MSP430FR2155TDBTR [TI]

具有 32KB FRAM、4KB SRAM、比较器、12 位 ADC、UART/SPI/I2C 和计时器的 24MHz MCU | DBT | 38 | -40 to 105;
MSP430FR2155TDBTR
型号: MSP430FR2155TDBTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 32KB FRAM、4KB SRAM、比较器、12 位 ADC、UART/SPI/I2C 和计时器的 24MHz MCU | DBT | 38 | -40 to 105

时钟 静态存储器 光电二极管 外围集成电路 比较器
文件: 总145页 (文件大小:3423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
MSP430FR235xMSP430FR215x 混合信号微控制器  
1 器件概述  
1.1 特性  
1
多个输入信号选项  
嵌入式微控制器  
可配置的高功率和低功率模式  
可配置 PGA 模式支持  
– 16 RISC 架构,频率最高可达 24MHz  
扩展温度范围:–40°C 105°C  
同相模式:×1×2×3×5×9×17、  
×26×33  
反相模式:×1×2×4×8×16×  
25×32  
– 3.6V 1.8V 的宽电源电压范围(工作电压受限  
SVS 电平,参阅 VSVSH- VSVSH+,见  
PMMSVS BOR)  
经优化的低功耗模式(3V)  
工作模式:142µA/MHz  
待机:  
用于进行失调电压和偏置设置的内置 12 位基  
DAC  
具有可选基准电压的 12 位电压 DAC 模式  
具有 32768Hz 晶体的 LPM31.43µASVS  
处于启用状态)  
智能数字外设  
三个 16 位计时器,每个计时器有 3 个捕捉/比较  
寄存器 (Timer_B3)  
具有 32768Hz 晶体的 LPM3.5620nASVS  
处于启用状态)  
一个 16 位计时器,每个计时器有 7 个捕捉/比较  
寄存器 (Timer_B7)  
一个仅用作计数器的 16 位实时钟计数器 (RTC)  
– 16 位循环冗余校验器 (CRC)  
中断比较控制器 (ICC),可启用嵌套硬件中断  
– 32 位硬件乘法器 (MPY32)  
曼彻斯特编解码器 (MFM)  
关断 (LPM4.5)42nASVS 处于启用状态)  
低功耗铁电 RAM (FRAM)  
容量高达 32KB 的非易失性存储器  
内置错误修正码 (ECC)  
可配置的写保护  
对程序、常量和存储的统一存储  
耐写次数达 1015  
抗辐射和非磁性  
易于使用  
增强型串行通信  
两个增强型 USCI_A (eUSCI_A) 模块支持  
UARTIrDA SPI  
– 20KB ROM 库包含驱动程序库和 FFT 库  
高性能模拟  
两个增强型 USCI_B (eUSCI_B) 模块支持 SPI 和  
I2C  
一个 12 通道 12 位模数转换器 (ADC)  
内部共享基准(1.52.0 2.5V)  
采样与保持 200ksps  
两个增强型比较器 (eCOMP)  
集成 6 位数模转换器 (DAC) 作为基准电压  
可编程迟滞  
时钟系统 (CS)  
片上 32kHz RC 振荡器 (REFO)  
带有锁频环 (FLL) 的片上 24MHz 数控振荡器  
(DCO)  
室温下的精度为 ±1%(具有片上基准)  
片上超低频 10kHz 振荡器 (VLO)  
片上高频调制振荡器 (MODOSC)  
外部 32kHz 晶振 (LFXT)  
可配置的高功率和低功率模式  
一个具有 100ns 的快速响应时间  
一个具有 1µs 的响应时间以及 1.5µA 的低功  
外部高频晶体振荡器,频率最高可达 24MHz  
(HFXT)  
四个智能模拟组合 (SAC-L3)(仅限  
MSP430FR235x 器件)  
可编程 MCLK 预分频器(1 128)  
源自具有可编程预分频器(124 8)的  
MCLK SMCLK  
支持通用运算放大器 (OA)  
轨至轨输入和输出  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASEC4  
 
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
通用输入/输出和引脚功能  
– 48 引脚封装上的 44 I/O  
系列成员(另请参阅 器件比较)  
– MSP430FR235532KB 的程序 FRAM512B  
的数据 FRAM4KB RAM  
– MSP430FR235316KB 的程序 FRAM512B  
的数据 FRAM2KB RAM  
– MSP430FR215532KB 的程序 FRAM512B  
的数据 FRAM4KB RAM  
– MSP430FR215316KB 的程序 FRAM512B  
的数据 FRAM2KB RAM  
– 32 个中断引脚(P1P2P3 P4)可以将  
MCU LPM 唤醒  
开发工具和软件(另外请参阅 工具和软件)  
– LaunchPad™开发套件 (MSPEXP430FR2355)  
目标开发板 (MSPTS43048PT)  
免费的专业开发环境  
封装选项  
– 48 引脚:LQFP (PT)  
– 40 引脚:VQFN (RHA)  
– 38 引脚:TSSOP (DBT)  
– 32 引脚:VQFN (RSM)  
1.2 应用  
烟雾和热量探测器  
传感器变送器  
断路器  
有线工业通信  
光学模块  
电池组管理  
收费标签  
传感器信号调节  
1.3 说明  
MSP430FR215x MSP430FR235x 微控制器 (MCU) 均属于 MSP430™MCU 超值系列超低功耗低成本器  
件产品系列,该产品系列适用于检测和测量 应用。MSP430FR235x MCU 集成了四个称之为智能模拟组合  
的可配置信号链模块,每个组合均可用作 12 DAC 或可配置可编程增益运算放大器,以满足系统的特定  
需求,同时缩减 BOM 并减小 PCB 尺寸。该器件还包含一个 12 SAR ADC 和两个比较器。  
MSP430FR215x MSP430FR235x MCU 都支持 –40° 105°C 的扩展温度范围,因此更高温度的工业  
应用 可从这些器件的 FRAM 数据记录功能受益。该扩展温度范围使开发人员可以满足烟雾探测器、传感器  
变送器和断路器等 应用 的要求。  
MSP430FR215x MSP430FR235x MCU 具有功能强大的 16 RISC CPU16 位寄存器和常数发生器,  
有助于实现最大编码效率。数控振荡器 (DCO) 通常可以使器件在不到 10µs 的时间内从低功耗模式唤醒至激  
活模式。  
MSP430 超低功耗 (ULP) FRAM 微控制器平台将独特的嵌入式 FRAM 和整体超低功耗系统架构相结合,从  
而使系统设计人员能够在降低能耗的情况下提升性能。FRAM 技术将 RAM 的低功耗快速写入、灵活性和耐  
用性与闪存的非易失性相结合。  
MSP430FR215x MSP430FR235x MCU 由广泛的硬件和软件生态系统提供支持,随附参考设计和代码示  
例,便于您快速开始设计。开发套件包括 MSP-EXP430FR2355 LaunchPad™开发套件和 MSP-  
TS430PT48 48 引脚目标开发板。TI 还提供免费的 MSP430Ware™ 软件,该软件以 Code Composer  
Studio™ IDE 台式机和云版本组件的形式提供(位于 TI Resource Explorer)。 E2E™ 支持论坛还为  
MSP430 MCU 提供广泛的在线配套资料、培训和在线支持。  
有关完整的模块说明,请参阅MSP430FR4xx MSP430FR2xx 系列器件用户指南》。  
2
器件概述  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
器件信息(1)  
器件型号  
工作温度  
封装  
封装尺寸(2)  
MSP430FR2355TPT  
MSP430FR2353TPT  
MSP430FR2155TPT  
MSP430FR2153TPT  
MSP430FR2355TRHA  
MSP430FR2353TRHA  
MSP430FR2155TRHA  
MSP430FR2153TRHA  
MSP430FR2355TDBT  
MSP430FR2353TDBT  
MSP430FR2155TDBT  
MSP430FR2153TDBT  
MSP430FR2355TRSM  
MSP430FR2353TRSM  
MSP430FR2155TRSM  
MSP430FR2153TRSM  
-40°C 105°C  
LQFP (48)  
7mm × 7mm  
-40°C 105°C  
-40°C 105°C  
-40°C 105°C  
VQFN (40)  
TSSOP (38)  
VQFN (32)  
6mm × 6mm  
9.7mm × 4.4mm  
4mm × 4mm  
(1) 要获得最新的产品、封装和订购信息,请参见封装选项附录9),或者访问德州仪器 (TI) 网站  
www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据9中)。  
CAUTION  
系统级静电放电 (ESD) 保护必须符合器件级 ESD 规范,以防发生电气过载或对  
数据或代码存储器造成干扰。有关更多信息,请参阅MSP430™ 系统级 ESD  
注意事项》。  
版权 © 2018–2019, Texas Instruments Incorporated  
器件概述  
3
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
1.4 功能方框图  
1-1 显示了 MSP430FR235x 功能方框图。  
XIN XOUT  
P1.x, P2.x  
P3.x, P4.x  
P5.x, P6.x  
HF, LF XT1  
SAC0, SAC1,  
SAC2, SAC3  
eCOMP0  
eCOMP1  
I/O Ports  
P1, P2  
2×8 IOs  
Interrupt  
and Wakeup  
PA  
I/O Ports  
P3, P4  
2×8 IOs  
Interrupt  
and Wakeup  
PB  
ADC  
I/O Ports  
P5, P6  
1×5 IOs  
1×7 IOs  
PC  
FRAM  
RAM  
DVCC  
DVSS  
ROM  
20KB  
Up to 12-ch  
Single-end  
12 bit  
Configurable  
OA, PGA,  
12-bit DAC  
Combo  
Enhanced  
Comparator  
with 6-bit  
DAC  
24-MHz  
Clock  
System  
Power  
Management  
Module  
32KB + 512B  
16KB + 512B  
4KB  
2KB  
200 ksps  
1×12 IOs  
1×16 IOs  
1×16 IOs  
RST/NMI  
MAB  
MDB  
24-MHz CPU  
including  
16 registers  
EEM  
RTC  
Counter  
BAKMEM  
SYS  
Infrared  
MFM  
TB0  
TB1  
TB2  
Timer_B  
MPY32  
CRC16  
ICC  
TB3  
Timer_B  
eUSCI_A0  
eUSCI_A1  
TCK  
TMS  
eUSCI_B0  
eUSCI_B1  
32 Bytes  
Backup  
Memory  
16-bit  
Real-Time  
Clock  
16-bit  
Cyclic  
Redundancy  
Check  
JTAG  
SBW  
32-bit  
Hardware  
Multiplier  
Interrupt  
Compare  
Controller  
TDI/TCLK  
TDO  
7 CC  
Registers  
(UART,  
IrDA, SPI)  
(SPI, I2C)  
3 CC  
Registers  
SBWTCK  
SBWTDIO  
Watchdog  
LPM3.5 Domain  
1-1. MSP430FR235x 功能方框图  
1-2 显示了 MSP430FR215x 功能方框图。  
XIN XOUT  
P1.x, P2.x  
P3.x, P4.x  
P5.x, P6.x  
HF, LF XT1  
eCOMP0  
eCOMP1  
I/O Ports  
P1, P2  
2×8 IOs  
Interrupt  
and Wakeup  
PA  
I/O Ports  
P3, P4  
2×8 IOs  
Interrupt  
and Wakeup  
PB  
ADC  
I/O Ports  
P5, P6  
1×5 IOs  
1×7 IOs  
PC  
FRAM  
ROM  
RAM  
DVCC  
DVSS  
Up to 12-ch  
Single-end  
12 bit  
Enhanced  
Comparator  
with 6-bit  
DAC  
24-MHz  
Clock  
System  
Power  
Management  
Module  
32KB + 512B  
16KB + 512B  
4KB  
2KB  
20KB  
200 ksps  
1×12 IOs  
1×16 IOs  
1×16 IOs  
RST/NMI  
MAB  
MDB  
24-MHz CPU  
including  
16 registers  
EEM  
RTC  
Counter  
BAKMEM  
SYS  
Infrared  
MFM  
TB0  
TB1  
TB2  
Timer_B  
MPY32  
CRC16  
ICC  
TB3  
Timer_B  
eUSCI_A0  
eUSCI_A1  
TCK  
TMS  
eUSCI_B0  
eUSCI_B1  
32 Bytes  
Backup  
Memory  
16-bit  
Real-Time  
Clock  
16-bit  
Cyclic  
Redundancy  
Check  
JTAG  
SBW  
32-bit  
Hardware  
Multiplier  
Interrupt  
Compare  
Controller  
TDI/TCLK  
TDO  
7 CC  
Registers  
(UART,  
IrDA, SPI)  
(SPI, I2C)  
3 CC  
Registers  
SBWTCK  
SBWTDIO  
Watchdog  
LPM3.5 Domain  
1-2. MSP430FR215x 功能方框图  
MCU 具有一个 DVCC DVSS 引脚主电源对,用于为数字模块和模拟模块供电。推荐的旁路电容和去  
耦电容分别为 4.7µF 10µF 0.1µF,精度为 ±5%。  
P1P2P3 P4 具有引脚中断功能,可以将 MCU 从所有 LPM(包括 LPM4LPM3.5 LPM4.5)  
唤醒。  
每个 Timer_B3 具有三个捕捉/比较寄存器。仅 CCR1 CCR2 从外部连接。Timer_B7 7 个捕捉/比  
较寄存器。仅 CCR1 CCR6 从外部连接。CCR0 寄存器仅用于内部周期时序和中断生成。  
LPM3.5 模式下,RTC 计数器与备用存储器可继续工作,而其余外设停止工作。  
4
器件概述  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
5.12 Timing and Switching Characteristics ............... 33  
Detailed Description ................................... 61  
6.1 CPU ................................................. 61  
6.2 Operating Modes.................................... 61  
6.3 Interrupt Vector Addresses.......................... 63  
6.4 Memory Organization ............................... 65  
6.5 Bootloader (BSL).................................... 65  
6.6 JTAG Standard Interface............................ 66  
6.7 Spy-Bi-Wire Interface (SBW)........................ 66  
6.8 FRAM................................................ 66  
6.9 Memory Protection .................................. 67  
6.10 Peripherals .......................................... 67  
6.11 Input/Output Diagrams .............................. 95  
6.12 Device Descriptors (TLV) .......................... 107  
6.13 Identification........................................ 109  
Applications, Implementation, and Layout ...... 110  
6
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能方框图............................................ 4  
修订历史记录............................................... 6  
Device Comparison ..................................... 8  
3.1 Related Products ..................................... 9  
Terminal Configuration and Functions ............ 10  
4.1 Pin Diagrams........................................ 10  
4.2 Pin Attributes ........................................ 18  
4.3 Signal Descriptions.................................. 22  
4.4 Pin Multiplexing ..................................... 26  
4.5 Buffer Type.......................................... 26  
4.6 Connection of Unused Pins ......................... 26  
Specifications ........................................... 27  
5.1 Absolute Maximum Ratings ........................ 27  
5.2 ESD Ratings ........................................ 27  
5.3 Recommended Operating Conditions............... 27  
2
3
4
5
7
8
7.1  
Device Connection and Layout Fundamentals .... 110  
7.2  
Peripheral- and Interface-Specific Design  
Information ......................................... 113  
7.3 ROM Libraries ..................................... 114  
7.4 Typical Applications................................ 114  
器件和文档支......................................... 115  
8.1 使用入门 ........................................... 115  
8.2 器件命名规则....................................... 115  
8.3 工具和软件 ......................................... 116  
8.4 文档支持 ........................................... 118  
8.5 相关链接 ........................................... 118  
8.6 商标 ................................................ 120  
8.7 静电放电警告....................................... 120  
8.8 Glossary............................................ 120  
机械、封装和可订购信息 .............................. 121  
5.4  
Active Mode Supply Current Into VCC Excluding  
External Current..................................... 28  
5.5 Active Mode Supply Current Per MHz .............. 28  
5.6  
5.7  
5.8  
5.9  
Low-Power Mode LPM0 Supply Currents Into VCC  
Excluding External Current.......................... 28  
Low-Power Mode LPM3 and LPM4 Supply Currents  
(Into VCC) Excluding External Current .............. 29  
Low-Power Mode LPMx.5 Supply Currents (Into  
VCC) Excluding External Current.................... 30  
Production Distribution of LPM Supply Currents.... 31  
5.10 Typical Characteristics - Current Consumption Per  
Module .............................................. 32  
5.11 Thermal Resistance Characteristics ................ 32  
9
版权 © 2018–2019, Texas Instruments Incorporated  
内容  
5
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
2 修订历史记录  
从修订版本 C 更改为修订版本 D  
Changes from March 6, 2019 to December 10, 2019  
Page  
修正了 1-1 中的 ROM 规格MSP430FR235x 功能方框图 1-2 MSP430FR215x 功能方框图...................... 4  
Added a note on all VQFN pinouts to indicate that the thermal pad should be connected to VSS ...................... 11  
Corrected 4-4, 32-Pin RSM (VQFN) (Top View) – MSP430FR235x...................................................... 13  
Changed the note that begins "Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset..." in  
Section 5.3, Recommended Operating Conditions ............................................................................. 27  
Added the note that begins "TI recommends that power to the DVCC pin must not exceed the limits..." in  
Section 5.3, Recommended Operating Conditions ............................................................................. 27  
Changed the note that begins "A capacitor tolerance of ±20% or better is required..." in Section 5.3,  
Recommended Operating Conditions ............................................................................................ 27  
Combined former sections 5.8 and 5.10 into 5.9, Production Distribution of LPM Supply Currents ................. 31  
Corrected the "SVS disabled" condition for 5-1 ............................................................................. 31  
Added the note "See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing" to 表  
5-3, XT1 Crystal Oscillator (Low Frequency) ................................................................................... 35  
Changed the note that begins "Requires external capacitors at both terminals..." in 5-3, XT1 Crystal Oscillator  
(Low Frequency) .................................................................................................................... 35  
Added the tTB,cap parameter in 5-13, Timer_B................................................................................ 45  
Corrected the test conditions for the RI parameter in 5-20, ADC, Power Supply and Input Range Conditions..... 51  
Removed ADCDIV from the equation for the ADC conversion time because ADCCLK is after division in 5-21,  
ADC, Timing Parameters........................................................................................................... 51  
Added the note that begins "tSample = ln(2n+1) × τ ..." in 5-21, ADC, Timing Parameters ............................... 51  
Changed the unit from "nV" to "µV" for the "Input noise voltage" in the 5-25, SAC, OA .............................. 55  
Changed the unit from "nv/Hz" to "nV/Hz" for the "Input noise voltage density" in the 5-25, SAC, OA ............ 55  
Removed the Iref trim parameter from 5-27, FRAM ......................................................................... 57  
Changed the bitfield name from RTCCLK to RTCCKSEL in the table note on 6-9, Clock Distribution ............. 68  
Added 6.10.17, Cross-Chip Interconnection (SACx are MSP430FR235x Devices Only).............................. 83  
Added P1SELC information in 6-41, Port P1, P2 Registers (Base Address: 0200h) .................................. 86  
Added P2SELC information in 6-41, Port P1, P2 Registers (Base Address: 0200h) .................................. 86  
Added P3SELC information in 6-42, Port P3, P4 Registers (Base Address: 0220h) .................................. 87  
Added P4SELC information in 6-42, Port P3, P4 Registers (Base Address: 0220h) .................................. 87  
Added P5SELC information in 6-43, Port P5, P6 Registers (Base Address: 0240h) .................................. 87  
Added P6SELC information in 6-43, Port P5, P6 Registers (Base Address: 0240h) .................................. 87  
Changed CRC covered end address to 0x1AF7 in table note (1) in 6-70, Device Descriptors ..................... 107  
从修订版本 B 更改为修订版本 C  
Changes from July 3, 2018 to March 5, 2019  
Page  
增加了 32 引脚 VQFN (RSM) 封装信息,见 1.1, 特性 ....................................................................... 2  
在器件信息表中增加了 32 引脚 VQFN (RSM) 封装信息,见 1.3(说明部分) ........................................... 3  
Added 32-pin VQFN (RSM) package information in 3-1, Device Comparison ........................................... 8  
Added 4-4, 32-Pin RSM (VQFN) (Top View) – MSP430FR235x.......................................................... 13  
Added 4-8, 32-Pin RSM (VQFN) (Top View) – MSP430FR215x.......................................................... 17  
Added 32-pin VQFN (RSM) package information in 4.2, Pin Attributes .................................................. 18  
Added 32-pin VQFN (RSM) package information in 4.3, Signal Descriptions........................................... 22  
Added 32-pin VQFN (RSM) package information in Section 5.11, Thermal Resistance Characteristics ............... 32  
Added the tTB,cap parameter in 5-13, Timer_B................................................................................ 45  
Removed the Iref trim parameter from 5-27, FRAM ......................................................................... 57  
6
修订历史记录  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
从修订版本 A 更改为修订版本 B  
Changes from June 20, 2018 to July 2, 2018  
Page  
Added the tTB,cap parameter in 5-13, Timer_B................................................................................ 45  
Removed the Iref trim parameter from 5-27, FRAM ......................................................................... 57  
更新了8.3工具和软件 .......................................................................................................... 116  
8.4文档支持 中添加了勘误............................................................................................... 118  
从初始发行版更改为修订版本 A  
Changes from May 11, 2018 to June 19, 2018  
Page  
将文档状态更改为生产数据........................................................................................................ 1  
Added missing UCB0SCL signal to P1.3/UCB0SOMI/UCB0SCL/OA0+/A3 in pinout figures............................. 11  
Added the tTB,cap parameter in 5-13, Timer_B................................................................................ 45  
Removed the Iref trim parameter from 5-27, FRAM ......................................................................... 57  
Added row for "Driver library and FFT library" in 6-4, Memory Organization ........................................... 65  
Added 7.3, ROM Libraries .................................................................................................... 114  
Corrected the title and link to reference design in 7-1, Tools and Reference Designs ............................... 114  
版权 © 2018–2019, Texas Instruments Incorporated  
修订历史记录  
7
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
3 Device Comparison  
3-1 summarizes the features of the available family members.  
3-1. Device Comparison(1) (2)  
12-BIT ADC  
CHANNELS  
DEVICE  
PROGRAM FRAM SRAM (bytes)  
TB0, TB1, TB2  
TB3  
eUSCI_A eUSCI_B  
SAC  
eCOMP  
I/Os  
PACKAGE  
MSP430FR2355PT  
MSP430FR2353PT  
MSP430FR2355RHA  
MSP430FR2353RHA  
MSP430FR2355DBT  
MSP430FR2353DBT  
MSP430FR2355RSM  
MSP430FR2353RSM  
MSP430FR2155PT  
MSP430FR2153PT  
MSP430FR2155RHA  
MSP430FR2153RHA  
MSP430FR2155DBT  
MSP430FR2153DBT  
MSP430FR2155RSM  
MSP430FR2153RSM  
32KB + 512B  
16KB + 512B  
32KB + 512B  
16KB + 512B  
32KB + 512B  
16KB + 512B  
32KB + 512B  
16KB + 512B  
32KB + 512B  
16KB + 512B  
32KB + 512B  
16KB + 512B  
32KB + 512B  
16KB + 512B  
32KB + 512B  
16KB + 512B  
4096  
2048  
4096  
2048  
4096  
2048  
4096  
2048  
4096  
2048  
4096  
2048  
4096  
2048  
4096  
2048  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
7 × CCR(3)  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
12  
12  
10  
10  
10  
10  
8
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
44  
44  
36  
36  
34  
34  
28  
28  
44  
44  
36  
36  
34  
34  
28  
28  
48 PT (LQFP)  
48 PT (LQFP)  
2
40 RHA (VQFN)  
40 RHA (VQFN)  
38 DBT (TSSOP)  
38 DBT (TSSOP)  
32 RSM (VQFN)  
32 RSM (VQFN)  
48 PT (LQFP)  
2
2
2
2(4)  
2(4)  
2
8
12  
12  
10  
10  
10  
10  
8
2
48 PT (LQFP)  
2
40 RHA (VQFN)  
40 RHA (VQFN)  
38 DBT (TSSOP)  
38 DBT (TSSOP)  
32 RSM (VQFN)  
32 RSM (VQFN)  
2
2
2
2(4)  
2(4)  
8
(1) For the most current device, package, and ordering information, see the Package Option Addendum in 9, or see the TI web site at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.  
(3) A CCR register is a configurable register that provides internal and external capture or compare inputs, or internal and external PWM outputs. Not all CCR channels are package specific.  
See the definition in 4.3.  
(4) eUSCI_B1 supports only I2C function.  
8
Device Comparison  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
3.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers  
High-performance, low-power solutions to enable the autonomous future  
Products for MSP430 ultra-low-power sensing & measurement microcontrollers  
One platform. One ecosystem. Endless possibilities.  
Companion products for MSP430FR2355  
Review products that are frequently purchased or used with this product.  
Reference designs for MSP430FR2355  
Find reference designs leveraging the best in TI technology to solve your system-level challenges.  
版权 © 2018–2019, Texas Instruments Incorporated  
Device Comparison  
9
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
4 Terminal Configuration and Functions  
4.1 Pin Diagrams  
4-1 shows the pinout of the 48-pin PT package for the MSP430FR235x MCUs.  
P1.2/UCB0SIMO/UCB0SDA/TB0TRG/OA0-/A2/Veref-  
P1.1/UCB0CLK/ACLK/OA0O/COMP0.1/A1  
P1.0/UCB0STE/SMCLK/COMP0.0/A0/Veref+  
TEST/SBWTCK  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P3.6/OA3-  
2
P3.7/OA3+  
3
P1.4/UCA0STE/TCK/A4  
P1.5/UCA0CLK/TMS/OA1O/A5  
4
RST/NMI/SBWTDIO  
5
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/OA1-/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/OA1+/A7/VREF+  
P2.0/TB1.1/COMP0.O  
DVCC  
6
MSP430FR2355TPT  
MSP430FR2353TPT  
DVSS  
7
P2.7/TB0CLK/XIN  
8
P2.1/TB1.2/COMP1.O  
P2.6/MCLK/XOUT  
9
P2.2/TB1CLK  
P2.5/COMP1.0  
10  
11  
12  
P2.3/TB1TRG  
P2.4/COMP1.1  
P4.0/UCA1STE/ISOTXD/ISORXD  
P4.1/UCA1CLK  
P4.7/UCB1SOMI/UCB1SCL  
4-1. 48-Pin PT (LQFP) (Top View) – MSP430FR235x  
10  
Terminal Configuration and Functions  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
4-2 shows the pinout of the 40-pin RHA package for the MSP430FR235x MCUs.  
1
2
P1.1/UCB0CLK/ACLK/OA0O/COMP0.1/A1  
P1.0/UCB0STE/SMCLK/COMP0.0/A0/Veref+  
TEST/SBWTCK  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P3.6/OA3-  
P3.7/OA3+  
3
P1.4/UCA0STE/TCK/A4  
4
P1.5/UCA0CLK/TMS/OA1O/A5  
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/OA1-/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/OA1+/A7/VREF+  
P2.0/TB1.1/COMP0.O  
RST/NMI/SBWTDIO  
DVCC  
5
MSP430FR2355TRHA  
MSP430FR2353TRHA  
6
DVSS  
7
P2.7/TB0CLK/XIN  
P2.6/MCLK/XOUT  
P2.5/COMP1.0  
P2.4/COMP1.1  
8
P2.1/TB1.2/COMP1.O  
9
P2.2/TB1CLK  
10  
P2.3/TB1TRG  
NOTE: Connect the exposed thermal pad to VSS.  
4-2. 40-Pin RHA (VQFN) (Top View) – MSP430FR235x  
版权 © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
4-3 shows the pinout of the 38-pin DBT package for the MSP430FR235x MCUs.  
P3.2/OA2-  
P3.1/OA2O  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
P3.3/OA2+  
2
P5.0/TB2.1/MFM.RX/A8  
P5.1/TB2.2/MFM.TX/A9  
P3.4/SMCLK  
P3.0/MCLK  
3
P1.3/UCB0SOMI/UCB0SCL/OA0+/A3  
P1.2/UCB0SIMO/UCB0SDA/TB0TRG/OA0-/A2/Veref-  
P1.1/UCB0CLK/ACLK/OA0O/COMP0.1/A1  
P1.0/UCB0STE/SMCLK/COMP0.0/A0/Veref+  
TEST/SBWTCK  
4
5
P3.5/OA3O  
6
P3.6/OA3-  
7
P3.7/OA3+  
8
P1.4/UCA0STE/TCK/A4  
P1.5/UCA0CLK/TMS/OA1O/A5  
RST/NMI/SBWTDIO  
9
MSP430FR2355TDBT  
MSP430FR2353TDBT  
DVCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/OA1-/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/OA1+/A7/VREF+  
P2.0/TB1.1/COMP0.O  
DVSS  
P2.7/TB0CLK/XIN  
P2.6/MCLK/XOUT  
P2.1/TB1.2/COMP1.O  
P2.5/COMP1.0  
P2.2/TB1CLK  
P2.4/COMP1.1  
P2.3/TB1TRG  
P4.7/UCB1SOMI/UCB1SCL  
P4.6/UCB1SIMO/UCB1SDA  
P4.5/UCB1CLK  
P4.0/UCA1STE/ISOTXD/ISORXD  
P4.1/UCA1CLK  
P4.2/UCA1RXD/UCA1SOMI/UCA1RXD  
P4.3/UCA1TXD/UCA1SIMO/UCA1TXD  
P4.4/UCB1STE  
4-3. 38-Pin DBT (TSSOP) (Top View) – MSP430FR235x  
12  
Terminal Configuration and Functions  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
4-4 shows the pinout of the 32-pin RSM package for the MSP430FR235x MCUs.  
P1.1/UCB0CLK/ACLK/OA0O/COMP0.1/A1  
P1.0/UCB0STE/SMCLK/COMP0.0/A0/Veref+  
1
2
3
4
5
6
24  
23  
22  
21  
20  
19  
18  
17  
P3.6/OA3-  
P3.7/OA3+  
P1.4/UCA0STE/TCK/A4  
P1.5/UCA0CLK/TMS/OA1O/A5  
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/OA1-/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/OA1+/A7/VREF+  
P2.0/TB1.1/COMP0.O  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
DVSS  
P2.7/TB0CLK/XIN  
P2.6/MCLK/XOUT  
MSP430FR2355TRSM  
MSP430FR2353TRSM  
7
8
P2.1/TB1.2/COMP1.O  
NOTE: Connect the exposed thermal pad to VSS.  
4-4. 32-Pin RSM (VQFN) (Top View) – MSP430FR235x  
版权 © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
4-5 shows the pinout of the 48-pin PT package for the MSP430FR215x MCUs.  
P1.2/UCB0SIMO/UCB0SDA/TB0TRG/A2/Veref-  
P1.1/UCB0CLK/ACLK/COMP0.1/A1  
P1.0/UCB0STE/SMCLK/COMP0.0/A0/Veref+  
TEST/SBWTCK  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P3.6  
2
P3.7  
3
P1.4/UCA0STE/TCK/A4  
P1.5/UCA0CLK/TMS/A5  
4
RST/NMI/SBWTDIO  
5
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/A7/VREF+  
P2.0/TB1.1/COMP0.O  
DVCC  
6
MSP430FR2155TPT  
MSP430FR2153TPT  
DVSS  
7
P2.7/TB0CLK/XIN  
8
P2.1/TB1.2/COMP1.O  
P2.6/MCLK/XOUT  
9
P2.2/TB1CLK  
P2.5/COMP1.0  
10  
11  
12  
P2.3/TB1TRG  
P2.4/COMP1.1  
P4.0/UCA1STE/ISOTXD/ISORXD  
P4.1/UCA1CLK  
P4.7/UCB1SOMI/UCB1SCL  
4-5. 48-Pin PT (LQFP) (Top View) – MSP430FR215x  
14  
Terminal Configuration and Functions  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
4-6 shows the pinout of the 40-pin RHA package for the MSP430FR215x MCUs.  
1
2
P1.1/UCB0CLK/ACLK/COMP0.1/A1  
P1.0/UCB0STE/SMCLK/COMP0.0/A0/Veref+  
TEST/SBWTCK  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P3.6  
P3.7  
3
P1.4/UCA0STE/TCK/A4  
4
P1.5/UCA0CLK/TMS/A5  
RST/NMI/SBWTDIO  
DVCC  
5
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/A7/VREF+  
P2.0/TB1.1/COMP0.O  
MSP430FR2155TRHA  
MSP430FR2153TRHA  
6
DVSS  
7
P2.7/TB0CLK/XIN  
P2.6/MCLK/XOUT  
P2.5/COMP1.0  
P2.4/COMP1.1  
8
P2.1/TB1.2/COMP1.O  
9
P2.2/TB1CLK  
10  
P2.3/TB1TRG  
NOTE: Connect the exposed thermal pad to VSS.  
4-6. 40-Pin RHA (VQFN) (Top View) – MSP430FR215x  
版权 © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
4-7 shows the pinout of the 38-pin DBT package for the MSP430FR215x MCUs.  
P3.2  
P3.1  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
P3.3  
2
P5.0/TB2.1/MFM.RX/A8  
P5.1/TB2.2/MFM.TX/A9  
P3.4/SMCLK  
P3.5  
P3.0/MCLK  
3
P1.3/UCB0SOMI/UCB0SCL/A3  
P1.2/UCB0SIMO/UCB0SDA/TB0TRG/A2/Veref-  
P1.1/UCB0CLK/ACLK/COMP0.1/A1  
P1.0/UCB0STE/SMCLK/COMP0.0/A0/Veref+  
TEST/SBWTCK  
4
5
6
P3.6  
7
P3.7  
8
P1.4/UCA0STE/TCK/A4  
P1.5/UCA0CLK/TMS/A5  
RST/NMI/SBWTDIO  
9
MSP430FR2155TDBT  
MSP430FR2153TDBT  
DVCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/A7/VREF+  
P2.0/TB1.1/COMP0.O  
DVSS  
P2.7/TB0CLK/XIN  
P2.6/MCLK/XOUT  
P2.1/TB1.2/COMP1.O  
P2.5/COMP1.0  
P2.2/TB1CLK  
P2.4/COMP1.1  
P2.3/TB1TRG  
P4.7/UCB1SOMI/UCB1SCL  
P4.6/UCB1SIMO/UCB1SDA  
P4.5/UCB1CLK  
P4.0/UCA1STE/ISOTXD/ISORXD  
P4.1/UCA1CLK  
P4.2/UCA1RXD/UCA1SOMI/UCA1RXD  
P4.3/UCA1TXD/UCA1SIMO/UCA1TXD  
P4.4/UCB1STE  
4-7. 38-Pin DBT (TSSOP) (Top View) – MSP430FR215x  
16  
Terminal Configuration and Functions  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
4-8 shows the pinout of the 32-pin RSM package for the MSP430FR215x MCUs.  
P1.1/UCB0CLK/ACLK/COMP0.1/A1  
P1.0/UCB0STE/SMCLK/COMP0.0/A0/Veref+  
1
2
3
4
5
6
24  
23  
22  
21  
20  
19  
18  
17  
P3.6  
P3.7  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
DVSS  
P2.7/TB0CLK/XIN  
P2.6/MCLK/XOUT  
P1.4/UCA0STE/TCK/A4  
P1.5/UCA0CLK/TMS/A5  
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/A7/VREF+  
P2.0/TB1.1/COMP0.O  
MSP430FR2155TRSM  
MSP430FR2153TRSM  
7
8
P2.1/TB1.2/COMP1.O  
NOTE: Connect the exposed thermal pad to VSS.  
4-8. 32-Pin RSM (VQFN) (Top View) – MSP430FR215x  
版权 © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
4.2 Pin Attributes  
4-1 lists the attributes of all pins.  
4-1. Pin Attributes  
PIN NUMBER  
SIGNAL  
TYPE(3)  
POWER  
SOURCE  
RESET STATE  
AFTER BOR(5)  
SIGNAL NAME(1) (2)  
BUFFER TYPE(4)  
PT  
RHA  
DBT  
RSM  
P1.2 (RD)  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
UCB0SIMO  
UCB0SDA  
TB0TRG  
OA0-(6)  
A2  
1
40  
5
32  
I
I
Analog  
Veref-  
I
Analog  
P1.1 (RD)  
UCB0CLK  
ACLK  
OA0O(6)  
COMP0_1  
A1  
I/O  
I/O  
O
O
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
2
3
1
2
6
7
1
2
Analog  
I
Analog  
P1.0 (RD)  
UCB0STE  
SMCLK  
COMP0_0  
A0  
I/O  
I/O  
O
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
I
Analog  
Veref+  
I
Analog  
TEST (RD)  
SBWTCK  
RST (RD)  
NMI  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
OFF  
4
5
3
4
8
9
3
4
I
I/O  
I
OFF  
SBWTDIO  
DVCC  
I/O  
P
6
7
5
6
10  
11  
5
6
N/A  
N/A  
OFF  
DVSS  
P
Power  
P2.7 (RD)  
TB0CLK  
XIN  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
8
9
7
8
12  
13  
7
8
I
P2.6 (RD)  
MCLK  
I/O  
O
O
I/O  
I
OFF  
XOUT  
P2.5 (RD)  
COMP1.0  
P2.4 (RD)  
COMP1.1  
OFF  
10  
11  
9
14  
15  
9
I/O  
I
LVCMOS  
Analog  
OFF  
10  
10  
(1) Signals names with (RD) denote the reset default pin name.  
(2) To determine the pin mux encodings for each pin, see 6.11.  
(3) Signal types: I = input, O = output, I/O = input or output  
(4) Buffer types: LVCMOS, analog, or power  
(5) Reset states:  
OFF = High-impedance input with pullup or pulldown disabled (if available)  
N/A = Not applicable  
(6) MSP430FR235x devices only  
18  
Terminal Configuration and Functions  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
4-1. Pin Attributes (continued)  
PIN NUMBER  
SIGNAL  
TYPE(3)  
POWER  
SOURCE  
RESET STATE  
AFTER BOR(5)  
SIGNAL NAME(1) (2)  
BUFFER TYPE(4)  
PT  
RHA  
DBT  
RSM  
P4.7 (RD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
12  
11  
16  
11  
UCB1SOMI(7)  
UCB1SCL  
P4.6 (RD)  
UCB1SIMO(7)  
UCB1SDA  
P4.5 (RD)  
UCB1CLK  
P4.4 (RD)  
UCB1STE  
P6.6 (RD)  
TB3CLK  
OFF  
13  
12  
17  
12  
OFF  
14  
15  
16  
17  
18  
19  
20  
21  
22  
13  
14  
18  
19  
OFF  
OFF  
P6.5 (RD)  
TB3.6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
OFF  
P6.4 (RD)  
TB3.5  
OFF  
P6.3 (RD)  
TB3.4  
OFF  
P6.2 (RD)  
TB3.3  
OFF  
P6.1 (RD)  
TB3.2  
OFF  
15  
16  
P6.0 (RD)  
TB3.1  
OFF  
P4.3 (RD)  
UCA1TXD  
UCA1SIMO  
UCA1TXD  
P4.2 (RD)  
UCA1RXD  
UCA1SOMI  
UCA1RXD  
P4.1 (RD)  
UCA1CLK  
P4.0 (RD)  
UCA1STE  
ISOTXD  
OFF  
23  
17  
20  
13  
I/O  
O
I/O  
I
OFF  
24  
25  
26  
18  
19  
20  
21  
22  
23  
14  
15  
16  
I/O  
I
I/O  
I/O  
I/O  
I/O  
O
OFF  
OFF  
ISORXD  
I
P2.3 (RD)  
TB1TRG  
P2.2 (RD)  
TB1CLK  
I/O  
I
OFF  
27  
28  
21  
22  
24  
25  
I/O  
I
OFF  
P2.1(RD)  
TB1.2  
I/O  
I/O  
O
OFF  
29  
23  
26  
17  
COMP1.O  
(7) Not applicable in RSM package.  
版权 © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
4-1. Pin Attributes (continued)  
PIN NUMBER  
SIGNAL  
TYPE(3)  
POWER  
SOURCE  
RESET STATE  
AFTER BOR(5)  
SIGNAL NAME(1) (2)  
BUFFER TYPE(4)  
PT  
RHA  
DBT  
RSM  
P2.0 (RD)  
I/O  
I/O  
O
I/O  
O
I/O  
I/O  
O
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
30  
24  
27  
18  
TB1.1  
COMP0.O  
P1.7 (RD)  
UCA0TXD  
UCA0SIMO  
TB0.2  
OFF  
31  
25  
28  
19  
TDO  
OA1+(6)  
A7  
I
Analog  
VREF+  
P1.6 (RD)  
UCA0RXD  
UCA0SOMI  
TB0.1  
O
I/O  
I
Analog  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
I/O  
I/O  
I
32  
26  
29  
20  
TDI  
TCLK  
OA1-(6)  
I
I
A6  
I
Analog  
P1.5 (RD)  
UCA0CLK  
TMS  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
33  
34  
27  
28  
30  
31  
21  
22  
OA1O(6)  
O
I
-
A5  
Analog  
P1.4 (RD)  
UCA0STE  
TCK  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
A4  
I
P3.7 (RD)  
OA3+(6)  
P3.6 (RD)  
OA3-(6)  
P3.5 (RD)  
OA3O(6)  
P3.4 (RD)  
SMCLK  
P5.4 (RD)  
P5.3 (RD)  
TB2TRG  
A11  
I/O  
I
LVCMOS  
Analog  
OFF  
35  
36  
37  
29  
30  
31  
32  
33  
34  
23  
24  
25  
I/O  
I
LVCMOS  
Analog  
OFF  
I/O  
O
I/O  
O
I/O  
I/O  
I
LVCMOS  
Analog  
OFF  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
38  
39  
32  
35  
26  
OFF  
OFF  
40  
41  
I
P5.2 (RD)  
TB2CLK  
A10  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
OFF  
I
20  
Terminal Configuration and Functions  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
4-1. Pin Attributes (continued)  
PIN NUMBER  
SIGNAL  
TYPE(3)  
POWER  
SOURCE  
RESET STATE  
AFTER BOR(5)  
SIGNAL NAME(1) (2)  
BUFFER TYPE(4)  
PT  
RHA  
DBT  
RSM  
P5.1 (RD)  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
TB2.2  
42  
33  
36  
MFM.TX  
A9  
I
P5.0 (RD)  
TB2.1  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
43  
34  
37  
MFM.RX  
A8  
I
P3.3 (RD)  
OA2+(6)  
P3.2 (RD)  
OA2-(6)  
P3.1 (RD)  
OA2O(6)  
P3.0 (RD)  
MCLK  
I/O  
I
LVCMOS  
Analog  
OFF  
44  
45  
46  
47  
35  
36  
37  
38  
38  
1
27  
28  
29  
30  
I/O  
I
LVCMOS  
Analog  
OFF  
I/O  
O
LVCMOS  
Analog  
OFF  
2
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
3
P1.3 (RD)  
UCB0SOMI  
UCB0SCL  
OA0+(6)  
A3  
I/O  
I/O  
I/O  
I
OFF  
48  
39  
4
31  
I
Analog  
版权 © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
4.3 Signal Descriptions  
4-2 describes the signals for all device variants and package options.  
4-2. Signal Descriptions  
PIN NUMBER(1)  
PIN  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
TYPE(2)  
PT  
3
RHA  
2
DBT  
7
RSM  
2
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
I
I
Analog input A0  
Analog input A1  
Analog input A2  
Analog input A3  
Analog input A4  
Analog input A5  
Analog input A6  
Analog input A7  
Analog input A8  
Analog input A9  
Analog input A10  
Analog input A11  
2
1
6
1
1
40  
39  
28  
27  
26  
25  
34  
33  
5
32  
31  
22  
21  
20  
19  
I
48  
34  
33  
32  
31  
43  
42  
41  
40  
3
4
I
31  
30  
29  
28  
37  
36  
I
I
I
ADC  
I
I
I
A10  
I
A11  
I
Veref+  
Veref-  
C0  
2
7
2
I
ADC positive reference  
ADC negative reference  
Comparator input channel C0  
Comparator input channel C1  
Comparator output channel COUT  
Comparator input channel C0  
Comparator input channel C1  
Comparator output channel COUT  
SAC0, OA positive input  
SAC0, OA negative input  
SAC0, OA output  
1
40  
2
5
32  
2
I
3
7
I
eCOMP0  
eCOMP1  
SAC0(3)  
SAC1(3)  
SAC2(3)  
SAC3(3)  
C1  
2
1
6
1
I
COUT  
C0  
30  
10  
11  
29  
48  
1
24  
9
27  
14  
15  
26  
4
18  
9
O
I
C1  
10  
23  
39  
40  
1
10  
17  
31  
32  
1
I
COUT  
OA0+  
OA0-  
OA0O  
OA1+  
OA1-  
OA1O  
OA2+  
OA2-  
OA2O  
OA3+  
OA3-  
OAO  
ACLK  
O
I
5
I
2
6
O
I
31  
32  
33  
44  
45  
46  
35  
36  
37  
2
25  
26  
27  
35  
36  
37  
29  
30  
31  
1
28  
29  
30  
38  
1
19  
20  
21  
27  
28  
29  
23  
24  
25  
1
SAC1, OA positive input  
SAC1, OA negative input  
SAC1, OA output  
I
O
I
SAC2, OA positive input  
SAC2, OA negative input  
SAC2, OA output  
I
2
O
I
32  
33  
34  
6
SAC3, OA positive input  
SAC3, OA negative input  
SAC3, OA output  
I
O
O
O
O
O
O
I
ACLK output  
9
8
13  
3
8
MCLK  
MCLK output  
47  
3
38  
2
30  
2
Clock  
7
SMCLK  
SMCLK output  
38  
8
32  
7
35  
12  
13  
26  
7
XIN  
Input terminal for crystal oscillator  
Output terminal for crystal oscillator  
XOUT  
9
8
8
O
(1) Any pin that is not bonded out in a smaller package must be initialized by software after reset to achieve the lowest leakage current.  
(2) I = input, O = output, I/O = input/output, P = power  
(3) MSP430FR235x devices only  
22  
Terminal Configuration and Functions  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
FUNCTION  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
4-2. Signal Descriptions (continued)  
PIN NUMBER(1)  
PIN  
SIGNAL NAME  
SBWTCK  
DESCRIPTION  
TYPE(2)  
PT  
4
RHA  
3
DBT  
8
RSM  
3
I
I/O  
I
Spy-Bi-Wire input clock  
Spy-Bi-Wire data input/output  
Test clock  
SBWTDIO  
TCK  
5
4
9
4
34  
32  
32  
31  
33  
4
28  
26  
26  
25  
27  
3
31  
29  
29  
28  
30  
8
22  
20  
20  
19  
21  
3
TCLK  
TDI  
I
Test clock input  
Debug  
I
Test data input  
TDO  
O
I
Test data output  
TMS  
Test mode select  
TEST  
NMI  
I
Test mode pin – selected digital I/O on JTAG pins  
Nonmaskable interrupt input  
Reset input, active-low  
Power supply  
5
4
9
4
I
System  
Power  
RST  
5
4
9
4
I/O  
P
P
DVCC  
DVSS  
6
5
10  
11  
5
7
6
6
Power ground  
Output of positive reference voltage with ground as  
reference  
VREF+  
31  
25  
28  
19  
P
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
3
2
7
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
2
1
6
1
1
40  
39  
28  
27  
26  
25  
24  
23  
22  
21  
10  
9
5
32  
31  
22  
21  
20  
19  
18  
17  
48  
34  
33  
32  
31  
30  
29  
28  
27  
11  
10  
9
4
GPIO, Port 1  
GPIO, Port 2  
GPIO, Port 3  
(4)  
31  
30  
29  
28  
27  
26  
25  
24  
15  
14  
13  
12  
3
General-purpose I/O  
(4)  
General-purpose I/O  
General-purpose I/O(4)  
General-purpose I/O(4)  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
10  
9
8
8
8
7
7
47  
46  
45  
44  
38  
37  
36  
35  
38  
37  
36  
35  
32  
31  
30  
29  
30  
29  
28  
27  
26  
25  
24  
23  
2
1
38  
35  
34  
33  
32  
(4) Because this pin is multiplexed with the JTAG function, TI recommends disabling the pin interrupt function while in JTAG debug to  
prevent collisions.  
Functions shared with these four pins cannot be debugged if 4-wire JTAG is used for debug.  
版权 © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
4-2. Signal Descriptions (continued)  
PIN NUMBER(1)  
PIN  
FUNCTION  
SIGNAL NAME  
P4.0  
DESCRIPTION  
TYPE(2)  
PT  
26  
25  
24  
23  
15  
14  
13  
12  
43  
42  
41  
40  
39  
22  
21  
20  
19  
18  
17  
16  
31  
32  
23  
24  
RHA  
20  
19  
18  
17  
14  
13  
12  
11  
34  
33  
DBT  
23  
22  
21  
20  
19  
18  
17  
16  
37  
36  
RSM  
16  
15  
14  
13  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
General-purpose I/O  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
eUSCI_A0 UART transmit data  
eUSCI_A0 UART receive data  
eUSCI_A1 UART transmit data  
eUSCI_A1 UART receive data  
GPIO, Port 4  
12  
11  
GPIO, Port 5 P5.2  
P5.3  
P5.4  
P6.0  
16  
15  
P6.1  
P6.2  
GPIO, Port 6 P6.3  
P6.4  
P6.5  
P6.6  
UCA0TXD  
25  
26  
17  
18  
28  
29  
20  
21  
19  
20  
13  
14  
UCA0RXD  
UCA1TXD  
UCA1RXD  
I
UART  
ISO  
O
I
ISO transmit data (the logical AND product of  
UCA1TXD and TB3.2B)  
ISOTXD  
26  
20  
23  
16  
O
ISORXD  
26  
34  
33  
32  
31  
26  
25  
24  
23  
3
20  
28  
27  
26  
25  
20  
19  
18  
17  
2
23  
31  
30  
29  
28  
23  
22  
21  
20  
7
16  
22  
21  
20  
19  
16  
15  
14  
13  
2
I
ISO receive data (to UCA1RXD and TB3.CCI2B)  
eUSCI_A0 SPI slave transmit enable  
eUSCI_A0 SPI clock input/output  
eUSCI_A0 SPI slave out/master in  
eUSCI_A0 SPI slave in/master out  
eUSCI_A1 SPI slave transmit enable  
eUSCI_A1 SPI clock input/output  
eUSCI_A1 SPI slave out/master in  
eUSCI_A1 SPI slave in/master out  
eUSCI_B0 slave transmit enable  
eUSCI_B0 clock input/output  
UCA0STE  
UCA0CLK  
UCA0SOMI  
UCA0SIMO  
UCA1STE  
UCA1CLK  
UCA1SOMI  
UCA1SIMO  
UCB0STE  
UCB0CLK  
UCB0SIMO  
UCB0SOMI  
UCB1STE  
UCB1CLK  
UCB1SIMO  
UCB1SOMI  
UCB0SCL  
UCB0SDA  
UCB1SCL  
UCB1SDA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SPI  
2
1
6
1
1
40  
39  
14  
13  
12  
11  
39  
40  
11  
12  
5
32  
31  
eUSCI_B0 SPI slave in/master out  
eUSCI_B0 SPI slave out/master in  
eUSCI_B1 slave transmit enable  
eUSCI_B1 clock input/output  
48  
15  
14  
13  
12  
48  
1
4
19  
18  
17  
16  
4
eUSCI_B1 SPI slave in/master out  
eUSCI_B1 SPI slave out/master in  
eUSCI_B0 I2C clock  
eUSCI_B0 I2C data  
eUSCI_B1 I2C clock  
31  
32  
11  
12  
5
I2C  
12  
13  
16  
17  
eUSCI_B1 I2C data  
24  
Terminal Configuration and Functions  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
FUNCTION  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
4-2. Signal Descriptions (continued)  
PIN NUMBER(1)  
PIN  
SIGNAL NAME  
TB0.1  
DESCRIPTION  
TYPE(2)  
PT  
RHA  
DBT  
RSM  
Timer TB0 CCR1  
capture: CCI1A input, compare: Out1 output  
32  
26  
29  
20  
I/O  
I/O  
Timer TB0 CCR2  
capture: CCI2A input  
compare: Out2 output  
TB0.2  
31  
25  
28  
19  
TB0TRG  
TB0CLK  
1
8
40  
7
5
32  
7
I
I
TB0 external trigger input for TB0OUTH  
Timer clock input TBCLK for TB0  
12  
Timer TB1 CCR1  
TB1.1  
TB1.2  
30  
29  
24  
23  
27  
26  
18  
17  
I/O  
I/O  
capture: CCI1A input  
compare: Out1 output  
Timer TB1 CCR2  
capture: CCI2A input  
compare: Out2 output  
TB1CLK  
TB1TRG  
28  
27  
22  
21  
25  
24  
I
I
Timer clock input TBCLK for TB1  
TB1 external trigger input for TB1OUTH  
Timer TB2 CCR1  
TB2.1  
TB2.2  
43  
42  
34  
33  
37  
36  
I/O  
I/O  
capture: CCI1A input  
compare: Out1 output  
Timer TB2 CCR2  
capture: CCI2A input  
compare: Out2 output  
Timer_B  
TB2CLK  
TB2TRG  
41  
40  
I
I
Timer clock input TBCLK for TB2  
TB2 external trigger input for TB2OUTH  
Timer TB3 CCR1  
TB3.1  
TB3.2  
TB3.3  
TB3.4  
TB3.5  
TB3.6  
22  
21  
20  
19  
18  
17  
16  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
capture: CCI1A input  
compare: Out1 output  
Timer TB3 CCR2  
capture: CCI2A input  
compare: Out2 output  
Timer TB3 CCR3  
capture: CCI3A input  
compare: Out3 output  
Timer TB3 CCR4  
capture: CCI4A input  
compare: Out4 output  
Timer TB3 CCR5  
capture: CCI5A input  
compare: Out5 outputs  
Timer TB3 CCR6  
capture: CCI6A input  
compare: Out6 output  
TB3CLK  
TX  
16  
42  
43  
I
O
I
Timer clock input TBCLK for TB3  
Manchester function module transmit  
Manchester function module receive  
33  
34  
36  
37  
MFM  
RX  
VQFN  
thermal pad  
Pad  
Pad  
Connect the exposed thermal pad to VSS.  
版权 © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
25  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
4.4 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for  
example, if the device is in test mode). For details of the settings for each pin and diagrams of the  
multiplexed ports, see 6.11.  
4.5 Buffer Type  
4-3 defines the pin buffer types that are listed in 4-1.  
4-3. Buffer Type  
NOMINAL  
OUTPUT DRIVE  
STRENGTH  
(mA)  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)  
OTHER  
CHARACTERISTICS  
HYSTERESIS  
PU OR PD  
LVCMOS  
Analog  
3.0 V  
3.0 V  
Y(1)  
N
Programmable  
N/A  
See 5.12.5  
See 5.12.5  
See the analog modules in  
5 for details  
N/A  
N/A  
SVS enables hysteresis on  
DVCC  
Power (DVCC)  
Power (AVCC)  
3.0 V  
3.0 V  
N
N
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
(1) Only for input pins  
4.6 Connection of Unused Pins  
4-4 lists the correct termination of unused pins.  
4-4. Connection of Unused Pins(1)  
PIN  
POTENTIAL  
Open  
COMMENT  
Set to port function, output direction (PxDIR.n = 1)  
47-kpullup or internal pullup selected with 10-nF (or 1.1-nF) pulldown(2)  
Px.0 to Px.7  
RST/NMI  
TEST  
DVCC  
Open  
This pin always has an internal pulldown enabled.  
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection  
guidelines.  
(2) The pulldown capacitor should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode with TI tools like  
FET interfaces or GANG programmers.  
26  
Terminal Configuration and Functions  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5 Specifications  
5.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
DEVICE  
GRADE  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
Voltage applied at DVCC pin to VSS  
Voltage applied to any pin(2)  
T
4.1  
VCC + 0.3  
4.1 V Max  
T
V
Current across the whole chip including IO currents  
Diode current at any device pin  
T
T
T
T
+50  
±2  
mA  
mA  
°C  
Maximum junction temperature, TJ  
115  
125  
(3)  
Storage temperature, Tstg  
–40  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.  
(2) All voltages referenced to VSS  
.
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
5.2 ESD Ratings  
over operating free-air temperature range (unless otherwise noted)  
DEVICE  
GRADE  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
T
T
±1000  
±250  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.  
5.3 Recommended Operating Conditions  
DEVICE  
GRADE  
MIN NOM  
MAX UNIT  
VCC  
VSS  
TA  
Supply voltage applied at DVCC pin(1) (2)(3) (4)  
Supply voltage applied at DVSS pin  
Operating free-air temperature  
T
T
T
T
T
1.8  
3.6  
V
V
0
–40  
–40  
105  
115  
°C  
°C  
µF  
TJ  
Operating junction temperature  
Recommended capacitor at DVCC(5)  
CDVCC  
4.7  
10  
No FRAM wait states  
(NWAITSx = 0)  
T
T
T
0
8
With FRAM wait states  
(NWAITSx = 1)(7)  
fSYSTEM Processor frequency (maximum MCLK frequency)(4)(6)  
0
0
16 MHz  
24(8)  
With FRAM wait states  
(NWAITSx = 2)(7)  
(1) Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset even within the recommended supply voltage range. Following the  
data sheet recommendation for capacitor CDVCC limits the slopes accordingly.  
(2) Modules can have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(3) TI recommends that power to the DVCC pin must not exceed the limits specified in Recommended Operating Conditions. Exceeding the  
specified limits can cause malfunction of the device including erroneous writes to RAM and FRAM.  
(4) The minimum supply voltage is defined by the SVS levels. See the SVS threshold parameters in 5-1.  
(5) A capacitor tolerance of ±20% or better is required. A low-ESR ceramic capacitor of 100 nF (minimum) should be placed as close as  
possible (within a few millimeters) to the respective pin pair.  
(6) Modules can have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(7) Wait states only occur on actual FRAM accesses (that is, on FRAM cache misses). RAM and peripheral accesses are always executed  
without wait states.  
(8) If clock sources such as HF crystals or the DCO with frequencies >24 MHz are used, the clock must be divided in the clock system to  
comply with this operating condition.  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
27  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
MAX UNIT  
Recommended Operating Conditions (continued)  
DEVICE  
GRADE  
MIN NOM  
fACLK  
Maximum ACLK frequency  
Maximum SMCLK frequency  
T
T
40 kHz  
24(8) MHz  
fSMCLK  
5.4 Active Mode Supply Current Into VCC Excluding External Current  
over operating free-air temperature range (unless otherwise noted)(1)  
Frequency (fMCLK = fSMCLK  
)
1 MHz  
0 WAIT  
STATES  
8 MHz  
0 WAIT  
STATES  
16 MHz  
1 WAIT  
STATE  
24 MHz  
2 WAIT  
STATES  
EXECUTION  
MEMORY  
TEST  
CONDITIONS  
DEVICE  
GRADE  
PARAMETER  
UNIT  
(NWAITSx (NWAITSx (NWAITSx (NWAITSx  
= 0) = 0) = 1) = 2)  
TYP MAX TYP MAX TYP MAX TYP MAX  
3.0 V, 25°C  
3.0 V, 85°C  
3.0 V, 105°C  
3.0 V, 25°C  
3.0 V, 85°C  
3.0 V, 105°C  
3.0 V, 25°C  
T
T
T
T
T
T
T
555  
575  
583  
261  
272  
283  
285  
3084  
3207  
3233  
724  
3411  
3519  
3545  
1245  
1267  
1281  
1627  
3692  
3807  
3833  
1772  
1800  
1817  
2355  
FRAM  
0% cache hit ratio  
IAM, FRAM(0%)  
µA  
FRAM  
100% cache hit ratio  
IAM, FRAM(100%)  
742  
µA  
µA  
753  
(2)  
IAM, RAM  
RAM  
917  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Characterized with program executing typical data  
processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency  
Program and data entirely reside in FRAM. All execution is from FRAM.  
(2) Program and data reside entirely in RAM. All execution is from RAM. No access to FRAM.  
5.5 Active Mode Supply Current Per MHz  
VCC = 3.0 V, TA = 25°C (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Active mode current consumption  
(IAM, 75% cache hit rate at 8 MHz –  
dIAM,FRAM/df  
per MHz, execution from FRAM, no wait IAM, 75% cache hit rate at 1 MHz)  
T
142  
µA/MHz  
states(1)  
/ 7 MHz  
(1) All peripherals are turned on in default settings.  
5.6 Low-Power Mode LPM0 Supply Currents Into VCC Excluding External Current  
(2)  
VCC = 3.0 V, TA = 25°C (unless otherwise noted)(1)  
FREQUENCY (fSMCLK  
8 MHz 16 MHz  
TYP MAX TYP MAX TYP MAX TYP MAX  
)
DEVICE  
GRADE  
PARAMETER  
VCC  
1 MHz  
24 MHz  
UNIT  
2.0 V  
3.0 V  
T
T
199  
211  
312  
324  
437  
449  
637  
649  
ILPM0  
Low-power mode 0 supply current  
µA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK at specified frequency.  
28  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5.7 Low-Power Mode LPM3 and LPM4 Supply Currents (Into VCC) Excluding External Current  
(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
–40°C  
TYP MAX  
25°C  
TYP  
85°C  
TYP  
105°C  
TYP MAX  
DEVICE  
GRADE  
PARAMETER  
VCC  
UNIT  
MAX  
MAX  
Low-power mode 3,  
includes SVS(2) (3) (4)  
ILPM3,XT1  
ILPM3,XT1  
ILPM3,VLO  
ILPM3,VLO  
ILPM3, RTC  
ILPM3, RTC  
ILPM4, SVS  
ILPM4, SVS  
T
T
T
T
T
T
T
T
T
T
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
1.21  
1.18  
1.01  
0.99  
1.15  
1.13  
0.74  
0.72  
0.56  
0.55  
1.49  
1.45  
1.29  
1.26  
1.43  
1.41  
1.00  
0.98  
0.82  
0.81  
6.35 21.85 13.29 47.87  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Low-power mode 3,  
includes SVS(2) (3) (4)  
6.28  
13.17  
Low-power mode 3, VLO,  
excludes SVS(5)  
6.15 21.65  
6.09  
13.1 47.67  
12.98  
Low-power mode 3, VLO,  
excludes SVS(5)  
Low-power mode 3, RTC,  
excludes SVS(6)  
6.29  
13.24  
Low-power mode 3, RTC,  
excludes SVS(6)  
6.23  
13.13  
Low-power mode 4,  
includes SVS  
5.83  
12.73  
Low-power mode 4,  
includes SVS  
5.77  
12.62  
Low-power mode 4,  
excludes SVS  
ILPM4  
ILPM4  
,
,
5.64  
12.54  
Low-power mode 4,  
excludes SVS  
5.59  
12.45  
Low-power mode 4, RTC  
is sourced from VLO,  
excludes SVS(7)  
ILPM4, RTC, VLO  
ILPM4, RTC, VLO  
ILPM4, RTC, XT1  
ILPM4, RTC, XT1  
T
T
T
T
3.0 V  
2.0 V  
3.0 V  
2.0 V  
0.66  
0.66  
1.06  
1.05  
0.93  
0.92  
1.34  
1.33  
5.76  
5.71  
6.21  
6.16  
12.67  
12.58  
13.15  
13.05  
µA  
µA  
µA  
µA  
Low-power mode 4, RTC  
is sourced from VLO,  
excludes SVS(7)  
Low-power mode 4, RTC  
is sourced from XT1,  
excludes SVS(8)  
Low-power mode 4, RTC  
is sourced from XT1,  
excludes SVS(8)  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.  
(4) Low-power mode 3, includes SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 3, VLO, excludes SVS test conditions:  
Current for watchdog timer clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(6) RTC wakes every second with external 32768-Hz clock as source.  
(7) Low-power mode 4, VLO, excludes SVS test conditions:  
Current for RTC clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 32768 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(8) Low-power mode 4, XT1, excludes SVS test conditions:  
Current for RTC clocked by XT1 included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 32768 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
29  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.8 Low-Power Mode LPMx.5 Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
–40°C  
25°C  
85°C  
105°C  
TYP MAX  
DEVICE  
GRADE  
PARAMETER  
VCC  
UNIT  
TYP MAX  
TYP MAX  
TYP MAX  
Low-power mode 3.5,  
ILPM3.5, XT1 includes SVS(1) (2) (3)  
(also see 5-3)  
T
T
3.0 V  
0.57  
0.55  
0.62  
0.59  
0.89  
0.84  
2.06  
0.63  
1.27  
1.19  
3.21  
1.13  
µA  
µA  
Low-power mode 3.5,  
ILPM3.5, XT1 includes SVS(1) (2) (3)  
(also see 5-3)  
2.0 V  
Low-power mode 4.5,  
ILPM4.5, SVS  
T
T
T
T
3.0 V  
2.0 V  
3.0 V  
2.0 V  
0.27  
0.25  
0.29  
0.27  
0.41  
0.37  
0.61  
0.55  
µA  
µA  
µA  
µA  
includes SVS(4)  
Low-power mode 4.5,  
ILPM4.5, SVS  
includes SVS(4)  
Low-power mode 4.5,  
ILPM4.5  
0.031  
0.025  
0.042  
0.036  
0.153 0.343 0.337 0.832  
0.128 0.289  
excludes SVS(5)  
Low-power mode 4.5,  
ILPM4.5  
excludes SVS(5)  
(1) Not applicable for devices with HF crystal oscillator only  
(2) Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.  
(3) Low-power mode 3.5, includes SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(4) Low-power mode 4.5, includes SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 4.5, excludes SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
30  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5.9 Production Distribution of LPM Supply Currents  
VCC = 3 V  
16  
16  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
2
2
0
0
-40 -30 -20 -10  
0
10 25 30 40 50 60 70 85 95 105  
-40 -30 -20 -10  
0
10 25 30 40 50 60 70 85 95 105  
Temperature (°C)  
Temperature (°C)  
RTC enabled  
12.5-pF crystal  
SVS disabled  
RTC enabled  
12.5-pF crystal  
SVS disabled  
5-2. Population vs Low-Power Mode 4 Supply Current  
5-1. Population vs Low-Power Mode 3 Supply Current  
4
3.5  
3
0.4  
0.35  
0.3  
0.25  
0.2  
2.5  
2
1.5  
1
0.15  
0.1  
0.5  
0.05  
0
0
-40 -30 -20 -10 0 10 25 30 40 50 60 70 85 95 105  
-40 -30 -20 -10 0 10 25 30 40 50 60 70 85 95 105  
Temperature (°C)  
Temperature (°C)  
RTC enabled  
12.5-pF crystal  
SVS enabled  
RTC disabled  
SVS disabled  
5-3. LPM3.5 Supply Current vs Temperature  
5-4. LPM4.5 Supply Current vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
31  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.10 Typical Characteristics - Current Consumption Per Module  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
MODULE  
TEST CONDITIONS  
REFERENCE CLOCK  
TYP  
UNIT  
Timer_B  
Module input clock  
T
T
T
T
T
T
T
5
7
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
nA  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC  
UART mode  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
SPI mode  
5
SPI mode  
I2C mode, 100 kbaud  
5
5
85  
8.5  
CRC  
From start to end of operation  
MCLK  
µA/MHz  
5.11 Thermal Resistance Characteristics  
THERMAL METRIC(1)  
VALUE(2)  
67.6  
31.6  
67.0  
32.3  
24.0  
24.1  
19.8  
27.8  
31.6  
12.6  
27.3  
11.8  
UNIT  
QFP 48 pin (PT)  
QFN 40 pin (RHA)  
RθJA  
RθJC  
RθJB  
Junction-to-ambient thermal resistance, still air  
ºC/W  
TSSOP 38 pin (DBT)  
QFN 32 pin (RSM)  
QFP 48 pin (PT)  
QFN 40 pin (RHA)  
TSSOP 38 pin (DBT)  
QFN 32 pin (RSM)  
QFP 48 pin (PT)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ºC/W  
ºC/W  
QFN 40 pin (RHA)  
TSSOP 38 pin (DBT)  
QFN 32 pin (RSM)  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC  
standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
32  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5.12 Timing and Switching Characteristics  
5.12.1 Power Supply Sequencing  
5-5 shows the power cycle and reset conditions.  
V
Power Cycle Reset  
SVS Reset  
BOR Reset  
VSVS+  
VSVS–  
VBOR  
tBOR  
t
5-5. Power Cycle, SVS, and BOR Reset Conditions  
5-1 lists the characteristics of the SVS and BOR.  
5-1. PMM, SVS and BOR  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
DEVICE  
GRADE  
PARAMETER  
MIN  
TYP  
MAX UNIT  
VBOR, safe  
tBOR, safe  
ISVSH,AM  
Safe BOR power-down level(1)  
Safe BOR reset delay(2)  
T
T
T
T
T
T
T
T
T
0.1  
10  
V
ms  
SVSH current consumption, active mode  
SVSH current consumption, low-power modes  
SVSH power-down level(3)  
VCC = 3.6 V  
VCC = 3.6 V  
1.5  
µA  
nA  
V
ISVSH,LPM  
VSVSH-  
240  
1.80  
1.88  
100  
1.71  
1.76  
1.87  
1.99  
VSVSH+  
SVSH power-up level(3)  
V
VSVSH_hys  
tPD,SVSH, AM  
tPD,SVSH, LPM  
SVSH hysteresis  
mV  
µs  
µs  
SVSH propagation delay, active mode  
SVSH propagation delay, low-power modes  
10  
100  
(1) A safe BOR can only be correctly generated only if DVCC must drop below this voltage before it rises.  
(2) When an BOR occurs, a safe BOR can only be correctly generated only if DVCC is kept low longer than this period before it reaches  
VSVSH+.  
(3) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference  
Design.  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
33  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.2 Reset Timing  
5-2 lists the device wake-up times.  
5-2. Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
DEVICE  
GRADE  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
(Additional) wake-up time to activate  
the FRAM in AM if previously  
disabled through the FRAM  
controller or from a LPM if  
immediate activation is selected for  
wake-up(1)  
tWAKE-UP FRAM  
T
3 V  
10  
µs  
Wake-up time from LPM0 to active  
mode  
200 ns +  
2.5 / fDCO  
tWAKE-UP LPM0  
tWAKE-UP LPM3  
tWAKE-UP LPM4  
tWAKE-UP LPM3.5  
T
T
T
T
3 V  
3 V  
3 V  
3 V  
(1)  
Wake-up time from LPM3 to active  
10  
10  
µs  
µs  
µs  
(1)  
mode  
Wake-up time from LPM4 to active  
(2)  
mode  
Wake-up time from LPM3.5 to  
350  
(2)  
active mode  
SVSHE = 1  
SVSHE = 0  
T
T
3 V  
3 V  
350  
1
µs  
Wake-up time from LPM4.5 to  
active mode  
tWAKE-UP LPM4.5  
(2)  
ms  
Wake-up time from RST or BOR  
event to active mode  
tWAKE-UP-RESET  
tRESET  
T
T
3 V  
1
ms  
µs  
(2)  
Pulse duration required at RST/NMI  
pin to accept a reset  
2
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
34  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5.12.3 Clock Specifications  
5-3 lists the characteristics of XT1 in low-frequency mode.  
5-3. XT1 Crystal Oscillator (Low Frequency)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fXT1, LF  
XT1 oscillator crystal, low frequency  
XT1 oscillator LF duty cycle  
LFXTBYPASS = 0  
T
32768  
Hz  
Measured at MCLK,  
fLFXT = 32768 Hz  
DCXT1, LF  
T
T
T
30%  
70%  
XT1 oscillator logic-level square-wave  
input frequency  
fXT1,SW  
LFXTBYPASS = 1(3)(4)  
32768  
Hz  
LFXT oscillator logic-level square-wave  
input duty cycle  
DCXT1,SW  
LFXTBYPASS = 1  
40%  
60%  
LFXTBYPASS = 0,  
LFXTDRIVE = {3},  
fLFXT = 32768 Hz,  
CL,eff = 12.5 pF  
(7)  
OALFXT  
Oscillation allowance for LF crystals(5)  
Integrated effective load capacitance(6)  
T
T
T
T
200  
1
kΩ  
pF  
ms  
Hz  
CL,eff  
fOSC = 32768 Hz,  
LFXTBYPASS = 0,  
LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
XTS = 0(10)  
tSTART,LFXT Start-up time(8)  
Oscillator fault frequency(9)  
1000  
fFault,LFXT  
0
3500  
(1) To improve EMI on the LFXT oscillator, observe the following guidelines.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing.  
(3) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT,SW  
.
(4) Maximum frequency of operation of the entire device cannot be exceeded.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF  
For LFXTDRIVE = {1}, 6 pF CL,eff 9 pF  
For LFXTDRIVE = {2}, 6 pF CL,eff 10 pF  
For LFXTDRIVE = {3}, 6 pF CL,eff 12 pF  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
(8) Includes startup counter of 1024 clock cycles.  
(9) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the  
flag. A static condition or stuck at fault condition sets the flag.  
(10) Measured with logic-level input frequency but also applies to operation with crystals.  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
35  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5-4 lists the characteristics of XT1 in high-frequency mode.  
5-4. XT1 Crystal Oscillator (High Frequency)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
MIN  
1
TYP  
MAX  
UNIT  
XT1BYPASS = 0, XTS = 1,  
XT1HFFREQ = 00  
T
4
6
XT1BYPASS = 0, XTS = 1,  
XT1HFFREQ = 01  
T
T
T
4.01  
6.01  
16.01  
HFXT oscillator crystal  
frequency, crystal mode  
fHFXT  
MHz  
XT1BYPASS = 0, XTS = 1,  
XT1HFFREQ = 10  
16  
24  
XT1BYPASS = 0, XTS = 1,  
XT1HFFREQ = 11  
HFXT oscillator logic-  
level square-wave input XT1BYPASS = 1, XTS = 1  
frequency, bypass mode  
(2) (3)  
fHFXT,SW  
T
T
T
T
1
40%  
40%  
24  
60%  
60%  
MHz  
HFXT oscillator duty  
cycle.  
Measured at ACLK,  
fHFXT,HF = 4 MHz(4)  
DCHFXT  
HFXT oscillator logic-  
level square-wave input XT1BYPASS = 1  
duty cycle  
DCHFXT,SW  
Oscillation allowance for XT1BYPASS = 0, XT1HFSEL = 1  
OAHFXT  
3.1  
1.6  
Ω
HFXT crystals(5)  
fHFXT,HF = 24 MHz, CL,eff = 18 pF  
fOSC = 4 MHz, XTS = 1(4)  
XT1BYPASS = 0,  
XT1HFFREQ = 00,  
XT1DRIVE = 3, TA = 25°C,  
CL,eff = 18 pF  
fOSC = 24 MHz, XTS = 1(4)  
XT1BYPASS = 0,  
T
T
tSTART,HFXT  
Start-up time(6)  
ms  
XT1HFFREQ = 00,  
XT1DRIVE = 3, TA = 25°C,  
CL,eff = 18 pF  
1.1  
1
Integrated effective load  
capacitance(7) (8)  
CL,eff  
T
T
pF  
Oscillator fault  
fFault,HFXT  
0
800  
kHz  
frequency(9) (10)  
(1) To improve EMI on the HFXT oscillator, observe the following guidelines.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When XT1BYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined  
in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DCHFXT,SW  
.
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) The 4-MHz crystal used for lab characterization is the Abracon HC49/U AB-4.000MHZ-B2. The 16-MHz crystal used for lab  
characterization is the Abracon HC49/U AB-16.000MHZ-B2.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes startup counter of 4096 clock cycles.  
(7) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the oscillator frequency through  
MCLK or SMCLK. For a correct setup, the effective load capacitance should always match the specification of the used crystal.  
(8) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are  
14 pF, 16 pF, and 18 pF. The maximum shunt capacitance is 7 pF.  
(9) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the  
flag. A static condition or stuck at fault condition sets the flag.  
(10) Measured with logic-level input frequency but also applies to operation with crystals.  
36  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5-5 lists the frequency characteristics of the DCO FLL.  
5-5. DCO FLL, Frequency  
Over recommended operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
–1.0%  
–2.0%  
–0.5%  
40%  
TYP  
MAX UNIT  
1.0%  
Measured at MCLK, internal  
trimmed REFO as reference  
fDCO, FLL FLL lock frequency, 24 MHz, 25°C  
fDCO, FLL FLL lock frequency, 24 MHz  
fDCO, FLL FLL lock frequency, 24 MHz  
T
T
T
T
T
T
T
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
Measured at MCLK, internal  
trimmed REFO as reference  
2.0%  
Measured at MCLK, XT1  
crystal as reference  
0.5%  
Measured at MCLK, XT1  
crystal as reference  
fDUTY  
Duty cycle  
50%  
0.50%  
0.022%  
200  
60%  
Measured at MCLK, XT1  
crystal as reference  
Jittercc  
Jitterlong  
tFLL, lock  
Cycle-to-cycle jitter, 24 MHz  
Long-term Jitter, 24 MHz  
FLL lock time  
Measured at MCLK, XT1  
crystal as reference  
Measured at MCLK, XT1  
crystal as reference  
ms  
5-6 lists the frequency characteristics of the DCO.  
5-6. DCO Frequency  
Over recommended operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
12.6  
20.5  
29.9  
48.2  
10.5  
17.2  
25.1  
40.4  
8.3  
MAX UNIT  
DCORSEL = 111b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
T
T
T
T
T
T
T
T
T
T
T
T
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
DCORSEL = 111b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
fDCO, 24MHz DCO frequency 24 MHz  
MHz  
DCORSEL = 111b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 111b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
DCORSEL = 110b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 110b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
fDCO, 20MHz DCO frequency 20 MHz  
MHz  
DCORSEL = 110b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 110b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
DCORSEL = 101b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 101b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
13.6  
19.9  
32.2  
fDCO, 16MHz DCO frequency 16 MHz  
MHz  
DCORSEL = 101b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 101b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
37  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5-6. DCO Frequency (continued)  
Over recommended operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
6.2  
10.2  
15  
MAX UNIT  
DCORSEL = 100b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
T
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
DCORSEL = 100b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
fDCO, 12MHz DCO frequency 12 MHz  
MHz  
DCORSEL = 100b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 100b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
24.3  
4.2  
6.9  
10  
DCORSEL = 011b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 011b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
fDCO, 8MHz DCO frequency 8 MHz  
fDCO, 4MHz DCO frequency 4 MHz  
fDCO, 2MHz DCO frequency 2 MHz  
fDCO, 1MHz DCO frequency 1 MHz  
MHz  
MHz  
MHz  
MHz  
DCORSEL = 011b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 011b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
16.4  
2
DCORSEL = 010b,, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 010b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
3.4  
5
DCORSEL = 010b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 010b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
8.2  
1
DCORSEL = 001b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 001b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
1.7  
2.5  
4.2  
0.5  
0.85  
1.2  
2.1  
DCORSEL = 001b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 001b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
DCORSEL = 000b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 000b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
DCORSEL = 000b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 000b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
38  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
50  
DCOFTRIM = 7  
40  
30  
20  
10  
0
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 0  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 0  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 0  
DCOFTRIM = 0  
0
511  
0
511  
0
511  
0
511  
0
511  
0
511  
0
511  
0
511  
DCO  
0
1
2
3
4
5
6
7
DCORSEL  
(1MHz)  
(2MHz)  
(4MHz)  
(8MHz)  
(12MHz)  
(16MHz)  
(20MHz)  
(24MHz)  
5-6. Typical DCO Frequency  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
39  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5-7 lists the characteristics of the REFO.  
5-7. REFO  
over recommended operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
TA = 25°C, HP mode (REFLP = 0)  
TA = 25°C, LP mode (REFLP = 1)  
Measured at MCLK  
VCC  
MIN  
TYP  
15  
MAX UNIT  
REFO oscillator current  
consumption  
T
3.0 V  
3.0 V  
3.0 V  
IREFO  
µA  
REFO oscillator current  
consumption  
T
T
T
T
T
T
T
T
1
REFO calibrated  
frequency  
32768  
Hz  
+3.5%  
%/°C  
fREFO  
REFO absolute  
calibrated tolerance  
1.8 V to  
3.6 V  
–40°C to 105°C  
–3.5%  
40%  
REFO frequency  
temperature drift  
dfREFO/dT  
dfREFO/dVCC  
fDC  
Measured at MCLK(1)  
3.0 V  
0.01  
1
REFO frequency supply  
voltage drift  
1.8 V to  
3.6 V  
Measured at MCLK at 25°C(2)  
Measured at MCLK  
%/V  
1.8 V to  
3.6 V  
REFO duty cycle  
50%  
72  
60%  
40% to 60% duty cycle, HP mode  
(REFLP = 0)  
3.0 V  
3.0 V  
tSTART  
REFO start-up time  
µs  
40% to 60% duty cycle, LP mode  
(REFLP = 1)  
75  
(1) Calculated using the box method: (MAX(–40°C to 105°C) – MIN(–40°C to 105°C)) / MIN(–40°C to 105°C) / (105°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
5-8 lists the characteristics of the VLO.  
5-8. Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fVLO  
VLO frequency  
VLO frequency temperature drift  
Measured at MCLK  
Measured at MCLK(1)  
T
T
3.0 V  
3.0 V  
10  
kHz  
dfVLO/dT  
0.5  
%/°C  
1.8 V to  
3.6 V  
dfVLO/dVCC VLO frequency supply voltage drift  
fVLO,DC Duty cycle  
Measured at MCLK(2)  
Measured at MCLK  
T
T
4
%/V  
3.0 V  
50%  
(1) Calculated using the box method: (MAX(–40°C to 105°C) – MIN(–40°C to 105°C)) / MIN(–40°C to 105°C) / (105°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
The VLO clock frequency is reduced by 15% (typical) when the device switches from active  
mode to LPM3 or LPM4, because the reference changes. This lower frequency is not a  
violation of the VLO specifications (see 5-8).  
40  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5-9 lists the characteristics of the MODOSC.  
5-9. Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
VCC  
MIN  
TYP  
MAX  
UNIT  
fMODOSC  
MODOSC frequency  
MODOSC frequency temperature drift(1)  
T
T
3.0 V  
3.0 V  
3.0  
3.8  
4.6  
MHz  
fMODOSC/dT  
0.102  
%/℃  
1.8 V to  
3.6 V  
fMODOSC/dVCC MODOSC frequency supply voltage drift  
fMODOSC,DC Duty cycle  
T
T
1.17  
50%  
%/V  
3.0 V  
40%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 105°C) – MIN(–40°C to 105°C)) / MIN(–40°C to 105°C) / (105°C – (–40°C))  
5.12.4 Internal Shared Reference  
5-10 lists the characteristics of the internal shared reference.  
5-10. Internal Shared Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
TJ = 30℃  
VCC  
MIN  
TYP  
788  
MAX UNIT  
Temperature sensor  
voltage  
2.0 V,  
3.0 V  
VSENSOR  
T
mV  
mV/°C  
V
Temperature sensor  
coefficient  
TCSENSOR  
VeCOMP, LP  
VREF+, Output  
TJ = 30℃  
TJ = 30℃  
TJ = 30℃  
T
T
T
2.32  
1.20  
1.20  
Low-power threshold  
for eCOMP  
2.0 V,  
3.0 V  
Positive output  
reference at VREF+ pin  
2.0 V,  
3.0 V  
V
The following parameters are for the 1.5-V, 2.0-V, and 2.5-V internal reference only and cannot be output to the VREF+ pin.  
REFVSEL = {2} for 2.5 V,  
INTREFEN = 1  
T
T
T
T
3.0 V  
2.5 V  
1.8 V  
2.5  
2.0  
1.5  
30  
±1.5%  
Positive built-in  
REFVSEL = {1} for 2.0 V,  
INTREFEN = 1  
VREF+, built-in  
reference voltage as  
internal reference  
±1.5%  
±1.8%  
130  
V
REFVSEL = {0} for 1.5 V,  
INTREFEN = 1  
From 0.1 Hz to 10 Hz,  
REFVSEL = {0}  
(1)  
Noise  
RMS noise at VREF  
µV  
TA = 25 °C , ADC ON,  
REFVSEL = {0}, INTREFEN = 1,  
EXTREFEN=0  
VREF ADC BUF_INT  
buffer offset(2)  
VOS_BUF_INT  
T
T
–16  
–16  
+16  
+16  
mV  
TA = 25 °C, REFVSEL = {0} ,  
EXTREFEN = 1,  
INTREFEN = 1 or ADC ON  
VREF ADC BUF_EXT  
buffer offset(3)  
VOS_BUF_EXT  
DVCC(min)  
IREF+  
mV  
V
REFVSEL = {0} for 1.5 V  
T
T
T
1.8  
2.2  
2.7  
DVCC minimum  
voltage, Positive built-in REFVSEL = {1} for 2.0 V  
reference active  
REFVSEL = {2} for 2.5 V  
Operating supply  
current into DVCC  
INTREFEN = 1  
T
T
3 V  
3 V  
19  
26  
µA  
µA  
terminal(4)  
Operating supply  
ADC ON, EXTREFEN = 0,  
REFVSEL = {0, 1, 2}  
IREF+_ADC_BUF current into DVCC  
247  
400  
terminal(4)  
(1) Internal reference noise affects ADC performance when ADC uses internal reference.  
(2) Buffer offset affects ADC gain error and thus total unadjusted error.  
(3) Buffer offset affects ADC gain error and thus total unadjusted error.  
(4) The internal reference current is supplied through the DVCC terminal.  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
41  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5-10. Internal Shared Reference (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
REFVSEL = {0, 1, 2},  
DVCC = DVCC(min) for each  
reference level,  
VREF maximum load  
current, VREF+  
terminal  
IO(VREF+)  
T
3 V  
–1000  
+10  
µA  
INTREFEN = EXTREFEN = 1  
REFVSEL = {0, 1, 2},  
IO(VREF+) = +10 µA or –1000 µA,  
DVCC = DVCC(min) for each  
reference level,  
ΔVout/  
ΔIo(VREF+)  
Load-current regulation,  
VREF+ terminal  
T
3 V  
1500 µV/mA  
INTREFEN = EXTREFEN = 1  
Capacitance at VREF+  
and VREF- terminals  
CVREF+/-  
INTREFEN = EXTREFEN = 1  
T
T
3 V  
3 V  
0
100  
pF  
REFVSEL = {0, 1, 2},  
Temperature coefficient  
of built-in reference  
TCREF+  
INTREFEN = EXTREFEN = 1,  
24  
50 ppm/K  
TA = –40°C to 105°C(5)  
DVCC = DVCC (min) to DVCC(max)  
TA = 25°C, REFVSEL = {0, 1, 2},  
INTREFEN = EXTREFEN = 1  
,
Power supply rejection  
ratio (DC)  
PSRR_DC  
PSRR_AC  
tSETTLE  
T
T
T
3 V  
3 V  
3 V  
100  
3.0  
75  
400  
µV/V  
mV/V  
µs  
Power supply rejection  
ratio (ac)  
dDVCC= 0.1 V at 1 kHz  
DVCC = DVCC(min) to DVCC(max)  
REFVSEL = {0, 1, 2},  
INTREFEN = 0 1  
,
Settling time of  
100  
reference voltage(6)  
(5) Calculated using the box method: (MAX(–40°C to 105°C) – MIN(–40°C to 105°C)) / MIN(–40°C to 105°C) / (105°C – (–40°C))  
(6) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
42  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5.12.5 General-Purpose I/Os  
5-11 lists the characteristics of the digital inputs.  
5-11. Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
T
T
T
T
T
T
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
0.90  
1.35  
0.50  
0.75  
0.3  
1.50  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
2.25  
1.10  
V
Negative-going input threshold voltage  
1.65  
0.8  
V
Input voltage hysteresis (VIT+ – VIT–  
Pullup or pulldown resistor  
)
0.4  
1.2  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
,
RPull  
CI,dig  
CI,ana  
T
T
T
20  
35  
3
50  
kΩ  
pF  
pF  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
Input capacitance, port pins with shared  
analog functions  
VIN = VSS or VCC  
5
2.0 V,  
3.0 V  
Ilkg(Px.y) High-impedance leakage current(1)(2)  
T
T
–30  
50  
+30  
nA  
ns  
Ports with interrupt  
capability (see block  
diagram and terminal  
function descriptions)  
External interrupt timing (external trigger  
2.0 V,  
3.0 V  
t(int)  
pulse duration to set interrupt flag)(3)  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
(3) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It can be set by trigger signals  
shorter than t(int)  
.
5-12 lists the characteristics of the digital outputs.  
5-12. Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
I(OHmax) = –5 mA(1)  
I(OLmax) = 3 mA(1)  
I(OLmax) = 5 mA(1)  
VCC  
MIN  
TYP  
MAX UNIT  
T
T
T
T
T
T
T
T
T
T
T
T
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
1.4  
2.4  
0.0  
0.0  
16  
2.0  
V
VOH  
High-level output voltage  
3.0  
0.60  
V
VOL  
Low-level output voltage  
0.60  
Applicable to all IO ports, CL = 20  
pF(2)  
16  
fPort_CLK Clock output frequency  
MHz  
24  
IOs multiplexed with MCLK and  
SMCLK, CL = 10 pF(2)  
24  
10  
7
Port output rise time, digital  
only port pins  
trise,dig  
CL = 20 pF  
CL = 20 pF  
ns  
ns  
10  
5
Port output fall time, digital  
only port pins  
tfall,dig  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The port can output frequencies at least up to the specified limit and might support higher frequencies.  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
43  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.6 Digital I/O Typical Characteristics  
25  
20  
15  
10  
5
10  
7.5  
5
T
T
T
T
A
A
A
A
= -40°C  
= 25°C  
= 85°C  
= 105°C  
T
T
T
T
A
A
A
A
= -40°C  
= 25°C  
= 85°C  
= 105°C  
2.5  
0
0
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
0
0.5  
1
1.5  
2
2.5  
3
Low-Level Output Voltage (V)  
Low-Level Output Voltage (V)  
DVCC = 2 V  
DVCC = 3 V  
5-7. Typical Low-Level Output Current  
5-8. Typical Low-Level Output Current  
vs  
vs  
Low-Level Output Voltage  
Low-Level Output Voltage  
0
-2.5  
-5  
0
-5  
T
T
T
T
A
A
A
A
= -40°C  
= 25°C  
= 85°C  
= 105°C  
T
T
T
T
A
A
A
A
= -40°C  
= 25°C  
= 85°C  
= 105°C  
-10  
-15  
-20  
-25  
-30  
-
-7.5  
-10  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
0
0.5  
1
1.5  
2
2.5  
3
High-Level Output Voltage (V)  
High-Level Output Voltage (V)  
DVCC = 3 V  
DVCC = 2 V  
5-9. Typical High-Level Output Current  
5-10. Typical High-Level Output Current  
vs  
vs  
High-Level Output Voltage  
High-Level Output Voltage  
44  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5.12.7 Timer_B  
5-13 lists the frequency characteristics of Timer_B.  
5-13. Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
Duty cycle = 50% ±10%  
2.0 V,  
3.0 V  
fTB  
Timer_B input clock frequency  
Timer_B capture timing  
T
24  
MHz  
ns  
All capture inputs, minimum pulse  
duration required for capture  
2.0 V,  
3.0 V  
tTB,cap  
T
20  
5.12.8 eUSCI  
5-14 lists the supported frequencies of the eUSCI in UART mode.  
5-14. eUSCI (UART Mode) Clock Frequencies  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or MODCLK,  
External: UCLK,  
Duty cycle = 50% ±10%  
2.0 V,  
3.0 V  
feUSCI  
eUSCI input clock frequency  
T
24  
5
MHz  
MHz  
BITCLK clock frequency  
(equals baud rate in Mbaud)  
2.0 V,  
3.0 V  
fBITCLK  
T
5-15 lists the switching characteristics of the eUSCI in UART mode.  
5-15. eUSCI (UART Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
12  
40  
2.0 V,  
3.0 V  
(1)  
tt  
UART receive deglitch time  
T
ns  
68  
110  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
45  
 
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5-16 lists the supported frequencies of the eUSCI in SPI master mode.  
5-16. eUSCI (SPI Master Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK,  
Duty cycle = 50% ±10%  
feUSCI  
eUSCI input clock frequency  
T
8
MHz  
5-17 lists the switching characteristics of the eUSCI in SPI master mode.  
5-17. eUSCI (SPI Master Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1
TYP  
MAX  
UNIT  
UCSTEM = 1,  
UCMODEx = 01 or 10  
UCxCLK  
cycles  
tSTE,LEAD  
tSTE,LAG  
tSU,MI  
STE lead time, STE active to clock  
T
STE lag time, Last clock to STE  
inactive  
UCSTEM = 1,  
UCMODEx = 01 or 10  
UCxCLK  
cycles  
T
T
1
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
60  
42  
0
SOMI input data setup time  
SOMI input data hold time  
ns  
ns  
tHD,MI  
T
T
T
0
UCLK edge to SIMO  
valid,  
CL = 20 pF  
20  
20  
tVALID,MO  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
ns  
ns  
3.0 V  
2.0 V  
3.0 V  
–9.0  
–6.0  
tHD,MO  
CL = 20 pF  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in 5-11 and 5-12.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in 5-11  
and 5-12.  
46  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
tVALID,MO  
SIMO  
5-11. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
tVALID,MO  
SIMO  
5-12. SPI Master Mode, CKPH = 1  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
47  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5-18 lists the switching characteristics of the eUSCI in SPI slave mode.  
5-18. eUSCI (SPI Slave Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
55  
45  
20  
20  
tSTE,LEAD STE lead time, STE active to clock  
T
ns  
STE lag time, last clock to STE  
tSTE,LAG  
inactive  
T
T
T
T
T
T
T
ns  
65  
ns  
40  
STE access time, STE active to SOMI  
tSTE,ACC  
data out  
40  
ns  
35  
STE disable time, STE inactive to  
tSTE,DIS  
SOMI high impedance  
10  
6
tSU,SI  
SIMO input data setup time  
SIMO input data hold time  
ns  
ns  
12  
12  
tHD,SI  
69  
ns  
42  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO SOMI output data valid time(2)  
5
5
(3)  
tHD,SO  
SOMI output data hold time  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in 5-13 and 5-14.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in 5-13 and  
5-14.  
48  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SIMO  
tHD,SIMO  
tLOW/HIGH  
tLOW/HIGH  
SIMO  
tACC  
tVALID,SOMI  
tDIS  
SOMI  
5-13. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tACC  
tDIS  
tVALID,SO  
SOMI  
5-14. SPI Slave Mode, CKPH = 1  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
49  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5-19 lists the switching characteristics of the eUSCI in I2C mode.  
5-19. eUSCI (I2C Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 5-15)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
Internal: SMCLK or MODCLK,  
External: UCLK  
Duty cycle = 50% ±10%  
2.0 V,  
3.0 V  
feUSCI  
eUSCI input clock frequency  
T
24  
MHz  
2.0 V,  
3.0 V  
fSCL  
SCL clock frequency  
T
T
0
400  
kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
4.0  
0.6  
4.7  
0.6  
2.0 V,  
3.0 V  
tHD,STA  
Hold time (repeated) START  
Setup time for a repeated  
START  
2.0 V,  
3.0 V  
tSU,STA  
T
µs  
2.0 V,  
3.0 V  
tHD,DAT  
tSU,DAT  
tSU,STO  
Data hold time  
Data setup time  
T
T
0
ns  
ns  
2.0 V,  
3.0 V  
250  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
4.0  
0.6  
50  
2.0 V,  
3.0 V  
Setup time for STOP  
T
T
µs  
ns  
600  
300  
150  
75  
25  
Pulse duration of spikes  
suppressed by input filter  
2.0 V,  
3.0 V  
tSP  
12.5  
6.3  
36  
40  
44  
2.0 V,  
3.0 V  
tTIMEOUT Clock low time-out  
T
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
5-15. I2C Mode Timing  
50  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5.12.9 ADC  
5-20 lists the input characteristics of the ADC.  
5-20. ADC, Power Supply and Input Range Conditions  
over operating free-air temperature range (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
DVCC ADC supply voltage(1)  
T
T
2.0  
0
3.6  
V
V
V(Ax)  
Analog input voltage range  
All ADC pins  
DVCC  
Operating supply current into  
DVCC terminal, reference  
current not included, repeat-  
single-channel mode  
fADCCLK = 5 MHz, ADCON = 1,  
REFON = 0, SHT0 = 0,  
SHT1 = 0, ADCDIV = 0,  
ADCCONSEQx = 10b  
2.0 V  
3.0 V  
185  
280  
IADC  
T
µA  
Only one terminal Ax can be  
selected at one time from the  
pad to the ADC capacitor  
CI  
RI  
Input capacitance  
T
T
2.2 V  
4.5  
5.5  
2
pF  
array, including wiring and pad  
Input MUX ON resistance  
DVCC = 2 V, 0 V VAx DVCC  
kΩ  
(1) This specifies the ADC functional range with 8-bit resolution at 8-bit ENOB. 5-22 specifies 10- and 12-bit linearity parameters for  
better ENOB requirements.  
5-21 lists the timing parameters of the ADC.  
5-21. ADC, Timing Parameters  
over operating free-air temperature range (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
6.0  
UNIT  
ADC clock  
frequency  
ADC clock, 10-bit mode  
2.4 V to  
3.6 V  
fADCCLK  
T
MHz  
ADC clock, 12-bit mode  
4.4  
The error in a conversion started after  
tADCON is less than ±0.5 LSB,  
Reference and input signal already settled  
Turn-on settling  
time of the ADC  
tSettling  
T
T
100  
ns  
µs  
RS = 1000 Ω, RI = 4000 Ω,  
CI = 5.5 pF, Cexternal = 8.0 pF,  
Approximately 7.62 Tau (t) are required for  
an error of less than ±0.5 LSB, 10-bit  
mode(2)  
2.4 V to  
3.6 V  
0.52  
tSample Sampling time(1)  
RS = 1000 Ω, RI = 4000 Ω,  
CI = 5.5 pF, Cexternal = 8.0 pF,  
Approximately 9.01 Tau (t) are required for  
an error of less than ±0.5 LSB, 12-bit  
mode(2)  
2.4 V to  
3.6 V  
T
0.61  
(1) This excludes the ADC conversion time. The ADC conversion time is specified as (N + 2) × 1/fADCCLK  
.
(2) tSample = ln(2n+1) × τ, where n = ADC resolution, τ = (RI + RS) × CI  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
51  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5-22 lists the linearity parameters of the ADC.  
5-22. ADC, Linearity Parameters  
over operating free-air temperature range (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Integral linearity error(12-bit mode)  
Integral linearity error (10-bit mode)  
Differential linearity error(12-bit mode)  
Differential linearity error (10-bit mode)  
Offset error(12-bit mode)  
Veref+ reference  
Veref+ reference  
Veref+ reference  
Veref+ reference  
Veref+ reference  
Veref+ reference  
Veref+ as reference  
Veref+ as reference  
Veref+ as reference  
Veref+ as reference  
–2.5  
–2  
2.5  
LSB  
2
2.4 V to  
3.6 V  
EI  
T
–1  
1
2.4 V to  
3.6 V  
ED  
EO  
EG  
ET  
T
T
T
T
LSB  
1
–1  
–1.5  
–6.0  
–3.0  
–1.5  
–4.0  
–2.0  
1.5  
mV  
6.0  
2.4 V to  
3.6 V  
Offset error (10-bit mode)  
Gain error (12-bit mode)  
3.0  
2.4 V to  
3.6 V  
LSB  
1.5  
Gain error (10-bit mode)  
Total unadjusted error (12-bit mode)  
Total unadjusted error (10-bit mode)  
4.0  
2.4 V to  
3.6 V  
LSB  
2.0  
52  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5.12.10 Enhanced Comparator (eCOMP)  
5-23 lists the characteristics of eCOMP0.  
5-23. eCOMP0  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCC  
VIC  
Supply voltage  
T
T
2.0  
0
3.6  
V
V
Common mode input range  
VCC  
CPEN = 1, CPHSEL= 00  
0
10  
20  
30  
CPEN = 1, CPHSEL= 01  
VHYS  
DC input hysteresis  
T
T
mV  
CPEN = 1, CPHSEL= 10  
CPEN = 1, CPHSEL= 11  
CPEN = 1, CPMSEL = 0  
–30  
–40  
+30  
+40  
35  
VOFFSET  
Input offset voltage  
mV  
µA  
CPEN = 1, CPMSEL = 1  
VIC = VCC/2, CPEN = 1, CPMSEL = 0  
VIC = VCC/2, CPEN = 1, CPMSEL = 1  
24  
1.6  
1
Quiescent current draw from  
VCC, only Comparator  
ICOMP  
CIN  
T
T
T
5
Input channel capacitance(1)  
pF  
kΩ  
On (switch closed)  
Off (switch open)  
10  
20  
1
Input channel series  
resistance  
RIN  
50  
MΩ  
CPMSEL = 0, CPFLT = 0,  
Overdrive = 20 mV  
Propagation delay, response  
time  
tPD  
T
T
µs  
µs  
CPMSEL = 1, CPFLT = 0,  
Overdrive = 20 mV  
3.2  
8.5  
1.4  
CPEN = 01, CPMSEL = 0,  
V+ and V- from pads, Overdrive = 20 mV  
tEN_CP  
Comparator enable time  
CPEN = 01, CPMSEL = 1,  
V+ and V- from pads, Overdrive = 20 mV  
CPEN = 01, CPDACEN = 01,  
CPMSEL = 0, CPDACREFS = 1,  
CPDACBUF1 = 0F, Overdrive = 20 mV  
8.5  
Comparator with reference  
DAC enable time  
tEN_CP_DAC  
T
T
µs  
µs  
CPEN = 01, CPDACEN = 01,  
CPMSEL = 1,  
CPDACREFS = 1, CPDACBUF1 = 0F,  
Overdrive = 20 mV  
101  
CPMSEL = 0, CPFLTDY = 00,  
Overdrive = 20 mV, CPFLT = 1  
0.7  
1.1  
1.9  
3.4  
CPMSEL = 0, CPFLTDY = 01,  
Overdrive = 20 mV, CPFLT = 1  
Propagation delay with  
analog filter active  
tFDLY  
CPMSEL = 0, CPFLTDY = 10,  
Overdrive = 20 mV, CPFLT = 1  
CPMSEL = 0, CPFLTDY = 11,  
Overdrive = 20 mV, CPFLT = 1  
INL  
Integral nonlinearity  
T
T
–0.5  
–0.5  
0.5  
0.5  
LSB  
LSB  
DNL  
Differential nonlinearity  
(1) For details on the eCOMP CIN, model , see 5-16.  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
53  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5-24 lists the characteristics of eCOMP1.  
5-24. eCOMP1  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCC  
VIC  
Supply voltage  
T
T
2.0  
0
3.6  
V
V
Common mode input range  
VCC  
CPEN = 1, CPHSEL= 00  
0
10  
20  
30  
CPEN = 1, CPHSEL= 01  
VHYS  
DC input hysteresis  
T
T
mV  
CPEN = 1, CPHSEL= 10  
CPEN = 1, CPHSEL= 11  
CPEN = 1, CPMSEL = 0  
–30  
–40  
+30  
+40  
209  
30  
VOFFSET  
Input offset voltage  
mV  
µA  
CPEN = 1, CPMSEL = 1  
VIC = VCC/2, CPEN = 1, CPMSEL = 0  
VIC = VCC/2, CPEN = 1, CPMSEL = 1  
162  
20  
1
Quiescent current draw from  
VCC, only Comparator  
ICOMP  
CIN  
T
T
T
Input channel capacitance(1)  
pF  
kΩ  
On (switch closed)  
Off (switch open)  
1
5
RIN  
Input channel series resistance  
50  
MΩ  
CPMSEL = 0, CPFLT = 0,  
Overdrive = 20 mV, DVCC = 3.0 V  
0.1  
Propagation delay, response  
time  
tPD  
T
T
µs  
µs  
CPMSEL = 1, CPFLT = 0,  
Overdrive = 20 mV  
0.32  
8.5  
CPEN = 01, CPMSEL = 0,  
V+ and V- from pads, Overdrive = 20 mV  
tEN_CP  
Comparator enable time  
CPEN = 01, CPMSEL = 1,  
V+ and V- from pads, Overdrive = 20 mV  
4.8  
CPEN = 01, CPDACEN = 01,  
CPMSEL = 0, CPDACREFS = 1,  
CPDACBUF1 = 0F, Overdrive = 20 mV  
8.5  
Comparator with reference DAC  
enable time  
tEN_CP_DAC  
T
T
µs  
ns  
CPEN = 01, CPDACEN = 01,  
CPMSEL = 1, CPDACREFS = 1,  
CPDACBUF1 = 0F, Overdrive = 20 mV  
101  
CPMSEL = 0, CPFLTDY = 00,  
Overdrive = 20 mV, CPFLT = 1  
150  
350  
CPMSEL = 0, CPFLTDY = 01,  
Overdrive = 20 mV, CPFLT = 1  
Propagation delay with analog  
filter active  
tFDLY  
CPMSEL = 0, CPFLTDY = 10,  
Overdrive = 20 mV, CPFLT = 1  
1000  
1900  
CPMSEL = 0, CPFLTDY = 11,  
Overdrive = 20 mV, CPFLT = 1  
INL  
Integral nonlinearity  
T
T
–0.5  
–0.5  
0.5  
0.5  
LSB  
LSB  
DNL  
Differential nonlinearity  
(1) For details on the eCOMP CIN, model, see 5-16.  
MSP430  
VI = External source voltage  
RS = External source resistance  
RI = Internal MUX-on input resistance  
CIN = Input capacitance  
CPAD = PAD capacitance  
RS  
RI  
VI  
VC  
CPext = Parasitic capacitance, external  
VC = Capacitance-charging voltage  
Cpext  
CPAD  
CIN  
5-16. eCOMP Input Circuit  
54  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5.12.11 Smart Analog Combo (SAC) (MSP430FR235x Devices Only)  
5-25 lists the characteristics of the SAC OA.  
5-25. SAC, OA  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCC  
VOS  
Supply voltage  
T
T
2.0  
–5  
3.6  
5
V
Input offset voltage  
mV  
OAPM = 0(1)  
OAPM = 1(1)  
3
5
dVOS/dT  
Offset drift  
T
µV/℃  
IB  
Input bias current  
T
T
50  
pA  
V
VCC  
0.1  
+
VCM  
Input voltage range  
–0.1  
OAPM = 0  
OAPM = 1  
350  
120  
IIDD  
Quiescent current  
T
T
µA  
µV  
f = 0.1 Hz to 10 Hz,  
Vin = VCC/2, OAPM = 0  
Input noise voltage  
40  
ENI  
f = 1 kHz, Vin = VCC/2, OAPM = 0  
f = 10 kHz, Vin = VCC/2, OAPM = 0  
OAPM = 0  
64  
28  
70  
80  
70  
80  
2.8  
1.0  
100  
100  
65  
3
Input noise voltage density  
nV/Hz  
CMRR  
PSRR  
GBW  
Common-mode rejection ratio  
Power supply rejection ratio  
Gain-bandwidth  
T
T
T
dB  
dB  
OAPM = 1  
OAPM = 0  
OAPM = 1  
OAPM = 0  
MHz  
OAPM = 1  
OAPM = 0  
AOL  
Open-loop voltage gain  
Phase margin  
T
T
T
dB  
deg  
V/µs  
OAPM = 1  
φM  
CL = 50 pF , RL = 2 kΩ  
CL = 50 pF, OAPM = 0, step = 1  
CL = 50 pF, OAPM = 1, step = 1  
Common mode  
Positive slew rate  
Input capacitance  
1
Cin  
VO  
T
T
3
pF  
Voltage output swing from  
supply rails  
RL = 10 kΩ  
40  
1
100  
mV  
To 0.1% final value, G = +1, 1-V setup  
CL = 50 pF, OAPM = 0  
tST  
OA settling time  
T
T
µs  
To 0.1% final value, G = +1, 1-V setup  
CL = 50 pF, OAPM = 1  
4.5  
THD  
Total harmonic distortion  
All gains  
–60  
dB  
(1) Calculated using the box method: (MAX(–40°C to 105°C) – MIN(–40°C to 105°C)) / MIN(–40°C to 105°C) / (105°C – (–40°C))  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
55  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5-25. SAC, OA (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Gain = 1, inverting mode, follower mode  
Gain = 2, noninverting mode  
Gain = 2, inverting mode  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
0.99  
1.98  
1
2
1.01  
2.02  
1.98  
2
2.02  
Gain = 3, noninverting mode  
Gain = 4, inverting mode  
2.97  
3
3.03  
3.96  
4
4.04  
Gain = 5, noninverting mode  
Gain = 8, inverting mode  
4.95  
5
5.05  
7.92  
8
8.08  
Gclose loop PGA closed-loop gain  
Gain = 9, noninverting mode  
Gain = 16, inverting mode  
Gain = 17, noninverting mode  
Gain = 25, inverting mode  
Gain = 26, noninverting mode  
Gain = 32, inverting mode  
Gain = 33, noninverting mode  
8.91  
9
9.09  
15.84  
16.83  
24.75  
25.74  
31.68  
32.67  
16  
17  
25  
26  
32  
33  
16.16  
17.17  
25.25  
26.26  
32.32  
33.33  
5-26 lists the characteristics of the SAC DAC.  
5-26. SAC, DAC  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCC  
Supply voltage  
T
2.4  
3.6  
V
Quiescent current of resistor  
ladder into VREF_INT  
IIDDR  
T
T
5
µA  
Low-power mode  
0.2  
1
IIOAD  
OA + DAC output load current  
mA  
µs  
High-power mode  
OAPM = 1  
OAPM = 0  
OAPM = 1  
477  
160  
10  
OA + DAC settling time, full  
scale  
DACDAT =  
0x80h0xF7Fh0x80h  
tST(FS)  
T
T
DACDAT =  
0x3F8h408h0x3F8h  
or  
2
2
OA + DAC settling time, code  
to code  
tST(C-C)  
µs  
OAPM = 0  
5
DACDAT =  
0xBF8hC08h0xBF8h  
INL  
OA + DAC integral nonlinearity DACSREF = DVCC, DVCC = 3.0 V  
T
T
–4  
–1  
0
4
1
LSB  
LSB  
OA + DAC differential  
DACSREF = DVCC, DVCC = 3.0 V  
nonlinearity  
DNL  
No load, DACSREF = DVCC, DACDAT = 0  
0.005  
0.1  
RLOAD = 3 kΩ , DACSREF = DVCC,  
0
VOUT  
Output voltage range  
DACDAT = 0  
T
V
RLOAD = 3 kΩ , DACSREF = DVCC,  
DACDAT = 0FFFh  
DVCC –  
0.1  
DVCC  
56  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5.12.12 FRAM  
5-27 lists the characteristics of the FRAM.  
5-27. FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
DEVICE  
GRADE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Read and write endurance  
T
T
T
T
T
T
T
T
T
T
1015  
100  
40  
cycles  
TJ = 25°C  
TJ = 70°C  
TJ = 115°C  
tRetention  
Data retention duration  
years  
10  
(1)  
(1)  
(1)  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM  
Erase current  
IREAD  
IREAD  
IREAD  
nA  
nA  
ns  
N/A(2)  
N/A(2)  
N/A(2)  
(3)  
(3)  
(3)  
Write time  
tREAD  
tREAD  
tREAD  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
NWAITSx = 0  
NWAITSx = 1  
NWAITSx = 2  
1/fSYSTEM  
2/fSYSTEM  
3/fSYSTEM  
1/fSYSTEM  
2/fSYSTEM  
3/fSYSTEM  
1/fSYSTEM  
2/fSYSTEM  
3/fSYSTEM  
TREAD  
Read time  
ns  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current IREAD is included in the active mode current consumption IAM, FRAM parameters.  
(2) FRAM does not require a special erase sequence.  
(3) Writing into FRAM is as fast as reading.  
(4) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
57  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.13 Emulation and Debug  
5-28 lists the characteristics of the SBW interface.  
5-28. JTAG, Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 5-17)  
DEVICE  
GRADE  
PARAMETER  
Spy-Bi-Wire input frequency  
VCC  
MIN  
0
TYP  
MAX UNIT  
2.0 V,  
3.0 V  
fSBW  
T
8
MHz  
µs  
2.0 V,  
3.0 V  
tSBW,Low  
tSU,SBWTDIO  
tHD,SBWTDIO  
tValid,SBWTDIO  
tSBW, En  
Spy-Bi-Wire low clock pulse duration  
T
T
T
T
T
T
T
0.028  
4
15  
SBWTDIO setup time (before falling edge of SBWTCK in  
TMS and TDI slot Spy-Bi-Wire)  
2.0 V,  
3.0 V  
ns  
SBWTDIO hold time (after rising edge of SBWTCK in TMS  
and TDI slot Spy-Bi-Wire)  
2.0 V,  
3.0 V  
19  
ns  
SBWTDIO data valid time (after falling edge of SBWTCK in  
TDO slot Spy-Bi-Wire)  
2.0 V,  
3.0 V  
31  
110  
100  
50  
ns  
Spy-Bi-Wire enable time (TEST high to acceptance of first  
2.0 V,  
3.0 V  
µs  
(1)  
clock edge)  
2.0 V,  
3.0 V  
tSBW,Ret  
Spy-Bi-Wire return to normal operation time(2)  
Internal pulldown resistance on TEST  
15  
20  
µs  
2.0 V,  
3.0 V  
Rinternal  
35  
kΩ  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) Maximum tSBW,Rst time after pulling or releasing the TEST/SBWTCK pin low, the Spy-Bi-Wire pins revert from their Spy-Bi-Wire function  
to their application function. This time applies only if the Spy-Bi-Wire mode was selected.  
tSBW,EN  
tSBW,Low  
1/fSBW  
tSBW,High  
tSBW,Ret  
TEST/SBWTCK  
tEN,SBWTDIO  
tValid,SBWTDIO  
RST/NMI/SBWTDIO  
tSU,SBWTDIO  
tHD,SBWTDIO  
5-17. JTAG Spy-Bi-Wire Timing  
58  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
5-29 lists the characteristics of the 4-wire JTAG interface.  
5-29. JTAG, 4-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 5-18)  
DEVICE  
GRADE  
PARAMETER  
VCC  
MIN  
0
TYP  
MAX UNIT  
2.0 V,  
3.0 V  
(1)  
fTCK  
TCK input frequency  
I, T  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
kΩ  
2.0 V,  
3.0 V  
tTCK,Low  
tTCK,high  
tSU,TMS  
tHD,TMS  
tSU,TDI  
Spy-Bi-Wire low clock pulse duration  
Spy-Bi-Wire high clock pulse duration  
TMS setup time (before rising edge of TCK)  
TMS hold time (after rising edge of TCK)  
TDI setup time (before rising edge of TCK)  
TDI hold time (after rising edge of TCK)  
I, T  
I, T  
I, T  
I, T  
I, T  
I, T  
I, T  
I, T  
I, T  
I, T  
I, T  
15  
15  
11  
3
2.0 V,  
3.0 V  
2.0 V,  
3.0 V  
2.0 V,  
3.0 V  
2.0 V,  
3.0 V  
13  
5
2.0 V,  
3.0 V  
tHD,TDI  
TDO high impedance to valid output time (after falling edge of  
TCK)  
2.0 V,  
3.0 V  
tz-Valid,TDO  
tValid,TDO  
tValid-Z,TDO  
tJTAG,Ret  
Rinternal  
26  
26  
2.0 V,  
3.0 V  
TDO to new valid output time (after falling edge of TCK)  
TDO valid to high impedance output time (after falling edge of  
TCK)  
2.0 V,  
3.0 V  
26  
2.0 V,  
3.0 V  
Spy-Bi-Wire return to normal operation time  
Internal pulldown resistance on TEST  
15  
20  
100  
50  
2.0 V,  
3.0 V  
35  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
版权 © 2018–2019, Texas Instruments Incorporated  
Specifications  
59  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
1/fTCK  
tTCK,Low  
tTCK,High  
TCK  
TMS  
tSU,TMS  
tHD,TMS  
TDI  
(or TDO as TDI)  
tSU,TDI  
tHD,TDI  
TDO  
tZ-Valid,TDO  
tValid,TDO  
tValid-Z,TDO  
tJTAG,Ret  
TEST  
5-18. JTAG 4-Wire Timing  
60  
Specifications  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6 Detailed Description  
6.1 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter (PC), stack pointer (SP), status register  
(SR), and constant generator (CG), respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all  
instructions.  
6.2 Operating Modes  
The MCUs have one active mode and several software-selectable low-power modes of operation. An  
interrupt event can wake the device from a low-power mode (LPM0, LPM3, or LPM4), service the request,  
and return to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and  
LPM4.5 disable the core supply to minimize power consumption.  
6-1. Operating Modes  
AM  
LPM0  
CPU OFF  
24 MHz  
LPM3  
LPM4  
OFF  
0
LPM3.5  
LPM4.5  
SHUTDOWN  
0
MODE  
Maximum system clock  
ACTIVE  
MODE  
ONLY RTC  
COUNTER  
STANDBY  
24 MHz  
40 kHz  
40 kHz  
1.43 µA with  
142 µA/MHz 40 µA/MHz RTC counter  
only in LFXT  
620 nA with  
RTC counter  
only in LFXT  
0.82 µA  
without SVS  
42 nA  
without SVS  
Power consumption at 25°C, 3 V  
Wake-up time  
N/A  
Instant  
10 µs  
10 µs  
I/O  
350 µs  
350 µs  
I/O  
RTC counter,  
I/O  
Wake-up events  
N/A  
All  
All  
Full  
regulation  
Full  
regulation  
Partial power Partial power Partial power  
Regulator  
Power down  
down  
Optional  
On  
down  
Optional  
On  
down  
Optional  
On  
Power  
SVS  
On  
On  
On  
Optional  
On  
Brownout  
MCLK  
SMCLK  
FLL  
On  
Active  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
On  
Off  
Off  
Off  
Off  
Off  
Active  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
DCO  
Off  
Off  
Off  
Off  
MODCLK  
Off  
Off  
Off  
Off  
Clock(1)  
REFO  
Optional  
Active  
Off  
Off  
Off  
Off  
ACLK  
Off  
Off  
Off  
XT1HFCLK(2)  
XT1LFCLK  
VLOCLK  
CPU  
Off  
Off  
Off  
Optional  
Optional  
Off  
Off  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
FRAM  
On  
On  
Off  
Off  
Off  
Off  
Core  
RAM  
On  
On  
On  
On  
Off  
Off  
Backup Memory(3)  
On  
On  
On  
On  
On  
Off  
(1) The status shown for LPM4 applies to internal clocks only.  
(2) HFXT must be disabled before entering into LPM3, LPM4, or LPMx.5 mode.  
(3) Backup memory contains one 32-byte register in the peripheral memory space. See 6-33 and 6-54 for its memory allocation.  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
61  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-1. Operating Modes (continued)  
AM  
LPM0  
LPM3  
LPM4  
OFF  
LPM3.5  
LPM4.5  
MODE  
ACTIVE  
MODE  
ONLY RTC  
COUNTER  
CPU OFF  
STANDBY  
SHUTDOWN  
Timer0_B3  
Timer1_B3  
Timer2_B3  
Timer3_B7  
WDT  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
On  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
eUSCI_B1  
CRC  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Peripherals  
ICC  
Off  
Off  
Off  
Off  
MPY32  
Off  
Off  
Off  
Off  
ADC  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
State held  
Off  
Off  
Off  
eCOMP0  
eCOMP1  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
State held  
Off  
Off  
Off  
Off  
(4)  
SAC0  
Off  
Off  
SAC1(4)  
SAC2(4)  
SAC3(4)  
Off  
Off  
Off  
Off  
Off  
Off  
RTC Counter  
General digital input/output  
Optional  
State held  
Off  
I/O  
State held  
(4) MSP430FR235x devices only  
XT1CLK and VLOCLK can be active during LPM4 if requested by low-frequency peripherals.  
62  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.3 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see 表  
6-2). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
6-2. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up, brownout, supply supervisor  
External reset RST  
Watchdog time-out, key violation  
FRAM uncorrectable bit error detection  
Software POR, BOR  
SVSHIFG  
PMMRSTIFG  
WDTIFG  
Reset  
FFFEh  
63, Highest  
PMMPORIFG, PMMBORIFG  
SYSRSTIV  
FLLULPUC  
FLL unlock error  
System NMI  
Vacant memory access  
JTAG mailbox  
FRAM access time error  
FRAM bit-error detection  
VMAIFG  
JMBINIFG, JMBOUTIFG  
CBDIFG, UBDIFG  
Non-Maskable  
Non-Maskable  
FFFCh  
FFFAh  
62  
61  
User NMI  
External NMI  
Oscillator fault  
NMIIFG  
OFIFG  
Timer0_B3  
Timer0_B3  
Timer1_B3  
Timer1_B3  
Timer2_B3  
Timer2_B3  
Timer3_B7  
TB0CCR0 CCIFG0  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
FFF8h  
FFF6h  
FFF4h  
FFF2h  
FFF0h  
FFEEh  
FFECh  
60  
59  
58  
57  
56  
55  
54  
TB0CCR1 CCIFG1, TB0CCR2  
CCIFG2, TB0IFG (TB0IV)  
TB1CCR0 CCIFG0  
TB1CCR1 CCIFG1, TB1CCR2  
CCIFG2, TB1IFG (TB1IV)  
TB2CCR0 CCIFG0  
TB2CCR1 CCIFG1, TB2CCR2  
CCIFG2, TB2IFG (TB2IV)  
TB3CCR0 CCIFG0  
TB3CCR1 CCIFG1, TB3CCR2  
CCIFG2, TB3CCR3 CCIFG3,  
TB3CCR4 CCIFG4, TB3CCR5  
CCIFG5, TB3CCR6 CCIFG6, TB3IFG  
(TB3IV)  
Timer3_B7  
Maskable  
FFEAh  
53  
RTC counter  
RTCIFG  
WDTIFG  
Maskable  
Maskable  
FFE8h  
FFE6h  
52  
51  
Watchdog timer interval mode  
UCTXCPTIFG, UCSTTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
(UCA0IV))  
eUSCI_A0 receive or transmit  
eUSCI_A1 receive or transmit  
Maskable  
Maskable  
FFE4h  
FFE2h  
50  
49  
UCTXCPTIFG, UCSTTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
(UCA0IV))  
UCB0RXIFG, UCB0TXIFG (SPI mode)  
UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1, UCRXIFG2,  
UCTXIFG2, UCRXIFG3, UCTXIFG3,  
UCCNTIFG,  
eUSCI_B0 receive or transmit  
Maskable  
FFE0h  
48  
UCBIT9IFG,UCCLTOIFG(I2C mode)  
(UCB0IV)  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
63  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
PRIORITY  
47  
6-2. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
UCB1RXIFG, UCB1TXIFG (SPI mode)  
UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1, UCRXIFG2,  
UCTXIFG2, UCRXIFG3, UCTXIFG3,  
UCCNTIFG,  
eUSCI_B1 receive or transmit  
Maskable  
FFDEh  
UCBIT9IFG,UCCLTOIFG(I2C mode)  
(UCB0IV)  
ADCIFG0, ADCINIFG, ADCLOIFG,  
ADCHIIFG, ADCTOVIFG, ADCOVIFG  
(ADCIV)  
ADC  
Maskable  
FFDCh  
46  
eCOMP0_eCOMP1  
SAC0_SAC2(1)  
CPIIFG, CPIFG (CP1IV, CP0IV)  
Maskable  
Maskable  
FFDAh  
FFD8h  
45  
44  
SAC2DACSTS DACIFG (SAC2IV)  
SAC0DACSTS DACIFG, SAC0IV)  
SAC3DACSTS DACIFG (SAC3IV)  
SAC1DACSTS DACIFG, SAC1IV)  
SAC1_SAC3(1)  
Maskable  
FFD6h  
43  
P1  
P2  
P1IFG.0 to P1IFG.7 (P1IV)  
P2IFG.0 to P2IFG.7 (P2IV)  
P3IFG.0 to P3IFG.7 (P3IV)  
P4IFG.0 to P4IFG.7 (P4IV)  
Reserved  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
FFD4h  
FFD2h  
42  
41  
40  
39  
P3  
FFD0h  
P4  
FFCEh  
Reserved  
FFCCh to FF88h  
(1) MSP430FR235x devices only  
6-3 lists the BSL signature settings. The BSL setting on MSP430FR2355 can be customized by using  
BSL configuration and I2C address. See the MSP430 FRAM Device Bootloader (BSL) User's Guide for  
more details.  
6-3. BSL Signatures  
SIGNATURE  
BSL I2C Address(1)  
BSL Config  
WORD ADDRESS  
FFA0h  
0FF8Ah  
BSL Config Signature  
BSL Signature2  
BSL Signature1  
JTAG Signature2  
JTAG Signature1  
0FF88h  
0FF86h  
0FF84h  
0FF82h  
0FF80h  
(1) 7-bit address BSL I2C interface  
64  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.4 Memory Organization  
6-4 summarizes the memory map of the devices.  
6-4. Memory Organization  
ACCESS  
MSP430FR2355  
MSP430FR2353  
Memory (FRAM)  
Main: interrupt vectors and signatures  
Main: code memory  
32KB  
FFFFh to FF80h  
FFFFh to 8000h  
16KB  
FFFFh to FF80h  
FFFFh to C000h  
Read/Write  
(Optional Write Protect)(1)  
4KB  
2FFFh to 2000h  
2KB  
27FFh to 2000h  
RAM  
Read/Write  
Read/Write(2)  
Read only  
Read/Write  
Read/Write  
Read  
512 bytes  
19FFh to 1800h  
512 bytes  
19FFh to 1800h  
Information memory (FRAM)  
Driver library and FFT library (ROM)  
Peripherals  
20KB  
FAC00h to FFBFFh  
20KB  
FAC00h to FFBFFh  
4KB  
0FFFh to 0020h  
4KB  
0FFFh to 0020h  
26 bytes  
001Fh to 0006h  
26 bytes  
001Fh to 0006h  
Tiny RAM  
6 bytes  
0005h to 0000h  
6 bytes  
0005h to 0000h  
Reserved(3)  
(1) The program FRAM can be write protected by setting PFWP bit in SYSCFG0 register. See the SYS chapter in MSP430FR4xx and  
MSP430FR2xx Family User's Guide for more details.  
(2) The information FRAM can be write protected by setting DFWP bit in SYSCFG0 register. See the SYS chapter in MSP430FR4xx and  
MSP430FR2xx Family User's Guide for more details.  
(3) Reads as D032h at 00h (opcode: BIS.W LPM4, SR), reads as 00F0h at 02h (opcode: BIS.W LPM4, SR), and reads as 3FFFh at 04h  
(opcode: JMP$)  
6.5 Bootloader (BSL)  
The BSL enables users to program the FRAM memory or RAM using a UART or I2C serial interface.  
Access to the device memory through the BSL is protected by an user-defined password. Use of the BSL  
requires four pins (see 6-5 and 6-6). BSL entry requires a specific entry sequence on the  
RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the BSL and its  
implementation, see MSP430 FRAM Devices Bootloader (BSL) User's Guide.  
6-5. UART BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.7  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
P1.6  
Data receive  
DVCC  
Power supply  
DVSS  
Ground supply  
6-6. I2C BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.2  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data receive and transmit  
Clock  
P1.3  
DVCC  
Power supply  
DVSS  
Ground supply  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
65  
 
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6.6 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and  
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to  
enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with  
MSP430 development tools and device programmers. 6-7 lists the JTAG pin requirements. For further  
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools  
User's Guide.  
6-7. JTAG Pin Requirements and Function  
DEVICE SIGNAL  
P1.4/UCA0STE/TCK/A4  
DIRECTION  
JTAG FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
IN  
OUT  
IN  
IN  
P1.5/UCA0CLK/TMS/OA1O/A5  
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/OA1-/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/OA1+/A7/VREF+  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
Power supply  
DVSS  
Ground supply  
6.7 Spy-Bi-Wire Interface (SBW)  
The MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface  
with MSP430 development tools and device programmers. 6-8 shows the Spy-Bi-Wire interface pin  
requirements. For further details on interfacing to development tools and device programmers, see the  
MSP430 Hardware Tools User's Guide.  
6-8. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
DIRECTION  
SBW FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN  
IN, OUT  
DVSS  
Ground supply  
6.8 FRAM  
The FRAM can be programmed using the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. Features of the FRAM include:  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
66  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.9 Memory Protection  
The device features memory protection of user access authority and write protection include:  
Securing the whole memory map to prevent unauthorized access from JTAG port or BSL, by writing  
JTAG and BSL signatures using the JTAG port, SBW, the BSL, or in-system by the CPU.  
Write protection enabled to prevent unwanted write operation to FRAM contents by setting the control  
bits with accordingly password in System Configuration register 0. For more detailed information, see  
the SYS chapter in the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
6.10 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. All peripherals can be  
handled by using all instructions in the memory map. For complete module description, see the  
MSP430FR4xx and MSP430FR2xx Family User's Guide.  
6.10.1 Power Management Module (PMM) and On-Chip Reference Voltages  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM  
also includes supply voltage supervisor (SVS) and brownout protection. The brownout reset circuit (BOR)  
is implemented to provide the proper internal reset signal to the device during power-on and power-off.  
The SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is  
available on the primary supply.  
The device contains three on-chip references:  
Internal shared reference (1.5 V, 2.0 V, or 2.5 V)  
1.2 V for external reference (VREF pin)  
1.2 V low-power reference for eCOMP  
The internal shared reference is controlled by PMM settings to select 1.5 V, 2.0 V, or 2.5 V. This reference  
is internally connected to ADC channel 13. DVCC is internally connected to ADC channel 15. When  
DVCC is set as the reference voltage for ADC conversion, the DVCC can be easily represent as 公式 1 by  
using ADC sampling reference without any external components support.  
DVCC = (4095 × reference voltage) ÷ ADC result  
(1)  
The internal shared reference (1.5 V, 2.0 V, or 2.5 V ) is also internally connected to the built-in DAC of  
the comparator and SAC (MSP430FR235x devices only) built-in 12-bit DAC as the reference voltage. The  
source can be selected by setting the specific register configuration of each module For more information,  
see the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/OA1+/A7/VREF+ can support a buffered external 1.2-V output  
when EXTREFEN = 1 in the PMMCTL2 register. ADC channel 7 can also be selected to monitor this  
voltage. For more information, see the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
An additional low-power 1.2-V reference is internally connected to eCOMP0 and eCOMP1. This reference  
is activated by enabling eCOMP with the channel as threshold source. See 6.10.13 for more details.  
6.10.2 Clock System (CS) and Clock Distribution  
The clock system includes a 32-kHz low-frequency or up to 24-MHz high-frequency crystal oscillator  
(XT1), an internal very low-power low-frequency oscillator (VLO), an integrated 32-kHz RC oscillator  
(REFO), an integrated internal digitally controlled oscillator (DCO) that can use frequency-locked loop  
(FLL) locking with internal or external 32-kHz reference clock, and on-chip asynchronous high-speed clock  
(MODOSC). The clock system is designed to target cost-effective designs with minimal external  
components. A fail-safe mechanism is designed for XT1. The clock system module supports the following  
clock signals.  
Main Clock (MCLK): the system clock used by the CPU and all relevant peripherals accessed by the  
bus. All clock sources except MODOSC can be selected as the source with a predivider of 1, 2, 4, 8,  
16, 32, 64, or 128.  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
67  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Sub-Main Clock (SMCLK): the subsystem clock used by the peripheral modules. SMCLK derives from  
the MCLK with a predivider of 1, 2, 4, or 8. This means SMCLK is always equal to or less than MCLK.  
Auxiliary Clock (ACLK): this clock derived from the external XT1 clock, internal VLO, or internal REFO  
clock up to 40 kHz.  
All peripherals have one or several clock sources, depending on specific functionality. 6-9 lists the clock  
distribution used in this device.  
6-9. Clock Distribution  
CLOCK  
SOURCE  
SELECT BITS  
EXTERNAL  
MCLK  
SMCLK  
ACLK  
MODCLK  
VLOCLK  
PIN  
Frequency  
Range  
DC to 24 MHz  
DC to 24 MHz  
DC to 40 kHz  
3.8 MHz ±21%  
10 kHz ±50%  
CPU  
FRAM  
RAM  
CRC  
MPY32  
ICC  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
I/O  
00b (TB0CLK  
pin)  
TB0  
TBSSEL  
TBSSEL  
TBSSEL  
TBSSEL  
UCSSEL  
UCSSEL  
UCSSEL  
UCSSEL  
10b  
10b  
01b  
01b  
01b  
01b  
01b  
01b  
01b  
01b  
00b (TB1CLK  
pin)  
TB1  
00b (TB2CLK  
pin)  
TB2  
10b  
00b (TB3CLK  
pin)  
TB3  
10b  
00b (UCA0CLK  
pin)  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
eUSCI_B1  
10b or 11b  
10b or 11b  
10b or 11b  
10b or 11b  
00b (UCA1CLK  
pin)  
00b (UCB0CLK  
pin)  
00b (UCB1CLK  
pin)  
MFM  
N/A  
Default  
00b  
WDT  
WDTSSEL  
ADCSSEL  
RTCSS  
01b  
10b  
ADC  
10b or 11b  
01b(1)  
01b  
01b(1)  
00b  
RTC Counter  
11b  
(1) Controlled by the RTCCKSEL bit in the SYSCFG2 register.  
6-10. XTCLK Distribution  
XTHFCLK  
XTLFCLK  
XTLFCLK (LPMx.5)  
CLOCK SOURCE  
SELECT BITS  
OPERATION MODE  
MCLK  
AM to LPM0  
AM to LPM3  
AM to LPM3.5  
SELMS  
SELMS  
SELREF  
SELA  
10b  
10b  
0b  
0b  
10b  
10b  
0b  
10b  
10b  
0b  
SMCLK  
REFO  
ACLK  
RTC  
0b  
0b  
RTCSS  
10b  
10b  
68  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.10.3 General-Purpose Input/Output Port (I/O)  
Up to 44 I/O ports are implemented.  
P1, P2, P3, and P4 are full 8-bit ports; P5 and P6 feature up to 5-bit and 7-bit ports, respectively.  
All individual I/O bits are independently programmable.  
Any combination of input, output, is possible for P1, P2, P3, P4, P5, and P6. Interrupt conditions are  
possible in P1, P2, P3, and P4.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5, LPM4 and LPM4.5 wake-up input capability is available in P1,  
P2, P3, and P4.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise in pairs.  
Configuration of digital I/Os after BOR reset  
To prevent cross currents during start-up of the device, all port pins are high-impedance with  
Schmitt triggers and module functions disabled. To enable the I/O functions after a BOR  
reset, first configure the ports and then clear the LOCKLPM5 bit. For details, see the  
Configuration After Reset section in the Digital I/O chapter of the MSP430FR4xx and  
MSP430FR2xx Family User's Guide.  
6.10.4 Watchdog Timer (WDT)  
The primary function of the WDT module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not  
needed in an application, the module can be configured as interval timer and can generate interrupts at  
selected time intervals.  
6-11 lists the clock sources that can be used by the WDT.  
6-11. WDT Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL  
TIMER MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
Reserved  
6.10.5 System Module (SYS)  
The SYS module handles many of the system functions within the device. These include power-on reset  
(POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector  
generators (see 6-12), bootloader entry mechanisms, and configuration management (device  
descriptors). SYS also includes a data exchange mechanism through SBW called a JTAG mailbox that  
can be used in the application.  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
69  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-12. System Module Interrupt Vector Registers  
INTERRUPT VECTOR REGISTER  
ADDRESS  
INTERRUPT EVENT  
No interrupt pending  
VALUE  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
PRIORITY  
Brownout (BOR)  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wake up (BOR)  
Security violation (BOR)  
Reserved  
SVSHIFG SVSH event (BOR)  
Reserved  
Reserved  
SYSRSTIV, System Reset  
015Eh  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection  
Peripheral area fetch (PUC)  
PMMPW PMM password violation  
(PUC)  
20h  
Reserved  
FLL unlock (PUC)  
22h  
24h  
Reserved  
26h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVS low-power reset entry  
Uncorrectable FRAM bit error detection  
Reserved  
02h  
04h  
06h  
Reserved  
08h  
Reserved  
0Ah  
Reserved  
0Ch  
SYSSNIV, System NMI  
015Ch  
Reserved  
0Eh  
Reserved  
10h  
VMAIFG Vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
Reserved  
12h  
14h  
16h  
18h  
1Ah to 1Eh  
00h  
Lowest  
Highest  
Lowest  
No interrupt pending  
NMIIFG NMI pin or SVSH event  
OFIFG oscillator fault  
Reserved  
02h  
SYSUNIV, User NMI  
015Ah  
04h  
06h to 1Eh  
6.10.6 Cyclic Redundancy Check (CRC)  
The 16-bit cyclic redundancy check (CRC) module produces a signature based on a sequence of data  
values and can be used for data checking purposes. The CRC generation polynomial is compliant with  
CRC-16-CCITT standard of x16 + x12 + x5 + 1.  
70  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.10.7 Interrupt Compare Controller (ICC)  
The Interrupt Compare Controller (ICC) allows all maskable interrupt sources to be scheduled in a  
preemptive mechanism. Each interrupt source is specified as a source of ICC module. Each source  
supports a 4-level software interrupt priority other than the one tired with interrupt vector. When ICC  
module is enabled, the ISR in lower software priority can be interrupted by higher priority. It is required to  
enable GIE in ISR for proper ICC operation. For details, see the ICC chapter of the MSP430FR4xx and  
MSP430FR2xx Family User's Guide. 6-13 lists the ICC source configurations.  
6-13. ICC Interrupt Source Assignments  
INTERRUPT  
SOURCE  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
REGISTER  
BITS  
INTERRUPT FLAG  
PRIORITY  
ILSR0  
ILSR1  
ILSR2  
ILSR3  
P4  
P3  
P2  
P1  
P4IFG.0 to P4IFG.7 (P4IV)  
P3IFG.0 to P3IFG.7 (P3IV)  
P2IFG.0 to P2IFG.7 (P2IV)  
P1IFG.0 to P1IFG.7 (P1IV)  
Maskable  
Maskable  
Maskable  
Maskable  
FFCEh  
FFD0h  
FFD2h  
FFD4h  
39  
40  
41  
42  
SAC3 DAC,  
ILSR4  
ILSR5  
ILSR6  
DACIFG, (SAC3IV, SAC1IV)(1)  
DACIFG (SAC2IV, SAC0IV)(1)  
CPIIFG, CPIFG (CP1IV, CP0IV)  
Maskable  
Maskable  
Maskable  
FFD6h  
FFD8h  
FFDAh  
43  
44  
45  
SAC1 DAC(1)  
ICCILRS0  
SAC2 DAC,  
SAC0 DAC(1)  
eCOMP1,  
eCOMP0  
ADCIFG0, ADCINIFG, ADCLOIFG,  
ADCHIIFG, ADCTOVIFG, ADCOVIFG  
(ADCIV)  
ILSR7  
ADC  
Maskable  
FFDCh  
46  
UCB1RXIFG, UCB1TXIFG (SPI mode)  
UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1, UCRXIFG2,  
UCTXIFG2, UCRXIFG3, UCTXIFG3,  
UCCNTIFG,  
eUSCI_B1  
Receive or  
Transmit  
ILSR8  
Maskable  
FFDEh  
47  
UCBIT9IFG,UCCLTOIFG(I2C mode)  
(UCB0IV)  
UCB0RXIFG, UCB0TXIFG (SPI mode)  
UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1, UCRXIFG2,  
UCTXIFG2, UCRXIFG3, UCTXIFG3,  
UCCNTIFG,  
eUSCI_B0  
Receive or  
Transmit  
ILSR9  
Maskable  
FFE0h  
48  
UCBIT9IFG,UCCLTOIFG(I2C mode)  
(UCB0IV)  
UCTXCPTIFG, UCSTTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
(UCA0IV))  
eUSCI_A1  
Receive or  
Transmit  
ICCILRS1  
ILSR10  
ILSR11  
Maskable  
Maskable  
FFE2h  
FFE4h  
49  
50  
UCTXCPTIFG, UCSTTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
(UCA0IV))  
eUSCI_A0  
Receive or  
Transmit  
Watchdog Timer  
Interval mode  
ILSR12  
ILSR13  
WDTIFG  
Maskable  
Maskable  
FFE6h  
FFE8h  
51  
52  
RTC Counter  
Timer3_B7  
Timer3_B7  
RTCIFG  
TB3CCR1 CCIFG1, TB3CCR2  
CCIFG2, TB3CCR3 CCIFG3,  
TB3CCR4 CCIFG4, TB3CCR5  
CCIFG5, TB3CCR6 CCIFG6, TB3IFG  
(TB3IV)  
ILSR14  
ILSR15  
Maskable  
Maskable  
FFEAh  
FFECh  
53  
54  
TB3CCR0 CCIFG0  
(1) MSP430FR235x devices only  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
71  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
PRIORITY  
6-13. ICC Interrupt Source Assignments (continued)  
INTERRUPT  
SOURCE  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
REGISTER  
BITS  
INTERRUPT FLAG  
TB2CCR1 CCIFG1, TB2CCR2  
CCIFG2, TB2IFG (TB2IV)  
ILSR16  
ILSR17  
ILSR18  
ILSR19  
ILSR20  
Timer2_B3  
Timer2_B3  
Timer1_B3  
Timer1_B3  
Timer0_B3  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
FFEEh  
FFF0h  
FFF2h  
FFF4h  
FFF6h  
55  
56  
57  
58  
59  
TB2CCR0 CCIFG0  
TB1CCR1 CCIFG1, TB1CCR2  
CCIFG2, TB1IFG (TB1IV)  
TB1CCR0 CCIFG0  
ICCILRS2  
TB0CCR1 CCIFG1, TB0CCR2  
CCIFG2, TB0IFG (TB0IV)  
ILSR21  
ILSR22  
ILSR23  
ILSR24  
ILSR25  
ILSR26  
ILSR27  
ILSR28  
ILSR29  
ILSR30  
ILSR31  
Timer0_B3  
N/A  
TB0CCR0 CCIFG0  
Maskable  
N/A  
FFF8h  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
60  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
ICCILRS3  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6.10.8 Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_A1,  
eUSCI_B0, eUSCI_B1)  
The eUSCI modules are used for serial data communications (see 6-14). The eUSCI_A module  
supports either UART or SPI communications. The eUSCI_B module supports either SPI or I2C  
communications. Additionally, eUSCI_A supports automatic baud-rate detection and IrDA..  
6-14. eUSCI Pin Configurations  
PIN  
P1.7  
P1.6  
P1.5  
P1.4  
PIN  
UART  
SPI  
SIMO  
SOMI  
SCLK  
STE  
TXD  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
eUSCI_B1  
RXD  
UART  
SPI  
P4.3  
P4.2  
P4.1  
P4.0  
PIN  
TXD or TXD  
SIMO  
SOMI  
SCLK  
STE  
RXD or RXD  
I2C  
SCL  
SDA  
SPI  
P1.3  
P1.2  
P1.1  
P1.0  
PIN  
SOMI  
SIMO  
SCLK  
STE  
I2C  
SCL  
SDA  
SPI  
P4.7  
P4.6  
P4.5  
P4.4  
SOMI  
SIMO  
SCLK  
STE  
72  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
The eUSCI_A1 can work as UART in inverting polarity mode by port settings (see 6-15). When  
PSEL = 01b, the normal UART or SPI mode is used. When PSEL = 10b, the inverted UART mode is  
enabled to transmit and receive data in inverted polarity. In this mode, eUSCI_A1 can also wake up the  
device from LPM3 by detecting a rising edge of start bit according the falling edge in normal mode.  
6-15. eUSCI_A1 UART Polarity Configurations  
eUSCI_A1  
P4.3  
PSEL = 01b  
TXD  
PSEL = 10b  
TXD  
P4.4  
RXD  
RXD  
6.10.9 Timers (Timer0_B3, Timer1_B3, Timer2_B3, Timer3_B7)  
The Timer0_B3, Timer1_B3, and Timer2_B3 modules are 16-bit timers and counters with three  
capture/compare registers each. Timer3_B7 is a 16-bit timers with seven capture/compare registers each.  
Each can support multiple captures or compares, PWM outputs, and interval timing (see 6-16, 6-17,  
6-18, and 6-19). Each has extensive interrupt capabilities. Interrupts can be generated from the  
counter on overflow conditions and from each of the capture/compare registers. The CCR0 registers on all  
timers are not externally connected and can only be used for hardware period timing and interrupt  
generation. In Up Mode, they can be used to set the overflow value of the counter.  
6-16. Timer0_B3 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P2.7  
TB0CLK  
ACLK (internal)  
SMCLK (internal)  
N/A  
TBCLK  
ACLK  
Timer  
N/A  
SMCLK  
INCLK  
CCI0A  
From RTC (internal)  
Not used  
Timer1_B3 CCI0B  
input  
ACLK (internal)  
CCI0B  
CCR0  
CCR1  
TB0  
DVSS  
DVCC  
TB0.1  
GND  
VCC  
P1.6  
P1.7  
CCI1A  
TB0.1  
From eCOMP0.O  
(internal)  
Timer1_B3 CCI1B  
input  
CCI1B  
TB1  
TB2  
DVSS  
DVCC  
TB0.2  
GND  
VCC  
CCI2A  
TB0.2  
Timer1_B3 INCLK  
Timer1_B3 CCI2B  
input,  
N/A  
CCI2B  
CCR2  
IR carrier input  
DVSS  
DVCC  
GND  
VCC  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
73  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-17. Timer1_B3 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P2.2  
TB1CLK  
TBCLK  
ACLK  
ACLK (internal)  
SMCLK (internal)  
Timer  
N/A  
SMCLK  
Timer0_B3 CCR2B  
output (internal)  
INCLK  
CCI0A  
CCI0B  
Timer3_B7 CCR0B  
output (internal)  
Not used  
Not used  
Timer0_B3 CCR0B  
output (internal)  
CCR0  
TB0  
DVSS  
DVCC  
TB1.1  
GND  
VCC  
P2.0  
P2.1  
CCI1A  
TB1.1  
Timer0_B3 CCR1B  
output (internal)  
CCI1B  
To ADC trigger  
CCR1  
CCR2  
TB1  
TB2  
DVSS  
DVCC  
TB1.2  
GND  
VCC  
CCI2A  
TB1.2  
Timer0_B3 CCR2B  
output (internal)  
CCI2B  
IR coding input  
DVSS  
DVCC  
GND  
VCC  
6-18. Timer2_B3 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
MODULE BLOCK  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
P2.7  
TB2CLK  
ACLK (internal)  
SMCLK (internal)  
TB2CLK  
TBCLK  
ACLK  
Timer  
N/A  
TB0  
SMCLK  
INCLK  
Not used  
CCI0A  
GND  
CCR0  
Not used  
DVSS  
DVCC  
VCC  
MFM Complete Event  
TB2.1  
CCI0B  
CCI1A  
MFM start trigger  
TB2.1  
P5.0  
P5.1  
From eCOMP1.O  
(internal)  
To SAC DAC update  
trigger 10b(1)  
CCI1B  
CCR1  
CCR2  
TB1  
TB2  
DVSS  
DVCC  
TB2.2  
GND  
VCC  
CCI2A  
TB2.2  
To SAC DAC update  
trigger 11b(1)  
Not used  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
(1) MSP430FR235x devices only  
74  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6-19. Timer3_B7 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P6.6  
TB3CLK  
ACLK (internal)  
SMCLK (internal)  
TB3CLK  
Not used  
Not used  
DVSS  
TBCLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
N/A  
TB0  
TB1  
Not used  
To Timer1_B3 CCI0A  
CCR0  
CCR1  
DVCC  
VCC  
P6.0  
TB3.1  
CCI1A  
CCI1B  
GND  
TB3.1  
Not used  
DVSS  
DVCC  
VCC  
P6.1  
P4.0  
TB3.2  
CCI2A  
TB3.2  
AND UCA1TXD  
ISOTXD  
ISORXD  
CCI2B  
CCR2  
TB2  
DVSS  
DVCC  
TB3.3  
GND  
VCC  
P6.2  
P6.3  
P6.4  
P6.5  
CCI3A  
CCI3B  
GND  
VCC  
TB3.3  
Not used  
DVSS  
CCR3  
CCR4  
CCR5  
CCR6  
TB3  
TB4  
TB5  
TB6  
DVCC  
TB3.4  
CCI4A  
CCI4B  
GND  
VCC  
TB3.4  
Not used  
DVSS  
Not used  
DVCC  
TB3.5  
CCI5A  
CCI5B  
GND  
VCC  
TB3.5  
Not used  
DVSS  
Not used  
DVCC  
TB3.6  
CCI6A  
CCI6B  
GND  
VCC  
TB3.6  
Not used  
DVSS  
Not used  
DVCC  
The interconnection of Timer0_B3 and Timer1_B3 can be used to modulate the eUSCI_A pin of  
UCA0TXD/UCA0SIMO in either ASK or FSK mode, with which a user can easily acquire a modulated  
infrared command for directly driving an external IR diode. The IR functions are fully controlled by SYS  
configuration registers 1 including IREN (enable), IRPSEL (polarity select), IRMSEL (mode select),  
IRDSSEL (data select), and IRDATA (data) bits. For more information, see the SYS chapter in the  
MSP430FR4xx and MSP430FR2xx Family User's Guide.  
The Timer_B module feature the function to put Timer_B all outputs into a high impedance state when the  
selected source is triggered. The source can be selected from external pin or internal of the device, it is  
controlled by TBxTRG in SYS. For more information, see the SYS chapter in the MSP430FR4xx and  
MSP430FR2xx Family User's Guide.  
The Timer2_B3 CCR0 is tied with the Manchester function module (MFM).  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
75  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-20 lists the Timer_B high-impedance trigger sources.  
6-20. TBxOUTH  
TBxOUTH TRIGGER SOURCE  
TIMER_B PAD OUTPUT HIGH  
IMPEDANCE  
TBxTRGSEL  
SELECTION  
TB0TRGSEL = 0  
TB0TRGSEL= 1  
TB1TRGSEL = 0  
TB1TRGSEL = 1  
TB2TRGSEL = 0  
TB2TRGSEL = 1  
TB3TRGSEL = 0  
TB3TRGSEL = 1  
eCOMP0 output (internal)  
P1.6, P1.7  
P2.0, P2.1  
P1.2  
eCOMP0 output (internal)  
P2.3  
eCOMP1 output (internal)  
P5.3  
P5.0, P5.1  
eCOMP1 output (internal)  
N/A  
P6.0, P6.1, P6.2, P6.3, P6.4, P6.5  
6.10.10 Backup Memory (BKMEM)  
The BKMEM supports data retention functionality during LPM3.5 mode. This device provides up to  
32 bytes that are retained during LPM3.5.  
6.10.11 Real-Time Clock (RTC) Counter  
The RTC counter is a 16-bit modulo counter that is functional in AM, LPM0, LPM3, LPM4, and LPM3.5.  
This module can periodically wake up the CPU from LPM0, LPM3, LPM4, and LPM3.5 based on timing  
from a low-power clock source such as the XT1, ACLK, and VLO clocks. In AM, RTC can be driven by  
SMCLK to generate high-frequency timing events and interrupts. ACLK and SMCLK both can source to  
the RTC; however, only one of them can be selected at a time. The RTC overflow events can trigger:  
Timer0_B3 CCI0A  
ADC conversion trigger when ADCSHSx bits are set as 01b  
76  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.10.12 12-Bit Analog-to-Digital Converter (ADC)  
The 12-bit ADC module supports fast 12-bit analog-to-digital conversions with single-ended input. The  
module implements a 12-bit SAR core, sample select control, reference generator and a conversion result  
buffer. A window comparator with a lower and upper limits allows CPU-independent result monitoring with  
three window comparator interrupt flags.  
The ADC supports 12 external inputs and four internal inputs (see 6-21).  
6-21. ADC Channel Connections  
ADCINCHx  
ADC CHANNELS  
EXTERNAL PIN OUTPUT  
0
1
A0/Veref+  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P5.0  
P5.1  
P5.2  
P5.3  
N/A  
A1/  
2
A2/Veref-  
3
A3  
4
A4  
5
A5  
6
A6  
A7(1)  
7
8
A8  
9
A9  
10  
11  
12  
A10  
A11  
On-chip temperature sensor  
Internal shared reference voltage  
(1.5 V, 2.0 V, or 2.5 V)  
13  
N/A  
14  
15  
DVSS  
DVCC  
N/A  
N/A  
(1) When A7 is used, the PMM 1.2-V reference voltage can be output to this pin by setting the PMM  
control register. The 1.2-V voltage can be measured by channel A7.  
The analog-to-digital conversion can be started by software or a hardware trigger. 6-22 lists the trigger  
sources that are available.  
6-22. ADC Trigger Signal Connections  
ADCSHSx  
TRIGGER SOURCE  
BINARY  
DECIMAL  
00  
01  
10  
11  
0
1
2
3
ADCSC bit (software trigger)  
RTC event  
TB1.1B  
eCOMP0 COUT  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
77  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6.10.13 Enhanced Comparator  
This device features two enhanced comparators: eCOMP0 and eCOMP1. The enhanced comparator is an  
analog voltage comparator with a built-in 6-bit DAC as an internal voltage reference. The integrated 6-bit  
DAC can be set to 64 steps for the comparator reference voltage. This module has 4-level programmable  
hysteresis and configurable power modes: high-power mode or low-power mode.  
The eCOMP0 supports a propagation delay up to 1 µs in high-power mode. In low-power mode, eCOMP0  
supports 3.2-µs delay with 1.5-µA leakage at room temperature, which can be an ideal wake-up source in  
LPM3 for a voltage monitor.  
The eCOMP1 supports a propagation delay up to 100 ns in high-power mode. In low-power mode,  
eCOMP1 supports 320-ns delay with 10-µA leakage at room temperature.  
Both eCOMP0 and eCOMP1 contains a programmable 6-bit DAC that can use internal shared reference  
(1.5, 2.0, or 2.5-V) for high precision comparison threshold. In addition to internal shared reference, a low-  
power 1.2-V reference is fixed at channel 2 of both inverting and non-inverting path that allows the DAC  
turned off for saving powers.  
The eCOMP0 supports external inputs and internal inputs (see 6-23) and outputs (see 6-25)  
6-23. eCOMP0 Input Channel Connections  
CPPSEL  
000  
eCOMP0 CHANNELS  
P1.0/COMP0.0/A0  
P1.1/OA0O/COMP0.1/A1  
Low-power 1.2-V reference  
N/A  
CPNSEL  
000  
eCOMP0 CHANNELS  
P1.0/COMP0.0/A0  
P1.1/OA0O/COMP0.1/A1  
Low-power 1.2-V reference  
N/A  
001  
001  
010  
010  
011  
011  
100  
N/A  
100  
N/A  
101  
P1.1/OA0O/COMP0.1/A1  
eCOMP0 6-bit DAC  
101  
P3.1/OA2O  
110  
110  
eCOMP0 6-bit DAC  
6-24. eCOMP1 Input Channel Connections  
CPPSEL  
000  
eCOMP1 CHANNELS  
CPNSEL  
000  
eCOMP1 CHANNELS  
P2.5/COMP1.0  
P2.4/COMP1.1  
Low-power 1.2-V reference  
N/A  
P2.5/COMP1.0  
P2.4/COMP1.1  
Low-power 1.2-V reference  
N/A  
001  
001  
010  
010  
011  
011  
100  
N/A  
100  
N/A  
101  
P1.5/OA1O/A5  
eCOMP1 6-bit DAC  
101  
P3.5/OA3O  
110  
110  
eCOMP1 6-bit DAC  
6-25. eCOMP0 Output Channel Connections  
ECOMP0 OUT  
EXTERNAL PINOUT, MODULE  
1
2
3
4
P2.0  
TB0.1B, TB0 (TB0OUTH), TB1 (TB1OUTH), ADC trigger  
Reserved  
Reserved  
78  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6-26. eCOMP1 Output Channel Connections  
ECOMP1 OUT  
EXTERNAL PINOUT, MODULE  
1
2
3
4
P2.1  
TB2.1B, TB2 (TB2OUTH), TB3 (TB3OUTH)  
Reserved  
MFM input  
6.10.14 Manchester Function Module (MFM)  
The MFM is a dedicated module residing between a pair of pins and eUSCI_B1 to encode and decode  
Manchester-coded data. For more information, see the MFM chapter in the MSP430FR4xx and  
MSP430FR2xx Family User's Guide.  
When enabled by setting PSEL, the MFM module receives and transmits data through  
P5.0/TB2.1/MFM.RX/A8 and P5.1/TB2.2/MFM.TX/A9, respectively. The MFM always works in SPI master  
mode, and the eUSCI_B1 must be configured in 4-wire SPI slave mode.  
6.10.15 Smart Analog Combo (SAC) (MSP430FR235x Devices Only)  
The MSP430FR235x devices integrate four SAC modules: SAC0, SAC1, SAC2, and SAC3. The SAC  
integrates a high-performance low-power operational amplifier. SAC-L3 supports a hybrid configuration of  
general-purpose amplifier, 12-bit voltage reference DAC, and a multiplex switch array. For more  
information, see the SAC chapter in the MSP430FR4xx and MSP430FR2xx Family User's Guide. Only  
MSP430FR235x devices implement the SAC modules. MSP430FR215x devices do not support SAC  
modules.  
The SAC0 and SAC2 are interconnected and support external inputs and internal inputs (see 6-27 and  
6-28).  
6-27. SAC0 Channel Connections  
PSEL  
00  
SAC0 OA NONINVERTING CHANNELS  
P1.3/OA0+/A3  
NSEL  
00  
SAC0 OA INVERTING CHANNELS  
P1.2/OA0-/A2  
01  
SAC0 12-bit DAC  
01  
PGA feedback  
10  
P3.1/OA2O, SAC2 OA output  
N/A  
10  
P3.1/OA2O, SAC2 OA output  
N/A  
11  
11  
6-28. SAC2 Channel Connections  
PSEL  
00  
SAC2 OA NONINVERTING CHANNELS  
NSEL  
00  
SAC2 OA INVERTING CHANNELS  
P3.3/OA2+  
P3.2/OA2-  
01  
SAC2 12-bit DAC  
01  
PGA feedback  
10  
P1.1/UCB0CLK/ACLK/OA0O/COMP0.1/A1, SAC0 OA output  
N/A  
10  
P1.1/UCB0CLK/ACLK/OA0O/COMP0.1/A1, SAC0 OA output  
N/A  
11  
11  
The SAC1 and SAC3 are interconnected and support external inputs and internal inputs (see 6-29 and  
6-30).  
6-29. SAC1 Channel Connections  
PSEL  
00  
SAC1 OA NONINVERTING CHANNELS  
P1.7/OA1+/A7  
NSEL  
00  
SAC1 OA INVERTING CHANNELS  
P1.6/OA1-/A6  
01  
SAC1 12-bit DAC  
01  
PGA feedback  
10  
P3.5/OA3O, SAC3 OA output  
N/A  
10  
P3.5/OA3O, SAC3 OA output  
N/A  
11  
11  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
79  
 
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-30. SAC3 Channel Connections  
PSEL  
00  
SAC3 OA NONINVERTING CHANNELS  
P3.7/OA3+  
NSEL  
00  
SAC3 OA INVERTING CHANNELS  
P3.6/OA3-  
PGA feedback  
01  
SAC3 12-bit DAC  
01  
10  
P1.5/OA1O/A5, SAC1 OA output  
N/A  
10  
P1.5/OA1O/A5, SAC1 OA output  
N/A  
11  
11  
Each SAC DAC supports two selectable voltage references (see 6-31).  
6-31. SACx DAC Reference Selection  
DACSREF  
SACx DAC REFERENCE SELECTION  
DVCC  
0
1
Internal shared reference (1.5, 2.0, or 2.5 V )  
SAC1 DAC REFERENCE  
DVCC  
DACSREF  
0
1
Internal shared reference (1.5, 2.0, or 2.5 V )  
SAC2 DAC REFERENCE  
DVCC  
DACSREF  
0
1
Internal shared reference (1.5, 2.0, or 2.5 V )  
SAC3 DAC REFERENCE  
DVCC  
DACSREF  
0
1
Internal shared reference (1.5, 2.0, or 2.5 V )  
Each SAC DAC supports one software trigger and two hardware trigger from chip signals.  
6-32. SACx DAC Hardware Trigger Selection  
DACLSEL  
SAC0 DAC HARDWARE TRIGGER  
DACLSEL  
SAC1 DAC HARDWARE TRIGGER  
00  
Writing SAC0DACDAT register  
00  
Writing SAC1DACDAT register  
01  
N/A  
01  
N/A  
10  
TB2.1  
10  
TB2.1  
11  
TB2.2  
11  
TB2.2  
DACLSEL  
SAC2 DAC HARDWARE TRIGGER  
DACLSEL  
SAC3 DAC HARDWARE TRIGGER  
00  
01  
10  
11  
Writing SAC2DACDAT register  
00  
01  
10  
11  
Writing SAC3DACDAT register  
N/A  
N/A  
TB2.1  
TB2.2  
TB2.1  
TB2.2  
80  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.10.16 eCOMP0, eCOMP1, SAC0, SAC1, SAC2, and SAC3 Interconnection  
(MSP430FR235x Devices Only)  
The high-performance analog modules of eCOMP0, SAC0, and SAC2 are internally connected (see 6-  
1).  
P2.0/COMP0.O  
P1.0/COMP0.0/A0  
P1.1/OA0O/COMP0.1/A1  
P1.3/OA0+/A3  
00  
01  
10  
SAC0  
12-bit DAC  
+
SAC0  
OA  
P1.2/OA0-/A2  
00  
01  
10  
000  
001  
010  
101  
110  
eCOMP0  
6-bit DAC  
SAC0  
PGA  
+
To Timer  
Capture  
Polarity  
Selection  
eCOMP0  
P3.1/OA2O  
P3.3/OA2+  
P3.2/OA2-  
000  
001  
010  
101  
110  
Low-power  
1.2V  
00  
01  
10  
SAC2  
12-bit DAC  
+
SAC2  
OA  
00  
01  
10  
SAC2  
PGA  
6-1. eCOMP0, SAC0, SAC2 Interconnection  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
81  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
The high-performance analog modules of eCOMP1, SAC1, and SAC3 are internally connected (see 6-  
2):  
P2.1/COMP1.O  
P2.5/COMP1.0  
P2.4/COMP1.1  
P1.5/OA1O/A5  
P1.7/OA1+/A7  
00  
01  
10  
SAC1  
12-bit  
DAC  
+
SAC1  
OA  
P1.6/OA1-/A6  
00  
01  
10  
000  
001  
010  
101  
110  
eCOMP1  
6-bit  
DAC  
SAC1  
PGA  
+
Polarity  
Selection  
To Timer  
Capture  
eCOMP1  
P3.5/OA3O  
P3.7/OA3+  
P3.6/OA3-  
000  
001  
010  
101  
110  
Low-power  
1.2 V  
00  
01  
10  
SAC3  
12-bit  
DAC  
+
SAC3  
OA  
00  
01  
10  
SAC3  
PGA  
6-2. eCOMP1, SAC1, SAC3 Interconnection  
82  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.10.17 Cross-Chip Interconnection (SACx are MSP430FR235x Devices Only)  
This section describes the cross-chip interconnections in a full-featured view.  
Timer_B0  
Timer_B1  
TB0CLK  
ACLK  
00  
01  
10  
11  
TB1CLK  
ACLK  
00  
01  
10  
11  
16-bit Counter  
SMCLK  
16-bit Counter  
P1.0/A0  
from CapTouch  
DVSS  
SMCLK  
P2.0/COMP0.O  
P1.1/A1  
P1.2/A2  
RTC  
ACLK  
DVSS  
DVCC  
00  
01  
10  
11  
P1.0/COMP0.0/A0  
TB0.0A  
TB0.0B  
00  
01  
10  
11  
CCR0  
P1.3/A3  
TB1.0A  
TB1.0B  
CCR0  
DVSS  
DVCC  
P1.4/A4  
P1.5/A5  
P1.1/OA0O/COMP0.1/A1  
RTC  
Counter  
P1.6  
00  
01  
10  
11  
RTC  
Overflow  
P1.6/A6  
Software trigger  
from RTC  
from COMP  
TB0.1A  
TB0.1B  
P1.6  
P2.0  
00  
01  
10  
11  
00  
01  
10  
11  
CCR1  
DVSS  
DVCC  
TB1.1A  
TB1.1B  
P2.0  
12-bit  
ADC  
CCR1  
P1.7/A7  
from TB1.1B  
from COMP  
DVSS  
DVCC  
P1.3/OA0+/A3  
00  
01  
10  
P5.0/A8  
DACLSEL  
HW Trigger  
Selection  
P5.1/A9  
SAC0  
12-bit DAC  
from TB2.1B  
from TB2.2B  
P1.7  
from CapTouch  
DVSS  
00  
01  
10  
11  
+
10  
11  
SAC0  
OA  
TB0.2A  
TB0.2B  
P1.7  
P2.1  
00  
01  
10  
11  
CCR2  
P5.2/A10  
TB1.2A  
TB1.2B  
P2.1  
CCR2  
P1.2/OA0-/A2  
00  
01  
10  
DVCC  
DVSS  
DVCC  
P5.3/A11  
TB0OUTH  
TB1OUTH  
On-chip Temperature Sensor (A12)  
1.5-V Reference Voltage (A13)  
DVSS (A14)  
TB1TRG  
TB0TRG  
000  
001  
010  
101  
110  
0
1
1
0
C0O  
C0O  
DVCC (A15)  
eCOMP0  
6-bit DAC  
SAC0  
PGA  
TB0TRGSEL  
TB1TRGSEL  
+
Polarity  
Selection  
eCOMP0  
P3.1/OA2O  
000  
001  
010  
101  
110  
Low-power  
1.2V  
Coding  
P3.3/OA2+  
00  
01  
10  
DACLSEL  
Infrared  
Logic  
Carrier  
Data  
P1.7/UCA0TXD/UCA0SIMO  
SAC2  
12-bit DAC  
from TB2.1B  
from TB2.2B  
UCA0TXD/UCA0SIMO  
+
10  
11  
eUSCI_A0  
SAC2  
OA  
P3.2/OA2-  
00  
01  
10  
UCB1SOMI  
UCB1SIMO  
UCB1CLK  
UCB1STE  
RX  
P5.0/MFM.RX  
Manchester  
Function Module  
(MFM)  
eUSCI_B1  
(SPI Slave)  
TX  
P5.1/MFM.TX  
Transmit Transmit  
Complete Event Start Trigger  
SAC2  
PGA  
Timer_B3  
Timer_B2  
P2.1/COMP1.O  
P2.5/COMP1.0  
P2.4/COMP1.1  
P1.5/OA1O/A5  
TB2CLK  
00  
01  
10  
11  
TB3CLK  
00  
01  
10  
11  
ACLK  
ACLK  
16-Bit Counter  
16-bit Counter  
SMCLK  
SMCLK  
TBD  
00  
01  
10  
11  
00  
01  
10  
11  
MFM Complete Event  
DVSS  
TB2.0A  
CCR0  
TB2.0B  
TB3.0A  
TB3.0B  
CCR0  
CCR1  
CCR2  
MFM  
Start  
Trigger  
DVSS  
DVCC  
DVCC  
P5.0  
00  
01  
10  
11  
P6.0  
00  
01  
10  
11  
TB2.1A  
CCR1  
TB2.1B  
P5.0  
TB3.1A  
TB3.1B  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
DVSS  
DVCC  
to SAC DAC Update Trigger 10DVSS  
DVCC  
UCA1TXD  
UCA1RXD  
eUSCI_A1  
(UART)  
P1.7/OA1+/A7  
00  
01  
10  
DACLSEL  
SAC1  
12-bit DAC  
from TB2.1B  
from TB2.2B  
P5.1  
00  
01  
10  
11  
P6.1  
00  
01  
10  
11  
+
10  
11  
PDIR4.0  
P4.0/UCA1STE/ISOTXD/ISORXD  
SAC1  
OA  
TB2.2A  
CCR2  
TB2.2B  
P5.1  
TB3.2A  
TB3.2B  
DVSS  
DVCC  
to SAC DAC Update Trigger 11DVSS  
P1.6/OA1-/A6  
00  
01  
10  
DVCC  
TB2OUTH  
TB1OUTH  
P6.2  
00  
01  
10  
11  
000  
001  
010  
101  
110  
TB3.3A  
TB3.3B  
CCR3  
CCR4  
CCR5  
CCR6  
DVSS  
DVCC  
eCOMP1  
6-bit DAC  
SAC1  
PGA  
TB2TRG  
+
eCOMP1  
1
Polarity  
Selection  
0
P6.3  
00  
01  
10  
11  
P3.5/OA3O  
TB3.4A  
TB3.4B  
000  
001  
010  
101  
110  
DVSS  
DVCC  
TB2TRGSEL  
Low-power  
1.2V  
1
0
TB3OUTH  
P3.7/OA3+  
00  
01  
10  
P6.4  
00  
01  
10  
11  
TB3TRGSEL  
DACLSEL  
TB3.5A  
TB3.5B  
DVSS  
DVCC  
SAC3  
12-bit DAC  
from TB2.1B  
from TB2.2B  
+
10  
11  
SAC3  
OA  
P3.6/OA3-  
00  
01  
10  
P6.5  
00  
01  
10  
11  
TB3.6A  
TB3.6B  
DVSS  
DVCC  
SAC3  
PGA  
6-3. Cross-Chip Interconnection  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
83  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6.10.18 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The EEM on these devices has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
6.10.19 Peripheral File Map  
6-33 lists the base address and the memory size of each peripheral's registers.  
6-33. Peripherals Summary  
MODULE NAME  
Special Functions (see 6-34)  
BASE ADDRESS  
0100h  
0120h  
0140h  
0180h  
01A0h  
01C0h  
01CCh  
0200h  
0220h  
0240h  
0300h  
0380h  
03C0h  
0400h  
0440h  
04C0h  
0500h  
0540h  
0580h  
05C0h  
0660h  
06C0h  
0700h  
08E0h  
0900h  
0C80h  
0C90h  
0CA0h  
0CB0h  
SIZE  
0010h  
0020h  
0040h  
0020h  
0010h  
0008h  
0002h  
0020h  
0020h  
0020h  
0010h  
0030h  
0030h  
0030h  
0030h  
0030h  
0020h  
0030h  
0020h  
0030h  
0020h  
0010h  
0040h  
0020h  
0020h  
0010h  
0010h  
0010h  
0010h  
PMM (see 6-35)  
SYS (see 6-36)  
CS (see 6-37)  
FRAM (see 6-38)  
CRC (see 6-39)  
WDT (see 6-40)  
Port P1, P2 (see 6-41)  
Port P3, P4 (see 6-42)  
Port P5, P6 (see 6-43)  
RTC (see 6-44)  
Timer0_B3 (see 6-45)  
Timer1_B3 (see 6-46)  
Timer2_B3 (see 6-47)  
Timer3_B7 (see 6-48)  
MPY32 (see 6-49)  
eUSCI_A0 (see 6-50)  
eUSCI_B0 (see 6-51)  
eUSCI_A1 (see 6-52)  
eUSCI_B1 (see 6-53)  
Backup Memory (see 6-54)  
ICC (see 6-55)  
ADC (see 6-56)  
eCOMP0 (see 6-57)  
eCOMP1 (see 6-58)  
SAC0 (see 6-59)(1)  
SAC1 (see 6-60)(1)  
SAC2 (see 6-61)(1)  
SAC3 (see 6-62)(1)  
(1) MSP430FR235x devices only  
84  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6-34. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
SFR interrupt enable  
SFR interrupt flag  
SFRIE1  
SFRIFG1  
SFRRPCR  
02h  
SFR reset pin control  
04h  
6-35. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
ACRONYM  
PMMCTL0  
PMMCTL1  
PMMCTL2  
PMMIFG  
OFFSET  
00h  
PMM control 0  
PMM control 1  
PMM control 2  
PMM interrupt flags  
PM5 control 0  
02h  
04h  
0Ah  
PM5CTL0  
10h  
6-36. SYS Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
ACRONYM  
SYSCTL  
OFFSET  
00h  
System control  
Bootloader configuration area  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
System configuration 0  
System configuration 1  
System configuration 2  
System configuration 3  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSUNIV  
SYSSNIV  
SYSRSTIV  
SYSCFG0  
SYSCFG1  
SYSCFG2  
SYSCFG3  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
6-37. CS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
ACRONYM  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
CSCTL7  
CSCTL8  
OFFSET  
00h  
CS control 0  
CS control 1  
CS control 2  
CS control 3  
CS control 4  
CS control 5  
CS control 6  
CS control 7  
CS control 8  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
85  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-38. FRAM Registers (Base Address: 01A0h)  
REGISTER DESCRIPTION  
ACRONYM  
FRCTL0  
OFFSET  
FRAM control 0  
General control 0  
General control 1  
00h  
04h  
06h  
GCCTL0  
GCCTL1  
6-39. CRC Registers (Base Address: 01C0h)  
REGISTER DESCRIPTION  
ACRONYM  
CRC16DI  
OFFSET  
00h  
CRC data input  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
02h  
04h  
06h  
6-40. WDT Registers (Base Address: 01CCh)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Watchdog timer control  
WDTCTL  
00h  
6-41. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
ACRONYM  
P1IN  
OFFSET  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
1Eh  
17h  
19h  
1Bh  
1Dh  
Port P1 input  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
P1SEL0  
P1SEL1  
P1IV  
Port P1 direction  
Port P1 pulling enable  
Port P1 selection 0  
Port P1 selection 1  
Port P1 interrupt vector word  
Port P1 complement selection  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1SELC  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2SEL1  
P2IV  
Port P2 direction  
Port P2 pulling enable  
Port P2 selection 0  
Port P2 selection 1  
Port P2 interrupt vector word  
Port P2 complement selection  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2SELC  
P2IES  
P2IE  
P2IFG  
86  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6-42. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
1Eh  
17h  
19h  
1Bh  
1Dh  
Port P3 input  
P3IN  
P3OUT  
P3DIR  
P3REN  
P3SEL0  
P3SEL1  
P3IV  
Port P3 output  
Port P3 direction  
Port P3 pulling enable  
Port P3 selection 0  
Port P3 selection 1  
Port P3 interrupt vector word  
Port P3 complement selection  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
Port P4 input  
P3SELC  
P3IES  
P3IE  
P3IFG  
P4IN  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4SEL0  
P4SEL1  
P4IV  
Port P4 direction  
Port P4 pulling enable  
Port P4 selection 0  
Port P4 selection 1  
Port P4 interrupt vector word  
Port P4 complement selection  
Port P4 interrupt edge select  
Port P4 interrupt enable  
Port P4 interrupt flag  
P4SELC  
P4IES  
P4IE  
P4IFG  
6-43. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
ACRONYM  
P5IN  
OFFSET  
00h  
Port P5 input  
Port P5 output  
P5OUT  
P5DIR  
02h  
Port P5 direction  
04h  
Port P5 pulling enable  
Port P5 selection 0  
Port P5 selection 1  
Port P5 complement selection  
Port P6 input  
P5REN  
P5SEL0  
P5SEL1  
P5SELC  
P6IN  
06h  
0Ah  
0Ch  
16h  
01h  
Port P6 output  
P6OUT  
P6DIR  
03h  
Port P6 direction  
05h  
Port P6 pulling enable  
Port P6 selection 0  
Port P6 selection 1  
Port P6 complement selection  
P6REN  
P6SEL0  
P6SEL1  
P6SELC  
07h  
0Bh  
0Dh  
17h  
6-44. RTC Registers (Base Address: 0300h)  
REGISTER DESCRIPTION  
ACRONYM  
RTCCTL  
RTCIV  
OFFSET  
00h  
RTC control  
RTC interrupt vector  
RTC modulo  
04h  
RTCMOD  
RTCCNT  
08h  
RTC counter  
0Ch  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
87  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-45. Timer0_B3 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
ACRONYM  
TB0CTL  
OFFSET  
TB0 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TB0 counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TB0 expansion 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0EX0  
TB0 interrupt vector  
TB0IV  
6-46. Timer1_B3 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
ACRONYM  
TB1CTL  
OFFSET  
00h  
TB1 control  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TB1 counter  
TB1CCTL0  
TB1CCTL1  
TB1CCTL2  
TB1R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TB1 expansion 0  
TB1CCR0  
TB1CCR1  
TB1CCR2  
TB1EX0  
12h  
14h  
16h  
20h  
TB1 interrupt vector  
TB1IV  
2Eh  
6-47. Timer2_B3 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
ACRONYM  
TB2CTL  
OFFSET  
00h  
TB2 control  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TB2 counter  
TB2CCTL0  
TB2CCTL1  
TB2CCTL2  
TB2R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TB2 expansion 0  
TB2CCR0  
TB2CCR1  
TB2CCR2  
TB2EX0  
12h  
14h  
16h  
20h  
TB2 interrupt vector  
TB2IV  
2Eh  
88  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6-48. Timer3_B7 Registers (Base Address: 0440h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
TB3 control  
TB3CTL  
TB3CCTL0  
TB3CCTL1  
TB3CCTL2  
TB3CCTL3  
TB3CCTL4  
TB3CCTL5  
TB3CCTL6  
TB3R  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB3 counter  
Capture/compare 0  
TB3CCR0  
TB3CCR1  
TB3CCR2  
TB3CCR3  
TB3CCR4  
TB3CCR5  
TB3CCR6  
TB3EX0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB3 expansion 0  
TB3 interrupt vector  
TB3IV  
6-49. MPY32 Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
ACRONYM  
MPY  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 – multiply  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control 0  
RES3  
MPY32CTL0  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
89  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-50. eUSCI_A0 Registers (Base Address: 0500h)  
REGISTER DESCRIPTION  
eUSCI_A control word 0  
ACRONYM  
UCA0CTLW0  
UCA0CTLW1  
UCA0BR0  
OFFSET  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
eUSCI_A control word 1  
eUSCI_A control rate 0  
eUSCI_A control rate 1  
eUSCI_A modulation control  
eUSCI_A status  
UCA0BR1  
UCA0MCTLW  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
lUCA0IRTCTL  
IUCA0IRRCTL  
UCA0IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
UCA0IFG  
UCA0IV  
6-51. eUSCI_B0 Registers (Base Address: 0540h)  
REGISTER DESCRIPTION  
ACRONYM  
UCB0CTLW0  
UCB0CTLW1  
UCB0BR0  
OFFSET  
00h  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
02h  
06h  
eUSCI_B bit rate 1  
UCB0BR1  
07h  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
08h  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B receive address  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
eUSCI_B interrupt vector word  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB0IFG  
UCB0IV  
90  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6-52. eUSCI_A1 Registers (Base Address: 0580h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
eUSCI_A control word 0  
eUSCI_A control word 1  
eUSCI_A control rate 0  
eUSCI_A control rate 1  
eUSCI_A modulation control  
eUSCI_A status  
UCA1CTLW0  
UCA1CTLW1  
UCA1BR0  
02h  
06h  
UCA1BR1  
07h  
UCA1MCTLW  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
lUCA1IRTCTL  
IUCA1IRRCTL  
UCA1IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA1IFG  
UCA1IV  
6-53. eUSCI_B1 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
ACRONYM  
UCB1CTLW0  
UCB1CTLW1  
UCB1BR0  
OFFSET  
00h  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
02h  
06h  
eUSCI_B bit rate 1  
UCB1BR1  
07h  
eUSCI_B status word  
UCB1STATW  
UCB1TBCNT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA0  
UCB1I2COA1  
UCB1I2COA2  
UCB1I2COA3  
UCB1ADDRX  
UCB1ADDMASK  
UCB1I2CSA  
UCB1IE  
08h  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B receive address  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
eUSCI_B interrupt vector word  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB1IFG  
UCB1IV  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
91  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-54. Backup Memory Registers (Base Address: 0660h)  
REGISTER DESCRIPTION  
ACRONYM  
BAKMEM0  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKMEM4  
BAKMEM5  
BAKMEM6  
BAKMEM7  
BAKMEM8  
BAKMEM9  
BAKMEM10  
BAKMEM11  
BAKMEM12  
BAKMEM13  
BAKMEM14  
BAKMEM15  
OFFSET  
Backup memory 0  
Backup memory 1  
Backup memory 2  
Backup memory 3  
Backup memory 4  
Backup memory 5  
Backup memory 6  
Backup memory 7  
Backup memory 8  
Backup memory 9  
Backup memory 10  
Backup memory 11  
Backup memory 12  
Backup memory 13  
Backup memory 14  
Backup memory 15  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
6-55. ICC Registers (Base Address: 06C0h)  
REGISTER DESCRIPTION  
ACRONYM  
ICCSC  
OFFSET  
00h  
ICC status and control  
ICC mask virtual stack  
ICCMVS  
02h  
ICC interrupt level setting 0  
ICC interrupt level setting 1  
ICC interrupt level setting 2  
ICC interrupt level setting 3  
ICCILSR0  
ICCILSR1  
ICCILSR2  
ICCILSR3  
04h  
06h  
08h  
0Ah  
6-56. ADC Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
ACRONYM  
ADCCTL0  
ADCCTL1  
ADCCTL2  
ADCLO  
OFFSET  
00h  
ADC control 0  
ADC control 1  
02h  
ADC control 2  
04h  
ADC window comparator low threshold  
ADC window comparator high threshold  
ADC memory control 0  
ADC conversion memory  
ADC interrupt enable  
06h  
ADCHI  
08h  
ADCMCTL0  
ADCMEM0  
ADCIE  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC interrupt flags  
ADCIFG  
ADC interrupt vector word  
ADCIV  
92  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6-57. eCOMP0 Registers (Base Address: 08E0h)  
REGISTER DESCRIPTION  
ACRONYM  
CP0CTL0  
OFFSET  
00h  
Comparator control 0  
Comparator control 1  
Comparator interrupt  
CP0CTL1  
02h  
CP0INT  
06h  
Comparator interrupt vector  
Comparator built-in DAC control  
Comparator built-in DAC data  
CP0IV  
08h  
CP0DACCTL  
CP0DACDATA  
10h  
12h  
6-58. eCOMP1 Registers (Base Address: 0900h)  
REGISTER DESCRIPTION  
ACRONYM  
CP1CTL0  
OFFSET  
00h  
Comparator control 0  
Comparator control 1  
CP1CTL1  
02h  
Comparator interrupt  
CP1INT  
06h  
Comparator interrupt vector  
Comparator built-in DAC control  
Comparator built-in DAC data  
CP1IV  
08h  
CP1DACCTL  
CP1DACDATA  
10h  
12h  
6-59. SAC0 Registers (Base Address: 0C80h, MSP430FR235x Devices Only)  
REGISTER DESCRIPTION  
ACRONYM  
SAC0OA  
OFFSET  
00h  
SAC0 OA control  
SAC0 PGA control  
SAC0 DAC control  
SAC0 DAC data  
SAC0PGA  
SAC0DAC  
SAC0DAT  
SAC0DATSTS  
SAC0IV  
02h  
04h  
06h  
SAC0 DAC status  
SAC0 interrupt vector  
08h  
0Ah  
6-60. SAC1 Registers (Base Address: 0C90h, MSP430FR235x Devices Only)  
REGISTER DESCRIPTION  
ACRONYM  
SAC1OA  
OFFSET  
00h  
SAC1 OA control  
SAC1 PGA control  
SAC1 DAC control  
SAC1 DAC data  
SAC1PGA  
SAC1DAC  
SAC1DAT  
SAC1DATSTS  
SAC1IV  
02h  
04h  
06h  
SAC1 DAC status  
SAC1 interrupt vector  
08h  
0Ah  
6-61. SAC2 Registers (Base Address: 0CA0h, MSP430FR235x Devices Only)  
REGISTER DESCRIPTION  
ACRONYM  
SAC2OA  
OFFSET  
00h  
SAC2 OA control  
SAC2 PGA control  
SAC2 DAC control  
SAC2 DAC data  
SAC2PGA  
SAC2DAC  
SAC2DAT  
SAC2DATSTS  
SAC2IV  
02h  
04h  
06h  
SAC2 DAC status  
SAC2 interrupt vector  
08h  
0Ah  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
93  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-62. SAC3 Registers (Base Address: 0CB0h, MSP430FR235x Devices Only)  
REGISTER DESCRIPTION  
ACRONYM  
SAC3OA  
OFFSET  
SAC3 OA control  
SAC3 PGA control  
SAC3 DAC control  
SAC3 DAC data  
00h  
02h  
04h  
06h  
08h  
0Ah  
SAC3PGA  
SAC3DAC  
SAC3DAT  
SAC3DATSTS  
SAC3IV  
SAC3 DAC status  
SAC3 interrupt vector  
94  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.11 Input/Output Diagrams  
6.11.1 Port P1 Input/Output With Schmitt Trigger  
6-4 shows the port diagram. 6-63 summarizes the selection of the port function.  
A0..A7  
OA0+, OA0-, OA0O  
OA1+, OA1-, OA1O  
COMP0.0, COMP0.1  
P1REN.x  
P1DIR.x  
From Module 1  
From Module 2  
00  
01  
10  
DVSS  
DVCC  
0
1
P1OUT.x  
From Module 1  
From Module 2  
00  
01  
10  
P1SEL0  
P1SEL1  
EN  
D
To module  
P1IN.x  
P1IE.x  
Bus  
Keeper  
P1 Interrupt  
D
S
Q
P1.0/UCB0STE/SMCLK/COMP0.0/A0/Veref+  
P1.1/UCB0CLK/ACLK/OA0O/COMP0.1/A1  
P1.2/UCB0SIMO/UCB0SDA/TB0TRG/OA0-/A2/Veref-  
P1.3/UCB0SOMI/UCB0SCL/A3  
P1IFG.x  
Edge  
Select  
P1.4/UCA0STE/TCK/A4  
P1.5/UCA0CLK/TMS/A5  
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/A7/VREF+  
P1IES.x  
From JTAG  
To JTAG  
6-4. Port P1 Input/Output With Schmitt Trigger  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
95  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-63. Port P1 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SELx  
00  
JTAG  
N/A  
P1.0 (I/O)  
UCB0STE  
SMCLK  
VSS  
I: 0; O: 1  
X
01  
N/A  
P1.0/UCB0STE/SMCLK/  
COMP0.0/A0/Veref+  
0
1
10  
N/A  
0
COMP0.0, A0/Veref+  
P1.1 (I/O)  
X
11  
0
N/A  
N/A  
N/A  
I: 0; O: 1  
UCB0CLK  
X
01  
P1.1/UCB0CLK/ACLK/  
OA0O/COMP0.1/A1  
1
ACLK  
1
10  
N/A  
VSS  
0
OA0O(2), COMP0.1, A1  
X
11  
00  
01  
10  
11  
00  
01  
11  
00  
01  
11  
X
N/A  
N/A  
P1.2 (I/O)  
I: 0; O: 1  
P1.2/UCB0SIMO/  
UCB0SDA/TB0TRG/  
OA0-/A2/Veref-  
UCB0SIMO/UCB0SDA  
TB0TRG  
OA0-(2), A2/Veref-  
X
N/A  
2
3
4
0
N/A  
X
N/A  
P1.3 (I/O)  
I: 0; O: 1  
N/A  
P1.3/UCB0SOMI/  
UCB0SCL/OA0+/A3  
UCB0SOMI/UCB0SCL  
OA0+(2), A3  
P1.4 (I/O)  
X
N/A  
X
N/A  
I: 0; O: 1  
Disabled  
Disabled  
Disabled  
TCK  
UCA0STE  
X
P1.4/UCA0STE/TCK/A4  
A4  
X
JTAG TCK  
X
P1.5 (I/O)  
I: 0; O: 1  
00  
01  
11  
X
Disabled  
Disabled  
Disabled  
TMS  
UCA0CLK  
OA1O(2), A5  
X
P1.5/UCA0CLK/TMS/  
OA1O/A5  
5
6
X
JTAG TMS  
X
P1.6 (I/O)  
I: 0; O: 1  
00  
01  
Disabled  
Disabled  
UCA0RXD/UCA0SOMI  
TB0.CCI1A  
X
P1.6/UCA0RXD/  
UCA0SOMI/TB0.1/TDI/  
TCLK/OA1-/A6  
0
10  
Disabled  
TB0.1  
1
OA1-(2), A6  
JTAG TDI/TCLK  
P1.7 (I/O)  
X
11  
X
Disabled  
TDI/TCLK  
Disabled  
Disabled  
X
I: 0; O: 1  
00  
01  
UCA0TXD/UCA0SIMO  
TB0.CCI2A  
X
0
P1.7/UCA0TXD/  
UCA0SIMO/TB0.2/TDO/  
OA1+/A7/VREF+  
7
10  
Disabled  
TB0.2  
1
OA1+(2), A7, VREF+  
X
X
11  
X
Disabled  
TDO  
JTAG TDO  
(1) X = don't care  
(2) MSP430FR235x devices only  
96  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.11.2 Port P2 Input/Output With Schmitt Trigger  
6-5 shows the port diagram. 6-64 summarizes the selection of the port function.  
COMP1.0, COMP1.1  
P2REN.x  
P2DIR.x  
From Module 1  
From Module 2  
00  
01  
10  
DVSS  
DVCC  
0
1
P2OUT.x  
From Module 1  
From Module 2  
00  
01  
10  
P2SEL0  
P2SEL1  
EN  
D
To module  
P2IN.x  
P2IE.x  
Bus  
Keeper  
P2 Interrupt  
D
S
Q
P2.0/TB1.1/COMP0.O  
P2.1/TB1.2/COMP1.O  
P2.2/TB1CLK  
P2.3/TB1TRG  
P2.4/COMP1.1  
P2.5/COMP1.0  
P2.6/MCLK/XOUT  
P2.7/TB0CLK/XIN  
P2IFG.x  
P2IES.x  
Edge  
Select  
6-5. Port P2 Input/Output With Schmitt Trigger  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
97  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-64. Port P2 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SELx  
P2.0 (I/O)  
TB1.CCI1A  
TB1.1  
I: 0; O: 1  
00  
0
P2.0/TB1.1/COMP0.O  
0
01  
1
COMP0.O  
P2.1 (I/O)0  
TB1.CCI2A  
TB1.2  
1
10  
00  
I: 0; O: 1  
0
P2.1/TB1.2  
1
01  
1
COMP1.O  
P2.2 (I/O)  
TB1CLK  
P2.3 (I/O)  
TB1TRG  
VSS  
1
10  
00  
01  
00  
I: 0; O: 1  
P2.2/TB1CLK  
2
3
0
I: 0; O: 1  
P2.3/UCB0CLK/TB1TRG  
0
01  
1
P2.4 (I/O)  
COMP1.1  
P2.5 (I/O)  
COMP1.0  
P2.6 (I/O)  
MCLK  
I: 0; O: 1  
00  
11  
00  
11  
00  
P2.4/COMP1.1  
P2.5/COMP1.0  
4
5
X
I: 0; O: 1  
X
I: 0; O: 1  
1
P2.6/MCLK/XOUT  
6
7
01  
VSS  
0
XOUT  
X
10  
00  
P2.7 (I/O)  
TB0CLK  
VSS  
I: 0; O: 1  
0
1
X
P2.7/TB0CLK/XIN  
(1) X = don't care  
01  
10  
XIN  
98  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.11.3 Port P3 Input/Output With Schmitt Trigger  
6-6 shows the port diagram. 6-65 summarizes the selection of the port function.  
OA2O, OA2-, OA2+  
OA3O, OA3-, OA3+  
P3REN.x  
P3DIR.x  
From Module 1  
From Module 2  
00  
01  
10  
DVSS  
DVCC  
0
1
P3OUT.x  
From Module 1  
From Module 2  
00  
01  
10  
P3SEL0  
P3SEL1  
EN  
D
To module  
P3IN.x  
P3IE.x  
Bus  
Keeper  
P3 Interrupt  
D
S
Q
P3.0/MCLK  
P3.1/OA2O  
P3.2/OA2-  
P3.3/OA2+  
P3.4/SMCLK  
P3.5/OA3O  
P3.6/OA3-  
P3.7/OA3+  
P3IFG.x  
P3IES.x  
Edge  
Select  
6-6. Port P3 Input/Output With Schmitt Trigger  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
99  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-65. Port P3 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SELx  
P3.0 (I/O)  
MCLK  
I: 0; O: 1  
00  
P3.0/MCLK  
0
1
01  
VSS  
0
P3.1 (I/O)  
OA2O(2)  
P3.2 (I/O)  
OA2-(2)  
I: 0; O: 1  
00  
11  
00  
11  
00  
11  
00  
P3.1/OA2O  
P3.2/OA2-  
P3.3/OA2+  
1
2
3
X
I: 0; O: 1  
X
P3.3 (I/O)  
OA2+(2)  
P3.4 (I/O)  
SMCLK  
VSS  
I: 0; O: 1  
X
I: 0; O: 1  
P3.4/SMCLK  
4
1
01  
0
P3.5 (I/O)  
OA3O(2)  
P3.6 (I/O)  
OA3-(2)  
I: 0; O: 1  
00  
11  
00  
11  
00  
11  
P3.5/OA3O  
P3.6/OA3-  
5
6
7
X
I: 0; O: 1  
X
P3.7 (I/O)  
OA3+(2)  
I: 0; O: 1  
X
P3.7/OA3+  
(1) X = don't care  
(2) MSP430FR235x devices only  
100  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.11.4 Port P4 Input/Output With Schmitt Trigger  
6-7 shows the port diagram. 6-66 summarizes the selection of the port function.  
P4REN.x  
P4DIR.x  
From Module 1  
From Module 2  
00  
01  
10  
DVSS  
DVCC  
0
1
P4OUT.x  
From Module 1  
From Module 2  
00  
01  
10  
P4SEL0  
P4SEL1  
EN  
D
To module  
P4IN.x  
P4IE.x  
Bus  
Keeper  
P4 Interrupt  
D
S
Q
P4.0/UCA1STE/ISOTXD/ISORXD  
P4.1/UCA1CLK  
P4IFG.x  
P4IES.x  
P4.2/UCA1RXD/UCA1SOMI/UCA1RXD  
P4.3/UCA1TXD/UCA1SIMO/UCA1TXD  
P4.4/UCB1STE  
P4.5/UCB1CLK  
P4.6/UCB1SIMO/UCB1SDA  
P4.7/UCB1SOMI/UCB1SCL  
Edge  
Select  
6-7. Port P4 Input/Output With Schmitt Trigger  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
101  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-66. Port P4 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SELx  
P4.0 (I/O)  
UCA1STE  
I: 0; O: 1  
00  
01  
X
P4.0/UCA1STE  
0
UCA1RXD, TB3.CCI2B  
UCA1TXD logic-AND TB3.2B  
P4.1 (I/O)  
0
10  
1
I: 0; O: 1  
00  
01  
00  
01  
10  
00  
01  
10  
00  
01  
00  
01  
00  
01  
00  
01  
P4.1/UCA1CLK  
1
2
UCA1CLK  
X
P4.2 (I/O)  
I: 0; O: 1  
P4.2/UCA1RXD/  
UCA1SOMI/UCA1RXD  
UCA1RXD/UCA1SOMI  
UCA1RXD  
X
X
P4.3 (I/O)  
I: 0; O: 1  
P4.3/UCA1TXD/  
UCA1SIMO/UCA1TXD  
3
UCA1TXD/UCA1SIMO  
UCA1TXD  
X
X
P4.4 (I/O)  
I: 0; O: 1  
P4.4/UCB1STE  
4
5
6
7
UCB1STE  
X
P4.5 (I/O)  
I: 0; O: 1  
P4.5/UCB1CLK  
UCB1CLK  
X
I: 0; O: 1  
X
P4.6 (I/O)  
P4.6/UCB1SIMO/UCB1SDA  
UCB1SIMO/UCB1SDA  
P4.7 (I/O)  
I: 0; O: 1  
X
P4.7/UCB1SOMI/UCB1SCL  
(1) X = don't care  
UCB1SOMI/UCB1SCL  
102  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.11.5 Port P5 Input/Output With Schmitt Trigger  
6-8 shows the port diagram. 6-67 summarizes the selection of the port function.  
A8, A9, A10, A11  
P5REN.x  
P5DIR.x  
From Module 1  
From Module 2  
00  
01  
10  
DVSS  
DVCC  
0
1
P5OUT.x  
From Module 1  
From Module 2  
00  
01  
10  
P5SEL0  
P5SEL1  
EN  
D
To module  
P5IN.x  
Bus  
Keeper  
P5.0/TB2.1/MFM.RX/A8  
P5.1/TB2.2/MFM.TX/A9  
P5.2/TB2CLK/A10  
P5.3/TB2TRG/A11  
P5.4  
6-8. Port P5 Input/Output With Schmitt Trigger  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
103  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-67. Port P5 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SELx  
P5.0 (I/O)  
TB2.CCI1A  
TB2.1  
I: 0; O: 1  
00  
I
01  
P5.0/TB2.1/MFM.RX/A8  
0
O
MFM.RX  
A8  
X
10  
11  
00  
X
P5.1 (I/O)  
TB2.CCI2A  
TB2.2  
I: 0; O: 1  
I
01  
P5.1/TB2.2/MFM.TX/A9  
1
2
O
MFM.TX  
A9  
X
10  
11  
00  
X
P5.2 (I/O)  
TB2CLK  
VSS  
I: 0; O: 1  
I
P5.2/TB2CLK/A10  
P5.3/TB2TRG/A11  
01  
O
A10  
X
11  
00  
P5.3 (I/O)  
TB2TRG  
VSS  
I: 0; O: 1  
I
3
4
01  
O
X
A11  
11  
00  
P5.4  
P5.4 (I/O)  
I: 0; O: 1  
(1) X = don't care  
104  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.11.6 Port P6 Input/Output With Schmitt Trigger  
6-9 shows the port diagram. 6-68 summarizes the selection of the port function.  
P6REN.x  
P6DIR.x  
From Module 1  
From Module 2  
00  
01  
10  
DVSS  
DVCC  
0
1
P6OUT.x  
From Module 1  
From Module 2  
00  
01  
10  
P6SEL0  
P6SEL1  
EN  
D
To module  
P6IN.x  
Bus  
Keeper  
P6.0/TB3.1  
P6.1/TB3.2  
P6.2/TB3.3  
P6.3/TB3.4  
P6.4/TB3.5  
P6.5/TB3.6  
P6.6/TB3CLK  
6-9. Port P6 Input/Output With Schmitt Trigger  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
105  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-68. Port P6 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SELx  
P6.0 (I/O)  
TB3.CCI1A  
TB3.1  
I: 0; O: 1  
00  
01  
00  
01  
00  
01  
00  
01  
00  
01  
00  
01  
00  
01  
P6.0/TB3.1  
0
0
1
P6.1 (I/O)  
TB3.CCI2A  
TB3.2  
I: 0; O: 1  
P6.1/TB3.2  
P6.2/TB3.3  
P6.3/TB3.4  
P6.4/TB3.5  
P6.5/TB3.6  
1
2
3
4
5
6
0
1
P6.2 (I/O)  
TB3.CCI3A  
TB3.3  
I: 0; O: 1  
0
1
P6.3 (I/O)  
TB3.CCI4A  
TB3.4  
I: 0; O: 1  
0
1
P6.4 (I/O)  
TB3.CCI5A  
TB3.5  
I: 0; O: 1  
0
1
P6.5 (I/O)  
TB3.CCI6A  
TB3.6  
I: 0; O: 1  
0
1
P6.6 (I/O)  
TB3CLK  
VSS  
I: 0; O: 1  
P6.6/TB3CLK  
0
1
(1) X = don't care  
106  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.12 Device Descriptors (TLV)  
6-69 lists the Device IDs. 6-70 lists the contents of the device descriptor tag-length-value (TLV)  
structure.  
6-69. Device IDs  
DEVICE ID  
DEVICE  
1A04h  
0C  
1A05h  
83  
MSP430FR2355  
MSP430FR2353  
MSP430FR2155  
MSP430FR2153  
0D  
83  
1E  
83  
1D  
83  
6-70. Device Descriptors  
DESCRIPTION  
ADDRESS  
VALUE  
06h  
Info length  
1A00h  
1A01h  
1A02h  
1A03h  
1A04h  
1A05h  
1A06h  
1A07h  
1A08h  
1A09h  
1A0Ah  
1A0Bh  
1A0Ch  
1A0Dh  
1A0Eh  
1A0Fh  
1A10h  
1A11h  
1A12h  
1A13h  
CRC length  
06h  
Per unit  
Per unit  
CRC value(1)  
Information block  
(2)  
Device ID  
See  
Hardware revision  
Firmware revision  
Die record tag  
Per unit  
Per unit  
08h  
Die record length  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot wafer ID  
Die record  
Die X position  
Die Y position  
Test result  
(1) CRC value covers the checksum from 0x1A04h to 0x1AF7h by applying CRC-CCITT-16 polynomial of x16 + x12 + x5 + 1  
(2) MSP430FR235x devices only  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
107  
 
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6-70. Device Descriptors (continued)  
DESCRIPTION  
ADC calibration tag  
ADDRESS  
VALUE  
1A14h  
1A15h  
1A16h  
1A17h  
1A18h  
1A19h  
1A1Ah  
1A1Bh  
1A1Ch  
1A1Dh  
1A1Eh  
1A1Fh  
1A20h  
1A21h  
1A22h  
1A23h  
1A24h  
1A25h  
1A26h  
1A27h  
1A28h  
1A29h  
1A2Ah  
1A2Bh  
1A2Ch  
1A2Dh  
1A2Eh  
1A2Fh  
1A30h  
1A31h  
11h  
ADC calibration length  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
ADC gain factor  
ADC offset  
ADC internal shared 1.5-V reference, temperature 30°C  
ADC internal shared 1.5-V reference, high temperature(3)  
ADC internal shared 2.0-V reference, temperature 30°C  
ADC internal shared 2.0-V reference, high temperature(3)  
ADC internal shared 2.5-V reference, temperature 30°C  
ADC internal shared 2.5-V reference, high temperature(3)  
ADC calibration  
Calibration tag  
Calibration length  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Internal shared 1.5-V reference factor  
Internal shared 2.0-V reference factor  
Internal shared 2.5-V reference factor  
DCO tap settings for 16 MHz, temperature 30°C  
Reference and DCO  
calibration  
(4)  
DCO tap settings for 24 MHz, temperature 30°C  
(3) The calibration value is device dependent at 105°C.  
(4) This value can be directly loaded into the DCO bits in the CSCTL0 register to get an accurate 24-MHz frequency at room temperature,  
especially when MCU exits from LPM3 and below. TI also suggests to use a predivider to decrease the frequency if the temperature drift  
might result an overshoot faster than 24 MHz.  
108  
Detailed Description  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
6.13 Identification  
6.13.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The  
device-specific errata sheet describes these markings. For links to all of the errata sheets for the devices  
in this data sheet, see 8.4.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Hardware Revision" entries in 6.12.  
6.13.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific  
errata sheet describes these markings. For links to all of the errata sheets for the devices in this data  
sheet, see 8.4.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Device ID" entries in 6.12.  
6.13.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in  
detail in the MSP430 Programming With the JTAG Interface.  
版权 © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
109  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
7 Applications, Implementation, and Layout  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI's customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their implementation to confirm system functionality.  
7.1 Device Connection and Layout Fundamentals  
This section discusses the recommended guidelines when designing with the MSP430 MCU. These  
guidelines are to make sure that the device has proper connections for powering, programming,  
debugging, and optimum analog performance.  
7.1.1 Power Supply Decoupling and Bulk Capacitors  
It is recommended to connect a combination of a 10-µF plus a 100-nF low-ESR ceramic decoupling  
capacitor to the DVCC pin. Higher-value capacitors can be used but can impact supply rail ramp-up time.  
Place the decoupling capacitors as close as possible to the pins that they decouple (within a few  
millimeters).  
DVCC  
Digital  
+
Power Supply  
Decoupling  
DVSS  
10 µF  
100 nF  
7-1. Power Supply Decoupling  
7.1.2 External Oscillator  
Depending on the device variant (see 3), the device can support a low-frequency crystal (32 kHz) on  
the LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the  
crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the  
specifications of the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is  
selected. In this case, the associated LFXOUT and HFXOUT pins can be used for other purposes. If they  
are left unused, they must be terminated according to 4.6.  
7-2 shows a typical connection diagram.  
LFXIN  
or  
LFXOUT  
or  
HFXIN  
HFXOUT  
CL1  
CL2  
7-2. Typical Crystal Connection  
110  
Applications, Implementation, and Layout  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with MSP430 MCUs.  
7.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or  
MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the  
connections also support the MSP-GANG production programmers, thus providing an easy way to  
program prototype boards, if desired. 7-3 shows the connections between the 14-pin JTAG connector  
and the target device required to support in-system programming and debugging for 4-wire JTAG  
communication. 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are  
identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-  
FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an  
alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the  
target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. 图  
7-3 and 7-4 show a jumper block that supports both scenarios of supplying VCC to the target board. If  
this flexibility is not required, the desired VCC connections can be hard-wired to eliminate the jumper block.  
Pins 2 and 4 must not be connected at the same time.  
For additional design information regarding the JTAG interface, see the MSP430 hardware tools user’s  
guide.  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
DVCC  
J2 (see Note A)  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,  
make connection J2.  
B. The upper limit for C1 is 1.1 nF when using current TI tools.  
7-3. Signal Connections for 4-Wire JTAG Communication  
版权 © 2018–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
111  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
DVCC  
R1  
47 kΩ  
(see Note B)  
JTAG  
VCC TOOL  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
VCC TARGET  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the  
debug or programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during  
JTAG access, and any capacitance that is attached to this signal can affect the ability to establish a connection with  
the device. The upper limit for C1 is 1.1 nF when using current TI tools.  
7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
7.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the special function  
register (SFR), SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is  
edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the  
external NMI. When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either  
pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not.  
If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an  
external 47-kΩ pullup resistor to the RST/NMI pin with a 2.2-nF pulldown capacitor. The pulldown  
capacitor should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or  
in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers.  
See the MSP430FR4xx and MSP430FR2xx Family User's Guide for more information on the referenced  
control registers and bits.  
7.1.5 Unused Pins  
For details on the connection of unused pins, see4.6.  
112  
Applications, Implementation, and Layout  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
7.1.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430  
32-kHz Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC, AVCC, and reference pins if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital  
switching signals such as PWM or JTAG signals away from the oscillator circuit and ADC signals.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
7.1.7 Do's and Don'ts  
During power up, power down, and device operation, the voltage difference between AVCC and DVCC  
must not exceed the limits specified in the Absolute Maximum Ratings section. Exceeding the specified  
limits can cause malfunction of the device including erroneous writes to RAM and FRAM.  
7.2 Peripheral- and Interface-Specific Design Information  
7.2.1 ADC Peripheral  
7.2.1.1 Partial Schematic  
DVSS  
Using an external  
VREF+/VEREF+  
positive reference  
+
100 nF  
10 µF  
Using an external  
negative reference  
VEREF-  
+
10 µF  
100 nF  
7-5. ADC Grounding and Noise Considerations  
7.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should  
be followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with  
other analog or digital circuitry. This current can generate small unwanted offset voltages that can add to  
or subtract from the reference or input voltages of the ADC. The general guidelines in 7.1.1 combined  
with the connections shown in 7-5 prevent these offset voltages.  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital  
switching or switching power supplies can corrupt the conversion result. TI recommends a noise-free  
design using separate analog and digital ground planes with a single-point connection to achieve high  
accuracy.  
7-5 shows the recommended decoupling circuit when an external voltage reference is used. The  
internal reference module has a maximum drive current as described in the sections ADC Pin Enable and  
1.2-V Reference Settings of the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
版权 © 2018–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
113  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor buffers the reference pin and filters low-frequency  
ripple, and the 100-nF bypass capacitor filters high-frequency noise.  
7.2.1.3 Layout Guidelines  
Components that are shown in the partial schematic (see 7-5) should be placed as close as possible to  
the respective device pins to avoid long traces, because they add additional parasitic capacitance,  
inductance, and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM),  
because the high-frequency switching can be coupled into the analog signal.  
7.3 ROM Libraries  
The MSP430FR235x and MSP430FR215x devices in the MSP430FR4xx family have MSP430 Driver  
Library and FFT Library in ROM.  
MSP430 software libraries in ROM are tested to work with both Code Composer Studio and IAR  
Embedded Workbench toolchains.  
For the ROM image to be compatible between CCS and IAR tool chains, there are certain project  
properties restrictions. See the TI.com attribute guide for more details.  
To use DriverLib in ROM, #include "rom_driverlib.h". Header file checks continue to provide helpful  
hints at build time until the user application adheres to __cc_rom.  
To use FFTLib in ROM, #include "DSPLib.h". FFTLib is a subset of the MSP software library DSPLib.  
For more information, see the MSP430 Driver Library for MSP430FR2xx_4xx ROM README and  
MSP DSP Library ROM README in MSP430Ware. The library ROM image is located above the 64KB  
memory address. Application code using ROM must be large code model (20-bit address pointer rather  
than 16-bit address pointer).  
Benefits of ROM library use include:  
Code execution at clock speeds that exceed 8 MHz is faster from ROM than from FRAM, because the  
code avoids FRAM wait states (except FRAM controller cache hits). Without FRAM wait states, code  
execution performance is limited by only the processor clock, which is generally faster than other  
subsystems. Executing code from RAM gives comparable performance, but the available RAM size is  
typically more limited.  
More nonvolatile storage (FRAM) available in the device is left for application code.  
7.4 Typical Applications  
7-1 lists TI reference designs that use the MSP430FR235x devices in real-world application scenarios.  
Consult these designs for additional guidance regarding schematic, layout, and software implementation.  
For the most up-to-date list of available TI reference designs, visit the TI reference designs library.  
7-1. Tools and Reference Designs  
DESIGN NAME  
LINK  
TIDM-01000  
MSP-EXP430FR2355  
4- to 20-mA Loop-Powered RTD Temperature Transmitter Reference Design With MSP430 Smart Analog Combo  
MSP430FR2355 LaunchPad development kit  
114  
Applications, Implementation, and Layout  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
8 器件和文档支持  
8.1 使用入门  
有关 MSP430™系列器件以及开发协助工具和库的更多信息,请访问 MSP430 超低功耗传感和测量 MCU  
概述。  
8.2 器件命名规则  
为了标示产品开发周期所处的阶段,TI 为所有 MSP MCU 器件的部件号分配了前缀。每个 MSP MCU 商用  
系列产品成员都具有以下两个前缀之一:MSP XMS。这些前缀代表了产品开发的发展阶段,即从工程原  
(XMS) 直到完全合格的生产器件 (MSP)。  
XMS - 实验器件,不一定代表最终器件的电气规格  
MSP - 完全合格的生产器件  
XMS 器件在供货时附带如下免责声明:  
开发中的产品用于内部评估用途。”  
MSP 器件的特性已经全部明确,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书对该器件适  
用。  
预测显示原型器件 (XMS) 的故障率大于标准生产器件。由于这些器件的预计最终使用故障率尚不确定,德  
州仪器 (TI) 建议不要将它们用于任何生产系统。请仅使用合格的生产器件。  
TI 器件的命名规则还包括一个带有器件系列名称的后缀。此后缀表示温度范围、封装类型和配送形式。8-  
1 提供了解读完整器件名称的图例。  
MSP 430 FR  
2
355 T PT  
R
Processor Family  
Distribution Format  
Platform  
Packaging  
Memory Type  
Temperature Range  
Series  
Feature Set  
Processor Family  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
Platform  
430 = MSP430 16-Bit Low-Power Microcontroller  
FR = FRAM  
Memory Type  
Series  
2 = FRAM 2 Series, up to 24 MHz without LCD  
First and Second Digits:  
SAC Level / ADC Channels / COMP / 16-bit Timers / I/Os FRAM (KB) / SRAM (KB)  
Feature Set  
Third Digit:  
35 = SAC-L3 / Up to 12 / 2 / 4 / Up to 44  
15 = No SAC / Up to 12 / 2 / 4 / Up to 44  
5 = 32 / 4  
3 = 16 / 2  
Temperature Range T = –40°C to 105°C  
Packaging  
http://www.ti.com/packaging  
Distribution Format  
T = Small reel  
R = Large reel  
No marking = Tube or tray  
8-1. 器件命名规则  
版权 © 2018–2019, Texas Instruments Incorporated  
器件和文档支持  
115  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
8.3 工具和软件  
请参阅《适用于 MSP430™ MCU Code Composer Studio™ IDE 用户指南》,以了解有关可用 功能)的  
详细信息。  
8-1 列出了 MSP430FR235x MSP430FR215x 微控制器所 支持的 调试特性。  
8-1. 硬件 特性  
四线制  
JTAG  
两线制  
JTAG  
断点  
(N)  
跟踪缓冲 LPMx.5 调试支  
MSP430 架构  
范围断点  
时钟控制  
状态序列发生器  
EEM 版本  
MSP430Xv2  
3
S
设计套件与评估模块  
MSP430FR2355 LaunchPad 开发套件  
MSP-EXP430FR2355 LaunchPad 开发套件是一个易于使用的评估模块 (EVM),该模块包含了在超低功耗  
MSP430FR215x MSP430FR235x FRAM 微控制器系列上开始进行开发所需要的所有资源,包括用于编  
程、调试和能量测量的板载调试探针。  
MSP-TS430PT48 目标开发板  
MSP-TS430PT48 目标开发板是一款 48 引脚 ZIF 插座目标板,用于通过 JTAG 接口或 Spy-Bi-Wire(双线  
JTAG)协议对 MSP430 MCU 进行系统内编程和调试。  
软件  
MSP430Ware™ 软件  
MSP430Ware 软件集合了所有 MSP430 器件的代码示例、数据表以及其他设计资源,打包提供给用户。除  
了提供已有 MSP430 设计资源的完整集合外,MSP430Ware 软件还包含名为 MSP 驱动程序库的高级  
API。借助该库可以轻松地对 MSP430 硬件进行编程。MSP430Ware 软件以 CCS 组件或独立软件包两种形  
式提供。  
MSP430FR235x MSP430FR215x 代码示例  
根据不同应用需求配置各集成外设的每个 MSP 器件均具备相应的 C 代码示例。  
MSP 驱动程序库  
MSP 驱动程序库的抽象 API 提供易用的函数调用,无需直接操纵 MSP430 硬件的位与字节。完整的文档通  
过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证的参数的详细信息。开发人员可以  
使用驱动程序库功能,以最低开销编写完整项目。  
MSP EnergyTrace™ 技术  
适用于 MSP430 微控制器的 EnergyTrace 技术是基于电能的代码分析工具,适用于测量和显示应用的电能  
系统配置并帮助优化应用以实现超低功耗。  
ULP(超低功耗)Advisor  
ULP Advisor™软件是一款辅助工具,旨在指导开发人员编写更为高效的代码,从而充分利用 MSP430 和  
MSP432 微控制器 独特 的超低 功耗特性。ULP Advisor 的目标人群是微控制器的资深开发者和开发新  
手,可以根据详尽的 ULP 检验表检查代码,以便最大限度地减少应用程序的能耗。在编译时,ULP Advisor  
会提供通知和备注以突出显示代码中可以进一步优化的区域,进而实现更低功耗。  
适用于 MSP 超低功耗微控制器的 FRAM 嵌入式软件实用程序  
FRAM 实用程序旨在作为不断扩充的嵌入式软件实用程序集合,其中的实用程序充分利用 FRAM 的超低功  
耗和近乎无限次的写入寿命。这些实用程序适用于 MSP430FRxx FRAM 微控制器并提供示例代码协助应用  
程序开发。其中的实用程序包含功耗计算实用程序 (CTPL)CTPL 是一套实用程序 API 集,通过 CTPL 能  
够轻松使用 LPMx.5 低功耗模式以及强大的关断模式,允许应用程序在检测到功率损耗时节约能耗并恢复关  
键的系统元件。  
IEC60730 软件包  
116  
器件和文档支持  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
IEC60730 MSP430 软件包经过专门开发,用于协助客户达到 IEC 60730-1:2010(家用及类似用途的自动化  
电气控制 - 1 部分:一般要求)B 类产品的要求。其中涵盖家用电器、电弧检测器、电源转换器、电动工  
具、电动自行车及其他诸多产品。IEC60730 MSP430 软件包可以嵌入在 MSP430 MCU 中 运行的客户应  
用, 从而帮助客户简化其消费类器件在功能安全方面遵循 IEC 60730-1:2010 B 类规范的认证工作。  
适用于 MSP 的定点数学库  
MSP IQmath Qmath 库是为 C 语言开发者提供的一套经过高度优化的高精度数学运算函数集合,能够将  
浮点算法无缝嵌入 MSP430 MSP432 器件的定点代码中。这些例程通常用于计算密集型实时 应用, 而  
优化的执行速度、高精度以及超低能耗通常是影响这些实时应用的关键因素。与使用浮点数学算法编写的同  
等代码相比,使用 IQmath Qmath 库可以大幅提高执行速度并显著降低能耗。  
适用于 MSP430 的浮点数学库  
TI 在低功耗和低成本微控制器领域锐意创新,为您提供 MSPMATHLIB。此标量函数的浮点数学库,能够充  
分利用器件的智能外设,使速度最高达到标准 MSP430 数学函数的 26 倍。Mathlib 能够轻松集成到您的设  
计中。该运算库免费使用并集成在 Code Composer Studio IDE IAR Embedded Workbench IDE 中。  
开发工具  
适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境  
Code Composer Studio (CCS) 集成开发环境 (IDE) 支持所有 MSP 微控制器器件。CCS 包含一整套用于开  
发和调试嵌入式 应用的工具。它包含了优化的 C/C++ 编译器、源代码编辑器、项目构建环境、调试器、描  
述器以及其他多种 功能。  
IAR Embedded Workbench® IDE  
适用于 MSP430 MCU IAR Embedded Workbench IDE 是一套用于构建和调试基于 MSP430 微控制器的  
嵌入式 应用 的完整 C/C++ 编译器工具链。该调试器可用于源代码和反汇编代码,而且支持复杂代码和数据  
断点。它还提供了硬件仿真器,可在未连接实际目标的情况下进行调试。  
Uniflash 独立闪存工具  
UniFlash 独立闪存工具用于在 TI MCU 上对片上闪存进行编程。Uniflash 具有 GUI、命令行和脚本界面。  
Uniflash 软件工具支持两种使用方式:TI 云工具或者从 TI 网页下载的桌面应用。  
MSP MCU 编程器和调试器  
MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可帮助用户在 MSP 低功耗微控制器 (MCU)  
中快速开发应用。创建 MCU 软件通常需要将生成的二进制程序下载到 MSP 器件中,从而进行验证和调  
试。  
MSP-GANG 生产编程器  
MSP Gang 编程器是一款 MSP430 MSP432 器件编程器,可同时对多达八个完全相同的 MSP430 或  
MSP432 闪存或 FRAM 器件进行编程。MSP Gang 编程器可使用标准的 RS-232 USB 连接与主机 PC  
相连并提供灵活的编程选项,允许用户完全自定义流程。  
TIREX Resource Explorer (TIRex)  
用于查找器件和开发板的示例、库、可执行代码和文档的在线门户。您可以直接在 Code Composer Studio  
IDE 内访问 TIRex,也可以在“TI 云工具中访问 TIRex。  
TI 云工具  
快速在 dev.ti.com 上开始开发。首先使用 Resource Explorer 界面快速找到您需要的所有文件。然后使用行  
业领先的 Code Composer Studio Cloud IDE 在云中编辑、生成和调试嵌入式 应用 。  
GCC - 适用于 MSP 的编译器  
MSP430 MSP432 GCC 开源包是一个完整的调试器和开源 C/C++ 编译器工具链,用于基于 MSP430 和  
MSP432 微控制器构建和调试嵌入式 应用 。这些免费的 GCC 编译器支持所有 MSP430 MSP432 器件  
且没有代码大小限制。此外,这些编译器可以通过命令行独立使用,也可在 Code Composer Studio v6.0 或  
更高版本中使用。不管您使用的是 Windows®Linux® 还是 macOS®环境,马上开始吧。  
版权 © 2018–2019, Texas Instruments Incorporated  
器件和文档支持  
117  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
8.4 文档支持  
以下文档介绍了 MSP430FR235x MSP430FR215x 微控制器。  
接收文档更新通知  
要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹(关于产品文件  
夹的链接,请参见8.5)。请单击右上角的通知我按钮。点击注册后,即可收到产品信息更改每周摘要  
(如有)。有关更改的详细信息,请查看任意修订文档的修订历史记录。  
勘误表  
MSP430FR2355 器件勘误表》  
介绍了这款器件所有芯片修订版本的功能规格的已知例外情况。  
MSP430FR2353 器件勘误表》  
介绍了这款器件所有芯片修订版本的功能规格的已知例外情况。  
MSP430FR2155 器件勘误表》  
介绍了这款器件所有芯片修订版本的功能规格的已知例外情况。  
MSP430FR2153 器件勘误表》  
介绍了这款器件所有芯片修订版本的功能规格的已知例外情况。  
用户指南  
MSP430FR4xx MSP430FR2xx 系列用户指南》  
详细 说明 了该器件系列提供的所有模块和外设。  
MSP430 FRAM 器件引导加载程序 (BSL)》用户指南  
MSP430 MCU 上的引导加载程序 (BSL) 允许用户在原型设计、投产和维护等各阶段与 MSP430 MCU 中的  
嵌入式存储器进行通信。可编程存储器(FRAM 存储器)和数据存储器 (RAM) 均可按要求予以修改。  
《通过 JTAG 接口对 MSP430 进行编程》  
此文档介绍了使用 JTAG 通信端口擦除、编程和验证基于 MSP430 闪存和 FRAM 的微控制器系列的存储器  
模块所需的功能。此外,该文档还介绍了如何编程所有 MSP430 器件上均具备的 JTAG 访问安全保险丝。  
此文档介绍了使用标准四线制 JTAG 接口和两线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))的器件访问。  
MSP430 硬件工具用户指南》  
此手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针对 MSP430 超低功耗微控制器的程  
序开发工具。文中对提供的接口类型,即并行端口接口和 USB 接口进行了说明。  
应用报告  
MSP430 32kHz 晶体振荡器》  
选择合适的晶体、正确的负载电路和适当的电路板布局是实现稳定的晶体振荡器的关键。该应用报告总结了  
晶体振荡器的功能,介绍了用于选择合适的晶体以实现 MSP430 超低功耗运行的参数。此外,还给出了正  
确电路板布局的提示和示例。此外,为了确保振荡器在大规模生产后能够稳定运行,还可能需要进行一些振  
荡器测试,该文档中提供了有关这些测试的详细信息。  
MSP430 系统级 ESD 注意事项》  
随着芯片技术向更低电压方向发展以及设计具有成本效益的超低功耗组件的需求的出现,系统级 ESD 要求  
变得越来越苛刻。该应用报告介绍了不同的 ESD 主题,旨在帮助电路板设计人员和 OEM 理解并设计出稳  
健耐用的系统级设计。  
8.5 相关链接  
8-2 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
118  
器件和文档支持  
版权 © 2018–2019, Texas Instruments Incorporated  
 
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
8-2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
MSP430FR2355  
MSP430FR2353  
MSP430FR2155  
MSP430FR2153  
版权 © 2018–2019, Texas Instruments Incorporated  
器件和文档支持  
119  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
8.6 商标  
LaunchPad, MSP430, MSP430Ware, Code Composer Studio, E2E, EnergyTrace, ULP Advisor, 功耗, 适用  
MSP 微控制器的 Code Composer Studio are trademarks of Texas Instruments.  
macOS is a registered trademark of Apple, Inc.  
IAR Embedded Workbench is a registered trademark of IAR Systems.  
Linux is a registered trademark of Linus Torvalds.  
Windows is a registered trademark of Microsoft Corporation.  
8.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.8 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
120  
器件和文档支持  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2355, MSP430FR2353, MSP430FR2155, MSP430FR2153  
www.ti.com.cn  
ZHCSI67D MAY 2018REVISED DECEMBER 2019  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2019, Texas Instruments Incorporated  
机械、封装和可订购信息  
121  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR2153TDBT  
MSP430FR2153TDBTR  
MSP430FR2153TPT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
LQFP  
DBT  
DBT  
PT  
38  
38  
48  
48  
40  
40  
32  
32  
38  
38  
48  
48  
40  
40  
32  
32  
38  
38  
48  
48  
50  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
430FR2153  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
430FR2153  
430FR2153  
430FR2153  
FR2153  
MSP430FR2153TPTR  
MSP430FR2153TRHAR  
MSP430FR2153TRHAT  
MSP430FR2153TRSMR  
MSP430FR2153TRSMT  
MSP430FR2155TDBT  
MSP430FR2155TDBTR  
MSP430FR2155TPT  
LQFP  
PT  
1000 RoHS & Green  
2500 RoHS & Green  
VQFN  
VQFN  
VQFN  
VQFN  
TSSOP  
TSSOP  
LQFP  
RHA  
RHA  
RSM  
RSM  
DBT  
DBT  
PT  
250  
RoHS & Green  
FR2153  
3000 RoHS & Green  
FR2153  
250  
50  
RoHS & Green  
RoHS & Green  
FR2153  
430FR2155  
430FR2155  
430FR2155  
430FR2155  
FR2155  
2000 RoHS & Green  
250 RoHS & Green  
MSP430FR2155TPTR  
MSP430FR2155TRHAR  
MSP430FR2155TRHAT  
MSP430FR2155TRSMR  
MSP430FR2155TRSMT  
MSP430FR2353TDBT  
MSP430FR2353TDBTR  
MSP430FR2353TPT  
LQFP  
PT  
1000 RoHS & Green  
2500 RoHS & Green  
VQFN  
VQFN  
VQFN  
VQFN  
TSSOP  
TSSOP  
LQFP  
RHA  
RHA  
RSM  
RSM  
DBT  
DBT  
PT  
250  
RoHS & Green  
FR2155  
3000 RoHS & Green  
FR2155  
250  
50  
RoHS & Green  
RoHS & Green  
FR2155  
430FR2353  
430FR2353  
430FR2353  
430FR2353  
2000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
MSP430FR2353TPTR  
LQFP  
PT  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Jul-2022  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR2353TRHAR  
MSP430FR2353TRHAT  
MSP430FR2353TRSMR  
MSP430FR2353TRSMT  
MSP430FR2355TDBT  
MSP430FR2355TDBTR  
MSP430FR2355TPT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
TSSOP  
TSSOP  
LQFP  
RHA  
RHA  
RSM  
RSM  
DBT  
DBT  
PT  
40  
40  
32  
32  
38  
38  
48  
48  
40  
40  
32  
32  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
FR2353  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
FR2353  
FR2353  
250  
50  
RoHS & Green  
RoHS & Green  
FR2353  
430FR2355  
430FR2355  
430FR2355  
430FR2355  
FR2355  
2000 RoHS & Green  
250 RoHS & Green  
MSP430FR2355TPTR  
MSP430FR2355TRHAR  
MSP430FR2355TRHAT  
MSP430FR2355TRSMR  
MSP430FR2355TRSMT  
LQFP  
PT  
1000 RoHS & Green  
2500 RoHS & Green  
VQFN  
VQFN  
VQFN  
VQFN  
RHA  
RHA  
RSM  
RSM  
250  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
FR2355  
FR2355  
FR2355  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Jul-2022  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR2153TDBTR TSSOP  
DBT  
PT  
38  
48  
40  
40  
32  
32  
38  
48  
48  
40  
40  
32  
38  
48  
48  
40  
2000  
1000  
2500  
250  
330.0  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
12.4  
12.4  
16.4  
16.4  
16.4  
16.4  
16.4  
12.4  
16.4  
16.4  
16.4  
16.4  
6.9  
9.6  
6.3  
6.3  
4.25  
4.25  
6.9  
9.6  
9.6  
6.3  
6.3  
4.25  
6.9  
9.6  
9.6  
6.3  
10.2  
9.6  
1.8  
1.9  
1.1  
1.1  
1.15  
1.15  
1.8  
1.9  
1.9  
1.1  
1.1  
1.15  
1.8  
1.9  
1.9  
1.1  
12.0  
12.0  
12.0  
12.0  
8.0  
16.0  
16.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q2  
Q2  
Q2  
Q2  
Q2  
Q1  
Q2  
Q2  
Q2  
Q2  
Q2  
Q1  
Q2  
Q2  
Q2  
MSP430FR2153TPTR  
MSP430FR2153TRHAR  
MSP430FR2153TRHAT  
LQFP  
VQFN  
VQFN  
RHA  
RHA  
RSM  
RSM  
DBT  
PT  
6.3  
6.3  
MSP430FR2153TRSMR VQFN  
MSP430FR2153TRSMT VQFN  
MSP430FR2155TDBTR TSSOP  
3000  
250  
4.25  
4.25  
10.2  
9.6  
8.0  
2000  
1000  
1000  
2500  
250  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
MSP430FR2155TPTR  
MSP430FR2155TPTR  
MSP430FR2155TRHAR  
MSP430FR2155TRHAT  
MSP430FR2155TRSMT  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
PT  
9.6  
RHA  
RHA  
RSM  
DBT  
PT  
6.3  
6.3  
250  
4.25  
10.2  
9.6  
MSP430FR2353TDBTR TSSOP  
2000  
1000  
1000  
2500  
12.0  
12.0  
12.0  
12.0  
MSP430FR2353TPTR  
MSP430FR2353TPTR  
MSP430FR2353TRHAR  
LQFP  
LQFP  
VQFN  
PT  
9.6  
RHA  
6.3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR2353TRHAT  
MSP430FR2353TRSMR VQFN  
MSP430FR2353TRSMT VQFN  
MSP430FR2355TDBTR TSSOP  
VQFN  
RHA  
RSM  
RSM  
DBT  
PT  
40  
32  
32  
38  
48  
48  
40  
40  
32  
250  
3000  
250  
180.0  
330.0  
180.0  
330.0  
330.0  
330.0  
330.0  
180.0  
180.0  
16.4  
12.4  
12.4  
16.4  
16.4  
16.4  
16.4  
16.4  
12.4  
6.3  
4.25  
4.25  
6.9  
6.3  
4.25  
4.25  
10.2  
9.6  
1.1  
1.15  
1.15  
1.8  
12.0  
8.0  
16.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
12.0  
Q2  
Q2  
Q2  
Q1  
Q2  
Q2  
Q2  
Q2  
Q2  
8.0  
2000  
1000  
1000  
2500  
250  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
MSP430FR2355TPTR  
MSP430FR2355TPTR  
MSP430FR2355TRHAR  
MSP430FR2355TRHAT  
MSP430FR2355TRSMT  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
9.6  
1.9  
PT  
9.6  
9.6  
1.9  
RHA  
RHA  
RSM  
6.3  
6.3  
1.1  
6.3  
6.3  
1.1  
250  
4.25  
4.25  
1.15  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR2153TDBTR  
MSP430FR2153TPTR  
MSP430FR2153TRHAR  
MSP430FR2153TRHAT  
MSP430FR2153TRSMR  
MSP430FR2153TRSMT  
MSP430FR2155TDBTR  
MSP430FR2155TPTR  
MSP430FR2155TPTR  
MSP430FR2155TRHAR  
MSP430FR2155TRHAT  
MSP430FR2155TRSMT  
MSP430FR2353TDBTR  
MSP430FR2353TPTR  
MSP430FR2353TPTR  
MSP430FR2353TRHAR  
MSP430FR2353TRHAT  
MSP430FR2353TRSMR  
TSSOP  
LQFP  
VQFN  
VQFN  
VQFN  
VQFN  
TSSOP  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
TSSOP  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
DBT  
PT  
38  
48  
40  
40  
32  
32  
38  
48  
48  
40  
40  
32  
38  
48  
48  
40  
40  
32  
2000  
1000  
2500  
250  
350.0  
350.0  
367.0  
210.0  
367.0  
210.0  
350.0  
336.6  
350.0  
367.0  
210.0  
210.0  
350.0  
350.0  
336.6  
367.0  
210.0  
367.0  
350.0  
350.0  
367.0  
185.0  
367.0  
185.0  
350.0  
336.6  
350.0  
367.0  
185.0  
185.0  
350.0  
350.0  
336.6  
367.0  
185.0  
367.0  
43.0  
43.0  
35.0  
35.0  
35.0  
35.0  
43.0  
31.8  
43.0  
35.0  
35.0  
35.0  
43.0  
43.0  
31.8  
35.0  
35.0  
35.0  
RHA  
RHA  
RSM  
RSM  
DBT  
PT  
3000  
250  
2000  
1000  
1000  
2500  
250  
PT  
RHA  
RHA  
RSM  
DBT  
PT  
250  
2000  
1000  
1000  
2500  
250  
PT  
RHA  
RHA  
RSM  
3000  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR2353TRSMT  
MSP430FR2355TDBTR  
MSP430FR2355TPTR  
MSP430FR2355TPTR  
MSP430FR2355TRHAR  
MSP430FR2355TRHAT  
MSP430FR2355TRSMT  
VQFN  
TSSOP  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
RSM  
DBT  
PT  
32  
38  
48  
48  
40  
40  
32  
250  
2000  
1000  
1000  
2500  
250  
210.0  
350.0  
350.0  
336.6  
367.0  
210.0  
210.0  
185.0  
350.0  
350.0  
336.6  
367.0  
185.0  
185.0  
35.0  
43.0  
43.0  
31.8  
35.0  
35.0  
35.0  
PT  
RHA  
RHA  
RSM  
250  
Pack Materials-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
MSP430FR2153TDBT  
MSP430FR2155TDBT  
MSP430FR2353TDBT  
MSP430FR2355TDBT  
DBT  
DBT  
DBT  
DBT  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
38  
38  
38  
38  
50  
50  
50  
50  
530  
530  
530  
530  
10.2  
10.2  
10.2  
10.2  
3600  
3600  
3600  
3600  
3.5  
3.5  
3.5  
3.5  
Pack Materials-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
MSP430FR2153TPT  
MSP430FR2153TPT  
MSP430FR2155TPT  
MSP430FR2155TPT  
MSP430FR2353TPT  
MSP430FR2353TPT  
MSP430FR2355TPT  
MSP430FR2355TPT  
PT  
PT  
PT  
PT  
PT  
PT  
PT  
PT  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
48  
48  
48  
48  
48  
48  
48  
48  
250  
250  
250  
250  
250  
250  
250  
250  
10 x 25  
10 x 25  
10 x 25  
10 x 25  
10 x 25  
10 x 25  
10 x 25  
10 x 25  
150  
150  
150  
150  
150  
150  
150  
150  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
11.1 11.25  
11.1 11.25  
11.1 11.25  
11.1 11.25  
11.1 11.25  
11.1 11.25  
11.1 11.25  
11.1 11.25  
Pack Materials-Page 6  
PACKAGE OUTLINE  
PT0048A  
LQFP - 1.6 mm max height  
S
C
A
L
E
2
.
0
0
0
LOW PROFILE QUAD FLATPACK  
9.2  
8.8  
7.2  
6.8  
B
A
9.2  
8.8  
7.2  
6.8  
0.27  
48X  
0.17  
0.08  
C A B  
44X 0.5  
4X 5.5  
SEE DETAIL A  
1.6 MAX  
C
SEATING PLANE  
0.1 C  
1.45  
1.35  
0.25  
GAGE PLANE  
0.75  
0.45  
0.5 MIN  
0 -7  
A15.000  
DETAIL A  
4215159/A 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MS-026.  
4. This may also be a thermally enhanced plastic package with leads conected to the die pads.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PT0048A  
LQFP - 1.6 mm max height  
LOW PROFILE QUAD FLATPACK  
PKG  
SYMM  
48  
37  
SEE SOLDER MASK  
DETAILS  
48X (1.6)  
1
36  
48X (0.3)  
44X (0.5)  
PKG SYMM  
(8.2)  
(R0.05) TYP  
12  
25  
13  
24  
(8.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE 10.000  
0.05 MAX  
ALLAROUND  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL EDGE  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215159/A 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PT0048A  
LQFP - 1.6 mm max height  
LOW PROFILE QUAD FLATPACK  
PKG  
SYMM  
48  
37  
48X (1.6)  
1
36  
48X (0.3)  
44X (0.5)  
PKG SYMM  
(8.2)  
(R0.05) TYP  
12  
25  
13  
24  
(8.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 10X  
4215159/A 12/2021  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.45  
0.25  
0.25  
0.15  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
4.1  
3.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.8 0.05  
2X 2.8  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
SEE SIDE WALL  
DETAIL  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.45  
0.25  
32X  
4219108/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.8)  
SYMM  
32  
25  
32X (0.55)  
1
32X (0.2)  
24  
(
0.2) TYP  
VIA  
(1.15)  
SYMM  
33  
(3.85)  
28X (0.4)  
17  
8
(R0.05)  
TYP  
9
16  
(1.15)  
(3.85)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219108/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.715)  
4X ( 1.23)  
(R0.05) TYP  
25  
32  
32X (0.55)  
1
24  
32X (0.2)  
(0.715)  
(3.85)  
33  
SYMM  
28X (0.4)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(3.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219108/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
6.55  
6.25  
TYP  
C
A
0.1 C  
PIN 1 INDEX AREA  
38 X 0.5  
38  
1
2X  
9
9.75  
9.65  
NOTE 3  
19  
B
20  
0.23  
38 X  
0.17  
4.45  
1.2 MAX  
0.1  
C A B  
4.35  
NOTE 4  
0.25  
GAGE PLANE  
0.15  
0.05  
(0.15) TYP  
SEE DETAIL A  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4220221/A 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
38 X (1.5)  
SYMM  
(R0.05) TYP  
38  
1
38 X (0.3)  
38 X (0.5)  
SYMM  
19  
20  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220221/A 05/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
38 X (1.5)  
SYMM  
(R0.05) TYP  
38  
1
38 X (0.3)  
38 X (0.5)  
SYMM  
19  
20  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220221/A 05/2020  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040E  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.15  
5.85  
A
B
PIN 1 INDEX AREA  
6.15  
5.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 4.5  
3.52 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
11  
20  
10  
21  
SYMM  
41  
2X 4.5  
2.62 0.1  
30  
36X 0.5  
1
0.30  
0.18  
40X  
31  
40  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
0.05  
40X  
4219054/A 04/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.52)  
SYMM  
SEE SOLDER MASK  
DETAIL  
31  
40  
40X (0.6)  
40X (0.24)  
1
30  
36X (0.5)  
(2.62)  
41  
SYMM  
(5.8)  
(1.06)  
(
0.2) TYP  
VIA  
(R0.05) TYP  
21  
10  
11  
20  
(0.6)  
TYP  
(0.91)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219054/A 04/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.2)  
31  
40  
40X (0.6)  
30  
40X (0.24)  
1
36X (0.5)  
(0.675)  
(5.8)  
41  
SYMM  
6X (1.15)  
(R0.05) TYP  
21  
10  
20  
11  
SYMM  
6X (1)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 15X  
EXPOSED PAD 41  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219054/A 04/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY