit data  
I/O  
I/O  
USB data terminal DM (not available on FG6426 and FG6425 devices)  
USB data terminal DP (not available on FG6426 and FG6425 devices)  
DP  
USB pullup resistor pin (open drain). The voltage level at the PUR pin is  
used to invoke the default USB BSL.  
Recommended 1-MΩ resistor to ground. See Section 9.6 for more  
information.  
PUR  
78  
B10  
I/O  
Not available on FG6426 and FG6425 devices.  
USB  
(FG662x only)  
USB regulated power (internal use only, no external current loading) (not  
available on FG6426 and FG6425 devices)  
V18  
82  
80  
B9  
O
I
USB LDO input (connect to USB power source) (not available on FG6426  
and FG6425 devices)  
VBUS  
A10  
B11  
B12  
VSSU  
VUSB  
76  
81  
P
USB PHY ground supply  
A9  
O
USB LDO output (not available on FG6426 and FG6425 devices)  
(1) I = input, O = output, I/O = input or output, P = power  
(2) VCORE is for internal use only. No external current loading is possible. VCORE must be connected to the recommended capacitor  
value, CVCORE  
(3) When this pin is configured as reset, the internal pullup resistor is enabled by default.  
.
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
7.4 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the  
device is in test mode). For details of the settings for each pin and schematics of the multiplexed ports, see  
Section 9.13.  
7.5 Buffer Type  
Table 7-3 describes the buffer types that are referenced in Table 7-1.  
Table 7-3. Buffer Type  
NOMINAL  
OUTPUT DRIVE  
STRENGTH  
(mA)  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)  
OTHER  
CHARACTERISTICS  
HYSTERESIS  
PU OR PD  
N/A  
See analog modules in  
Section 8, Specifications for  
details  
Analog(2)  
HVCMOS  
3.0 V  
5.0 V  
N
Y
N/A  
N/A  
N/A  
See Section  
8.8.5.7, Typical  
Characteristics –  
Outputs  
N/A  
See Section  
8.8.5.7, Typical  
Characteristics –  
Outputs  
See Section  
8.8.5, General-  
Purpose I/Os  
LVCMOS  
3.0 V  
Y(1)  
Programmable  
SVS enables hysteresis on  
DVCC  
Power (DVCC)(3)  
Power (AVCC)(3)  
3.0 V  
3.0 V  
0 V  
N
N
N
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Power (DVSS  
and AVSS)(3)  
(1) Only for input pins  
(2) This is a switch, not a buffer.  
(3) This is supply input, not a buffer.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
7.6 Connection of Unused Pins  
Table 7-4 lists the correct termination of all unused pins.  
Table 7-4. Connection of Unused Pins  
(1)PIN  
POTENTIAL  
DVCC  
COMMENT  
AVCC  
AVSS  
DVSS  
Open  
DVSS  
DVSS  
Open  
Open  
CPCAP  
LCDCAP  
LDOI  
For devices where the charge pump is not used (no rail-to-rail OA and no rail-to-rail CTSD16).  
For devices with LDO-PWR module when not being used in the application.  
For devices with LDO-PWR module when not being used in the application.  
LDOO  
NC  
PJ.0/TDO  
PJ.1/TDI  
PJ.2/TMS  
PJ.3/TCK  
The JTAG pins are shared with general-purpose I/O function (PJ.x). If not being used, these must  
be switched to port function, output direction (PJDIR.n = 1). When used as JTAG pins, these pins  
must remain open.  
Open  
PU.0/DP  
PU.1/DM  
Open  
DVSS  
Open  
For USB devices only when USB module is not being used in the application  
For USB devices only when USB module is not being used in the application  
PUR(3)  
Switched to port function, output direction (PxDIR.n = 1). Px.y represents port x and bit y of port x  
(for example, P1.0, P1.1, P2.2, PJ.0, PJ.1)  
Px.y  
RST/NMI  
Reserved  
TEST  
DVCC or VCC  
DVSS  
47-kΩ pullup or internal pullup selected with 10-nF (2.2 nF) pulldown(2)  
Open  
This pin always has an internal pulldown enabled.  
V18  
Open  
For USB devices only when USB module is not being used in the application  
For devices where no separate battery backup supply is used in the system. Set bit BAKDIS = 1.  
For devices where no separate battery backup supply is used in the system. Set bit BAKDIS = 1.  
For USB devices only when USB module is not being used in the application  
For USB devices only when USB module is not being used in the application  
VBAK  
Open  
VBAT  
DVCC  
VBUS, VSSU  
VUSB  
DVSS  
Open  
For dedicated XIN pins only. XIN pins with shared GPIO functions must be programmed to GPIO  
and follow Px.y recommendations.  
XIN  
DVSS  
Open  
DVSS  
Open  
For dedicated XOUT pins only. XOUT pins with shared GPIO functions must be programmed to  
GPIO and follow Px.y recommendations.  
XOUT  
XT2IN  
XT2OUT  
For dedicated XT2IN pins only. XT2IN pins with shared GPIO functions must be programmed to  
GPIO and follow Px.y recommendations.  
For dedicated XT2OUT pins only. XT2OUT pins with shared GPIO functions must be programmed  
to GPIO and follow Px.y recommendations.  
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.y unused pin connection  
guidelines.  
(2) The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire  
JTAG mode with TI tools such as FET interfaces or GANG programmers.  
(3) The default USB BSL evaluates the state of the PUR pin after a BOR reset. If it is pulled high externally, then the BSL is invoked.  
Therefore, unless invoking the BSL, it is important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI  
recommends a 1-MΩ resistor to ground.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8 Specifications  
All graphs in this section are for typical conditions, unless otherwise noted.  
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
4.1  
UNIT  
V
Voltage applied at VCC to VSS  
–0.3  
–0.3  
Voltage applied to any pin (excluding VCORE, VBUS, V18, LDOI) (2)  
VCC + 0.3  
±2  
V
Diode current at any device pin  
mA  
°C  
(3)  
Storage temperature, Tstg  
–55  
150  
Maximum junction temperature, TJ  
95  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
8.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as  
±250 V may actually have higher performance.  
8.3 Recommended Operating Conditions  
Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted)  
MIN  
1.8  
2.0  
2.2  
2.4  
1.8  
2.0  
2.2  
2.4  
2.2  
2.4  
NOM  
MAX UNIT  
PMMCOREV = 0  
3.6  
Supply voltage during program execution and flash  
PMMCOREV = 0, 1  
PMMCOREV = 0, 1, 2  
PMMCOREV = 0, 1, 2, 3  
PMMCOREV = 0  
3.6  
V
3.6  
VCC  
programming (AVCC = DVCC1 = DVCC2 = DVCC3 =  
(1) (2) (3)  
DVCC = VCC  
)
3.6  
3.6  
3.6  
PMMCOREV = 0, 1  
PMMCOREV = 0, 1, 2  
PMMCOREV = 0, 1, 2, 3  
PMMCOREV = 2  
Supply voltage during USB operation, USB PLL disabled  
(USB_EN = 1, UPLLEN = 0)  
3.6  
V
3.6  
(2)  
VCC,USB  
3.6  
3.6  
V
Supply voltage during USB operation, USB PLL enabled  
(4) (USB_EN = 1, UPLLEN = 1)  
PMMCOREV = 2, 3  
VSS  
Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = VSS  
)
0
TA = 0°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
I version  
1.55  
1.70  
1.20  
–40  
–40  
1
3.6  
V
VBAT,RTC  
Backup-supply voltage with RTC operational  
3.6  
VBAT,MEM  
TA  
Backup-supply voltage with backup memory retained  
Operating free-air temperature  
3.6  
85  
85  
10  
V
°C  
°C  
nF  
TJ  
Operating junction temperature  
I version  
CBAK  
Capacitance at pin VBAK  
4.7  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.3 Recommended Operating Conditions (continued)  
Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
CVCORE  
CDVCC  
CVCORE  
Capacitor at VCORE(5)  
470  
nF  
/
Capacitor ratio of DVCC to VCORE  
10  
0
PMMCOREV = 0,  
1.8 V ≤ VCC ≤ 3.6 V  
(default condition)  
8.0  
PMMCOREV = 1,  
2 V ≤ VCC ≤ 3.6 V  
Processor frequency (maximum MCLK frequency) (6) (7)  
(see Figure 8-1)  
0
0
12.0  
MHz  
fSYSTEM  
PMMCOREV = 2,  
2.2 V ≤ VCC ≤ 3.6 V  
16.0  
20.0  
PMMCOREV = 3,  
2.4 V ≤ VCC ≤ 3.6 V  
0
fSYSTEM_USB Minimum processor frequency for USB operation  
USB_wait Wait state cycles during USB operation  
1.5  
MHz  
16  
cycles  
(1) TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) Some modules may have reduced recommended ranges of operation.  
(3) The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Section  
8.8.6.2 for the exact values and further details.  
(4) USB operation with USB PLL enabled requires PMMCOREV ≥ 2 for proper operation.  
(5) A capacitor tolerance of ±20% is required.  
(6) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the  
specified maximum frequency.  
(7) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
25  
20  
3
16  
2, 3  
2
12  
8
1, 2  
1, 2, 3  
1
0
0, 1  
0, 1, 2  
0, 1, 2, 3  
0
1.8  
2.0  
2.2  
2.4  
3.6  
Supply Voltage - V  
NOTE: The numbers within the fields denote the supported PMMCOREVx settings.  
Figure 8-1. Frequency vs Supply Voltage  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.4 Active Mode Supply Current Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3)  
FREQUENCY (fDCO = fMCLK = fSMCLK  
8 MHz 12 MHz  
TYP MAX  
)
EXECUTION  
MEMORY  
PARAMETER  
VCC  
PMMCOREV  
1 MHz  
20 MHz  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
0
1
2
3
0
1
2
3
0.31  
0.35  
0.37  
0.4  
0.36  
2.0  
2.3  
2.5  
2.7  
1.1  
1.3  
1.5  
1.6  
2.4  
3.4  
3.8  
4.0  
4.0  
IAM, Flash  
Flash  
RAM  
3 V  
mA  
6.6  
0.2  
0.23  
1.2  
0.22  
0.24  
0.26  
1.9  
2.2  
2.4  
2.1  
IAM, RAM  
3 V  
mA  
3.9  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external  
load capacitance are chosen to closely match the required 12.5 pF.  
(3) Characterized with program executing typical data processing. FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0).  
FG6426 and FG6425 LDO disabled (LDOEN = 0).  
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
PMMCOREV  
–40°C  
TYP MAX  
72  
25°C  
60°C  
TYP MAX  
81  
85°C  
UNIT  
TYP MAX  
TYP MAX  
2.2 V  
3 V  
0
3
0
3
0
1
2
0
1
2
3
0
1
2
3
0
1
2
3
77  
92  
87  
105  
9.9  
11  
87  
104  
12  
98  
117  
17  
ILPM0,1MHz Low-power mode 0(3) (9)  
µA  
µA  
86  
97  
2.2 V  
3 V  
6.9  
7.5  
8.5  
3.2  
3.6  
4.0  
3.4  
3.8  
4.2  
4.2  
1.5  
1.6  
1.8  
1.8  
0.9  
1.0  
1.1  
1.1  
8.5  
ILPM2  
Low-power mode 2(4) (9)  
7.9  
9.7  
14  
20  
2.8  
3.7  
4.2  
7.6  
8.2  
8.8  
7.9  
8.5  
9.0  
9.1  
5.8  
6.1  
6.5  
6.5  
5.4  
5.6  
5.9  
6.0  
13.5  
2.2 V  
3.1  
4.6  
3.5  
5.1  
Low-power mode 3,  
crystal mode(5) (9)  
ILPM3,XT1LF  
3.0  
4.0  
4.4  
14  
µA  
3.3  
4.9  
3 V  
3.7  
5.3  
3.7  
4.8  
2.1  
5.3  
16  
1.2  
2.4  
12.5  
Low-power mode 3,  
VLO mode, Watchdog  
enabled(6) (9)  
1.4  
2.6  
ILPM3,  
3 V  
3 V  
µA  
µA  
VLO,WDT  
1.6  
2.8  
1.6  
2.6  
1.8  
2.9  
14  
0.6  
1.9  
11.5  
0.7  
2.0  
ILPM4  
Low-power mode 4(7) (9)  
0.8  
2.2  
0.8  
2.1  
2.2  
13  
Low-power mode 3.5  
(LPM3.5) current with  
active RTC into primary  
ILPM3.5,  
3 V  
3 V  
0.2  
0.7  
0.7  
0.9  
1.7  
µA  
µA  
RTC,VCC  
(10)  
supply pin DVCC  
Low-power mode 3.5  
(LPM3.5) current with  
active RTC into backup  
supply pin VBAT(11)  
ILPM3.5,  
1.2  
RTC,VBAT  
Total low-power mode 3.5  
(LPM3.5) current with  
active RTC(12)  
ILPM3.5,  
3 V  
3 V  
0.8  
0.9  
0.2  
1.0  
1.6  
0.8  
2.9  
1.9  
µA  
µA  
RTC,TOT  
Low-power mode 4.5  
(LPM4.5)(8)  
ILPM4.5  
0.12  
0.6  
0.32  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance are chosen to closely match the required 9 pF.  
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz  
FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0).  
(4) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO  
setting = 1 MHz operation, DCO bias generator enabled.  
FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0).  
(5) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0).  
(6) Current for watchdog timer clocked by VLO included.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fMCLK = fSMCLK = fDCO = 0 MHz  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0).  
(7) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0).  
(8) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(9) Current for brownout included. Low-side supervisor and monitors disabled (SVSL, SVML). High-side supervisor and monitor disabled  
(SVSH, SVMH). RAM retention enabled.  
(10) VVBAT = VCC – 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active  
(11) VVBAT = VCC – 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no  
current drawn on VBAK  
(12) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK  
8.6 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
PMMCOREV  
–40°C  
TYP MAX  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
MAX  
MAX  
MAX  
0
1
2
3
0
1
2
3
0
1
2
0
1
2
3
3.7  
4.1  
4.5  
4.5  
4.2  
4.7  
5.1  
5.0  
4.3  
4.7  
4.9  
5.5  
5.9  
6.3  
6.5  
6.0  
6.6  
7.1  
7.0  
9.0  
9.6  
15.0  
Low-power mode 3  
ILPM3, LCD, (LPM3) current, LCD 4-  
3 V  
µA  
ext. bias  
mux mode, external  
5.1  
10.2  
10.4  
9.6  
biasing(1) (2)  
5.2  
5.8  
5.4  
18.0  
17.0  
4.8  
Low-power mode 3  
(LPM3) current, LCD 4-  
mux mode, internal  
biasing, charge pump  
disabled(1) (3)  
5.4  
10.4  
11.0  
11.0  
ILPM3, LCD,  
int. bias  
3 V  
2.2 V  
3 V  
µA  
µA  
µA  
5.8  
5.7  
6.4  
19.0  
6.4  
6.77  
7.13  
6.53  
7.0  
Low-power mode 3  
(LPM3) current, LCD 4-  
mux mode, internal  
biasing, charge pump  
enabled(1) (4)  
ILPM3  
LCD,CP  
7.43  
7.6  
(1) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
Current for brownout included. Low-side supervisor (SVSL) and low-side monitor (SVML) disabled. High-side supervisor (SVSH) and  
high-side monitor (SVMH) disabled. RAM retention enabled.  
(2) LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Current through external resistors not included (voltage levels are supplied by test equipment).  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(3) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(4) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump  
enabled), VLCDx = 1000 (VLCD = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.7 Thermal Resistance Characteristics  
PARAMETER  
Junction-to-ambient thermal resistance, still air (1)  
VALUE  
122  
108  
83  
UNIT  
QFP (PZ)  
θJA  
°C/W  
BGA (ZQW)  
QFP (PZ)  
θJC(TOP)  
Junction-to-case (top) thermal resistance (2)  
Junction-to-board thermal resistance (3)  
°C/W  
°C/W  
BGA (ZQW)  
QFP (PZ)  
72  
98  
θJB  
BGA (ZQW)  
76  
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board,  
as specified in JESD51-7, in an environment described in JESD51-2a.  
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
8.8 Timing and Switching Characteristics  
8.8.1 Power Supply Sequencing  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power  
down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits  
specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device  
including erroneous writes to RAM and flash.  
Section 8.8.1.1 lists the device reset requirements.  
8.8.1.1 Brownout and Device Reset Power Ramp Requirements  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s  
MIN  
TYP  
MAX UNIT  
V(DVCC_BOR_IT–)  
V(DVCC_BOR_IT+)  
V(DVCC_BOR_hys)  
BORH on voltage, DVCC falling level  
BORH off voltage, DVCC rising level  
BORH hysteresis  
1.47  
1.55  
250  
V
V
0.80  
60  
1.30  
mV  
8.8.2 Reset Timing  
Section 8.8.2.1 lists the reset input timing.  
8.8.2.1 Reset Input  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TYP UNIT  
tRESET  
Pulse duration required at RST/NMI pin to accept a reset  
2
µs  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.3 Clock Specifications  
Section 8.8.3.1 lists the characteristics of XT1 in low-frequency mode.  
8.8.3.1 Crystal Oscillator, XT1, Low-Frequency Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1  
0.075  
Differential XT1 oscillator crystal  
current consumption from lowest  
drive setting, LF mode  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 2  
ΔIDVCC,LF  
3 V  
0.170  
0.290  
32768  
µA  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3  
XT1 oscillator crystal frequency,  
LF mode  
fXT1,LF0  
XTS = 0, XT1BYPASS = 0  
Hz  
XT1 oscillator logic-level square-  
wave input frequency, LF mode  
fXT1,LF,SW  
XTS = 0, XT1BYPASS = 1(2) (3)  
10 32.768  
210  
50 kHz  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
fXT1,LF = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(4)  
OALF  
kΩ  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,LF = 32768 Hz, CL,eff = 12 pF  
300  
XTS = 0, XCAPx = 0(6)  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
Integrated effective load  
capacitance, LF mode(5)  
CL,eff  
pF  
8.5  
12.0  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30%  
10  
70%  
Oscillator fault frequency,  
LF mode(7)  
fFault,LF  
XTS = 0(8)  
10000  
Hz  
ms  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
CL,eff = 6 pF  
1000  
500  
tSTART,LF  
Start-up time, LF mode  
3 V  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
CL,eff = 12 pF  
(1) To improve EMI on the XT1 oscillator, observe the following guidelines.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-trigger Inputs section of this data sheet.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For XT1DRIVEx = 0, CL,eff ≤ 6 pF  
For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF  
For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF  
For XT1DRIVEx = 3, CL,ef f ≥ 6 pF  
(5) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, verify  
the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the  
specification of the used crystal.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
(6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX specifications might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
Section 8.8.3.2 lists the characteristics of XT2.  
8.8.3.2 Crystal Oscillator, XT2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz, XT2OFF = 0, TA = 25°C,  
XT2BYPASS = 0, XT2DRIVEx = 0  
200  
fOSC = 12 MHz, XT2OFF = 0, TA = 25°C,  
XT2BYPASS = 0, XT2DRIVEx = 1  
260  
325  
450  
XT2 oscillator crystal current  
consumption  
IDVCC,XT2  
3 V  
µA  
fOSC = 20 MHz, XT2OFF = 0, TA = 25°C,  
XT2BYPASS = 0, XT2DRIVEx = 2  
fOSC = 32 MHz, XT2OFF = 0, TA = 25°C,  
XT2BYPASS = 0, XT2DRIVEx = 3  
XT2 oscillator crystal frequency,  
mode 0  
fXT2,HF0  
fXT2,HF1  
fXT2,HF2  
fXT2,HF3  
fXT2,HF,SW  
XT2DRIVEx = 0, XT2BYPASS = 0(3)  
XT2DRIVEx = 1, XT2BYPASS = 0(3)  
XT2DRIVEx = 2, XT2BYPASS = 0(3)  
XT2DRIVEx = 3, XT2BYPASS = 0(3)  
XT2BYPASS = 1(3) (4)  
4
8
8
MHz  
XT2 oscillator crystal frequency,  
mode 1  
16 MHz  
24 MHz  
32 MHz  
32 MHz  
XT2 oscillator crystal frequency,  
mode 2  
16  
24  
0.7  
XT2 oscillator crystal frequency,  
mode 3  
XT2 oscillator logic-level square-  
wave input frequency  
XT2DRIVEx = 0, XT2BYPASS = 0,  
fXT2,HF0 = 6 MHz, CL,eff = 15 pF  
450  
320  
200  
200  
XT2DRIVEx = 1, XT2BYPASS = 0,  
fXT2,HF1 = 12 MHz, CL,eff = 15 pF  
Oscillation allowance for  
HF crystals(5)  
OAHF  
XT2DRIVEx = 2, XT2BYPASS = 0,  
fXT2,HF2 = 20 MHz, CL,eff = 15 pF  
XT2DRIVEx = 3, XT2BYPASS = 0,  
fXT2,HF3 = 32 MHz, CL,eff = 15 pF  
fOSC = 6 MHz,  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C, CL,eff = 15 pF  
0.5  
0.3  
tSTART,HF  
Start-up time  
3 V  
ms  
pF  
fOSC = 20 MHz,  
XT2BYPASS = 0, XT2DRIVEx = 3,  
TA = 25°C, CL,eff = 15 pF  
Integrated effective load  
CL,eff  
1
capacitance, HF mode(6) (1)  
Duty cycle  
Measured at ACLK, fXT2,HF2 = 20 MHz  
XT2BYPASS = 1(8)  
40%  
30  
50%  
60%  
300 kHz  
fFault,HF  
Oscillator fault frequency(7)  
(1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(2) To improve EMI on the XT2 oscillator, observe the following guidelines.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.  
Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) When XT2BYPASS is set, the XT2 circuit is automatically powered down.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, verify  
the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the  
specification of the used crystal.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX specifications might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
Section 8.8.3.3 lists the characteristics of the VLO.  
8.8.3.3 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
9.4  
0.5  
4
MAX UNIT  
14 kHz  
%/°C  
fVLO  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
dfVLO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
Duty cycle  
%/V  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Section 8.8.3.4 lists the characteristics of the REFO.  
8.8.3.4 Internal Reference, Low-Frequency Oscillator (REFO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
REFO oscillator current  
consumption  
IREFO  
TA = 25°C  
1.8 V to 3.6 V  
3
µA  
Hz  
REFO frequency calibrated  
Measured at ACLK  
Full temperature range  
TA = 25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
32768  
fREFO  
±3.5%  
REFO absolute tolerance  
calibrated  
±1.5%  
dfREFO/dT  
REFO frequency temperature drift Measured at ACLK(1)  
1.8 V to 3.6 V  
0.01  
1.0  
%/°C  
%/V  
REFO frequency supply voltage  
Measured at ACLK(2)  
drift  
dfREFO/dVCC  
1.8 V to 3.6 V  
Duty cycle  
Measured at ACLK  
40%/60% duty cycle  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
40%  
50%  
25  
60%  
tSTART  
REFO start-up time  
µs  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.3.5 lists the characteristics of the DCO frequency.  
8.8.3.5 DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DCORSELx = 0, DCOx = 0, MODx = 0  
DCORSELx = 0, DCOx = 31, MODx = 0  
DCORSELx = 1, DCOx = 0, MODx = 0  
DCORSELx = 1, DCOx = 31, MODx = 0  
DCORSELx = 2, DCOx = 0, MODx = 0  
DCORSELx = 2, DCOx = 31, MODx = 0  
DCORSELx = 3, DCOx = 0, MODx = 0  
DCORSELx = 3, DCOx = 31, MODx = 0  
DCORSELx = 4, DCOx = 0, MODx = 0  
DCORSELx = 4, DCOx = 31, MODx = 0  
DCORSELx = 5, DCOx = 0, MODx = 0  
DCORSELx = 5, DCOx = 31, MODx = 0  
DCORSELx = 6, DCOx = 0, MODx = 0  
DCORSELx = 6, DCOx = 31, MODx = 0  
DCORSELx = 7, DCOx = 0, MODx = 0  
DCORSELx = 7, DCOx = 31, MODx = 0  
MIN  
0.07  
0.70  
0.15  
1.47  
0.32  
3.17  
0.64  
6.07  
1.3  
TYP  
MAX UNIT  
0.20 MHz  
1.70 MHz  
0.36 MHz  
3.45 MHz  
0.75 MHz  
7.38 MHz  
1.51 MHz  
14.0 MHz  
3.2 MHz  
fDCO(0,0)  
fDCO(0,31)  
fDCO(1,0)  
fDCO(1,31)  
fDCO(2,0)  
fDCO(2,31)  
fDCO(3,0)  
fDCO(3,31)  
fDCO(4,0)  
fDCO(4,31)  
fDCO(5,0)  
fDCO(5,31)  
fDCO(6,0)  
fDCO(6,31)  
fDCO(7,0)  
fDCO(7,31)  
DCO frequency (0, 0)(1)  
DCO frequency (0, 31)(1)  
DCO frequency (1, 0)(1)  
DCO frequency (1, 31)(1)  
DCO frequency (2, 0)(1)  
DCO frequency (2, 31)(1)  
DCO frequency (3, 0)(1)  
DCO frequency (3, 31)(1)  
DCO frequency (4, 0)(1)  
DCO frequency (4, 31)(1)  
DCO frequency (5, 0)(1)  
DCO frequency (5, 31)(1)  
DCO frequency (6, 0)(1)  
DCO frequency (6, 31)(1)  
DCO frequency (7, 0)(1)  
DCO frequency (7, 31)(1)  
12.3  
2.5  
28.2 MHz  
6.0 MHz  
23.7  
4.6  
54.1 MHz  
10.7 MHz  
88.0 MHz  
19.6 MHz  
135 MHz  
39.0  
8.5  
60  
Frequency step between range  
DCORSEL and DCORSEL + 1  
SDCORSEL  
SDCO  
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)  
1.2  
2.3 ratio  
Frequency step between tap  
DCO and DCO + 1  
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)  
Measured at SMCLK  
1.02  
40%  
1.12 ratio  
Duty cycle  
50%  
0.1  
60%  
%/°C  
%/V  
dfDCO/dT  
DCO frequency temperature drift fDCO = 1 MHz,  
DCO frequency voltage drift fDCO = 1 MHz  
dfDCO/dVCC  
1.9  
(1) When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the  
range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,  
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31  
(DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual  
fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the  
selected range is at its minimum or maximum tap setting.  
100  
VCC = 3.0 V  
TA = 25°C  
10  
DCOx = 31  
1
DCOx = 0  
0.1  
0
1
2
3
4
5
6
7
DCORSEL  
Figure 8-2. Typical DCO Frequency  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.4 Wake-up Characteristics  
Section 8.8.4.1 lists the characteristics of the wake-up times.  
8.8.4.1 Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fMCLK ≥ 4 MHz  
3
6.5  
Wake-up time from LPM2,  
LPM3, or LPM4 to active  
mode(1)  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 1  
tWAKE-UP-FAST  
µs  
1 MHz < fMCLK  
4 MHz  
<
4
8.0  
Wake-up time from LPM2,  
LPM3, or LPM4 to active  
mode(2) (3)  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 0  
tWAKE-UP-SLOW  
150  
165  
µs  
Wake-up time from LPM3.5  
or LPM4.5 to active mode(4)  
tWAKE-UP-LPM5  
tWAKE-UP-RESET  
2
2
3
3
ms  
ms  
Wake-up time from RST or  
BOR event to active mode(4)  
(1) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the  
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in  
full performance mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode  
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx  
Family User's Guide.  
(2) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the  
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in  
normal mode (low current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode  
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx  
Family User's Guide.  
(3) The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by  
the performance mode settings as for LPM2, LPM3, and LPM4.  
(4) This value represents the time from the wake-up event to the reset vector execution.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.5 General-Purpose I/Os  
Section 8.8.5.1 lists the characteristics of the Schmitt-trigger inputs.  
8.8.5.1 Schmitt-Trigger Inputs – General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.80  
1.50  
0.45  
0.75  
0.3  
TYP  
MAX UNIT  
1.40  
V
2.10  
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.8 V  
3 V  
1.00  
V
1.65  
Negative-going input threshold voltage  
1.8 V  
3 V  
0.8  
V
1.0  
Input voltage hysteresis (VIT+ – VIT–  
)
0.4  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI  
Pullup or pulldown resistor  
Input capacitance  
20  
35  
5
50  
kΩ  
pF  
VIN = VSS or VCC  
(1) The same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).  
Section 8.8.5.2 lists the characteristics of P1, P2, P3, and P4 .  
8.8.5.2 Inputs – Ports P1, P2, P3, and P4  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Port P1, P2, P3, P4: P1.x to P4.x,  
External trigger pulse duration to set interrupt flag  
t(int)  
External interrupt timing(2)  
2.2 V, 3 V  
20  
ns  
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.  
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
Section 8.8.5.3 lists the leakage current of the GPIOs.  
8.8.5.3 Leakage Current – General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See (1) (2)  
VCC  
MIN  
MAX UNIT  
Ilkg(Px.x)  
High-impedance leakage current  
1.8 V, 3 V  
±50 nA  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.5.4 lists the output characteristics of the GPIOs.  
8.8.5.4 Outputs – General-Purpose I/O (Full Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –10 mA(2)  
I(OHmax) = –5 mA(1)  
I(OHmax) = –15 mA(2)  
I(OLmax) = 3 mA(1)  
I(OLmax) = 10 mA(2)  
I(OLmax) = 5 mA(1)  
I(OLmax) = 15 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Section 8.8.5.5 lists the output characteristics of the GPIOs.  
8.8.5.5 Outputs – General-Purpose I/O (Reduced Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(3)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –3 mA(2)  
I(OHmax) = –2 mA(1)  
I(OHmax) = –6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) Selecting reduced drive strength may reduce EMI.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.5.6 lists the frequency characteristics of the GPIOs.  
8.8.5.6 Output Frequency – Ports P1, P2 and P3  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
VCC = 1.8 V  
PMMCOREVx = 0  
8
Port output frequency  
(with load)  
P3.4/TA2CLK/SMCLK/S27  
fPx.y  
MHz  
20  
CL = 20 pF, RL = 1 kΩ(1) or 3.2 kΩ(2) (3)  
VCC = 3 V  
PMMCOREVx = 3  
VCC = 1.8 V  
PMMCOREVx = 0  
P1.0/TA0CLK/ACLK/S39  
P3.4/TA2CLK/SMCLK/S27  
P2.0/P2MAP0 (P2MAP0 = PM_MCLK )  
CL = 20 pF(3)  
8
fPort_CLK  
Clock output frequency  
MHz  
20  
VCC = 3 V  
PMMCOREVx = 3  
(1) Full drive strength of port: A resistive divider with 2 × 0.5 kΩ between VCC and VSS is used as load. The output is connected to the  
center tap of the divider.  
(2) Reduced drive strength of port: A resistive divider with 2 × 1.6 kΩ between VCC and VSS is used as load. The output is connected to  
the center tap of the divider.  
(3) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.5.7 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
25.0  
20.0  
15.0  
10.0  
5.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
TA = 25°C  
TA = 85°C  
TA = 25°C  
TA = 85°C  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
VCC = 1.8 V  
P3.2  
VCC = 3.0 V  
P3.2  
Figure 8-4. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 8-3. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0.0  
0.0  
−1.0  
−2.0  
−3.0  
−4.0  
−5.0  
−10.0  
−15.0  
TA = 85°C  
TA = 25°C  
−5.0  
−6.0  
−7.0  
−8.0  
TA = 85°C  
−20.0  
TA = 25°C  
−25.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
VCC = 1.8 V  
P3.2  
VCC = 3.0 V  
P3.2  
Figure 8-6. Typical High-Level Output Current Vs  
High-Level Output Voltage  
Figure 8-5. Typical High-Level Output Current Vs  
High-Level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.5.8 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
60.0  
24  
TA = 25°C  
55.0  
TA = 25°C  
TA = 85°C  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
20  
16  
12  
8
TA = 85°C  
4
0
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
VCC = 1.8 V  
P3.2  
VCC = 3.0 V  
P3.2  
Figure 8-8. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 8-7. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0.0  
−5.0  
0
−10.0  
−15.0  
−20.0  
−25.0  
−30.0  
−35.0  
−40.0  
−4  
−8  
−12  
TA = 85°C  
−16  
−45.0  
TA = 85°C  
−50.0  
−55.0  
TA = 25°C  
−60.0  
TA = 25°C  
−20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
VCC = 3.0 V  
P3.2  
VCC = 1.8 V  
P3.2  
Figure 8-9. Typical High-Level Output Current vs  
High-level Output Voltage  
Figure 8-10. Typical High-Level Output Current vs  
High-level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.6 PMM  
Section 8.8.6.1 lists the characteristics of the PMM core voltage.  
8.8.6.1 PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Core voltage, active mode,  
PMMCOREV = 3  
VCORE3(AM)  
VCORE2(AM)  
VCORE1(AM)  
VCORE0(AM)  
VCORE3(LPM)  
VCORE2(LPM)  
VCORE1(LPM)  
VCORE0(LPM)  
2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA  
1.90  
V
Core voltage, active mode,  
PMMCOREV = 2  
2.2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA  
2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 17 mA  
1.8 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 13 mA  
2.4 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
2.2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
1.8 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA  
1.80  
1.60  
1.40  
1.94  
1.84  
1.64  
1.44  
V
V
V
V
V
V
V
Core voltage, active mode,  
PMMCOREV = 1  
Core voltage, active mode,  
PMMCOREV = 0  
Core voltage, low-current mode,  
PMMCOREV = 3  
Core voltage, low-current mode,  
PMMCOREV = 2  
Core voltage, low-current mode,  
PMMCOREV = 1  
Core voltage, low-current mode,  
PMMCOREV = 0  
Section 8.8.6.2 lists the characteristics of the SVS high side.  
8.8.6.2 PMM, SVS High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSHE = 0, DVCC = 3.6 V  
0
nA  
I(SVSH)  
SVS current consumption  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1  
SVSHE = 1, SVSHRVL = 0  
200  
2.0  
µA  
1.59  
1.79  
1.98  
2.10  
1.62  
1.88  
2.07  
2.20  
2.32  
2.56  
2.85  
2.85  
1.64  
1.84  
2.04  
2.16  
1.74  
1.94  
2.14  
2.26  
2.40  
2.70  
3.00  
3.00  
2.5  
1.69  
SVSHE = 1, SVSHRVL = 1  
1.91  
V
V(SVSH_IT–) SVSH on voltage level(1)  
SVSHE = 1, SVSHRVL = 2  
2.11  
SVSHE = 1, SVSHRVL = 3  
2.23  
1.81  
2.01  
2.21  
SVSHE = 1, SVSMHRRL = 0  
SVSHE = 1, SVSMHRRL = 1  
SVSHE = 1, SVSMHRRL = 2  
SVSHE = 1, SVSMHRRL = 3  
2.33  
V
V(SVSH_IT+) SVSH off voltage level(1)  
SVSHE = 1, SVSMHRRL = 4  
2.48  
SVSHE = 1, SVSMHRRL = 5  
2.84  
3.15  
3.15  
SVSHE = 1, SVSMHRRL = 6  
SVSHE = 1, SVSMHRRL = 7  
SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1  
SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0  
SVSHE = 0→1, SVSHFP = 1  
SVSHE = 0→1, SVSHFP = 0  
tpd(SVSH)  
SVSH propagation delay  
µs  
µs  
20  
12.5  
100  
t(SVSH)  
SVSH on or off delay time  
DVCC rise time  
dVDVCC/dt  
0
1000  
V/s  
(1) The SVSH settings available depend on the VCORE (PMMCOREV) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and use.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.6.3 lists the characteristics of the SVM high side.  
8.8.6.3 PMM, SVM High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVMHE = 0, DVCC = 3.6 V  
0
nA  
I(SVMH)  
SVMH current consumption  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1  
SVMHE = 1, SVSMHRRL = 0  
200  
2.0  
µA  
1.86  
1.65  
1.85  
2.02  
2.18  
2.32  
2.56  
2.85  
2.85  
1.74  
1.94  
2.14  
2.26  
2.40  
2.70  
3.00  
3.00  
3.75  
2.5  
SVMHE = 1, SVSMHRRL = 1  
2.02  
SVMHE = 1, SVSMHRRL = 2  
2.22  
SVMHE = 1, SVSMHRRL = 3  
2.35  
V(SVMH)  
SVMH on or off voltage level(1)  
SVMHE = 1, SVSMHRRL = 4  
2.48  
2.84  
3.15  
3.15  
V
SVMHE = 1, SVSMHRRL = 5  
SVMHE = 1, SVSMHRRL = 6  
SVMHE = 1, SVSMHRRL = 7  
SVMHE = 1, SVMHOVPE = 1  
SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1  
SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0  
SVMHE = 0→1, SVSMFP = 1  
tpd(SVMH) SVMH propagation delay  
µs  
µs  
20  
12.5  
100  
t(SVMH)  
SVMH on or off delay time  
SVMHE = 0→1, SVMHFP = 0  
(1) The SVMH settings available depend on the VCORE (PMMCOREV) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and use.  
Section 8.8.6.4 lists the characteristics of the SVS low side.  
8.8.6.4 PMM, SVS Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSLE = 0, PMMCOREV = 2  
0
nA  
µA  
µs  
I(SVSL)  
SVSL current consumption  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
SVSLE = 0→1, SVSLFP = 1  
200  
2.0  
2.5  
20  
tpd(SVSL) SVSL propagation delay  
12.5  
100  
t(SVSL)  
SVSL on or off delay time  
µs  
SVSLE = 0→1, SVSLFP = 0  
Copyright © 2020 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.6.5 lists the characteristics of the SVM low side.  
8.8.6.5 PMM, SVM Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVMLE = 0, PMMCOREV = 2  
0
nA  
µA  
µs  
I(SVML)  
SVML current consumption  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 0  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
SVMLE = 0→1, SVMLFP = 1  
200  
2.0  
2.5  
20  
tpd(SVML) SVML propagation delay  
12.5  
100  
t(SVML)  
SVML on or off delay time  
µs  
SVMLE = 0→1, SVMLFP = 0  
8.8.7 Timers  
Section 8.8.7.1 lists the characteristics of Timer_A.  
8.8.7.1 Timer_A, Timers TA0, TA1, and TA2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TACLK,  
fTA  
Timer_A input clock frequency  
1.8 V, 3 V  
20 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTA,cap Timer_A capture timing  
1.8 V, 3 V  
20  
ns  
Section 8.8.7.2 lists the characteristics of Timer_B.  
8.8.7.2 Timer_B, Timer TB0  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
fTB  
Timer_B input clock frequency  
1.8 V, 3 V  
20 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTB,cap Timer_B capture timing  
1.8 V, 3 V  
20  
ns  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.8 Battery Backup  
Section 8.8.8.1 lists the characteristics of the battery backup.  
8.8.8.1 Battery Backup  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
0.43  
MAX UNIT  
TA = –40°C  
VBAT = 1.7 V,  
DVCC not connected,  
RTC running  
TA = 25°C  
TA = 60°C  
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = 60°C  
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = 60°C  
TA = 85°C  
General  
0.52  
0.58  
0.66  
0.50  
Current into VBAT terminal in VBAT = 2.2 V,  
0.59  
IVBAT  
case no primary battery is  
connected.  
DVCC not connected,  
RTC running  
µA  
0.64  
0.72  
0.68  
VBAT = 3 V,  
DVCC not connected,  
RTC running  
0.75  
0.79  
0.86  
VSVSH_IT-  
SVSHRL = 0  
SVSHRL = 1  
SVSHRL = 2  
SVSHRL = 3  
1.59  
1.79  
1.98  
2.10  
1.69  
Switch-over level (VCC to  
VBAT)  
VSWITCH  
CVCC = 4.7 µF  
1.91  
2.11  
2.23  
V
ON-resistance of switch  
between VBAT and VBAK  
RON_VBAT  
VBAT = 1.8 V  
0 V  
0.35  
1
kΩ  
1.8 V  
3 V  
0.6  
1.0  
1.2  
2.7  
±5%  
±5%  
±5%  
2.9  
VBAT to ADC:  
VBAT divided,  
VBAT3 = VBAT /3  
VBAT3  
V
V
3.6 V  
VCHVx  
Charger end voltage  
CHVx = 2  
2.65  
CHCx = 1  
CHCx = 2  
CHCx = 3  
5.2  
RCHARGE  
Charge limiting resistor  
10.2  
20  
kΩ  
Copyright © 2020 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.9 USCI  
Section 8.8.9.1 lists the characteristics of the USCI in UART mode.  
8.8.9.1 USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
fBITCLK BITCLK clock frequency (equals baud rate in MBaud)  
tτ  
UART receive deglitch time(1)  
1
600  
600  
MHz  
ns  
2.2 V  
3 V  
50  
50  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
Section 8.8.9.2 lists the characteristics of the USCI in SPI master mode.  
8.8.9.2 USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 8-11 and Figure 8-12)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
fUSCI  
USCI input clock frequency  
SMCLK, ACLK, duty cycle = 50% ±10%  
fSYSTEM MHz  
1.8 V  
3 V  
55  
38  
30  
25  
0
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
ns  
2.4 V  
3 V  
1.8 V  
3 V  
0
tHD,MI  
ns  
2.4 V  
3 V  
0
0
1.8 V  
3 V  
20  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 0  
18  
ns  
16  
tVALID,MO  
2.4 V  
3 V  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 3  
15  
1.8 V  
3 V  
–10  
–8  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
tHD,MO  
ns  
2.4 V  
3 V  
–10  
–8  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 8-11 and Figure 8-12.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure  
8-11 and Figure 8-12.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 8-11. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 8-12. SPI Master Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.9.3 lists the characteristics of the USCI in SPI slave mode.  
8.8.9.3 USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 8-13 and Figure 8-14)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
11  
8
MAX UNIT  
PMMCOREV = 0  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE low to clock  
ns  
2.4 V  
3 V  
7
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
6
1.8 V  
3 V  
3
3
STE lag time, Last clock to STE high  
ns  
2.4 V  
3 V  
3
3
1.8 V  
3 V  
66  
50  
ns  
36  
STE access time, STE low to SOMI data out  
2.4 V  
3 V  
30  
30  
1.8 V  
3 V  
30  
ns  
30  
STE disable time, STE high to SOMI high  
impedance  
2.4 V  
3 V  
30  
1.8 V  
3 V  
5
5
2
2
5
5
5
5
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
2.4 V  
3 V  
1.8 V  
3 V  
tHD,SI  
ns  
2.4 V  
3 V  
1.8 V  
3 V  
76  
UCLK edge to SOMI valid,  
CL = 20 pF, PMMCOREV = 0  
60  
ns  
44  
tVALID,SO  
2.4 V  
3 V  
UCLK edge to SOMI valid,  
CL = 20 pF, PMMCOREV = 3  
40  
1.8 V  
3 V  
12  
12  
12  
12  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
tHD,SO  
ns  
2.4 V  
3 V  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 8-13 and Figure 8-14.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure  
8-13 and Figure 8-14.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
SOMI  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 8-13. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 8-14. SPI Slave Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.9.4 lists the characteristics of the USCI in I2C mode.  
8.8.9.4 USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see  
Figure 8-15)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3 V  
2.2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
tSU,STO  
Setup time for STOP  
2.2 V, 3 V  
µs  
2.2 V  
3 V  
600  
ns  
600  
tSP  
Pulse duration of spikes suppressed by input filter  
50  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 8-15. I2C Mode Timing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.10 LCD Controller  
Section 8.8.10.1 lists the operating conditions of the LCD controller.  
8.8.10.1 LCD_B Operating Conditions  
PARAMETER  
CONDITIONS  
MIN  
NOM  
MAX UNIT  
VCC,LCD_B,  
Supply voltage range, charge  
pump enabled, VLCD ≤ 3.6 V  
LCDCPEN = 1, 0000 < VLCDx ≤ 1111  
(charge pump enabled, VLCD ≤ 3.6 V)  
2.2  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
CP en,3.6  
VCC,LCD_B,  
Supply voltage range, charge  
pump enabled, VLCD ≤ 3.3 V  
LCDCPEN = 1, 0000 < VLCDx ≤ 1100  
(charge pump enabled, VLCD ≤ 3.3 V)  
2.0  
2.4  
2.4  
CP en,3.3  
Supply voltage range, internal  
biasing, charge pump disabled  
VCC,LCD_B, int. bias  
LCDCPEN = 0, VLCDEXT = 0  
LCDCPEN = 0, VLCDEXT = 0  
Supply voltage range, external  
biasing, charge pump disabled  
VCC,LCD_B, ext. bias  
Supply voltage range, external  
LCD voltage, internal or external  
biasing, charge pump disabled  
VCC,LCD_B,  
LCDCPEN = 0, VLCDEXT = 1  
LCDCPEN = 0, VLCDEXT = 1  
2.0  
2.4  
3.6  
3.6  
V
V
VLCDEXT  
External LCD voltage at LCDCAP/  
R33, internal or external biasing,  
charge pump disabled  
VLCDCAP/R33  
Capacitor on LCDCAP when  
charge pump enabled  
LCDCPEN = 1, VLCDx > 0000  
(charge pump enabled)  
CLCDCAP  
fFrame  
4.7  
32  
10  
µF  
Hz  
fLCD = 2 × mux × fFRAME  
(mux = 1 (static), 2, 3, 4)  
LCD frame frequency range  
0
100  
fACLK,in  
CPanel  
ACLK input frequency range  
Panel capacitance  
30  
40 kHz  
100-Hz frame frequency  
10000  
pF  
V
VCC  
+
VR33  
Analog input voltage at R33  
Analog input voltage at R23  
LCDCPEN = 0, VLCDEXT = 1  
2.4  
VR13  
VR03  
0.2  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR03 + 2/3 ×  
VR23,1/3bias  
VR13,1/3bias  
VR13,1/2bias  
VR03  
VR33  
V
V
(VR33 – VR03  
VR03 + 1/3 ×  
(VR33 – VR03  
VR03 + 1/2 ×  
(VR33 – VR03  
)
Analog input voltage at R13 with  
1/3 biasing  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR23  
VR33  
)
Analog input voltage at R13 with  
1/2 biasing  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 1  
VR03  
VSS  
2.4  
V
V
V
)
Analog input voltage at R03  
R0EXT = 1  
Voltage difference between VLCD  
and R03  
VCC  
+ 0.2  
VLCD-VR03  
LCDCPEN = 0, R0EXT = 1  
External LCD reference voltage  
applied at LCDREF/R13  
VLCDREF/R13  
VLCDREFx = 01  
0.8  
1.2  
1.5  
V
Copyright © 2020 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.10.2 lists the characteristics of the LCD controller.  
8.8.10.2 LCD_B, Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
VCC  
MAX UNIT  
VLCDx = 0000, VLCDEXT = 0  
LCDCPEN = 1, VLCDx = 0001  
LCDCPEN = 1, VLCDx = 0010  
LCDCPEN = 1, VLCDx = 0011  
LCDCPEN = 1, VLCDx = 0100  
LCDCPEN = 1, VLCDx = 0101  
LCDCPEN = 1, VLCDx = 0110  
LCDCPEN = 1, VLCDx = 0111  
LCDCPEN = 1, VLCDx = 1000  
LCDCPEN = 1, VLCDx = 1001  
LCDCPEN = 1, VLCDx = 1010  
LCDCPEN = 1, VLCDx = 1011  
LCDCPEN = 1, VLCDx = 1100  
LCDCPEN = 1, VLCDx = 1101  
LCDCPEN = 1, VLCDx = 1110  
LCDCPEN = 1, VLCDx = 1111  
2.4 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.60  
2.66  
2.72  
2.79  
2.85  
2.92  
2.98  
3.05  
3.10  
3.17  
3.24  
3.30  
3.36  
3.42  
3.48  
VLCD  
LCD voltage  
V
3.6  
Peak supply currents due to  
charge pump activities  
ICC,Peak,CP  
LCDCPEN = 1, VLCDx = 1111  
2.2 V  
2.2 V  
400  
100  
µA  
CLCD = 4.7 µF,  
LCDCPEN = 0→1,  
VLCDx = 1111  
Time to charge CLCD when  
discharged  
tLCD,CP,on  
500  
ms  
Maximum charge pump load  
current  
ICP,Load  
LCDCPEN = 1, VLCDx = 1111  
2.2 V  
2.2 V  
2.2 V  
50  
µA  
kΩ  
kΩ  
LCD driver output impedance, LCDCPEN = 1, VLCDx = 1000,  
segment lines ILOAD = ±10 µA  
RLCD,Seg  
RLCD,COM  
10  
10  
LCD driver output impedance, LCDCPEN = 1, VLCDx = 1000,  
common lines ILOAD = ±10 µA  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.11 CTSD16  
Note  
The delta-sigma analog-to-digital converter uses the CTSD16. The CTSD16 is proceeded by a unity-  
gain buffer stage following the channel muxing as shown in Figure 9-2. See Section 8.8.14.1 for the  
electrical characteristics of the PGA buffer stages.  
Section 8.8.11.1 lists the operating conditions of the CTSD16.  
8.8.11.1 CTSD16, Power Supply and Operating Conditions  
PARAMETER  
TEST CONDITIONS  
AVSS = DVSS = 0 V  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
Supply voltage range  
2.2  
3.6  
V
Analog plus digital supply  
current per converter  
(reference current not  
included)  
GAIN: 1, 2, 4, 8, 16  
3 V  
3 V  
190(1)  
CTSD16OSRx = 256,  
CTSD16RRI = 0  
ICTSD16  
µA  
GAIN: 1, 16  
300(1)  
This is requested when CTSD16 is converting, or  
CTSD16RRIBURST = 0, or when OA is in rail-to-  
rail input mode (OARRI = 1), or when OA charge  
pump is on. The current should only be counted  
once even if both OA and CTSD16 are requesting  
the clock.  
CTSD16 clock current  
consumption  
ICTSD16CLK  
3 V  
205  
240  
µA  
(1) See Table 8-1 to calculate total current from CTSD16 for different use cases.  
Table 8-1 explains how to compute the total current, ITOTAL, when the CTSD, along with associated modules, are  
used. See Section 8.8.14.2 for a similar table for the OA. A "yes" means it must be included in computing ITOTAL  
.
Here is an example current calculation for CTS16D in rail-to-rail input mode (CTSD16RRI = 1) using the internal  
reference (CTSD16REFS = 1) and OA0 and OA1 enabled in rail-to-rail input modes, OARRI = 1.  
As an example, assume that the application uses the CTS16D in rail-to-rail input mode (CTSD16RRI = 1) with  
the internal reference (CTSD16REFS = 1) and OA0 and OA1 are enabled in rail-to-rail input modes, OARRI = 1.  
The total current, ITOTAL, would be computed as follows:  
ITOTAL = ICTSD16 + ICTSD16CLK+ ICP + IREFBG + 2 × IOA  
(1)  
Table 8-1. CTSD16, Current Calculation  
USE CASE  
DETAILS  
(1)  
(2)  
(3)  
(4)  
USE CASE NAME  
CTSD16  
CTSD16 rail-to-rail inputs CTSD16RRI = 1  
ICTSD16  
ICTSD16CLK  
ICP  
no  
yes  
IREFBG  
IREF  
yes  
yes  
yes if CTSD16REFS = 1  
no if CTSD16REFS = 0  
yes  
yes  
yes if CTSD16REFS = 1  
no if CTSD16REFS = 0  
yes  
yes  
(1) Count this only once no matter how many modules use it. OA can also use this when rail-to-rail input is selected.  
(2) Count this only once no matter how many modules use it. OA also uses this. This current is listed in Section 8.8.14.1.  
(3) Count this only once no matter how many modules use it. DAC can use this as well as internal reference when it is available externally,  
REFOUT = 1. This current is listed in Section 8.8.12.1.  
(4) Count this only once no matter how many modules use it. This current is listed in Section 8.8.14.1. If IREFBG is used that includes IREF  
current.  
Section 8.8.11.2 lists the characteristics of the CTSD16 external voltage reference.  
8.8.11.2 CTSD16, External Voltage Reference  
PARAMETER  
Input voltage range  
Input current  
TEST CONDITIONS  
CTSD16REFS = 0  
CTSD16REFS = 0  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
VVeREF+  
IVeREF+  
1.0  
1.2  
1.5  
50  
V
nA  
Copyright © 2020 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.11.3 lists the characteristics of the CTSD16 input range.  
8.8.11.3 CTSD16, Input Range  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Differential full-scale input  
voltage range  
VID,FSR  
VI,FSR  
VID = VI,A+ – VI,A–  
–VR/Gain  
+VR/Gain  
V
V
Single-ended full-scale input  
voltage range  
VID = VI,A+ – VR  
negative input is tied to VR  
VR – VR/  
Gain  
VR + VR/  
Gain  
CTSD16GAINx = 1  
±928  
±464  
±232  
±116  
±58  
CTSD16GAINx = 2  
CTSD16REFS = 1 CTSD16GAINx = 4  
CTSD16GAINx = 8  
Differential input voltage range  
for specified performance(2)  
VID  
mV  
CTSD16GAINx = 16  
VR  
(0.8 × VR/  
Gain)  
VR +  
(0.8 × VR/  
Gain)  
Single-ended input voltage  
range for specified performance  
VI  
ZI  
V
Input impedance  
(pin Ax or ADx+ or ADx- to  
AVSS)  
CTSD16GAINx = 1, 16  
CTSD16GAINx = 1, 16  
3 V  
3 V  
20  
35  
MΩ  
Differential input impedance  
(pin ADx+ to pin ADx-)  
ZID  
VI  
MΩ  
V
Absolute input voltage range  
AVSS  
AVSS  
VCC  
VCC  
Common-mode input voltage  
range  
VIC  
V
(1) All parameters pertain to each CTSD16 input.  
(2) The full-scale range is defined by VFSR+ = +VR/GAIN and VFSR- = -VR/GAIN; FSR = VFSR+ - VFSR- = 2xVR/GAIN. If VR is sourced  
externally, the analog input range should not exceed 80% of VFSR+ or VFSR-; that is, VID = 0.8 VFSR- to 0.8 VFSR+. If VR is sourced  
internally, the given VID ranges apply.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.11.4 lists the performance characteristics of the CTSD16.  
8.8.11.4 CTSD16, Performance  
CTSD16OSRx = 256, CTSD164REFS = 1 (see Figure 8-16, Figure 8-17, and Figure 8-18)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fM  
Modulator clock  
1.024  
MHz  
CTSD16GAINx = 1, input ADx+ and  
ADx- (differential)  
84  
87  
86  
85  
82  
77  
83  
82  
78  
72  
66  
CTSD16GAINx = 2, input ADx+ and  
ADx- (differential)  
Signal-to-noise +  
distortion ratio for  
differential inputs  
CTSD16GAINx = 4, input ADx+ and  
ADx- (differential)  
SINAD  
fIN = 50 Hz(1)  
3 V  
dB  
CTSD16GAINx = 8, input ADx+ and  
ADx- (differential)  
CTSD16GAINx = 16, input ADx+ and  
ADx- (differential)  
CTSD16GAINx = 1, input Ax (single-  
ended)  
CTSD16GAINx = 2, input Ax (single-  
ended)  
Signal-to-noise +  
distortion ratio for  
single-ended input  
CTSD16GAINx = 4, input Ax (single-  
ended)  
SINAD  
fIN = 50 Hz(1)  
3 V  
dB  
CTSD16GAINx = 8, input Ax (single-  
ended)  
CTSD16GAINx = 16, input Ax (single-  
ended)  
CTSD16GAINx = 1  
CTSD16GAINx = 2  
CTSD16GAINx = 4  
CTSD16GAINx = 8  
CTSD16GAINx = 16  
1
2
G
Nominal gain  
Gain error  
3 V  
4
8
16  
CTSD16GAINx: 1, 8, or 16 with external reference (1.2  
V)  
EG  
3 V  
3 V  
–1%  
+1%  
Gain error  
temperature  
coefficient, internal  
reference  
ppm/  
ΔEG/ΔT  
CTSD16GAINx: 1, 8, or 16  
3
50  
°C  
Gain error  
temperature  
coefficient, external  
reference  
CTSD16GAIN: 1, 8, or 16 with external reference  
(1.2 V)  
ppm/  
ΔEG/ΔT  
3 V  
4
15  
°C  
ΔEG/ ΔVCC Gain error vs VCC  
CTSD16GAINx: 1, 8, or 16  
CTSD16GAINx = 1  
0.02  
%/V  
±4.1  
mV  
EOS  
Offset error  
3 V  
3 V  
CTSD16GAINx = 16  
±3.4  
Offset error  
temperature  
coefficient  
ppm  
±10 FSR/  
°C  
ΔEOS/ΔT  
CTSD16GAINx = 1, 16  
CTSD16GAINx = 1, 16  
±1  
11  
ΔEOS/  
ΔVCC  
Offset error vs VCC  
3 V  
3 V  
µV/V  
dB  
CTSD16GAINx = 1, VID = 928 mV, fIN = 50 Hz  
CTSD16GAINx = 16, VID = 58 mV, fIN = 50 Hz  
78  
80  
CMRR,  
50Hz  
Common-mode  
rejection ratio at 50 Hz  
Copyright © 2020 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.11.4 CTSD16, Performance (continued)  
CTSD16OSRx = 256, CTSD164REFS = 1 (see Figure 8-16, Figure 8-17, and Figure 8-18)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
CTSD16GAINx: 1, VCC = 3 V ±50 mV × sin(2π × fVcc  
t), fVcc = 50 Hz,  
Inputs grounded (no analog signal applied)  
×
×
95  
CTSD16GAINx: 8, VCC = 3 V ±50 mV × sin(2π × fVcc  
t), fVcc = 50 Hz,  
Inputs grounded (no analog signal applied)  
AC power supply  
rejection ratio  
AC PSRR  
DC PSRR  
105  
105  
dB  
CTSD16GAINx: 16, VCC = 3 V ±50 mV × sin(2π × fVcc  
t), fVcc = 50 Hz,  
×
Inputs grounded (no analog signal applied)  
CTSD16GAINx: (1, 8, 16), VCC = 2.2 V to 3.6 V, (PSRR  
[dB] = –20 log(dVout/dVcc) with dVout observed as  
change in the digital conversion result; assumed to be  
dominated by reference)  
DC power supply  
rejection ratio  
90  
dB  
(1) The following voltages were applied to the CTSD16 inputs:  
VI,A+(t) = 0 V + VPP/2 × sin(2π × fIN × t)  
VI,A–(t) = 0 V – VPP/2 × sin(2π × fIN × t)  
resulting in a differential voltage of VID = VIN,A+(t) – VIN,A-(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value  
allowed for a given range (according to CTSD16 input range).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
3
2.5  
2
1.5  
1
0.5  
Gain = 1  
-1.2  
Gain = 16  
-1.4  
-40  
0
0.25  
0.55  
0.85  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
-20  
0
20  
40  
60  
80  
100  
Common-Mode Voltage (V)  
Temperature (°C)  
A.  
A.  
Gain = 1  
OSR = 256  
DIfferential Signal = 300  
Average of four typical devices  
Figure 8-17. CTSD16 Typical Offset Voltage vs  
Common-Mode Voltage  
Figure 8-16. CTSD16 Offset Voltage vs  
Temperature  
90  
85  
80  
75  
70  
65  
60  
55  
50  
10  
100  
1000  
OSR  
CTSD16REFS = 1 CTSD16GAINx = 1  
Figure 8-18. SINAD Performance vs OSR  
Copyright © 2020 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.11.5 lists the characteristics of the built-in Vcc sense.  
8.8.11.5 Built-in Vcc Sense  
PARAMETER  
AVCC divider  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0.95 ×  
(AVCC / 2)  
1.05 ×  
V
VCC,sense  
CTSD16ON = 1, CTSD16INCH = 0111  
AVCC / 2  
(AVCC / 2)  
Section 8.8.11.6 lists the characteristics of the temperature sensor.  
8.8.11.6 Temperature Sensor  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CTSD16ON = 1, CTSD16INCH = 110,  
VCC = 3 V, TA = 30°C  
Vsensor Temperature sensor output voltage(1) (2)  
800  
mV  
CTSD16ON = 1, CTSD16INCH = 110,  
TA = 85°C  
Isensor Temperature sensor quiescent current consumption  
2
uA  
(1) The temperature sensor offset can be as much as ±30°C. TI recommends a single-point calibration to minimize the offset error of the  
built-in temperature sensor.  
(2) The device descriptor structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage  
levels. The sensor voltage can be computed as VSENSE = TCSENSOR * (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR  
can be computed from the calibration values for higher accuracy.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.12 REF  
Section 8.8.12.1 lists the characteristics of the REF and REFBG built-in reference.  
8.8.12.1 REF and REFBG, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Operating supply current into AVCC  
terminal(1)  
IREFBG  
VREFBG  
IREF  
VCC = 3.0 V, REFON = 1 and REFOUT = 1  
110  
130  
1.174  
20  
µA  
V
VCC = 3.0 V,  
VeREF+ ≤ 1.5 V if used  
Bandgap output voltage calibrated  
1.146  
1.16  
15  
Operating supply current into AVCC  
terminal(1)  
VCC = 3.0 V, REFON = 1  
µA  
REFVSEL = {2} for 2.5 V, REFON = 1  
REFVSEL = {1} for 2.0 V, REFON = 1  
REFVSEL = {0} for 1.5 V, REFON = 1  
DAC12SREFx = 0, REFVSEL = {0} for 1.5 V  
DAC12SREFx = 0, REFVSEL = {1} for 2 V  
DAC12SREFx = 0, REFVSEL = {2} for 2.5 V  
VCC = 2.2 V to 3.6 V, TA = 25°C  
2.5  
2.0  
1.5  
±1%  
±1%  
±1%  
Positive built-in reference voltage  
output  
VREF  
V
V
2.2  
2.3  
2.8  
AVCC minimum voltage, Positive  
built-in reference active  
AVCC(min)  
PSRR_DC Power supply rejection ratio (DC)  
PSRR_AC Power supply rejection ratio (AC)  
50  
µV/V  
VCC = 2.2 V to 3.6 V, TA = 25°C,  
f = 1 kHz, ΔVpp = 100 mV  
1.5  
mV/V  
Bandgap reference temperature  
TCREF+  
IVREF+ = 0 A  
15  
50 ppm/°C  
coefficient(2)  
Settling time of VREFBG reference  
AVCC = AVCC (min) through AVCC(max)  
REFON = 0 → 1  
,
tSETTLE  
120  
µs  
voltage(3)  
CVREFBG  
ILOAD  
Capacitance at VREFBG terminal  
VREFBG maximum load current  
See (4)  
1
1
nF  
REFOUT = REFON = 1  
I(VREF+) = +1 mA or –1 mA,  
AVCC = AVCC (min)  
REFON = REFOUT = 1  
mA  
Load-current regulation, VREFBG  
terminal(5)  
IL(VREFBG)  
,
3.5 mV/mA  
(1) The internal reference current is supplied from terminal AVCC. Consumption is independent of the CTSD16ON control bit, unless a  
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.  
(2) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).  
(3) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
(4) There is no capacitance required on VREFBG if the reference voltage is not used externally. However, TI recommends a capacitance  
close to the maximum value to reduce any reference voltage noise.  
(5) Contribution only due to the reference and buffer including package. This does not include resistance due to PCB traces or other  
external factors.  
Copyright © 2020 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.13 DAC  
Section 8.8.13.1 lists the supply specifications of the DAC.  
8.8.13.1 12-Bit DAC, Supply Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC  
Analog supply voltage  
AVCC = DVCC, AVSS = DVSS = 0 V  
2.2  
3.6  
V
DAC12AMPx = 2, DAC12IR = 0,  
DAC12OG = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = VREFBG = 1.16 V  
3 V  
65  
110  
DAC12AMPx = 2, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = AVCC  
125  
250  
750  
70  
165  
350  
IDD  
Supply current, single DAC channel(1) (2)  
µA  
DAC12AMPx = 5, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = AVCC  
2.2 V to  
3.6 V  
DAC12AMPx = 7, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = AVCC  
1100  
DAC12_xDAT = 800h,  
VeREF+ = 1.16 V or 1.5 V,  
ΔAVCC = 100 mV  
2.2 V to  
3.6 V  
PSRR Power supply rejection ratio(3) (4)  
dB  
DAC12_xDAT = 800h,  
VeREF+ = 1.16 V or 2.5 V  
ΔAVCC = 100 mV  
3 V  
70  
(1) No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.  
(2) Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input  
specifications Section 8.8.13.4.  
(3) PSRR = 20 log (ΔAVCC / ΔVDAC12_xOUT  
(4) The internal reference is not used.  
)
DAC VOUT  
VR+  
DAC Output  
RLoad = ¥  
Ideal transfer  
function  
AVCC  
2
Offset Error  
Positive  
Gain Error  
CLoad = 100 pF  
Negative  
DAC Code  
Figure 8-19. Linearity Test Load Conditions, Gain and Offset Definition  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.13.2 lists the linearity specifications of the DAC.  
8.8.13.2 12-Bit DAC, Linearity Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see  
Figure 8-19)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Resolution  
12-bit monotonic  
12  
bits  
VeREF+ = 1.16 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 1.16 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±2  
±2  
±4  
INL  
Integral nonlinearity(1)  
LSB  
±4  
±0.4  
±0.4  
±1  
Differential  
DNL  
LSB  
±1  
nonlinearity(1)  
VeREF+ = 1.16 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±21  
Without calibration(1) (2)  
VeREF+ = 2.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
±21  
mV  
EO  
Offset voltage  
VeREF+ = 1.16 V,  
DAC12AMPx = 7,  
±1.5  
DAC12IR = 1  
With calibration(1) (2)  
VeREF+ = 2.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
2.2 V, 3 V  
2.2 V, 3 V  
±1.5  
Offset error temperature  
coefficient(1)  
dE(O)/dT  
With calibration  
±10  
10  
µV/°C  
VeREF+ = 1.16 V  
VeREF+ = 2.5 V  
2.2 V, 3 V  
2.2 V, 3 V  
±2.5  
%FSR  
±2.5  
EG  
Gain error  
ppm of  
FSR/  
°C  
Gain temperature  
coefficient(1)  
dE(G)/dT  
2.2 V, 3 V  
2.2 V, 3 V  
DAC12AMPx = 2  
165  
Time for offset  
calibration(3)  
tOffset_Cal  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
66  
ms  
16.5  
(1) Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b"  
of the first-order equation: y = a + bx. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1.  
(2) The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON  
(3) The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with  
DAC12AMPx = {0, 1}. TI recommends configuring the DAC12 module before initiating calibration. Port activity during calibration may  
affect accuracy and is not recommended.  
Copyright © 2020 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.13.3 lists the output specifications of the DAC.  
8.8.13.3 12-Bit DAC, Output Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
No load, VeREF+ = AVCC  
,
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
0
0.005  
No load, VeREF+ = AVCC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
,
AVCC  
0.05  
AVCC  
Output voltage  
range(1) (see Figure  
8-20)  
VO  
2.2 V, 3.6 V  
V
RLoad = 3 kΩ, VeREF+ = AVCC  
,
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
0
0.1  
RLoad = 3 kΩ, VeREF+ = AVCC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
,
AVCC  
0.13  
AVCC  
Maximum DAC12  
load capacitance  
CL(DAC12)  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
100  
pF  
DAC12AMPx = 2, DAC12_xDAT = 0FFFh,  
VO/P(DAC12) > AVCC – 0.3  
–1  
Maximum DAC12  
load current  
IL(DAC12)  
mA  
DAC12AMPx = 2, DAC12_xDAT = 0h,  
VO/P(DAC12) < 0.3 V  
1
250  
250  
6
RLoad = 3 kΩ, VO/P(DAC12) < 0.3 V,  
DAC12AMPx = 2, DAC12_xDAT = 0h  
150  
150  
Output resistance  
(see Figure 8-20)  
RLoad = 3 kΩ, VO/P(DAC12) > AVCC – 0.3 V,  
DAC12_xDAT = 0FFFh  
RO/P(DAC12)  
2.2 V, 3.6 V  
RLoad = 3 kΩ,  
0.3 V ≤ VO/P(DAC12) ≤ AVCC – 0.3 V  
(1) Data is valid after the offset calibration of the output amplifier.  
RO/P(DAC12_x)  
Max  
RLoad  
ILoad  
AVCC  
DAC12  
2
CLoad = 100 pF  
O/P(DAC12_x)  
Min  
0.3  
AVCC – 0.3 V  
VOUT  
AVCC  
Figure 8-20. DAC12_x Output Resistance Tests  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.13.4 lists the reference input specificaitons of the DAC.  
8.8.13.4 12-Bit DAC, Reference Input Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DAC12IR = 0(1) (2)  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC / 3 AVCC + 0.2  
AVCC AVCC + 0.2  
Reference input voltage  
range  
VeREF+  
2.2 V to 3.6 V  
V
DAC12IR = 1(3) (4)  
DAC12_0 DAC12IR =  
DAC12_1 DAC12IR = 0  
20  
MΩ  
DAC12_0 DAC12IR = 1,  
DAC12_1 DAC12IR = 0  
52  
52  
Ri(VREFBG), Reference input  
Ri(VeREF+) resistance  
DAC12_0 DAC12IR = 0,  
DAC12_1 DAC12IR = 1  
2.2 V, 3 V  
kΩ  
DAC12_0 DAC12IR =  
DAC12_1 DAC12IR = 1,  
DAC12_0 DAC12SREFx =  
DAC12_1 DAC12SREFx(5)  
26  
(1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).  
(2) The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / [3 × (1 + EG)].  
(3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).  
(4) The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / (1 + EG).  
(5) When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel  
and reduce the reference input resistance.  
Section 8.8.13.5 and Section 8.8.13.6 list the dynamic specifications of the DAC.  
8.8.13.5 12-Bit DAC, Dynamic Specifications  
VREF = VCC, DAC12IR = 1 (see Figure 8-21 and Figure 8-22), over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DAC12AMPx = 0 → {2, 3, 4}  
60  
120  
DAC12_xDAT = 800h,  
ErrorV(O) < ±0.5 LSB(1)  
(see Figure 8-21)  
tON  
DAC12 on time  
DAC12AMPx = 0 → {5, 6}  
DAC12AMPx = 0 → 7  
DAC12AMPx = 2  
2.2 V, 3 V  
15  
30  
12  
µs  
µs  
µs  
6
100  
40  
200  
80  
DAC12_xDAT =  
80h → F7Fh → 80h  
tS(FS)  
tS(C-C)  
SR  
Settling time, full scale  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
2.2 V, 3 V  
2.2 V, 3 V  
15  
30  
5
DAC12_xDAT =  
3F8h → 408h → 3F8h,  
BF8h → C08h → BF8h  
Settling time, code to  
code  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
2
1
0.05  
0.35  
1.50  
0.35  
1.10  
5.20  
DAC12_xDAT =  
Slew rate  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
2.2 V, 3 V  
2.2 V, 3 V  
V/µs  
nV-s  
80h → F7Fh → 80h(2)  
DAC12_xDAT =  
800h → 7FFh → 800h  
Glitch energy  
DAC12AMPx = 7  
35  
(1) RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 8-21.  
(2) Slew rate applies to output voltage steps ≥ 200 mV.  
Copyright © 2020 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Conversion 1  
Conversion 2  
1/2 LꢀS  
Conversion 3  
VOUT  
DAC Output  
Glitch  
Energy  
RLoad = 3 kW  
ILoad  
AVCC  
2
1/2 LꢀS  
CLoad = 100 pF  
RO/P(DAC12.x)  
tsettleLH  
tsettleHL  
Figure 8-21. Settling Time and Glitch Energy Testing  
Conversion 1  
Conversion 2  
Conversion 3  
VOUT  
90%  
90%  
10%  
10%  
tSRLH  
tSRHL  
Figure 8-22. Slew Rate Testing  
8.8.13.6 12-Bit DAC, Dynamic Specifications (Continued)  
over recommended ranges of supply voltage and TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
40  
3-dB bandwidth,  
VDC = 1.5 V,  
VAC = 0.1 VPP  
(see Figure 8-23)  
DAC12AMPx = {5, 6}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
BW–3dB  
2.2 V, 3 V  
180  
550  
kHz  
DAC12AMPx = 7, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
DAC12_0DAT = 800h, No load,  
DAC12_1DAT = 80h ↔ F7Fh, RLoad = 3 kΩ,  
fDAC12_1OUT = 10 kHz at 50/50 duty cycle  
–80  
–80  
Channel-to-channel crosstalk(1)  
(see Figure 8-24)  
2.2 V, 3 V  
dB  
DAC12_0DAT = 80h ↔ F7Fh, RLoad = 3 kΩ,  
DAC12_1DAT = 800h, No load,  
fDAC12_0OUT = 10 kHz at 50/50 duty cycle  
(1) RLoad = 3 kΩ, CLoad = 100 pF  
RLoad = 3 kW  
ILoad  
VeREF+  
AVCC  
2
DAC12_x  
DACx  
AC  
DC  
CLoad = 100 pF  
Figure 8-23. Test Conditions for 3-dB Bandwidth Specification  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
RLoad  
ILoad  
AVCC  
2
DAC12_xDA  
T
080h  
080h  
F7Fh  
080h  
F7Fh  
DAC12_0  
DAC0  
VOUT  
CLoad = 100 pF  
RLoad  
VREF+  
VDAC12_yOUT  
ILoad  
VDAC12_xOUT  
AVCC  
2
DAC12_1  
1/fToggle  
DAC1  
CLoad = 100 pF  
Figure 8-24. Crosstalk Test Conditions  
8.8.14 Operational Amplifier  
Section 8.8.14.1 lists the characteristics of the OA.  
8.8.14.1 Operational Amplifier, OA0, OA1, PGA Buffers  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
VCC  
Analog supply voltage AVCC = DVCC, AVSS = DVSS = 0 V  
2.2  
20  
3.6  
24  
V
External charge pump  
CCPCAP  
Required when charge pump is enabled  
capacitor to AVSS.  
22  
1.6  
nF  
mA  
μA  
Charge pump peak  
OARRI = 0h to 1h, ICP_LOAD = 0 μA  
current  
ICP_PEAK  
ICP  
Charge pump average  
OARRI = 1h, ICP_LOAD = 100 μA  
current  
570(1)  
710(1)  
OARRI = 0h to 1h, ICP_LOAD = 0 μA,  
Charge pump enable  
time fast  
AFE biases previously enabled and settled  
which can be done with REFON=1 or other  
modules requesting REFON.  
tCP_EN_fast  
50  
75  
μs  
μs  
OARRI = 0h to 1h, ICP_LOAD = 0 μA,  
Includes AFE bias settling  
Charge pump enable  
time slow  
tCP_EN_slow  
Supply current, per  
opamp  
IO = 0 mA,  
OARRI = 0h (charge pump disabled)  
IOA  
105(1)  
±2  
130(1)  
μA  
mV  
VOS  
Input offset voltage  
Noninverting, unity gain  
Noninverting, unity gain  
Input offset voltage  
temperature drift  
dVOS/dT  
±1  
μV/°C  
Input offset voltage  
voltage drift  
dVOS/dV  
Cin  
Noninverting, unity gain  
±3  
μV/V  
Differential  
4
6
pF  
pF  
Input capacitance  
Common mode  
Power supply rejection Noninverting, unity gain,  
PSRR_DC  
50  
μV/V  
V
ratio, DC  
VINP = positive input of OA = 1 V  
OARRI = 0h,  
0.1  
0.1  
VCC - 1.0  
VCC - 0.1  
Noninverting, unity gain  
Common mode  
voltage range(2)  
VCM  
OARRI = 1h,  
V
Noninverting, unity gain  
Common mode  
rejection ratio, DC  
CMRR_DC  
Over common-mode voltage range  
110  
dB  
f = 100 Hz, OARRI = 0h or 1h  
f = 50 kHz, OARRI = 0h or 1h  
3.0 V  
3.0 V  
90  
25  
Input voltage noise  
density  
en  
nV/√Hz  
dB  
Open-loop voltage  
gain, DC  
AOL  
95  
Copyright © 2020 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
Gain-bandwidth  
product  
GBW  
SR  
CL = 100 pF, OAM = 1h  
800  
kHz  
Noninverting, unity gain,  
CL = 100 pF, OAM = 1h  
Slew rate  
0.4  
5.3  
5
V/μs  
μs  
Noninverting, unity gain,  
2.0-V step, 0.1%, OAM = 1h  
tSETTLE  
VO  
Settling time  
3.0 V  
Voltage output swing  
from rail  
–250 μA ≤ IO ≤ 250 μA,  
Noninverting, unity gain (OAM = 1h)  
55  
7
mV  
Noninverting, unity gain,  
OAM = 0h transition to 1h,  
AFE biases previously enabled and settled  
which can be done with REFON = 1 or other  
modules requesting REFON(3)  
tEN_FAST  
Enable time fast  
3
μs  
Noninverting,unity gain,  
OARRI = 0h transition to 1h,  
OAM = 0h transition to 1h,  
Includes AFE bias and charge pump  
settling(3)  
tEN_SLOW  
Enable time slow  
Disable time  
190  
0.4  
225  
μs  
μs  
tDIS  
(1) See Section 8.8.14.2 to calculate total current from OA for different use cases.  
(2) The common-mode input range is measured with the OA in a unity-gain source-follower configuration. The input signal is swept from 0  
V to VCC, and the output of the OA is monitored. The minimum and maximum values represent when the input and output differ more  
than 10 mV, not including the offset, VOS  
.
(3) The AFE bias is used by several modules including the OA charge pump, OA, and CTSD16. Any of these modules will request the  
AFE bias when enabled. The AFE bias is generated by the REF module, so enabling the REF module also enables the AFE bias.  
Section 8.8.14.2 explains how to compute the total current, ITOTAL, when the OA and associated modules are  
used. See Table 8-1 for a similar table for the CTSD16. A "yes" means it must be included in computing ITOTAL  
.
As an example, assume that the application uses the CTS16D in rail-to-rail input mode (CTSD16RRI = 1) with  
the internal reference (CTSD16REFS = 1) and OA0 and OA1 are enabled in rail-to-rail input modes, OARRI = 1.  
The total current, ITOTAL, would be computed as follows:  
ITOTAL = ICTSD16 + ICTSD16CLK+ ICP + IREFBG + 2 × IOA  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
160  
140  
120  
100  
80  
60  
40  
20  
0
50  
0
0
0.5  
1
1.5  
2
2.5  
Offset Voltage Drift (µV/°C)  
3
3.5  
4
4.5  
0.4  
0.6  
0.8  
1
1.2  
1.5  
1.6  
1.8  
2
2.2  
2.4  
2.6  
Offset Voltage (mV)  
Figure 8-26. OA Offset Voltage Drift Sample  
Production Distribution  
Figure 8-25. OA Offset Voltage Sample Production  
Distribution  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.14.2 OA, Current Calculation  
(1)  
(2)  
(3)  
USE CASE NAME  
USE CASE DETAILS  
IOA  
yes  
yes  
ICTSD16CLK  
no  
ICP  
no  
IREF  
OA  
OARRI = 0  
OARRI = 1  
yes  
yes  
OA with rail-to-rail input  
yes  
yes  
(CTSD16SC = 0) AND  
(CTSD16RRI = 1) AND  
(CTSD16RRIBURST = 0) OR  
((OARRI = 1 (for any OA))  
AND (OAM = 0))  
Rail-to-rail input up, module off  
no  
yes  
yes  
yes  
(1) Count this current only once no matter how many modules use it. CTSD16 and the charge pump also use this. This current is listed in  
Section 8.8.11.1.  
(2) Count this current only once no matter how many modules use it. CTSD16 also uses this when rail-to-rail inputs are selected.  
(3) Count this current only once no matter how many modules use it. This current is listed in Section 8.8.14.1. If IREFBG is used, that  
includes the IREF current.  
8.8.15 Switches  
Section 8.8.15.1 lists the characteristics of the ground switches.  
8.8.15.1 Ground Switches (GSW0A, GSW0B, GSW1A, GSW1B)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCC  
ILKG  
Supply voltage  
2.2  
3.6  
V
TA = 0°C to 60°C  
±0.25  
Input leakage(1)  
nA  
TA = –40°C to 85°C  
±50  
100  
IIN  
Input current switch to AVSS  
0
µA  
Ω
IIN = 100 µA,  
TA = –40°C to 85°C  
RON  
Switch ON resistance with switch closed  
9.5  
18.5  
TA = –40°C to 85°C,  
Input signal frequency < 100 Hz  
ROFF  
Switch OFF resistance with switch open  
100  
MΩ  
µs  
tON/OFF Enable or disable time  
TA = –40°C to 85°C  
0.25  
(1) Ground switches are shared with general-purpose I/Os. This leakage includes all leakage seen at the device pin, not only leakage  
caused by the switch itself.  
4
DVCC = 2.2 V  
DVCC = 3 V  
DVCC = 3.6 V  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85  
Temperature (°C)  
Average of three typical devices  
Figure 8-27. Ground Switch Input Leakage Current vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.15.2 lists the characteristics of the OA switches.  
8.8.15.2 Operational Amplifier Switches  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCC  
ILKG  
Supply voltage  
2.2  
3.6  
V
TA = 0°C to 60°C  
±0.25  
Input leakage(1)  
nA  
TA = –40°C to 85°C  
±50  
100  
IIN  
Input current through switch  
0
µA  
kΩ  
IIN = 100 µA,  
TA = –40°C to 85°C  
RON  
Switch ON resistance with switch closed(2)  
1
TA = –40°C to 85°C,  
Input signal frequency < 100 Hz  
ROFF  
Switch OFF resistance with switch open  
100  
MΩ  
µs  
tON/OFF Enable or disable time  
TA = –40°C to 85°C  
0.45  
(1) This leakage includes all leakage seen at the device pin, not only leakage caused by the switch itself. It assumes a total of five  
switches present and a shared digital I/O.  
(2) The resistance varies with input voltage range. This resistance represents the peak resistance at the worst case input range (see  
Figure 8-29).  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
1400  
1200  
1000  
800  
600  
400  
200  
0
DVCC = 2.2 V  
DVCC = 2.3 V  
DVCC = 3 V  
DVCC = 3.6 V  
TA = –40°C  
TA = 25°C  
TA = 85°C  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Temperature (°C)  
Common-Mode Voltage (V)  
Average of three typical devices  
Average of three typical devices  
Figure 8-28. OA Switch Input Leakage Current vs  
Temperature  
Figure 8-29. OA Switch RON vs Common-Mode  
Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.16 Comparator  
Section 8.8.16.1 lists the characteristics of the comparator.  
8.8.16.1 Comparator_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
Supply voltage  
1.8  
3.6  
40  
50  
65  
V
1.8 V  
2.2 V  
3 V  
CBPWRMD = 00, CBON = 1,  
CBRSx = 00  
30  
40  
Comparator operating supply  
IAVCC_COMP current into AVCC, Excludes  
reference resistor ladder  
µA  
CBPWRMD = 01, CBON = 1,  
CBRSx = 00  
2.2 V, 3 V  
2.2 V, 3 V  
10  
30  
CBPWRMD = 10, CBON = 1,  
CBRSx = 00  
0.5  
1.3  
Quiescent current of resistor  
ladder into AVCC, Includes  
REF module current  
CBREFACC = 1, CBREFLx = 01,  
CBRSx = 10, REFON = 0, CBON = 0  
IAVCC_REF  
2.2 V, 3 V  
10  
22  
µA  
VIC  
Common mode input range  
0
–20  
–10  
VCC – 1  
20  
V
CBPWRMD = 00  
VOFFSET  
CIN  
Input offset voltage  
mV  
CBPWRMD = 01 or 10  
10  
Input capacitance  
5
3
pF  
kΩ  
On (switch closed)  
4
RSIN  
Series input resistance  
Off (switch open)  
50  
MΩ  
CBPWRMD = 00, CBF = 0  
CBPWRMD = 01, CBF = 0  
CBPWRMD = 10, CBF = 0  
450  
600  
50  
ns  
µs  
Propagation delay, response  
time  
tPD  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 00  
0.35  
0.6  
1.0  
1.8  
0.6  
1.0  
1.8  
3.4  
1
1.5  
1.8  
3.4  
6.5  
2
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 01  
Propagation delay with filter  
active  
tPD,filter  
µs  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 10  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 11  
CBON = 0 → 1,  
CBPWRMD = 00 or 01  
tEN_CMP  
Comparator enable time  
µs  
µs  
CBON = 0 → 1,  
CBPWRMD = 10  
100  
1.5  
tEN_REF  
Resistor reference enable time CBON = 0 → 1  
1.0  
Temperature coefficient of  
VCB_REF  
ppm/  
°C  
TCCB_REF  
50  
VIN ×  
VIN ×  
VIN ×  
Reference voltage for a given VIN = reference into resistor ladder,  
VCB_REF  
(n + 0.5) / (n + 1) / (n + 1.5) /  
32 32 32  
V
tap  
n = 0 to 31  
Copyright © 2020 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.17 USB  
Section 8.8.17.1 lists the characteristics of PU.0 and PU.1.  
8.8.17.1 Ports PU.0 and PU.1  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VUSB = 3.3 V ±10%, IOH = –25 mA  
VUSB = 3.3 V ±10%, IOL = 25 mA  
VUSB = 3.3 V ±10%  
MIN  
MAX  
UNIT  
VOH High-level output voltage (see Figure 8-31)  
VOL Low-level output voltage (see Figure 8-30)  
2.4  
V
V
V
V
0.4  
VIH  
VIL  
High-level input voltage (see Figure 8-32)  
Low-level input voltage (see Figure 8-32)  
2.0  
VUSB = 3.3 V ±10%  
0.8  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VCC = 3.0 V  
TA = 25ºC  
VCC = 3.0 V  
TA = 85ºC  
VCC = 1.8 V  
TA = 25ºC  
VCC = 1.8 V  
TA = 85ºC  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
V
OL - Low-Level Output Voltage - V  
Figure 8-30. Ports PU.0, PU.1 Typical Low-Level Output Characteristics  
0
-10  
-20  
-30  
VCC = 1.8 V  
TA = 85ºC  
-40  
-50  
VCC = 3.0 V  
TA = 85ºC  
-60  
-70  
-80  
-90  
VCC = 1.8 V  
TA = 25ºC  
VCC = 3.0 V  
TA = 25ºC  
0.5  
1
1.5  
2
2.5  
3
VOH - High-Level Output Voltage - V  
Figure 8-31. Ports PU.0, PU.1 Typical High-Level Output Characteristics  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
2.0  
TA = 25°C, 85°C  
1.8  
VIT+, postive-going input threshold  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
VIT–, negative-going input threshold  
0.0  
1.8  
2.2  
2.6  
3
3.4  
VUSB Supply Voltage, VUSB - V  
Figure 8-32. Ports PU.0, PU.1 Typical Input Threshold Characteristics  
Section 8.8.17.2 and Section 8.8.17.3 list the characteristics of the DP and DM ports.  
8.8.17.2 USB Output Ports DP and DM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
D+, D– single ended  
D+, D– single ended  
D+, D– impedance  
Rise time  
TEST CONDITIONS  
MIN  
2.8  
0
MAX UNIT  
VOH  
USB 2.0 load conditions  
USB 2.0 load conditions  
3.6  
0.3  
44  
V
V
VOL  
Z(DRV)  
tRISE  
tFALL  
Including external series resistor of 27 Ω  
28  
4
Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+  
Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+  
20  
ns  
ns  
Fall time  
4
20  
8.8.17.3 USB Input Ports DP and DM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
MAX UNIT  
V(CM)  
Z(IN)  
VCRS  
VIL  
Differential input common mode range  
Input impedance  
0.8  
2.5  
V
kΩ  
V
300  
1.3  
Crossover voltage  
2.0  
Static SE input logic low level  
Static SE input logic high level  
Differential input voltage  
0.8  
V
VIH  
2.0  
0.2  
V
VDI  
V
Copyright © 2020 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Section 8.8.17.4 lists the characteristics of the USB power system.  
8.8.17.4 USB-PWR (USB Power System)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VLAUNCH VBUS detection threshold  
3.75  
5.5  
V
V
VBUS  
VUSB  
V18  
USB bus voltage  
Normal operation  
3.76  
USB LDO output voltage  
Internal USB voltage(1)  
3.3  
1.8  
±9%  
V
V
IUSB_EXT Maximum external current from VUSB terminal(2)  
IDET  
USB LDO current overload detection(3)  
ISUSPEND Operating supply current into VBUS terminal(4)  
USB LDO is on  
12  
100  
250  
mA  
mA  
µA  
µF  
nF  
nF  
60  
USB LDO is on, USB PLL disabled  
CBUS  
CUSB  
C18  
VBUS terminal recommended capacitance  
VUSB terminal recommended capacitance  
V18 terminal recommended capacitance  
4.7  
220  
220  
Within 2%,  
recommended capacitances  
tENABLE  
RPUR  
Settling time VUSB and V18  
2
ms  
Pullup resistance of PUR terminal  
70  
110  
150  
(1) This voltage is for internal use only. No external DC loading should be applied.  
(2) This represents additional current that can be supplied to the application from the VUSB terminal beyond the needs of the USB  
operation.  
(3) A current overload is detected when the total current supplied from the USB LDO, including IUSB_EXT, exceeds this value.  
(4) Does not include current contribution of Rpu and Rpd as outlined in the USB specification.  
Section 8.8.17.5 lists the characteristics of the USB PLL.  
8.8.17.5 USB-PLL (USB Phase-Locked Loop)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
IPLL  
Operating supply current  
PLL frequency  
7
mA  
MHz  
MHz  
ms  
fPLL  
48  
fUPD  
tLOCK  
tJitter  
PLL reference frequency  
PLL lock time  
1.5  
3
2
PLL jitter  
1000  
ps  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.18 LDO-PWR (LDO Power System)  
Section 8.8.18.1 lists the characteristics of the LDP power system.  
8.8.18.1 LDO-PWR (LDO Power System)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
LDO input detection threshold  
LDO input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VLAUNCH  
VLDOI  
3.75  
5.5  
V
V
V
3.76  
VLDO  
LDO output voltage  
3.3  
±9%  
LDOO terminal input voltage with LDO  
disabled  
VLDO_EXT  
ILDOO  
LDO disabled  
1.8  
60  
3.6  
V
Maximum external current from LDOO  
terminal  
LDO is on  
20  
mA  
IDET  
LDO current overload detection (1)  
LDOI terminal recommended capacitance  
LDOO terminal recommended capacitance  
Settling time VLDO  
100  
mA  
µF  
nF  
CLDOI  
CLDOO  
tENABLE  
4.7  
220  
Within 2%, recommended capacitances  
2
ms  
(1) A current overload will be detected when the total current supplied from the LDO exceeds this value.  
Copyright © 2020 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
8.8.19 Flash  
Section 8.8.19.1 lists the characteristics of the flash memory.  
8.8.19.1 Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TJ  
MIN  
TYP  
MAX UNIT  
DVCC(PGM/ERASE) Program and erase supply voltage  
1.8  
3.6  
5
V
mA  
IPGM  
Average supply current from DVCC during program  
3
6
6
IERASE  
Average supply current from DVCC during erase  
Average supply current from DVCC during mass erase or bank erase  
Cumulative program time(1)  
15  
15  
16  
mA  
IMERASE, IBANK  
tCPT  
mA  
ms  
Program and erase endurance  
104  
100  
64  
105  
cycles  
years  
µs  
tRetention  
tWord  
Data retention duration  
25°C  
Word or byte program time(2)  
85  
65  
tBlock, 0  
Block program time for first byte or word(2)  
49  
µs  
Block program time for each additional byte or word, except for last byte or  
word(2)  
tBlock, 1–(N–1)  
37  
49  
µs  
tBlock, N  
Block program time for last byte or word(2)  
55  
23  
73  
32  
µs  
tSeg Erase  
Erase time for segment, mass erase, and bank erase when available(2)  
ms  
MCLK frequency in marginal read mode  
(FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1)  
fMCLK,MGR  
0
1
MHz  
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming  
methods: individual word or byte write and block write modes.  
(2) These values are hardwired into the state machine of the flash controller.  
8.8.20 Debug and Emulation  
Section 8.8.20.1 lists the characteristics of the JTAG and SBW interface.  
8.8.20.1 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
0
20 MHz  
tSBW,Low  
tSBW, En  
tSBW,Rst  
Spy-Bi-Wire low clock pulse duration  
0.025  
15  
1
µs  
µs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)(1)  
Spy-Bi-Wire return to normal operation time  
15  
0
100  
5
µs  
2.2 V  
3 V  
MHz  
fTCK  
TCK input frequency (4-wire JTAG)(2)  
Internal pulldown resistance on TEST  
0
10 MHz  
80 kΩ  
Rinternal  
2.2 V, 3 V  
45  
60  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The MSP430FG6626 and MSP430FG6625 are microcontroller configurations with a high-performance 16-bit  
ADC, dual 12-bit DACs, dual low-power operational amplifiers, a comparator (COMPB), two USCIs, USB 2.0, a  
hardware multiplier (MPY32), DMA, four 16-bit timers, an RTC module with alarm capabilities, an LCD driver,  
and up to 73 I/O pins.  
The MSP430FG6426 and MSP430FG6425 are microcontroller configurations with a high-performance 16-bit  
ADC, dual 12-bit DACs, dual low-power operational amplifiers, a comparator (COMPB), two USCIs, a 3.3-V  
LDO, a hardware multiplier (MPY32), DMA, four 16-bit timers, an RTC module with alarm capabilities, an LCD  
driver, and up to 73 I/O pins.  
9.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are  
general-purpose registers (see Figure 9-1).  
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with  
all instructions.  
Program Counter  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Stack Pointer  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
Figure 9-1. Integrated CPU Registers  
Copyright © 2020 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.3 Instruction Set  
The instruction set consists of the original 51 instructions with three formats and seven address modes and  
additional instructions for the expanded address range. Each instruction can operate on word and byte data.  
Table 9-1 lists examples of the three types of instruction formats, and Table 9-2 lists the address modes.  
Table 9-1. Instruction Word Formats  
INSTRUCTION WORD FORMAT  
Dual operands, source and destination  
Single operands, destination only  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
R4 + R5 → R5  
PC → (TOS), R8 → PC  
Jump-on-equal bit = 0  
Relative jump, unconditional or conditional  
Table 9-2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S(1)  
D(1)  
SYNTAX  
EXAMPLE  
OPERATION  
MOV Rs,Rd  
MOV R10,R11  
R10 → R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM, &TCDAT  
MOV @Rn,Y(Rm)  
MOV 2(R5),6(R6)  
M(2+R5) → M(6+R6)  
M(EDE) → M(TONI)  
M(MEM) → M(TCDAT)  
M(R10) → M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) → R11  
R10 + 2 → R10  
Indirect auto-increment  
Immediate  
MOV @Rn+,Rm  
MOV #X,TONI  
#45 → M(TONI)  
(1) S = source, D = destination  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.4 Operating Modes  
The devices have one active mode and seven software-selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the low-power modes, service the request, and restore back to the  
low-power mode on return from the interrupt program.  
Software can configure the following operating modes:  
Active mode (AM)  
– All clocks are active  
Low-power mode 0 (LPM0)  
– CPU is disabled  
– ACLK and SMCLK remain active, MCLK is disabled  
– FLL loop control remains active  
Low-power mode 1 (LPM1)  
– CPU is disabled  
– FLL loop control is disabled  
– ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 2 (LPM2)  
– CPU is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO remains enabled  
– ACLK remains active  
Low-power mode 3 (LPM3)  
– CPU is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO is disabled  
– ACLK remains active  
Low-power mode 4 (LPM4)  
– CPU is disabled  
– ACLK is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO is disabled  
– Crystal oscillator is stopped  
– Complete data retention  
Low-power mode 3.5 (LPM3.5)  
– Internal regulator disabled  
– No data retention  
– RTC enabled and clocked by low-frequency oscillator  
– Wake-up input from RST/NMI, RTC_B, P1, P2, P3, and P4  
Low-power mode 4.5 (LPM4.5)  
– Internal regulator disabled  
– No data retention  
– Wake-up input from RST/NMI, P1, P2, P3, and P4  
Copyright © 2020 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.5 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table  
9-3). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 9-3. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power-up, External reset  
Watchdog time-out, key violation  
Flash memory key violation  
WDTIFG, KEYV (SYSRSTIV)(1) (3)  
Reset  
0FFFEh  
0FFFCh  
0FFFAh  
63, highest  
System NMI  
PMM  
Vacant memory access  
JTAG mailbox  
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,  
VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG,  
JMBOUTIFG (SYSSNIV)(1)  
(Non)maskable  
(Non)maskable  
62  
61  
User NMI  
NMI  
Oscillator fault  
NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV)  
(1) (3)  
Flash memory access violation  
Comp_B  
Comparator B interrupt flags (CBIV)(1) (2)  
TB0CCR0 CCIFG0(2)  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
60  
59  
Timer TB0  
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,  
TB0IFG (TBIV)(1) (2)  
Timer TB0  
Maskable  
0FFF4h  
58  
Watchdog interval timer mode  
USCI_A0 receive or transmit  
USCI_B0 receive or transmit  
CTSD16  
WDTIFG  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
0FFEAh  
57  
56  
55  
54  
53  
UCA0RXIFG, UCA0TXIFG (UCA0IV)(1) (2)  
UCB0RXIFG, UCB0TXIFG (UCB0IV)(1) (2)  
CTSD16IFG0, CTSD16OVIFG0(1) (2)  
TA0CCR0 CCIFG0(2)  
Timer TA0  
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,  
TA0IFG (TA0IV)(1) (2)  
Timer TA0  
Maskable  
Maskable  
0FFE8h  
0FFE6h  
52  
51  
USB_UBM(5)  
LDO-PWR (6)  
USB interrupts (USBIV)(1) (2)  
LDOOFFIG, LDOONIFG, LDOOVLIFG  
DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG,  
DMA4IFG, DMA5IFG (DMAIV)(1) (2)  
DMA  
Maskable  
Maskable  
Maskable  
0FFE4h  
0FFE2h  
0FFE0h  
50  
49  
48  
Timer TA1  
Timer TA1  
TA1CCR0 CCIFG0(2)  
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)(1) (2)  
I/O Port P1  
USCI_A1 receive or transmit  
USCI_B1 receive or transmit  
I/O port P2  
P1IFG.0 to P1IFG.7 (P1IV)(1) (2)  
UCA1RXIFG, UCA1TXIFG (UCA1IV)(1) (2)  
UCB1RXIFG, UCB1TXIFG (UCB1IV)(1) (2)  
P2IFG.0 to P2IFG.7 (P2IV)(1) (2)  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
0FFDAh  
0FFD8h  
0FFD6h  
47  
46  
45  
44  
43  
LCD_B  
LCD_B Interrupt Flags (LCDBIV)(1)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RTC_B  
Maskable  
0FFD4h  
42  
RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV)(1) (2)  
DAC12_A  
Timer TA2  
DAC12_0IFG, DAC12_1IFG(1) (2)  
TA2CCR0 CCIFG0(2)  
Maskable  
Maskable  
0FFD2h  
0FFD0h  
41  
40  
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,  
TA2IFG (TA2IV)(1) (2)  
Timer TA2  
Maskable  
0FFCEh  
39  
I/O port P3  
I/O port P4  
P3IFG.0 to P3IFG.7 (P3IV)(1) (2)  
P4IFG.0 to P4IFG.7 (P4IV)(1) (2)  
Maskable  
Maskable  
0FFCCh  
0FFCAh  
0FFC8h  
38  
37  
36  
Reserved  
Reserved(4)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-3. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
0FF80h  
0, lowest  
(1) Multiple source flags  
(2) Interrupt flags are in the module.  
(3) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it.  
(4) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To  
maintain compatibility with other devices, TI recommends reserving these locations.  
(5) Only on devices with peripheral module USB (MSP430FG6626 and MSP430FG6625)  
(6) Only on devices with peripheral module LDO-PWR (MSP430FG6426 and MSP430FG6425)  
9.6 USB BSL  
The devices MSP430FG6626 and MSP430FG6625 are preprogrammed with the USB BSL. Use of the USB BSL  
requires external access to six pins (see Table 9-4). In addition to these pins, the application must support  
external components necessary for normal USB operation; for example, the proper crystal on XT2IN and  
XT2OUT, proper decoupling, and so on. For additional information, see the MSP430™ Flash Device Bootloader  
(BSL) User's Guide.  
Table 9-4. USB BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RST/NMI/SBWTDIO  
PU.0/DP  
BSL FUNCTION  
Entry sequence signal  
USB data terminal DP  
USB data terminal DM  
USB pullup resistor terminal  
USB bus power supply  
USB ground supply  
PU.1/DM  
PUR  
VBUS  
VSSU  
Note  
The default USB BSL evaluates the logic level of the PUR pin after a BOR reset. If it is pulled high  
externally, then the BSL is invoked. Therefore, unless the application is invoking the BSL, it is  
important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI  
recommends applying a 1-MΩ resistor to ground.  
9.7 UART BSL  
Devices without a USB module (MSP430FG642x) come preprogrammed with the UART BSL. A UART BSL is  
also available for devices with the USB module (MSP430FG662x), and it can be programmed by the user into  
the BSL memory by replacing the preprogrammed factory-supplied USB BSL. Use of the UART BSL requires  
external access to six pins (see Table 9-5). For additional information, see the MSP430™ Flash Device  
Bootloader (BSL) User's Guide.  
Table 9-5. UART BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.1  
P1.2  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
Copyright © 2020 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.8 JTAG Operation  
9.8.1 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/Os. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430  
development tools and device programmers. Table 9-6 lists the JTAG pin requirements. For further details on  
interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a  
complete description of the features of the JTAG interface and its implementation, see MSP430 Programming  
With the JTAG Interface.  
Table 9-6. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
PJ.3/TCK  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
9.8.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire interface. Spy-  
Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 9-7 lists the  
Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device  
programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the  
JTAG interface and its implementation, see MSP430 Programming With the JTAG interface.  
Table 9-7. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN  
IN, OUT  
VSS  
Ground supply  
9.9 Flash Memory  
The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the  
flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also  
called information memory.  
Segment A can be locked separately.  
9.10 RAM  
The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all  
data is lost. Features of the RAM include:  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
RAM has n sectors. The size of a sector can be found in Section 9.15.  
Each sector 0 to n can be complete disabled; however, data retention is lost.  
Each sector 0 to n automatically enters low-power retention mode when possible.  
For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required.  
9.11 Backup RAM  
The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during  
operation from a backup supply if the Battery Backup System module is implemented.  
There are 8 bytes of backup RAM. It can be word-wise accessed through the control registers BAKMEM0,  
BAKMEM1, BAKMEM2, and BAKMEM3.  
9.12 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. The peripherals can be  
managed using all instructions. For complete module descriptions, see the MSP430F5xx and MSP430F6xx  
Family User's Guide.  
9.12.1 Digital I/O  
Up to nine 8-bit I/O ports are implemented: P1 through P9 are complete except P5.2, and port PJ contains four  
individual I/O ports.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Programmable drive strength on all ports.  
Edge-selectable interrupt input capability for all the eight bits of ports P1, P2, P3, and P4.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise (P1 through P9) or word-wise (P1 through P8) in pairs (PA through PD).  
Copyright © 2020 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.2 Port Mapping Controller  
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2 (see  
Table 9-8).  
Table 9-8. Port Mapping Mnemonics and Functions  
VALUE  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
0
PM_NONE  
None  
DVSS  
Comparator_B output  
PM_CBOUT  
1
2
3
PM_TB0CLK  
Timer TB0 clock input  
Reserved  
Reserved  
PM_DMAE0  
DMAE0 Input  
PM_SVMOUT  
PM_TB0OUTH  
PM_TB0CCR0B  
PM_TB0CCR1B  
PM_TB0CCR2B  
PM_TB0CCR3B  
PM_TB0CCR4B  
PM_TB0CCR5B  
PM_TB0CCR6B  
PM_UCA0RXD  
PM_UCA0SOMI  
PM_UCA0TXD  
PM_UCA0SIMO  
PM_UCA0CLK  
PM_UCB0STE  
PM_UCB0SOMI  
PM_UCB0SCL  
PM_UCB0SIMO  
PM_UCB0SDA  
PM_UCB0CLK  
PM_UCA0STE  
PM_MCLK  
SVM output  
Timer TB0 high impedance input TB0OUTH  
Timer TB0 CCR0 capture input CCI0B  
Timer TB0 CCR1 capture input CCI1B  
Timer TB0 CCR2 capture input CCI2B  
Timer TB0 CCR3 capture input CCI3B  
Timer TB0 CCR4 capture input CCI4B  
Timer TB0 CCR5 capture input CCI5B  
Timer TB0 CCR6 capture input CCI6B  
4
5
Timer TB0: TB0.0 compare output Out0  
Timer TB0: TB0.1 compare output Out1  
Timer TB0: TB0.2 compare output Out2  
Timer TB0: TB0.3 compare output Out3  
Timer TB0: TB0.4 compare output Out4  
Timer TB0: TB0.5 compare output Out5  
Timer TB0: TB0.6 compare output Out6  
6
7
8
9
10  
USCI_A0 UART RXD (Direction controlled by USCI – input)  
11  
12  
13  
14  
15  
16  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
USCI_A0 UART TXD (Direction controlled by USCI – output)  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
USCI_A0 clock input/output (direction controlled by USCI)  
USCI_B0 SPI slave transmit enable (direction controlled by USCI – input)  
USCI_B0 SPI slave out master in (direction controlled by USCI)  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
USCI_B0 SPI slave in master out (direction controlled by USCI)  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
USCI_B0 clock input/output (direction controlled by USCI)  
USCI_A0 SPI slave transmit enable (direction controlled by USCI – input)  
17  
MCLK  
DVSS  
18-30  
Reserved  
None  
Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when  
applying analog signals.  
31 (0FFh)(1)  
PM_ANALOG  
(1) The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are 5 bits wide, and the upper bits are ignored,  
which results in a read value of 31.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-9 lists the default settings for all pins that support port mapping.  
Table 9-9. Default Mapping  
PxMAPy  
MNEMONIC  
PIN  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
PM_UCB0STE,  
PM_UCA0CLK  
USCI_B0 SPI slave transmit enable (direction controlled by USCI – input),  
USCI_A0 clock input/output (direction controlled by USCI)  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5/R23  
PM_UCB0SIMO,  
PM_UCB0SDA  
USCI_B0 SPI slave in master out (direction controlled by USCI),  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
PM_UCB0SOMI,  
PM_UCB0SCL  
USCI_B0 SPI slave out master in (direction controlled by USCI),  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
PM_UCB0CLK,  
PM_UCA0STE  
USCI_B0 clock input/output (direction controlled by USCI),  
USCI_A0 SPI slave transmit enable (direction controlled by USCI – input)  
PM_UCA0TXD,  
PM_UCA0SIMO  
USCI_A0 UART TXD (direction controlled by USCI – output),  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
PM_UCA0RXD,  
PM_UCA0SOMI  
USCI_A0 UART RXD (direction controlled by USCI – input),  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
P2.6/P2MAP6/R03  
PM_NONE  
PM_NONE  
-
-
DVSS  
DVSS  
P2.7/P2MAP7/LCDREF/R13  
9.12.3 Oscillator and System Clock  
The clock system in the MSP430FG662x and MSP430FG642x devices are supported by the Unified Clock  
System (UCS) module that includes support for a 32-kHz watch crystal oscillator (in XT1 LF mode; XT1 HF  
mode is not supported), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-  
frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency  
crystal oscillator XT2. The UCS module is designed to meet the requirements of both low system cost and low  
power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction  
with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency.  
The internal DCO provides a fast turnon clock source and stabilizes in 3 µs (typical). The UCS module provides  
the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the  
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally-  
controlled oscillator (DCO).  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to  
ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
same sources available to ACLK.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.  
9.12.4 Power Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains  
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor  
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit  
provides the proper internal reset signal to the device during power on and power off. The SVS and SVM  
circuitry detect if the supply voltage drops below a user-selectable level and supports both supply voltage  
supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically  
reset). SVS and SVM circuitry is available on the primary supply and the core supply.  
9.12.5 Hardware Multiplier (MPY32)  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations  
with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed  
and unsigned multiply-and-accumulate operations.  
Copyright © 2020 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.6 Real-Time Clock (RTC_B)  
The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes,  
hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which  
compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports  
flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in  
LPM3.5 mode and operation from a backup supply.  
9.12.7 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
9.12.8 System Module (SYS)  
The SYS module handles many of the system functions within the device. These include power-on reset and  
power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootloader  
entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange  
mechanism through JTAG called a JTAG mailbox that can be used in the application. Table 9-10 lists the SYS  
module interrupt vector registers.  
Table 9-10. System Module Interrupt Vector Registers  
INTERRUPT VECTOR REGISTER  
INTERRUPT EVENT  
No interrupt pending  
Brownout (BOR)  
RST/NMI (BOR)  
PMMSWBOR (BOR)  
LPM3.5 or LPM4.5 wake up (BOR)  
Security violation (BOR)  
SVSL (POR)  
WORD ADDRESS  
OFFSET  
00h  
PRIORITY  
02h  
Highest  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
SVSH (POR)  
SVML_OVP (POR)  
SVMH_OVP (POR)  
PMMSWPOR (POR)  
WDT time-out (PUC)  
WDT key violation (PUC)  
KEYV flash key violation (PUC)  
Reserved  
SYSRSTIV, System Reset  
019Eh  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
Peripheral area fetch (PUC)  
PMM key violation (PUC)  
Reserved  
22h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVMLIFG  
02h  
SVMHIFG  
04h  
DLYLIFG  
06h  
SYSSNIV, System NMI  
DLYHIFG  
019Ch  
08h  
VMAIFG  
0Ah  
0Ch  
0Eh  
10h  
JMBINIFG  
JMBOUTIFG  
SVMLVLRIFG  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-10. System Module Interrupt Vector Registers (continued)  
INTERRUPT VECTOR REGISTER  
INTERRUPT EVENT  
SVMHVLRIFG  
Reserved  
WORD ADDRESS  
OFFSET  
PRIORITY  
Lowest  
12h  
14h to 1Eh  
00h  
No interrupt pending  
NMIFG  
02h  
Highest  
OFIFG  
04h  
SYSUNIV, User NMI  
019Ah  
0198h  
ACCVIFG  
06h  
BUSIFG  
08h  
Reserved  
0Ah to 1Eh  
00h  
Lowest  
No interrupt pending  
USB wait state time-out  
Reserved  
SYSBERRIV, Bus Error  
02h  
Highest  
Lowest  
04h to 1Eh  
Copyright © 2020 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.9 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
For example, the DMA controller can be used to move data from the ADC conversion memory to RAM. Using  
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system  
power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or  
from a peripheral.  
The USB timestamp generator also uses the channel 0, 1, and 2 DMA trigger assignments (see Table 9-11). The  
USB timestamp generator is available only on devices with the USB module (MSP430FG662x).  
Table 9-11. DMA Trigger Assignments  
CHANNEL  
TRIGGER(1)  
0
1
2
3
4
5
0
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TBCCR0 CCIFG  
TBCCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
CTSD16IFG0  
DAC12_0IFG  
DAC12_1IFG  
USB FNRXD(2)  
USB ready(2)  
MPY ready  
DMA5IFG  
DMA0IFG  
DMA1IFG  
DMA2IFG  
DMAE0  
DMA3IFG  
DMA4IFG  
(1) Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not cause any DMA trigger event when  
selected.  
(2) Only on devices with peripheral module USB (MSP430FG662x), otherwise reserved (MSP430FG642x).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.10 Universal Serial Communication Interface (USCI)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions,  
A and B.  
The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA.  
The USCI_Bn module provides support for SPI (3- or 4-pin) or I2C.  
The MSP430FG662x and MSP430FG642x include two complete USCI modules (n = 0 to 1).  
9.12.11 Timer TA0  
Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 supports multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-12). It also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 9-12. Timer TA0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZCA, ZQW  
PZ  
ZCA, ZQW  
34-P1.0  
L5-P1.0  
TA0CLK  
ACLK  
SMCLK  
TA0CLK  
TA0.0  
DVSS  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
CCR1  
CCR2  
CCR3  
CCR4  
NA  
TA0  
TA1  
TA2  
TA3  
TA4  
NA  
34-P1.0  
35-P1.1  
L5-P1.0  
M5-P1.1  
35-P1.1  
M5-P1.1  
TA0.0  
TA0.1  
TA0.2  
TA0.3  
TA0.4  
DVSS  
DVCC  
TA0.1  
TA0.1  
DVSS  
VCC  
36-P1.2  
40-P1.6  
J6-P1.2  
J7-P1.6  
CCI1A  
CCI1B  
GND  
36-P1.2  
40-P1.6  
J6-P1.2  
J7-P1.6  
DVCC  
TA0.2  
TA0.2  
DVSS  
VCC  
37-P1.3  
41-P1.7  
H6-P1.3  
M7-P1.7  
CCI2A  
CCI2B  
GND  
37-P1.3  
41-P1.7  
H6-P1.3  
M7-P1.7  
DVCC  
TA0.3  
DVSS  
VCC  
38-P1.4  
39-P1.5  
M6-P1.4  
L6-P1.5  
CCI3A  
CCI3B  
GND  
38-P1.4  
39-P1.5  
M6-P1.4  
L6-P1.5  
DVSS  
DVCC  
TA0.4  
DVSS  
VCC  
CCI4A  
CCI4B  
GND  
DVSS  
DVCC  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.12 Timer TA1  
Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 supports multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-13). It also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 9-13. Timer TA1 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZCA, ZQW  
PZ  
ZCA, ZQW  
42-P3.0  
L7-P3.0  
TA1CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
SMCLK  
TA1CLK  
TA1.0  
42-P3.0  
43-P3.1  
L7-P3.0  
H7-P3.1  
43-P3.1  
44-P3.2  
H7-P3.1  
M8-P3.2  
DVSS  
TA0  
TA1.0  
DVSS  
DVCC  
VCC  
44-P3.2  
45-P3.3  
M8-P3.2  
L8-P3.3  
TA1.1  
CCI1A  
DAC12_A  
DAC12_0, DAC12_1  
(internal)  
CBOUT  
(internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA1.1  
TA1.2  
DVSS  
DVCC  
TA1.2  
GND  
VCC  
CCI2A  
45-P3.3  
L8-P3.3  
ACLK  
(internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.13 Timer TA2  
Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 supports multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-14). It also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 9-14. Timer TA2 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZCA, ZQW  
PZ  
ZCA, ZQW  
46-P3.4  
J8-P3.4  
TA2CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
SMCLK  
TA2CLK  
TA2.0  
46-P3.4  
47-P3.5  
J8-P3.4  
M9-P3.5  
47-P3.5  
48-P3.6  
M9-P3.5  
L9-P3.6  
DVSS  
TA0  
TA2.0  
DVSS  
DVCC  
VCC  
48-P3.6  
49-P3.7  
L9-P3.6  
TA2.1  
CCI1A  
CBOUT  
(internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA2.1  
TA2.2  
DVSS  
DVCC  
TA2.2  
GND  
VCC  
M10-P3.7  
CCI2A  
49-P3.7  
M10-P3.7  
ACLK  
(internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.14 Timer TB0  
Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 supports multiple  
capture/compares, PWM outputs, and interval timing (see Table 9-15). It also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 9-15. Timer TB0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZCA, ZQW  
PZ  
ZCA, ZQW  
58-P8.0  
J11-P8.0  
TB0CLK  
TB0CLK  
P2MAPx(1)  
P2MAPx(1)  
ACLK  
ACLK  
Timer  
NA  
NA  
SMCLK  
SMCLK  
58-P8.0  
J11-P8.0  
TB0CLK  
TB0CLK  
P2MAPx(1)  
P2MAPx(1)  
50-P4.0  
J9-P4.0  
TB0.0  
TB0.0  
DVSS  
DVCC  
TB0.1  
TB0.1  
DVSS  
DVCC  
TB0.2  
TB0.2  
CCI0A  
CCI0B  
GND  
50-P4.0  
J9-P4.0  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
CCR0  
CCR1  
TB0  
TB1  
TB0.0  
TB0.1  
VCC  
51-P4.1  
M11-P4.1  
CCI1A  
CCI1B  
GND  
51-P4.1  
M11-P4.1  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
VCC  
52-P4.2  
L10-P4.2  
CCI2A  
CCI2B  
52-P4.2  
L10-P4.2  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
DAC12_A  
DAC12_0, DAC12_1  
(internal)  
CCR2  
TB2  
TB0.2  
DVSS  
GND  
DVCC  
TB0.3  
TB0.3  
DVSS  
DVCC  
TB0.4  
TB0.4  
DVSS  
DVCC  
TB0.5  
TB0.5  
DVSS  
DVCC  
TB0.6  
TB0.6  
DVSS  
DVCC  
VCC  
CCI3A  
CCI3B  
GND  
53-P4.3  
M12-P4.3  
53-P4.3  
M12-P4.3  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
CCR3  
CCR4  
CCR5  
CCR6  
TB3  
TB4  
TB5  
TB6  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
VCC  
54-P4.4  
L12-P4.4  
CCI4A  
CCI4B  
GND  
54-P4.4  
L12-P4.4  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
VCC  
55-P4.5  
L11-P4.5  
CCI5A  
CCI5B  
GND  
55-P4.5  
L11-P4.5  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
VCC  
56-P4.6  
K11-P4.6  
CCI6A  
CCI6B  
GND  
56-P4.6  
K11-P4.6  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
P2MAPx(1)  
VCC  
(1) Timer functions are selectable by the port mapping controller.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.15 Comparator_B  
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,  
battery voltage supervision, and monitoring of external analog signals.  
9.12.16 Signal Chain  
All devices include all the building blocks to construct a complete signal chain. These blocks include two digital-  
to-analog converter (DAC) channels, two integrated operational amplifiers (OAs), a sigma-delta analog-to-digital  
converter (CTSD16), and low-ohmic switches (GSW). Figure 9-2 shows the various signal chain blocks and their  
interconnections in the overall system.  
Copyright © 2020 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
NR  
Device Boundary  
P5.0/VREFBG/VeREF+  
CTSD16  
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2/OA0IP0  
P6.3/CB3/A3/OA1IP0  
P5.1/A4/DAC0  
A0  
A1  
A2  
A3  
A4  
A5  
P5.6/A5/DAC1  
Temp  
Sense  
REFON  
A6  
A7  
A8  
+
OR  
CTSD16REFS AND CTD16SC  
AVCC  
Sense  
BUF  
Request to  
shared reference  
-
VBAT  
Sense  
Bandgap voltage  
from shared reference  
~1.16 V nominal  
+
-
+
AD0+  
AD0-  
Delta  
Sigma  
PGA  
+
AD1+  
AD1-  
-
BUF  
-
AD2+  
AD2-  
AD3+  
AD3-  
VREFBG/VeREF+  
AD4+  
AD4-  
AD4+  
AD4-  
DAC0  
VREFBG/VeREF+  
P6.2/CB2/A2/OA0IP0  
OA0  
PSW  
4
DAC12_A  
PSW0  
PSW1  
PSW2  
PSW3  
DAC12_0  
12 bit  
DAC12AMP>0 & !DAC12OPS  
OAM  
DAC12AMP>0 & DAC12OPS  
+
NSW  
P6.4/CB4/AD0+/OA0O  
5
NSW0  
P2.0/P2MAP0/DAC0  
-
NSW1  
NSW2  
NSW3  
NSW4  
P5.1/A4/DAC0  
P5.6/A5/DAC1  
P6.5/CB5/AD0-/OA0IN0  
P6.6/CB6/AD1+/G0SW0  
P6.7/CB7/AD1-/G0SW1  
GSW0  
GSW1  
PSW  
OA1  
4
PSW0  
DAC12_1  
12 bit  
PSW1  
PSW2  
PSW3  
DAC12AMP>0 & !DAC12OPS  
OAM  
DAC12AMP>0 & DAC12OPS  
+
NSW  
P7.4/CB8/AD2+/OA1O  
5
NSW0  
P2.1/P2MAP1/DAC1  
P6.3/CB3/A3/OA1IP0  
-
NSW1  
NSW2  
NSW3  
NSW4  
P7.5/CB9/AD2-/OA1IN0  
P7.6/CB10/AD3+/G1SW0  
P7.7/CB11/AD3-/G1SW1  
GSW0  
GSW1  
Device Boundary  
A. See the MSP430F5xx and MSP430F6xx Family User's Guide for additional module details.  
Figure 9-2. Signal Chain  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.12.16.1 CTSD16  
The CTSD16 module integrates a single sigma-delta ADC with ten external inputs and four internal inputs. The  
converter is designed with a fully differential analog input pair and a programmable gain amplifier input stage.  
The converter is based on second-order over-sampling sigma-delta modulators and digital decimation filters. The  
decimation filters are comb type filters with selectable oversampling ratios of up to 256.  
The CTSD16 is proceeded by an analog multiplexer which is used for channel selection, followed by a unity gain  
buffer stage useful when sampling high impedance sensors.  
The CTSD16 can use as its reference the internal bandgap voltage from the REF module or an external  
reference at the VeREF+ pin.  
9.12.16.2 DAC12_A  
The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A can be used in 8-bit or 12-bit  
mode, and can be used in conjunction with the DMA controller. When multiple DAC12_A modules are present,  
they may be grouped together for synchronous operation. Two complete channels are available, DAC12_0 and  
DAC12_1.  
9.12.16.3 Operational Amplifiers (OA)  
The device integrates two low-power operational amplifiers. The operational amplifiers can perform signal  
conditioning of low-level analog signals before conversion by the ADC. Each operational amplifier can be  
individually controlled by software.  
9.12.16.4 Ground Switches (GSW)  
The device integrates four low-ohmic switches to ground that are individually controllable in software. These can  
switch in and out various components in the measurement system.  
9.12.17 REF Voltage Reference  
The reference module (REF) generates all of the critical reference voltages that can be used by the various  
analog peripherals in the device.  
9.12.18 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
9.12.19 LCD_B  
The LCD_B driver generates the segment and common signals that are required to drive a liquid crystal display  
(LCD). The LCD_B controller has dedicated data memories to hold segment drive information. Common and  
segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux LCDs are supported.  
The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is  
possible to control the level of the LCD voltage, and thus contrast, by software. The module also provides an  
automatic blinking capability for individual segments.  
9.12.20 USB Universal Serial Bus  
The USB module is a fully integrated USB interface that is compliant with the USB 2.0 specification. The module  
supports full-speed operation of control, interrupt, and bulk transfers. The module includes an integrated LDO,  
PHY, and PLL. The PLL is highly flexible and can support a wide range of input clock frequencies. USB RAM,  
when not used for USB communication, can be used by the system.  
The USB module is only available on the MSP430FG662x devices.  
9.12.21 LDO and PU Port  
The integrated 3.3-V power system incorporates an integrated 3.3-V LDO regulator that allows the entire  
MSP430 microcontroller to be powered from nominal 5-V LDOI when it is made available for the system.  
Alternatively, the power system can supply power only to other components within the system, or it can be  
unused altogether.  
Copyright © 2020 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
The Port U pins (PU.0 and PU.1) function as general-purpose high-current I/O pins. These pins must be  
configured together as either both inputs or both outputs. Port U is supplied by the LDOO rail. If the 3.3-V LDO is  
not used in the system (disabled), the LDOO pin can be supplied externally.  
The LDO-PWR module (LDO and PU port) is available only on the MSP430FG6426 and MSP430FG6425  
devices.  
9.12.22 Embedded Emulation Module (EEM) (L Version)  
The EEM supports real-time in-system debugging. The L version of the EEM has the following features:  
Eight hardware triggers or breakpoints on memory access.  
Two hardware triggers or breakpoints on CPU register write access.  
Up to ten hardware triggers can be combined to form complex triggers or breakpoints.  
Two cycle counters  
Sequencer  
State storage  
Clock control on module level  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13 Input/Output Diagrams  
9.13.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger  
Figure 9-3 shows the port diagram. Table 9-16 summarizes the selection of the port function.  
Pad Logic  
S32...S39  
LCDS32...LCDS39  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1.0/TA0CLK/ACLK/S39  
P1.1/TA0.0/S38  
P1.2/TA0.1/S37  
P1.3/TA0.2/S36  
P1.4/TA0.3/S35  
P1.5/TA0.4/S34  
P1.6/TA0.1/S33  
P1.7/TA0.2/S32  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
P1IFG.x  
Set  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
Figure 9-3. Port P1 (P1.0 to P1.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-16. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
LCDS32 to  
LCDS39  
P1DIR.x  
P1SEL.x  
P1.0 (I/O)  
Timer TA0.TA0CLK  
ACLK  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
P1.0/TA0CLK/ACLK/S39  
P1.1/TA0.0/S38  
P1.2/TA0.1/S37  
P1.3/TA0.2/S36  
P1.4/TA0.3/S35  
P1.5/TA0.4/S34  
P1.6/TA0.1/S33  
0
1
S39  
X
P1.1 (I/O)  
I: 0; O: 1  
Timer TA0.CCI0A capture input  
Timer TA0.0 output  
S38  
0
1
2
3
4
5
6
7
1
X
P1.2 (I/O)  
I: 0; O: 1  
Timer TA0.CCI1A capture input  
Timer TA0.1 output  
S37  
0
1
X
P1.3 (I/O)  
I: 0; O: 1  
Timer TA0.CCI2A capture input  
Timer TA0.2 output  
S36  
0
1
X
P1.4 (I/O)  
I: 0; O: 1  
Timer TA0.CCI3A capture input  
Timer TA0.3 output  
S35  
0
1
X
P1.5 (I/O)  
I: 0; O: 1  
Timer TA0.CCI4A capture input  
Timer TA0.4 output  
S34  
0
1
X
P1.6 (I/O)  
I: 0; O: 1  
Timer TA0.CCI1B capture input  
Timer TA0.1 output  
S33  
0
1
X
P1.7 (I/O)  
I: 0; O: 1  
Timer TA0.CCI2B capture input  
Timer TA0.2 output  
S32  
0
1
X
P1.7/TA0.2/S32  
(1) X= don't care  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger  
Figure 9-4 shows the port diagram. Table 9-17 summarizes the selection of the port function.  
0
Pad Logic  
Dvss  
1
2
0 if DAC12AMPx=0  
1 if DAC12AMPx=1  
2 if DAC12AMPx>1  
From DAC12_A  
to LCD_B  
from LCD_B  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
P2OUT.x  
0
1
Direction  
0: Input  
1: Output  
0
1
From Port Mapping  
DAC12AMPx>0  
P2.0/P2MAP0/DAC0  
DAC12OPS  
P2DS.x  
0: Low drive  
1: High drive  
P2.1/P2MAP1/DAC1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4/R03  
P2.5/P2MAP5  
P2SEL.x  
P2IN.x  
P2.6/P2MAP6/LCDREF/R13  
P2.7/P2MAP7/R23  
From Port Mapping  
EN  
D
To Port Mapping  
P2IRQ.x  
P2IE.x  
EN  
Q
P2IFG.x  
Set  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
Figure 9-4. Port P2 (P2.0 to P2.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-17. Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL.x  
P2MAPx  
DAC12OPS  
DAC12AMPx  
P2.0 (I/O)  
I: 0; O: 1  
0
1
X
X
0
Mapped secondary digital  
function  
P2.0/P2MAP0/DAC0  
P2.1/P2MAP1/DAC1  
0
X
≤ 19  
= 31  
0
DAC0  
X
X
0
1
>1  
0
P2.1 (I/O)  
I: 0; O: 1  
X
Mapped secondary digital  
function  
1
X
1
≤ 19  
= 31  
X
0
DAC1  
X
X
0
1
>1  
0
P2.2 (I/O)  
I: 0; O: 1  
X
P2.2/P2MAP2  
P2.3/P2MAP3  
2
3
Mapped secondary digital  
function  
X
I: 0; O: 1  
X
1
0
1
0
1
≤ 19  
≤ 19  
X
X
X
X
X
0
0
0
0
0
P2.3 (I/O)  
Mapped secondary digital  
function  
P2.4 (I/O)  
I: 0; O: 1  
X
Mapped secondary digital  
function  
P2.4/P2MAP4/R03  
P2.5/P2MAP5  
4
5
6
≤ 19  
= 31  
R03  
X
1
0
X
X
0
0
P2.5 (I/O  
I: 0; O: 1  
Mapped secondary digital  
function  
X
I: 0; O: 1  
X
1
0
1
≤ 19  
X
X
X
0
0
0
P2.6 (I/O)  
Mapped secondary digital  
function  
P2.6/P2MAP6/LCDREF/R13  
≤ 19  
= 31  
LCDREF/R13  
P2.7 (I/O)  
X
1
0
X
X
0
0
I: 0; O: 1  
Mapped secondary digital  
function  
P2.7/P2MAP7/R23  
7
X
X
1
1
≤ 19  
= 31  
X
X
0
0
R23  
(1) X= Don't care  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.3 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger  
Figure 9-5 shows the port diagram. Table 9-18 summarizes the selection of the port function.  
Pad Logic  
S24...S31  
LCDS24...LCDS31  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
P3OUT.x  
0
1
Module X OUT  
P3.0/TA1CLK/CBOUT/S31  
P3.1/TA1.0/S30  
P3.2/TA1.1/S29  
P3DS.x  
0: Low drive  
1: High drive  
P3SEL.x  
P3IN.x  
P3.3/TA1.2/S28  
P3.4/TA2CLK/SMCLK/S27  
P3.5/TA2.0/S26  
P3.6/TA2.1/S25  
Bus  
Keeper  
EN  
D
P3.7/TA2.2/S24  
Module X IN  
P3IRQ.x  
P3IE.x  
EN  
Q
P3IFG.x  
Set  
P3SEL.x  
P3IES.x  
Interrupt  
Edge  
Select  
Figure 9-5. Port P3 (P3.0 to P3.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-18. Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
LCDS24 to  
LCDS31  
P3DIR.x  
P3SEL.x  
P3.0 (I/O)  
Timer TA1.TA1CLK  
CBOUT  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
0
0
1
0
P3.0/TA1CLK/CBOUT/S31  
P3.1/TA1.0/S30  
0
1
S31  
X
P3.1 (I/O)  
I: 0; O: 1  
Timer TA1.CCI0A capture input  
0
1
2
3
4
5
6
7
Timer TA1.0 output  
1
S30  
X
P3.2 (I/O)  
I: 0; O: 1  
Timer TA1.CCI1A capture input  
0
P3.2/TA1.1/S29  
Timer TA1.1 output  
1
S29  
X
P3.3 (I/O)  
I: 0; O: 1  
Timer TA1.CCI2A capture input  
0
P3.3/TA1.2/S28  
Timer TA1.2 output  
1
S28  
X
P3.4 (I/O)  
I: 0; O: 1  
Timer TA2.TA2CLK  
0
P3.4/TA2CLK/SMCLK/S27  
P3.5/TA2.0/S26  
SMCLK  
1
S27  
X
P3.5 (I/O)  
I: 0; O: 1  
Timer TA2.CCI0A capture input  
Timer TA2.0 output  
S26  
0
1
X
P3.6 (I/O)  
I: 0; O: 1  
Timer TA2.CCI1A capture input  
Timer TA2.1 output  
S25  
0
P3.6/TA2.1/S25  
1
X
P3.7 (I/O)  
I: 0; O: 1  
Timer TA2.CCI2A capture input  
Timer TA2.2 output  
S24  
0
1
X
P3.7/TA2.2/S24  
(1) X= don't care  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger  
Figure 9-6 shows the port diagram. Table 9-19 summarizes the selection of the port function.  
Pad Logic  
S16...S23  
LCDS16...LCDS23  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
0
1
Module X OUT  
P4.0/TB0.0/S23  
P4.1/TB0.1/S22  
P4.2/TB0.2/S21  
P4.3/TB0.3/S20  
P4.4/TB0.4/S19  
P4.5/TB0.5/S18  
P4.6/TB0.6/S17  
P4DS.x  
0: Low drive  
1: High drive  
P4SEL.x  
P4IN.x  
Bus  
Keeper  
EN  
D
P4.7/TB0OUTH/SVMOUT/S16  
Module X IN  
P4IRQ.x  
P4IE.x  
EN  
Q
P4IFG.x  
Set  
P4SEL.x  
P4IES.x  
Interrupt  
Edge  
Select  
Figure 9-6. Port P4 (P4.0 to P4.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-19. Port P4 (P4.0 to P4.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P4.x)  
x
FUNCTION  
LCDS16 to  
LCDS23  
P4DIR.x  
P4SEL.x  
P4.0 (I/O)  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
Timer TB0.CCI0A capture input  
Timer TB0.0 output(2)  
S23  
0
P4.0/TB0.0/S23  
P4.1/TB0.1/S22  
P4.2/TB0.2/S21  
P4.3/TB0.3/S20  
P4.4/TB0.4/S19  
P4.5/TB0.5/S18  
P4.6/TB0.6/S17  
0
1
X
P4.1 (I/O)  
I: 0; O: 1  
Timer TB0.CCI1A capture input  
Timer TB0.1 output(2)  
S22  
0
1
2
3
4
5
6
7
1
X
P4.2 (I/O)  
I: 0; O: 1  
Timer TB0.CCI2A capture input  
Timer TB0.2 output(2)  
S21  
0
1
X
P4.3 (I/O)  
I: 0; O: 1  
Timer TB0.CCI3A capture input  
Timer TB0.3 output(2)  
S20  
0
1
X
P4.4 (I/O)  
I: 0; O: 1  
Timer TB0.CCI4A capture input  
Timer TB0.4 output(2)  
S19  
0
1
X
P4.5 (I/O)  
I: 0; O: 1  
Timer TB0.CCI5A capture input  
Timer TB0.5 output(2)  
S18  
0
1
X
P4.6 (I/O)  
I: 0; O: 1  
Timer TB0.CCI6A capture input  
Timer TB0.6 output(2)  
S17  
0
1
X
P4.7 (I/O)  
I: 0; O: 1  
Timer TB0.TB0OUTH  
SVMOUT  
0
1
X
P4.7/TB0OUTH/ SVMOUT/S16  
(1) X= don't care  
S16  
(2) Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.5 Port P5 (P5.0) Input/Output With Schmitt Trigger  
Figure 9-7 shows the port diagram. Table 9-20 summarizes the selection of the port function.  
Pad Logic  
To/From  
Reference  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
P5OUT.x  
0
1
Module X OUT  
P5.0/VREFBG/VeREF+  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 9-7. Port P5 (P5.0) Diagram  
Table 9-20. Port P5 (P5.0) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
REFOUT  
REFON(5)  
CTSD16REFS(6)  
P5.0 (I/O)(2)  
I: 0; O: 1  
0
1
1
X
0
1
X
X
1
X
0
1
P5.0/VREFBG/VeREF+  
0
VeREF+(3)  
VREFBG(4)  
X
X
(1) X = Don't care  
(2) Default condition  
(3) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF+ and used as the reference for the CTSD16 or DAC.  
(4) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. The internal reference voltage signal, VREFBG, is available at the pin.  
(5) If a module is requesting a reference then REFON need not be set to 1 for VREFBG to be selected on P5.0.  
(6) If CTSD16 is active, this bit must be set as shown in the table. Otherwise if set to 1, it will force VREFBG to be selected regardless of  
REFOUT setting and if P5SEL.x is set to 0 it will cause possible contention on the I/O.  
Copyright © 2020 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.6 Port P5 (P5.1 and P5.6) Input/Output With Schmitt Trigger  
Figure 9-8 shows the port diagram. Table 9-21 summarizes the selection of the port function.  
0
Pad Logic  
Dvss  
1
2
0 if DAC12AMPx=0  
1 if DAC12AMPx=1  
2 if DAC12AMPx>1  
From DAC12_A  
To ADC  
INCHx = y  
DAC12AMPx>0  
DAC12OPS  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
P5OUT.x  
P5.1/A4/DAC0  
P5.6/A5/DAC1  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
Figure 9-8. Port P5 (P5.1 and P5.6) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-21. Port P5 (P5.1 and P5.6) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P6.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
DAC12OPS  
DAC12AMPx  
P5.1(I/O)  
A4(2) (3)  
DAC0  
I: 0; O: 1  
0
1
X
0
1
X
X
X
0
0
0
P5.1/A4/DAC0  
1
X
X
>1  
0
P5.6(I/O)  
A5(2) (3)  
DAC1  
I: 0; O: 1  
X
X
0
P5.6/A5/DAC1  
1
X
X
0
>1  
(1) X = Don't care  
(2) Setting the P5SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals.  
(3) The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
Copyright © 2020 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.7 Port P5 (P5.3 to P5.5, P5.7) Input/Output With Schmitt Trigger  
Figure 9-9 shows the port diagram. Table 9-22 summarizes the selection of the port function.  
Pad Logic  
S40...S42  
LCDS40...LCDS42  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
P5OUT.x  
0
1
Module X OUT  
P5.3/COM1/S42  
P5.4/COM2/S41  
P5.5/COM3/S40  
P5.7/DMAE0/RTCCLK  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 9-9. Port P5 (P5.3 to P5.5 and P5.7) Diagram  
Table 9-22. Port P5 (P5.3 to P5.5, P5.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
LCDS40 to  
LCDS42  
P5DIR.x  
P5SEL.x  
P5.3 (I/O)  
COM1  
I: 0; O: 1  
0
1
0
0
1
0
0
1
0
0
1
1
0
X
P5.3/COM1/S42  
3
X
S42  
X
1
P5.4 (I/O)  
COM2  
I: 0; O: 1  
0
P5.4/COM2/S41  
4
5
7
X
X
S41  
X
1
P5.5 (I/O)  
COM3  
I: 0; O: 1  
0
P5.5/COM3/S40  
X
X
S40  
X
1
P5.7 (I/O)  
DMAE0  
RTCCLK  
I: 0; O: 1  
na  
na  
na  
P5.7/DMAE0/RTCCLK  
0
1
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.8 Port P6 (P6.0 to P6.1) Input/Output With Schmitt Trigger  
Figure 9-10 shows the port diagram. Table 9-23 summarizes the selection of the port function.  
Pad Logic  
To ADC  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
P6OUT.x  
P6.0/CB0/A0  
P6.1/CB1/A1  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
Bus  
Keeper  
Figure 9-10. Port P6 (P6.0 to P6.1) Diagram  
Table 9-23. Port P6 (P6.0 to P6.1) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
I: 0; O: 1  
P6SEL.x  
CBPD.x  
P6.0 (I/O)  
CB0  
0
X
1
0
X
1
0
1
X
0
1
X
P6.0/CB0/A0  
0
X
A0(2) (3)  
P6.1 (I/O)  
CB1  
X
I: 0; O: 1  
P6.1/CB1/A1  
1
X
X
A1(2) (3)  
(1) X= Don't care  
(2) Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals.  
(3) The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
Copyright © 2020 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.9 Port P6 (P6.2 and P6.3) Input/Output With Schmitt Trigger  
Figure 9-11 shows the port diagram. Table 9-24 summarizes the selection of the port function.  
Pad Logic  
To ADC  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
P6OUT.x  
P6.2/CB2/A2/OA0IP0  
P6.3/CB3/A3/OA1IP1  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
Bus  
Keeper  
+
OAx  
-
Figure 9-11. Port P6 (P6.2 and P6.3) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-24. Port P6 (P6.2 and P6.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL.x(3)  
CBPD.x(3)  
P6.2 (I/O)  
CB2  
I: 0; O: 1  
0
X
1
1
0
X
1
1
0
1
X
P6.2/CB2/A2/OA0IP0  
2
A2 (2)  
X
X
X
0
OA0IP0(3)  
P6.2 (I/O)  
CB3  
X
I: 0; O: 1  
X
X
X
1
P6.3/CB3/A3/OA1IP0  
(1) X = Don't care  
3
A3 (3)  
X
X
OA1IP0(3)  
(2) The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
(3) Setting the P6SEL.x bit or CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2020 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.10 Port P6 (P6.4) Input/Output With Schmitt Trigger  
Figure 9-12 shows the port diagram. Table 9-25 summarizes the selection of the port function.  
Pad Logic  
To ADC  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
OAMx  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
P6OUT.x  
P6.4/CB4/AD0+/OA0O  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
Bus  
Keeper  
+
OA0  
-
Figure 9-12. Port P6 (P6.4) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-25. Port P6 (P6.4) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P6.x)  
P6.4/CB4/AD0+/OA0O  
(1) X = Don't care  
x
FUNCTION  
P6DIR.x  
P6SEL.x(3)  
CBPD.x(3)  
OAMx  
0(4)  
P6.4 (I/O)  
CB4  
I: 0; O: 1  
0
X
1
0
1
X
X
X
0(4)  
4
AD0+ (2)  
OA0O  
X
X
0(4)  
X
= 1(4)  
(2) The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
(3) Setting the P6SEL.x bit, the CBPD.x bit, or the OAMx bit disables the output driver and the input Schmitt trigger to prevent parasitic  
cross currents when applying analog signals.  
(4) Setting OAMx = 0 disables the operational amplifier and its output is high impedance. Setting OAMx = 1 enables the operational  
amplifier output. Because the operational amplifier output is shared with the ADC channel, selection of the respective ADC channel  
allows for direct measurement of the output voltage of the amplifier.  
Copyright © 2020 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.11 Port P6 (P6.5) Input/Output With Schmitt Trigger  
Figure 9-13 shows the port diagram. Table 9-26 summarizes the selection of the port function.  
Pad Logic  
To ADC  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
P6OUT.x  
P6.5/CB5/AD0-/OA0IN0  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
Bus  
Keeper  
+
OA0  
-
Figure 9-13. Port P6 (P6.5) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-26. Port P6 (P6.5) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P6.x)  
P6.5/CB5/AD0-/OA0IN0  
(1) X = Don't care  
x
FUNCTION  
P6DIR.x  
P6SEL.x(3)  
CBPD.x(3)  
P6.5 (I/O)  
CB5  
I: 0; O: 1  
0
X
1
1
0
1
X
X
X
5
AD0- (2)  
OA0IN0(3)  
X
X
(2) The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
(3) Setting the P6SEL.x bit or CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2020 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.12 Port P6 (P6.6) Input/Output With Schmitt Trigger  
Figure 9-14 shows the port diagram. Table 9-27 summarizes the selection of the port function.  
Pad Logic  
To ADC  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
GSW0  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
P6OUT.x  
P6.6/CB6/AD1+/G0SW0  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
Bus  
Keeper  
+
OA0  
-
GSW0  
GSW1  
to P6.7  
Figure 9-14. Port P6 (P6.6) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-27. Port P6 (P6.6) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P6.x)  
P6.6/CB6/AD1+/G0SW0  
(1) X = Don't care  
x
FUNCTION  
P6DIR.x  
P6SEL.x(3)  
CBPD.x(3)  
GSW0(3)  
P6.6 (I/O)  
CB6  
I: 0; O: 1  
0
X
1
0
1
0
0
0
1
X
X
X
6
AD1+ (2)  
G0SW0(4)  
X
X
X
(2) The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
(3) Setting the P6SEL.x bit, the CBPD.x bit, or the GSW0 bit disables the output driver and the input Schmitt trigger to prevent parasitic  
cross currents when applying analog signals.  
(4) Setting GSW0 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so  
different settings can impose different voltages on the pin. Application must ensure there are no conflicts.  
Copyright © 2020 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.13 Port P6 (P6.7) Input/Output With Schmitt Trigger  
Figure 9-15 shows the port diagram. Table 9-28 summarizes the selection of the port function.  
Pad Logic  
To ADC  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
GSW1  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
P6OUT.x  
P6.7/CB7/AD1-/G0SW1  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
Bus  
Keeper  
+
OA0  
-
GSW0  
to P6.6  
GSW1  
Figure 9-15. Port P6 (P6.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-28. Port P6 (P6.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P6.x)  
P6.7/CB7/AD1-/G0SW1  
(1) X = Don't care  
x
FUNCTION  
P6DIR.x  
P6SEL.x(3)  
CBPD.x(3)  
GSW1(3)  
P6.7 (I/O)  
CB7  
I: 0; O: 1  
0
X
1
0
1
0
0
0
1
X
X
X
7
AD1- (2)  
G0SW1(3)  
X
X
X
(2) The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
(3) Setting GSW1 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so  
different settings can impose different voltages on the pin. Application must ensure there are no conflicts.  
Copyright © 2020 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.14 Port P7 (P7.2 and P7.3) Input/Output With Schmitt Trigger  
Figure 9-16 and Figure 9-17 show the port diagrams. Table 9-29 summarizes the selection of the port function.  
Pad Logic  
To XT2  
P7REN.2  
DVSS  
DVCC  
0
1
1
P7DIR.2  
P7OUT.2  
0
1
P7.2/XT2IN  
P7DS.2  
0: Low drive  
1: High drive  
P7SEL.2  
P7IN.2  
Bus  
Keeper  
Figure 9-16. Port P7 (P7.2) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Pad Logic  
To XT2  
P7REN.3  
DVSS  
DVCC  
0
1
1
P7DIR.3  
0
1
P7OUT.3  
P7SEL.2  
P7.3/XT2OUT  
P7DS.3  
0: Low drive  
1: High drive  
XT2BYPASS  
P7SEL.3  
P7IN.3  
Bus  
Keeper  
Figure 9-17. Port P7 (P7.3) Diagram  
Table 9-29. Port P7 (P7.2 and P7.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.2  
P7SEL.3  
XT2BYPASS  
P7.2 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
X
X
X
X
0
1
X
0
1
P7.2/XT2IN  
2
XT2IN crystal mode(2)  
XT2IN bypass mode(2)  
P7.3 (I/O)  
X
X
I: 0; O: 1  
P7.3/XT2OUT  
3
XT2OUT crystal mode(3)  
P7.3 (I/O)(3)  
X
X
(1) X= Don't care  
(2) Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal  
mode or bypass mode.  
(3) Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as  
general-purpose I/O.  
Copyright © 2020 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.15 Port P7 (P7.4) Input/Output With Schmitt Trigger  
Figure 9-18 shows the port diagram. Table 9-30 summarizes the selection of the port function.  
Pad Logic  
To ADC  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
OAMx  
P7REN.x  
DVSS  
DVCC  
0
1
1
P7DIR.x  
P7OUT.x  
P7.4/CB8/AD2+/OA1O  
P7DS.x  
0: Low drive  
1: High drive  
P7SEL.x  
P7IN.x  
Bus  
Keeper  
+
OA1  
-
Figure 9-18. Port P7 (P7.4) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-30. Port P7 (P7.4) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P6.x)  
P7.4/CB8/AD2+/OA1O  
(1) X = Don't care  
x
FUNCTION  
P6DIR.x  
P7SEL.x(3)  
CBPD.x(3)  
OAMx(3)  
0(3)  
P7.4 (I/O)  
CB8  
I: 0; O: 1  
0
X
1
0
1
X
X
X
0(3)  
4
AD2+ (2)  
OA1O  
X
X
0(3)  
X
1(3)  
(2) The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
(3) Setting OAMx = 0 disables the operational amplifier and its output is high impedance. Setting OAMx = 1 enables the operational  
amplifier output. Because the operational amplifier output is shared with the ADC channel, selection of the respective ADC channel  
allows for direct measurement of the output voltage of the amplifier.  
Copyright © 2020 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.16 Port P7 (P7.5) Input/Output With Schmitt Trigger  
Figure 9-19 shows the port diagram. Table 9-31 summarizes the selection of the port function.  
Pad Logic  
To ADC  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
P7REN.x  
DVSS  
DVCC  
0
1
1
P7DIR.x  
P7OUT.x  
P7.5/CB9/AD2-/OA1IN0  
P7DS.x  
0: Low drive  
1: High drive  
P7SEL.x  
P7IN.x  
Bus  
Keeper  
+
OA1  
-
Figure 9-19. Port P7 (P7.5) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-31. Port P7 (P7.5) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P7.x)  
P7.5/CB9/AD2-/OAIN0  
(1) X = Don't care  
x
FUNCTION  
P7DIR.x  
P7SEL.x(3)  
CBPD.x(3)  
P7.5 (I/O)  
CB9  
I: 0; O: 1  
0
X
1
1
0
1
X
X
X
5
AD2- (2)  
OAIN0(3)  
X
X
(2) The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
(3) Setting the P7SEL.x bit or the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals.  
Copyright © 2020 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.17 Port P7 (P7.6) Input/Output With Schmitt Trigger  
Figure 9-20 shows the port diagram. Table 9-32 summarizes the selection of the port function.  
Pad Logic  
To ADC  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
GSW0  
P7REN.x  
DVSS  
DVCC  
0
1
1
P7DIR.x  
P7OUT.x  
P7.6/CB10/AD3+/G1SW0  
P7DS.x  
0: Low drive  
1: High drive  
P7SEL.x  
P7IN.x  
Bus  
Keeper  
+
OA1  
-
GSW0  
GSW1  
to P7.7  
Figure 9-20. Port P7 (P7.6) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-32. Port P7 (P7.6) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P7.x)  
P7.6/CB10/AD3+/G1SW0  
(1) X = Don't care  
x
FUNCTION  
P6DIR.x  
P7SEL.x(3)  
CBPD.x(3)  
GSW0(3)  
P7.6 (I/O)  
CB10  
I: 0; O: 1  
0
X
1
0
1
0
0
0
1
X
X
X
6
AD3+ (2)  
G1SW0(4)  
X
X
X
(2) The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
(3) Setting the P7SEL.x bit, the CBPD.x bit, or the GSW0 disables the output driver and the input Schmitt trigger to prevent parasitic cross  
currents when applying analog signals.  
(4) Setting GSW0 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so  
different settings can impose different voltages on the pin. Application must ensure there are no conflicts.  
Copyright © 2020 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.18 Port P7 (P7.7) Input/Output With Schmitt Trigger  
Figure 9-21 shows the port diagram. Table 9-33 summarizes the selection of the port function.  
Pad Logic  
To ADC  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
GSW1  
P7REN.x  
DVSS  
DVCC  
0
1
1
P7DIR.x  
P7OUT.x  
P7.7/CB11/AD3-/G1SW1  
P7DS.x  
0: Low drive  
1: High drive  
P7SEL.x  
P7IN.x  
Bus  
Keeper  
+
OA1  
-
GSW0  
to P7.6  
GSW1  
Figure 9-21. Port P7 (P7.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-33. Port P7 (P7.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P7.x)  
P7.7/CB11/AD3-/G1SW1  
(1) X = Don't care  
x
FUNCTION  
P6DIR.x  
P7SEL.x(3)  
CBPD.x(3)  
GSW1(3)  
P7.7 (I/O)  
CB11  
I: 0; O: 1  
0
X
1
0
1
0
0
0
1
X
X
X
7
AD3- (2)  
G1SW1(4)  
X
X
X
(2) The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
(3) Setting the P7SEL.x bit, the CBPD.x bit, or the GSW1 bit disables the output driver and the input Schmitt trigger to prevent parasitic  
cross currents when applying analog signals.  
(4) Setting GSW1 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so  
different settings can impose different voltages on the pin. Application must ensure there are no conflicts.  
Copyright © 2020 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.19 Port P8 (P8.0 to P8.7) Input/Output With Schmitt Trigger  
Figure 9-22 shows the port diagram. Table 9-34 summarizes the selection of the port function.  
Pad Logic  
S8...S15  
LCDS8...LCDS15  
P8REN.x  
DVSS  
DVCC  
0
1
1
P8DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
0
1
P8OUT.x  
Module X OUT  
P8.0/TB0CLK/S15  
P8DS.x  
0: Low drive  
1: High drive  
P8.1/UCB1STE/UCA1CLK/S14  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.4/UCB1CLK/UCA1STE/S11  
P8.5/UCB1SIMO//UCB1SDA/S10  
P8.6/UCB1SOMI/UCB1SCL/S9  
P8.7/S8  
P8SEL.x  
P8IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 9-22. Port P8 (P8.0 to P8.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-34. Port P8 (P8.0 to P8.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P9.x)  
x
FUNCTION  
P8DIR.x  
P8SEL.x  
LCDS8 to 16  
P8.0 (I/O)  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
X
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
P8.0/TB0CLK/S15  
0
Timer TB0.TB0CLK clock input  
0
S15  
X
P8.1 (I/O)  
I: 0; O: 1  
P8.1/UCB1STE/UCA1CLK/S14  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.4/UCB1CLK/UCA1STE/S11  
P8.5/UCB1SIMO/UCB1SDA/S10  
P8.6/UCB1SOMI/UCB1SCL/S9  
1
2
3
4
5
UCB1STE/UCA1CLK  
X
S14  
X
P8.2 (I/O)  
I: 0; O: 1  
UCA1TXD/UCA1SIMO  
X
S13  
X
P8.3 (I/O)  
I: 0; O: 1  
UCA1RXD/UCA1SOMI  
X
S12  
X
P8.4 (I/O)  
I: 0; O: 1  
UCB1CLK/UCA1STE  
X
S11  
X
P8.5 (I/O)  
I: 0; O: 1  
UCB1SIMO/UCB1SDA  
X
S10  
X
P8.6 (I/O)  
I: 0; O: 1  
6
7
UCB1SOMI/UCB1SCL  
X
S9  
X
I: 0; O: 1  
X
P8.7 (I/O)  
S8  
P8.7/S8  
(1) X= don't care  
Copyright © 2020 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.20 Port P9 (P9.0 to P9.7) Input/Output With Schmitt Trigger  
Figure 9-23 shows the port diagram. Table 9-35 summarizes the selection of the port function.  
Pad Logic  
S0...S7  
LCDS0...LCDS7  
P9REN.x  
0
1
DVSS  
DVCC  
1
Direction  
0: Input  
1: Output  
P9DIR.x  
P9OUT.x  
P9.0/S7  
P9.1/S6  
P9.2/S5  
P9.3/S4  
P9.4/S3  
P9.5/S2  
P9.6/S1  
P9.7/S0  
P9DS.x  
0: Low drive  
1: High drive  
P9IN.x  
Bus  
Keeper  
Figure 9-23. Port P9 (P9.0 to P9.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-35. Port P9 (P9.0 to P9.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P9.x)  
x
FUNCTION  
LCDS0 to  
LCDS7  
P9DIR.x  
P9SEL.x  
P9.0 (I/O)  
S7  
I: 0; O: 1  
0
X
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
P9.0/S7  
0
1
2
3
4
5
6
7
X
P9.1 (I/O)  
S6  
I: 0; O: 1  
P9.1/S6  
X
X
0
P9.2 (I/O)  
S5  
I: 0; O: 1  
P9.2/S5  
X
X
0
P9.3 (I/O)  
S4  
I: 0; O: 1  
P9.3/S4  
X
X
0
P9.4 (I/O)  
S3  
I: 0; O: 1  
P9.4/S3  
X
X
0
P9.5 (I/O)  
S2  
I: 0; O: 1  
P9.5/S2  
X
I: 0; O: 1  
X
X
0
P9.6 (I/O)  
S1  
P9.6/S1  
X
0
P9.7 (I/O)  
S0  
I: 0; O: 1  
X
P9.7/S0  
X
(1) X= don't care  
Copyright © 2020 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.21 Port U (PU.0/DP, PU.1/DM, PUR) USB Ports for MSP430FG662x  
Figure 9-24 shows the port diagram. Table 9-36 and Table 9-37 summarize the port function selection.  
PUSEL  
VUSB  
VSSU  
Pad Logic  
PUOPE  
0
1
USB output enable  
PUOUT0  
0
1
PU.0/DP  
USB DP output  
PUIN0  
USB DP input  
PUIPE  
PUIN1  
USB DM input  
PUOUT1  
0
1
PU.1/DM  
USB DM output  
VUSB  
VSSU  
Pad Logic  
PUREN  
PUR  
“1”  
PUSEL  
PURIN  
Figure 9-24. Port U (PU.0 and PU.1) Diagram  
Table 9-36. Port U (PU.0/DP, PU.1/DM) Output Functions for MSP430FG662x  
CONTROL BITS  
PIN NAME  
FUNCTION  
PUSEL  
PUDIR PUOUT1  
PUOUT0  
PU.1/DM  
PU.0/DP  
0
0
0
0
0
1
0
X
X
0
1
0
1
X
Hi-Z  
0
Hi-Z  
0
Outputs off  
Outputs enabled  
1
1
1
1
X
0
0
1
1
X
0
1
Outputs enabled  
1
0
Outputs enabled  
1
1
Outputs enabled  
DM  
DP  
Direction set by USB module  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-37. Port U (PUR) Input Functions  
CONTROL BITS  
FUNCTION  
PUSEL  
PUREN  
Input disabled  
Pullup disabled  
0
0
1
1
0
Input disabled  
Pullup enabled  
1
0
1
Input enabled  
Pullup disabled  
Input enabled  
Pullup enabled  
9.13.22 Port J (J.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output  
Figure 9-25 shows the port diagram. Table 9-38 summarizes the selection of the port function.  
Pad Logic  
PJREN.0  
0
1
DVSS  
DVCC  
1
PJDIR.0  
DVCC  
0
1
PJOUT.0  
0
1
From JTAG  
PJ.0/TDO  
PJDS.0  
0: Low drive  
1: High drive  
From JTAG  
PJIN.0  
EN  
D
Figure 9-25. Port PJ (PJ.0) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.13.23 Port J (J.1 to J.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output  
Figure 9-26 shows the port diagram. Table 9-38 summarizes the selection of the port function.  
Pad Logic  
PJREN.x  
0
1
DVSS  
DVCC  
1
PJDIR.x  
DVSS  
0
1
PJOUT.x  
0
1
From JTAG  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
PJDS.x  
0: Low drive  
1: High drive  
From JTAG  
PJIN.x  
EN  
D
To JTAG  
Figure 9-26. Port PJ (PJ.1 to PJ.3) Diagram  
Table 9-38. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS  
OR SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
I: 0; O: 1  
X
PJ.0 (I/O)(2)  
TDO(3)  
PJ.0/TDO  
0
1
2
3
PJ.1 (I/O)(2)  
TDI/TCLK(3) (4)  
PJ.2 (I/O)(2)  
TMS(3) (4)  
I: 0; O: 1  
X
PJ.1/TDI/TCLK  
PJ.2/TMS  
I: 0; O: 1  
X
PJ.3 (I/O)(2)  
TCK(3) (4)  
I: 0; O: 1  
X
PJ.3/TCK  
(1) X= don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.14 Device Descriptors  
Table 9-39 summarizes the contents of the device descriptor tag-length-value (TLV) structure.  
Table 9-39. Device Descriptor Table  
VALUE  
SIZE  
(bytes)  
DESCRIPTION  
Info length  
ADDRESS  
FG6626  
06h  
FG6625  
FG6426  
06h  
FG6425  
01A00h  
01A01h  
01A02h  
01A04h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
01A14h  
01A15h  
01A16h  
01A18h  
01A1Ah  
01A1Ch  
1
1
2
2
1
1
1
1
4
2
2
2
1
1
2
2
2
2
06h  
06h  
CRC length  
CRC value  
06h  
06h  
06h  
06h  
Per unit  
8234h  
Per unit  
Per unit  
08h  
Per unit  
8235h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
8237h  
Per unit  
Per unit  
08h  
Info Block  
Device ID  
8236h  
Per unit  
Per unit  
08h  
Hardware revision  
Firmware revision  
Die record tag  
Die record length  
Lot/wafer ID  
0Ah  
0Ah  
0Ah  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
1Dh  
Per unit  
Per unit  
Per unit  
Per unit  
1Dh  
Per unit  
Per unit  
Per unit  
Per unit  
1Dh  
Per unit  
Per unit  
Per unit  
Per unit  
1Dh  
Die Record  
Die X position  
Die Y position  
Test results  
CTSD16 calibration tag  
CTSD16 calibration length  
CTSD16 gain factor gain = 1  
CTSD16 gain factor gain = 16  
CTSD16 offset gain = 1  
CTSD16 offset gain = 16  
0Ch  
0Ch  
0Ch  
0Ch  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
CTSD16 Calibration  
CTSD16 internal reference  
temperature sensor 30°C  
01A1Eh  
01A20h  
2
2
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
CTSD16 internal reference  
temperature sensor 85°C  
9.15 Memory  
Table 9-40 summarizes the memory organization for all devices.  
Table 9-40. Memory Organization  
VALUE(1) (2)  
MSP430FG6626  
MSP430FG6625  
MSP430FG6426  
MSP430FG6425  
Memory (flash)  
Main: interrupt vector  
128KB  
00FFFFh to 00FF80h  
64KB  
128KB  
64KB  
Total Size  
Bank 3  
00FFFFh to 00FF80h 00FFFFh to 00FF80h 00FFFFh to 00FF80h  
32KB  
0243FFh to 01C400h  
32KB  
0243FFh to 01C400h  
NA  
NA  
NA  
NA  
32KB  
01C3FFh to 014400h  
32KB  
01C3FFh to 014400h  
Bank 2  
Main: code memory  
32KB  
0143FFh to 00C400h  
32KB  
0143FFh to 00C400h  
32KB  
0143FFh to 00C400h  
32KB  
0143FFh to 00C400h  
Bank 1  
32KB  
00C3FFh to 004400h  
32KB  
00C3FFh to 004400h  
32KB  
00C3FFh to 004400h  
32KB  
00C3FFh to 004400h  
Bank 0  
2KB  
2KB  
2KB  
2KB  
Sector 3  
Sector 2  
Sector 1  
0043FFh to 003C00h  
0043FFh to 003C00h  
0043FFh to 003C00h  
0043FFh to 003C00h  
2KB  
2KB  
2KB  
2KB  
RAM  
003BFFh to 003400h  
003BFFh to 003400h  
003BFFh to 003400h  
003BFFh to 003400h  
2KB  
2KB  
2KB  
2KB  
0033FFh to 002C00h  
0033FFh to 002C00h  
0033FFh to 002C00h  
0033FFh to 002C00h  
Copyright © 2020 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-40. Memory Organization (continued)  
VALUE(1) (2)  
MSP430FG6626  
MSP430FG6625  
MSP430FG6426  
MSP430FG6425  
2KB  
2KB  
2KB  
2KB  
Sector 0  
Sector 7  
Sector 7  
A
002BFFh to 002400h  
002BFFh to 002400h  
002BFFh to 002400h  
002BFFh to 002400h  
2KB  
2KB  
RAM(3)  
NA  
NA  
0023FFh to 001C00h  
0023FFh to 001C00h  
2KB  
2KB  
USB RAM(4)  
NA  
NA  
0023FFh to 001C00h  
0023FFh to 001C00h  
128 bytes  
001BFFh to 001B80h  
128 bytes  
128 bytes  
128 bytes  
001BFFh to 001B80h 001BFFh to 001B80h 001BFFh to 001B80h  
128 bytes  
001B7Fh to 001B00h  
128 bytes  
001B7Fh to 001B00h  
128 bytes  
001B7Fh to 001B00h  
128 bytes  
001B7Fh to 001B00h  
B
TI factory memory  
(ROM)  
128 bytes  
001AFFh to 001A80h  
128 bytes  
128 bytes  
128 bytes  
C
001AFFh to 001A80h 001AFFh to 001A80h 001AFFh to 001A80h  
128 bytes  
001A7Fh to 001A00h  
128 bytes  
001A7Fh to 001A00h  
128 bytes  
001A7Fh to 001A00h  
128 bytes  
001A7Fh to 001A00h  
D
128 bytes  
0019FFh to 001980h  
128 bytes  
0019FFh to 001980h  
128 bytes  
0019FFh to 001980h  
128 bytes  
0019FFh to 001980h  
Info A  
Info B  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
128 bytes  
00197Fh to 001900h  
128 bytes  
00197Fh to 001900h  
128 bytes  
00197Fh to 001900h  
128 bytes  
00197Fh to 001900h  
Information memory  
(flash)  
128 bytes  
0018FFh to 001880h  
128 bytes  
0018FFh to 001880h  
128 bytes  
0018FFh to 001880h  
128 bytes  
0018FFh to 001880h  
128 bytes  
00187Fh to 001800h  
128 bytes  
00187Fh to 001800h  
128 bytes  
00187Fh to 001800h  
128 bytes  
00187Fh to 001800h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
Bootloader (BSL)  
memory (flash)  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
4KB  
4KB  
4KB  
4KB  
Peripherals  
000FFFh to 000000h  
000FFFh to 000000h  
000FFFh to 000000h  
000FFFh to 000000h  
(1) N/A = Not available.  
(2) Backup RAM is accessed through the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.  
(3) Only available on FG642x.  
(4) Only available on FG662x. USB RAM can be used as general-purpose RAM when not used for USB operation.  
9.15.1 Peripheral File Map  
Table 9-41 lists all of the the available peripherals and their base addresses. Table 9-42 through Table 9-78 list  
the registers and their offset addresses for each peripheral.  
Table 9-41. Peripherals  
MODULE NAME  
Special Functions (see Table 9-42)  
PMM (see Table 9-43)  
BASE ADDRESS  
OFFSET ADDRESS RANGE(1)  
000h to 01Fh  
0100h  
0120h  
000h to 010h  
Flash Control (see Table 9-44)  
CRC16 (see Table 9-45)  
0140h  
000h to 00Fh  
0150h  
000h to 007h  
RAM Control (see Table 9-46)  
Watchdog (see Table 9-47)  
UCS (see Table 9-48)  
0158h  
000h to 001h  
015Ch  
000h to 001h  
0160h  
000h to 01Fh  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-41. Peripherals (continued)  
MODULE NAME  
BASE ADDRESS  
OFFSET ADDRESS RANGE(1)  
000h to 01Fh  
000h to 001h  
000h to 003h  
000h to 007h  
000h to 01Fh  
000h to 01Fh  
000h to 00Bh  
000h to 00Bh  
000h to 00Bh  
000h to 01Fh  
000h to 02Eh  
000h to 02Eh  
000h to 02Eh  
000h to 02Eh  
000h to 01Fh  
000h to 01Fh  
000h to 02Fh  
000h to 00Fh  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 00Fh  
000h to 014h  
000h to 01Fh  
000h to 014h  
000h to 05Fh  
000h to 05Fh  
000h to 00Fh  
000h to 00Fh  
SYS (see Table 9-49)  
0180h  
Shared Reference (see Table 9-50)  
Port Mapping Control (see Table 9-51)  
Port Mapping Port P2 (see Table 9-51)  
Port P1, P2 (see Table 9-52)  
01B0h  
01C0h  
01D0h  
0200h  
0220h  
0240h  
0260h  
0280h  
0320h  
0340h  
0380h  
03C0h  
0400h  
0480h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
0540h  
0550h  
0560h  
05C0h  
05E0h  
0600h  
0620h  
0780h  
08C0h  
0900h  
0920h  
0900h  
0A00h  
0A80h  
0AE0h  
0AF0h  
Port P3, P4 (see Table 9-53)  
Port P5, P6 (see Table 9-54)  
Port P7, P8 (see Table 9-55)  
Port P9 (see Table 9-56)  
Port PJ (see Table 9-57)  
Timer TA0 (see Table 9-58)  
Timer TA1 (see Table 9-59)  
Timer TB0 (see Table 9-60)  
Timer TA2 (see Table 9-61)  
Battery Backup (see Table 9-62)  
RTC_B (see Table 9-63)  
32-Bit Hardware Multiplier (see Table 9-64)  
DMA General Control (see Table 9-65)  
DMA Channel 0 (see Table 9-65)  
DMA Channel 1 (see Table 9-65)  
DMA Channel 2 (see Table 9-65)  
DMA Channel 3 (see Table 9-65)  
DMA Channel 4 (see Table 9-65)  
DMA Channel 5 (see Table 9-65)  
USCI_A0 (see Table 9-66)  
USCI_B0 (see Table 9-67)  
USCI_A1 (see Table 9-68)  
USCI_B1 (see Table 9-69)  
DAC12_A (see Table 9-70)  
Comparator_B (see Table 9-71)  
USB configuration (see Table 9-72)(2)  
USB control (see Table 9-73)(2)  
LDO-PWR; LDO and Port U configuration (see Table 9-74) (3)  
LCD_B control (see Table 9-75)  
CTSD16 (see Table 9-76)  
OA0 and GSW0 (see Table 9-77)  
OA1 and GSW1 (see Table 9-78)  
(1) For a detailed description of the individual control register offset addresses, see the MSP430F5xx and MSP430F6xx Family User's  
Guide.  
(2) Only on devices with peripheral module USB.  
(3) Only on devices with peripheral module LDO-PWR.  
Copyright © 2020 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-42. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
SFR interrupt enable  
SFR interrupt flag  
SFRIE1  
SFRIFG1  
SFRRPCR  
02h  
SFR reset pin control  
04h  
Table 9-43. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
PMMCTL1  
SVSMHCTL  
SVSMLCTL  
PMMIFG  
OFFSET  
00h  
PMM control 0  
PMM control 1  
02h  
SVS high-side control  
SVS low-side control  
PMM interrupt flags  
PMM interrupt enable  
PMM power mode 5 control  
04h  
06h  
0Ch  
0Eh  
PMMIE  
PM5CTL0  
10h  
Table 9-44. Flash Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Flash control 1  
Flash control 3  
Flash control 4  
FCTL1  
FCTL3  
04h  
FCTL4  
06h  
Table 9-45. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
CRC data input  
CRC result  
CRC16DI  
CRC16INIRES  
04h  
Table 9-46. RAM Control Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
RAM control 0  
RCCTL0  
00h  
Table 9-47. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Watchdog timer control  
WDTCTL  
00h  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-48. UCS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
UCSCTL0  
UCSCTL1  
UCSCTL2  
UCSCTL3  
UCSCTL4  
UCSCTL5  
UCSCTL6  
UCSCTL7  
UCSCTL8  
OFFSET  
UCS control 0  
UCS control 1  
UCS control 2  
UCS control 3  
UCS control 4  
UCS control 5  
UCS control 6  
UCS control 7  
UCS control 8  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
Table 9-49. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
System control  
SYSCTL  
Bootloader configuration area  
JTAG mailbox control  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
02h  
06h  
JTAG mailbox input 0  
08h  
JTAG mailbox input 1  
0Ah  
0Ch  
0Eh  
18h  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
1Ah  
1Ch  
1Eh  
SYSSNIV  
SYSRSTIV  
Table 9-50. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Shared reference control  
REFCTL  
00h  
Table 9-51. Port Mapping Registers  
(Base Address of Port Mapping Control: 01C0h, Port P2: 01D0h)  
REGISTER DESCRIPTION  
REGISTER  
PMAPPWD  
PMAPCTL  
P2MAP0  
P2MAP1  
P2MAP2  
P2MAP3  
P2MAP4  
P2MAP5  
P2MAP6  
P2MAP7  
OFFSET  
00h  
Port mapping password  
Port mapping control  
Port P2.0 mapping  
Port P2.1 mapping  
Port P2.2 mapping  
Port P2.3 mapping  
Port P2.4 mapping  
Port P2.5 mapping  
Port P2.6 mapping  
Port P2.7 mapping  
02h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
Copyright © 2020 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-52. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P1 input  
P1IN  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
P1DS  
Port P1 direction  
Port P1 resistor enable  
Port P1 drive strength  
Port P1 selection  
P1SEL  
P1IV  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2DS  
Port P2 direction  
Port P2 resistor enable  
Port P2 drive strength  
Port P2 selection  
P2SEL  
P2IV  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
Table 9-53. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P3 input  
P3IN  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
P3DS  
Port P3 direction  
Port P3 resistor enable  
Port P3 drive strength  
Port P3 selection  
P3SEL  
P3IV  
Port P3 interrupt vector word  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
Port P4 input  
P3IES  
P3IE  
P3IFG  
P4IN  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4DS  
Port P4 direction  
Port P4 resistor enable  
Port P4 drive strength  
Port P4 selection  
P4SEL  
P4IV  
Port P4 interrupt vector word  
Port P4 interrupt edge select  
Port P4 interrupt enable  
Port P4 interrupt flag  
P4IES  
P4IE  
P4IFG  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-54. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P5 output  
P5OUT  
P5DIR  
P5REN  
P5DS  
Port P5 direction  
Port P5 resistor enable  
Port P5 drive strength  
Port P5 selection  
Port P6 input  
P5SEL  
P6IN  
Port P6 output  
P6OUT  
P6DIR  
P6REN  
P6DS  
Port P6 direction  
Port P6 resistor enable  
Port P6 drive strength  
Port P6 selection  
P6SEL  
Table 9-55. Port P7, P8 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P7 input  
P7IN  
Port P7 output  
P7OUT  
P7DIR  
P7REN  
P7DS  
02h  
Port P7 direction  
Port P7 resistor enable  
Port P7 drive strength  
Port P7 selection  
Port P8 input  
04h  
06h  
08h  
P7SEL  
P8IN  
0Ah  
01h  
Port P8 output  
P8OUT  
P8DIR  
P8REN  
P8DS  
03h  
Port P8 direction  
Port P8 resistor enable  
Port P8 drive strength  
Port P8 selection  
05h  
07h  
09h  
P8SEL  
0Bh  
Table 9-56. Port P9 Register (Base Address: 0280h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P9 input  
P9IN  
Port P9 output  
P9OUT  
P9DIR  
P9REN  
P9DS  
02h  
Port P9 direction  
Port P9 resistor enable  
Port P9 drive strength  
Port P9 selection  
04h  
06h  
08h  
P9SEL  
0Ah  
Table 9-57. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port PJ input  
PJIN  
Port PJ output  
PJOUT  
PJDIR  
02h  
Port PJ direction  
Port PJ resistor enable  
Port PJ drive strength  
04h  
PJREN  
PJDS  
06h  
08h  
Copyright © 2020 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-58. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
TA0 control  
TA0CTL  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter  
02h  
04h  
06h  
08h  
0Ah  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
12h  
14h  
16h  
18h  
1Ah  
20h  
TA0 interrupt vector  
TA0IV  
2Eh  
Table 9-59. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
TA1 control  
TA1CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
12h  
14h  
16h  
20h  
TA1 interrupt vector  
TA1IV  
2Eh  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-60. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TB0 control  
TB0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0 interrupt vector  
TB0IV  
Table 9-61. TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
TA2 control  
TA2CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA2 counter  
TA2CCTL0  
TA2CCTL1  
TA2CCTL2  
TA2R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2CCR2  
TA2EX0  
12h  
14h  
16h  
20h  
TA2 interrupt vector  
TA2IV  
2Eh  
Table 9-62. Battery Backup Registers (Base Address: 0480h)  
REGISTER DESCRIPTION  
REGISTER  
BAKMEM0  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKCTL  
OFFSET  
00h  
Battery backup memory 0  
Battery backup memory 1  
Battery backup memory 2  
Battery backup memory 3  
Battery backup control  
Battery charger control  
02h  
04h  
06h  
1Ch  
BAKCHCTL  
1Eh  
Copyright © 2020 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-63. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
RTCCTL1  
RTCCTL2  
RTCCTL3  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
OFFSET  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
RTC control 0  
RTC control 1  
RTC control 2  
RTC control 3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTC prescaler 1  
RTC interrupt vector word  
RTC seconds  
RTCPS1  
RTCIV  
RTCSEC  
RTC minutes  
RTCMIN  
RTC hours  
RTCHOUR  
RTCDOW  
RTCDAY  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Eh  
RTC day of week  
RTC days  
RTC month  
RTCMON  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTCAHOUR  
RTCADOW  
RTCADAY  
BIN2BCD  
BCD2BIN  
RTC year low  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTC alarm day of week  
RTC alarm days  
Binary-to-BCD conversion  
BCD-to-binary conversion  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-64. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension register  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control 0  
RES3  
MPY32CTL0  
Copyright © 2020 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-65. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA  
Channel 4: 0550h, DMA Channel 5: 0560h)  
REGISTER DESCRIPTION  
REGISTER  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
DMA general control: DMA module control 0  
DMA general control: DMA module control 1  
DMA general control: DMA module control 2  
DMA general control: DMA module control 3  
DMA general control: DMA module control 4  
DMA general control: DMA interrupt vector  
DMA channel 0 control  
DMA0CTL  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA channel 3 control  
DMA3CTL  
DMA3SAL  
DMA3SAH  
DMA3DAL  
DMA3DAH  
DMA3SZ  
DMA channel 3 source address low  
DMA channel 3 source address high  
DMA channel 3 destination address low  
DMA channel 3 destination address high  
DMA channel 3 transfer size  
DMA channel 4 control  
DMA4CTL  
DMA4SAL  
DMA4SAH  
DMA4DAL  
DMA4DAH  
DMA4SZ  
DMA channel 4 source address low  
DMA channel 4 source address high  
DMA channel 4 destination address low  
DMA channel 4 destination address high  
DMA channel 4 transfer size  
DMA channel 5 control  
DMA5CTL  
DMA5SAL  
DMA5SAH  
DMA5DAL  
DMA5DAH  
DMA5SZ  
DMA channel 5 source address low  
DMA channel 5 source address high  
DMA channel 5 destination address low  
DMA channel 5 destination address high  
DMA channel 5 transfer size  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-66. USCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTL0  
UCA0CTL1  
UCA0BR0  
OFFSET  
USCI control 0  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 1  
USCI baud rate 0  
USCI baud rate 1  
UCA0BR1  
USCI modulation control  
USCI status  
UCA0MCTL  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA0IFG  
UCA0IV  
Table 9-67. USCI_B0 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTL0  
UCB0CTL1  
UCB0BR0  
UCB0BR1  
UCB0STAT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA  
UCB0I2CSA  
UCB0IE  
OFFSET  
00h  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
12h  
1Ch  
1Dh  
1Eh  
USCI interrupt flags  
UCB0IFG  
USCI interrupt vector word  
UCB0IV  
Table 9-68. USCI_A1 Registers (Base Address: 0600h)  
REGISTER DESCRIPTION  
REGISTER  
UCA1CTL0  
UCA1CTL1  
UCA1BR0  
OFFSET  
00h  
USCI control 0  
USCI control 1  
01h  
USCI baud rate 0  
06h  
USCI baud rate 1  
UCA1BR1  
07h  
USCI modulation control  
USCI status  
UCA1MCTL  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
12h  
13h  
1Ch  
1Dh  
1Eh  
UCA1IFG  
UCA1IV  
Copyright © 2020 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-69. USCI_B1 Registers (Base Address: 0620h)  
REGISTER DESCRIPTION  
REGISTER  
UCB1CTL0  
UCB1CTL1  
UCB1BR0  
UCB1BR1  
UCB1STAT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA  
UCB1I2CSA  
UCB1IE  
OFFSET  
00h  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
12h  
1Ch  
1Dh  
1Eh  
USCI interrupt flags  
UCB1IFG  
USCI interrupt vector word  
UCB1IV  
Table 9-70. DAC12_A Registers (Base Address: 0780h)  
REGISTER DESCRIPTION  
REGISTER  
DAC12_0CTL0  
DAC12_0CTL1  
DAC12_0DAT  
OFFSET  
00h  
DAC12_A channel 0 control 0  
DAC12_A channel 0 control 1  
DAC12_A channel 0 data  
02h  
04h  
DAC12_A channel 0 calibration control  
DAC12_A channel 0 calibration data  
DAC12_A channel 1 control 0  
DAC12_A channel 1 control 1  
DAC12_A channel 1 data  
DAC12_0CALCTL  
DAC12_0CALDAT  
DAC12_1CTL0  
DAC12_1CTL1  
DAC12_1DAT  
06h  
08h  
10h  
12h  
14h  
DAC12_A channel 1 calibration control  
DAC12_A channel 1 calibration data  
DAC12_A interrupt vector word  
DAC12_1CALCTL  
DAC12_1CALDAT  
DAC12IV  
16h  
18h  
1Eh  
Table 9-71. Comparator_B Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
CBCTL0  
CBCTL1  
CBCTL2  
CBCTL3  
CBINT  
OFFSET  
00h  
Comp_B control 0  
Comp_B control 1  
Comp_B control 2  
Comp_B control 3  
Comp_B interrupt  
02h  
04h  
06h  
0Ch  
Comp_B interrupt vector word  
CBIV  
0Eh  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-72. USB Configuration Registers (Base Address: 0900h)  
REGISTER DESCRIPTION  
REGISTER  
USBKEYID  
USBCNF  
OFFSET  
USB key/ID  
00h  
02h  
04h  
08h  
0Ah  
10h  
12h  
14h  
USB module configuration  
USB PHY control  
USBPHYCTL  
USBPWRCTL  
USBPWRVSR  
USBPLLCTL  
USBPLLDIV  
USBPLLIR  
USB power control  
USB power voltage setting  
USB PLL control  
USB PLL divider  
USB PLL interrupts  
Table 9-73. USB Control Registers (Base Address: 0920h)  
REGISTER DESCRIPTION  
REGISTER  
USBIEPCNF_0  
USBIEPBCNT_0  
USBOEPCNFG_0  
USBOEPBCNT_0  
USBIEPIE  
OFFSET  
00h  
Input endpoint_0 configuration  
Input endpoint_0 byte count  
Output endpoint_0 configuration  
Output endpoint_0 byte count  
Input endpoint interrupt enables  
Output endpoint interrupt enables  
Input endpoint interrupt flags  
Output endpoint interrupt flags  
USB interrupt vector  
01h  
02h  
03h  
0Eh  
0Fh  
10h  
USBOEPIE  
USBIEPIFG  
USBOEPIFG  
USBIV  
11h  
12h  
USB maintenance  
USBMAINT  
USBTSREG  
USBFN  
16h  
Time stamp  
18h  
USB frame number  
1Ah  
1Ch  
1Dh  
1Eh  
1Fh  
USB control  
USBCTL  
USB interrupt enables  
USB interrupt flags  
USBIE  
USBIFG  
Function address  
USBFUNADR  
Table 9-74. LDO and Port U Configuration Registers (Base Address: 0900h)  
REGISTER DESCRIPTION  
REGISTER  
LDOKEYPID  
PUCTL  
OFFSET  
00h  
LDO key and ID  
PU port control  
04h  
LDO power control  
LDOPWRCTL  
08h  
Copyright © 2020 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-75. LCD_B Registers (Base Address: 0A00h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
000h  
002h  
004h  
006h  
008h  
00Ah  
00Ch  
00Eh  
012h  
01Eh  
020h  
021h  
LCD_B control 0  
LCDBCTL0  
LCDBCTL1  
LCDBBLKCTL  
LCDBMEMCTL  
LCDBVCTL  
LCDBPCTL0  
LCDBPCTL1  
LCDBPCTL2  
LCDBCTL0  
LCDBIV  
LCD_B control 1  
LCD_B blinking control  
LCD_B memory control  
LCD_B voltage control  
LCD_B port control 0  
LCD_B port control 1  
LCD_B port control 2  
LCD_B charge pump control  
LCD_B interrupt vector word  
LCD_B memory 1  
LCDM1  
LCD_B memory 2  
LCDM2  
LCD_B memory 22  
LCD_B blinking memory 1  
LCD_B blinking memory 2  
LCDM22  
035h  
040h  
041h  
LCDBM1  
LCDBM2  
LCD_B blinking memory 22  
LCDBM22  
055h  
Table 9-76. CTSD16 Registers (Base Address: 0A80h)  
REGISTER DESCRIPTION  
REGISTER  
CTSD16CTL  
CTSD16CCTL0  
CTSD16INCTL0  
CTSD16PRE0  
CTSD16IFG  
CTSD16IE  
OFFSET  
00h  
CTSD16 control  
CTSD16 channel 0 control  
02h  
CTSD16 channel 0 input control  
CTSD16 channel 0 preload  
CTSD16 interrupt flag  
04h  
06h  
2Ch  
2Eh  
30h  
CTSD16 interrupt enable  
CTSD16 interrupt vector  
CTSD16IV  
CTSD16 channel 0 conversion memory  
CTSD16MEM0  
32h  
Table 9-77. OA0 Registers (Base Address: 0AE0h)  
REGISTER DESCRIPTION  
REGISTER  
OA0CTL0  
OA0PSW  
OA0NSW  
OA0GSW  
OFFSET  
00h  
OA0 control 0  
OA0 positive input terminal switches  
OA0 negative input terminal switches  
OA0 ground switches  
02h  
04h  
0Eh  
Table 9-78. OA1 Registers (Base Address: 0AF0h)  
REGISTER DESCRIPTION  
REGISTER  
OA1CTL0  
OA1PSW  
OA1NSW  
OA1GSW  
OFFSET  
00h  
OA1 control 0  
OA1 positive input terminal switches  
OA1 negative input terminal switches  
OA1 ground switches  
02h  
04h  
0Eh  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
9.16 Identification  
9.16.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The device-  
specific errata sheet describes these markings. For links to all of the errata sheets for the devices in this data  
sheet, see Section 11.4.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on  
this value, see the "Hardware Revision" entries in Section 9.14.  
9.16.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific errata  
sheet describes these markings. For links to all of the errata sheets for the devices in this data sheet, see  
Section 11.4.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details  
on this value, see the "Device ID" entries in Section 9.14.  
9.16.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in detail in  
the MSP430 Programming With the JTAG Interface.  
Copyright © 2020 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
10 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Device Connection and Layout Fundamentals  
This section discusses the recommended guidelines when designing with the MSP430. These guidelines are to  
make sure that the device has proper connections for powering, programming, debugging, and optimum analog  
performance.  
10.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 1-µF plus a 100-nF low-ESR ceramic decoupling capacitor to  
each AVCC and DVCC pin. Higher-value capacitors may be used but can impact supply rail ramp-up time.  
Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few  
millimeters). Additionally, separated grounds with a single-point connection are recommend for better noise  
isolation from digital to analog circuits on the board and are especially recommended to achieve high analog  
accuracy.  
DVCC  
Digital  
Power Supply  
Decoupling  
+
1 µF  
100 nF  
100 nF  
DVSS  
AVCC  
Analog  
Power Supply  
Decoupling  
+
1 µF  
AVSS  
Figure 10-1. Power Supply Decoupling  
10.1.2 External Oscillator  
Depending on the device variant (see Section 6), the device can support a low-frequency crystal (32 kHz) on the  
XT1 pins, a high-frequency crystal on the XT2 pins, or both. External bypass capacitors for the crystal oscillator  
pins are required.  
It is also possible to apply digital clock signals to the XIN and XT2IN input pins that meet the specifications of the  
respective oscillator if the appropriate XT1BYPASS or XT2BYPASS mode is selected. In this case, the  
associated XOUT and XT2OUT pins can be used for other purposes. If they are left unused, they must be  
terminated according to Table 7-4.  
Figure 10-2 shows a typical connection diagram.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
XIN  
or  
XOUT  
or  
XT2IN  
XT2OUT  
CL1  
CL2  
Figure 10-2. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP430 devices.  
10.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-  
FET430UIF) can be used to program and debug code on the target board. In addition, the connections also  
support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if  
desired. Figure 10-3 shows the connections between the 14-pin JTAG connector and the target device required  
to support in-system programming and debugging for 4-wire JTAG communication. Figure 10-4 shows the  
connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical.  
Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF  
interface modules and MSP-GANG have a VCC sense feature that, if used, requires an alternate connection (pin  
4 instead of pin 2). The VCC-sense feature senses the local VCC present on the target board (that is, a battery  
or other local power supply) and adjusts the output signals accordingly. Figure 10-3 and Figure 10-4 show a  
jumper block that supports both scenarios of supplying VCC to the target board. If this flexibility is not required,  
the desired VCC connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be  
connected at the same time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User’s Guide.  
Copyright © 2020 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
VCC  
Important to connect  
MSP430FGxxxx  
AVCC/DVCC  
J1 (see Note A)  
J2 (see Note A)  
C2  
10 µF  
C3  
0.1 µF  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
See Note B  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection  
J2.  
B. The upper limit for C1 is 2.2 nF when using current TI tools.  
Figure 10-3. Signal Connections for 4-Wire JTAG Communication  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
VCC  
Important to connect  
MSP430FGxxxx  
J1 (see Note A)  
J2 (see Note A)  
AVCC/DVCC  
C2  
10 µF  
C3  
0.1 µF  
R1  
47 kΩ  
See Note B  
JTAG  
VCC TOOL  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
VCC TARGET  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
See Note B  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or  
programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and any  
capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is 2.2 nF  
when using current TI tools.  
Figure 10-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
10.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function  
Register (SFR), SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge  
sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI.  
When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or  
pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the RST/NMI  
pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-kΩ pullup  
resistor to the RST/NMI pin with a 2.2-nF pulldown capacitor. The pulldown capacitor should not exceed 2.2 nF  
when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like  
FET interfaces or GANG programmers.  
See the MSP430F5xx and MSP430F6xx Family User's Guide for more information on the referenced control  
registers and bits.  
10.1.5 Unused Pins  
For details on the connection of unused pins, see Section 7.6.  
Copyright © 2020 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
10.1.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430 32-kHz  
Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC, AVCC, and reference pins if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching  
signals such as PWM or JTAG signals away from the oscillator circuit.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
10.1.7 Do's and Don'ts  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power  
down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits  
specified in Section 8.1. Exceeding the specified limits may cause malfunction of the device including erroneous  
writes to RAM and flash.  
10.2 Peripheral- and Interface-Specific Design Information  
10.2.1 CTSD16 Peripheral  
For internal connections between signal chain modules such as CTSD16, OA, and DAC12, see Section 9.12.16.  
When internal connections are available, they should be chosen over external connections to reduce noise and  
save pins.  
Solid decoupling on both the digital and analog supplies is also required (best with two capacitors, one 1 µF and  
one 100 nF [see Section 10.1.1]).  
VREFBG/VeREF+  
(see Note A)  
1 nF  
CPCAP  
(see Note B)  
22 nF  
AVSS  
A. The capacitor reduces noise when using internal VREFBG setting. This pin is also used for the external reference input for the CTSD16 or  
DAC, and when doing so the capacitor is not needed. Because of the shared signal path and pin, the internal and external references  
(VREFBG and VeREF+, respectively) cannot be used at the same time.  
B. The capacitor on CPCAP is required when the charge pump is enabled. The charge pump can be enabled by rail-to-rail operation of the  
CTSD16 or by the OA module. See the register settings for each module in the MSP430F5xx and MSP430F6xx Family User's Guide for  
enabling this operation.  
Figure 10-5. CTSD16 Partial Schematic  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
10.2.1.1 Example Measurement Schematic – Differential Input  
Vm  
<10 kHz  
RC filter  
R1  
(see Note A)  
CTSD16  
AD0+  
R2  
Vin  
AD0–  
R1  
A. TI recommends an external RC antialiasing low-pass filter for the CTSD16 to prevent aliasing of the input signal. The cutoff frequency  
should be <10 kHz for a 1-MHz modulator clock and OSR = 256. The cutoff frequency may be set to a lower frequency for applications  
that have lower bandwidth requirements. It is up to the user to determine the configuration and type of low-pass filter used.  
Figure 10-6. CTSD16 Measurement Schematic – Differential Input  
10.2.1.2 Example Measurement Schematic – Single-Ended Input  
Vm  
<10 kHz  
RC filter  
R1  
A0 or  
AD0+  
(see Note A)  
CTSD16  
R2  
AD0–  
VREFBG/VeREF+  
A. TI recommends an external RC antialiasing low-pass filter for the CTSD16 to prevent aliasing of the input signal. The cutoff frequency  
should be <10 kHz for a 1-MHz modulator clock and OSR = 256. The cutoff frequency may be set to a lower frequency for applications  
that have lower bandwidth requirements. It is up to the user to determine the configuration and type of low-pass filter used.  
Figure 10-7. CTSD16 Measurement Schematic – Single-Ended Input  
10.2.1.3 Design Requirements  
As with any high-resolution ADC, appropriate printed circuit board layout and grounding techniques should be  
followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with other  
analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can  
add to or subtract from the reference or input voltages of the ADC. Therefore, solid decoupling on both the digital  
and analog supplies is required (best with two capacitors, one 1 µF and one 100 nF [see Section 10.1.1]).  
In addition to grounding, ripple and noise spikes on the power-supply lines due to digital switching or switching  
power supplies can corrupt the conversion result. TI recommends a noise-free design using separate analog and  
digital ground planes with a single-point connection to achieve high accuracy.  
If the internal reference is used, the reference voltage should be buffered externally by connecting a small  
(approximately 1 nF) capacitor to the VREFBG pin to reduce the noise on the reference.  
The CTSD16 has a fixed 1.024-MHz clock (fM). Fault flags for this oscillator are described in the CTSD16 and  
UCS section of the MSP430F5xx and MSP430F6xx Family User's Guide.  
Copyright © 2020 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Rail-to-rail operation mode is available when the OA module is used to buffer the CTSD16 inputs. For more  
information, see the CTSD16 and the OA modules in the MSP430F5xx and MSP430F6xx Family User's Guide.  
10.2.1.4 Detailed Design Procedure  
10.2.1.4.1 OSR and Sampling Frequency  
A simple equation guides the relationship between effective sampling frequency and oversampling ratio (OSR)  
for CTSD16.  
f
m
f =  
s
OSR  
(2)  
Where  
fs = effective sampling frequency  
fm = modulation frequency  
For the CTSD16, the modulation frequency is set to 1.024 MHz. Using Equation 2 with an example OSR of 256,  
the effective sampling frequency would be 4 kHz. The OSR value also affects the number of bits in the digital  
filter output. See the CTSD16 chapter in the MSP430F5xx and MSP430F6xx Family User's Guide for additional  
information and available OSR values.  
10.2.1.4.2 Differential Input Range Explanation  
The following equations can give guidance on the input range for the CTSD16 while using an external reference.  
Keep in mind the absolute bounds of an external reference as mentioned in the specifications section of this  
module. The external and internal references cannot be used at the same time, because they share the same  
signal path and pin. For internal reference ranges, see Section 8.8.11.  
+V  
R
V
=
FSR+  
GAIN  
(3)  
(4)  
–V  
R
V
=
FSR–  
GAIN  
V
R
Full-Scale Range = V  
FSR+  
– V = 2 ×  
FSR–  
GAIN  
(5)  
(6)  
V
= 0.8 V  
FSR–  
to 0.8 V , with externally sourced V  
FSR+ R  
ID  
Where  
VFSR is the full-scale range voltage  
VID is the differential input voltage  
VR is the reference voltage  
The differential input voltage range with internal voltage reference at different GAIN settings is given in Section  
8.8.11. Using Equation 3 through Equation 6, determine the absolute maximum differential input ranges for the  
CTSD16 with a given external voltage reference. Equation 7 corresponds to the example circuit in Figure 10-6  
and can be used after a range is chosen to limit differential input voltage to acceptable levels by solving for the  
external resistors R1 and R2.  
R
1
2
V
= V  
×
×
in  
m
R
R
+ 2R  
1
eff  
2
1 +  
2R  
in  
(7)  
Where  
Reff = (R2 × 2R1) / ((R2 + 2R1)  
Vin is the differential voltage input to CTSD16  
Vm is the voltage to measure  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Rin is the internal resistance of the CTSD16 (see Section 8.8.11)  
10.2.1.4.3 Single-Ended Input Mode  
The CTSD16 has six single-ended analog inputs and four differential inputs that can be placed in single-ended  
mode by the CTSDINCHx bits in the CTSD16INCTLx registers. These single-ended modes use the fully  
differential path of the CTSD16 by internally tying the negative input to the VREFBG/VeREF+ signal. This means for  
the differential inputs in single-ended mode, the external pin normally tied to the negative input can be used for  
its alternate functions. Equation 8 through Equation 11 apply for full-scale range while in single-ended mode.  
V
R
V
= V  
+
FSR+  
R
GAIN  
(8)  
(9)  
V
R
V
= V  
FSR–  
R
GAIN  
æ
ç
è
V
ö
÷
ø
æ
ç
è
V
ö
÷
ø
V
R
R
R
Full-Scale Range = V  
– V  
FSR–  
=
V
+
V –  
R
= 2 ×  
FSR+  
R
GAIN  
GAIN  
GAIN  
(10)  
(11)  
æ
ç
è
V
ö
æ
ç
è
V
ö
÷
ø
R
R
V = V – 0.8 ×  
R
to V + 0.8 ×  
R
÷
I
GAIN  
GAIN  
ø
Where  
VFSR is the full-scale range voltage  
VI is the single-ended input voltage range for data-sheet specified performance  
VR is the reference voltage  
To ensure the measured voltage is within the single-ended voltage range, a simple voltage divider circuit can be  
used to condition the desired input signal. In single-ended mode, additional error may be introduced by noise  
when compared to a fully differential measurement. Equation 12 corresponds to the example circuit in Figure  
10-7 and can be used after a range is chosen to limit differential input voltage to acceptable levels by solving for  
the external resistors R1 and R2.  
R
2
V
= V  
×
in  
m
R
+ R  
2
1
(12)  
Where  
Vin is the single-ended voltage input to CTSD16  
Vm is the voltage to measure  
10.2.1.4.4 Offset Calibration  
In some applications, it is necessary to calibrate the module for offset error. This module allows an easy way to  
do this by providing internal connections from input to VREF or DAC0. To short AD4+ and AD4- to VREF or  
DAC0, change the CTSD16INCHx setting for each channel to 0x11 for VREF and 0x12 for DAC0. This allows  
calibration of the CTSD16 input stage by what is measured from the ideal value. The total signal chain offset  
depends on the impedance of the external circuitry; thus, the actual offset seen at any of the analog inputs may  
be different.  
10.2.1.5 Layout Guidelines  
Components that are shown in the partial schematic (see Figure 10-5) should be placed as close as possible to  
the respective device pins. Avoid long traces, because they add additional parasitic capacitance, inductance,  
and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because  
the high-frequency switching can be coupled into the analog signal.  
The analog differential input signals must be routed closely together to minimize the effect of noise on the  
resulting signal.  
Copyright © 2020 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
10.2.2 Operational Amplifier With Ground Switches Peripheral  
For internal connections between signal chain modules such as CTSD16, OA, and DAC12, see Section 9.12.16.  
When internal connections are available, they should be chosen over external connections to reduce noise and  
save pins.  
Solid decoupling on both the digital and analog supplies is also required (best with two capacitors, one 1 µF and  
one 100 nF [see Section 10.1.1]).  
10.2.2.1 Reference Schematic  
CPCAP  
(see Note A)  
22 nF  
AVSS  
A. The capacitor on CPCAP is required when the charge pump is enabled. The charge pump can be enabled by rail-to-rail operation of the  
PGA buffers of the CTSD16 or by the OA module. See the register settings for each module in the MSP430F5xx and MSP430F6xx  
Family User's Guide for enabling this operation.  
Figure 10-8. Op Amp Partial Schematic  
10.2.2.2 Design Requirements  
As with any analog signals, appropriate printed-circuit-board layout and grounding techniques should be  
followed to eliminate ground loops, unwanted parasitic effects, and noise.  
In addition to grounding, ripple and noise spikes on the power-supply lines due to digital switching or switching  
power supplies can corrupt the signal. TI recommends a noise-free design using separate analog and digital  
ground planes with a single-point connection to achieve high accuracy. For more information about noise and its  
effects on op amps, see Noise Analysis in Operational Amplifiers.  
Rail-to-rail operation mode is available with the OA module at the cost of increased current. This should be used  
when OA input is near the AVCC rail. See the VCM specification (see Section 8.8.14) to see if rail-to-rail  
operation is required for your application. For more information, see the OA chapter of the MSP430F5xx and  
MSP430F6xx Family User's Guide.  
Ground switches are also available for use. See Section 9.12.16 for connections. These ground switches  
provide a low-ohmic connection to ground to both internal connections and to the external pin. When a ground  
switch is active, the Digital I/O logic for the corresponding pin is ignored.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
10.2.2.3 Detailed Design Procedure  
Operational amplifiers are a diverse and useful tool in many applications. Some common configurations that  
might prove to be useful to the user are transimpedance amplifiers to convert currents to voltage, voltage-gain  
amplifiers, and buffering configurations. For more information about how to design these circuits along with other  
common configurations, see the following documents.  
Op Amps for Everyone (ISBN: 978-0128116487)  
Handbook of Operational Amplifier Applications  
Understanding Basic Analog – Ideal Op Amps  
An Applications Guide for Op Amps  
10.2.2.4 Layout Guidelines  
Components that are shown in the partial schematic (see Figure 10-8) should be placed as close as possible to  
the respective device pins. Avoid long traces, because they add additional parasitic capacitance, inductance,  
and resistance on the signal. Avoid routing analog input signals close to a high-frequency pin (for example, a  
high-frequency PWM), because the high-frequency switching can be coupled into the analog signal. When  
possible, use internal connections to other modules to limit the potential of error introduction.  
10.2.3 RTC_B With Battery Backup System  
If not using a separate battery backup supply in the system, see Section 7.6 for VBAT and VBAK connections.  
10.2.3.1 Partial Schematic  
CBAK  
VBAK  
+
VBAT  
BAT  
(see Note A)  
A. BAT can be a battery or super-capacitor. See Section 8.8.8 for specifications.  
Figure 10-9. RTC_B With Battery Backup Partial Schematic  
10.2.3.2 Retaining an Accurate Real-Time Clock (RTC) Through Main Supply Interrupts  
The RTC_B module with Battery Backup System is designed to keep an accurate RTC during main supply  
interruptions and during low-power modes. For more details on when the Backup Battery System engages, see  
the Battery Backup System chapter in the MSP430F5xx and MSP430F6xx Family User's Guide. See Using the  
MSP430 RTC_B Module With Battery Backup Supply for more information and example code on how to keep an  
accurate RTC through power loss.  
10.2.3.3 Charging Super-Capacitors With Built-In Resistive Charger  
In applications that use a super-capacitor instead of a battery for secondary supply, the charging circuit  
functionality of the Battery Backup System can be used to charge the super-capacitor. The resistive charger  
circuit connects VBAT to DVCC with selectable resistor values found in Section 8.8.8. This means that if DVCC  
is not present, you cannot use this feature to charge a super-capacitor connected to VBAT. The CTSD16 module  
can be used to sense the voltage level on VBAT divided by a factor of three. Typical values during VBAT sensing  
are listed in Section 8.8.8. Channel A8 of the CTSD16 is routed internally for this. See the CTSD16 chapter of  
the MSP430F5xx and MSP430F6xx Family User's Guide for more information. The BAKADC bit in the BAKCTL  
register must also be enabled for this feature to operate. Additionally, RTC interrupts can be used to wake up  
from LPMx.5 states to charge the super-capacitor. While in an LPMx.5 state, the super-capacitor on VBAT  
drains. This means that the "wakeup to charge" interrupt interval must be designed so that charging starts before  
the leftover charge in the super-capacitor is too small to accommodate the worst-case backup time if the system  
were to suddenly lose power. To estimate this time, use Equation 13 for capacitor discharge in an RC circuit.  
Copyright © 2020 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
–t  
V(t) = VOeRC  
(13)  
Where  
VO = initial voltage of capacitor  
t = time  
R = circuit resistance  
C = capacitance  
Because the operational current is given for when RTC is operating within the specifications section, R can be  
replaced with VO/ILPM3.5 by Ohm's law. By setting V(t) to the minimum voltage for RTC operation while in backup  
supply, VO as voltage of capacitor when fully charged, and C as the super-capacitor capacitance, the estimated  
RTC operation time can be calculated. If periodic wakeups from LPM3.5 are not desirable for a given application,  
external means of charging the super-capacitor must be implemented by the user.  
For a detailed list of when the secondary supply VBAT powers the backup-supplied subsystem, see the Battery  
Backup System chapter in the MSP430F5xx and MSP430F6xx Family User's Guide.  
10.2.4 LCD_B Peripheral  
10.2.4.1 Partial Schematic  
Required LCD connections greatly vary by the type of display that is used (static or multiplexed), whether  
external or internal biasing is used, and also whether the on-chip charge pump is employed. For any display  
used, there is flexibility as to how the segment (Sx) and common (COMx) signals are connected to the MCU  
which (assuming that the correct choices are made) can be advantageous for the PCB layout and for the design  
of the application software.  
Because LCD connections are application specific, it is difficult to provide a single one-fits-all schematic.  
However for an example of a schematic using the LCD_B module with an MSP430F6638, see the Ultra Low  
Power Blood Pressure And Heart Rate Monitor Reference Design.  
10.2.4.2 Design Requirements  
Due to the flexibility of the LCD_B peripheral module to accommodate various segment-based LCDs, selecting  
the right display for the application in combination with determining specific design requirements is often an  
iterative process. There can be well-defined requirements in terms of how many individually addressable LCD  
segments need to be controlled, what the requirements for LCD contrast are, which device pins are available for  
LCD use and which are required by other application functions, and what the power budget is, to name just a  
few. TI strongly recommends reviewing the LCD_B peripheral module chapter in the MSP430F5xx and  
MSP430F6xx Family User's Guide during the initial design requirements and decision process. The following  
table provides a brief overview over different choices that can be made and their impact.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
OPTION OR FEATURE  
IMPACT OR USE CASE  
Enable displays with more segments  
Use fewer device pins  
LCD contrast decreases as mux level increases  
Power consumption increases with mux level  
Requires multiple intermediate bias voltages  
Multiplexed LCD  
Limited number of segments that can be addressed  
Use a relatively large number of device pins  
Use the least amount of power  
Static LCD  
Use only VCC and GND to drive LCD signals  
Simpler solution – no external circuitry  
Independent of VLCD source  
Internal Bias Generation  
Somewhat higher power consumption  
Requires external resistor ladder divider  
Resistor size depends on display  
Ability to adjust drive strength to optimize tradeoff between power consumption and good drive of large  
segments (high capacitive load)  
External Bias Generation  
Internal Charge Pump  
External resistor ladder divider can be stabilized through capacitors to reduce ripple  
Helps ensure a constant level of contrast despite decaying supply voltage conditions (battery-powered  
applications)  
Programmable voltage levels allow software-driven contrast control  
Requires an external capacitor on the LCDCAP pin  
Higher current consumption than simply using VCC for the LCD driver  
10.2.4.3 Detailed Design Procedure  
A major component in designing the LCD solution is determining the exact connections between the LCD_B  
peripheral module and the display itself. Two basic design processes can be employed for this step, although in  
reality often a balanced co-design approach is necessary:  
PCB layout-driven design  
Software-driven design  
In the PCB layout-driven design process, the segment Sx and common COMx signals are connected to  
respective MSP430 device pins so that the routing of the PCB can be optimized to minimize signal crossings and  
to keep signals on one side of the PCB only, typically the top layer. For example, using a multiplexed LCD, it is  
possible to arbitrarily connect the Sx and COMx signals between the LCD and the MSP430 device as long as  
segment lines are swapped with segment lines and common lines are swapped with common lines. It is also  
possible to not contiguously connect all segment lines but rather skip LCD_B module segment connections to  
optimize layout or to allow access to other functions that may be multiplexed on a particular device port pin.  
Employing a purely layout-driven design approach, however, can result in the LCD_B module control bits that  
are responsible for turning on and off segments to appear scattered throughout the memory map of the LCD  
controller (LCDMx registers). This approach potentially places a rather large burden on the software design that  
may also result in increased energy consumption due to the computational overhead required to work with the  
LCD.  
The other extreme is a purely software-driven approach that starts with the idea that control bits for LCD  
segments that are frequently turned on and off together should be co-located in memory in the same LCDMx  
register or in adjacent registers. For example, in case of a 4-mux display that contains several 7segment digits,  
from a software perspective it can be very desirable to control all 7 segments of each digit though a single byte-  
wide access to an LCDMx register. And consecutive segments are mapped to consecutive LCDMx registers.  
This allows use of simple look-up tables or software loops to output numbers on an LCD, reducing computational  
overhead and optimizing the energy consumption of an application. Establishing the most convenient memory  
layout must be performed in conjunction with the specific LCD that is being used to understand its design  
constraints in terms of which segment and which common signals are connected to, for example, a digit.  
Copyright © 2020 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
For design information regarding the LCD controller input voltage selection including internal and external  
options, contrast control, and bias generation, refer to the LCD_B controller chapter in the MSP430F5xx and  
MSP430F6xx Family User's Guide.  
For additional design information, see Designing With MSP430 and Segment LCD.  
10.2.4.4 Layout Guidelines  
LCD segment (Sx) and common (COMx) signal traces are continuously switching while the LCD is enabled and  
should, therefore, be kept away from sensitive analog signals such as ADC inputs to prevent any noise coupling.  
TI recommends keeping the LCD signal traces on one side of the PCB grouped together in a bus-like fashion. A  
ground plane underneath the LCD traces and guard traces employed alongside the LCD traces can provide  
shielding.  
If the internal charge pump of the LCD module is used, the externally provided capacitor on the LCDCAP pin  
should be located as close as possible to the MCU. The capacitor should be connected to the device using a  
short and direct trace and also have a solid connection to the ground plane that is supplying the VSS pins of the  
MCU.  
For an example layout of the LCD_B module with an MSP430F6638, see the Ultra Low Power Blood Pressure  
And Heart Rate Monitor reference design.  
10.2.5 DAC12 Peripheral  
For internal connections between signal chain modules such as CTSD16, OA, and DAC12, see Section 9.12.16.  
When available, internal connections should be chosen over external ones to reduce noise and save pins.  
Solid decoupling on both the digital and analog supplies is required (best with two capacitors per supply, one  
1 µF and one 100 nF [see Section 10.1.1]).  
10.2.5.1 Partial Schematic  
VREFBG/VeREF+  
(see Note)  
1 nF  
AVSS  
A. The capacitor is used to reduce noise when using internal VREFBG setting. This pin is also used for the external reference input for the  
CTSD16 or DAC. When using the external reference, the capacitor is not needed. Because of the shared signal path and pin, the internal  
and external references (VREFBG and VeREF+, respectively) cannot be used at the same time.  
Figure 10-10. DAC12 Partial Schematic  
10.2.5.2 Design Requirements  
As with any analog signals, appropriate printed-circuit-board layout and grounding techniques must be followed  
to eliminate ground loops, unwanted parasitic effects, and noise.  
In addition to grounding, ripple and noise spikes on the power-supply lines due to digital switching or switching  
power supplies can corrupt the signal. TI recommends a noise-free design using separate analog and digital  
ground planes with a single-point connection to achieve high accuracy.  
10.2.5.3 Detailed Design Procedure  
Digital-to-analog converters (DACs) can be used in a variety of applications and configurations. This section  
provides some resources for the user to help get started in a design. For details on example DAC applications,  
see Bridging the Divide: a DAC Applications Tutorial (Precision Signal Path).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
Some DAC applications may need an output buffer to reduce the affect of a load on the DAC output. This buffer  
can be an external op amp or, on some MSP430 devices, the integrated op amp can be used. For more  
information on how to configure an op amp for this function, see Section 10.2.2.  
For more information about DAC applications, see the following application notes:  
Digital-to-Analog High-Speed Data Converters Basics  
Design for a Wideband Differential Transimpedance DAC Output  
10.2.5.4 Layout Guidelines  
Application circuits attached to the DAC output should be placed as close as possible to the respective device  
pins. Avoid long traces because they add additional parasitic capacitance, inductance, and resistance on the  
signal. Avoid routing analog signals close to a high-frequency pin (for example, a high-frequency PWM) because  
the high-frequency switching can be coupled into the analog signal. When possible, use internal connections to  
other modules to limit the potential of error introduction.  
10.2.6 USB Module  
See the following resources for help with USB design. The application notes contain hardware, software, and  
application guides and implementations.  
Starting a USB Design Using MSP430 MCUs  
USB Field Firmware Updates on MSP430 MCUs  
MSP430 USB Developers Package  
Copyright © 2020 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
10.2.7 LDO Module  
Solid decoupling on both the digital and analog supplies is required (best with two capacitors per supply, one  
1 µF and one 100 nF [see Section 10.1.1]).  
The LDO module is in its own power domain on chip (separate from DVCC). To use the Port U pins (PU.0 and  
PU.1) this domain must be powered. If use of the Port U pins is needed and no voltage is supplied to LDOI, then  
a 3.3-V supply to LDOO is needed. LDOO can act as an input only when the 3.3-V LDO is not enabled. When  
the 3.3-V LDO is not needed in applications, keep LDOI tied low to make sure that the LDO module does not  
draw excessive current when disabled.  
10.2.7.1 Partial Schematic  
LDOI  
5 V  
4.7 µF  
LDOO  
VSSU  
220 nF  
DVCC  
(see Note)  
A. Connection between LDOO and DVCC is optional. If connected, the LDO powers the device. LDOO can also supply other subsystems in  
the application if the maximum output current for the LDO is not exceeded (see the LDO power system specifications in Section  
8.8.18.1).  
Figure 10-11. LDO Partial Schematic  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Getting Started  
For more information on the MSP430family of devices and the tools and libraries that are available to help with  
your development, visit the MSP430 ultra-low-power sensing & measurement MCUs overview.  
11.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS – Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP – Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. Figure 11-1 provides a legend for reading the complete device  
name.  
Copyright © 2020 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
MSP 430 F 5 438 A I PM T -EP  
Processor Family  
MCU Platform  
Device Type  
Series  
Feature Set  
Optional: Additional Features  
Optional: Tape and Reel  
Packaging  
Optional: Temperature Range  
Optional: Revision  
Processor Family  
CC = Embedded RF Radio  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
PMS = Prototype Device  
MCU Platform  
Device Type  
430 = MSP430 low-power microcontroller platform  
Memory Type  
C = ROM  
F = Flash  
FR = FRAM  
G = Flash  
L = No nonvolatile memory  
Specialized Application  
AFE = Analog front end  
BQ = Contactless power  
CG = ROM medical  
FE = Flash energy meter  
FG = Flash medical  
FW = Flash electronic flow meter  
Series  
1 = Up to 8 MHz  
2 = Up to 16 MHz  
3 = Legacy  
4 = Up to 16 MHz with LCD driver  
5 = Up to 25 MHz  
6 = Up to 25 MHz with LCD driver  
0 = Low-voltage series  
Feature Set  
Various levels of integration within a series  
Updated version of the base part number  
Optional: Revision  
Optional: Temperature Range S = 0°C to 50°C  
C = 0°C to 70°C  
I = –40°C to 85°C  
T = –40°C to 105°C  
Packaging  
http://www.ti.com/packaging  
Optional: Tape and Reel  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
Optional: Additional Features -EP = Enhanced product (–40°C to 105°C)  
-HT = Extreme temperature parts (–55°C to 150°C)  
-Q1 = Automotive Q100 qualified  
Figure 11-1. Device Nomenclature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
11.3 Tools and Software  
All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are  
available from TI and various third parties. See them all at MSP430 ultra-low-power MCUs – Tools & software.  
Table 11-1 lists the debug features of the MSP430FG662x and MSP430FG642x MCUs. See the Code  
Composer Studio IDE for MSP430 MCUs User's Guide for details on the available features.  
Table 11-1. Hardware Debug Features  
BREAK-  
POINTS  
(N)  
RANGE  
BREAK-  
POINTS  
LPMx.5  
DEBUGGING  
SUPPORT  
MSP430  
ARCHITECTURE  
4-WIRE  
JTAG  
2-WIRE  
JTAG  
CLOCK  
CONTROL  
STATE  
SEQUENCER  
TRACE  
BUFFER  
EnergyTrace++™  
TECHNOLOGY  
MSP430Xv2  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
No  
No  
Design Kits and Evaluation Modules  
MSP-TS430PZ100AUSB - 100-pin target development board for MSP430FG6x MCUs  
The MSP-TS430PZ100AUSB is a stand-alone 100-pin ZIF socket target board used to program and debug the  
MSP430 MCU in system through the JTAG interface or the Spy-Bi-Wire (2-wire JTAG) protocol.  
Educational BoosterPack MKII  
The Educational BoosterPack MKII offers a high level of integration for developers to quickly prototype complete  
solutions. Various analog and digital inputs/outputs are at your disposal including an analog joystick,  
environmental and motion sensors, RGB LED, microphone, buzzer, color LCD display, and more.  
Software  
MSP430Waresoftware  
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all  
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This  
library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of  
Code Composer StudioIDE or as a stand-alone package.  
MSP430FG662x, MSP430FG642x code examples  
C code examples are available for every MSP device that configures each of the integrated peripherals for  
various application needs.  
MSP Driver Library  
The abstracted API of MSP Driver Library provides easy-to-use function calls that free you from directly  
manipulating the bits and bytes of the MSP430 hardware. Thorough documentation is delivered through a  
helpful API Guide, which includes details on each function call and the recognized parameters. Developers can  
use Driver Library functions to write complete projects with minimal overhead.  
Capacitive Touch Software Library  
Free C libraries for enabling capacitive touch capabilities on MSP430 MCUs. The MSP430 MCU version of the  
library features several capacitive touch implementations including the RO and RC method.  
MSP EnergyTraceTechnology  
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and  
displays the energy profile of the application and helps to optimize it for ultra-low-power consumption.  
Copyright © 2020 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
ULP (Ultra-Low Power) Advisor  
ULP Advisorsoftware is a tool for guiding developers to write more efficient code to fully use the unique ultra-  
low-power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller  
developers, ULP Advisor checks your code against a thorough ULP checklist to help minimize the energy  
consumption of your application. At build time, ULP Advisor provides notifications and remarks to highlight areas  
of your code that can be further optimized for lower power.  
IEC60730 Software Package  
The IEC60730 MSP430 software package helps customers comply with IEC 60730-1:2010 (Automatic Electrical  
Controls for Household and Similar Use – Part 1: General Requirements) for up to Class B products, which  
includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The  
IEC60730 MSP430 software package can be embedded in customer applications running on MSP430 MCUs to  
help simplify the customer’s certification efforts of functional safety-compliant consumer devices to IEC  
60730-1:2010 Class B.  
Fixed Point Math Library for MSP  
The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical  
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and  
MSP432 MCUs. These routines are typically used in computationally intensive real-time applications where  
optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath  
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably  
lower than equivalent code written using floating-point math.  
Floating Point Math Library for MSP430  
Continuing to innovate in the low-power and low-cost microcontroller space, TI provides MSPMATHLIB.  
Leveraging the intelligent peripherals of our devices, this floating-point math library of scalar functions that are up  
to 26 times faster than the standard MSP430 math functions. Mathlib is easy to integrate into your designs. This  
library is free and is integrated in both Code Composer Studio IDE and IAR Embedded Workbench IDE.  
Development Tools  
Code Composer StudioIntegrated Development Environment for MSP Microcontrollers  
Code Composer Studio integrated development environment (IDE) supports all MSP microcontroller devices.  
Code Composer Studio IDE comprises a suite of embedded software utilities used to develop and debug  
embedded applications. Code Composer Studio IDE includes an optimizing C/C++ compiler, source code editor,  
project build environment, debugger, profiler, and many other features.  
Command-Line Programmer  
MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET  
programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary  
files (.txt or .hex) directly to the MSP microcontroller without an IDE.  
Uniflash Standalone Flash Tool for TI Microcontrollers  
CCS Uniflash is a standalone tool used to program on-chip flash memory on TI MCUs and on-board flash  
memory for Sitara processors. Uniflash has a GUI, command line, and scripting interface. CCS Uniflash is  
available free of charge.  
MSP-GANG Production Programmer  
The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight  
identical MSP430 or MSP432 flash or FRAM devices at the same time. The MSP Gang Programmer connects to  
a host PC using a standard RS-232 or USB connection and provides flexible programming options that let the  
user fully customize the process.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
11.4 Documentation Support  
The following documents describe the MSP430FG662x and MSP430FG642x MCUs. Copies of these documents  
are available on the Internet at www.ti.com.  
Receiving Notification of Document Updates  
To receive notification of documentation updates—including silicon errata—go to the product folder for your  
device on ti.com (for links to the product folders, see Section 11.5). In the upper right corner, click the "Alert me"  
button. This registers you to receive a weekly digest of product information that has changed (if any). For change  
details, check the revision history of any revised document.  
Errata  
MSP430FG6626 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430FG6625 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430FG6426 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430FG6425 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
User's Guides  
MSP430F5xx and MSP430F6xx Family User's Guide  
Detailed information on the modules and peripherals available in this device family.  
MSP430 Flash Device Bootloader (BSL) User's Guide  
The MSP430 bootloader (BSL) lets users communicate with embedded memory in the MSP430 microcontroller  
during the prototyping phase, final production, and in service. Both the programmable memory (flash memory)  
and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap  
loader programs found in some digital signal processors (DSPs) that automatically load program code (and data)  
from external memory to the internal memory of the DSP.  
MSP430 Programming With the JTAG Interface  
This document describes the functions that are required to erase, program, and verify the memory module of the  
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. The  
document also describes how to program the JTAG access security fuse that is available on all MSP430  
devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire  
JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).  
MSP430 Hardware Tools User's Guide  
This manual describes the hardware of the TI MSP-FET430 flash emulation tool (FET). The FET is the program  
development tool for the MSP430 ultra-low-power microcontroller.  
Application Reports  
Designing With MSP430 MCUs and Segment LCDs  
Segment liquid crystal displays (LCDs) are needed to provide information to users in a wide variety of  
applications from smart meters to electronic shelf labels (ESLs) to medical equipment. This application note  
helps explain how segmented LCDs work, the different features of the various LCD modules across the MSP430  
MCU family, LCD hardware layout tips, guidance on writing efficient and easy-to-use LCD driver software, and  
an overview of the portfolio of MSP430 devices that include different LCD features to aid in device selection.  
Copyright © 2020 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
MSP430 32-kHz Crystal Oscillators  
Selection of the correct crystal, correct load circuit, and proper board layout are important for a stable crystal  
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the  
correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout  
are given. The document also contains detailed information on the possible oscillator tests to ensure stable  
oscillator operation in mass production.  
MSP430 System-Level ESD Considerations  
System-level ESD has become increasingly demanding with silicon technology scaling towards lower voltages  
and the need for designing cost-effective and ultra-low-power components. This application report addresses  
different ESD topics to help board designers and OEMs understand and design robust system-level designs.  
Using the MSP430 RTC_B Module With Battery Backup Supply  
Some applications need to retain an accurate real-time clock (RTC) through battery changes, power outages,  
and other events. This application note describes how to use RTC_B with battery backup supply functionality to  
retain the time and keep the RTC counting through loss of main power supply and how to reinitialize when the  
main power supply is restored.  
11.5 Related Links  
Table 11-2 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to sample or buy.  
Table 11-2. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
MSP430FG6626  
MSP430FG6625  
MSP430FG6426  
MSP430FG6425  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.6 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.7 Trademarks  
MSP430Ware, Microstar Junior, Code Composer Studio, TI E2E, MicroStar Junior, MSP430,  
EnergyTrace, ULP Advisor, are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.8 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.9 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
 
 
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
11.10 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
MSP430FG6626, MSP430FG6625  
MSP430FG6426, MSP430FG6425  
SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020  
www.ti.com  
12 Mechanical, Packaging, and Orderable Information  
12.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
1000  
2500  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FG6425IPZR  
ACTIVE  
LQFP  
PZ  
100  
113  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
FG6425  
MSP430FG6425IZQWR  
ACTIVE  
BGA  
ZQW  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
FG6425  
MICROSTAR  
JUNIOR  
MSP430FG6426IPZR  
ACTIVE  
ACTIVE  
LQFP  
PZ  
100  
113  
1000  
2500  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
FG6426  
FG6426  
MSP430FG6426IZQWR  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
MSP430FG6625IPZR  
ACTIVE  
ACTIVE  
LQFP  
PZ  
100  
113  
1000  
2500  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
FG6625  
FG6625  
MSP430FG6625IZQWR  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
MSP430FG6626IPZ  
MSP430FG6626IPZR  
ACTIVE  
ACTIVE  
LQFP  
PZ  
PZ  
100  
100  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
FG6626  
FG6626  
LQFP  
1000  
Green (RoHS  
& no Sb/Br)  
MSP430FG6626IZCAR  
MSP430FG6626IZCAT  
MSP430FG6626IZQWR  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
ZCA  
ZCA  
ZQW  
113  
113  
113  
2500  
250  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
FG6626  
FG6626  
FG6626  
TBD  
BGA  
MICROSTAR  
JUNIOR  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
MSP430FG6626IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
FG6626  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2020  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FG6425IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
330.0  
330.0  
24.4  
16.4  
17.0  
7.3  
17.0  
7.3  
2.1  
1.5  
20.0  
12.0  
24.0  
16.0  
Q2  
Q1  
MSP430FG6425IZQWR BGA MI  
ZQW  
CROSTA  
R JUNI  
OR  
MSP430FG6426IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
330.0  
330.0  
24.4  
16.4  
17.0  
7.3  
17.0  
7.3  
2.1  
1.5  
20.0  
12.0  
24.0  
16.0  
Q2  
Q1  
MSP430FG6426IZQWR BGA MI  
ZQW  
CROSTA  
R JUNI  
OR  
MSP430FG6625IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
330.0  
330.0  
24.4  
16.4  
17.0  
7.3  
17.0  
7.3  
2.1  
1.5  
20.0  
12.0  
24.0  
16.0  
Q2  
Q1  
MSP430FG6625IZQWR BGA MI  
ZQW  
CROSTA  
R JUNI  
OR  
MSP430FG6626IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
330.0  
330.0  
24.4  
16.4  
17.0  
7.3  
17.0  
7.3  
2.1  
1.5  
20.0  
12.0  
24.0  
16.0  
Q2  
Q1  
MSP430FG6626IZQWR BGA MI  
ZQW  
CROSTA  
R JUNI  
OR  
MSP430FG6626IZQWT BGA MI  
CROSTA  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
R JUNI  
OR  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FG6425IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
MSP430FG6425IZQWR BGA MICROSTAR  
JUNIOR  
ZQW  
MSP430FG6426IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
MSP430FG6426IZQWR BGA MICROSTAR  
JUNIOR  
ZQW  
MSP430FG6625IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
MSP430FG6625IZQWR BGA MICROSTAR  
JUNIOR  
ZQW  
MSP430FG6626IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
MSP430FG6626IZQWR BGA MICROSTAR  
JUNIOR  
ZQW  
MSP430FG6626IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
113  
250  
213.0  
191.0  
55.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
A
7.1  
6.9  
B
BALL A1 CORNER  
7.1  
6.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.25  
0.15  
BALL TYP  
5.5  
TYP  
(0.75) TYP  
SYMM  
M
L
K
J
(0.75) TYP  
H
G
F
E
D
C
SYMM  
5.5  
TYP  
0.35  
0.25  
113X Ø  
B
A
0.15  
0.05  
C
C
A B  
1
2
3
4
5
6
7
8
9 10 11 12  
0.5 TYP  
0.5 TYP  
4225149/A 08/2019  
NanoFree is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
(0.5) TYP  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10 11 12  
A
B
C
D
E
F
113X (Ø0.25)  
SYMM  
G
H
J
K
L
M
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 10X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
(Ø 0.25)  
METAL  
(Ø 0.25)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225149/A 08/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
(0.5) TYP  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10 11 12  
A
B
C
D
E
F
(R0.05)  
SYMM  
G
H
J
METAL TYP  
113X ( 0.25)  
K
L
M
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
SCALE: 10X  
4225149/A 08/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY