MSP430FR2311IRGYT [TI]

具有 3.75KB FRAM、运算放大器、TIA、比较器、DAC 和 10 位 ADC 的 16MHz 集成模拟微控制器 | RGY | 16 | -40 to 85;
MSP430FR2311IRGYT
型号: MSP430FR2311IRGYT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 3.75KB FRAM、运算放大器、TIA、比较器、DAC 和 10 位 ADC 的 16MHz 集成模拟微控制器 | RGY | 16 | -40 to 85

放大器 控制器 微控制器 运算放大器 比较器
文件: 总100页 (文件大小:1783K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
MSP430FR231x 混合信号微控制器  
1 器件概述  
1.1 特性  
1
耐写次数达 1015  
抗辐射和非磁性  
智能数字外设  
嵌入式微控制器  
频率高达 16MHz 16 位精简指令集计算机  
(RISC) 架构  
– 3.6V 1.8V 的宽电源电压范围(最低电源电压  
受限于 SVS 电平,请参阅 SVS 规格)  
经优化的低功耗模式(3V 时)  
激活模式:126µA/MHz  
红外调制逻辑  
两个 16 位计时器,每个计时器有 3 个捕捉/比较  
寄存器 (Timer_B3)  
一个仅用作计数器的 16 RTC 计数器  
– 16 位循环冗余校验器 (CRC)  
增强型串行通信  
待机模式:实时时钟 (RTC) 计数器(LPM3.5,  
采用 32768Hz 晶振)0.71µA  
关断模式 (LPM4.5)32nA(无 SVS)  
高性能模拟  
增强型 USCI A (eUSCI_A) 支持 UARTIrDA 和  
SPI  
增强型 USCI B (eUSCI_B) 支持 SPI I2C,并  
提供重映射功能(请参阅 信号说明)  
(1)  
跨阻放大器 (TIA)  
电流至电压转换  
半轨输入  
时钟系统 (CS)  
片上 32kHz RC 振荡器 (REFO)  
仅针对 TSSOP16 封装,将低泄漏负输入降至  
5pA  
轨至轨输出  
带有锁频环 (FLL) 的片上 16MHz 数控振荡器  
(DCO)  
室温下的精度为 ±1%(具有片上基准)  
片上超低频 10kHz 振荡器 (VLO)  
片上高频调制振荡器 (MODOSC)  
外部 32kHz 晶振 (LFXT)  
多个输入信号选项  
可配置的高功率和低功率模式  
– 8 通道 10 位模数转换器 (ADC)  
– 1.5V 的内部基准电压  
外部高频晶体振荡器,频率高达 16MHz (HFXT)  
可编程 MCLK 预分频器(1 128)  
通过可编程预分频器(124 8)从 MCLK  
获得的 SMCLK  
采样与保持 200ksps  
增强型比较器 (eCOMP)  
集成 6 位数模转换器 (DAC) 作为基准电压  
可编程迟滞  
可配置的高功率和低功率模式  
智能模拟组合 (SAC-L1)  
支持通用运算放大器  
通用输入/输出和引脚功能  
– 20 引脚封装有 16 I/O  
– 12 个中断引脚(8 P1 引脚和 4 P2 引脚)  
可将 MCU LPM 唤醒  
所有 I/O 均为电容式触控 I/O  
开发工具和软件  
– LaunchPad™开发套件 (MSPEXP430FR2311)  
目标开发板 (MSPTS430PW20)  
系列成员(另请参阅 器件比较)  
轨至轨输入和输出  
多个输入信号选项  
可配置的高功率和低功率模式  
低功耗铁电 RAM (FRAM)  
非易失性存储器容量高达 3.75KB  
内置错误修正码 (ECC)  
可配置的写保护  
– MSP430FR23113.75KB 程序 FRAM 1KB  
RAM  
对程序、常量和存储的统一存储  
– MSP430FR23102KB 程序 FRAM 1KB  
RAM  
(1) 以前,跨阻放大器在描述性文字、引脚名称和电阻器名称中的  
缩写都是 TRI。现在将所有描述性文字中的缩写改成了 TIA,  
但引脚名称和电阻器名称仍然使用 TRI。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASE58  
 
 
 
 
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
封装选项  
– 16 引脚 TSSOP (PW16)  
– 16 引脚 VQFN (RGY16)  
– 20 引脚 TSSOP (PW20)  
1.2 应用  
烟雾探测器  
电源监控  
移动电源  
个人电子产品  
便携式保健和健身设备  
1.3 说明  
MSP430FR231x FRAM 微控制器 (MCU) 属于 MSP430™MCU 超值系列检测系列中的一员。这些器件集成  
了可配置的低泄漏跨阻放大器 (TIA) 和通用运算放大器。MCU 具有功能强大的 16 RISC CPU16 位寄  
存器和常数发生器,有助于实现最大编码效率。数控振荡器 (DCO) 还可以让器件在不到 10µs 的时间内从低  
功耗模式唤醒至活动模式。这些 MCU 的功能集 非常适合从 烟雾探测器到便携式医疗和健身配件等多种应  
用。  
超低功耗的 MSP430FR231x MCU 系列包含多种器件,其中配备了嵌入式非易失性 FRAM 和不同的外设  
集,适用于各种检测和测量 应用中的数字输入 D 类音频放大器。该架构、FRAM 和外设与多种低功耗模式  
相结合,专为在便携式无线感测应用 中延长电池使用寿命而进行了优化中的数字输入 D 类音频放大器。  
FRAM 是一种非易失性存储器技术,它将 SRAM 的速度、灵活性和耐用性与闪存的稳定性和可靠性相结  
合,并且总功耗更低。  
MSP430FR231x MCU 由一个由各种软、硬件资源组成的生态系统提供支持,并配套提供有参考设计和代码  
示例,可帮助您快速开展设计。开发套件包括 MSPEXP430FR2311 LaunchPad™开发套件和  
MSPTS430PW20 20 引脚目标开发板。TI 提供免费的 MSP430Ware™ 软件,可作为 Code Composer  
Studio™ IDE 台式机和云版本(位于 TI Resource Explorer)的组件。MSP430 MCU 还通过 E2E™ 社区论  
提供广泛的在线配套资料、培训和在线支持。  
有关完整的模块说明,请参阅MSP430FR4xx MSP430FR2xx 系列器件用户指南》。  
器件信息(1)  
封装  
器件型号  
MSP430FR2311IPW20  
MSP430FR2310IPW20  
MSP430FR2311IPW16  
MSP430FR2310IPW16  
MSP430FR2311IRGY  
MSP430FR2310IRGY  
封装尺寸(2)  
TSSOP (20)  
6.5mm × 4.4mm  
TSSOP (16)  
VQFN (16)  
5mm × 4.4mm  
4mm × 3.5mm  
(1) 要获得最新的产品、封装和订购信息,请参见封装选项附录9),或者访问德州仪器 (TI) 网站  
www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据9中)。  
CAUTION  
系统级静电放电 (ESD) 保护必须符合器件级 ESD 规范,以防发生电气过载或对  
数据或代码存储器造成干扰。有关更多信息,请参阅MSP430™ 系统级 ESD  
注意事项》。  
1.4 功能框图  
1-1 所示为功能框图。  
2
器件概述  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
P1.x, P2.x  
XIN XOUT  
Cap Touch I/O  
I/O Ports  
P1 (1×8 IOs)  
P2 (1×4 IOs)  
Interrupt  
XT1  
ADC  
FRAM  
RAM  
1KB  
SAC0  
TRI0  
eCOMP0  
DVCC  
DVSS  
8 channels,  
single-ended,  
10 bit,  
Clock  
System  
Control  
Power  
Management  
Module  
3.75KB  
2KB  
GP only  
Trans-  
impedance  
amplifier  
with 6-bit  
DAC  
and Wakeup  
200 ksps  
PA (P1, P2)  
1×16 IOs  
RST/NMI  
MAB  
16-MHz CPU  
including  
16 registers  
MDB  
EEM  
RTC  
Counter  
BAKMEM  
SYS  
TB0  
TB1  
eUSCI_A0  
eUSCI_B0  
(SPI, I2C)  
CRC16  
TCK  
TMS  
16-bit  
cyclic  
redundancy  
check  
16-bit  
Real-Time  
Clock  
32 Bytes  
Backup  
Memory  
JTAG  
SBW  
Timer_B  
3 CC  
Registers  
Timer_B  
3 CC  
Registers  
TDI/TCLK  
TDO  
(UART,  
IrDA, SPI)  
SBWTCK  
SBWTDIO  
Watchdog  
LPM3.5 Domain  
1-1. MSP430FR231x 功能方框图  
MCU 的主电源对 DVCC DVSS 分别为数字模块和模拟模块供电。推荐的旁路电容和去耦电容分别为  
4.7μF 10μF 0.1μF,精度为 ±5%。  
P1 8 个引脚和 P2 4 个引脚均具备引脚中断功能,可将 MCU 从所有低功耗模式 (LPM) 唤醒(包括  
LPM4LPM3.5 LPM4.5)。  
每个 Timer_B3 具有三个捕捉/比较寄存器。仅 CCR1 CCR2 从外部连接。CCR0 寄存器仅用于内部周  
期时序和生成中断。  
LPM3.5 模式下,RTC 计数器与备用存储器可继续工作,而其余外设停止工作。  
所有通用 I/O 均可配置为电容式触控 I/O。  
版权 © 2016–2019, Texas Instruments Incorporated  
器件概述  
3
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能框图 .............................................. 2  
修订历史记录............................................... 5  
Device Comparison ..................................... 7  
3.1 Related Products ..................................... 7  
Terminal Configuration and Functions.............. 8  
4.1 Pin Diagrams ......................................... 8  
4.2 Pin Attributes ........................................ 10  
4.3 Signal Descriptions.................................. 12  
4.4 Pin Multiplexing ..................................... 14  
4.5 Buffer Type.......................................... 14  
4.6 Connection of Unused Pins ......................... 14  
Specifications ........................................... 15  
5.1 Absolute Maximum Ratings ........................ 15  
5.2 ESD Ratings ........................................ 15  
5.3 Recommended Operating Conditions............... 15  
6
Detailed Description ................................... 44  
6.1 Overview ............................................ 44  
6.2 CPU ................................................. 44  
6.3 Operating Modes.................................... 44  
6.4 Interrupt Vector Addresses.......................... 46  
6.5 Memory Organization ............................... 47  
6.6 Bootloader (BSL).................................... 47  
6.7 JTAG Standard Interface............................ 48  
6.8 Spy-Bi-Wire Interface (SBW)........................ 48  
6.9 FRAM................................................ 48  
6.10 Memory Protection .................................. 49  
6.11 Peripherals .......................................... 50  
6.12 Input/Output Diagrams .............................. 68  
6.13 Device Descriptors (TLV) ........................... 72  
6.14 Identification ......................................... 73  
Applications, Implementation, and Layout........ 74  
2
3
4
5
7
8
7.1  
Device Connection and Layout Fundamentals...... 74  
7.2  
Peripheral- and Interface-Specific Design  
Information .......................................... 77  
7.3 Typical Applications ................................. 78  
器件和文档支持 .......................................... 79  
8.1 使用入............................................. 79  
8.2 器件命名规则 ........................................ 79  
8.3 工具和软件 .......................................... 80  
8.4 文档支............................................. 82  
8.5 相关链............................................. 83  
8.6 社区资............................................. 83  
8.7 商标.................................................. 83  
8.8 静电放电警告 ........................................ 83  
8.9 Glossary ............................................. 83  
机械、封装和可订购信息................................ 84  
5.4  
Active Mode Supply Current Into VCC Excluding  
External Current..................................... 16  
5.5 Active Mode Supply Current Per MHz .............. 16  
5.6  
5.7  
5.8  
5.9  
Low-Power Mode LPM0 Supply Currents Into VCC  
Excluding External Current.......................... 16  
Low-Power Mode LPM3 and LPM4 Supply Currents  
(Into VCC) Excluding External Current .............. 17  
Low-Power Mode LPMx.5 Supply Currents (Into  
VCC) Excluding External Current.................... 18  
Production Distribution of LPM Supply Currents.... 19  
5.10 Typical Characteristics – Current Consumption Per  
Module .............................................. 20  
5.11 Thermal Resistance Characteristics ................ 20  
5.12 Timing and Switching Characteristics............... 21  
9
4
内容  
版权 © 2016–2019, Texas Instruments Incorporated  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
从修订版本 D 更改为修订版本 E  
Changes from August 29, 2018 to December 9, 2019  
Page  
Updated Section 3.1, Related Products ........................................................................................... 7  
Changed the note that begins "Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset..." in  
Section 5.3, Recommended Operating Conditions ............................................................................. 15  
Added the note that begins "TI recommends that power to the DVCC pin must not exceed the limits..." in  
Section 5.3, Recommended Operating Conditions ............................................................................. 15  
Changed the note that begins "A capacitor tolerance of ±20% or better is required..." in Section 5.3,  
Recommended Operating Conditions ............................................................................................ 15  
Combined former sections 5.8 and 5.10 to Section 5.9, Production Distribution of LPM Supply Currents ............. 19  
Corrected "SVS Enabled" test condition on Figure 5-2, LPM3.5 Supply Current vs Temperature ...................... 19  
Added the note "See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing" to  
Table 5-3, XT1 Crystal Oscillator (Low Frequency) ............................................................................ 23  
Changed the note that begins "Requires external capacitors at both terminals..." in Table 5-3, XT1 Crystal  
Oscillator (Low Frequency) ........................................................................................................ 23  
Added the tTB,cap parameter in Table 5-13, Timer_B............................................................................ 30  
Changed the parameter symbol from RI to RI,MUX in Table 5-20, ADC, Power Supply and Input Range Conditions.. 36  
Corrected the test conditions for the RI,MUX parameter in Table 5-20, ADC, Power Supply and Input Range  
Conditions ............................................................................................................................ 36  
Added RI,Misc TYP value of 34 kΩ in Table 5-20, ADC, Power Supply and Input Range Conditions..................... 36  
Added formula for RI in Table 5-21, ADC, 10-Bit Timing Parameters........................................................ 36  
Added the note that begins "tSample = ln(2n+1) × τ ..." in Table 5-21, ADC, 10-Bit Timing Parameters.................... 36  
Corrected bitfield from RTCCLK to RTCCKSEL in Table 6-8, Clock Distribution .......................................... 51  
Corrected bitfield from IRDSEL to IRDSSEL in Section 6.11.8, Timers (Timer0_B3, Timer1_B3) , in the  
description that starts "The interconnection of Timer0_B3 and ..." ........................................................... 54  
Added P1SELC information in Table 6-31, Port P1, P2 Registers (Base Address: 0200h) .............................. 65  
Added P2SELC information in Table 6-31, Port P1, P2 Registers (Base Address: 0200h) .............................. 65  
Added note to "ADC calibration" in Table 6-46, Device Descriptors ......................................................... 72  
从修订版本 C 更改为修订版本 D  
Changes from September 12, 2017 to August 28, 2018  
Page  
Updated Section 3.1, Related Products ........................................................................................... 7  
Combined former sections 5.8 and 5.10 to Section 5.9, Production Distribution of LPM Supply Currents ............. 19  
Added note to VSVSH- and VSVSH+ parameters in Table 5-1, PMM, SVS and BOR.......................................... 21  
Added the tTB,cap parameter in Table 5-13, Timer_B............................................................................ 30  
Corrected ADCINCHx column heading in Table 6-16, ADC Channel Connections ........................................ 58  
更新了8.2器件命名规则 中的文本和图 ........................................................................................ 79  
从修订版本 B 更改为修订版本 C  
Changes from June 1, 2016 to September 11, 2017  
Page  
更正了关断模式 (LPM4.5)” 特性 列表项中的电................................................................................ 1  
根据测试数据,低泄漏输入从 50pA 降为 5pA .................................................................................... 1  
Added Section 3.1, Related Products ............................................................................................. 7  
Combined former sections 5.8 and 5.10 to Section 5.9, Production Distribution of LPM Supply Currents ............. 19  
Added the tTB,cap parameter in Table 5-13, Timer_B............................................................................ 30  
Removed ADCDIV from the formula for the TYP value in the second row of the tCONVERT parameter in Table 5-  
21, ADC, 10-Bit Timing Parameters (removed because ADCCLK is after division)........................................ 36  
Changed the entries for eUSCI_A0 and eUSCI_B0 in the LPM3 column from Off to Optional in Table 6-1,  
版权 © 2016–2019, Texas Instruments Incorporated  
修订历史记录  
5
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Operating Modes .................................................................................................................... 45  
Added the sentence that begins "This device supports blank device detection..." in Section 6.6, Bootloader (BSL).. 47  
Added the note "Controlled by the RTCCLK bit in the SYSCFG2 register" on Table 6-8, Clock Distribution .......... 51  
Added Figure 6-1, Clock Distribution Block Diagram .......................................................................... 51  
Added Figure 6-2, Timer_B Connections ........................................................................................ 55  
Removed SYSBERRIV register (not supported) in Table 6-26, SYS Registers ............................................ 64  
Changed from "If the RST/NMI pin is unused...with a 2.2-nF pulldown capacitor" to "If the RST/NMI pin is  
unused...with a 10-nF pulldown capacitor"....................................................................................... 76  
从修订版本 A 更改为修订版本 B  
Changes from March 30, 2016 to May 31, 2016  
Page  
将器件状态从产品预发布更改为生产数据..................................................................................... 1  
Changed the value of fXT1 in the table note that starts "Low-power mode 4, VLO,..." ..................................... 17  
Combined former sections 5.8 and 5.10 to Section 5.9, Production Distribution of LPM Supply Currents ............. 19  
Added Test Conditions to module Timer_B in Section 5.10, Typical Characteristics – Current Consumption Per  
Module................................................................................................................................ 20  
Added "16 MHz" to the parameter description of tFLL, lock in Table 5-5, DCO FLL ......................................... 25  
Added the tTB,cap parameter in Table 5-13, Timer_B............................................................................ 30  
Removed ±3from calibration temperatures in the table note that starts "The device descriptor structure  
contains calibration values..."...................................................................................................... 37  
Changed the unit on the ENI parameter in Table 5-24, SAC0 (SAC-L1, OA) ............................................... 39  
Changed the unit on the ENI parameter in Table 5-25, TIA0 .................................................................. 40  
从初始发行版更改为修订版本 A  
Changes from February 23, 2016 to March 29, 2016  
Page  
已将整篇文档中 TIA 模块的名称由“TRI0”更改为“TIA0” .......................................................................... 2  
Changed TYP values for the IAM, FRAM(0%) parameter in Section 5.4, Active Mode Supply Current Into VCC  
Excluding External Current ........................................................................................................ 16  
Combined former sections 5.8 and 5.10 to Section 5.9, Production Distribution of LPM Supply Currents ............. 19  
Added the tTB,cap parameter in Table 5-13, Timer_B............................................................................ 30  
Changed MAX values of the tVALID,SO parameter in Table 5-18, eUSCI (SPI Slave Mode) Switching  
Characteristics ...................................................................................................................... 33  
Changed the TYP value of the CMRR parameter with Test Conditions of "TRIPM = 0" from 70 dB to 80 dB in  
Table 5-25, TIA0..................................................................................................................... 40  
Changed the TYP value of the PSRR parameter with Test Conditions of "TRIPM = 0" from 70 dB to 80 dB in  
Table 5-25, TIA0..................................................................................................................... 40  
已将旧版中的开发工具支持部分替换为8.3工具和软件 ................................................................... 80  
6
修订历史记录  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
3 Device Comparison  
Table 3-1 summarizes the features of the available family members.  
Table 3-1. Device Comparison(1) (2)  
PROGRAM  
FRAM (KB)  
SRAM  
(Bytes)  
10-BIT ADC SAC0  
DEVICE  
TB0, TB1  
3 CCR(3)  
3 CCR(3)  
3 CCR(3)(4)  
3 CCR(3)(4)  
3 CCR(3)  
3 CCR(3)  
eUSCI_A  
eUSCI_B  
TIA0  
eCOMP0  
I/O  
16  
16  
11  
11  
12  
12  
PACKAGE  
CHANNELS  
(OA)  
20 PW  
(TSSOP)  
MSP430FR2311IPW20  
MSP430FR2310IPW20  
MSP430FR2311IPW16  
MSP430FR2310IPW16  
MSP430FR2311IRGY  
MSP430FR2310IRGY  
3.75  
2
1024  
1024  
1024  
1024  
1024  
1024  
1
1
1
1
1
1
1
1
1
1
1
1
8
1
1
1
1
1
1
1
1
1
1
1
1
1
20 PW  
(TSSOP)  
8
8
8
8
8
1
1
1
1
1
16 PW  
(TSSOP)  
3.75  
2
16 PW  
(TSSOP)  
16 RGY  
(VQFN)  
3.75  
2
16 RGY  
(VQFN)  
(1) For the most current device, package, and ordering information, see the Package Option Addendum in 9, or see the TI website at  
www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/packaging.  
(3) A CCR register is a configurable register that provides internal and external capture or compare inputs, or internal and external PWM  
outputs.  
(4) TB1 provides only one external connection (TB1.1) on this package.  
3.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers  
High-performance, low-power solutions to enable the autonomous future  
Products for MSP430 ultra-low-power sensing & measurement MCUs  
One platform. One ecosystem. Endless possibilities.  
Companion products for MSP430FR2311  
Review products that are frequently purchased or used with this product.  
Reference designs for MSP430FR2311  
Find reference designs leveraging the best in TI technology – from analog and power management to  
embedded processors  
Copyright © 2016–2019, Texas Instruments Incorporated  
Device Comparison  
7
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
4 Terminal Configuration and Functions  
4.1 Pin Diagrams  
Figure 4-1 shows the pinout of the 20-pin PW package.  
P1.1/UCB0CLK/ACLK/C1/A1  
P1.0/UCB0STE/SMCLK/C0/A0/Veref+  
TEST/SBWTCK  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
P1.2/UCB0SIMO/UCB0SDA/TB0TRG/OA0-/A2/Veref-  
P1.3/UCB0SOMI/UCB0SCL/OA0O/A3  
P1.4/UCA0STE/TCK/OA0+/A4  
P1.5/UCA0CLK/TMS/TRI0O/A5  
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/TRI0-/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/TRI0+/A7/VREF+  
P2.0/TB1.1/COUT  
3
RST/NMI/SBWTDIO  
DVCC  
4
5
MSP430FR2311IPW20  
MSP430FR2310IPW20  
DVSS  
6
P2.7/TB0CLK/XIN  
7
P2.1/TB1.2  
P2.6/MCLK/XOUT  
8
P2.2/UCB0STE/TB1CLK  
P2.5/UCB0SOMI/UCB0SCL  
P2.4/UCB0SIMO/UCB0SDA  
9
P2.3/UCB0CLK/TB1TRG  
10  
Figure 4-1. 20-Pin PW (TSSOP) (Top View)  
Figure 4-2 shows the pinout of the 16-pin PW package.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P1.1/UCB0CLK/ACLK/C1/A1  
P1.0/UCB0STE/SMCLK/C0/A0/Veref+  
TEST/SBWTCK  
P1.2/UCB0SIMO/UCB0SDA/TB0TRG/OA0-/A2/Veref-  
P1.3/UCB0SOMI/UCB0SCL/OA0O/A3  
P1.4/UCA0STE/TCK/OA0+/A4  
RST/NMI/SBWTDIO  
DVCC  
P1.5/UCA0CLK/TMS/TRI0O/A5  
MSP430FR2311IPW16  
MSP430FR2310IPW16  
TRI0-  
DVSS  
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/TRI0+/A7/VREF+  
P2.0/TB1.1/COUT  
P2.7/TB0CLK/XIN  
P2.6/MCLK/XOUT  
Figure 4-2. 16-Pin PW (TSSOP) (Top View)  
8
Terminal Configuration and Functions  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Figure 4-3 shows the pinout of the 16-pin RGY package.  
15 14 13 12 11 10  
P1.2/UCB0SIMO/UCB0SDA/TB0TRG/OA0-/A2/Veref-  
16  
9
8
P2.1/TB1.2  
MSP430FR2311IRGY  
MSP430FR2310IRGY  
1
P2.6/MCLK/XOUT  
P1.1/UCB0CLK/ACLK/C1/A1  
2
3
4
5
6
7
Figure 4-3. 16-Pin RGY (VQFN) (Top View)  
Copyright © 2016–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
4.2 Pin Attributes  
Table 4-1 lists the attributes of all pins.  
Table 4-1. Pin Attributes  
PIN NUMBER  
RGY  
SIGNAL  
TYPE(3)  
RESET STATE  
AFTER BOR(5)  
SIGNAL NAME(1) (2)  
BUFFER TYPE(4) POWER SOURCE  
PW20  
PW16  
P1.1 (RD)  
UCB0CLK  
ACLK  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
1
1
1
C1  
I
A1  
I
Analog  
P1.0 (RD)  
UCB0STE  
SMCLK  
C0  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
2
2
2
I
A0  
I
Analog  
Veref+  
I
Power  
TEST (RD)  
SBWTCK  
RST (RD)  
NMI  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
3
4
3
4
3
4
I
I/O  
I
SBWTDIO  
DVCC  
I/O  
P
5
6
5
6
5
6
DVSS  
P
Power  
P2.7 (RD)  
TB0CLK  
XIN  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
7
8
7
8
7
8
I
P2.6 (RD)  
MCLK  
I/O  
O
XOUT  
O
P2.5 (RD)  
UCB0SOMI  
UCB0SCL  
P2.4 (RD)  
UCB0SIMO  
UCB0SDA  
P2.3 (RD)  
UCB0CLK  
TB1TRG  
P2.2 (RD)  
UCB0STE  
TB1CLK  
P2.1(RD)  
TB1.2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
9
10  
11  
I/O  
I/O  
I
12  
13  
9
I/O  
I/O  
(1) Signals names with (RD) denote the reset default pin name.  
(2) To determine the pin mux encodings for each pin, see Section 6.12, Input/Output Diagrams.  
(3) Signal Types: I = Input, O = Output, I/O = Input or Output.  
(4) Buffer Types: LVCMOS, Analog, or Power  
(5) Reset States:  
OFF = High-impedance input with pullup or pulldown disabled (if available)  
N/A = Not applicable  
10  
Terminal Configuration and Functions  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 4-1. Pin Attributes (continued)  
PIN NUMBER  
SIGNAL  
TYPE(3)  
RESET STATE  
AFTER BOR(5)  
SIGNAL NAME(1) (2)  
BUFFER TYPE(4) POWER SOURCE  
PW20  
RGY  
PW16  
P2.0 (RD)  
TB1.1  
I/O  
I/O  
O
I/O  
O
I/O  
I/O  
O
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
14  
10  
9
COUT  
P1.7 (RD)  
UCA0TXD  
UCA0SIMO  
TB0.2  
15  
11  
10  
TDO  
TRI0+  
A7  
I
Analog  
VREF+  
P1.6 (RD)  
UCA0RXD  
UCA0SOMI  
TB0.1  
O
I/O  
I
Power  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
I/O  
I/O  
I
16  
12  
11  
TDI  
TCLK  
TRI0-(6)  
I
I
A6  
I
Analog  
12  
13  
TRI0-  
I
Analog  
P1.5 (RD)  
UCA0CLK  
TMS  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
17  
13  
TRI0O  
O
I
A5  
Analog  
P1.4 (RD)  
UCA0STE  
TCK  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
18  
19  
14  
15  
14  
15  
OA0+  
I
A4  
I
Analog  
P1.3 (RD)  
UCB0SOMI  
UCB0SCL  
OA0O  
I/O  
I/O  
I/O  
O
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
A3  
Analog  
P1.2 (RD)  
UCB0SIMO  
UCB0SDA  
TB0TRG  
OA0-  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
20  
16  
16  
I
A2  
I
Analog  
Veref-  
I
Power  
(6) Not available on TSSOP-16 package  
Copyright © 2016–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
4.3 Signal Descriptions  
Table 4-2 describes the signals for all device variants and package options.  
Table 4-2. Signal Descriptions  
PIN NUMBER  
FUNCTION  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
PW20 RGY PW16  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
2
1
2
1
2
1
I
I
Analog input A0  
Analog input A1  
Analog input A2  
Analog input A3  
Analog input A4  
Analog input A5  
Analog input A6  
Analog input A7  
ADC positive reference  
ADC negative reference  
20  
19  
18  
17  
16  
15  
2
16  
15  
14  
13  
12  
11  
2
16  
15  
14  
13  
11  
10  
2
I
I
I
ADC  
I
I
I
Veref+  
Veref-  
C0  
I
20  
2
16  
2
16  
2
I
I
Comparator input channel C0  
Comparator input channel C1  
Comparator output channel COUT  
TIA0 positive input  
eCOMP0  
TIA0  
C1  
1
1
1
I
COUT  
TRI0+  
TRI0-  
TRI0O  
OA0+  
OA0-  
14  
15  
16  
17  
18  
20  
19  
1
10  
11  
12  
13  
14  
16  
15  
1
9
O
I
10  
12  
13  
14  
16  
15  
1
I
TIA0 negative input  
TIA0 output  
O
I
SAC0, OA positive input  
SAC0, OA negative input  
SAC0, OA output  
SAC0  
I
OA0O  
ACLK  
MCLK  
SMCLK  
XIN  
O
O
O
O
I
ACLK output  
8
8
8
MCLK output  
Clock  
2
2
2
SMCLK output  
7
7
7
Input terminal for crystal oscillator  
Output terminal for crystal oscillator  
Spy-Bi-Wire input clock  
Spy-Bi-Wire data input/output  
Test clock  
XOUT  
SBWTCK  
SBWTDIO  
TCK  
8
8
8
O
I
3
3
3
4
4
4
I/O  
I
18  
16  
16  
15  
17  
3
14  
12  
12  
11  
13  
3
14  
11  
11  
10  
13  
3
TCLK  
TDI  
I
Test clock input  
Debug  
I
Test data input  
TDO  
O
I
Test data output  
TMS  
Test mode select  
TEST  
NMI  
I
Test Mode pin – selected digital I/O on JTAG pins  
Nonmaskable interrupt input  
4
4
4
I
System  
Power  
RST  
4
4
4
I/O  
P
P
P
Reset input, active-low  
DVCC  
DVSS  
VREF+  
5
5
5
Power supply  
6
6
6
Power ground  
15  
11  
10  
Output of positive reference voltage with ground as reference  
12  
Terminal Configuration and Functions  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
FUNCTION  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 4-2. Signal Descriptions (continued)  
PIN NUMBER  
SIGNAL NAME  
P1.1  
PIN TYPE  
DESCRIPTION  
PW20 RGY PW16  
1
1
16  
12  
14  
13  
12  
11  
10  
9
1
16  
15  
14  
13  
11  
10  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
P1.2  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
P1.3  
(1)  
(1)  
P1.4  
P1.5  
P1.6  
General-purpose I/O(1)  
General-purpose I/O(1)  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
eUSCI_B0 I2C clock  
eUSCI_B0 I2C data  
eUSCI_B0 I2C clock  
eUSCI_B0 I2C data  
P1.7  
GPIO  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
8
8
8
P2.7  
7
7
7
UCB0SCL  
UCB0SDA  
UCB0SCL(2)  
UCB0SDA(2)  
UCA0STE  
UCA0CLK  
UCA0SOMI  
UCA0SIMO  
19  
20  
9
15  
16  
15  
16  
I2C  
10  
18  
17  
16  
15  
14  
13  
12  
11  
14  
13  
11  
10  
eUSCI_A0 SPI slave transmit enable  
eUSCI_A0 SPI clock input/output  
eUSCI_A0 SPI slave out/master in  
eUSCI_A0 SPI slave in/master out  
UCB0STE  
UCB0CLK  
UCB0SIMO  
UCB0SOMI  
2
1
2
1
2
1
I/O  
I/O  
I/O  
I/O  
eUSCI_B0 slave transmit enable  
eUSCI_B0 clock input/output  
SPI  
20  
19  
16  
15  
16  
15  
eUSCI_B0 SPI slave in/master out  
eUSCI_B0 SPI slave out/master in  
UCB0STE(2)  
UCB0CLK(2)  
UCB0SIMO(2)  
UCB0SOMI(2)  
UCA0RXD  
12  
11  
10  
9
I/O  
I/O  
I/O  
I/O  
I
eUSCI_B0 slave transmit enable  
eUSCI_B0 clock input/output  
eUSCI_B0 SPI slave in/master out  
eUSCI_B0 SPI slave out/master in  
eUSCI_A0 UART receive data  
eUSCI_A0 UART transmit data  
16  
15  
12  
11  
11  
10  
UART  
UCA0TXD  
O
Timer TB0 CCR1 capture: CCI1A input, compare: Out1  
outputs  
TB0.1  
TB0.2  
16  
15  
12  
11  
11  
10  
I/O  
I/O  
Timer TB0 CCR2 capture: CCI2A input, compare: Out2  
outputs  
TB0CLK  
TB0TRG  
7
7
7
I
I
Timer clock input TBCLK for TB0  
20  
16  
16  
TB0 external trigger input for TB0OUTH  
Timer_B  
Timer TB1 CCR1 capture: CCI1A input, compare: Out1  
outputs  
TB1.1  
TB1.2  
14  
13  
10  
9
9
I/O  
I/O  
Timer TB1 CCR2 capture: CCI2A input, compare: Out2  
outputs  
TB1CLK  
TB1TRG  
12  
11  
I
I
Timer clock input TBCLK for TB1  
TB1 external trigger input for TB1OUTH  
(1) Because this pin is multiplexed with the JTAG function, TI recommends disabling the pin interrupt function while in JTAG debug to  
prevent collisions.  
(2) This is the remapped functionality controlled by the USCIBRMP bit of the SYSCFG2 register. Only one selected port is valid at any time.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Table 4-2. Signal Descriptions (continued)  
PIN NUMBER  
FUNCTION  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
PW20 RGY PW16  
VQFN package exposed thermal pad. TI recommends  
connection to VSS  
VQFN Pad  
VQFN Thermal pad  
Pad  
.
NOTE  
Functions shared with the four JTAG pins cannot be debugged if 4-wire JTAG is used for  
debug.  
4.4 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for  
example, if the device is in test mode). For details of the settings for each pin and schematics of the  
multiplexed ports, see Section 6.12.  
4.5 Buffer Type  
Table 4-3 defines the pin buffer types that are listed in Table 4-1.  
Table 4-3. Buffer Type  
NOMINAL  
OUTPUT  
DRIVE  
STRENGTH  
(mA)  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)  
OTHER  
CHARACTERISTICS  
HYSTERESIS  
PU OR PD  
See  
See  
LVCMOS  
Analog  
3.0 V  
3.0 V  
Y(1)  
N
Programmable  
N
Section 5.12.4 Section 5.12.4.1  
See analog modules in  
Section 5 for details.  
N/A  
N/A  
SVS enables hysteresis on  
DVCC.  
Power (DVCC)  
Power (AVCC)  
3.0 V  
3.0 V  
N
N
N
N
N/A  
N/A  
N/A  
N/A  
(1) Only for input pins.  
4.6 Connection of Unused Pins  
Table 4-4 shows the correct termination of unused pins.  
Table 4-4. Connection of Unused Pins(1)  
PIN  
Px.0 to Px.7  
RST/NMI  
TEST  
POTENTIAL  
Open  
COMMENT  
Set to port function, output direction (PxDIR.n = 1)  
47-kpullup or internal pullup selected with 10-nF (or 1.1-nF(2)) pulldown  
This pin always has an internal pulldown enabled.  
This pin is a high-impedance output.  
DVCC  
Open  
TRI0-  
Open  
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection  
guidelines.  
(2) The pulldown capacitor should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode with TI tools like  
FET interfaces or GANG programmers. TI recommends a 1-nF capacitor to enable high-speed SBW communication.  
14  
Terminal Configuration and Functions  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
5 Specifications  
5.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
Voltage applied at DVCC pin to VSS  
Voltage applied to any pin(2)  
–0.3  
4.1  
V
VCC + 0.3  
(4.1 V Max)  
–0.3  
V
Diode current at any device pin  
±2  
85  
mA  
°C  
Maximum junction temperature, TJ  
(3)  
Storage temperature, Tstg  
–40  
125  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS  
.
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
5.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.  
5.3 Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
VCC  
VSS  
TA  
Supply voltage applied at DVCC pin(1)(2)(3)(4)  
Supply voltage applied at DVSS pin  
Operating free-air temperature  
1.8  
3.6  
V
V
0
–40  
–40  
4.7  
85  
85  
°C  
°C  
µF  
TJ  
Operating junction temperature  
Recommended capacitor at DVCC(5)  
CDVCC  
10  
No FRAM wait states  
(NWAITSx = 0)  
0
0
8
fSYSTEM  
Processor frequency (maximum MCLK frequency)(4)(6)  
MHz  
With FRAM wait states  
(NWAITSx = 1)(7)  
16(8)  
fACLK  
Maximum ACLK frequency  
Maximum SMCLK frequency  
40  
16(8)  
kHz  
fSMCLK  
MHz  
(1) Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset even within the recommended supply voltage range. Following the  
data sheet recommendation for capacitor CDVCC limits the slopes accordingly.  
(2) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(3) TI recommends that power to the DVCC pin must not exceed the limits specified in Recommended Operating Conditions. Exceeding the  
specified limits can cause malfunction of the device including erroneous writes to RAM and FRAM.  
(4) The minimum supply voltage is defined by the SVS levels. See the SVS threshold parameters in Table 5-1.  
(5) A capacitor tolerance of ±20% or better is required. A low-ESR ceramic capacitor of 100 nF (minimum) should be placed as close as  
possible (within a few millimeters) to the respective pin pair.  
(6) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(7) Wait states only occur on actual FRAM accesses (that is, on FRAM cache misses). RAM and peripheral accesses are always executed  
without wait states.  
(8) If clock sources such as HF crystals or the DCO with frequencies >16 MHz are used, the clock must be divided in the clock system to  
comply with this operating condition.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
5.4 Active Mode Supply Current Into VCC Excluding External Current(1)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
0 WAIT STATES  
(NWAITSx = 0)  
8 MHz  
0 WAIT STATES  
(NWAITSx = 0)  
16 MHz  
1 WAIT STATE  
(NWAITSx = 1)  
EXECUTION  
MEMORY  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
TYP  
474  
516  
196  
205  
219  
MAX  
TYP  
2639  
2919  
585  
MAX  
TYP  
3156  
3205  
958  
MAX  
3.0 V, 25°C  
3.0 V, 85°C  
3.0 V, 25°C  
3.0 V, 85°C  
3.0 V, 25°C  
FRAM  
0% cache hit ratio  
IAM, FRAM(0%)  
µA  
FRAM  
100% cache hit ratio  
IAM, FRAM(100%)  
µA  
µA  
598  
974  
(2)  
IAM, RAM  
RAM  
750  
1250  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Characterized with program executing typical data  
processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency  
Program and data entirely reside in FRAM. All execution is from FRAM.  
(2) Program and data reside entirely in RAM. All execution is from RAM. No access to FRAM.  
5.5 Active Mode Supply Current Per MHz  
VCC = 3.0 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
Active mode current consumption per MHz, [(IAM 75% cache hit rate at 8 MHz) –  
execution from FRAM, no wait states(1)  
(IAM 75% cache hit rate at 1 MHz)] / 7 MHz  
(1) All peripherals are turned on in default settings.  
TEST CONDITIONS  
TYP  
UNIT  
dIAM,FRAM/df  
126  
µA/MHz  
5.6 Low-Power Mode LPM0 Supply Currents Into VCC Excluding External Current  
(2)  
VCC = 3.0 V, TA = 25°C (unless otherwise noted)(1)  
FREQUENCY (fSMCLK  
8 MHz  
)
PARAMETER  
VCC  
1 MHz  
TYP MAX  
16 MHz  
TYP MAX  
UNIT  
TYP  
307  
318  
MAX  
2.0 V  
3.0 V  
158  
169  
415  
427  
ILPM0  
µA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK at specified frequency.  
16  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
5.7 Low-Power Mode LPM3 and LPM4 Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5-1)  
–40°C  
TYP MAX  
25°C  
TYP  
85°C  
TYP  
PARAMETER  
VCC  
UNIT  
µA  
MAX  
MAX  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
1.01  
0.99  
0.88  
0.86  
0.96  
0.94  
0.50  
0.48  
0.34  
0.34  
0.48  
0.48  
0.89  
0.88  
1.16  
1.13  
1.02  
1.00  
1.11  
1.09  
0.60  
0.59  
0.45  
0.44  
0.59  
0.58  
1.04  
1.02  
2.53  
2.49  
2.39  
2.35  
2.49  
2.45  
1.93  
1.91  
1.77  
1.75  
1.91  
1.89  
2.41  
2.38  
5.25  
ILPM3,XT1  
Low-power mode 3, includes SVS(2) (3) (4)  
Low-power mode 3, VLO, excludes SVS(5)  
Low-power mode 3, RTC, excludes SVS(6)  
Low-power mode 4, includes SVS(7)  
Low-power mode 4, excludes SVS(7)  
5.06  
ILPM3,VLO  
µA  
ILPM3, RTC  
ILPM4, SVS  
ILPM4  
µA  
µA  
µA  
Low-power mode 4, RTC is sourced from VLO,  
excludes SVS(8)  
ILPM4, RTC, VLO  
µA  
Low-power mode 4, RTC is sourced from XT1,  
excludes SVS(6)(9)  
ILPM4, RTC, XT1  
µA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.  
(4) Low-power mode 3, includes SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 3, VLO, excludes SVS test conditions:  
Current for watchdog timer clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fMCLK = fSMCLK = 0 MHz  
(6) RTC is sourced from external 32768-Hz crystal.  
(7) CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), CPU and all clocks are disabled, WDT and RTC disabled  
(8) Low-power mode 4, VLO, excludes SVS test conditions:  
Current for RTC clocked by VLO included. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(9) Low-power mode 4, XT1, excludes SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 32768 Hz, fMCLK = fSMCLK = 0 MHz  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
5.8 Low-Power Mode LPMx.5 Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
–40°C  
TYP MAX  
25°C  
TYP  
85°C  
PARAMETER  
VCC  
UNIT  
MAX  
MAX  
TYP  
Low-power mode 3.5, includes SVS(1) (2) (3)  
(also see Figure 5-2)  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
0.64  
0.61  
0.71  
0.69  
0.86  
0.83  
0.30  
0.29  
1.23  
µA  
ILPM3.5, XT1  
ILPM4.5, SVS  
ILPM4.5  
Low-power mode 4.5, includes SVS(4) (also see  
Figure 5-3)  
0.23  
0.25  
0.45  
µA  
0.21  
0.24  
0.020  
0.022  
0.032  
0.034  
0.071 0.120  
0.068  
Low-power mode 4.5, excludes SVS(5)  
µA  
(1) Not applicable for devices with HF crystal oscillator only.  
(2) Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.  
(3) Low-power mode 3.5, includes SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(4) Low-power mode 4.5, includes SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 4.5, excludes SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
18  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
5.9 Production Distribution of LPM Supply Currents  
3.0  
10  
9
2.5  
8
7
2.0  
6
1.5  
5
4
1.0  
3
2
0.5  
1
0.0  
0
Temperature (°C)  
Temperature (°C)  
DVCC = 3 V  
XT1 Enabled  
SVS Enabled  
DVCC = 3 V  
RTC Enabled  
SVS Disabled  
Figure 5-2. LPM3.5 Supply Current vs Temperature  
Figure 5-1. LPM3 Supply Current vs Temperature  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature (°C)  
DVCC = 3 V  
SVS Enabled  
Figure 5-3. LPM4.5 Supply Current vs Temperature  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
5.10 Typical Characteristics – Current Consumption Per Module  
MODULE  
Timer_B  
TEST CONDITIONS  
SMCLK = 8 MHz, MC = 10b  
REFERENCE CLOCK  
Module input clock  
TYP  
5
UNIT  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
nA  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC  
UART mode  
SPI mode  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
7
5
SPI mode  
I2C mode, 100 kbaud  
5
5
85  
8.5  
CRC  
From start to end of operation  
MCLK  
µA/MHz  
5.11 Thermal Resistance Characteristics  
VALUE  
UNIT  
VQFN 16 pin (RGY)  
TSSOP 20 pin (PW20)  
TSSOP 16 pin (PW16)  
VQFN 16 pin (RGY)  
TSSOP 20 pin (PW20)  
TSSOP 16 pin (PW16)  
VQFN 16 pin (RGY)  
TSSOP 20 pin (PW20)  
TSSOP 16 pin (PW16)  
41.8  
92.6  
104.1  
49.1  
26.1  
38.5  
18.5  
45.0  
49.1  
θJA  
θJC  
θJB  
Junction-to-ambient thermal resistance, still air(1)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
ºC/W  
ºC/W  
ºC/W  
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
20  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
5.12 Timing and Switching Characteristics  
5.12.1 Power Supply Sequencing  
Table 5-1 lists the characteristics of the SVS and BOR.  
Table 5-1. PMM, SVS and BOR  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-4)  
PARAMETER  
Safe BOR power-down level(1)  
Safe BOR reset delay(2)  
TEST CONDITIONS  
MIN  
0.1  
10  
TYP  
MAX UNIT  
VBOR, safe  
tBOR, safe  
ISVSH,AM  
ISVSH,LPM  
VSVSH-  
V
ms  
SVSH current consumption, active mode  
SVSH current consumption, low-power modes  
SVSH power-down level(3)  
VCC = 3.6 V  
VCC = 3.6 V  
1.5  
µA  
nA  
V
240  
1.80  
1.88  
80  
1.71  
1.76  
1.87  
1.99  
VSVSH+  
SVSH power-up level(3)  
V
VSVSH_hys  
tPD,SVSH, AM  
SVSH hysteresis  
mV  
µs  
µs  
SVSH propagation delay, active mode  
10  
tPD,SVSH, LPM SVSH propagation delay, low-power modes  
100  
(1) A safe BOR is correctly generated only if DVCC drops below this voltage before it rises.  
(2) When an BOR occurs, a safe BOR is correctly generated only if DVCC is kept low longer than this period before it reaches VSVSH+.  
(3) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference  
Design.  
Figure 5-4 shows the reset conditions.  
V
Power Cycle Reset  
SVS Reset  
BOR Reset  
VSVS+  
VSVS–  
VBOR  
tBOR  
t
Figure 5-4. Power Cycle, SVS, and BOR Reset Conditions  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.2 Reset Timing  
Table 5-2 lists the wake-up times from low-power modes and reset.  
Table 5-2. Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
(Additional) wake-up time to activate the FRAM  
in AM if previously disabled through the FRAM  
controller or from a LPM if immediate activation  
is selected for wakeup(1)  
tWAKE-UP FRAM  
3 V  
10  
µs  
200 +  
ns  
(1)  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode  
3 V  
2.5 / fDCO  
(1)  
tWAKE-UP LPM3  
tWAKE-UP LPM4  
Wake-up time from LPM3 to active mode  
3 V  
3 V  
3 V  
3 V  
3 V  
10  
10  
µs  
µs  
µs  
µs  
ms  
(2)  
Wake-up time from LPM4 to active mode  
(2)  
tWAKE-UP LPM3.5 Wake-up time from LPM3.5 to active mode  
350  
350  
1
SVSHE = 1  
SVSHE = 0  
(2)  
tWAKE-UP LPM4.5 Wake-up time from LPM4.5 to active mode  
Wake-up time from RST or BOR event to active  
mode  
tWAKE-UP-RESET  
tRESET  
3 V  
1
ms  
µs  
(2)  
Pulse duration required at RST/NMI pin to  
accept a reset  
2
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
22  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
5.12.3 Clock Specifications  
Table 5-3 lists the characteristics of the XT1 crystal oscillator (low frequency).  
Table 5-3. XT1 Crystal Oscillator (Low Frequency)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
XT1 oscillator crystal, low  
frequency  
fXT1, LF  
LFXTBYPASS = 0  
32768  
Hz  
Measured at MCLK,  
fLFXT = 32768 Hz  
DCXT1, LF  
fXT1,SW  
XT1 oscillator LF duty cycle  
30%  
70%  
XT1 oscillator logic-level square-  
wave input frequency  
(3) (4)  
LFXTBYPASS = 1  
LFXTBYPASS = 1  
32768  
Hz  
LFXT oscillator logic-level square-  
wave input duty cycle  
DCXT1, SW  
OALFXT  
CL,eff  
40%  
60%  
Oscillation allowance for  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
200  
(7)1  
kΩ  
(5)  
LF crystals  
Integrated effective load  
pF  
(6)  
capacitance  
fOSC = 32768 Hz  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
(8)  
tSTART,LFXT  
fFault,LFXT  
Start-up time  
1000  
ms  
(9)  
Oscillator fault frequency  
XTS = 0(10)  
0
3500  
Hz  
(1) To improve EMI on the LFXT oscillator, observe the following guidelines.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces under or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing.  
(3) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
.
(4) Maximum frequency of operation of the entire device cannot be exceeded.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF.  
For LFXTDRIVE = {1}, 6 pF CL,eff 9 pF.  
For LFXTDRIVE = {2}, 6 pF CL,eff 10 pF.  
For LFXTDRIVE = {3}, 6 pF CL,eff 12 pF.  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
(8) Includes start-up counter of 1024 clock cycles.  
(9) Frequencies above the MAX specification do not set the fault flag. Frequencies in between the MIN and MAX specification may set the  
flag. A static condition or stuck at fault condition sets the flag.  
(10) Measured with logic-level input frequency but also applies to operation with crystals.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Table 5-4 lists the characteristics of the XT1 crystal oscillator (high frequency).  
Table 5-4. XT1 Crystal Oscillator (High Frequency)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1
TYP  
MAX UNIT  
XT1BYPASS = 0, XTS = 1, XT1HFFREQ = 00  
XT1BYPASS = 0, XTS = 1, XT1HFFREQ = 01  
XT1BYPASS = 0, XTS = 1, XT1HFFREQ = 10  
4
HFXT oscillator crystal  
frequency, crystal mode  
fHFXT  
4.01  
6.01  
6
MHz  
16  
HFXT oscillator logic-level  
square-wave input frequency, XT1BYPASS = 1, XTS = 1  
bypass mode  
(2) (3)  
fHFXT,SW  
DCHFXT  
1
16 MHz  
60%  
60%  
HFXT oscillator duty cycle  
Measured at ACLK, fHFXT,HF = 4 MHz(4)  
40%  
40%  
DCHFXT,  
SW  
HFXT oscillator logic-level  
square-wave input duty cycle  
XT1BYPASS = 1  
Oscillation allowance for  
HFXT crystals(5)  
XT1BYPASS = 0, XT1HFSEL = 1,  
fHFXT,HF = 16 MHz, CL,eff = 18 pF  
OAHFXT  
2.4  
1.6  
kΩ  
ms  
pF  
fOSC = 4 MHz, XTS = 1(4)  
,
XT1BYPASS = 0, XT1HFFREQ = 00,  
XT1DRIVE = 3, TA = 25°C, CL,eff = 18 pF  
tSTART,HFXT Start-up time(6)  
fOSC = 16 MHz, XTS = 1(4)  
,
XT1BYPASS = 0, XT1HFFREQ = 00,  
XT1DRIVE = 3, TA = 25°C, CL,eff = 18 pF  
1.1  
1
Integrated effective load  
CL,eff  
capacitance(7) (8)  
fFault,HFXT  
Oscillator fault frequency(9) (10)  
0
800 kHz  
(1) To improve EMI on the HFXT oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces under or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When XT1BYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined  
in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DCHFXT, SW  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) 4-MHz crystal used for lab characterization: Abracon HC49/U AB-4.000MHZ-B2  
16-MHz crystal used for lab characterization: Abracon HC49/U AB-16.000MHZ-B2  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes start-up counter of 4096 clock cycles.  
.
(7) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the oscillator frequency through  
MCLK or SMCLK. For a correct setup, the effective load capacitance should always match the specification of the used crystal.  
(8) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are  
14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF.  
(9) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX might set the flag. A static  
condition or stuck at fault condition sets the flag.  
(10) Measured with logic-level input frequency but also applies to operation with crystals.  
24  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 5-5 lists the characteristics of the DCO FLL.  
Table 5-5. DCO FLL  
over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
–1.0%  
–2.0%  
TYP  
MAX UNIT  
1.0%  
FLL lock frequency, 16 MHz, 25°C  
FLL lock frequency, 16 MHz, –40°C to 85°C  
Measured at MCLK, internal  
trimmed REFO as reference  
2.0%  
fDCO, FLL  
3.0 V  
Measured at MCLK, XT1 crystal  
as reference  
FLL lock frequency, 16 MHz, –40°C to 85°C  
Duty cycle  
–0.5%  
40%  
0.5%  
60%  
Measured at MCLK, XT1 crystal  
as reference  
fDUTY  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
50%  
0.25%  
0.022%  
200  
Measured at MCLK, XT1 crystal  
as reference  
Jittercc  
Jitterlong  
tFLL, lock  
Cycle-to-cycle jitter, 16 MHz  
Long-term jitter, 16 MHz  
FLL lock time, 16 MHz  
Measured at MCLK, XT1 crystal  
as reference  
Measured at MCLK, XT1 crystal  
as reference  
ms  
Table 5-6 lists the characteristics of the DCO frequency.  
Table 5-6. DCO Frequency  
over recommended operating free-air temperature (unless otherwise noted) (see Figure 5-5)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DCORSEL = 101b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
7.8  
DCORSEL = 101b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
12.5  
18  
30  
6
fDCO, 16 MHz  
fDCO, 12 MHz  
fDCO, 8 MHz  
fDCO, 4 MHz  
DCO frequency, 16 MHz  
MHz  
DCORSEL = 101b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 101b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
DCORSEL = 100b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 100b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
9.5  
13.5  
22  
3.8  
6.5  
9.5  
16  
2
DCO frequency, 12 MHz  
DCO frequency, 8 MHz  
DCO frequency, 4 MHz  
MHz  
MHz  
MHz  
DCORSEL = 100b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 100b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
DCORSEL = 011b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 011b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
DCORSEL = 011b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 011b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
DCORSEL = 010b,, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 010b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
3.2  
4.8  
8
DCORSEL = 010b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 010b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Table 5-6. DCO Frequency (continued)  
over recommended operating free-air temperature (unless otherwise noted) (see Figure 5-5)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DCORSEL = 001b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
1
DCORSEL = 001b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
1.7  
2.5  
fDCO, 2 MHz  
DCO frequency, 2 MHz  
MHz  
DCORSEL = 001b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 001b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
4.2  
DCORSEL = 000b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 0  
0.5  
DCORSEL = 000b, DISMOD = 1b,  
DCOFTRIM = 000b, DCO = 511  
0.85  
1.2  
fDCO, 1 MHz  
DCO frequency, 1 MHz  
MHz  
DCORSEL = 000b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 000b, DISMOD = 1b,  
DCOFTRIM = 111b, DCO = 511  
2.1  
DCOFTRIM = 7  
30  
25  
20  
15  
10  
5
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 0  
DCOFTRIM = 0  
DCOFTRIM = 0  
0
DCO  
0
511  
0
511  
0
511  
0
511  
0
511  
0
511  
DCORSEL  
0
1
2
3
4
5
Figure 5-5. Typical DCO Frequency  
Table 5-7 lists the characteristics of the REFO.  
Table 5-7. REFO  
over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA = 25°C  
VCC  
MIN  
TYP  
MAX UNIT  
IREFO  
REFO oscillator current consumption  
REFO calibrated frequency  
3.0 V  
3.0 V  
15  
µA  
Hz  
Measured at MCLK  
TA = –40°C to 85°C  
Measured at MCLK(1)  
32768  
fREFO  
REFO absolute calibrated tolerance  
REFO frequency temperature drift  
1.8 V to 3.6 V –3.5%  
3.0 V  
+3.5%  
%/°C  
dfREFO/dT  
0.01  
1
dfREFO  
/
REFO frequency supply voltage drift  
Measured at MCLK at 25°C(2)  
1.8 V to 3.6 V  
%/V  
dVCC  
fDC  
REFO duty cycle  
Measured at MCLK  
1.8V to 3.6 V  
40%  
50%  
50  
60%  
µs  
tSTART  
REFO start-up time  
40% to 60% duty cycle  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
26  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 5-8 lists the characteristics of the internal very-low-power low-frequency oscillator (VLO).  
Table 5-8. Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
3.0 V  
MIN  
TYP  
10  
MAX UNIT  
kHz  
fVLO  
Measured at MCLK  
dfVLO/dT  
Measured at MCLK(1)  
Measured at MCLK(2)  
Measured at MCLK  
3.0 V  
0.5  
4
%/°C  
dfVLO/dVCC VLO frequency supply voltage drift  
fVLO,DC Duty cycle  
1.8 V to 3.6 V  
3.0 V  
%/V  
50%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
NOTE  
The VLO clock frequency is reduced by 15% (typical) when the device switches from active  
mode or LPM0 to LPM3 or LPM4, because the reference changes. This lower frequency is  
not a violation of the VLO specifications (see Table 5-8).  
Table 5-9 lists the characteristics of the module oscillator (MODOSC).  
Table 5-9. Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
3.0 V  
MIN  
TYP  
4.8  
MAX UNIT  
5.8 MHz  
%/℃  
fMODOSC  
MODOSC frequency  
MODOSC frequency temperature drift  
3.8  
fMODOSC/dT  
3.0 V  
0.102  
1.02  
50%  
fMODOSC/dVCC MODOSC frequency supply voltage drift  
fMODOSC,DC Duty cycle  
1.8 V to 3.6 V  
3.0 V  
%/V  
40%  
60%  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.4 Digital I/Os  
Table 5-10 lists the characteristics of the digital inputs.  
Table 5-10. Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
0.90  
1.35  
0.50  
0.75  
0.3  
TYP  
MAX UNIT  
1.50  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
2.25  
1.10  
V
Negative-going input threshold voltage  
1.65  
0.8  
V
Input voltage hysteresis (VIT+ – VIT–  
Pullup or pulldown resistor  
)
0.4  
1.2  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI,dig  
CI,ana  
20  
35  
3
50  
kΩ  
pF  
pF  
nA  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
Input capacitance, port pins with shared analog  
functions  
Ilkg(Px.y) High-impedance leakage current(1)(2)  
VIN = VSS or VCC  
5
2 V, 3 V  
2 V, 3 V  
–20  
50  
+20  
Ports with interrupt capability  
(see block diagram and  
terminal function descriptions)  
External interrupt timing (external trigger pulse  
t(int)  
ns  
duration to set interrupt flag)(3)  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
(3) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. The interrupt flag may be set by  
trigger signals shorter than t(int)  
.
Table 5-11 lists the characteristics of the digital outputs. Also see Figure 5-6 through Figure 5-9.  
Table 5-11. Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
I(OHmax) = –5 mA(1)  
I(OLmax) = 3 mA(1)  
I(OLmax) = 5 mA(1)  
VCC  
MIN  
1.4  
2.4  
0.0  
0.0  
16  
TYP  
MAX UNIT  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0  
V
VOH  
High-level output voltage  
3.0  
0.60  
V
VOL  
Low-level output voltage  
0.60  
fPort_CLK  
trise,dig  
tfall,dig  
Clock output frequency  
CL = 20 pF(2)  
CL = 20 pF  
CL = 20 pF  
MHz  
ns  
16  
10  
7
Port output rise time, digital only port pins  
Port output fall time, digital only port pins  
10  
5
ns  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The port can output frequencies at least up to the specified limit and might support higher frequencies.  
28  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
5.12.4.1 Digital I/O Typical Characteristics  
25  
20  
15  
10  
5
10  
7.5  
5
TA = 85°C  
TA = 25°C  
TA = -40°C  
TA = 85°C  
TA = 25°C  
TA = -40°C  
2.5  
0
0
-5  
0
0.5  
1
1.5  
2
2.5  
3
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
Low-Level Output Voltage (V)  
Low-Level Output Voltage (V)  
Figure 5-6. Typical Low-Level Output Current  
Figure 5-7. Typical Low-Level Output Current  
vs  
vs  
Low-Level Output Voltage (DVCC = 3 V)  
Low-Level Output Voltage (DVCC = 2 V)  
5
0
0
-2.5  
-5  
TA = 85°C  
TA = 25°C  
TA = -40°C  
TA = 85°C  
TA = 25°C  
TA = -40°C  
-5  
-10  
-15  
-20  
-25  
-30  
-7.5  
-10  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
0
0.5  
1
1.5  
2
2.5  
3
High-Level Output Voltage (V)  
High-Level Output Voltage (V)  
Figure 5-9. Typical High-Level Output Current  
Figure 5-8. Typical High-Level Output Current  
vs  
vs  
High-Level Output Voltage (DVCC = 2 V)  
High-Level Output Voltage (DVCC = 3 V)  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.5 VREF+ Built-in Reference  
Table 5-12 lists the characteristics of the VREF+.  
Table 5-12. VREF+  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
EXTREFEN = 1 with 1-mA load  
current to ground  
VREF+  
Positive built-in reference voltage  
2.0 V, 3.0 V  
1.15  
1.19  
1.23  
V
Temperature coefficient of built-in  
reference voltage  
EXTREFEN = 1 with 1-mA load  
current  
TCREF+  
30  
µV/°C  
5.12.6 Timer_B  
Table 5-13 lists the characteristics of the Timer_B clock frequency.  
Table 5-13. Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
fTB  
Timer_B input clock frequency  
2.0 V, 3.0 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTB,cap  
Timer_B capture timing  
2.0 V, 3.0 V  
20  
ns  
30  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
5.12.7 eUSCI  
Table 5-14 lists the clock frequency of the eUSCI in UART mode.  
Table 5-14. eUSCI (UART Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or MODCLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
2.0 V, 3.0 V  
16 MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
(equals baud rate in Mbaud)  
fBITCLK  
2.0 V, 3.0 V  
5
MHz  
Table 5-15 lists the switching characteristics of the eUSCI in UART mode.  
Table 5-15. eUSCI (UART Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
UCGLITx = 0  
VCC  
MIN  
TYP  
MAX UNIT  
12  
40  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
2.0 V,  
3.0 V  
(1)  
tt UART receive deglitch time  
ns  
68  
110  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are  
correctly recognized, their duration must exceed the maximum specification of the deglitch time.  
Table 5-16 lists the clock frequency of the eUSCI in SPI master mode.  
Table 5-16. eUSCI (SPI Master Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
MAX UNIT  
MHz  
Internal: SMCLK or MODCLK,  
Duty cycle = 50% ±10%  
feUSCI eUSCI input clock frequency  
8
Table 5-17 lists the switching characteristics of the eUSCI in SPI master mode.  
Table 5-17. eUSCI (SPI Master Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX  
UNIT  
UCxCLK  
cycles  
tSTE,LEAD  
tSTE,LAG  
STE lead time, STE active to clock  
UCSTEM = 1, UCMODEx = 01 or 10  
1
UCxCLK  
cycles  
STE lag time, last clock to STE inactive  
SOMI input data setup time  
UCSTEM = 1, UCMODEx = 01 or 10  
1
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
47  
35  
0
tSU,MI  
ns  
ns  
ns  
ns  
tHD,MI  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
0
20  
20  
tVALID,MO  
UCLK edge to SIMO valid, CL = 20 pF  
CL = 20 pF  
0
0
tHD,MO  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-10 and Figure 5-11.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-  
10 and Figure 5-11.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
 
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
tVALID,MO  
SIMO  
Figure 5-10. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
tVALID,MO  
SIMO  
Figure 5-11. SPI Master Mode, CKPH = 1  
32  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 5-18 lists the switching characteristics of the eUSCI in SPI slave mode.  
Table 5-18. eUSCI (SPI Slave Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
55  
MAX UNIT  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
2.0 V  
3.0 V  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
45  
20  
STE lag time, last clock to STE inactive  
ns  
20  
65  
ns  
40  
STE access time, STE active to SOMI data out  
40  
ns  
35  
STE disable time, STE inactive to SOMI high  
impedance  
8
6
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
ns  
ns  
12  
12  
tHD,SI  
68  
ns  
42  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
5
5
(3)  
tHD,SO  
SOMI output data hold time  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-12 and Figure 5-13.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-12  
and Figure 5-13.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SIMO  
tHD,SIMO  
tLOW/HIGH  
tLOW/HIGH  
SIMO  
tACC  
tVALID,SOMI  
tDIS  
SOMI  
Figure 5-12. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tACC  
tDIS  
tVALID,SO  
SOMI  
Figure 5-13. SPI Slave Mode, CKPH = 1  
34  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 5-19 lists the switching characteristics of the eUSCI (I2C mode).  
Table 5-19. eUSCI (I2C Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-14)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or MODCLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.0 V, 3.0 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2.0 V, 3.0 V  
µs  
600  
25  
300  
ns  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2.0 V, 3.0 V  
12.5  
6.3  
150  
75  
27  
30  
33  
tTIMEOUT Clock low time-out  
2.0 V, 3.0 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 5-14. I2C Mode Timing  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.8 ADC  
Table 5-20 lists the characteristics of the ADC power supply and input range conditions.  
Table 5-20. ADC, Power Supply and Input Range Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.0  
0
TYP  
MAX UNIT  
DVCC  
V(Ax)  
ADC supply voltage  
Analog input voltage range  
3.6  
V
V
All ADC pins  
DVCC  
Operating supply current into  
DVCC terminal, reference  
current not included, repeat-  
single-channel mode  
2 V  
3 V  
185  
207  
fADCCLK = 5 MHz, ADCON = 1,  
REFON = 0, SHT0 = 0, SHT1 = 0,  
ADCDIV = 0, ADCCONSEQx = 10b  
IADC  
µA  
Only one terminal Ax can be selected at one  
time from the pad to the ADC capacitor array,  
including wiring and pad  
CI  
Input capacitance  
2.2 V  
2.5  
34  
3.5  
2
pF  
RI,MUX  
RI,Misc  
Input MUX ON resistance  
DVCC = 2 V, 0 V VAx DVCC  
kΩ  
kΩ  
Input miscellaneous resistance  
Table 5-21 lists the ADC 10-bit timing parameters.  
Table 5-21. ADC, 10-Bit Timing Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC linearity  
parameters  
2 V to  
3.6 V  
fADCCLK  
fADCOSC  
0.45  
5
5.5 MHz  
Internal ADC oscillator  
(MODOSC)  
2 V to  
3.6 V  
ADCDIV = 0, fADCCLK = fADCOSC  
3.8  
4.8  
5.8 MHz  
REFON = 0, Internal oscillator,  
10 ADCCLK cycles, 10-bit mode,  
fADCOSC = 4.5 MHz to 5.5 MHz  
2 V to  
3.6 V  
2.18  
2.67  
µs  
tCONVERT  
Conversion time  
External fADCCLK from ACLK, MCLK, or SMCLK,  
ADCSSEL 0  
2 V to  
3.6 V  
12 ×  
1 / fADCCLK  
The error in a conversion started after tADCON is  
less than ±0.5 LSB.  
Reference and input signal are already settled.  
RS = 1000 Ω, RI(1) = 36000 Ω, CI = 3.5 pF,  
Approximately 8 Tau (t) are required for an error  
of less than ±0.5 LSB(2)  
Turn-on settling time of  
the ADC  
tADCON  
100  
ns  
µs  
2 V  
3 V  
1.5  
2.0  
tSample  
Sampling time  
(1) RI = RI,MUX + RI,Misc  
(2) tSample = ln(2n+1) × τ, where n = ADC resolution, τ = (RI + RS) × CI  
36  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 5-22 lists the ADC 10-bit linearity parameters.  
Table 5-22. ADC, 10-Bit Linearity Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
–2  
TYP  
MAX UNIT  
Integral linearity error (10-bit mode)  
Integral linearity error (8-bit mode)  
Differential linearity error (10-bit mode)  
Differential linearity error (8-bit mode)  
Offset error (10-bit mode)  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2
EI  
Veref+ reference  
Veref+ reference  
Veref+ reference  
LSB  
2
–2  
–1  
1
ED  
EO  
LSB  
1
–1  
–6.5  
–6.5  
–2.0  
–3.0%  
–2.0  
–3.0%  
–2.0  
–3.0%  
–2.0  
–3.0%  
6.5  
mV  
6.5  
Offset error (8-bit mode)  
Veref+ as reference  
Internal 1.5-V reference  
Veref+ as reference  
Internal 1.5-V reference  
Veref+ as reference  
Internal 1.5-V reference  
Veref+ as reference  
Internal 1.5-V reference  
2.0  
3.0%  
2.0  
LSB  
LSB  
LSB  
LSB  
Gain error (10-bit mode)  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
EG  
Gain error (8-bit mode)  
3.0%  
2.0  
Total unadjusted error (10-bit mode)  
Total unadjusted error (8-bit mode)  
3.0%  
2.0  
ET  
3.0%  
ADCON = 1, INCH = 0Ch,  
TA = 0℃  
(1)  
VSENSOR  
See  
3 V  
3 V  
913  
mV  
(2)  
TCSENSOR See  
ADCON = 1, INCH = 0Ch  
3.35  
mV/℃  
ADCON = 1, INCH = 0Ch,  
Error of conversion result  
1 LSB,  
3 V  
3 V  
30  
tSENSOR  
(sample)  
Sample time required if channel 12 is  
selected(3)  
AM and all LPMs above LPM3  
µs  
ADCON = 1, INCH = 0Ch,  
Error of conversion result  
1 LSB, LPM3  
100  
(1) The temperature sensor offset can vary significantly. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor.  
(2) The device descriptor structure contains calibration values for 30and 85for each available reference voltage level. The sensor  
voltage can be computed as VSENSE = TCSENSOR × (Temperature, ) + VSENSOR, where TCSENSOR and VSENSOR can be computed from  
the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 700 kΩ. The sample time required includes the sensor on time, tSENSOR(on)  
.
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
37  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.9 Enhanced Comparator (eCOMP)  
Table 5-23 lists the characteristics of eCOMP0.  
Table 5-23. eCOMP0  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.0  
0
TYP  
MAX UNIT  
VCC  
VIC  
Supply voltage  
3.6  
V
V
Common-mode input range  
VCC  
CPEN = 1, CPHSEL = 00  
0
10  
20  
30  
CPEN = 1, CPHSEL = 01  
VHYS  
DC input hysteresis  
mV  
CPEN = 1, CPHSEL = 10  
CPEN = 1, CPHSEL = 11  
CPEN = 1, CPMSEL = 0  
–30  
–40  
+30  
+40  
35  
VOFFSET  
Input offset voltage  
mV  
µA  
CPEN = 1, CPMSEL = 1  
VIC = VCC / 2, CPEN = 1, CPMSEL = 0  
VIC = VCC / 2, CPEN = 1, CPMSEL = 1  
24  
1.6  
1
Quiescent current draw from  
VCC, only comparator  
ICOMP  
CIN  
5
Input channel capacitance(1)  
pF  
kΩ  
On (switch closed)  
Off (switch open)  
10  
20  
1
RIN  
Input channel series resistance  
50  
MΩ  
CPMSEL = 0, CPFLT = 0, VIC = VCC / 2,  
Overdrive = 20 mV  
Propagation delay, response  
time  
tPD  
µs  
µs  
CPMSEL = 1, CPFLT = 0, VIC = VCC / 2,  
Overdrive = 20 mV  
3.2  
8.5  
1.4  
CPEN = 01, CPMSEL = 0, V+ and V- from pads,  
Overdrive = 20 mV  
tEN_CP  
Comparator enable time  
CPEN = 01, CPMSEL = 1, V+ and V- from pads,  
Overdrive = 20 mV  
CPEN = 01, CPDACEN = 01, CPMSEL = 0,  
CPDACREFS = 1, CPDACBUF1 = 0F,  
Overdrive = 20 mV  
8.5  
Comparator with reference DAC  
enable time  
tEN_CP_DAC  
µs  
µs  
CPEN = 01, CPDACEN = 01, CPMSEL = 1,  
CPDACREFS = 1, CPDACBUF1 = 0F,  
Overdrive = 20 mV  
101  
CPMSEL = 0, CPFLTDY = 00, Overdrive = 20 mV,  
CPFLT = 1  
0.7  
1.1  
1.9  
3.4  
CPMSEL = 0, CPFLTDY = 01, Overdrive = 20 mV,  
CPFLT = 1  
Propagation delay with analog  
filter active  
tFDLY  
CPMSEL = 0, CPFLTDY = 10, Overdrive = 20 mV,  
CPFLT = 1  
CPMSEL = 0, CPFLTDY = 11, Overdrive = 20 mV,  
CPFLT = 1  
INL  
Integral nonlinearity  
–0.5  
–0.5  
0.5  
0.5  
LSB  
LSB  
DNL  
Differential nonlinearity  
(1) eCOMP CIN, model, see Figure 5-15 for details.  
MSP430  
RI  
VI = External source voltage  
RS = External source resistance  
RI = Internal MUX-on input resistance  
CIN = Input capacitance  
CPAD = PAD capacitance  
RS  
VI  
VC  
CPext = Parasitic capacitance, external  
VC = Capacitance-charging voltage  
Cpext  
CPAD  
CIN  
Figure 5-15. eCOMP Input Circuit  
38  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
5.12.10 Smart Analog Combo (SAC)  
Table 5-24 lists the characteristics of SAC0 (SAC-L1, OA).  
Table 5-24. SAC0 (SAC-L1, OA)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Supply voltage  
Input offset voltage  
TEST CONDITIONS  
MIN  
2.0  
–5  
TYP  
MAX  
3.6  
5
UNIT  
V
VCC  
VOS  
mV  
OAPM = 0  
3
5
dVOS /dT Offset drift  
µV/℃  
OAPM = 1  
IB  
Input bias current  
50  
pA  
V
VCM  
Input voltage range  
–0.1  
VCC + 0.1  
OAPM = 0  
350  
120  
40  
40  
20  
70  
80  
70  
80  
4
IIDD  
Quiescent current  
µA  
µV  
OAPM = 1  
Input noise voltage, f = 0.1 Hz to 10 Hz  
Input noise voltage density, f = 1 kHz  
Input noise voltage, f = 10 kHz  
Vin = VCC / 2, OAPM = 0  
Vin = VCC / 2, OAPM = 0  
Vin = VCC / 2, OAPM = 0  
OAPM = 0  
ENI  
nV/Hz  
CMRR  
PSRR  
GBW  
Common-mode rejection ratio  
Power supply rejection ratio  
Gain bandwidth  
dB  
dB  
OAPM = 1  
OAPM = 0  
OAPM = 1  
OAPM = 0  
MHz  
OAPM = 1  
1.4  
100  
100  
65  
3
OAPM = 0  
AOL  
Open-loop voltage gain  
Phase margin  
dB  
deg  
V/us  
OAPM = 1  
φM  
CL = 50 pF , RL = 2 kΩ  
CL = 50 pF, OAPM = 0  
CL = 50 pF, OAPM = 1  
Common mode  
RL = 10 kΩ  
Positive slew rate  
1
Cin  
VO  
Input capacitance  
2
pF  
Voltage output swing from supply rails  
40  
100  
mV  
To 0.1% final value, G = +1, 1-V setup,  
CL = 50 pF, OAPM = 0  
1
tST  
OA settling time  
µs  
To 0.1% final value, G = +1, 1-V setup,  
CL = 50 pF, OAPM = 1  
4.5  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.11 Transimpedance Amplifier (TIA)  
Table 5-25 lists the characteristics of TIA0.  
Table 5-25. TIA0  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Supply voltage  
Input offset voltage  
TEST CONDITIONS  
MIN  
2.0  
–5  
TYP  
MAX  
UNIT  
V
VCC  
VOS  
3.6  
5
mV  
TRIPM = 0  
3
5
dVOS /dT Offset drift  
µV/℃  
TRIPM = 1  
VB = 0 V, TSSOP-16 package with OA-  
dedicated pin input (see Figure 4-2)  
5
pA  
IB  
Input bias current  
TSSOP-20 and VQFN-16 packages  
50  
pA  
V
VCM  
IIDD  
Input voltage range  
Quiescent current  
–0.1  
VCC / 2  
TRIPM = 0  
350  
120  
40  
40  
16  
80  
70  
80  
70  
5
µA  
TRIPM = 1  
Input noise voltage, f = 0.1 Hz to 10 Hz  
Input noise voltage density, f = 1 kHz  
Input noise voltage, f = 10 kHz  
Vin = VCC / 2, TRIPM = 0  
Vin = VCC / 2, TRIPM = 0  
Vin = VCC / 2, TRIPM = 0  
TRIPM = 0  
µV  
ENI  
nV/Hz  
CMRR  
PSRR  
GBW  
AOL  
Common-mode rejection ratio  
Power supply rejection ratio  
Gain bandwidth  
dB  
dB  
TRIPM = 1  
TRIPM = 0  
TRIPM = 1  
TRIPM = 0  
MHz  
dB  
TRIPM = 1  
1.8  
100  
100  
40  
70  
4
TRIPM = 0  
Open-loop voltage gain  
Phase margin  
TRIPM = 1  
CL = 50 pF , RL = 2 k, TRIPM = 0  
CL = 50 pF , RL = 2 k, TRIPM = 1  
CL = 50 pF, TRIPM = 0  
CL = 50 pF, TRIPM = 1  
Common mode  
φM  
deg  
V/µs  
Positive slew rate  
1
Cin  
VO  
Input capacitance  
7
pF  
Voltage output swing from supply rails  
RL = 10 kΩ  
40  
100  
mV  
To 0.1% final value, G = +1, 1-V setup,  
CL = 50 pF, TRIPM = 0  
3
5
tST  
TIA settling time  
µs  
To 0.1% final value, G = +1, 1-V setup,  
CL = 50 pF, TRIPM = 1  
40  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
5.12.12 FRAM  
Table 5-26 lists the characteristics of the FRAM.  
Table 5-26. FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Read and write endurance  
TEST CONDITIONS  
MIN  
1015  
100  
40  
TYP  
MAX UNIT  
cycles  
TJ = 25°C  
tRetention  
Data retention duration  
TJ= 70°C  
TJ= 85°C  
years  
10  
(1)  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM  
Erase current  
IREAD  
nA  
nA  
ns  
N/A(2)  
(3)  
Write time  
tREAD  
(4)  
(4)  
NWAITSx = 0  
NWAITSx = 1  
1/fSYSTEM  
2/fSYSTEM  
tREAD  
Read time  
ns  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current IREAD is included in the active mode current consumption numbers IAM, FRAM  
(2) FRAM does not require a special erase sequence.  
.
(3) Writing into FRAM is as fast as reading.  
(4) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
41  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.13 Emulation and Debug  
Table 5-27 lists the characteristics of the 2-wire Spy-Bi-Wire interface.  
Table 5-27. JTAG, Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-16)  
PARAMETER  
Spy-Bi-Wire input frequency  
VCC  
MIN  
0
TYP  
MAX UNIT  
fSBW  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
8
MHz  
µs  
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.028  
15  
SBWTDIO setup time (before falling edge of SBWTCK in TMS and TDI  
slot Spy-Bi-Wire)  
tSU,SBWTDIO  
tHD,SBWTDIO  
tValid,SBWTDIO  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
4
ns  
ns  
ns  
SBWTDIO hold time (after rising edge of SBWTCK in TMS and TDI slot  
Spy-Bi-Wire)  
19  
SBWTDIO data valid time (after falling edge of SBWTCK in TDO slot  
Spy-Bi-Wire)  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
31  
(1)  
tSBW, En  
tSBW,Ret  
Rinternal  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)  
Spy-Bi-Wire return to normal operation time(2)  
110  
100  
50  
µs  
µs  
kΩ  
15  
20  
Internal pulldown resistance on TEST  
2.0 V, 3.0 V  
35  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) Maximum tSBW,Rst time after pulling or releasing the TEST/SBWTCK pin low, the Spy-Bi-Wire pins revert from their Spy-Bi-Wire function  
to their application function. This time applies only if the Spy-Bi-Wire mode was selected.  
tSBW,EN  
tSBW,Low  
1/fSBW  
tSBW,High  
tSBW,Ret  
TEST/SBWTCK  
tEN,SBWTDIO  
tValid,SBWTDIO  
RST/NMI/SBWTDIO  
tSU,SBWTDIO  
tHD,SBWTDIO  
Figure 5-16. JTAG Spy-Bi-Wire Timing  
42  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 5-28 lists the characteristics of the JTAG 4-wire interface.  
Table 5-28. JTAG, 4-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17)  
PARAMETER  
(1)  
VCC  
MIN  
0
TYP  
MAX UNIT  
fTCK  
TCK input frequency  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
10 MHz  
tTCK,Low  
tTCK,high  
tSU,TMS  
tHD,TMS  
tSU,TDI  
tHD,TDI  
Spy-Bi-Wire low clock pulse duration  
Spy-Bi-Wire high clock pulse duration  
TMS setup time (before rising edge of TCK)  
TMS hold time (after rising edge of TCK)  
TDI setup time (before rising edge of TCK)  
TDI hold time (after rising edge of TCK)  
15  
15  
11  
3
ns  
ns  
ns  
ns  
ns  
ns  
13  
5
tz-Valid,TDO TDO high impedance to valid output time (after falling edge of TCK)  
tValid,TDO TDO to new valid output time (after falling edge of TCK)  
tValid-Z,TDO TDO valid to high-impedance output time (after falling edge of TCK)  
26  
26  
ns  
ns  
ns  
µs  
kΩ  
26  
tJTAG,Ret  
Rinternal  
Spy-Bi-Wire return to normal operation time  
Internal pulldown resistance on TEST  
15  
20  
100  
50  
2.0 V, 3.0 V  
35  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
1/fTCK  
tTCK,Low  
tTCK,High  
TCK  
TMS  
tSU,TMS  
tHD,TMS  
TDI  
(or TDO as TDI)  
tSU,TDI  
tHD,TDI  
TDO  
tZ-Valid,TDO  
tValid,TDO  
tValid-Z,TDO  
tJTAG,Ret  
TEST  
Figure 5-17. JTAG 4-Wire Timing  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
The MSP430FR231x FRAM MCU features a powerful 16-bit RISC CPU, 16-bit registers, and constant  
generators that contribute to maximum code efficiency. The DCO also allows the device to wake up from  
low-power modes to active mode typically in less than 10 µs. The feature set of this microcontroller is ideal  
for applications ranging from smoke detectors to portable health and fitness accessories.  
6.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter (PC), stack pointer (SP), status register  
(SR), and constant generator (CG), respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all  
instructions.  
6.3 Operating Modes  
The MSP430 has one active mode and several software-selectable low-power modes of operation (see  
Table 6-1). An interrupt event can wake up the device from low-power mode (LPM0, LPM3, or LPM4),  
service the request, and restore back to the low-power mode on return from the interrupt program. Low-  
power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.  
Table 6-1. Operating Modes  
AM  
LPM0  
CPU OFF  
16 MHz  
LPM3  
STANDBY  
40 kHz  
LPM4  
OFF  
0
LPM3.5  
LPM4.5  
SHUTDOWN  
0
MODE  
Maximum system clock  
ACTIVE  
MODE  
ONLY RTC  
COUNTER  
16 MHz  
40 kHz  
1.11 µA with  
RTC counter  
only in LFXT  
0.71 µA with  
RTC counter  
only in LFXT  
0.45 µA  
without SVS  
32 nA  
without SVS  
Power consumption at 25°C, 3 V  
126 µA/MHz  
40 µA/MHz  
Wake-up time  
N/A  
N/A  
instant  
All  
10 µs  
10 µs  
I/O  
350 µs  
350 µs  
I/O  
RTC Counter  
I/O  
Wake-up events  
All  
Full  
Regulation  
Full  
Regulation  
Partial Power Partial Power Partial Power  
Regulator  
Power Down  
Down  
Optional  
On  
Down  
Optional  
On  
Down  
Optional  
On  
Power  
SVS  
On  
On  
On  
On  
Optional  
On  
Brownout  
44  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 6-1. Operating Modes (continued)  
AM  
LPM0  
LPM3  
LPM4  
OFF  
LPM3.5  
LPM4.5  
MODE  
MCLK  
ACTIVE  
MODE  
ONLY RTC  
COUNTER  
CPU OFF  
STANDBY  
SHUTDOWN  
Active  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
SMCLK  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
FLL  
Off  
Off  
Off  
Off  
DCO  
Off  
Off  
Off  
Off  
MODCLK  
REFO  
Off  
Off  
Off  
Off  
Clock(1)  
Optional  
Optional  
Off  
Off  
Off  
Off  
ACLK  
Off  
Off  
Off  
XT1HFCLK(2)  
XT1LFCLK  
VLOCLK  
CPU  
Off  
Off  
Off  
Optional  
Optional  
Off  
Off(3)  
Off(3)  
Off  
Optional  
Optional  
Off  
Off  
Off  
Off  
FRAM  
On  
On  
Off  
Off  
Off  
Off  
Core  
RAM  
On  
On  
On  
On  
Off  
Off  
Backup Memory(4)  
Timer0_B3  
Timer1_B3  
WDT  
On  
On  
On  
On  
On  
Off  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
On  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
eUSCI_A0  
eUSCI_B0  
CRC  
Off  
Off  
Off  
Off  
Off  
Off  
Peripherals  
Off  
Off  
Off  
ADC  
Optional  
Optional  
Optional  
Optional  
Optional  
State Held  
Optional  
Off  
Off  
Off  
eCOMP  
Optional  
Optional  
Optional  
Off  
Off  
Off  
TIA  
Off  
Off  
SAC0  
Off  
Off  
RTC Counter  
General Digital Input/Output  
Capacitive Touch I/O  
Optional  
State Held  
Off  
Off  
State Held  
Off  
State Held  
Off  
I/O  
Optional  
(1) The status shown for LPM4 applies to internal clocks only.  
(2) HFXT must be disabled before entering into LPM3, LPM4, or LPMx.5 mode.  
(3) Refer to following NOTE for details info as below.  
(4) Backup memory contains one 32-byte register in the peripheral memory space. See Table 6-23 and Table 6-38 for the memory  
allocation of backup memory.  
NOTE  
XT1CLK and VLOCLK can be active during LPM4 if requested by low-frequency peripherals.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
6.4 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see  
Table 6-2). The vector contains the 16-bit address of the interrupt-handler instruction sequence.  
Table 6-2. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power-up, Brownout, Supply Supervisor  
External Reset RST  
SVSHIFG  
PMMRSTIFG  
Watchdog Time-out, Key Violation  
FRAM uncorrectable bit error detection  
Software POR, BOR  
WDTIFG  
PMMPORIFG, PMMBORIFG  
SYSRSTIV  
Reset  
FFFEh  
63, Highest  
FLL unlock error  
FLLULPUC  
System NMI  
Vacant Memory Access  
JTAG Mailbox  
FRAM access time error  
FRAM bit error detection  
VMAIFG  
JMBINIFG, JMBOUTIFG  
CBDIFG, UBDIFG  
(Non)maskable  
(Non)maskable  
FFFCh  
FFFAh  
62  
61  
User NMI  
External NMI  
Oscillator Fault  
NMIIFG  
OFIFG  
Timer0_B3  
Timer0_B3  
Timer1_B3  
Timer1_B3  
TB0CCR0 CCIFG0  
Maskable  
Maskable  
Maskable  
Maskable  
FFF8h  
FFF6h  
FFF4h  
FFF2h  
60  
59  
58  
57  
TB0CCR1 CCIFG1, TB0CCR2  
CCIFG2, TB0IFG (TB0IV)  
TB1CCR0 CCIFG0  
TB1CCR1 CCIFG1, TB1CCR2  
CCIFG2, TB1IFG (TB1IV)  
RTC Counter  
RTCIFG  
WDTIFG  
Maskable  
Maskable  
FFF0h  
FFEEh  
56  
55  
Watchdog Timer Interval mode  
UCTXCPTIFG, UCSTTIFG,  
UCRXIFG, UCTXIFG (UART  
mode)  
eUSCI_A0 Receive or Transmit  
Maskable  
FFECh  
54  
UCRXIFG, UCTXIFG (SPI mode)  
(UCA0IV))  
UCB0RXIFG, UCB0TXIFG (SPI  
mode)  
UCALIFG, UCNACKIFG,  
UCSTTIFG, UCSTPIFG,  
UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1,  
UCRXIFG2, UCTXIFG2,  
UCRXIFG3, UCTXIFG3,  
UCCNTIFG,  
eUSCI_B0 Receive or Transmit  
Maskable  
Maskable  
FFEAh  
FFE8h  
53  
52  
UCBIT9IFG,UCCLTOIFG(I2C  
mode)  
(UCB0IV)  
ADCIFG0, ADCINIFG,  
ADCLOIFG, ADCHIIFG,  
ADCTOVIFG, ADCOVIFG  
(ADCIV)  
ADC  
P1  
P2  
P1IFG.0 to P1IFG.7 (P1IV)  
P2IFG.0 to P2IFG.7 (P2IV)(1)  
CPIIFG, CPIFG (CPIV)  
Maskable  
Maskable  
Maskable  
FFE6h  
FFE4h  
FFE2h  
51  
50  
49  
eCOMP  
FFE0h to  
FF88h  
Reserved  
Reserved  
Maskable  
(1) P2.0, P2.1, P2.6, and P2.7 support both pin and software interrupts. Others ports support software interrupts only.  
46 Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 6-2. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
BSL Signature 2  
BSL Signature 1  
JTAG Signature 2  
JTAG Signature 1  
0FF86h  
0FF84h  
0FF82h  
0FF80h  
Signatures  
6.5 Memory Organization  
Table 6-3 summarizes the memory map of the MSP430FR231x MCUs.  
Table 6-3. Memory Organization  
ACCESS  
MSP430FR2311  
MSP430FR2310  
Memory (FRAM)  
Main: interrupt vectors and signatures  
Main: code memory  
3.75KB  
FFFFh to FF80h  
FFFFh to F100h  
2KB  
FFFFh to FF80h  
FFFFh to F800h  
Read/Write  
(Optional Write Protect)(1)  
1KB  
23FFh to 2000h  
1KB  
23FFh to 2000h  
RAM  
Read/Write  
Read only  
Read only  
Read/Write  
Bootloader (BSL1) Memory (ROM) (TI  
Internal Use)  
2KB  
17FFh to 1000h  
2KB  
17FFh to 1000h  
Bootloader (BSL2) Memory (ROM) (TI  
Internal Use)  
1KB  
1KB  
FFFFFh to FFC00h  
FFFFFh to FFC00h  
4KB  
0FFFh to 0000h  
4KB  
0FFFh to 0000h  
Peripherals  
(1) The Program FRAM can be write protected by setting the PFWP bit in the SYSCFG0 register. See the System Resets, Interrupts, and  
Operating Modes, System Control Module (SYS) chapter in the MSP430FR4xx and MSP430FR2xx Family User's Guide for more details  
6.6 Bootloader (BSL)  
The BSL lets users program the FRAM or RAM using a UART or I2C serial interface. Access to the device  
memory through the BSL is protected by a user-defined password. Use of the BSL requires four pins (see  
Table 6-4 and Table 6-5). BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and  
TEST/SBWTCK pins.  
This device supports blank device detection to automatically invoke the BSL and skip the special entry  
sequence, which saves time and simplifies onboard programming. For complete description of the  
features of the BSL and its implementation, see MSP430 FRAM Device Bootloader (BSL) User's Guide.  
Table 6-4. UART BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.7  
P1.6  
VCC  
Data receive  
Power supply  
VSS  
Ground supply  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-5. I2C BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data receive and transmit  
Clock  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.2  
P1.3  
VCC  
Power supply  
VSS  
Ground supply  
6.7 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and  
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin enables  
the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO pin interfaces with MSP430  
development tools and device programmers. Table 6-6 lists the JTAG pin requirements. For further details  
on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's  
Guide.  
Table 6-6. JTAG Pin Requirements and Function  
DEVICE SIGNAL  
P1.4/UCA0STE/TCK/OA0+/A4  
P1.5/UCA0CLK/TMS/TRI0O/A5  
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/TRI0-/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/TRI0+/A7/VREF+  
TEST/SBWTCK  
DIRECTION  
JTAG FUNCTION  
JTAG clock input  
IN  
IN  
JTAG state control  
JTAG data input and TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
OUT  
IN  
RST/NMI/SBWTDIO  
IN  
VCC  
Power supply  
VSS  
Ground supply  
6.8 Spy-Bi-Wire Interface (SBW)  
The MSP430 family supports the 2-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with  
MSP430 development tools and device programmers. Table 6-7 lists the Spy-Bi-Wire interface pin  
requirements. For further details on interfacing to development tools and device programmers, see the  
MSP430 Hardware Tools User's Guide.  
Table 6-7. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
SBW FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN  
IN, OUT  
VSS  
Ground supply  
6.9 FRAM  
The FRAM can be programmed using the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in system by the  
CPU. Features of the FRAM include:  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
48  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
6.10 Memory Protection  
The device features memory protection of user access authority and write protection include:  
Securing the whole memory map to prevent unauthorized access from JTAG port or BSL, by writing  
JTAG and BSL signatures using the JTAG port, SBW, the BSL, or in system by the CPU.  
Write protection enabled to prevent unwanted write operation to FRAM contents by setting the control  
bits with accordingly password in System Configuration register 0. For more detailed information, see  
the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the  
MSP430FR4xx and MSP430FR2xx Family User's Guide.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
6.11 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. All peripherals can be  
handled by using all instructions in the memory map. For complete module description, see the  
MSP430FR4xx and MSP430FR2xx Family User's Guide.  
6.11.1 Power-Management Module (PMM) and On-chip Reference Voltages  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM  
also includes supply voltage supervisor (SVS) and brownout protection. The brownout reset circuit (BOR)  
is implemented to provide the proper internal reset signal to the device during power on and power off.  
The SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is  
available on the primary supply.  
The device contains two on-chip reference: 1.5 V for internal reference and 1.2 V for external reference.  
The 1.5-V reference is internally connected to ADC channel 13. DVCC is internally connected to ADC  
channel 15. When DVCC is set as the reference voltage for ADC conversion, the DVCC can be easily  
represent as Equation 1 by using ADC sampling 1.5-V reference without any external components  
support.  
DVCC = (1023 × 1.5 V) ÷ 1.5-V reference ADC result  
(1)  
The 1.5-V reference is also internally connected to the Comparator built-in DAC as reference voltage.  
DVCC is internally connected to another source of DAC reference, and both are controlled by the  
CPDACREFS bit. For more detailed information, see the Enhanced Comparator (eCOMP) chapter of the  
MSP430FR4xx and MSP430FR2xx Family User's Guide.  
A 1.2-V reference voltage can be buffered, when EXTREFEN = 1 on PMMCTL2 register, and it can be  
output to P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/TRI0+/A7/VREF+ , meanwhile the ADC channel 7 can  
also be selected to monitor this voltage. For more detailed information, see the MSP430FR4xx and  
MSP430FR2xx Family User's Guide.  
6.11.2 Clock System (CS) and Clock Distribution  
The clock system includes a 32-kHz low-frequency oscillator (XT1 low frequency) or up to a 16-MHz high-  
frequency crystal oscillator (XT1 high frequency), an internal very low-power low-frequency oscillator  
(VLO), an integrated 32-kHz RC oscillator (REFO), an integrated internal digitally controlled oscillator  
(DCO) that can use frequency-locked loop (FLL) locking with internal or external 32-kHz reference clock,  
and on-chip asynchronous high-speed clock (MODOSC). The clock system is designed to target cost-  
effective designs with minimal external components. A fail-safe mechanism is designed for XT1. The clock  
system module offers the following clock signals.  
Main Clock (MCLK): system clock used by the CPU and all relevant peripherals accessed by the bus.  
All clock sources except MODOSC can be selected as the source with a predivider of 1, 2, 4, 8, 16,  
32, 64, or 128.  
Sub-Main Clock (SMCLK): subsystem clock used by the peripheral modules. SMCLK derives from the  
MCLK with a predivider of 1, 2, 4, or 8. This means SMCLK is always equal to or less than MCLK.  
Auxiliary Clock (ACLK): derived from the external XT1 clock or internal REFO clock up to 40 kHz.  
All peripherals may have one or several clock sources depending on specific functionality. Table 6-8 and  
Table 6-9 show the clock distribution used in this device.  
50  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 6-8. Clock Distribution  
CLOCK  
SOURCE  
SELECT  
BITS(1)  
MCLK  
SMCLK  
ACLK  
MODCLK  
VLOCLK  
EXTERNAL PIN  
Frequency  
Range  
DC to 16 MHz DC to 16 MHz DC to 40 kHz  
5 MHz ±10%  
10 kHz ±50%  
CPU  
N/A  
N/A  
Default  
FRAM  
RAM  
Default  
N/A  
Default  
CRC  
N/A  
Default  
I/O  
N/A  
Default  
TB0  
TBSSEL  
TBSSEL  
UCSSEL  
UCSSEL  
WDTSSEL  
ADCSSEL  
RTCSS  
10b  
01b  
01b  
01b  
01b  
01b  
01b  
01b(2)  
00b (TB0CLK pin)  
TB1  
10b  
00b (TB1CLK pin)  
eUSCI_A0  
eUSCI_B0  
WDT  
10b or 11b  
10b or 11b  
00b  
00b (UCA0CLK pin)  
00b (UCB0CLK pin)  
10b  
ADC  
10b or 11b  
01b(2)  
00b  
RTC  
11b  
(1) N/A = not applicable  
(2) Controlled by the RTCCKSEL bit in the SYSCFG2 register.  
SRAM  
CRC  
CPU  
FRAM  
I/O  
SAC0  
TIA0  
eCOMP0  
MCLK  
Timer_B  
A1  
eUSCI_A0  
RTC  
ADC10  
Timer_B  
A0  
eUSCI_B0  
WDT  
Clock System (CS)  
SMCLK  
ACLK  
VLOCLK  
MODCLK  
XT1CLK  
Selected on SYSCFG2  
Figure 6-1. Clock Distribution Block Diagram  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-9. XTCLK Distribution  
XTLFCLK  
(LPMx.5)  
XTHFCLK  
XTLFCLK  
OPERATION  
MODE  
CLOCK SOURCE  
SELECT BITS  
AM TO LPM0  
AM TO LPM3  
AM TO LPM3.5  
MCLK  
SELMS  
SELMS  
SELREF  
SELA  
10b  
10b  
0b  
0b  
10b  
10b  
0b  
10b  
10b  
0b  
SMCLK  
REFO  
ACLK  
RTC  
0b  
0b  
RTCSS  
10b  
10b  
6.11.3 General-Purpose Input/Output Port (I/O)  
There are up to 16 I/O ports implemented.  
P1 and P2 are full 8-bit ports.  
All individual I/O bits are independently programmable.  
Any combination of input and output is possible for P1 and P2. All inputs of P1 and four inputs of P2  
(P2.0, P2.1, P2.6, P2.7) can be configured for interrupt input.  
Programmable pullup or pulldown on all ports.  
All inputs of P1 and four inputs of P2 (P2.0, P2.1, P2.6, P2.7) can be configured for edge-selectable  
interrupt and for LPM3.5, LPM4, and LPM4.5 wake-up input capability.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise in pairs.  
Capacitive Touch I/O functionality is supported on all pins.  
NOTE  
Configuration of digital I/Os after BOR reset  
To prevent any cross currents during start-up of the device, all port pins are high-impedance  
with Schmitt triggers and module functions disabled. To enable the I/O functions after a BOR  
reset, the ports must be configured first and then the LOCKLPM5 bit must be cleared. For  
details, see the Configuration After Reset section in the Digital I/O chapter of the  
MSP430FR4xx and MSP430FR2xx Family User's Guide.  
6.11.4 Watchdog Timer (WDT)  
The primary function of the WDT module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not  
needed in an application, the module can be configured as interval timer and can generate interrupts at  
selected time intervals.  
Table 6-10. WDT Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
Reserved  
52  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
6.11.5 System Module (SYS)  
The SYS module handles many of the system functions within the device. These system functions include  
power-on reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset  
interrupt vector generators, bootloader entry mechanisms, and configuration management (device  
descriptors) (see Table 6-11). SYS also includes a data exchange mechanism through SBW called a  
JTAG mailbox that can be used in the application.  
Table 6-11. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
Security violation (BOR)  
Reserved  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
SVSHIFG SVSH event (BOR)  
Reserved  
10h  
Reserved  
12h  
SYSRSTIV, System Reset  
015Eh  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
Reserved  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
FLL unlock (PUC)  
24h  
Reserved  
26h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVS low-power reset entry  
Uncorrectable FRAM bit error detection  
Reserved  
02h  
04h  
06h  
Reserved  
08h  
Reserved  
0Ah  
Reserved  
0Ch  
0Eh  
SYSSNIV, System NMI  
015Ch  
Reserved  
Reserved  
10h  
VMAIFG Vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
Reserved  
12h  
14h  
16h  
18h  
1Ah to 1Eh  
00h  
Lowest  
Highest  
Lowest  
No interrupt pending  
NMIIFG NMI pin or SVSH event  
OFIFG oscillator fault  
Reserved  
02h  
SYSUNIV, User NMI  
015Ah  
04h  
06h to 1Eh  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
6.11.6 Cyclic Redundancy Check (CRC)  
The 16-bit cyclic redundancy check (CRC) module produces a signature based on a sequence of data  
values and can be used for data checking purposes. The CRC generation polynomial is compliant with  
CRC-16-CCITT standard of x16 + x12 + x5 + 1.  
6.11.7 Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_B0)  
The eUSCI modules are used for serial data communications. The eUSCI_A module supports either  
UART or SPI communications. The eUSCI_B module supports either SPI or I2C communications. In  
addition, the eUSCI_A module supports automatic baud-rate detection and IrDA.. The eUSCI_B module is  
connected either from P1 port or P2 port, it can be selected from the USCIBRMAP bit of the SYSCFG2  
register (see Table 6-12).  
Table 6-12. eUSCI Pin Configurations  
PIN  
UART  
TXD  
RXD  
SPI  
SIMO  
SOMI  
SCLK  
STE  
P1.7  
eUSCI_A0  
P1.6  
P1.5  
P1.4  
PIN (USCIBRMP = 0)  
I2C  
SPI  
P1.0  
STE  
P1.1  
SCLK  
SIMO  
SOMI  
SPI  
P1.2  
SDA  
SCL  
I2C  
P1.3  
eUSCI_B0  
PIN (USCIBRMP = 1)  
P2.2  
P2.3  
P2.4  
P2.5  
STE  
SCLK  
SIMO  
SOMI  
SDA  
SCL  
6.11.8 Timers (Timer0_B3, Timer1_B3)  
The Timer0_B3 and Timer1_B3 modules are 16-bit timers and counters with three capture/compare  
registers each. Each can support multiple captures or compares, PWM outputs, and interval timing (see  
Table 6-13 and Table 6-14). Each has extensive interrupt capabilities. Interrupts may be generated from  
the counter on overflow conditions and from each of the capture/compare registers. The CCR0 registers  
on TB0 and TB1 are not externally connected and can be used only for hardware period timing and  
interrupt generation. In Up mode, they can set the overflow value of the counter.  
The interconnection of Timer0_B3 and Timer1_B3 can modulate the eUSCI_A pin of  
UCA0TXD/UCA0SIMO in either ASK or FSK mode, with which a user can easily acquire a modulated  
infrared command for directly driving an external IR diode (see Figure 6-2). The IR functions are fully  
controlled by the SYS configuration registers including IREN (enable), IRPSEL (polarity select), IRMSEL  
(mode select), IRDSSEL (data select), and IRDATA (data) bits. For more information, see the System  
Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the MSP430FR4xx  
and MSP430FR2xx Family User's Guide.  
54  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Timer_B0  
Timer_B1  
P2.7_TB0CLK  
ACLK  
00  
01  
10  
11  
P2.2_TB1CLK  
ACLK  
00  
01  
16-bit Counter  
SMCLK  
16-bit Counter  
Capcitive Touch IO  
SMCLK  
10  
11  
00  
01  
10  
11  
RTC  
ACLK  
DVSS  
DVCC  
DVSS  
TB0.0A  
TB0.0B  
00  
CCR0  
CCR1  
CCR2  
01  
10  
11  
TB0.0A  
TB0.0B  
CCR0  
CCR1  
CCR2  
DVSS  
DVCC  
P1.6  
eCOMP  
DVSS  
00  
01  
10  
11  
TB0.1A  
TB0.1B  
P1.6  
P2.0  
00  
01  
10  
11  
TB0.1A  
TB0.1B  
P2.0  
DVCC  
DVSS  
DVCC  
To ADC Trigger  
P1.7  
Capcitive Touch IO  
DVSS  
00  
01  
10  
11  
TB0.2A  
TB0.2B  
P1.7  
P2.1  
00  
01  
10  
11  
TB0.2A  
TB0.2B  
P2.1  
DVCC  
DVSS  
DVCC  
Coding  
Carrier  
Infrared  
Logic (SYS)  
P1.7/UCA0TXD/UCA0SIMO  
UCA0TXD/UCA0SIMO  
eUSCI_A0  
Data  
Figure 6-2. Timer_B Connections  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-13. Timer0_B3 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P2.7  
TB0CLK  
TBCLK  
ACLK  
ACLK (internal)  
SMCLK (internal)  
Timer  
N/A  
TB0  
TB1  
SMCLK  
From Capacitive  
Touch I/O (internal)  
INCLK  
CCI0A  
CCI0B  
From RTC (internal)  
Timer1_B3 CCI0B  
input  
ACLK (internal)  
CCR0  
CCR1  
DVSS  
DVCC  
TB0.1  
GND  
VCC  
P1.6  
P1.7  
CCI1A  
TB0.1  
From eCOMP  
(internal)  
Timer1_B3 CCI1B  
input  
CCI1B  
DVSS  
DVCC  
TB0.2  
GND  
VCC  
CCI2A  
TB0.2  
Timer1_B3 INCLK  
Timer1_B3 CCI2B  
input,  
From Capacitive  
Touch I/O (internal)  
CCI2B  
CCR2  
TB2  
IR input  
DVSS  
DVCC  
GND  
VCC  
Table 6-14. Timer1_B3 Signal Connections  
DEVICE INPUT  
MODULE INPUT  
NAME  
MODULE OUTPUT  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
SIGNAL  
SIGNAL  
P2.2  
TB1CLK  
TBCLK  
ACLK  
ACLK (internal)  
SMCLK (internal)  
Timer  
N/A  
SMCLK  
Timer0_B3 CCR2B  
output (internal)  
INCLK  
CCI0A  
CCI0B  
DVSS  
Timer0_B3 CCR0B  
output (internal)  
CCR0  
CCR1  
CCR2  
TB0  
TB1  
TB2  
DVSS  
DVCC  
TB1.1  
GND  
VCC  
P2.0  
P2.1  
CCI1A  
TB1.1  
Timer0_B3 CCR1B  
output (internal)  
CCI1B  
To ADC trigger  
DVSS  
DVCC  
TB1.2  
GND  
VCC  
CCI2A  
TB1.2  
Timer0_B3 CCR2B  
output (internal)  
CCI2B  
IR input  
DVSS  
DVCC  
GND  
VCC  
56  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
The Timer_B module includes a feature that puts all Timer_B outputs into a high-impedance state when  
the selected source is triggered. The source can be selected from an external pin or an internal signal,  
and it is controlled by TBxTRG in SYS. For more information, see the System Resets, Interrupts, and  
Operating Modes, System Control Module (SYS) chapter in the MSP430FR4xx and MSP430FR2xx Family  
User's Guide.  
Table 6-15 lists the Timer_B high-impedance trigger source selections.  
Table 6-15. TBxOUTH  
TBxOUTH TRIGGER SOURCE  
SELECTION  
Timer_B PAD OUTPUT HIGH  
IMPEDANCE  
TBxTRGSEL  
TB0TRGSEL = 0  
TB0TRGSEL= 1  
TB1TRGSEL = 0  
TB1TRGSEL = 1  
eCOMP0 output (internal)  
P1.6, P1.7  
P2.0, P2.1  
P1.2  
eCOMP0 output (internal)  
P2.3  
6.11.9 Backup Memory (BAKMEM)  
The BAKMEM supports data retention during LPM3.5 mode. This device provides up to 32 bytes that are  
retained during LPM3.5.  
6.11.10 Real-Time Clock (RTC) Counter  
The RTC counter is a 16-bit modulo counter that is functional in AM, LPM0, LPM3, LPM4, and LPM3.5.  
This module may periodically wake up the CPU from LPM0, LPM3, LPM4, and LPM3.5 based on timing  
from a low-power clock source such as the XT1, ACLK, or VLO clocks. In AM, RTC can be driven by  
SMCLK to generate high-frequency timing events and interrupts. ACLK and SMCLK both can source to  
the RTC, however only one of them can be selected simultaneously. The RTC overflow events trigger:  
Timer0_B3 CCI0A  
ADC conversion trigger when ADCSHSx bits are set as 01b  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
6.11.11 10-Bit Analog-to-Digital Converter (ADC)  
The 10-bit ADC module supports fast 10-bit analog-to-digital conversions with single-ended input. The  
module implements a 10-bit SAR core, sample select control, a reference generator, and a conversion  
result buffer. A window comparator with lower and upper limits allows CPU-independent result monitoring  
with three window comparator interrupt flags.  
The ADC supports 10 external inputs and 4 internal inputs (see Table 6-16).  
Table 6-16. ADC Channel Connections  
ADCINCHx  
ADC CHANNELS  
A0/Veref+  
A1  
EXTERNAL PIN  
P1.0  
0
1
P1.1  
2
A2/Veref-  
A3  
P1.2  
3
P1.3  
4
A4  
P1.4  
5
A5  
P1.5  
6
A6  
P1.6  
7
A7(1)  
P1.7  
8
Not used  
Not used  
Not used  
Not used  
N/A  
9
N/A  
10  
11  
N/A  
N/A  
On-chip temperature  
sensor  
12  
N/A  
13  
14  
15  
Reference voltage (1.5 V)  
N/A  
N/A  
N/A  
DVSS  
DVCC  
(1) When A7 is used, the PMM 1.2-V reference voltage can be output to  
this pin by setting the PMM control register. The 1.2-V voltage can  
be measured by the A7 channel.  
The analog-to-digital conversion can be started by software or a hardware trigger. Table 6-17 lists the  
trigger sources that are available.  
Table 6-17. ADC Trigger Signal Connections  
ADCSHSx  
TRIGGER SOURCE  
BINARY  
DECIMAL  
00  
01  
10  
11  
0
1
2
3
ADCSC bit (software trigger)  
RTC event  
TB1.1B  
eCOMP0 COUT  
58  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
6.11.12 eCOMP0  
The enhanced comparator is an analog voltage comparator with built-in 6-bit DAC as an internal voltage  
reference. The integrated 6-bit DAC can be set up to 64 steps for comparator reference voltage. This  
module has 4-level programmable hysteresis and configurable power modes, high power or low power.  
eCOMP0 supports external inputs and internal inputs (see Table 6-18) and outputs (see Table 6-19).  
Table 6-18. eCOMP0 Input Channel Connections  
CPPSEL, CPNSEL  
EXTERNAL OR INTERNAL  
CONNECTION  
eCOMP0 CHANNELS  
BINARY  
000  
C0  
P1.0  
P1.1  
N/A  
001  
C1  
010  
Not used  
Not used  
011  
N/A  
SAC0 , OA0O on positive port  
TIA0, TRI0O on negative port  
100  
C4  
101  
110  
Not used  
C6  
N/A  
Built-in 6-bit DAC  
Table 6-19. eCOMP0 Output Channel Connections  
eCOMP0 OUT  
EXTERNAL PIN OUT, MODULE  
P2.0  
1
2
TB0.1B, TB0 (TB0OUTH), TB1 (TB1OUTH), ADC  
6.11.13 SAC0  
The Smart Analog Combo (SAC) integrates a high-performance low-power operational amplifier. SAC-L1  
is integrated in FR231x. SAC-L1 supports only a general-purpose amplifier. For more information, see the  
Smart Analog Combo (SAC) chapter in the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
SAC0 supports external inputs and internal inputs (see Table 6-20 and Table 6-21).  
Table 6-20. SAC0 Positive Input Channel Connections  
PSEL  
00  
SAC0 CHANNELS  
EXTERNAL PIN OUT, MODULE  
SAC0, OA0 positive channel 1  
SAC0, OA0 positive channel 2  
P1.4  
10  
TRI0O  
Table 6-21. SAC0 Negative Input Channel Connections  
NSEL  
00  
SAC0 CHANNELS  
SAC0, OA0 negative channel 1  
Not used  
EXTERNAL PIN OUT, MODULE  
P1.2  
N/A  
10  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
 
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
6.11.14 TIA0  
The Transimpedance Amplifier (TIA) is a high-performance low-power amplifier with rail-to-rail output. This  
module is an amplifier that converts current to voltage. It has programmable power modes: high power or  
low power. For more information, see the Transimpedance Amplifier (TIA) chapter in the MSP430FR4xx  
and MSP430FR2xx Family User's Guide.  
The FR231x device in the TSSOP-16 package supports a dedicated low-leakage pad for TIA negative  
input to support low-leakage performance. In other packages (TSSOP-20 and VQFN-16), the TIA negative  
port is shared with a GPIO to support the transimpedance amplifier function. For more information, see  
Section 4 and Table 5-25.  
The TIA supports external input (see Table 6-22 and Section 4).  
Table 6-22. TIA Input Channel Connections  
TRIPSEL  
TIA0 CHANNELS  
Positive input  
Not used  
EXTERNAL PIN OUT, MODULE  
00  
01  
10  
11  
P1.7  
N/A  
N/A  
N/A  
Not used  
Not used  
60  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
6.11.15 eCOMP0, SAC0, TIA0, and ADC in SOC Interconnection  
Figure 6-3 shows how the high-performance analog modules are internally connected.  
P1.6 & TRI0–  
Double Bonding  
in TSSOP-20 & QFN16  
A6  
P1.6  
A5  
TRI0–  
P1.5/TRI0O  
P1.7/TRI+  
00  
10  
+
TIA  
A7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
A1  
A0  
00  
01  
10  
11  
Software Trigger  
from RTC  
ADC  
Core  
from TB1.1B  
from eCOMP  
DAC  
Core  
A12  
A13  
A14  
A15  
On-chip Temperature Sensor  
1.5V Reference Voltage  
DVSS  
HW Trigger  
Selection  
DVCC  
ADC  
000  
P1.1/C1  
001  
100  
110  
+
Invert  
Non-invert  
Logic  
P2.0/COUT  
P1.0/C0  
000  
001  
100  
110  
eCOMP  
10  
00  
+
P1.4/OA0+  
P1.2/OA0–  
P1.3/OA0O  
00  
10  
SAC-L1  
A3  
A4  
A2  
Figure 6-3. High-Performance Analog SOC Interconnection  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Figure 6-4 shows how the analog modules can be connected internally.  
Timer_B0  
Timer_B1  
P2.7_TB0CLK  
ACLK  
00  
01  
10  
11  
P2.2_TB1CLK  
ACLK  
00  
01  
10  
11  
16-bit Counter  
SMCLK  
16-bit Counter  
from  
CapTouch  
SMCLK  
RTC  
ACLK  
DVSS  
DVCC  
00  
01  
10  
11  
P1.6  
Double Bonding  
in TSSOP-20 QFN16  
& TRI0–  
TB0.0A  
TB0.0B  
DVSS  
00  
01  
10  
11  
&
CCR0  
TB0.0A  
TB0.0B  
CCR0  
DVSS  
DVCC  
P1.6  
A6  
P1.6  
00  
01  
10  
11  
from  
COMP  
TRI0–  
P1.7  
+
TB0.1A  
TB0.1B  
P1.6  
P2.0  
00  
01  
10  
11  
CCR1  
A5  
DVSS  
TB0.1A  
TB0.1B  
P2.0  
CCR1  
00  
10  
DVCC  
DVSS  
DVCC  
TIA  
A7  
A1  
P1.7  
00  
01  
10  
11  
from  
CapTouch  
TB0.2A  
TB0.2B  
P1.7  
P2.1  
00  
01  
10  
11  
CCR2  
DVSS  
DVCC  
TB0.2A  
TB0.2B  
P2.1  
A0  
A1  
P1.0  
CCR2  
DVSS  
DVCC  
P1.1  
A2  
P1.2  
TB0OUTH  
TB1OUTH  
A3  
P1.3  
DAC  
Core  
P1.5  
A4  
P1.4  
TB1TRG  
A5  
P1.5  
TB0TRG  
1
0
0
1
A6  
P1.6  
C0O  
C0O  
000  
001  
100  
110  
A7  
P1.7  
C1  
P1.1  
A8  
Not Used  
Software Trigger  
from RTC  
RTC  
Overflow  
SYS  
00  
01  
10  
11  
A9  
Not Used  
TB0TRGSEL  
TB1TRGSEL  
RTC Counter  
A10  
A11  
A12  
A13  
A14  
A15  
Not Used  
ADC  
Core  
from TB1.1B  
from COMP  
+
Not Used  
Invert  
Non-invert  
Logic  
On-chip Temperature Sensor  
1.5V Reference Voltage  
DVSS  
HW Trigger  
Selection  
C0  
P1.0  
000  
001  
100  
110  
ADC  
DVCC  
eCOMP  
Coding  
IR Logic  
A0  
A3  
Carrier  
Data  
P1.7/UCA0TXD/UCA0SIMO  
10  
00  
+
P1.4/OA0+  
P1.2/OA0–  
UCA0TXD/UCA0SIMO  
eUSCI_A  
00  
10  
SAC-L1  
P1.3/OA0O  
A2  
A4  
P2.0  
Figure 6-4. SOC Interconnection  
6.11.16 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The EEM on these devices has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers that can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
62  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
6.11.17 Peripheral File Map  
Table 6-23 lists the base address of the registers for each peripheral. Table 6-24 through Table 6-42 list  
all of the available registers for each peripheral and their address offsets.  
Table 6-23. Peripherals Summary  
MODULE NAME  
Special Functions (see Table 6-24)  
BASE ADDRESS  
0100h  
SIZE  
0010h  
0020h  
0040h  
0020h  
0010h  
0008h  
0002h  
0020h  
0010h  
0010h  
0030h  
0030h  
0020h  
0030h  
0020h  
0040h  
0020h  
0010h  
0010h  
PMM (see Table 6-25)  
0120h  
SYS (see Table 6-26)  
0140h  
CS (see Table 6-27)  
0180h  
FRAM (see Table 6-28)  
CRC (see Table 6-29)  
01A0h  
01C0h  
01CCh  
0200h  
WDT (see Table 6-30)  
Port P1, P2 (see Table 6-31)  
Capacitive Touch I/O (see Table 6-32)  
RTC (see Table 6-33)  
02E0h  
0300h  
Timer0_B3 (see Table 6-34)  
Timer1_B3 (see Table 6-35)  
eUSCI_A0 (see Table 6-36)  
eUSCI_B0 (see Table 6-37)  
Backup Memory (see Table 6-38)  
ADC (see Table 6-39)  
0380h  
03C0h  
0500h  
0540h  
0660h  
0700h  
eCOMP0 (see Table 6-40)  
SAC0 (see Table 6-41)  
08E0h  
0C80h  
0F00h  
TIA0 (see Table 6-42)  
Table 6-24. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
00h  
SFR interrupt enable  
SFR interrupt flag  
SFRIFG1  
SFRRPCR  
02h  
SFR reset pin control  
04h  
Table 6-25. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
PMMCTL1  
PMMCTL2  
PMMIFG  
OFFSET  
00h  
PMM control 0  
PMM control 1  
PMM control 2  
PMM interrupt flags  
PM5 control 0  
02h  
04h  
0Ah  
PM5CTL0  
10h  
Table 6-26. SYS Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
SYSCTL  
OFFSET  
00h  
System control  
Bootloader configuration area  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
02h  
06h  
08h  
0Ah  
0Ch  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
 
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-26. SYS Registers (Base Address: 0140h) (continued)  
REGISTER DESCRIPTION  
JTAG mailbox output 1  
REGISTER  
SYSJMBO1  
SYSUNIV  
SYSSNIV  
OFFSET  
0Eh  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
System configuration 0  
System configuration 1  
System configuration 2  
SYSRSTIV  
SYSCFG0  
SYSCFG1  
SYSCFG2  
Table 6-27. CS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
CSCTL7  
CSCTL8  
OFFSET  
00h  
CS control 0  
CS control 1  
CS control 2  
CS control 3  
CS control 4  
CS control 5  
CS control 6  
CS control 7  
CS control 8  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
Table 6-28. FRAM Registers (Base Address: 01A0h)  
REGISTER DESCRIPTION  
REGISTER  
FRCTL0  
OFFSET  
00h  
FRAM control 0  
General control 0  
General control 1  
GCCTL0  
GCCTL1  
04h  
06h  
Table 6-29. CRC Registers (Base Address: 01C0h)  
REGISTER DESCRIPTION  
REGISTER  
CRC16DI  
OFFSET  
00h  
CRC data input  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
02h  
04h  
06h  
Table 6-30. WDT Registers (Base Address: 01CCh)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Watchdog timer control  
WDTCTL  
00h  
Table 6-31. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
P1IN  
OFFSET  
00h  
Port P1 input  
Port P1 output  
P1OUT  
P1DIR  
02h  
Port P1 direction  
04h  
Port P1 pulling enable  
Port P1 selection 0  
Port P1 selection 1  
Port P1 interrupt vector word  
P1REN  
P1SEL0  
P1SEL1  
P1IV  
06h  
0Ah  
0Ch  
0Eh  
64  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 6-31. Port P1, P2 Registers (Base Address: 0200h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
P1SELC  
P1IES  
OFFSET  
16h  
Port P1 complement selection  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
18h  
P1IE  
1Ah  
1Ch  
01h  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2SEL1  
P2SELC  
P2IV  
03h  
Port P2 direction  
05h  
Port P2 pulling enable  
Port P2 selection 0  
07h  
0Bh  
0Dh  
17h  
Port P2 selection 1  
Port P2 complement selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
1Eh  
19h  
P2IES  
P2IE  
1Bh  
1Dh  
P2IFG  
Table 6-32. Capacitive Touch I/O Registers (Base Address: 02E0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Capacitive touch I/O 0 control  
CAPIO0CTL  
0Eh  
Table 6-33. RTC Registers (Base Address: 0300h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL  
RTCIV  
OFFSET  
00h  
RTC control  
RTC interrupt vector  
RTC modulo  
04h  
RTCMOD  
RTCCNT  
08h  
RTC counter  
0Ch  
Table 6-34. Timer0_B3 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
TB0CTL  
OFFSET  
00h  
TB0 control  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TB0 counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TB0 expansion 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0EX0  
12h  
14h  
16h  
20h  
TB0 interrupt vector  
TB0IV  
2Eh  
Table 6-35. Timer1_B3 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
TB1CTL  
OFFSET  
00h  
TB1 control  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TB1CCTL0  
TB1CCTL1  
TB1CCTL2  
02h  
04h  
06h  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-35. Timer1_B3 Registers (Base Address: 03C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
TB1R  
OFFSET  
TB1 counter  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TB1 expansion 0  
TB1 interrupt vector  
TB1CCR0  
TB1CCR1  
TB1CCR2  
TB1EX0  
TB1IV  
Table 6-36. eUSCI_A0 Registers (Base Address: 0500h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTLW0  
UCA0CTLW1  
UCA0BR0  
OFFSET  
00h  
eUSCI_A control word 0  
eUSCI_A control word 1  
eUSCI_A control rate 0  
eUSCI_A control rate 1  
eUSCI_A modulation control  
eUSCI_A status  
02h  
06h  
UCA0BR1  
07h  
UCA0MCTLW  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
lUCA0IRTCTL  
IUCA0IRRCTL  
UCA0IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA0IFG  
UCA0IV  
Table 6-37. eUSCI_B0 Registers (Base Address: 0540h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTLW0  
UCB0CTLW1  
UCB0BR0  
OFFSET  
00h  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
02h  
06h  
eUSCI_B bit rate 1  
UCB0BR1  
07h  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
08h  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B receive address  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
eUSCI_B interrupt vector word  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB0IFG  
UCB0IV  
66  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 6-38. Backup Memory Registers (Base Address: 0660h)  
REGISTER DESCRIPTION  
REGISTER  
BAKMEM0  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKMEM4  
BAKMEM5  
BAKMEM6  
BAKMEM7  
BAKMEM8  
BAKMEM9  
BAKMEM10  
BAKMEM11  
BAKMEM12  
BAKMEM13  
BAKMEM14  
BAKMEM15  
OFFSET  
00h  
Backup memory 0  
Backup memory 1  
Backup memory 2  
Backup memory 3  
Backup memory 4  
Backup memory 5  
Backup memory 6  
Backup memory 7  
Backup memory 8  
Backup memory 9  
Backup memory 10  
Backup memory 11  
Backup memory 12  
Backup memory 13  
Backup memory 14  
Backup memory 15  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
Table 6-39. ADC Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
ADCCTL0  
ADCCTL1  
ADCCTL2  
ADCLO  
OFFSET  
00h  
ADC control 0  
ADC control 1  
02h  
ADC control 2  
04h  
ADC window comparator low threshold  
ADC window comparator high threshold  
ADC memory control 0  
ADC conversion memory  
ADC interrupt enable  
06h  
ADCHI  
08h  
ADCMCTL0  
ADCMEM0  
ADCIE  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC interrupt flags  
ADCIFG  
ADC interrupt vector word  
ADCIV  
Table 6-40. eCOMP0 Registers (Base Address: 08E0h)  
REGISTER DESCRIPTION  
REGISTER  
CPCTL0  
OFFSET  
00h  
Comparator control 0  
Comparator control 1  
CPCTL1  
02h  
Comparator interrupt  
CPINT  
06h  
Comparator interrupt vector  
Comparator built-in DAC control  
Comparator built-in DAC data  
CPIV  
08h  
CPDACCTL  
CPDACDATA  
10h  
12h  
Table 6-41. SAC0 Registers (Base Address: 0C80h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
SAC0 OA control  
SAC0OA  
00h  
Table 6-42. TIA0 Registers (Base Address: 0F00h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TIA control  
TRICTL  
00h  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
6.12 Input/Output Diagrams  
6.12.1 Port P1 Input/Output With Schmitt Trigger  
Figure 6-5 shows the port diagram. Table 6-43 summarizes the selection of the port functions.  
A0..A7  
OA0+,OA0-,OA0O  
TRI0+,TRI0-,TRI0O  
C0,C1  
From analog module  
P1REN.x  
P1DIR.x  
From Module1  
From Module2  
00  
01  
10  
11  
2 bit  
DVSS  
DVCC  
0
1
P1SEL.x= 11  
00  
01  
P1OUT.x  
From Module1  
From Module2  
DVSS  
10  
11  
2 bit  
P1SEL.x  
EN  
D
To module  
P1IN.x  
P1IE.x  
Bus  
Keeper  
P1 Interrupt  
D
S
Q
P1.0/UCB0STE/SMCLK/C0/A0/Veref+  
P1.1/UCB0CLK/ACLK/C1/A1  
P1IFG.x  
P1.2/UCB0SIMO/UCB0SDA/TB0TRG/OA0-/A2/Veref-  
P1.3/UCB0SOMI/UCB0SCL/OA0O/A3  
Edge  
Select  
P1IES.x  
P1.4/UCA0STE/TCK/OA0+/A4  
From JTAG  
P1.5/UCA0CLK/TMS/TRI0O/A5  
P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/TRI0-/A6  
P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/TRI0+/A7/VREF+  
To JTAG  
NOTE: Functional representation only.  
Figure 6-5. Port P1 Input/Output With Schmitt Trigger  
68  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 6-43. Port P1 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SELx  
00  
JTAG  
N/A  
P1.0 (I/O)  
UCB0STE  
SMCLK  
I: 0; O: 1  
X
01  
N/A  
P1.0/UCB0STE/SMCLK/  
C0/A0/Veref+  
0
1
10  
N/A  
VSS  
0
C0, A0/Veref+  
P1.1 (I/O)  
UCB0CLK  
ACLK  
X
11  
0
N/A  
N/A  
N/A  
I: 0; O: 1  
X
01  
P1.1/UCB0CLK/ACLK/  
C1A1  
1
1
10  
N/A  
VSS  
0
C1, A1  
X
11  
00  
01  
10  
11  
00  
01  
11  
00  
01  
11  
X
N/A  
N/A  
P1.2 (I/O)  
I: 0; O: 1  
P1.2/UCB0SIMO/  
UCB0SDA/TB0TRG/  
OA0-/A2/Veref-  
UCB0SIMO/UCB0SDA  
TB0TRG  
X
N/A  
2
3
4
0
N/A  
OA0-, A2/Veref-  
P1.3 (I/O)  
X
N/A  
I: 0; O: 1  
N/A  
P1.3/UCB0SOMI/  
UCB0SCL/OA0O/A3  
UCB0SOMI/UCB0SCL  
OA0O, A3  
X
N/A  
X
N/A  
P1.4 (I/O)  
I: 0; O: 1  
Disabled  
Disabled  
Disabled  
TCK  
UCA0STE  
X
P1.4/UCA0STE/TCK/  
OA0+/A4  
OA0+, A4  
X
JTAG TCK  
X
P1.5 (I/O)  
I: 0; O: 1  
00  
01  
11  
X
Disabled  
Disabled  
Disabled  
TMS  
UCA0CLK  
X
P1.5/UCA0CLK/TMS/  
TRI0O/A5  
5
6
TRI0O, A5  
X
JTAG TMS  
X
P1.6 (I/O)  
I: 0; O: 1  
00  
01  
Disabled  
Disabled  
UCA0RXD/UCA0SOMI  
TB0.CCI1A  
X
P1.6/UCA0RXD/  
UCA0SOMI/TB0.1/TDI/  
TCLK/TRI0-/A6  
0
10  
Disabled  
TB0.1  
1
TRI0-, A6  
X
11  
X
Disabled  
TDI/TCLK  
Disabled  
Disabled  
JTAG TDI/TCLK  
P1.7 (I/O)  
X
I: 0; O: 1  
00  
01  
UCA0TXD/UCA0SIMO  
TB0.CCI2A  
X
0
P1.7/UCA0TXD/  
UCA0SIMO/TB0.2/TDO/  
TRI0+/A7/VREF+  
7
10  
Disabled  
TB0.2  
1
TRI0+, A7, VREF+  
JTAG TDO  
X
X
11  
X
Disabled  
TDO  
(1) X = don't care  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
69  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
6.12.2 Port P2 Input/Output With Schmitt Trigger  
Figure 6-6 shows the port diagram. Table 6-44 summarizes the selection of the port functions.  
P2REN.x  
P2DIR.x  
From Module1  
From Module2  
00  
01  
10  
11  
2 bit  
DVSS  
DVCC  
0
1
00  
01  
P2OUT.x  
From Module1  
From Module2  
DVSS  
10  
11  
2 bit  
P2SEL.x  
EN  
D
To module  
P2IN.x  
P2IE.x  
Bus  
Keeper  
P2 Interrupt  
D
S
Q
P2.0/TB1.1/COUT  
P2.1/TB1.2  
P2IFG.x  
P2IES.x  
P2.2/UCB0STE/TB1CLK  
P2.3/UCB0CLK/TB1TRG  
P2.4/UCB0SIMO/UCB0SDA  
P2.5/UCB0SOMI/UCB0SCL  
P2.6/MCLK/XOUT  
Edge  
Select  
P2.7/TB0CLK/XIN  
NOTE: Functional representation only.  
Figure 6-6. Port P2 Input/Output With Schmitt Trigger  
70  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 6-44. Port P2 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SELx  
P2.0 (I/O)  
TB1.CCI1A  
TB1.1  
I: 0; O: 1  
00  
0
P2.0/TB1.1/COUT  
P2.1/TB1.2  
0
01  
1
COUT  
1
10  
00  
P2.1 (I/O)0  
TB1.CCI2A  
TB1.2  
I: 0; O: 1  
1
2
3
0
01  
1
P2.2 (I/O)  
UCB0STE  
TB1CLK  
VSS  
I: 0; O: 1  
00  
01  
X
P2.2/UCB0STE/TB1CLK  
P2.3/UCB0CLK/TB1TRG  
0
10  
1
P2.3 (I/O)  
UCB0CLK  
TB1TRG  
P2.4 (I/O)  
I: 0; O: 1  
00  
01  
10  
00  
01  
00  
01  
00  
X
0
I: 0; O: 1  
P2.4/UCB0SIMO/UCB0SDA  
P2.5/UCB0SOMI/UCB0SCL  
4
5
UCB0SIMO/UCB0SDA  
X
P2.5 (I/O)  
UCB0SOMI/UCB0SCL  
P2.6 (I/O)  
MCLK  
I: 0; O: 1  
X
I: 0; O: 1  
1
P2.6/MCLK/XOUT  
6
7
01  
VSS  
0
XOUT  
X
10  
00  
P2.7 (I/O)  
TB0CLK  
VSS  
I: 0; O: 1  
0
1
X
P2.7/TB0CLK/XIN  
(1) X = don't care  
01  
10  
XIN  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
71  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
6.13 Device Descriptors (TLV)  
Table 6-45 lists the Device IDs of the MSP430FR231x MCU variants. Table 6-46 lists the contents of the  
device descriptor tag-length-value (TLV) structure for the devices.  
Table 6-45. Device IDs  
DEVICE ID  
DEVICE  
1A04h  
F0  
1A05h  
82  
MSP430FR2311  
MSP430FR2310  
F1  
82  
Table 6-46. Device Descriptors  
MSP430FR231x  
ADDRESS  
DESCRIPTION  
Info length  
VALUE  
06h  
1A00h  
1A01h  
1A02h  
1A03h  
1A04h  
1A05h  
1A06h  
1A07h  
1A08h  
1A09h  
1A0Ah  
1A0Bh  
1A0Ch  
1A0Dh  
1A0Eh  
1A0Fh  
1A10h  
1A11h  
1A12h  
1A13h  
1A14h  
1A15h  
1A16h  
1A17h  
1A18h  
1A19h  
1A1Ah  
1A1Bh  
1A1Ch  
1A1Dh  
CRC length  
06h  
Per unit  
Per unit  
CRC value(1)  
Info block  
Device ID  
See Table 6-45.  
Hardware revision  
Firmware revision  
Die record tag  
Per unit  
Per unit  
08h  
Die record length  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot wafer ID  
Die record  
Die X position  
Die Y position  
Test result  
ADC calibration tag  
ADC calibration length  
ADC gain factor  
ADC calibration  
ADC offset  
ADC 1.5-V reference, temperature 30°C(2)  
ADC 1.5-V reference, temperature 85°C(2)  
(1) The CRC value covers the checksum from 0x1A04h to 0x1A77h by applying CRC-CCITT-16 polynomial of X16 + X12 + X5 + 1  
(2) TI recommends to do a two-point calibration for the on-chip temperature sensor in precision application.  
72  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
Table 6-46. Device Descriptors (continued)  
MSP430FR231x  
DESCRIPTION  
ADDRESS  
1A1Eh  
1A1Fh  
1A20h  
VALUE  
12h  
Calibration tag  
Calibration length  
04h  
Per unit  
Per unit  
Per unit  
Per unit  
Reference and DCO  
calibration  
1.5-V reference factor  
1A21h  
1A22h  
(3)  
DCO tap settings for 16 MHz, temperature 30°C  
1A23h  
(3) This value can be directly loaded into the DCO bits in the CSCTL0 register to get an accurate 16-MHz frequency at room temperature,  
especially when MCU exits from LPM3 and below. TI also suggests using a predivider to decrease the frequency if the temperature drift  
might result an overshoot above 16 MHz.  
6.14 Identification  
6.14.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The  
device-specific errata sheet describes these markings. For links to all of the errata sheets for the devices  
in this data sheet, see 8.4.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Hardware Revision" entries in Section 6.13.  
6.14.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific  
errata sheet describes these markings. For links to all of the errata sheets for the devices in this data  
sheet, see 8.4.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Device ID" entries in Section 6.13.  
6.14.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in  
detail in the MSP430 Programming With the JTAG Interface.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
73  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
7 Applications, Implementation, and Layout  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI's customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their implementation to confirm system functionality.  
7.1 Device Connection and Layout Fundamentals  
This section describes the recommended guidelines when designing with the MSP430. These guidelines  
are to make sure that the device has proper connections for powering, programming, debugging, and  
optimum analog performance.  
7.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 10-µF capacitor and a 100-nF low-ESR ceramic decoupling  
capacitor to the DVCC pin. Higher-value capacitors may be used but can affect supply rail ramp-up time.  
Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few  
millimeters).  
DVCC  
Digital  
+
Power Supply  
Decoupling  
DVSS  
10 µF  
100 nF  
Figure 7-1. Power Supply Decoupling  
7.1.2 External Oscillator  
Depending on the device variant (see Table 3-1), the device can support a low-frequency crystal (32 kHz)  
on the LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the  
crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the  
specifications of the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is  
selected. In this case, the associated LFXOUT and HFXOUT pins can be used for other purposes. If the  
LFXOUT and HFXOUT pins are left unused, they must be terminated according to Section 4.6.  
Figure 7-2 shows a typical connection diagram.  
LFXIN  
or  
LFXOUT  
or  
HFXIN  
HFXOUT  
CL1  
CL2  
Figure 7-2. Typical Crystal Connection  
74  
Applications, Implementation, and Layout  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP430 devices.  
7.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or  
MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the  
connections also support the MSP-GANG production programmers, thus providing an easy way to  
program prototype boards, if desired. Figure 7-3 shows the connections between the 14-pin JTAG  
connector and the target device required to support in-system programming and debugging for 4-wire  
JTAG communication. Figure 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are  
identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-  
FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an  
alternate connection (pin 4 instead of pin 2). The VCC-sense feature detects the local VCC present on the  
target board (that is, a battery or other local power supply) and adjusts the output signals accordingly.  
Figure 7-3 and Figure 7-4 show a jumper block that supports both scenarios of supplying VCC to the target  
board. If this flexibility is not required, the desired VCC connections may be hardwired to eliminate the  
jumper block. Pins 2 and 4 must not be connected at the same time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User’s  
Guide.  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
DVCC  
J2 (see Note A)  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,  
make connection J2.  
B. The upper limit for C1 is 1.1 nF when using TI tools. TI recommends a 1-nF capacitor to enable high-speed SBW  
communication.  
Figure 7-3. Signal Connections for 4-Wire JTAG Communication  
Copyright © 2016–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
75  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
DVCC  
R1  
47 kΩ  
(see Note B)  
JTAG  
VCC TOOL  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
VCC TARGET  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the  
debug or programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during  
JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with  
the device. The upper limit for C1 is 1.1 nF when using TI tools. TI recommends a 1-nF capacitor to enable high-  
speed SBW communication.  
Figure 7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
7.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function  
Register (SFR), SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is  
edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the  
external NMI. When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either  
pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not.  
If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an  
external 47-kΩ pullup resistor to the RST/NMI pin with a 10-nF pulldown capacitor. The pulldown capacitor  
should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire  
JTAG mode with TI tools like FET interfaces or GANG programmers.  
See the MSP430FR4xx and MSP430FR2xx Family User's Guide for more information on the referenced  
control registers and bits.  
7.1.5 Unused Pins  
For details on the connection of unused pins, see Section 4.6.  
76  
Applications, Implementation, and Layout  
Submit Documentation Feedback  
Copyright © 2016–2019, Texas Instruments Incorporated  
Product Folder Links: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
7.1.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430  
32-kHz Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC, AVCC, and reference pins if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital  
switching signals such as PWM or JTAG signals away from the oscillator circuit and ADC signals.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
7.1.7 Do's and Don'ts  
During power up, power down, and device operation, the voltage difference between AVCC and DVCC  
must not exceed the limits specified in the Absolute Maximum Ratings section. Exceeding the specified  
limits may cause malfunction of the device including erroneous writes to RAM and FRAM.  
7.2 Peripheral- and Interface-Specific Design Information  
7.2.1 ADC Peripheral  
7.2.1.1 Partial Schematic  
Figure 7-5 shows the recommended decoupling circuit when an external voltage reference is used.  
DVSS  
Using an external  
VREF+/VEREF+  
positive reference  
+
100 nF  
10 µF  
Using an external  
negative reference  
VEREF-  
+
10 µF  
100 nF  
Figure 7-5. ADC Grounding and Noise Considerations  
7.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should  
be followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with  
other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset  
voltages that can add to or subtract from the reference or input voltages of the ADC. The general  
guidelines in Section 7.1.1 combined with the connections shown in Figure 7-5 prevent this.  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital  
switching or switching power supplies can corrupt the conversion result. TI recommends a noise-free  
design using separate analog and digital ground planes with a single-point connection to achieve high  
accuracy.  
Figure 7-5 shows the recommended decoupling circuit when an external voltage reference is used. The  
internal reference module has a maximum drive current as described in the sections ADC Pin Enable and  
1.2-V Reference Settings of the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
77  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor buffers the reference pin and filters any low-frequency  
ripple. A bypass capacitor of 100 nF filters out any high-frequency noise.  
7.2.1.3 Layout Guidelines  
Components that are shown in the partial schematic (see Figure 7-5) should be placed as close as  
possible to the respective device pins to avoid long traces, because they add additional parasitic  
capacitance, inductance, and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM),  
because the high-frequency switching can be coupled into the analog signal.  
7.3 Typical Applications  
Table 7-1 provides a link to a LaunchPad™ development kit. For the most up-to-date list of available tools  
and TI Designs, see the device-specific product folders listed in 8.5.  
Table 7-1. Tools  
NAME  
LINK  
MSP430FR2311 LaunchPad Development Kit  
http://www.ti.com/tool/MSP-EXP430FR2311  
78  
Applications, Implementation, and Layout  
版权 © 2016–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
8 器件和文档支持  
8.1 使用入门  
有关可帮助进行开发的 MSP430™系列器件、工具和库的更多信息,请查看 MSP430™ 超低功耗感应和测  
MCU 概述。  
8.2 器件命名规则  
为了标示产品开发周期所处的阶段,TI 为所有 MSP MCU 器件的部件号分配了前缀。每个 MSP MCU 商用  
系列产品成员都具有以下两个前缀之一:MSP XMS。这些前缀代表了产品开发的发展阶段,即从工程原  
(XMS) 直到完全合格的生产器件 (MSP)。  
XMS - 实验器件,不一定代表最终器件的电气规格  
MSP - 完全合格的生产器件  
XMS 器件在供货时附带如下免责声明:  
开发中的产品用于内部评估用途。”  
MSP 器件的特性已经全部明确,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书对该器件适  
用。  
预测显示原型器件 (XMS) 的故障率大于标准生产器件。由于这些器件的预计最终使用故障率尚不确定,德  
州仪器 (TI) 建议不要将它们用于任何生产系统。请仅使用合格的生产器件。  
TI 器件的命名规则还包括一个带有器件系列名称的后缀。此后缀表示温度范围、封装类型和配送形式。8-  
1 提供了解读完整器件名称的图例。  
MSP 430  
311  
I
FR  
2
PW R  
Distribution Format  
Processor Family  
MCU Platform  
Packaging  
Memory Type  
Series  
Temperature Range  
Feature Set  
Processor Family  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
MCU Platform  
Memory Type  
Series  
MSP430 = TI’s MSP430 16-Bit Low-Power Microcontroller Platform  
FR = FRAM  
2 = FRAM 2 Series up to 16 MHz without LCD  
Feature Set  
First and Second Digits: Smart Analog Combo (SAC) Level /  
ADC Channels / COMP / 16-bit Timers / I/O  
31 = SAC-L1 / Up to 8 / 1 / 2 / Up to 16  
Third Digit: FRAM (KB) / SRAM (KB)  
1 = 4 / 1  
0 = 2 / 1  
Temperature Range  
Packaging  
I = –40°C to 85°C  
www.ti.com/packaging  
Distribution Format  
T = Small reel  
R = Large reel  
No marking = Tube or tray  
8-1. 器件命名规则  
版权 © 2016–2019, Texas Instruments Incorporated  
器件和文档支持  
79  
提交文档反馈意见  
产品主页链接: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
8.3 工具和软件  
8-1列出了这些微控制器 支持 的调试功能。请参阅《适用于 MSP430 MCU Code Composer Studio  
IDE 用户指南》,以了解有关可用 功能)的详细信息。  
8-1. 硬件 特性  
四线制  
JTAG  
两线制  
JTAG  
断点  
(N)  
跟踪缓冲 LPMx.5 调试支  
MSP430 架构  
范围断点  
时钟控制  
状态序列发生器  
EEM 版本  
MSP430Xv2  
3
S
设计套件与评估模块  
MSP430FR2311 LaunchPad 开发套件  
MSP-EXP430FR2311 LaunchPad 开发套件是适用于 MSP430FR2311 MCU 的易用型微控制器开发板。它  
包含了在 MSP430FR2x FRAM 平台上快速开始开发所需要的全部资源,包括用于编程、调试和能量测量的  
板载仿真。  
MSP-FET + MSP-TS430PW20 FRAM 微控制器开发套件包  
MSP-FET430U20 开发套件包将两种调试工具相结合,支持 MSP430FR23x 微控制器的 20 引脚 PW 封装  
(例如 MSP430FR2311PW20)。两种工具分别为 MSP-TS430PW20 MSP-FET。  
MSP-TS430PW20 - 适用于 MSP430FR2x MCU 20 引脚目标开发板  
MSP-TS430PW20 是一款独立的 ZIF 插座目标板,用于通过 JTAG 接口或 Spy-Bi-Wire(两线制 JTAG)协  
议对 MSP430 MCU 进行系统内编程和调试。该开发板支持所有采用 20 引脚或 16 引脚 TSSOP 封装(TI  
封装代码:PW)的 MSP430FR23x MSP430FR21x 闪存器件。  
软件  
MSP430Ware™ 软件  
MSP430Ware 软件集合了所有 MSP430 器件的代码示例、数据表以及其他设计资源,打包提供给用户。除  
了提供已有 MSP430 设计资源的完整集合外,MSP430Ware 软件还包含名为 MSP430 驱动程序库的高级  
API。借助该库可以轻松地对 MSP430 硬件进行编程。MSP430Ware 软件以 CCS 组件或独立软件包两种形  
式提供。  
MSP430FR231x 代码示例  
根据不同应用需求配置各集成外设的每个 MSP 器件均具备相应的 C 代码示例。  
MSP 驱动程序库  
MSP 驱动程序库的抽象 API 提供易用的函数调用,无需直接操纵 MSP430 硬件的位与字节。完整的文档通  
过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证的参数的详细信息。开发人员可以  
使用驱动程序库功能,以最低开销编写完整项目。  
MSP EnergyTrace™ 技术  
适用于 MSP430 微控制器的 EnergyTrace 技术是基于电能的代码分析工具,适用于测量和显示应用的电能  
系统配置并帮助优化应用以实现超低功耗。  
80  
器件和文档支持  
版权 © 2016–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
ULP(超低功耗)Advisor  
ULP Advisor™软件是一款辅助工具,旨在指导开发人员编写更为高效的代码,从而充分利用 MSP430 和  
MSP432 微控制器 独特 功能。ULP Advisor 的目标人群是微控制器的资深开发者和开发新手,可以根据详  
尽的 ULP 检验表检查代码,以便最大限度地减少应用程序的能耗。在编译时,ULP Advisor 会提供通知和  
备注以突出显示代码中可以进一步优化的区域,进而实现更低功耗。  
适用于 MSP 超低功耗微控制器的 FRAM 嵌入式软件实用程序  
FRAM 实用程序旨在作为不断扩充的嵌入式软件实用程序集合,其中的实用程序充分利用 FRAM 的超低功  
耗和近乎无限次的写入寿命。这些实用程序适用于 MSP430FRxx FRAM 微控制器并提供示例代码协助应用  
程序开发。其中的实用程序包含功耗计算实用程序 (CTPL)CTPL 是一套实用程序 API 集,通过 CTPL 能  
够轻松使用 LPMx.5 低功耗模式以及强大的关断模式,允许应用程序在检测到功率损耗时节约能耗并恢复关  
键的系统元件。  
IEC60730 软件包  
IEC60730 MSP430 软件包经过专门开发,用于协助客户达到 IEC 60730-1:2010(家用及类似用途的自动化  
电气控制 - 1 部分:一般要求)B 类产品的要求。其中涵盖家用电器、电弧检测器、电源转换器、电动工  
具、电动自行车及其他诸多产品。IEC60730 MSP430 软件包可以嵌入在 MSP430 MCU 中 运行的客户应  
用, 从而帮助客户简化其消费类器件在功能安全方面遵循 IEC 60730-1:2010 B 类规范的认证工作。  
适用于 MSP 的定点数学库  
MSP IQmath Qmath 库是为 C 语言开发者提供的一套经过高度优化的高精度数学运算函数集合,能够将  
浮点算法无缝嵌入 MSP430 MSP432 器件的定点代码中。这些例程通常用于计算密集型实时 应用, 而  
优化的执行速度、高精度以及超低能耗通常是影响这些实时应用的关键因素。与使用浮点数学算法编写的同  
等代码相比,使用 IQmath Qmath 库可以大幅提高执行速度并显著降低能耗。  
适用于 MSP430 的浮点数学库  
TI 在低功耗和低成本微控制器领域锐意创新,为您提供 MSPMATHLIB。此标量函数的浮点数学库,能够充  
分利用器件的智能外设,使速度最高达到标准 MSP430 数学函数的 26 倍。Mathlib 能够轻松集成到您的设  
计中。该运算库免费使用并集成在 Code Composer Studio IDE IAR Embedded Workbench IDE 中。  
开发工具  
适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境  
Code Composer Studio (CCS) 集成开发环境 (IDE) 支持所有 MSP 微控制器器件。CCS 包含一整套用于开  
发和调试嵌入式 应用的工具。它包含了优化的 C/C++ 编译器、源代码编辑器、项目构建环境、调试器、描  
述器以及其他多种 功能。  
命令行编程器  
MSP Flasher 是一款基于 shell 的开源接口,可使用 JTAG Spy-Bi-Wire (SBW) 通信通过 FET 编程器或  
eZ430 MSP 微控制器进行编程。MSP Flasher 可用于将二进制文件(.txt .hex 文件)直接下载到  
MSP 微控制器,而无需使用 IDE。  
MSP MCU 编程器和调试器  
MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可帮助用户在 MSP 低功耗微控制器 (MCU)  
中快速开发应用。创建 MCU 软件通常需要将生成的二进制程序下载到 MSP 器件中,从而进行验证和调  
试。  
版权 © 2016–2019, Texas Instruments Incorporated  
器件和文档支持  
81  
提交文档反馈意见  
产品主页链接: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
MSP-GANG 生产编程器  
MSP Gang 编程器是一款 MSP430 MSP432 器件编程器,可同时对多达八个完全相同的 MSP430 或  
MSP432 闪存或 FRAM 器件进行编程。MSP Gang 编程器可使用标准的 RS-232 USB 连接与主机 PC  
相连并提供灵活的编程选项,允许用户完全自定义流程。  
8.4 文档支持  
以下文档介绍了 MSP430FR231x 微控制器。www.ti.com.cn 网站上提供了这些文档的副本。  
接收文档更新通知  
要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹(请参见8.5  
获取产品文件夹链接)。请单击右上角的通知我按钮。点击注册后,即可收到产品信息更改每周摘要(如  
有)。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
勘误  
MSP430FR2311 器件勘误表》  
说明了功能规格的已知例外情况。  
MSP430FR2310 器件勘误表》  
说明了功能规格的已知例外情况。  
用户指南  
MSP430FR4xx MSP430FR2xx 系列用户指南》  
可 说明 。  
MSP430 FRAM 器件引导加载程序 (BSL) 用户指南》  
MSP430 MCU 上的引导加载程序 (BSL) 允许用户在原型设计、投产和维护等各阶段与 MSP430 MCU 中的  
嵌入式存储器进行通信。可编程存储器(FRAM 存储器)和数据存储器 (RAM) 均可按要求予以修改。  
《通过 JTAG 接口对 MSP430 进行编程》  
此文档介绍了使用 JTAG 通信端口擦除、编程和验证基于 MSP430 闪存和 FRAM 的微控制器系列的存储器  
模块所需的功能。此外,该文档还介绍了如何编程所有 MSP430 器件上均具备的 JTAG 访问安全保险丝。  
此文档介绍了使用标准四线制 JTAG 接口和两线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))的器件访问。  
MSP430 硬件工具用户指南》  
此手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针对 MSP430 超低功耗微控制器的程  
序开发工具。文中对提供的接口类型,即并行端口接口和 USB 接口进行了说明。  
应用报告  
MSP430 32kHz 晶体振荡器》  
选择合适的晶体、正确的负载电路和适当的电路板布局是实现稳定的晶体振荡器的关键。该应用报告总结了  
晶体振荡器的功能,并介绍了用于选择合适晶体以实现 MSP430 MCU 超低功耗运行的参数。此外,还给出  
了正确电路板布局的提示和示例。此外,为了确保振荡器在大规模生产后能够稳定运行,还可能需要进行一  
些振荡器测试,该文档中提供了有关这些测试的详细信息。  
82  
器件和文档支持  
版权 © 2016–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2311 MSP430FR2310  
MSP430FR2311, MSP430FR2310  
www.ti.com.cn  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
MSP430 系统级 ESD 注意事项》  
随着芯片技术向更低电压方向发展以及设计具有成本效益的超低功耗组件的需求的出现,系统级 ESD 要求  
变得越来越苛刻。该应用报告介绍了不同的 ESD 主题,旨在帮助电路板设计人员和 OEM 理解并设计出稳  
健耐用的系统级设计。另外还介绍了若干实际应用系统级 ESD 保护设计示例及其结果。  
8.5 相关链接  
8-2 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具与软件,以及申请样片或购买产品  
的快速链接。  
8-2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
MSP430FR2311  
MSP430FR2310  
8.6 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参见 TI 《使用条款》。  
TI E2E™ 社区  
TI 的工程师交流 (E2E) 社区. 此社区的创建目的是为了促进工程师之间协作。在 e2e.ti.com 中,您可以提  
问、共享知识、拓展思路,在同领域工程师的帮助下解决问题。  
TI 嵌入式处理器维基网页  
德州仪器 (TI) 嵌入式处理器维基网页。此网站的建立是为了帮助开发人员熟悉德州仪器 (TI) 的嵌入式处理  
器,并且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。  
8.7 商标  
LaunchPad, MSP430, MSP430Ware, Code Composer Studio, E2E, EnergyTrace, ULP Advisor, 适用于  
MSP 微控制器的 Code Composer Studio are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
8.8 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.9 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016–2019, Texas Instruments Incorporated  
提交文档反馈意见  
器件和文档支持  
83  
产品主页链接: MSP430FR2311 MSP430FR2310  
 
MSP430FR2311, MSP430FR2310  
ZHCSF32E FEBRUARY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
84  
机械、封装和可订购信息  
版权 © 2016–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2311 MSP430FR2310  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR2310IPW16  
MSP430FR2310IPW16R  
MSP430FR2310IPW20  
MSP430FR2310IPW20R  
MSP430FR2310IRGYR  
MSP430FR2310IRGYT  
MSP430FR2311IPW16  
MSP430FR2311IPW16R  
MSP430FR2311IPW20  
MSP430FR2311IPW20R  
MSP430FR2311IRGYR  
MSP430FR2311IRGYT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
VQFN  
PW  
PW  
16  
16  
20  
20  
16  
16  
16  
16  
20  
20  
16  
16  
90  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR2310  
2000 RoHS & Green  
70 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
FR2310  
FR2310  
FR2310  
FR2310  
FR2310  
FR2311  
FR2311  
FR2311  
FR2311  
FR2311  
FR2311  
PW  
PW  
2000 RoHS & Green  
3000 RoHS & Green  
RGY  
RGY  
PW  
VQFN  
250  
90  
RoHS & Green  
RoHS & Green  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
VQFN  
PW  
2000 RoHS & Green  
70 RoHS & Green  
PW  
PW  
2000 RoHS & Green  
3000 RoHS & Green  
RGY  
RGY  
VQFN  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR2310IPW16R TSSOP  
MSP430FR2310IPW20R TSSOP  
PW  
PW  
16  
20  
16  
16  
16  
20  
16  
16  
2000  
2000  
3000  
250  
330.0  
330.0  
330.0  
180.0  
330.0  
330.0  
330.0  
180.0  
12.4  
16.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.4  
6.9  
6.95  
3.8  
5.6  
7.1  
4.3  
4.3  
5.6  
7.1  
4.3  
4.3  
1.6  
1.6  
1.5  
1.5  
1.6  
1.6  
1.5  
1.5  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
16.0  
12.0  
12.0  
12.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
MSP430FR2310IRGYR  
MSP430FR2310IRGYT  
VQFN  
VQFN  
RGY  
RGY  
PW  
3.8  
MSP430FR2311IPW16R TSSOP  
MSP430FR2311IPW20R TSSOP  
2000  
2000  
3000  
250  
6.9  
PW  
6.95  
3.8  
MSP430FR2311IRGYR  
MSP430FR2311IRGYT  
VQFN  
VQFN  
RGY  
RGY  
3.8  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR2310IPW16R  
MSP430FR2310IPW20R  
MSP430FR2310IRGYR  
MSP430FR2310IRGYT  
MSP430FR2311IPW16R  
MSP430FR2311IPW20R  
MSP430FR2311IRGYR  
MSP430FR2311IRGYT  
TSSOP  
TSSOP  
VQFN  
PW  
PW  
16  
20  
16  
16  
16  
20  
16  
16  
2000  
2000  
3000  
250  
350.0  
350.0  
367.0  
210.0  
350.0  
350.0  
367.0  
210.0  
350.0  
350.0  
367.0  
185.0  
350.0  
350.0  
367.0  
185.0  
43.0  
43.0  
35.0  
35.0  
43.0  
43.0  
35.0  
35.0  
RGY  
RGY  
PW  
VQFN  
TSSOP  
TSSOP  
VQFN  
2000  
2000  
3000  
250  
PW  
RGY  
RGY  
VQFN  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
MSP430FR2310IPW16  
MSP430FR2310IPW20  
MSP430FR2311IPW16  
MSP430FR2311IPW20  
PW  
PW  
PW  
PW  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
16  
20  
16  
20  
90  
70  
90  
70  
530  
530  
530  
530  
10.2  
10.2  
10.2  
10.2  
3600  
3600  
3600  
3600  
3.5  
3.5  
3.5  
3.5  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY