MSP430FR2476 [TI]

具有 64KB FRAM、8KB SRAM、比较器、12 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU;
MSP430FR2476
型号: MSP430FR2476
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 64KB FRAM、8KB SRAM、比较器、12 位 ADC、UART/SPI/I2C 和计时器的 16MHz MCU

静态存储器 比较器
文件: 总113页 (文件大小:4213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
MSP430FR247x 混合信号微控制器  
• 时钟系(CS)  
1 特性  
– 片32kHz RC 振荡(REFO)1µA 支持  
– 带有锁频(FLL) 的片16MHz 数控振荡器  
(DCO)  
• 嵌入式微控制器  
16 RISC 架构  
– 支持的时钟频率最高可16MHz  
1.8 V 3.6 V 的宽电源电压范围最低电源电  
压受限SVS 电平请参SVS 规格)  
• 优化的超低功耗模式  
• 室温下的精度±1%具有片上基准)  
– 片上超低10kHz 振荡(VLO)  
– 片上高频调制振荡(MODOSC)  
– 外32kHz (LFXT)  
– 工作模式135µA/MHz典型值)  
– 待机32768Hz 晶振LPM3.5 实时时钟  
(RTC) 计数器660nA典型值)  
– 关(LPM4.5)37nA未使SVS  
• 低功耗铁RAM (FRAM)  
– 可编MCLK 预分频器1 128)  
– 通过可编程预分频器124 8MCLK  
获得SMCLK  
• 通用输入/输出和引脚功能  
LQFP-48 封装上43 I/O  
– 所GPIO 43 个中断引脚可以MCU 从  
低功耗模式下唤醒  
– 容量高64KB 的非易失性存储器  
– 内置错误修正(ECC)  
– 可配置的写保护  
• 开发工具和软件  
– 对程序、常量和存储的统一存储  
– 耐写次数1015 次  
– 抗辐射和非磁性  
– 开发工具  
• 目标开发MSPTS430PT48A  
LaunchPad™ 开发套LPMSP430FR2476  
• 系列成员另请参阅器件比较)  
• 智能数字外设  
– 四16 位计时器每个计时器3 个捕捉/比较  
寄存(Timer_A3)  
– 一16 位计时器7 个捕捉/比较寄存器  
(Timer_B7)  
MSP430FR247664KB FRAM512B 信  
FRAM8KB RAM  
MSP430FR247532KB FRAM512B 信  
FRAM6KB RAM  
– 一个仅用作计数器16 RTC  
16 位循环冗余校(CRC)  
• 增强型串行通信支持引脚重映射功能  
– 两eUSCI_A 接口UARTIrDA SPI  
– 两eUSCI_B 接口SPI I2C  
• 高性能模拟  
• 封装选项  
48 引脚LQFP (PT)  
40 引脚VQFN (RHA)  
32 引脚VQFN (RHB)  
2 应用  
– 高12 12 位模数转换(ADC)  
• 小型工业传感器  
• 低功耗医疗、健康和健身器材  
• 电池组  
• 内部共享基准1.52.0 2.5V)  
• 采样与保200ksps  
– 一个增强型比较(eCOMP)  
EPOS  
• 电器  
• 恒温器  
• 电动牙刷  
• 集6 DAC 作为基准电压  
• 可编程迟滞  
• 可配置的高功率和低功率模式  
PC 配件  
3 说明  
MSP430FR247x 微控制器 (MCU) MSP430™ MCU 超值系列超低功耗低成本器件产品系列的一部分该产品  
系列用于检测和测量应用。MSP430FR247x MCU 成了一个 12 SAR ADC 一个比较器。所有  
MSP430FR247x MCU 均支持 –40° 105°C 的工作温度范围因此这些器件的 FRAM 数据记录功能对更高温  
度的工业应用来说意义重大。  
MSP430FR247x MCU 由一系列由软、硬件组成的生态系统提供支持并提供有参考设计和代码示例可帮助您  
快速开展设计。开发套件包括 MSP-TS430PT48 48 引脚目标开发板TI 还提供免费的 MSP430Ware™ 软件该  
软件以 Code Composer Studio™ IDE 桌面和云版本组件的形式提供位于 TI Resource Explorer 。我们为  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASEO7  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
MSP430 MCU 提供广泛的在线配套资料例如内务处理型示例系列MSP Academy 培训),也通过 TI E2E™  
支持论坛提供在线支持。  
MSP430 超低功(ULP) FRAM 微控制器平台将独特的嵌入式 FRAM 和整体超低功耗系统架构相结合从而使系  
统设计人员能够在降低能耗的情况下提升性能。FRAM 技术将 RAM 的低功耗快速写入、灵活性和耐用性与闪存  
的非易失性相结合。  
TI MSP430 系列低功耗微控制器包含多种器件其中配备了不同的外设集以满足各类应用的需求。此架构与多种  
低功耗模式配合使用是延长便携式测量应用电池寿命的最优选择。MCU 具有一个强大的 16 RISC CPU、  
16 位寄存器和常数发生器有助于获得最大编码效率。数控振荡器 (DCO) 可使 MCU 在不到 10μs典型值的  
时间内从低功耗模式唤醒至活动模式。  
有关完整的模块说明请参MSP430FR4xx MSP430FR2xx 系列器件用户指南。  
器件信息  
器件型号(1)  
MSP430FR2476TPT  
MSP430FR2475TPT  
MSP430FR2476TRHA  
MSP430FR2475TRHA  
MSP430FR2476TRHB  
MSP430FR2475TRHB  
封装尺寸(2)  
7mm × 7mm  
7mm × 7mm  
6mm × 6mm  
6mm × 6mm  
5mm x 5mm  
5mm x 5mm  
封装  
LQFP (48)  
LQFP (48)  
VQFN (40)  
VQFN (40)  
VQFN (32)  
VQFN (32)  
(1) 要获得最新的产品、封装和订购信息请参阅12 中的封装选项附录或者访问德州仪(TI) 网站  
www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸请参阅机械数据12 。  
CAUTION  
系统级静电放电 (ESD) 保护必须符合器件级 ESD 规范以防发生电气过载或对数据或代码存储器造  
成干扰。如需更多信息请参MSP430 系统ESD 注意事项。  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
4 功能模块图  
4-1 给出了功能方框图。  
4-1. 功能模块图  
MCU 的主电源DVCC DVSS 分别为数字模块和模拟模块供电。推荐的旁路电容和去耦电容分别为  
4.7μF 10μF 0.1μF精度±5%。  
• 所GPIO 均具备引脚中断功能MCU 从所LPM 模式唤醒。  
LPM3.5 模式下RTC 模块可在其他外设停止工作的情况下继续工作。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
Table of Contents  
9 Detailed Description......................................................45  
9.1 Overview...................................................................45  
9.2 CPU.......................................................................... 45  
9.3 Operating Modes...................................................... 45  
9.4 Interrupt Vector Addresses....................................... 47  
9.5 Bootloader (BSL)...................................................... 48  
9.6 JTAG Standard Interface.......................................... 49  
9.7 Spy-Bi-Wire Interface (SBW).................................... 49  
9.8 FRAM........................................................................50  
9.9 Memory Protection....................................................50  
9.10 Peripherals..............................................................50  
9.11 Input/Output Diagrams............................................65  
9.12 Device Descriptors..................................................72  
9.13 Memory...................................................................74  
9.14 Identification............................................................83  
10 Applications, Implementation, and Layout............... 84  
10.1 Device Connection and Layout Fundamentals....... 84  
10.2 Peripheral- and Interface-Specific Design  
Information.................................................................. 87  
11 Device and Documentation Support..........................89  
11.1 Getting Started and Next Steps.............................. 89  
11.2 Device Nomenclature..............................................89  
11.3 Tools and Software..................................................90  
11.4 Documentation Support.......................................... 92  
11.5 支持资源..................................................................93  
11.6 Trademarks............................................................. 93  
11.7 Electrostatic Discharge Caution..............................93  
11.8 Export Control Notice..............................................94  
11.9 术语表..................................................................... 94  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 功能模块图.........................................................................3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................7  
6.1 Related Products........................................................ 8  
7 Terminal Configuration and Functions..........................9  
7.1 Pin Diagrams.............................................................. 9  
7.2 Pin Attributes.............................................................12  
7.3 Signal Descriptions................................................... 16  
7.4 Pin Multiplexing.........................................................20  
7.5 Buffer Types..............................................................20  
7.6 Connection of Unused Pins...................................... 20  
8 Specifications................................................................ 21  
8.1 Absolute Maximum Ratings...................................... 21  
8.2 ESD Ratings............................................................. 21  
8.3 Recommended Operating Conditions.......................21  
8.4 Active Mode Supply Current Into VCC Excluding  
External Current.......................................................... 22  
8.5 Active Mode Supply Current Per MHz...................... 22  
8.6 Low-Power Mode LPM0 Supply Currents Into  
VCC Excluding External Current.................................. 22  
8.7 Low-Power Mode (LPM3, LPM4) Supply  
Currents (Into VCC) Excluding External Current.......... 23  
8.8 Low-Power Mode LPMx.5 Supply Currents (Into  
VCC) Excluding External Current................................. 24  
8.9 Typical Characteristics Low-Power Mode  
Supply Currents...........................................................25  
8.10 Current Consumption Per Module.......................... 25  
8.11 Thermal Resistance Characteristics....................... 26  
8.12 Timing and Switching Characteristics..................... 26  
Information.................................................................... 95  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from revision B to revision C  
Changes from December 11, 2019 to September 14, 2021  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 通篇更正MSP430FR2475 RAM 大小4KB 更改6KB.................................................................. 1  
• 在3 中添加了指向在线配套资料的链接.................................................................................................. 1  
Corrected the pin numbers for the Veref+ and Veref- signals in 7-2, Signal Descriptions .......................... 16  
Corrected the TAxRMP, USCIA0RMP, USCIB0RMP, and USCIB1RMP bit names in the notes for 7-2,  
Signal Descriptions ..........................................................................................................................................16  
Corrected the USCIA0RMP and USCIBxRMP bit names in 9.10.7, Enhanced Universal Serial  
Communication Interface (eUSCI_A0, eUSCI_B0) ......................................................................................... 55  
Corrected the TAxRMP bit name in the notes for 9-16, TA2 and TA3 Pin Configurations of Remap  
Functionality .....................................................................................................................................................56  
Added an inverter to the Schmitt-trigger enable in 9-4, Port Input/Output With Schmitt Trigger .................65  
Corrected the value of the P5SEL.x column for P5.3 and P5.4 in 9-27, Port P5 (P5.0 to P5.7) Pin  
Functions ......................................................................................................................................................... 70  
Added the SYSCFG3 register to 9-35, SYS Registers (Base Address: 0140h) ..........................................75  
Changes from revision A to revision B  
Changes from April 26, 2019 to December 10, 2019  
Page  
• 更新1 ................................................................................................................................................ 1  
Changed the note that begins "Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset..." in 节  
8.3, Recommended Operating Conditions .......................................................................................................21  
Added the note that begins "TI recommends that power to the DVCC pin must not exceed the limits..." in 节  
8.3, Recommended Operating Conditions .......................................................................................................21  
Changed the note that begins "A capacitor tolerance of ±20% or better is required..." in 8.3,  
Recommended Operating Conditions ..............................................................................................................21  
Added the note "See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing" to  
8.12.3.1, XT1 Crystal Oscillator (Low Frequency) ...................................................................................... 28  
Changed the note that begins "Requires external capacitors at both terminals..." in 8.12.3.1, XT1 Crystal  
Oscillator (Low Frequency) ..............................................................................................................................28  
Added the tTA,cap parameter in 8.12.6.1, Timer_A .......................................................................................35  
Added the tTB,cap parameter in 8.12.6.2, Timer_B .......................................................................................35  
Corrected the test conditions for the RI parameter in 8.12.8.1, ADC, Power Supply and Input Range  
Conditions ........................................................................................................................................................41  
Removed ADCDIV from the equations for tCONVERT because ADCCLK is after division in 8.12.8.2, ADC,  
Timing Parameters .......................................................................................................................................... 41  
Added the note that begins "tSample = ln(2n+1) × τ..." in 8.12.8.2, ADC, Timing Parameters .................... 41  
Changed CRC covered end address to 0x1AF7 in table note (1) in 9-30 , Device Descriptors ..................72  
Changes from initial release to revision A  
Changes from March 12, 2019 to April 25, 2019  
Page  
• 将文档状态更改为“量产数据”......................................................................................................................... 1  
• 在4-1功能方框中添加MSP430FR2673 MSP430FR2672 的存储器大小.......................................3  
Updated 8.7 Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current with  
production values .............................................................................................................................................23  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
Updated 8.12.3.2 DCO FLL, Frequency with production values..................................................................29  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6 Device Comparison  
6-1 summarizes the features of the available family members.  
6-1. Device Comparison  
PROGRAM FRAM +  
INFORMATION  
FRAM (KB)  
SRAM  
(KB)  
TA0, TA1,  
TA2, TA3  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
eUSCI_B1  
12-BIT ADC  
CHANNELS  
DEVICE(1) (2)  
TB0  
eCOMP  
GPIOs  
PACKAGE  
MSP430FR2476TPT  
MSP430FR2475TPT  
64 + 0.5  
32 + 0.5  
8
6
4, 3 × CCR(3)  
4, 3 × CCR(3)  
1, 7 × CCR(4)  
1, 7 × CCR(4)  
2
2
2
2
12  
12  
1
1
43  
43  
48 LQFP (PT)  
48 LQFP (PT)  
40 VQFN  
(RHA)  
MSP430FR2476TRHA  
MSP430FR2475TRHA  
MSP430FR2476TRHB  
MSP430FR2475TRHB  
64 + 0.5  
32 + 0.5  
64 + 0.5  
32 + 0.5  
8
6
8
6
4, 3 × CCR(3)  
4, 3 × CCR(3)  
4, 3 × CCR(3)  
4, 3 × CCR (3)  
1, 7 × CCR(4)  
1, 7 × CCR(4)  
1, 7 × CCR(5)  
1, 7 × CCR(5)  
2
2
2
2
2
2
2
2
10  
10  
8
1
1
1
1
35  
35  
27  
27  
40 VQFN  
(RHA)  
32 VQFN  
(RHB)  
32 VQFN  
(RHB)  
8
(1) For the most current package and ordering information, see the Package Option Addendum in 12, or see the TI website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.  
(3) A CCR register is a configurable register that provides internal and external capture or compare inputs, or internal and external PWM outputs. TA0 and TA1 are externally connected on  
CCR1, CCR2. TA2 and TA3 are externally connected on CCR0 to CCR2.  
(4) A CCR register is a configurable register that provides internal and external capture or compare inputs, or internal and external PWM outputs. TB0 is externally connected on CCR0 to  
CCR6.  
(5) A CCR register is a configurable register that provides internal capture only, CCR0 to CCR6 registers can only be used for period timing and interrupt generation, NO PWM outputs  
functionality.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
Products for microcontrollers  
Our diverse portfolio of 16- and 32-bit microcontrollers (MCUs) with real-time control capabilities and high-  
precision analog integration are optimized for industrial and automotive applications. Backed by decades of  
expertise and innovative hardware and software solutions, our MCUs can meet the needs of any design and  
budget.  
Products for MSP430 microcontrollers  
Our 16-bit MSP430™ microcontrollers (MCUs) provide affordable solutions for all applications. Our leadership in  
integrated precision analog enables designers to enhance system performance and lower system costs.  
Designers can find a cost-effective MCU within the broad MSP430 portfolio of over 2000 devices for virtually any  
need. Get started quickly and reduce time to market with our simplified tools, software, and best-in-class  
support.  
Reference designs for MSP430FR2476  
Find reference designs leveraging the best in TI technology from analog and power management to  
embedded processors  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
7-1 shows the pinout of the 48-pin PT package.  
DVCC  
RST/NMI/SBWTDIO  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P2.7/UCB1STE  
P4.2/TA3CLK  
2
TEST/SBWTCK  
3
P4.1/TA3.0  
P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+  
P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A5  
P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A6  
P1.7/UCA0STE/SMCLK/TDO/A7  
P4.3/UCB1SOMI/UCB1SCL/TB0.5/A8  
P4.4/UCB1SIMO/UCB1SDA/TB0.6/A9  
P5.3/UCB1CLK/TA3.0/A10  
4
P4.0/TA3.1  
5
P3.7/TA3.2  
6
DNC  
MSP430FR2476TPT  
MSP430FR2475TPT  
7
P2.6/UCA1TXD/UCA1SIMO  
P2.5/UCA1RXD/UCA1SOMI  
P2.4/UCA1CLK  
P3.1/UCA1STE  
P3.4/TA2CLK/COMP0OUT  
P2.3/TA2.0  
8
9
10  
11  
12  
P5.4/UCB1STE/TA3CLK/A11  
P1.0/UCB0STE/TA0CLK/A0/Veref+  
7-1. 48-Pin PT Package (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-2 shows the pinout of the 40-pin RHA package.  
1
2
DVCC  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P2.7/UCB1STE  
P4.2/TA3CLK  
3
P4.1/TA3.0  
4
P4.0/TA3.1  
P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+  
P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A5  
P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A6  
P1.7/UCA0STE/SMCLK/TDO/A7  
5
P3.7/TA3.2  
MSP430FR2476TRHA  
MSP430FR2475TRHA  
6
DNC  
7
P2.6/UCA1TXD/UCA1SIMO  
P2.5/UCA1RXD/UCA1SOMI  
P2.4/UCA1CLK  
P3.1/UCA1STE  
8
P4.3/UCB1SOMI/UCB1SCL/TB0.5/A8  
P4.4/UCB1SIMO/UCB1SDA/TB0.6/A9  
P1.0/UCB0STE/TA0CLK/A0/Veref+  
9
10  
7-2. 40-Pin RHA Package (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-3 shows the pinout of the 32-pin RHB package.  
26 25  
32 31 30 29 28 27  
24  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
1
2
3
4
5
6
7
8
P4.2/TA3CLK  
23  
22  
21  
20  
19  
18  
17  
P4.1/TA3.0  
P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+  
P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A5  
P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A6  
P1.7/UCA0STE/SMCLK/TDO/A7  
P4.0/TA3.1  
P3.7/TA3.2  
MSP430FR2476TRHB  
MSP430FR2475TRHB  
DNC  
P2.6/UCA1TXD/UCA1SIMO  
P2.5/UCA1RXD/UCA1SOMI  
P2.4/UCA1CLK  
P1.0/UCB0STE/TA0CLK/A0/Veref+  
P1.1/UCB0CLK/TA0.1/COMP0.0/A1  
9 10 11 12 13 14 15 16  
7-3. 32-Pin RHB Package (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7.2 Pin Attributes  
7-1 lists the attributes of all pins.  
7-1. Pin Attributes  
PIN NUMBER  
SIGNAL  
BUFFER  
TYPE(4)  
POWER  
RESET STATE  
AFTER BOR(6)  
SIGNAL NAME(1) (2)  
TYPE(3)  
SOURCE(5)  
PT  
RHA  
RHB  
1
1
32  
DVCC  
P
I
Power  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
N/A  
PU  
RST (RD)  
NMI  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
2
3
2
3
1
2
I
SBWTDIO  
TEST (RD)  
SBWTCK  
P1.4 (RD)  
UCA0TXD  
UCA0SIMO  
TA1.2  
I/O  
I
PD  
I
I/O  
O
I/O  
I/O  
I
OFF  
4
4
3
TCK  
A4  
I
VREF+  
P1.5 (RD)  
UCA0RXD  
UCA0SOMI  
TA1.1  
O
I/O  
I
Power  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
I/O  
I/O  
I
5
5
4
TMS  
A5  
I
P1.6 (RD)  
UCA0CLK  
TA1CLK  
TDI  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
6
6
5
I
TCLK  
I
A6  
I
P1.7 (RD)  
UCA0STE  
SMCLK  
TDO  
I/O  
I/O  
O
O
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
7
8
9
7
8
9
6
A7  
P4.3 (RD)  
UCB1SOMI  
UCB1SCL  
TB0.5  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
A8  
P4.4 (RD)  
UCB1SIMO  
UCB1SDA  
TB0.6  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
A9  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-1. Pin Attributes (continued)  
PIN NUMBER  
SIGNAL  
TYPE(3)  
BUFFER  
TYPE(4)  
POWER  
RESET STATE  
AFTER BOR(6)  
SIGNAL NAME(1) (2)  
SOURCE(5)  
PT  
RHA  
RHB  
P5.3 (RD)  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
UCB1CLK  
TA3.0  
10  
A10  
P5.4 (RD)  
UCB1STE  
TA3CLK  
A11  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
11  
12  
P1.0 (RD)  
UCB0STE  
TA0CLK  
A0  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
10  
7
I
Veref+  
I
Power  
P1.1 (RD)  
UCB0CLK  
TA0.1  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
13  
14  
15  
11  
12  
13  
8
9
A1  
COMP0.0  
P1.2 (RD)  
UCB0SIMO  
UCB0SDA  
TA0.2  
I
Analog  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
A2  
Veref-  
I
Power  
P1.3 (RD)  
UCB0SOMI  
UCB0SCL  
MCLK  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
10  
A3  
I
P2.2 (RD)  
ACLK  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
16  
17  
14  
15  
11  
COMP0.1  
P4.5 (RD)  
UCB0SOMI  
UCB0SCL  
TA3.2  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
OFF  
P4.6 (RD)  
UCB0SIMO  
UCB0SDA  
TA3.1  
OFF  
18  
19  
16  
P5.5 (RD)  
UCB0CLK  
TA2CLK  
OFF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-1. Pin Attributes (continued)  
PIN NUMBER  
RHA  
SIGNAL  
TYPE(3)  
BUFFER  
TYPE(4)  
POWER  
RESET STATE  
AFTER BOR(6)  
SIGNAL NAME(1) (2)  
SOURCE(5)  
PT  
RHB  
P5.6 (RD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
20  
UCB0STE  
TA2.0  
P5.7 (RD)  
TA2.1  
OFF  
21  
22  
COMP0.2  
P6.0 (RD)  
TA2.2  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
OFF  
COMP0.3  
P3.0 (RD)  
TA2.2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
OFF  
23  
24  
25  
17  
18  
19  
12  
13  
14  
P3.3 (RD)  
TA2.1  
OFF  
P2.3 (RD)  
TA2.0  
OFF  
P3.4 (RD)  
TA2CLK  
COMP0OUT  
P3.1 (RD)  
UCA1STE  
P2.4 (RD)  
UCA1CLK  
P2.5 (RD)  
UCA1RXD  
UCA1SOMI  
P2.6 (RD)  
UCA1TXD  
UCA1SIMO  
DNC(7)  
OFF  
26  
20  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OFF  
27  
28  
21  
22  
16  
17  
OFF  
OFF  
29  
30  
23  
24  
18  
19  
I/O  
I/O  
O
OFF  
I/O  
31  
32  
25  
26  
20  
21  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P3.7 (RD)  
TA3.2  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
P4.0 (RD)  
TA3.1  
OFF  
33  
34  
35  
36  
27  
28  
29  
30  
22  
23  
24  
25  
P4.1 (RD)  
TA3.0  
OFF  
P4.2 (RD)  
TA3CLK  
P2.7 (RD)  
UCB1STE  
P3.5 (RD)  
UCB1CLK  
TB0TRG  
OFF  
OFF  
OFF  
37  
31  
26  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-1. Pin Attributes (continued)  
PIN NUMBER  
SIGNAL  
TYPE(3)  
BUFFER  
TYPE(4)  
POWER  
RESET STATE  
AFTER BOR(6)  
SIGNAL NAME(1) (2)  
SOURCE(5)  
PT  
RHA  
RHB  
P3.2 (RD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
38  
32  
27  
UCB1SIMO  
UCB1SDA  
P3.6(RD)  
UCB1SOMI  
UCB1SCL  
P6.1 (RD)  
TB0CLK  
P6.2 (RD)  
TB0.0  
OFF  
39  
33  
28  
OFF  
40  
41  
OFF  
P4.7 (RD)  
UCA0STE  
TB0.1  
OFF  
42  
43  
34  
35  
P5.0 (RD)  
UCA0CLK  
TB0.2  
OFF  
P5.1 (RD)  
UCA0RXD  
UCA0SOMI  
TB0.3  
I/O  
I
OFF  
44  
36  
I/O  
I/O  
I/O  
O
P5.2 (RD)  
UCA0TXD  
UCA0SIMO  
TB0.4  
OFF  
45  
46  
37  
38  
I/O  
I/O  
I/O  
O
P2.0 (RD)  
XOUT  
OFF  
29  
P2.1 (RD)  
XIN  
I/O  
I
OFF  
47  
48  
39  
40  
30  
31  
DVSS  
P
N/A  
(1) Signals names with (RD) denote the reset default pin name.  
(2) To determine the pin mux encodings for each pin, see 9.11.  
(3) Signal types: I = input, O = output, I/O = input or output  
(4) Buffer types: LVCMOS, Analog, or Power (see 7-3)  
(5) The power source shown in this table is the I/O power source, which may differ from the module power source.  
(6) Reset States:  
OFF = High impedance with Schmitt trigger and pullup or pulldown (if available) disabled  
PU = Pullup is enabled  
PD = Pulldown is enabled  
N/A = Not applicable  
(7) DNC = do not connect  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7.3 Signal Descriptions  
7-2 describes the signals for all device variants and package options.  
7-2. Signal Descriptions  
PIN NUMBER  
PT RHA RHB  
PIN  
FUNCTION  
SIGNAL NAME  
A0  
DESCRIPTION  
TYPE(1)  
12  
13  
14  
15  
4
10  
11  
12  
13  
4
7
8
I
Analog input A0  
Analog input A1  
Analog input A2  
Analog input A3  
Analog input A4  
Analog input A5  
Analog input A6  
Analog input A7  
Analog input A8  
Analog input A9  
Analog input A10  
Analog input A11  
ADC positive reference  
ADC negative reference  
A1  
I
A2  
9
I
A3  
10  
3
I
A4  
I
A5  
5
5
4
I
A6  
6
6
5
I
ADC  
A7  
7
7
6
I
A8  
8
8
I
7
A9  
9
9
I
A10  
10  
11  
12  
14  
13  
16  
21  
22  
26  
16  
15  
7
I
I
10  
12  
11  
14  
A11  
Veref+  
Veref-  
COMP0.0  
COMP0.1  
COMP0.2  
COMP0.3  
COMP0OUT  
ACLK  
MCLK  
SMCLK  
XIN  
I
9
I
8
I
Enhanced comparator input channel C0  
Enhanced comparator input channel C1  
Enhanced comparator input channel C2  
Enhanced comparator input channel C3  
Enhanced comparator output channel COUT  
ACLK output  
11  
I
eCOMP0  
I
20  
14  
13  
7
15  
11  
10  
6
I
O
I/O  
O
O
I
MCLK output  
Clock  
SMCLK output  
47  
46  
3
39  
38  
3
30  
29  
2
Input terminal for crystal oscillator  
Output terminal for crystal oscillator  
Spy-Bi-Wire input clock  
XOUT  
SBWTCK  
SBWTDIO  
TCK  
O
I
2
2
1
I/O  
I
Spy-Bi-Wire data input/output  
Test clock  
4
4
3
TCLK  
TDI  
6
6
5
I
Test clock input  
Debug  
6
6
5
I
Test data input  
TDO  
7
7
6
O
I
Test data output  
TEST  
TMS  
3
3
5
2
4
Test Mode pin selected digital I/O on JTAG pins  
Test mode select  
5
I
P1.0  
12  
13  
14  
15  
4
10  
11  
12  
13  
4
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5 (2)  
General-purpose I/O with port interrupt and wake from LPMx.5(2)  
General-purpose I/O with port interrupt and wake from LPMx.5(2)  
General-purpose I/O with port interrupt and wake from LPMx.5(2)  
P1.1  
8
P1.2  
9
P1.3  
10  
3
GPIO, Port 1  
P1.4  
P1.5  
5
5
4
P1.6  
6
6
5
P1.7  
7
7
6
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
FUNCTION  
7-2. Signal Descriptions (continued)  
PIN NUMBER  
PIN  
SIGNAL NAME  
P2.0  
DESCRIPTION  
TYPE(1)  
PT RHA RHB  
46  
47  
16  
25  
28  
29  
30  
36  
23  
27  
38  
24  
26  
37  
39  
32  
33  
34  
35  
8
38  
39  
14  
19  
22  
23  
24  
30  
17  
21  
32  
18  
20  
31  
33  
26  
27  
28  
29  
8
29  
30  
11  
14  
17  
18  
19  
25  
12  
16  
27  
13  
15  
26  
28  
21  
22  
23  
24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
General-purpose I/O with port interrupt and wake from LPMx.5  
eUSCI_B0 I2C clock  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P6.0  
P6.1  
P6.2  
UCB0SCL(3)  
UCB0SDA(3)  
GPIO, Port 2  
GPIO, Port 3  
GPIO, Port 4  
10  
9
9
9
17  
18  
42  
43  
44  
45  
10  
11  
19  
20  
21  
22  
40  
41  
15  
14  
15  
16  
34  
35  
36  
37  
13  
12  
GPIO, Port 5  
GPIO, Port 6  
eUSCI_B0 I2C data  
UCB0SCL(4)  
UCB0SDA(4)  
17  
18  
15  
16  
I/O  
I/O  
eUSCI_B0 I2C clock  
eUSCI_B0 I2C data  
I2C  
UCB1SCL(3)  
UCB1SDA(3)  
39  
38  
33  
32  
28  
27  
I/O  
I/O  
eUSCI_B1 I2C clock  
eUSCI_B1 I2C data  
UCB1SCL(4)  
UCB1SDA(4)  
8
9
8
9
I/O  
I/O  
eUSCI_B1 I2C clock  
eUSCI_B1 I2C data  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN NUMBER  
PIN  
FUNCTION  
SIGNAL NAME  
DVCC  
DESCRIPTION  
TYPE(1)  
PT RHA RHB  
1
48  
4
1
40  
4
32  
31  
3
P
P
Power supply  
Power ground  
Power  
DVSS  
VREF+  
P
Output of positive reference voltage with ground as reference  
eUSCI_A0 SPI slave transmit enable  
eUSCI_A0 SPI clock input/output  
UCA0STE(3)  
UCA0CLK(3)  
UCA0SOMI(3)  
UCA0SIMO(3)  
7
7
6
I/O  
I/O  
I/O  
I/O  
6
6
5
5
5
4
eUSCI_A0 SPI slave out/master in  
4
4
3
eUSCI_A0 SPI slave in/master out  
UCA0STE(4)  
UCA0CLK(4)  
UCA0SOMI(4)  
UCA0SIMO(4)  
42  
43  
44  
45  
34  
35  
36  
37  
I/O  
I/O  
I/O  
I/O  
eUSCI_A0 SPI slave transmit enable  
eUSCI_A0 SPI clock input/output  
eUSCI_A0 SPI slave out/master in  
eUSCI_A0 SPI slave in/master out  
UCA1STE  
UCA1CLK  
UCA1SOMI  
UCA1SIMO  
27  
28  
29  
30  
21  
22  
23  
24  
16  
17  
18  
19  
I/O  
I/O  
I/O  
I/O  
eUSCI_A1 SPI slave transmit enable  
eUSCI_A1 SPI clock input/output  
eUSCI_A1 SPI slave out/master in  
eUSCI_A1 SPI slave in/master out  
UCB0STE(3)  
UCB0CLK(3)  
UCB0SOMI(3)  
UCB0SIMO(3)  
12  
13  
15  
14  
10  
11  
13  
12  
7
8
I/O  
I/O  
I/O  
I/O  
eUSCI_B0 slave transmit enable  
eUSCI_B0 clock input/output  
SPI  
10  
9
eUSCI_B0 SPI slave out/master in  
eUSCI_B0 SPI slave in/master out  
UCB0STE(4)  
UCB0CLK(4)  
UCB0SOMI(4)  
UCB0SIMO(4)  
20  
19  
17  
18  
I/O  
I/O  
I/O  
I/O  
eUSCI_B0 slave transmit enable  
eUSCI_B0 clock input/output  
eUSCI_B0 SPI slave out/master in  
eUSCI_B0 SPI slave in/master out  
UCB1STE(3)  
UCB1CLK(3)  
UCB1SOMI(3)  
UCB1SIMO(3)  
36  
37  
39  
38  
30  
31  
33  
32  
25  
26  
28  
27  
I/O  
I/O  
I/O  
I/O  
eUSCI_B1 slave transmit enable  
eUSCI_B1 clock input/output  
eUSCI_B1 SPI slave out/master in  
eUSCI_B1 SPI slave in/master out  
UCB1STE(4)  
UCB1CLK(4)  
UCB1SOMI(4)  
UCB1SIMO(4)  
NMI  
11  
10  
8
I/O  
I/O  
I/O  
I/O  
I
eUSCI_B1 slave transmit enable  
eUSCI_B1 clock input/output  
eUSCI_B1 SPI slave out/master in  
eUSCI_B1 SPI slave in/master out  
Nonmaskable interrupt input  
Active-low reset input  
2
1
9
2
System  
RST  
2
2
1
I
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
FUNCTION  
7-2. Signal Descriptions (continued)  
PIN NUMBER  
PIN  
SIGNAL NAME  
TA0.1  
DESCRIPTION  
TYPE(1)  
PT RHA RHB  
13  
14  
12  
11  
12  
10  
8
9
7
I/O  
I/O  
I
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 outputs  
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 outputs  
Timer clock input TACLK for TA0  
TA0.2  
TA0CLK  
TA1.1  
5
4
6
5
4
6
4
3
5
I/O  
I/O  
I
Timer TA1 CCR1 capture: CCI1A input, compare: Out1 outputs  
Timer TA1 CCR2 capture: CCI2A input, compare: Out2 outputs  
Timer clock input TACLK for TA1  
TA1.2  
TA1CLK  
TA2.0(5)  
TA2.1(5)  
TA2.2(5)  
TA2CLK(5)  
25  
24  
23  
26  
19  
18  
17  
20  
14  
13  
12  
15  
I/O  
I/O  
I/O  
I
Timer TA2 CCR0 capture: CCI0A input, compare: Out0 outputs  
Timer TA2 CCR1 capture: CCI1A input, compare: Out1 outputs  
Timer TA2 CCR2 capture: CCI2A input, compare: Out2 outputs  
Timer clock input TACLK for TA2  
TA2.0(6)  
TA2.1(6)  
TA2.2(6)  
TA2CLK(6)  
20  
21  
22  
19  
I/O  
I/O  
I/O  
I
Timer TA2 CCR0 capture: CCI0A input, compare: Out0 outputs  
Timer TA2 CCR1 capture: CCI1A input, compare: Out1 outputs  
Timer TA2 CCR2 capture: CCI2A input, compare: Out2 outputs  
Timer clock input TACLK for TA2  
Timer_A  
TA3.0(5)  
TA3.1(5)  
TA3.2(5)  
TA3CLK(5)  
34  
33  
32  
35  
28  
27  
26  
29  
23  
22  
21  
24  
I/O  
I/O  
I/O  
I
Timer TA3 CCR0 capture: CCI0A input, compare: Out0 outputs  
Timer TA3 CCR1 capture: CCI1A input, compare: Out1 outputs  
Timer TA3 CCR2 capture: CCI2A input, compare: Out2 outputs  
Timer clock input TACLK for TA3  
TA3.0(6)  
TA3.1(6)  
TA3.2(6)  
TA3CLK(6)  
TB0.0  
10  
18  
17  
11  
41  
42  
43  
44  
45  
8
I/O  
I/O  
I/O  
I
Timer TA3 CCR0 capture: CCI0A input, compare: Out0 outputs  
Timer TA3 CCR1 capture: CCI1A input, compare: Out1 outputs  
Timer TA3 CCR2 capture: CCI2A input, compare: Out2 outputs  
Timer clock input TACLK for TA3  
16  
15  
26  
4
34  
35  
36  
37  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Timer TB0 CCR0 capture: CCI0A input, compare: Out0 outputs  
Timer TB0 CCR1 capture: CCI1A input, compare: Out1 outputs  
Timer TB0 CCR2 capture: CCI2A input, compare: Out2 outputs  
Timer TB0 CCR3 capture: CCI3A input, compare: Out3 outputs  
Timer TB0 CCR4 capture: CCI4A input, compare: Out4 outputs  
Timer TB0 CCR5 capture: CCI5A input, compare: Out5 outputs  
Timer TB0 CCR6 capture: CCI6A input, compare: Out6 outputs  
Timer clock input TBCLK for TB0  
TB0.1  
TB0.2  
TB0.3  
Timer_B  
TB0.4  
TB0.5  
TB0.6  
9
9
TB0CLK  
TB0TRG  
UCA0RXD  
UCA0TXD  
40  
37  
5
31  
5
Timer TB0 external trigger input for TB0OUTH  
I
eUSCI_A0 UART receive data  
4
4
3
O
eUSCI_A0 UART transmit data  
UCA0RXD(3)  
UCA0TXD(3)  
44  
45  
36  
37  
I
eUSCI_A0 UART receive data  
eUSCI_A0 UART transmit data  
UART  
O
UCA1RXD(4)  
UCA1TXD(4)  
Do not connect  
29  
30  
31  
23  
24  
25  
18  
19  
20  
I
eUSCI_A1 UART receive data  
eUSCI_A1 UART transmit data  
Do not connect  
O
DNC  
VQFN package exposed thermal pad. TI recommends connecting  
to VSS  
VQFN pad  
VQFN thermal pad  
PAD  
PAD  
(1) Pin Types: I = Input, O = Output, I/O = Input or Output, P = Power  
(2) Because this pin is multiplexed with the JTAG function, TI recommends disabling the pin interrupt function while in JTAG debug to  
prevent collisions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
(3) This is the default functionality that can be remapped by the USCIBxRMP or USCIA0RMP bit of the SYSCFG2 or SYCFG3 register.  
Only one selected port is valid at any time.  
(4) This is the remapped functionality controlled by the USCIBxRMP or USCIA0RMP bit of the SYSCFG2 or SYCFG3 register. Only one  
selected port is valid at any time.  
(5) This is the default functionality that can be remapped by the TAxRMP bit of the SYSCFG3 register. Only one selected port is valid at  
any time.  
(6) This is the remapped functionality controlled by the TAxRMP bit of the SYSCFG3 register. Only one selected port is valid at any time.  
7.4 Pin Multiplexing  
Pin multiplexing for this MCU is controlled by both register settings and operating modes (for example, if the  
MCU is in test mode). For details of the settings for each pin and diagrams of the multiplexed ports, see 9.11.  
7.5 Buffer Types  
7-3 defines the pin buffer types that are listed in 7-1  
7-3. Buffer Types  
NOMINAL  
OUTPUT DRIVE  
STRENGTH  
(mA)  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)  
OTHER  
CHARACTERISTICS  
HYSTERESIS  
PU OR PD  
LVCMOS  
Analog  
3.0 V  
3.0 V  
Y(1)  
N
Programmable  
N/A  
See 8.12.4  
See 8.12.4  
See analog modules in 8  
for details.  
N/A  
N/A  
SVS enables hysteresis on  
DVCC.  
Power (DVCC)  
Power (AVCC)  
3.0 V  
3.0 V  
N
N
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
(1) Only for input pins.  
7.6 Connection of Unused Pins  
7-4 lists the correct termination of unused pins.  
7-4. Connection of Unused Pins  
PIN(1)  
POTENTIAL  
Open  
COMMENT  
Switched to port function, output direction (PxDIR.n = 1)  
Px.0 to Px.7  
RST/NMI  
TEST  
47-kpullup or internal pullup selected with 10-nF (or 1.1-nF) pulldown(2)  
DVCC  
Open  
This pin always has an internal pulldown enabled.  
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection  
guidelines.  
(2) The pulldown capacitor should not exceed 1.1 nF when using MCUs with Spy-Bi-Wire interface in Spy-Bi-Wire mode with TI tools like  
FET interfaces or GANG programmers.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
 
 
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Voltage applied at DVCC pin to VSS  
Voltage applied to any other pin(2)  
4.1  
V
0.3  
VCC + 0.3  
(4.1 V Max)  
V
0.3  
Diode current at any device pin  
Junction temperature, TJ  
±2  
115  
125  
mA  
°C  
(3)  
Storage temperature, Tstg  
°C  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS  
.
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
8.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
Charged-device model (CDM), per JEDEC specification JESD22C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as  
±250 V may actually have higher performance.  
8.3 Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
VCC  
VSS  
TA  
Supply voltage applied at DVCC pin(1) (3) (2)  
Supply voltage applied at DVSS pin  
Operating free-air temperature  
1.8(4)  
3.6  
V
V
0
105  
115  
°C  
°C  
µF  
40  
40  
4.7  
0
TJ  
Operating junction temperature  
CDVCC  
Recommended capacitor at DVCC(5)  
10  
No FRAM wait states (NWAITSx = 0)  
With FRAM wait states (NWAITSx = 1)(7)  
8
16(8)  
40  
Processor frequency  
fSYSTEM  
MHz  
(MCLK frequency)(4) (6)  
0
fACLK  
ACLK frequency  
kHz  
fSMCLK  
SMCLK frequency  
16(8)  
MHz  
(1) Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset even within the recommended supply voltage range. Following  
the data sheet recommendation for capacitor CDVCC limits the slopes accordingly.  
(2) TI recommends that power to the DVCC pin must not exceed the limits specified in Recommended Operating Conditions. Exceeding  
the specified limits can cause malfunction of the device including erroneous writes to RAM and FRAM.  
(3) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(4) The minimum supply voltage is defined by the SVS levels. Refer to the SVS threshold parameters in 8.12.1.1.  
(5) A capacitor tolerance of ±20% or better is required. A low-ESR ceramic capacitor of 100 nF (minimum) should be placed as close as  
possible (within a few millimeters) to the respective pin pair.  
(6) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(7) Wait states only occur on actual FRAM accesses (that is, on FRAM cache misses). RAM and peripheral accesses are always executed  
without wait states.  
(8) If clock sources such as HF crystals or the DCO with frequencies >16 MHz are used, the clock must be divided in the clock system to  
comply with this operating condition.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.4 Active Mode Supply Current Into VCC Excluding External Current  
See (1)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
0 WAIT STATES  
(NWAITSx = 0)  
8 MHz  
0 WAIT STATES  
(NWAITSx = 0)  
16 MHz  
1 WAIT STATE  
(NWAITSx = 1)  
EXECUTION  
MEMORY  
TEST  
CONDITION  
PARAMETER  
UNIT  
TYP  
567  
578  
593  
324  
340  
354  
241  
255  
270  
268  
MAX  
TYP  
3208  
3226  
3249  
1272  
1304  
1321  
604  
MAX  
TYP  
3472  
3471  
3496  
2022  
2065  
2085  
1016  
1041  
1060  
1446  
MAX  
3 V, 25°C  
3 V, 85°C  
3 V, 105°C  
3 V, 25°C  
3 V, 85°C  
3 V, 105°C  
3 V, 25°C  
3 V, 85°C  
3 V, 105°C  
3 V, 25°C  
FRAM  
0% cache hit ratio  
IAM, FRAM(0%)  
µA  
µA  
3750  
FRAM  
75% cache hit ratio  
IAM, FRAM(75%)  
FRAM  
100% cache hit  
ratio  
IAM, FRAM(100%)  
624  
µA  
µA  
641  
1150  
(2)  
IAM, RAM  
RAM  
821  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Characterized with program executing typical data  
processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency  
Program and data entirely reside in FRAM. All execution is from FRAM.  
(2) Program and data reside entirely in RAM. All execution is from RAM. No access to FRAM.  
8.5 Active Mode Supply Current Per MHz  
VCC = 3 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TYP  
UNIT  
Active mode current consumption per MHz,  
execution from FRAM, no wait states  
[IAM (75% cache hit rate) at 8 MHz –  
IAM (75% cache hit rate) at 1 MHz) / 7 MHz  
dIAM,FRAM/df  
135  
µA/MHz  
8.6 Low-Power Mode LPM0 Supply Currents Into VCC Excluding External Current  
VCC = 3 V, TA = 25°C (unless otherwise noted)(1) (2)  
FREQUENCY (fSMCLK  
)
PARAMETER  
VCC  
1 MHz  
TYP  
8 MHz  
16 MHz  
TYP MAX  
UNIT  
MAX  
TYP  
312  
325  
MAX  
2 V  
3 V  
204  
215  
437  
ILPM0  
µA  
450  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK at specified frequency.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.7 Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)  
25°C  
TYP MAX  
1.48  
85°C  
105°C  
40°C  
TYP MAX  
PARAMETER  
VCC  
UNIT  
µA  
TYP  
MAX  
TYP MAX  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
1.2  
1.17  
1.87  
1.85  
0.92  
0.90  
0.99  
0.97  
0.65  
0.64  
0.50  
0.49  
0.59  
0.58  
0.92  
0.90  
7.82  
7.75  
8.53  
8.47  
7.54  
7.47  
7.6  
17.12  
16.99  
17.76  
17.65  
16.83  
16.70  
16.9  
46  
Low-power mode 3, 12.5-pF crystal,  
includes SVS(2) (3) (4)  
ILPM3,XT1  
ILPM3, REFO  
ILPM3,VLO  
ILPM3, RTC  
ILPM4, SVS  
ILPM4  
1.46  
2.20  
Low-power mode 3, RTC, excludes  
SVS(10)  
µA  
2.18  
1.20  
45.8  
Low-power mode 3, VLO, excludes  
SVS(5)  
µA  
µA  
1.17  
1.27  
Low-power mode 3, RTC, excludes  
SVS(9)  
1.24  
7.53  
7.19  
7.13  
7.02  
6.96  
7.12  
7.06  
7.54  
7.47  
16.77  
16.41  
16.30  
16.24  
16.13  
16.35  
16.24  
16.84  
16.70  
0.90  
Low-power mode 4, includes SVS(6)  
Low-power mode 4, excludes SVS(6)  
µA  
µA  
µA  
µA  
0.89  
0.74  
0.73  
0.83  
Low-power mode 4, RTC is soured  
from VLO, excludes SVS(7)  
ILPM4,VLO  
0.82  
1.2  
Low-power mode 4, RTC is soured  
from XT1, excludes SVS(8)  
ILPM4,XT1  
1.18  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for MCUs with HF crystal oscillator only.  
(3) Characterized with a Seiko Crystal SC-32S MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load  
capacitance are chosen to closely match the required 12.5-pF load.  
(4) Low-power mode 3, 12.5-pF crystal, includes SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 3, VLO, excludes SVS test conditions:  
Current for watchdog timer clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3)  
fXT1 = 32768 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(6) Low-power mode 4, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), CPU and all clocks are disabled, WDT and RTC  
disabled  
(7) Low-power mode 4, VLO, excludes SVS test conditions:  
Current for RTC clocked by VLO included. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4)  
fXT1 = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(8) Low-power mode 4, XT1, excludes SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4)  
fXT1 = 32768 Hz, fMCLK = fSMCLK = 0 MHz  
(9) RTC periodically wakes up every second with external 32768-Hz input as source.  
(10) RTC periodically wakes up every second with internal REFO 32768-Hz input as source.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
 
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.8 Low-Power Mode LPMx.5 Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
25°C  
TYP MAX  
0.66  
85°C  
105°C  
TYP MAX  
40°C  
TYP MAX  
PARAMETER  
VCC  
UNIT  
TYP  
MAX  
Low-power mode 3.5, 12.5-pF crystal,  
includes SVS(1) (2) (3)  
(also see 8-3)  
3 V  
2 V  
0.60  
0.58  
0.96  
0.92  
1.41  
1.33  
2.95  
ILPM3.5, XT1  
µA  
0.65  
3 V  
2 V  
3 V  
2 V  
0.24  
0.23  
0.26  
0.25  
0.40  
0.37  
0.61  
0.56  
1.10  
0.80  
ILPM4.5, SVS  
Low-power mode 4.5, includes SVS(4)  
Low-power mode 4.5, excludes SVS(5)  
µA  
µA  
0.029  
0.027  
0.041  
0.037  
0.161  
0.137  
0.361  
0.31  
ILPM4.5  
(1) Not applicable for MCUs with HF crystal oscillator only.  
(2) Characterized with a Seiko Crystal SC-32S MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load  
capacitance are chosen to closely match the required 12.5-pF load.  
(3) Low-power mode 3.5, 12.5-pF crystal, includes SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = 0, fMCLK = fSMCLK = 0 MHz  
(4) Low-power mode 4.5, includes SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5)  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 4.5, excludes SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5)  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.9 Typical Characteristics Low-Power Mode Supply Currents  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
-40  
-20  
0
20  
Temperature (°C)  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
Temperature (°C)  
40  
60  
80  
100  
120  
ilpm  
ilpm  
VCC = 3 V  
RTC enabled  
SVS disabled  
VCC = 2 V  
RTC enabled  
SVS disabled  
8-1. LPM3 Supply Current vs Temperature  
8-2. LPM3 Supply Current vs Temperature  
2
1.8  
1.6  
1.4  
1.2  
1
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0.8  
-40 -25 -10  
5
20  
Temperature (°C)  
35  
50  
65  
80  
95 110  
-40 -25 -10  
5
20  
Temperature (°C)  
35  
50  
65  
80  
95 110  
ilpm  
g-il  
VCC = 3 V  
XT1 enabled  
SVS enabled  
VCC = 3 V  
SVS disabled  
8-3. LPM3.5 Supply Current vs Temperature  
8-4. LPM4.5 Supply Current vs Temperature  
8.10 Current Consumption Per Module  
MODULE  
Timer_A  
TEST CONDITIONS  
REFERENCE CLOCK  
Module input clock  
MIN  
TYP  
5
MAX  
UNIT  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
nA  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC  
UART mode  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
7
SPI mode  
5
SPI mode  
5
I2C mode, 100 kbaud  
5
85  
8.5  
CRC  
From start to end of operation  
MCLK  
µA/MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.11 Thermal Resistance Characteristics  
THERMAL METRIC(1)  
VALUE(2)  
62.4  
UNIT  
LQFP 48 pin (PT)  
VQFN 40 pin (RHA)  
VQFN 32 pin (RHB)  
LQFP 48 pin (PT)  
VQFN 40 pin (RHA)  
VQFN 32 pin (RHB)  
LQFP 48 pin (PT)  
VQFN 40 pin (RHA)  
VQFN 32 pin (RHB)  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
31.0  
°C/W  
RθJA  
RθJC  
RθJB  
30.8  
22.1  
22.3  
°C/W  
°C/W  
20.8  
26.3  
12.3  
11.6  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC  
standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
8.12 Timing and Switching Characteristics  
8.12.1 Power Supply Sequencing  
8.12.1.1 PMM, SVS and BOR  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.1  
10  
TYP  
MAX UNIT  
VBOR, safe  
tBOR, safe  
ISVSH,AM  
Safe BOR power-down level(1)  
Safe BOR reset delay(2)  
V
ms  
SVSH current consumption, active mode  
SVSH current consumption, low-power modes  
SVSH power-down level(4)  
VCC = 3.6 V  
VCC = 3.6 V  
1.5 µA  
nA  
ISVSH,LPM  
VSVSH-  
240  
1.80  
1.88  
100  
1.71  
1.76  
1.87  
1.99  
V
V
VSVSH+  
SVSH power-up level(4)  
VSVSH_hys  
tPD,SVSH, AM  
tPD,SVSH, LPM  
SVSH hysteresis  
mV  
µs  
µs  
SVSH propagation delay, active mode  
SVSH propagation delay, low-power modes  
10  
100  
(1) A safe BOR can be correctly generated only if DVCC drops below this voltage before it rises.  
(2) When an BOR occurs, a safe BOR can be correctly generated only if DVCC is kept low longer than this period before it reaches  
VSVSH+  
(3) This is a characterized result with external 1-mA load to ground from 40°C to 85°C.  
.
(4) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference  
Design.  
V
Power Cycle Reset  
VSVS+  
SVS Reset  
BOR Reset  
VSVS–  
VBOR  
tBOR  
t
8-5. Power Cycle, SVS, and BOR Reset Conditions  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.2 Reset Timing  
8.12.2.1 Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
Additional wake-up time to activate the FRAM in  
AM if previously disabled by the FRAM controller or  
from a LPM if immediate activation is selected for  
wakeup(1)  
tWAKE-UP FRAM  
10  
µs  
200 +  
ns  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode (1)  
2.5 / fDCO  
tWAKE-UP LPM3  
tWAKE-UP LPM4  
Wake-up time from LPM3 to active mode (2)  
Wake-up time from LPM4 to active mode  
3 V  
3 V  
3 V  
10  
10  
µs  
µs  
µs  
µs  
ms  
tWAKE-UP LPM3.5 Wake-up time from LPM3.5 to active mode (2)  
350  
350  
1
SVSHE = 1  
SVSHE = 0  
tWAKE-UP LPM4.5 Wake-up time from LPM4.5 to active mode (2)  
3 V  
Wake-up time from RST or BOR event to active  
tWAKE-UP-RESET  
tRESET  
3 V  
3 V  
1
ms  
µs  
mode (2)  
Pulse duration required at RST/NMI pin to accept a  
reset  
2
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.3 Clock Specifications  
8.12.3.1 XT1 Crystal Oscillator (Low Frequency)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fXT1, LF  
XT1 oscillator crystal, low frequency LFXTBYPASS = 0  
32768  
Hz  
Measured at MCLK,  
XT1 oscillator LF duty cycle  
DCXT1, LF  
30%  
70%  
kHz  
60%  
kΩ  
fLFXT = 32768 Hz  
XT1 oscillator logic-level square-  
LFXTBYPASS = 1 (3) (4)  
wave input frequency  
fXT1,SW  
DCXT1, SW  
OALFXT  
CL,eff  
32.768  
LFXT oscillator logic-level square-  
LFXTBYPASS = 1  
40%  
wave input duty cycle  
Oscillation allowance for LF crystals LFXTBYPASS = 0, LFXTDRIVE = {3},  
200  
1
(5)  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
Integrated effective load  
See (7)  
pF  
capacitance(6)  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
tSTART,LFXT  
fFault,LFXT  
Start-up time (9)  
1000  
ms  
Oscillator fault frequency (10)  
XTS = 0(8)  
0
3500  
Hz  
(1) To improve EMI on the LFXT oscillator, observe the following guidelines:  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) See the MSP430 32-kHz Crystal Oscillators application note for details on crystal section, layout, and testing.  
(3) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
(4) Maximum frequency of operation of the entire device cannot be exceeded.  
.
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF  
For LFXTDRIVE = {1}, 6 pF CL,eff 9 pF  
For LFXTDRIVE = {2}, 6 pF CL,eff 10 pF  
For LFXTDRIVE = {3}, 6 pF CL,eff 12 pF  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers.  
Recommended effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF.  
The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective  
load capacitance of the selected crystal is met.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
(9) Includes start-up counter of 1024 clock cycles.  
(10) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the  
flag. A static condition or stuck at fault condition sets the flag.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
 
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.3.2 DCO FLL, Frequency  
over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
MIN  
1.0%  
3.0%  
TYP  
MAX UNIT  
1.0%  
FLL lock frequency, 16 MHz, 25°C  
FLL lock frequency, 16 MHz, 40°C to 105°C  
Measured at MCLK, Internal  
trimmed REFO as reference  
3.0%  
fDCO, FLL  
Measured at MCLK, XT1  
crystal as reference  
3 V  
0.5%  
60%  
FLL lock frequency, 16 MHz, 40°C to 105°C  
0.5%  
fDUTY  
Duty cycle  
3 V  
3 V  
3 V  
3 V  
40%  
50%  
0.25%  
0.022%  
200  
Jittercc  
Jitterlong  
tFLL, lock  
Cycle-to-cycle jitter, 16 MHz  
Long term jitter, 16 MHz  
FLL lock time, 16MHz  
Measured at MCLK, XT1  
crystal as reference  
ms  
8.12.3.3 DCO Frequency  
over recommended operating free-air temperature (unless otherwise noted) (see 8-6)  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP  
UNIT  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
8.5  
13.9  
20  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
fDCO, 16MHz  
fDCO, 12MHz  
fDCO, 8MHz  
fDCO, 4MHz  
DCO frequency, 16 MHz  
3 V  
3 V  
3 V  
3 V  
MHz  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
32.7  
6.4  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
10.5  
15.4  
24.8  
4.3  
DCO frequency, 12 MHz  
DCO frequency, 8 MHz  
DCO frequency, 4 MHz  
MHz  
MHz  
MHz  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
7.1  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
10.4  
16.9  
2.1  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
3.5  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
5.2  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
8.5  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.3.3 DCO Frequency (continued)  
over recommended operating free-air temperature (unless otherwise noted) (see 8-6)  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP  
UNIT  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
1.1  
1.8  
2.6  
4.3  
0.5  
0.9  
1.3  
2.2  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
fDCO, 2MHz  
DCO frequency, 2 MHz  
3 V  
MHz  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
fDCO, 1MHz  
DCO frequency, 1 MHz  
3 V  
MHz  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
35  
30  
25  
20  
15  
10  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 0  
DCOFTRIM = 7  
DCOFTRIM = 0  
5
DCOFTRIM = 0  
DCOFTRIM = 7  
DCOFTRIM = 0  
0
DCOFTRIM = 0  
DCO  
0
511  
0
511  
0
511  
0
511  
0
511  
0
511  
DCORSEL  
0
1
2
3
4
5
VCC = 3 V  
TA = 40°C to 85°C  
8-6. Typical DCO Frequency  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.3.4 REFO  
over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
MIN  
TYP  
1
MAX UNIT  
IREFO  
REFO oscillator current consumption  
REFO calibrated frequency  
TA = 25°C  
µA  
Hz  
Measured at MCLK  
40°C to 105°C  
3 V  
32768  
fREFO  
REFO absolute calibrated tolerance  
REFO frequency temperature drift  
1.8 V to 3.6 V  
3 V  
+3.5%  
%/°C  
3.5%  
dfREFO/dT  
Measured at MCLK(1)  
0.01  
1
dfREFO  
dVCC  
/
REFO frequency supply voltage drift  
Measured at MCLK at 25°C(2)  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
%/V  
fDC  
REFO duty cycle  
Measured at MCLK  
40%  
50%  
50  
60%  
µs  
tSTART  
REFO start-up time  
40% to 60% duty cycle  
(1) Calculated using the box method: (MAX(40°C to 105°C) MIN(40°C to 105°C)) / MIN(40°C to 105°C) / (105°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)  
8.12.3.5 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
TYP UNIT  
10 kHz  
0.5 %/°C  
fVLO  
Measured at MCLK  
3 V  
dfVLO/dT  
Measured at MCLK(1)  
Measured at MCLK(2)  
Measured at MCLK  
3 V  
dfVLO/dVCC VLO frequency supply voltage drift  
fVLO,DC Duty cycle  
1.8 V to 3.6 V  
3 V  
4
%/V  
50%  
(1) Calculated using the box method: (MAX(40°C to 105°C) MIN(40°C to 105°C)) / MIN(40°C to 105°C) / (105°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)  
Note  
The VLO clock frequency is reduced by 15% (typical) when the device switches from active mode to  
LPM3 or LPM4, because the reference changes. This lower frequency is not a violation of the VLO  
specifications (see 8.12.3.5).  
8.12.3.6 Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
3.8  
MAX UNIT  
4.6 MHz  
%/℃  
fMODOSC  
MODOSC frequency  
3 V  
3.0  
fMODOSC/dT  
MODOSC frequency temperature drift  
3 V  
0.102  
1.17  
50%  
fMODOSC/dVCC MODOSC frequency supply voltage drift  
fMODOSC,DC Duty cycle  
1.8 V to 3.6 V  
3 V  
%/V  
40%  
60%  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.4 Digital I/Os  
8.12.4.1 Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
0.90  
1.35  
0.50  
0.75  
0.3  
TYP  
MAX UNIT  
1.50  
V
2.25  
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.10  
V
1.65  
Negative-going input threshold voltage  
0.8  
V
1.2  
Input voltage hysteresis (VIT+ VIT–  
)
0.4  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
Pullup or pulldown resistor  
20  
35  
3
50  
20  
kΩ  
pF  
pF  
nA  
CI,dig  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
VIN = VSS or VCC  
Input capacitance, port pins with shared analog  
functions  
CI,ana  
Ilkg(Px.y)  
5
High-impedance leakage current of GPIO Pins See (1) (2)  
Ports with interrupt capability  
External interrupt timing (external trigger pulse (see block diagram and  
2 V, 3 V  
2 V, 3 V  
20  
t(int)  
50  
ns  
duration to set interrupt flag)(3)  
terminal function  
descriptions)  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
(3) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
8.12.4.2 Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = 3 mA(1)  
I(OHmax) = 5 mA(1)  
I(OLmax) = 3 mA(1)  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
1.4  
2.4  
0.0  
0.0  
16  
TYP  
MAX UNIT  
2.0  
V
3.0  
VOH  
High-level output voltage  
0.60  
V
0.60  
VOL  
Low-level output voltage  
I(OHmax) = 5 mA(1)  
fPort_CLK  
trise,dig  
tfall,dig  
Clock output frequency  
CL = 20 pF(2)  
CL = 20 pF  
CL = 20 pF  
MHz  
ns  
16  
10  
7
Port output rise time, digital only port pins  
Port output fall time, digital only port pins  
10  
5
ns  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The port can output frequencies at least up to the specified limit and might support higher frequencies.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.4.3 Typical Characteristics Outputs at 3 V and 2 V  
25  
10  
9
8
7
6
5
4
3
2
1
0
20  
15  
10  
TA = -40èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 105èC  
5
TA = 25èC  
TA = 85èC  
TA = 105èC  
0
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Low-Level Output Voltage (V)  
3
0
0.2 0.4 0.6 0.8  
1
Low-Level Output Voltage (V)  
1.2 1.4 1.6 1.8  
2
g-io  
g-io  
DVCC = 3 V  
DVCC = 2 V  
8-7. Typical Low-Level Output Current vs Low-Level Output  
8-8. Typical Low-Level Output Current vs Low-Level Output  
Voltage  
Voltage  
5
2
TA = -40èC  
TA = -40èC  
TA = 25èC  
TA = 25èC  
0
0
TA = 85èC  
TA = 105èC  
TA = 85èC  
TA = 105èC  
-5  
-2  
-10  
-15  
-20  
-25  
-30  
-4  
-6  
-8  
-10  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
High-Level Output Voltage (V)  
3
0
0.2 0.4 0.6 0.8  
1
High-Level Output Voltage (V)  
1.2 1.4 1.6 1.8  
2
g-io  
g-io  
DVCC = 3 V  
DVCC = 2 V  
8-9. Typical High-Level Output Current vs High-Level Output  
8-10. Typical High-Level Output Current vs High-Level  
Voltage  
Output Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.5 Internal Shared Reference  
8.12.5.1 Internal Reference Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
mV  
VSENSOR  
Temperature sensor voltage  
Temperature sensor coefficient  
Low-power threshold for eCOMP  
2.0 V, 3.0 V  
788  
TJ = 30℃  
TCSENSOR  
VeCOMP, LP  
2.5  
mV/°C  
V
TJ = 30℃  
TJ = 30℃  
2.0 V, 3.0 V  
2.0 V, 3.0 V  
1.20  
Positive built-in reference output at  
VREF+ pin with 1-mA load current  
to ground  
EXTREFEN = 1 with 1-mA load  
current  
VREF+, 1.2V Output  
TCREF+, 1.2V  
1.16  
1.20  
30  
1.24  
V
Temperature coefficient of VREF+ EXTREFEN = 1 with 1-mA load  
= 1.2 V built-in reference current  
3.0 V  
µV/°C  
The following parameters are for the 1.5-V, 2.0-V, and 2.5-V internal reference only and cannot be output to the VREF+ pin.  
REFVSEL = {2} for 2.5 V,  
3.0 V  
2.5  
±1.5%  
±1.5%  
±1.8%  
130  
INTREFEN = 1  
Positive built-in reference voltage  
as internal reference  
REFVSEL = {1} for 2.0 V,  
INTREFEN = 1  
VREF+, 1.5V, 2.0V, 2.5V  
2.5 V  
2.0 V  
2.0  
1.5  
30  
V
REFVSEL = {0} for 1.5 V,  
INTREFEN = 1  
From 0.1 Hz to 10 Hz,  
REFVSEL = {0}  
Noise  
RMS noise at VREF (3)  
µV  
V
REFVSEL = {0} for 1.5 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
1.8  
2.2  
2.7  
DVCC minimum voltage, Positive  
built-in reference active  
DVCC(min)  
Operating supply current into  
DVCC terminal(1)  
IREF+  
INTREFEN = 1  
3 V  
3 V  
19  
26  
µA  
µA  
Operating supply current into AVCC  
terminal(1)  
IREF+_ADC_BUF  
ADC ON, REFVSEL = {0, 1, 2}  
247  
400  
VREF (1.5 V, 2.0 V, 2.5 V)  
maximum load current, VREF+  
terminal  
REFVSEL = {0, 1, 2},  
AVCC = AVCC(min) for each  
reference level, INTREFEN = 1  
IO(VREF+)  
3 V  
3 V  
-1000  
+10  
µA  
REFVSEL = {0, 1, 2},  
Load-current regulation, VREF+  
terminal  
IO(VREF+) = +10 µA or -1000 µA  
AVCC = AVCC(min) for each  
reference level, INTREFEN = 1  
ΔVout/ ΔIo  
(VREF+)  
1500  
µV/mA  
Capacitance at VREF+ and VREF-  
terminals  
CVREF+/-  
TCREF+  
INTREFEN = 1  
3 V  
3 V  
0
100  
50  
pF  
Temperature coefficient of built-in  
reference  
REFVSEL = {0, 1, 2},  
INTREFEN = 1,  
TA = 40°C to 105°C(4)  
24  
ppm/K  
AVCC = AVCC (min) to AVCC(max), TA  
25°C, REFVSEL = {0, 1, 2},  
INTREFEN = 1  
=
PSRR_DC  
PSRR_AC  
tSETTLE  
Power supply rejection ratio (DC)  
Power supply rejection ratio (AC)  
Settling time of reference voltage(2)  
3 V  
3 V  
3 V  
100  
3.0  
75  
420  
100  
µV/V  
mV/V  
µs  
ΔAVCC= 0.1 V at 1 kHz  
AVCC = AVCC (min) to AVCC(max)  
REFVSEL = {0, 1, 2},  
,
INTREFEN = 0 1  
(1) The internal reference current is supplied through the AVCC terminal.  
(2) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
(3) The internal reference noise affects ADC performance when the ADC uses the internal reference.  
(4) Calculated using the box method: (MAX(40°C to 105°C) MIN(40°C to 105°C)) / MIN(40°C to 105°C) / (105°C (40°C))  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.6 Timer_A and Timer_B  
8.12.6.1 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, ACLK  
fTA  
Timer_A input clock frequency  
External: TACLK  
2 V, 3 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTA,cap  
Timer_A capture timing  
2 V, 3 V  
20  
ns  
8.12.6.2 Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, ACLK  
fTB  
Timer_B input clock frequency  
External: TBCLK  
2 V, 3 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTB,cap  
Timer_B capture timing  
2 V, 3 V  
20  
ns  
tTIMR  
Timer Clock  
CCR0-1  
0h  
1h  
CCR0  
CCR0-1  
0h  
CCR0  
tVALID,PWM  
Timer  
TAx.1  
tHD,PWM  
8-11. Timer PWM Mode  
Capture  
tTIMR  
Timer Clock  
tSU,CCIA  
t,HD,CCIA  
TAx.CCIA  
8-12. Timer Capture Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.7 eUSCI  
8.12.7.1 eUSCI (UART Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, MODCLK  
External: UCLK  
Duty cycle = 50% ±10%  
feUSCI eUSCI input clock frequency  
2 V, 3 V  
2 V, 3 V  
16 MHz  
fBITCLK BITCLK clock frequency (equals baud rate in Mbaud)  
5
MHz  
8.12.7.2 eUSCI (UART Mode) Timing Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP UNIT  
UCGLITx = 0  
12  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
40  
ns  
68  
tt  
UART receive deglitch time (1)  
2 V, 3 V  
110  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
8.12.7.3 eUSCI (SPI Master Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Internal: SMCLK, MODCLK  
Duty cycle = 50% ±10%  
MIN  
MAX UNIT  
MHz  
feUSCI eUSCI input clock frequency  
8
8.12.7.4 eUSCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX  
UNIT  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 1, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 1, UCMODEx = 01 or 10  
UCxCLK  
cycles  
tSTE,LEAD STE lead time, STE active to clock  
1
UCxCLK  
cycles  
tSTE,LAG STE lag time, last clock to STE inactive  
1
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
58  
40  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
ns  
ns  
ns  
ns  
tHD,MI  
0
20  
20  
tVALID,MO SIMO output data valid time(2)  
UCLK edge to SIMO valid, CL = 20 pF  
CL = 20 pF  
-3  
-3  
tHD,MO  
SIMO output data hold time(3)  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)).  
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in 8-13 and 8-14.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. Refer to the timing diagrams in 图  
8-13 and 8-14.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,ACC  
tSTE,DIS  
8-13. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,DIS  
tSTE,ACC  
8-14. SPI Master Mode, CKPH = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.7.5 eUSCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
MAX UNIT  
55  
tSTE,LEAD STE lead time, STE active to clock  
ns  
45  
20  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lag time, Last clock to STE inactive  
STE access time, STE active to SOMI data out  
STE disable time, STE inactive to SOMI high impedance  
SIMO input data setup time  
ns  
20  
65  
ns  
40  
40  
ns  
35  
15  
6
ns  
ns  
12  
12  
tHD,SI  
SIMO input data hold time  
71  
ns  
42  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO SOMI output data valid time(2)  
5
5
tHD,SO  
SOMI output data hold time (3)  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)).  
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in 8-15 and 8-16.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. Refer to the timing diagrams in 图  
8-15 and 8-16.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
8-15. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
8-16. SPI Slave Mode, CKPH = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.7.6 eUSCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 8-17)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, MODCLK  
External: UCLK  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2 V, 3 V  
2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2 V, 3 V  
2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2 V, 3 V  
µs  
600  
25  
300  
ns  
150  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2 V, 3 V  
12.5  
6.3  
75  
27  
30  
33  
tTIMEOUT Clock low time-out  
2 V, 3 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
8-17. I2C Mode Timing  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.8 ADC  
8.12.8.1 ADC, Power Supply and Input Range Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.0  
0
TYP  
MAX UNIT  
DVCC  
V(Ax)  
ADC supply voltage  
3.6  
V
V
Analog input voltage range  
All ADC pins  
DVCC  
Operating supply current into DVCC  
terminal, reference current not  
included, repeat-single-channel mode ADCDIV = 0, ADCCONSEQx = 10b  
fADCCLK = 5 MHz, ADCON = 1,  
REFON = 0, SHT0 = 0, SHT1 = 0,  
2.0 V  
3.0 V  
220  
277  
IADC  
µA  
Only one terminal Ax can be selected  
at one time from the pad to the ADC  
Input capacitance  
CI  
RI  
2.2 V  
4.5  
5.5  
2
pF  
capacitor array, including wiring and  
pad  
Input MUX ON resistance  
DVCC = 2 V, 0 V VAx DVCC  
kΩ  
8.12.8.2 ADC, Timing Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
For specified performance of ADC linearity  
parameters, 10-bit mode  
2.4 V to  
3.6 V  
6
fADCCLK  
MHz  
For specified performance of ADC linearity  
parameters, 12-bit mode  
2.4 V to  
3.6 V  
4.4  
External fADCCLK from ACLK, MCLK, or SMCLK,  
ADCSSEL 0  
2.4 V to  
3.6 V  
(2)  
tCONVERT  
Conversion time  
µs  
ns  
The error in a conversion started after tADCON is  
less than ±0.5 LSB,  
Reference and input signal already settled  
Turn-on settling time of  
the ADC  
tADCON  
100  
RS = 1000 Ω, RI = 20000 Ω, CI = 5.5 pF, CEXT  
= 8 pF,  
2.4 V to  
3.6 V  
0.52  
0.61  
Approximately 7.62 Tau (t) are required for an  
error of less than ±0.5 LSB, 10-bit mode.(3)  
tSample  
Sampling time  
µs  
RS = 1000 Ω, RI = 40000 Ω, CI = 5.5 pF, CEXT  
= 8 pF,  
2.4 V to  
3.6 V  
Approximately 9.01 Tau (t) are required for an  
error of less than ±0.5 LSB, 12-bit mode.(3)  
(1) 12 × 1/fADCCLK  
(2) (n + 2) × 1/fADCCLK, n = ADC resolution (8, 10, 12)  
(3) tSample = ln(2n+1) × τ, where n = ADC resolution, τ= (RI + RS) × CI  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.8.3 ADC, Linearity Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
Integral linearity error (12-bit  
mode)  
2.4 V to  
3.6 V  
Veref+ reference  
2.5  
2
2.5  
EI  
LSB  
Integral linearity error (10-bit  
mode)  
2.4 V to  
3.6 V  
Veref+ reference  
Veref+ reference  
Veref+ reference  
2  
1  
1  
Differential linearity error (12-bit  
mode)  
2.4 V to  
3.6 V  
1.5  
1.5  
ED  
LSB  
mV  
Differential linearity error (10-bit  
mode)  
2.4 V to  
3.6 V  
Veref+ reference,  
2.4 V to  
3.6 V  
Offset error (12-bit mode)  
Offset error (10-bit mode)  
Gain error (12-bit mode)  
Gain error (10-bit mode)  
TLV calibration data can be used  
-4.0  
-4.0  
4.0  
4.0  
9.0  
3.0  
5.0  
2.0  
to improve the parameter(2)  
EO  
EG  
ET  
Veref+ reference,  
2.4 V to  
3.6 V  
TLV calibration data can be used  
to improve the parameter(2)  
Veref+ as reference,  
2.4 V to  
3.6 V  
TLV calibration data can be used  
-9.0  
LSB  
LSB  
LSB  
LSB  
to improve the parameter(2)  
Veref+ as reference,  
2.4 V to  
3.6 V  
TLV calibration data can be used  
-3.0  
to improve the parameter(2)  
Veref+ as reference,  
Total unadjusted error (12-bit  
mode)  
2.4 V to  
3.6 V  
TLV calibration data can be used  
5.0  
2.0  
to improve the parameter(2)  
Veref+ as reference,  
Total unadjusted error (10-bit  
mode)  
2.4 V to  
3.6 V  
TLV calibration data can be used  
to improve the parameter(2)  
(1) The typical equivalent impedance of the sensor is 700 kΩ. The sample time required includes the sensor on time, tSENSOR(on)  
.
(2) For details, see the device descriptor in the MP430FR4xx and MP430FR2xx Family User's Guide, and see Designing With the  
MP430FR4xx and MP430FR2xx ADC application note for details on optimizing ADC performance for your application with the choice  
of internal or external reference.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.9 Enhanced Comparator (eCOMP)  
8.12.9.1 eCOMP0 Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.0  
0
TYP  
MAX  
3.6  
UNIT  
V
VCC  
VIC  
Supply voltage  
Common mode input range  
DC input hysteresis  
VCC  
V
CPEN = 1, CPHSEL= 00  
0
10  
20  
30  
CPEN = 1, CPHSEL= 01  
VHYS  
mV  
CPEN = 1, CPHSEL= 10  
CPEN = 1, CPHSEL= 11  
CPEN = 1, CPMSEL = 0  
+30  
+40  
35  
30  
40  
VOFFSET  
Input offset voltage  
mV  
µA  
CPEN = 1, CPMSEL = 1  
VIC = VCC/2, CPEN = 1, CPMSEL = 0  
VIC = VCC/2, CPEN = 1, CPMSEL = 1  
24  
1.6  
1
Quiescent current draw from VCC  
only comparator  
,
ICOMP  
CIN  
5
Input channel capacitance(1)  
Input channel series resistance  
pF  
kΩ  
On (switch closed)  
10  
20  
1
RIN  
Off (switch open)  
50  
MΩ  
CPMSEL = 0, CPFLT = 0, Overdrive = 20 mV  
CPMSEL = 1, CPFLT = 0, Overdrive = 20 mV  
tPD  
Propagation delay, response time  
Comparator enable time  
µs  
µs  
3.2  
CPEN = 01, CPMSEL = 0,  
V+ and V- from pads, Overdrive = 20 mV  
10.91  
tEN_CP  
CPEN = 01, CPMSEL = 1,  
V+ and V- from pads, Overdrive = 20 mV  
36.78  
11  
CPEN = 01, CPDACEN = 01,  
CPMSEL = 0, CPDACREFS = 1,  
CPDACBUF1 = 0F, Overdrive = 20 mV  
Comparator with reference DAC  
enable time  
tEN_CP_DAC  
µs  
CPEN = 01, CPDACEN = 01,  
CPMSEL = 1, Overdrive = 20 mV,  
CPDACREFS = 1, CPDACBUF1 = 0F  
36.82  
CPMSEL = 0, CPFLTDY = 00,  
Overdrive = 20 mV, CPFLT = 1  
0.7  
1.1  
1.9  
3.4  
CPMSEL = 0, CPFLTDY = 01,  
Overdrive = 20 mV, CPFLT = 1  
Propagation delay with analog filter  
active  
tFDLY  
µs  
CPMSEL = 0, CPFLTDY = 10,  
Overdrive = 20 mV, CPFLT = 1  
CPMSEL = 0, CPFLTDY = 11,  
Overdrive = 20 mV, CPFLT = 1  
INL  
Integral nonlinearity  
0.5  
0.5  
LSB  
LSB  
0.5  
0.5  
DNL  
Differential nonlinearity  
(1) See 8-18 for eCOMP CIN model.  
MSP430  
VI = External source voltage  
RS = External source resistance  
RI = Internal MUX-on input resistance  
CIN = Input capacitance  
RS  
RI  
VI  
VC  
CPAD = PAD capacitance  
CPext = Parasitic capacitance, external  
VC = Capacitance-charging voltage  
Cpext  
CPAD  
CIN  
8-18. eCOMP Input Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.12.10 FRAM  
8.12.10.1 FRAM Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1015  
100  
40  
TYP  
MAX  
UNIT  
Read and write endurance  
cycles  
TJ = 25°C  
TJ = 70°C  
TJ = 95°C  
TJ = 115°C  
tRetention  
Data retention duration  
years  
10  
10  
(1)  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM  
Erase current  
IREAD  
nA  
nA  
ns  
N/A(2)  
(3)  
Write time  
tREAD  
(4)  
(4)  
NWAITSx = 0  
NWAITSx = 1  
1 / fSYSTEM  
2 / fSYSTEM  
tREAD  
Read time  
ns  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current IREAD is included in the active mode current consumption parameter IAM,FRAM  
.
(2) FRAM does not require a special erase sequence.  
(3) Writing into FRAM is as fast as reading.  
(4) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
8.12.11 Debug and Emulation  
8.12.11.1 JTAG, 4-Wire and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
0
8
MHz  
µs  
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.04  
15  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
edge)(1)  
tSBW, En  
tSBW,Rst  
2.2 V, 3.0 V  
100  
µs  
Spy-Bi-Wire return to normal operation time  
TCK input frequency, 4-wire JTAG(2)  
15  
0
100  
10  
µs  
2.2 V  
3.0 V  
MHz  
MHz  
kΩ  
fTCK  
0
10  
Rinternal  
fTCLK  
tTCLK,Low/High  
fTCLK,FRAM  
Internal pulldown resistance on TEST  
2.2 V, 3.0 V  
20  
35  
50  
TCLK/MCLK frequency during JTAG access, no FRAM access  
16 MHz  
(limited by fSYSTEM  
)
TCLK low or high clock pulse duration, no FRAM access  
25  
4
ns  
MHz  
ns  
TCLK/MCLK frequency during JTAG access, including FRAM  
access (limited by fSYSTEM with no FRAM wait states)  
TCLK low or high clock pulse duration, including FRAM accesses  
tTCLK,FRAM,Low/High  
100  
(1) Tools that access the Spy-Bi-Wire and BSL interfaces must wait for the tSBW,En time after the first transition of the TEST/SBWTCK pin  
(low to high), before the second transition of the pin (high to low) during the entry sequence.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The MSP430FR247x is an ultra-low-power MCU. The architecture, combined with extensive low-power modes,  
is optimized to achieve extended battery life in, for example, portable measurement applications. The MCU  
features five 16-bit timers, four eUSCIs that support UART, SPI, and I2C, a hardware multiplier, an RTC module,  
and a high-performance 12-bit ADC, an enhanced comparator with built in 6-bit DAC for internal voltage  
reference .  
9.2 CPU  
The MSP430CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter (PC), stack pointer (SP), status register (SR),  
and constant generator (CG), respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be handled with  
all instructions.  
9.3 Operating Modes  
The MSP430 has one active mode and several software-selectable low-power modes of operation (see 9-1).  
An interrupt event can wake the MCU from low-power mode LPM0, LPM3 or LPM4, service the request, and  
restore the MCU back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5  
and LPM4.5 disable the core supply to minimize power consumption.  
Note  
XT1CLK and VLOCLK can be active during LPM4 mode if requested by low-frequency peripherals,  
such as RTC and WDT.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-1. Operating Modes  
AM  
LPM0  
CPU OFF  
16 MHz  
LPM3  
STANDBY  
40 kHz  
LPM4  
OFF  
0
LPM3.5  
ONLY RTC  
40 kHz  
LPM4.5  
SHUTDOWN  
0
ACTIVE  
MODE  
MODE  
(FRAM ON)  
Maximum system clock  
16 MHz  
1.48 µA with  
RTC counter  
only in LFXT  
0.66 µA with  
RTC counter  
only in LFXT  
0.74 µA  
without SVS  
41 nA without  
SVS  
Power consumption at 25°C, 3 V  
135 µA/MHz  
40 µA/MHz  
Wake-up time  
N/A  
N/A  
Instant  
All  
10 µs  
All  
10 µs  
I/O  
350 µs  
350 µs  
I/O  
Wake-up events  
RTC or I/O  
Partial power Partial power Partial power  
Regulator  
Full regulation Full regulation  
Power down  
down  
Optional  
On  
down  
Optional  
On  
down  
Optional  
On  
Power  
SVS  
On  
On  
Optional  
On  
Brownout  
MCLK  
SMCLK  
FLL  
On  
On  
Active  
Off  
Off  
Off  
Off  
Off  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
On  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
DCO  
Off  
Off  
Off  
Off  
Clock(2)  
MODCLK  
REFO  
Off  
Off  
Off  
Off  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
ACLK  
Off  
Off  
Off  
XT1CLK  
VLOCLK  
CPU  
Off  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
FRAM  
On  
On  
Off  
Off  
Off  
Off  
Core  
RAM  
On  
On  
On  
On  
Off  
Off  
Backup memory(1)  
Timer0_A3  
Timer1_A3  
Timer2_A3  
Timer3_A3  
Timer0_B7  
WDT  
On  
On  
On  
On  
On  
Off  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
On  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Peripherals  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
eUSCI_B1  
CRC  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
ADC  
Optional  
Optional  
State held  
Off  
Off  
Off  
RTC  
Off  
Optional  
State held  
Off  
I/O  
GPIO  
State held  
State held  
(1) Backup memory contains 32 bytes of register space in peripheral memory. See 9-32 and 9-54 for its memory allocation.  
(2) The status shown for LPM4 applies to internal clocks only.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.4 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see 9-2).  
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
9-2. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up, Brownout, Supply supervisor  
External reset RST  
SVSHIFG  
PMMRSTIFG  
Watchdog time-out, key violation  
FRAM uncorrectable bit error detection  
Software POR, BOR  
WDTIFG  
PMMPORIFG, PMMBORIFG  
SYSRSTIV  
Reset  
FFFEh  
63, Highest  
FLL unlock error  
FLLUNLOCKIFG  
System NMI  
Vacant memory access  
JTAG mailbox  
FRAM access time error  
FRAM bit error detection  
VMAIFG  
JMBINIFG, JMBOUTIFG  
CBDIFG, UBDIFG  
Nonmaskable  
Nonmaskable  
FFFCh  
FFFAh  
62  
61  
User NMI  
External NMI  
Oscillator fault  
NMIIFG  
OFIFG  
Timer0_A3  
Timer0_A3  
Timer1_A3  
Timer1_A3  
Time2_A3  
Timer2_A3  
Timer3_A3  
Timer3_A3  
Timer0_B7  
TA0CCR0 CCIFG0  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
FFF8h  
FFF6h  
FFF4h  
FFF2h  
FFF0h  
FFEEh  
FFECh  
FFEAh  
FFE8h  
60  
59  
58  
57  
56  
55  
54  
53  
52  
TA0CCR1 CCIFG1, TA0CCR2 CCIFG2,  
TA0IFG (TA0IV)  
TA1CCR0 CCIFG0  
TA1CCR1 CCIFG1, TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)  
TA2CCR0 CCIFG0  
TA2CCR1 CCIFG1, TA2CCR2 CCIFG2,  
TA2IFG (TA2IV)  
TA3CCR0 CCIFG0  
TA3CCR1 CCIFG1, TA3CCR2 CCIFG2,  
TA3IFG (TA3IV)  
TB0CCR0 CCIFG0  
TB0CCR1 CCIFG1, TB0CCR2 CCIFG2,  
TB0CCR3 CCIFG3, TB0CCR4 CCIFG4,  
TB0CCR5 CCIFG5, TB0CCR6 CCIFG6,  
TB0IFG (TB0IV)  
Timer0_B7  
Maskable  
FFE6h  
51  
RTC  
RTCIFG  
WDTIFG  
Maskable  
Maskable  
FFE4h  
FFE2h  
50  
49  
Watchdog timer interval mode  
UCTXCPTIFG, UCSTTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
(UCA0IV)  
eUSCI_A0 receive or transmit  
eUSCI_A1 receive or transmit  
Maskable  
Maskable  
FFE0h  
FFDEh  
48  
47  
UCTXCPTIFG, UCSTTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
(UCA0IV)  
UCB0RXIFG, UCB0TXIFG (SPI mode)  
UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1, UCRXIFG2,  
UCTXIFG2, UCRXIFG3, UCTXIFG3,  
UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB0IV)  
eUSCI_B0 receive or transmit  
Maskable  
FFDCh  
46  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
PRIORITY  
9-2. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
UCB1RXIFG, UCB1TXIFG (SPI mode)  
UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1, UCRXIFG2,  
UCTXIFG2, UCRXIFG3, UCTXIFG3,  
UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB0IV)  
eUSCI_B1 receive or transmit  
Maskable  
FFDAh  
FFD8h  
45  
44  
ADCIFG0, ADCINIFG, ADCLOIFG,  
ADCHIIFG, ADCTOVIFG, ADCOVIFG  
(ADCIV)  
ADC  
Maskable  
P1  
P2  
P1IFG.0 to P1IFG.7 (P1IV)  
P2IFG.0 to P2IFG.7 (P2IV)  
P3IFG.0 to P2IFG.7 (P3IV)  
P4IFG.0 to P4IFG.7 (P4IV)  
P5IFG.0 to P5IFG.7 (P5IV)  
P6IFG.0 to P6IFG.2 (P6IV)  
CPIIFG, CPIFG (CP0IV)  
Reserved  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
FFD6h  
FFD4h  
43  
42  
P3  
FFD2h  
41  
P4  
FFD0h  
40  
39  
P5  
FFCEh  
P6  
FFCCh  
38  
eCOMP0  
Reserved  
FFCAh  
37, Lowest  
FFC6hFF88h  
9-3. Signatures  
SIGNATURE  
BSL I2C Address(1)  
BSL Config  
WORD ADDRESS  
0FFA0h  
0FF8Ah  
0FF88h  
0FF86h  
0FF84h  
0FF82h  
0FF80h  
BSL Config Signature  
BSL Signature2  
BSL Signature1  
JTAG Signature2  
JTAG Signature1  
(1) 7-bit address BSL I2C interface  
9.5 Bootloader (BSL)  
The BSL lets users program the FRAM or RAM using either the UART serial interface or the I2C interface.  
Access to the MCU memory through the BSL is protected by an user-defined password. Use of the BSL requires  
four pins (see 9-4 and 9-5). The BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO  
and TEST/SBWTCK pins. This device can support the blank device detection automatically to invoke the BSL  
with bypass this special entry sequence for saving time and on board programmable. For the complete  
description of the feature of the BSL, see the MSP430™ FRAM Devices Bootloader (BSL) User's Guide.  
9-4. UART BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.4  
P1.5  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-5. I2C BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
RST/NMI/SBWTDIO  
Entry sequence signal  
Entry sequence signal  
Data transmit and receive  
Clock  
TEST/SBWTCK  
P1.2  
P1.3  
VCC  
VSS  
Power supply  
Ground supply  
9.6 JTAG Standard Interface  
The MSP low-power microcontrollers support the standard JTAG interface, which requires four signals for  
sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin  
enables the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with  
MSP430 development tools and device programmers. 9-6 lists the JTAG pin requirements. For further details  
on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide.  
For details on using the JTAG interface, see MSP430 Programming With the JTAG Interface User's Guide.  
9-6. JTAG Pin Requirements and Function  
DEVICE SIGNAL  
DIRECTION  
JTAG FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
P1.4/.../TCK  
IN  
IN  
P1.5/.../TMS  
P1.6/.../TDI/TCLK  
P1.7/.../TDO  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
IN  
OUT  
IN  
IN  
Power supply  
DVSS  
Ground supply  
9.7 Spy-Bi-Wire Interface (SBW)  
The MSP low-power microcontrollers support the 2-wire SBW interface. SBW can be used to interface with MSP  
development tools and device programmers. 9-7 lists the SBW interface pin requirements. For further details  
on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide.  
For details on using the SBW interface, see the MSP430 Programming With the JTAG Interface User's Guide.  
9-7. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
DIRECTION  
SBW FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN  
IN, OUT  
DVSS  
Ground supply  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.8 FRAM  
The FRAM can be programmed using the JTAG port, SBW, the BSL, or in-system by the CPU. Features of the  
FRAM include:  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
9.9 Memory Protection  
The device features memory protection for user access authority and write protection, including options to:  
Secure the whole memory map to prevent unauthorized access from JTAG port or BSL, by writing JTAG and  
BSL signatures using the JTAG port, SBW, the BSL, or in-system by the CPU.  
Enable write protection to prevent unwanted write operation to FRAM contents by setting the control bits in  
the System Configuration 0 register. For detailed information, see the SYS chapter in the MP430FR4xx and  
MP430FR2xx Family User's Guide.  
9.10 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. All peripherals can be handled  
by using all instructions in the memory map. For complete module description, see the MP430FR4xx and  
MP430FR2xx Family User's Guide.  
9.10.1 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also  
includes supply voltage supervisor (SVS) and brownout protection. The brownout reset circuit (BOR) is  
implemented to provide the proper internal reset signal to the device during power on and power off. The SVS  
circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the  
primary supply.  
The device contains two on-chip reference: 1.5 V for internal reference and 1.2 V for external reference.  
The 1.5-V reference is internally connected to ADC channel 13. DVCC is internally connected to ADC channel  
15. When DVCC is set as the reference voltage for ADC conversion, the DVCC can be easily represent as 方程  
1 by using ADC sampling 1.5-V reference without any external components support.  
DVCC = (1023 × 1.5 V) ÷ 1.5-V reference ADC result  
(1)  
A 1.2-V reference voltage can be buffered, when EXTREFEN = 1 on PMMCTL2 register, and it can be output to  
P1.4/../A1/VREF+ , meanwhile the ADC channel 1 can also be selected to monitor this voltage. For more  
detailed information, see the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
9.10.2 Clock System (CS) and Clock Distribution  
The clock system includes a 32-kHz crystal oscillator (XT1), an internal very-low-power low-frequency oscillator  
(VLO), an integrated 32-kHz RC oscillator (REFO), an integrated internal digitally controlled oscillator (DCO) that  
may use frequency-locked loop (FLL) locking with internal or external 32-kHz reference clock, and an on-chip  
asynchronous high-speed clock (MODOSC). The clock system is designed for cost-effective designs with  
minimal external components. A fail-safe mechanism is included for XT1. The clock system module offers the  
following clock signals.  
Main Clock (MCLK): The system clock used by the CPU and all relevant peripherals accessed by the bus. All  
clock sources except MODOSC can be selected as the source with a predivider of 1, 2, 4, 8, 16, 32, 64, or  
128.  
Sub-Main Clock (SMCLK): The subsystem clock used by the peripheral modules. SMCLK derives from the  
MCLK with a predivider of 1, 2, 4, or 8. This means SMCLK is always equal to or less than MCLK.  
Auxiliary Clock (ACLK): This clock is derived from the external XT1 clock, internal VLO or internal REFO  
clock up to 40 kHz.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
All peripherals may have one or several clock sources depending on specific functionality. 9-8 lists the clock  
distribution used in this device.  
9-8. Clock Distribution  
CLOCK  
SOURCE  
SELECT  
BITS  
MCLK  
SMCLK  
ACLK  
MODCLK  
XT1CLK  
VLOCLK  
EXTERNAL PIN  
Frequency  
range  
DC to  
16 MHz  
DC to  
16 MHz  
DC to 40 kHz 5 MHz ±10% DC to 40 kHz 10 kHz ±50%  
CPU  
N/A  
N/A  
Default  
Default  
Default  
Default  
Default  
Default  
00b  
10b  
FRAM  
RAM  
N/A  
CRC  
N/A  
MPY32  
I/O  
N/A  
N/A  
TA0  
TASSEL  
TASSEL  
TASSEL  
TASSEL  
TBSSEL  
UCSSEL  
UCSSEL  
UCSSEL  
UCSSEL  
WDTSSEL  
ADCSSEL  
RTCSS  
10b  
01b  
01b  
01b  
01b  
01b  
01b  
01b  
01b  
01b  
01b  
01b  
01b(1)  
11b  
00b (TA0CLK pin)  
00b (TA1CLK pin)  
00b (TA2CLK pin)  
00b (TA3CLK pin)  
00b (TB0CLK pin)  
00b (UCA0CLK pin)  
00b (UCA1CLK pin)  
00b (UCB0CLK pin)  
00b (UCB1CLK pin)  
TA1  
10b  
TA2  
10b  
11b  
TA3  
10b  
TB0  
10b  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
eUSCI_B1  
WDT  
10b or 11b  
10b or 11b  
10b or 11b  
10b or 11b  
00b  
10b  
ADC  
10b or 11b  
01b(1)  
RTC  
11b  
(1) Controlled by the RTCCKSEL bit in the SYSCFG2 register.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
SRAM  
CRC  
CPU  
FRAM  
I/O  
eCOMP  
MCLK  
Timer_Bs  
eUSCI_As  
RTC  
ADC  
Timer_As  
eUSCI_Bs  
WDT  
Clock System (CS)  
SMCLK  
ACLK  
VLOCLK  
MODCLK  
Selected on SYSCFG2  
XT1CLK  
9-1. Clock Distribution Block Diagram  
9.10.3 General-Purpose Input/Output Port (I/O)  
Up to 43 I/O ports are implemented.  
P1, P3, P4, and P5 implement 8 bits each. P2 implements 6 bits excluding the I/Os multiplexed with XIN and  
XOUT. P6 implements 3 bits.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPMx.5 wake-up input capability are available for all GPIOs (up to 43)  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise as a pair.  
Note  
Configuration of digital I/Os after BOR reset  
To prevent any cross currents during start-up of the device, all port pins are high-impedance with  
Schmitt triggers and module functions disabled. To enable the I/O functions after a BOR reset, the  
ports must be configured first and then the LOCKLPM5 bit must be cleared. For details, see the  
Configuration After Reset section in the Digital I/O chapter of the MP430FR4xx and MP430FR2xx  
Family User's Guide.  
9.10.4 Watchdog Timer (WDT)  
The primary function of the WDT module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals. 9-9 lists the system clocks that can be used to source the WDT.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-9. WDT Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER  
MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
Reserved  
9.10.5 System (SYS) Module  
The SYS module handles many of the system functions within the device. These features include power-on reset  
(POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector  
generators, bootloader entry mechanisms, and configuration management (device descriptors). The SYS  
module also includes a data exchange mechanism through SBW called a JTAG mailbox mail box that can be  
used in the application. 9-10 summarizes the interrupts that are managed by the SYS module.  
9-10. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
04h  
06h  
08h  
Security violation (BOR)  
Reserved  
0Ah  
0Ch  
SVSHIFG SVSH event (BOR)  
Reserved  
0Eh  
10h  
SYSRSTIV, System Reset  
015Eh  
Reserved  
12h  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
FLL unlock (PUC)  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
24h  
Reserved  
22h, 26h to 3Eh  
Lowest  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-10. System Module Interrupt Vector Registers (continued)  
INTERRUPT VECTOR  
REGISTER  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
No interrupt pending  
SVS low-power reset entry  
Uncorrectable FRAM bit error detection  
Reserved  
00h  
02h  
Highest  
04h  
06h  
Reserved  
08h  
Reserved  
0Ah  
Reserved  
0Ch  
SYSSNIV, System NMI  
015Ch  
Reserved  
0Eh  
Reserved  
10h  
VMAIFG vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
Reserved  
12h  
14h  
16h  
18h  
1Ah to 1Eh  
00h  
Lowest  
Highest  
Lowest  
No interrupt pending  
NMIIFG NMI pin or SVSH event  
OFIFG oscillator fault  
Reserved  
02h  
SYSUNIV, User NMI  
015Ah  
04h  
06h to 1Eh  
9.10.6 Cyclic Redundancy Check (CRC)  
The 16-bit cyclic redundancy check (CRC) module produces a signature based on a sequence of data values  
and can be used for data checking purposes. The CRC generation polynomial is compliant with CRC-16-CCITT  
standard of x16 + x12 + x5 + 1.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.10.7 Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_B0)  
The eUSCI modules are used for serial data communications. The eUSCI_A module supports either UART or  
SPI communications. The eUSCI_B module supports either SPI or I2C communications. Additionally, eUSCI_A  
supports automatic baud-rate detection and IrDA. The eUSCI_A and eUSCI_B are connected either from P1 port  
or P2 port, it can be selected from the USCIA0RMP or USCIBxRMP bits of SYSCFG2 and SYSCFG3. 9-11  
lists the pin configurations that are required for each eUSCI mode.  
9-11. eUSCI Pin Configurations  
PIN (PxSEL Selection)  
UART  
SPI  
SIMO  
SOMI  
SCLK  
STE  
P1.4(1)  
TXD  
P1.5(1)  
RXD  
P1.6(1)  
P1.7(1)  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
PIN (PxSEL Selection)  
UART  
TXD  
RXD  
SPI  
P5.2(2)  
SIMO  
SOMI  
SCLK  
STE  
P5.1(2)  
P5.0(2)  
P4.7(2)  
PIN (PxSEL Selection)  
UART  
TXD  
RXD  
SPI  
P2.6  
SIMO  
SOMI  
SCLK  
STE  
P2.5  
P2.4  
P3.1  
PIN (PxSEL Selection)  
P1.0(1)  
I2C  
SPI  
STE  
P1.1(1)  
SCLK  
SIMO  
SOMI  
SPI  
P1.2(1)  
SDA  
SCL  
I2C  
P1.3(1)  
PIN (PxSEL Selection)  
P5.6(2)  
STE  
P5.5(2)  
SCLK  
SIMO  
SOMI  
SPI  
P4.6(2)  
SDA  
SCL  
I2C  
P4.5(2)  
PIN (PxSEL Selection)  
P2.7(1)  
STE  
P3.5(1)  
SCLK  
SIMO  
SOMI  
SPI  
P3.2(1)  
SDA  
SCL  
I2C  
P3.6(1)  
eUSCI_B1  
PIN (PxSEL Selection)  
P5.4(2)  
STE  
P5.3(2)  
SCLK  
SIMO  
SOMI  
P4.4(2)  
SDA  
SCL  
P4.3(2)  
(1) This is the default functionality that can be remapped by the USCIBxRMP or USCIA0RMP bit of the  
SYSCFG2 or SYCFG3 register. Only one selected port is valid at any time.  
(2) This is the remapped functionality controlled by the USCIBxRMP or USCIA0RMP bit of the  
SYSCFG2 or SYCFG3 register. Only one selected port is valid at any time.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.10.8 Timers (TA0, TA1, TA2, TA3 and TB0)  
The TA0, TA1, TA2 and TA3 modules are 16-bit timers and counters with three capture/compare registers each.  
Each timer supports multiple captures or compares, PWM outputs, and interval timing (see 9-12 and 9-13).  
Each timer has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow  
conditions and from each of the capture/compare registers. The CCR0 registers on both TA0 and TA2 are not  
externally connected and can only be used for hardware period timing and interrupt generation. In Up mode,  
they can be used to set the overflow value of the counter.  
9-12. Timer0_A0 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P1.0  
TA0CLK  
TACLK  
ACLK  
ACLK (internal)  
SMCLK (internal)  
VLO (internal)  
ACLK (internal)  
Timer  
N/A  
TA0  
SMCLK  
INCLK  
CCI0A  
Not used  
Timer1_A1 CCI0B  
input  
VLO (internal)  
CCI0B  
CCR0  
CCR1  
DVSS  
DVCC  
TA0.1  
GND  
VCC  
P1.1  
P1.2  
CCI1A  
TA0.1  
Timer1_A1 CCI1B  
input  
RTC (internal)  
CCI1B  
TA1  
TA2  
DVSS  
DVCC  
TA0.2  
GND  
VCC  
CCI2A  
TA0.2  
Timer1_A1 INCLK  
Timer1_A1 CCI2B  
input,  
N/A  
CCI2B  
CCR2  
IR carrier input  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-13. Timer0_A1 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P1.6  
TA1CLK  
TACLK  
ACLK  
ACLK (internal)  
SMCLK (internal)  
Timer  
N/A  
TA0  
TA1  
TA2  
SMCLK  
Timer0_A3 CCR2B  
output (internal)  
INCLK  
CCI0A  
CCI0B  
N/A  
Not used  
Not used  
Timer0_A3 CCR0B  
output (internal)  
CCR0  
CCR1  
CCR2  
DVSS  
DVCC  
TA1.1  
GND  
VCC  
P1.5  
P1.4  
CCI1A  
TA1.1  
Timer0_A3 CCR1B  
output (internal)  
CCI1B  
To ADC trigger  
DVSS  
DVCC  
TA1.2  
GND  
VCC  
CCI2A  
TA1.2  
Timer0_A3 CCR2B  
output (internal)  
CCI2B  
IR coding input  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
TA0  
TA1  
TA0CLK  
ACLK  
00  
01  
10  
11  
TA1CLK  
ACLK  
00  
01  
10  
11  
16-bit Counter  
SMCLK  
VLO  
16-bit Counter  
SMCLK  
00  
01  
10  
11  
ACLK  
VLO  
TA0.0A  
TA0.0B  
00  
01  
10  
11  
CCR0  
DVSS  
DVCC  
TA1.0A  
TA1.0B  
CCR0  
DVSS  
DVCC  
P1.1  
RTC  
00  
01  
10  
11  
TA0.1A  
TA0.1B  
P1.1  
P1.5  
00  
01  
10  
11  
CCR1  
DVSS  
DVCC  
TA1.1A  
TA1.1B  
P1.5  
To ADC Trigger  
CCR1  
DVSS  
DVCC  
P1.2  
00  
01  
10  
11  
TA0.2A  
TA0.2B  
P1.2  
P1.4  
00  
01  
10  
11  
CCR2  
DVSS  
DVCC  
TA1.2A  
TA1.2B  
P1.4  
CCR2  
DVSS  
DVCC  
Coding  
Carrier  
Infrared  
Logic (SYS)  
P2.0/UCA0TXD/UCA0SIMO  
UCA0TXD/UCA0SIMO  
eUSCI_A0  
Data  
9-2. TA0 and TA1 Signal Connections  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-14. Timer2_A3 and Timer3_A3 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P3.4  
TA2CLK  
ACLK (internal)  
SMCLK (internal)  
VLO (internal)  
TA2.0  
TACLK  
ACLK  
Timer  
N/A  
TA0  
SMCLK  
INCLK  
CCI0A  
P2.3  
P3.3  
P3.0  
TA2.0  
Timer3_A3 CCI0B  
input  
VLO (internal)  
CCI0B  
CCR0  
CCR1  
CCR2  
DVSS  
DVCC  
TA2.1  
GND  
VCC  
CCI1A  
TA2.1  
Timer3_A3 CCI1B  
input  
RTC (internal)  
CCI1B  
TA1  
TA2  
DVSS  
DVCC  
TA2.2  
GND  
VCC  
CCI2A  
TA2.2  
Timer3_A3 CCI2B  
input  
N/A  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
P4.2  
P4.1  
P4.0  
P3.7  
TA3CLK  
TACLK  
ACLK  
ACLK (internal)  
SMCLK (internal)  
Timer  
CCR0  
CCR1  
CCR2  
N/A  
TA0  
TA1  
TA2  
SMCLK  
Timer2_A3 CCR2B  
output (internal)  
INCLK  
CCI0A  
CCI0B  
TA3.0  
TA3.0  
Timer2_A3 CCR0B  
output (internal)  
Timer3_B0 CCI0B  
input  
DVSS  
DVCC  
TA3.1  
GND  
VCC  
CCI1A  
TA3.1  
Timer2_A3 CCR1B  
output (internal)  
Timer3_B0 CCI1B  
input  
CCI1B  
DVSS  
DVCC  
TA3.2  
GND  
VCC  
CCI2A  
TA3.2  
Timer2_A3 CCR2B  
output (internal)  
Timer3_B0 CCI2B  
input  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-15. Timer0_B7 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P6.1  
TB0CLK  
ACLK (internal)  
SMCLK (internal)  
N/A  
TBCLK  
ACLK  
Timer  
N/A  
SMCLK  
INCLK  
CCI0A  
P6.2  
P4.7  
P5.0  
TB0.0  
TB0.0  
TB0.1  
TB0.2  
Timer3_A3 CCI0B  
input (internal)  
CCI0B  
CCR0  
CCR1  
CCR2  
TB0  
DVSS  
DVCC  
TB0.1  
GND  
VCC  
CCI1A  
Timer3_A3 CCI1B  
input (internal)  
CCI1B  
TB1  
TB2  
DVSS  
DVCC  
TB0.2  
GND  
VCC  
CCI2A  
Timer3_A3 CCI2B  
input (internal)  
CCI2B  
DVSS  
DVCC  
TB0.3  
N/A  
GND  
VCC  
P5.1  
P5.2  
P4.3  
P4.4  
CCI1A  
CCI1B  
GND  
VCC  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
CCR3  
CCR4  
CCR5  
CCR6  
TB3  
TB4  
TB5  
TB6  
DVSS  
DVCC  
TB0.4  
N/A  
CCI1A  
CCI1B  
GND  
VCC  
DVSS  
DVCC  
TB0.5  
N/A  
CCI1A  
CCI1B  
GND  
VCC  
DVSS  
DVCC  
TB0.6  
N/A  
CCI1A  
CCI1B  
GND  
VCC  
DVSS  
DVCC  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
TA2  
TA3  
TB0  
TA2CLK  
ACLK  
00  
01  
10  
11  
TA3CLK  
ACLK  
00  
01  
10  
11  
TB0CLK  
ACLK  
00  
01  
10  
11  
16-bit Counter  
00  
01  
10  
11  
P5.1  
SMCLK  
VLO  
16-bit Counter  
16-bit Counter  
TB0.3A  
TB0.3B  
P5.1  
P5.2  
P5.3  
SMCLK  
SMCLK  
CCR3  
CCR4  
CCR5  
DVSS  
DVCC  
00  
01  
10  
11  
P2.3  
VLO  
TA2.0A  
TA2.0B  
P4.1  
00  
01  
10  
11  
P2.3  
P3.3  
P3.0  
CCR0  
P5.2  
00  
01  
10  
11  
DVSS  
DVCC  
TA3.0A  
TA3.0B  
P6.2  
00  
01  
10  
11  
P4.1  
P4.0  
P3.7  
CCR0  
TB0.4A  
TB0.4B  
DVSS  
DVCC  
TB0.0A  
TB0.0B  
P6.2  
CCR0  
CCR1  
CCR2  
DVSS  
DVCC  
DVSS  
DVCC  
TB0.2  
P3.3  
RTC  
00  
01  
10  
11  
TA2.1A  
TA2.1B  
P4.0  
00  
01  
10  
11  
CCR1  
P5.3  
00  
01  
10  
11  
DVSS  
DVCC  
TA3.1A  
TA3.1B  
P4.7  
00  
01  
10  
11  
CCR1  
TB0.5A  
TB0.5B  
DVSS  
DVCC  
TB0.1A  
TB0.1B  
P4.7  
DVSS  
DVCC  
TB0.1  
DVSS  
DVCC  
P3.0  
00  
01  
10  
11  
TA2.2A  
TA2.2B  
P3.7  
00  
01  
10  
11  
CCR2  
P5.4  
00  
01  
10  
11  
DVSS  
DVCC  
TA3.2A  
TA3.2B  
P5.0  
00  
01  
10  
11  
CCR2  
TB0.5A  
TB0.5B  
P5.4  
DVSS  
DVCC  
TB0.2A  
TB0.2B  
P5.0  
CCR6  
DVSS  
DVCC  
DVSS  
DVCC  
TB0.0  
TBOUTH  
0
1
TB0TRG  
COMP0OUT  
TB0TRG  
9-3. TA2, TA3 and TB0 Signal Connections  
9-16. TA2 and TA3 Pin Configurations of Remap Functionality  
DEVICE INPUT/OUTPUT  
SIGNAL  
PIN (PxSEL Selection)  
P3.4(1)  
P2.3(1)  
P3.3(1)  
P3.0(1)  
TA2CLK  
TA2.0  
TA2.1  
TA2.2  
TA2  
DEVICE INPUT/OUTPUT  
SIGNAL  
PIN (PxSEL Selection)  
P5.5(2)  
P5.6(2)  
P5.7(2)  
P6.0(2)  
TA2CLK  
TA2.0  
TA2.1  
TA2.2  
DEVICE INPUT/OUTPUT  
SIGNAL  
PIN (PxSEL Selection)  
P4.2(1)  
P4.1(1)  
P4.0(1)  
P3.7(1)  
TA3CLK  
TA3.0  
TA3.1  
TA3.2  
TA3  
DEVICE INPUT/OUTPUT  
SIGNAL  
PIN (PxSEL Selection)  
P5.4(2)  
P5.3(2)  
P4.6(2)  
P4.5(2)  
TA3CLK  
TA3.0  
TA3.1  
TA3.2  
(1) This is the default functionality that can be remapped by the TAxRMP bit of the SYSCFG3 register.  
Only one selected port is valid at any time.  
(2) This is the remapped functionality controlled by the TAxRMP bit of the SYSCFG3 register. Only one  
selected port is valid at any time.  
The interconnection of Timer0_A3 and Timer1_A3 can be used to modulate the eUSCI_A pin of UCA0TXD/  
UCA0SIMO in either ASK or FSK mode, with which a user can easily acquire a modulated infrared command for  
directly driving an external IR diode. The IR functions are fully controlled by SYS configuration register 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
including IREN (enable), IRPSEL (polarity select), IRMSEL (mode select), IRDSSEL (data select), and IRDATA  
(data) bits. For more information, see the SYS chapter in the MP430FR4xx and MP430FR2xx Family User's  
Guide.  
The Timer_B module feature the function to put Timer_B all outputs into a high impedance state when the  
selected source is triggered. The source can be selected from external pin or internal of the device, it is  
controlled by TBxTRG in SYS. For more information, see the SYS chapter in the MP430FR4xx and  
MP430FR2xx Family User's Guide.  
9-17 lists the Timer_B high-impedance trigger source selections.  
9-17. TB0OUTH Selection  
TB0OUTH TRIGGER SOURCE  
TB0TRGSEL  
Timer_B PAD OUTPUT HIGH IMPEDANCE  
SELECTION  
eCOMP0 output (internal)  
P3.5  
TB0TRGSEL = 0  
TB0TRGSEL= 1  
P6.2, P4.7, P5.0, P5.1, P5.2, P4.3, P4.4  
9.10.9 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations  
with 32-, 24-, 16-, and 8-bit operands. The MPY module supports signed multiplication, unsigned multiplication,  
signed multiply-and-accumulate, and unsigned multiply-and-accumulate operations.  
9.10.10 Backup Memory (BAKMEM)  
The BAKMEM supports data retention during LPM3.5. This device provides up to 32 bytes that are retained  
during LPM3.5.  
9.10.11 Real-Time Clock (RTC)  
The RTC is a 16-bit modulo counter that is functional in AM, LPM0, LPM3, and LPM3.5. This module may  
periodically wake up the CPU from LPM0, LPM3 and LPM3.5 based on timing from a low-power clock source  
such as the XT1 and VLO clocks. RTC also can be sourced from ACLK controlled by RTCCKSEL in SYSCFG2.  
In AM, RTC can be driven by SMCLK to generate high-frequency timing events and interrupts. The RTC  
overflow events trigger:  
Timer0_B3 CCI1B  
ADC conversion trigger when ADCSHSx bits are set as 01b  
9-18. RTC Clock Source  
RTCSS  
CLOCK SOURCE  
00  
Reserved  
01  
SMCLK, or ACLK is selected(1)  
XT1CLK  
10  
11  
VLOCLK  
(1) Controlled by RTCCLK bit of SYSCFG2 register.  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.10.12 12-Bit Analog-to-Digital Converter (ADC)  
The 12-bit ADC module supports fast 12-bit analog-to-digital conversions with single-ended input. The module  
implements a 12-bit SAR core, sample select control, reference generator and a conversion result buffer. A  
window comparator with a lower and upper limits allows CPU-independent result monitoring with three window  
comparator interrupt flags.  
The ADC supports 12 external inputs and four internal inputs (see 9-19).  
9-19. ADC Channel Connections  
ADCINCHx  
ADC CHANNELS  
EXTERNAL PIN OUTPUT  
0
1
A0/Veref+  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P4.3  
P4.4  
P5.3  
P5.4  
N/A  
A1/  
2
A2/Veref-  
3
A3  
4
A4(1)  
5
A5  
6
A6  
7
A7  
8
A8  
9
A9  
10  
11  
12  
13  
14  
15  
A10  
A11  
On-chip temperature sensor  
Internal shared reference voltage (1.5, 2.0, or 2.5-V)  
N/A  
DVSS  
DVCC  
N/A  
N/A  
(1) When A4 is used, the PMM 1.2-V reference voltage can be output to this pin by setting the PMM  
control register. The 1.2-V voltage can be measured by channel A4.  
The analog-to-digital conversion can be started by software or a hardware trigger. 9-20 shows the trigger  
sources that are available.  
9-20. ADC Trigger Signal Connections  
ADCSHSx  
TRIGGER SOURCE  
BINARY  
DECIMAL  
00  
01  
10  
11  
0
1
2
3
ADCSC bit (software trigger)  
RTC event  
TA1.1B  
eCOMP0 COUT  
9.10.13 eCOMP0  
This device features one enhanced comparator. The enhanced comparator is an analog voltage comparator with  
a built-in 6-bit DAC as an internal voltage reference. The integrated 6-bit DAC can be set to 64 steps for the  
comparator reference voltage. This module has 4-level programmable hysteresis and configurable power  
modes: high-power and low-power modes.  
The eCOMP0 supports a propagation delay up to 1 µs in high-power mode. In low-power mode, eCOMP0  
supports 3.2-µs delay with 1.5-µA leakage at room temperature, which can be an ideal wake-up source in LPM3  
for a voltage monitor.  
eCOMP0 contains a programmable 6-bit DAC that can use the internal shared reference (1.5 V, 2.0 V, or 2.5 V)  
for a high-precision comparison threshold. In addition to the internal shared reference, a low-power 1.2V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
reference is fixed at channel 2 of both the inverting and noninverting paths and allows the DAC to be turned off  
to reduce power consumption.  
The eCOMP0 supports external inputs and internal inputs (see 9-21) and outputs (see 9-22)  
9-21. eCOMP0 Input Channel Connections  
CPPSEL OR  
eCOMP0 CHANNELS  
CPNSEL  
000  
001  
010  
011  
100  
101  
110  
P1.1/.../COMP0.0  
P2.2/.../COMP0.1  
Low-power 1.2-V reference  
P5.7/.../COMP0.2  
P6.0/.../COMP0.3  
N/A  
eCOMP0 6-bit DAC  
9-22. eCOMP0 Output Channel Connections  
ECOMP0 OUT  
EXTERNAL PINOUT, MODULE  
1
2
P3.4  
TB0 (TB0OUTH), TB1 (TB1OUTH), ADC trigger  
9.10.14 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The EEM on these devices has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
EEM version: S  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.11 Input/Output Diagrams  
9-4 shows the overall port diagram.  
From analog modules  
PxREN.x  
PxDIR.x  
00  
01  
From Module1  
From Module2  
10  
11  
2 bit  
DVSS  
DVCC  
0
1
PxSEL.x= 11  
00  
01  
PxOUT.x  
From Module1  
From Module2  
DVSS  
10  
11  
2 bit  
PxSEL.x  
EN  
D
To module  
PxIN.x  
PxIE.x  
Bus  
Keeper  
Px Interrupt  
D
S
Q
PxIFG.x  
Edge  
Select  
PxIES.x  
From JTAG  
To JTAG  
NOTE: For details on the specific analog modules, digital function modules, interrupts, and JTAG, see the Port Pin Functions table.  
9-4. Port Input/Output With Schmitt Trigger  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.11.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger  
9-23 summarizes the selection of the pin functions.  
9-23. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SELx  
00  
JTAG  
P1.0 (I/O)  
UCB0STE  
TA0CLK  
I: 0; O: 1  
0
0
X
01  
P1.0/UCB0STE/TA0CLK/A0/Veref+  
0
1
0
10  
0
A0,Veref+  
P1.1 (I/O)  
UCB0CLK  
TA0.CCI1A  
TA0.1  
X
11  
N/A  
0
I: 0; O: 1  
00  
X
01  
0
P1.1/UCB0CLK/TA0.1/COMP0.0/A1  
0
10  
0
1
A1, COMP0.0  
P1.2 (I/O)  
UCB0SIMO/UCB0SDA  
TA0.CCI2A  
TA0.2  
X
11  
00  
01  
N/A  
0
I: 0; O: 1  
X
0
P1.2/UCB0SIMO/UCB0SDA/TA0.2/A2/Veref-  
P1.3/UCB0SOMI/UCB0SCL/MCLK/A3  
2
3
0
10  
0
1
A2, Veref-  
P1.3 (I/O)  
UCB0SOMI/UCB0SCL  
MCLK  
X
11  
00  
01  
10  
11  
00  
01  
N/A  
I: 0; O: 1  
0
0
X
1
0
A3  
X
N/A  
P1.4 (I/O)  
UCA0TXD/UCA0SIMO  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
Disabled  
Disabled  
X
0
P1.4/UCA0TXD/UCA0SIMO/TA1.2/TCK/A4/VREF+  
4
10  
Disabled  
1
A4, VREF+  
JTAG TCK  
P1.5 (I/O)  
UCA0RXD/UCA0SOMI  
TA1.CCI1A  
TA1.1  
X
11  
X
Disabled  
TCK  
X
I: 0; O: 1  
00  
01  
Disabled  
Disabled  
X
0
P1.5/UCA0RXD/UCA0SOMI/TA1.1/TMS/A5  
5
10  
Disabled  
1
A5  
X
11  
X
Disabled  
TMS  
JTAG TMS  
P1.6 (I/O)  
UCA0CLK  
TA1CLK  
X
I: 0; O: 1  
00  
01  
10  
11  
X
Disabled  
Disabled  
Disabled  
Disabled  
TDI/TCLK  
Disabled  
Disabled  
Disabled  
Disabled  
TDO  
X
P1.6/UCA0CLK/TA1CLK/TDI/TCLK/A6  
6
7
0
A6  
X
JTAG TDI/TCLK  
P1.7 (I/O)  
UCA0STE  
SMCLK  
X
I: 0; O: 1  
00  
01  
10  
11  
X
X
1
P1.7/UCA0STE/SMCLK/TDO/A7  
(1) X = don't care  
A7  
X
X
JTAG TDO  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.11.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger  
9-24 summarizes the selection of the pin functions.  
9-24. Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
0
1
FUNCTION  
P2DIR.x  
P2SELx  
00  
P2.0 (I/O)  
XOUT  
I: 0; O: 1  
P2.0/XOUT  
P2.1/XIN  
X
01  
P2.1 (I/O)  
XIN  
I: 0; O: 1  
00  
X
01  
P2.2 (I/O)  
ACLK  
I: 0; O: 1  
00  
P2.2/ACLK/COMP0.1  
P2.3/TA2.0  
2
3
1
10  
COMP0.1  
P2.3 (I/O)  
TA2.CCI0A  
TA2.0  
X
11  
I: 0; O: 1  
00  
0
01  
1
P2.4 (I/O)  
UCA1CLK  
P2.5 (I/O)  
I: 0; O: 1  
00  
01  
00  
01  
00  
01  
0
P2.4/UCA1CLK  
4
5
6
7
X
I: 0; O: 1  
P2.5/UCA1RXD/UCA1SOMI  
P2.6/UCA1TXD/UCA1SIMO  
UCA1RXD/UCA1SOMI  
P2.6 (I/O)  
X
I: 0; O: 1  
X
UCA1TXD/UCA1SIMO  
P2.7 (I/O)  
I: 0; O: 1  
X
P2.7/UCB1STE  
UCB1STE  
01  
(1) X = don't care  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.11.3 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger  
9-25 summarizes the selection of the pin functions.  
9-25. Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL.x  
filter9  
I: 0; O: 1  
00  
P3.0/TA2.2  
0
TA2.CCI2A  
TA2.2  
0
01  
1
P3.1 (I/O)  
UCA1STE  
P3.2 (I/O)  
UCB1SIMO/UCB1SDA  
P3.3 (I/O)  
TA2.CCI1A  
TA2.1  
I: 0; O: 1  
00  
01  
00  
01  
00  
P3.1/UCA1STE  
1
2
X
I: 0; O: 1  
P3.2/UCB1SIMO/UCB1SDA  
X
I: 0; O: 1  
P3.3/TA2.1  
3
4
0
01  
1
P3.4 (I/O)  
TA2CLK  
I: 0; O: 1  
00  
01  
10  
00  
01  
10  
00  
01  
00  
P3.4/TA2CLK/COMP0OUT  
0
COMP0OUT  
P3.5 (I/O)  
UCB1CLK  
TB0TRG  
1
I: 0; O: 1  
P3.5/UCB1CLK/TB0TRG  
5
6
7
X
0
P3.6 (I/O)  
UCB1SOMI/UCB1SCL  
P3.7 (I/O)  
TA3.CCI2A  
TA3.2  
I: 0; O: 1  
P3.6/UCB1SOMI/UCB1SCL  
X
I: 0; O: 1  
P3.7/TA3.2  
0
1
01  
(1) X = don't care  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.11.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger  
9-26 summarizes the selection of the pin functions.  
9-26. Port P4 (P4.0 to P4.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL.x  
P4.0 (I/O)  
I: 0; O: 1  
00  
P4.0/TA3.1  
0
TA3.CCI1A  
TA3.1  
0
01  
00  
01  
1
P4.1 (I/O)  
TA3.CCI0A  
TA3.0  
I: 0; O: 1  
P4.1/TA3.0  
1
2
0
1
P4.2 (I/O)  
TA3CLK  
I: 0; O: 1  
00  
01  
00  
01  
P4.2/TA3CLK  
0
P4.3 (I/O)  
UCB1SOMI/UCB1SCL  
TB0.CCI5A  
TB0.5  
I: 0; O: 1  
X
P4.3/UCB1SOMI/UCB1SCL/TB0.5/A8  
P4.4/UCB1SIMO/UCB1SDA/TB0.6/A9  
3
4
0
10  
1
A8  
X
11  
00  
01  
P3.4 (I/O)  
UCB1SIMO/UCB1SDA  
TB0.CCI6A  
TB0.6  
I: 0; O: 1  
X
0
10  
1
A9  
X
11  
00  
01  
P4.5 (I/O)  
UCB0SOMI/UCB0SCL  
TA3.CCI2A  
TA3.2  
I: 0; O: 1  
X
P4.5/UCB0SOMI/UCB0SCL/TA3.2  
P4.6/UCB0SIMO/UCB0SDA/TA3.1  
5
6
7
0
10  
1
P4.6 (I/O)  
UCB0SIMO/UCB0SDA  
TA3.CCI1A  
TA3.1  
I: 0; O: 1  
00  
01  
X
0
10  
1
P4.7 (I/O)  
UCA0STE  
TB0.CCI1A  
TB0.1  
I: 0; O: 1  
00  
01  
X
0
1
P4.7/UCA0STE/TB0.1  
(1) X = don't care  
10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.11.5 Port P5 (P5.0 to P5.7) Input/Output With Schmitt Trigger  
9-27 summarizes the selection of the pin functions.  
9-27. Port P5 (P5.0 to P5.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
P5.0 (I/O)  
UCA0CLK  
TB0.CCI2A  
TB0.2  
I: 0; O: 1  
00  
01  
X
P5.0/UCA0CLK/TB0.2  
0
0
10  
1
P5.1 (I/O)  
I: 0; O: 1  
00  
01  
UCA0RXD/UCA0SOMI  
TB0.CCI3A  
TB0.3  
X
P5.1/UCA0RXD/UCA0SOMI/TB0.3  
P5.2/UCA0TXD/UCA0SIMO/TB0.4  
1
2
0
10  
1
P5.2 (I/O)  
UCA0TXD/UCA0SIMO  
TB0.CCI4A  
TB0.4  
I: 0; O: 1  
00  
01  
X
0
10  
1
P5.3 (I/O)  
UCB1CLK  
TA3.CCI0A  
TA3.0  
I: 0; O: 1  
00  
01  
X
P5.3/UCB1CLK/TA3.0/A10  
3
0
10  
1
A10  
X
11  
00  
01  
10  
11  
00  
01  
10  
00  
01  
P5.4 (I/O)  
UCB1STE  
TA3CLK  
I: 0; O: 1  
X
P5.4/UCB1STE/TA3CLK/A11  
P5.5/UCB0CLK/TA2CLK  
P5.6/UCB0STE/TA2.0  
4
5
6
0
A11  
X
P5.5 (I/O)  
UCB0CLK  
TA2CLK  
I: 0; O: 1  
X
0
P5.6 (I/O)  
UCB0STE  
TA2.CCI0A  
TA2.0  
I: 0; O: 1  
X
0
10  
00  
01  
11  
1
P5.7 (I/O)  
TA2.CCI1A  
TA2.1  
I: 0; O: 1  
0
1
X
P5.7/TA2.1/COMP0.2  
(1) X = don't care  
7
COMP0.2  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.11.6 Port P6 (P6.0 to P6.2) Input/Output With Schmitt Trigger  
9-28 summarizes the selection of the pin functions.  
9-28. Port P6 (P6.0 to P6.2) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL.x  
P6.0 (I/O)  
TA2.CCI2A  
TA2.2  
I: 0; O: 1  
00  
0
P6.0/TA2.2/COMP0.3  
0
01  
1
COMP0.3  
P6.1 (I/O)  
TB0CLK  
P6.2 (I/O)  
TB0.CCI0A  
TB0.0  
X
11  
00  
01  
00  
I: 0; O: 1  
P6.1/TB0CLK  
1
2
0
I: 0; O: 1  
P6.2/TB0.0  
0
1
01  
(1) X = don't care  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.12 Device Descriptors  
9-29 lists the Device IDs. 9-30 lists the contents of the device descriptor tag-length-value (TLV) structure.  
9-29. Device IDs  
DEVICE ID  
DEVICE  
1A05h  
1A04h  
2Ah  
MSP430FR2476  
MSP430FR2475  
83h  
83h  
2Bh  
9-30. Device Descriptors  
DESCRIPTION  
ADDRESS  
1A00h  
1A01h  
1A02h  
1A03h  
1A04h  
1A05h  
1A06h  
1A07h  
1A08h  
1A09h  
1A0Ah  
1A0Bh  
1A0Ch  
1A0Dh  
1A0Eh  
1A0Fh  
1A10h  
1A11h  
1A12h  
1A13h  
VALUE  
06h  
Info length  
CRC length  
06h  
Per unit  
Per unit  
CRC value(1)  
Information block  
Device ID  
See 9-29  
Hardware revision  
Firmware revision  
Die record tag  
Per unit  
Per unit  
08h  
Die record length  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot wafer ID  
Die record  
Die X position  
Die Y position  
Test result  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-30. Device Descriptors (continued)  
DESCRIPTION  
ADDRESS  
1A14h  
1A15h  
1A16h  
1A17h  
1A18h  
1A19h  
1A1Ah  
1A1Bh  
1A1Ch  
1A1Dh  
1A1Eh  
1A1Fh  
1A20h  
1A21h  
1A22h  
1A23h  
1A24h  
1A25h  
1A26h  
1A27h  
1A28h  
1A29h  
1A2Ah  
1A2Bh  
1A2Ch  
1A2Dh  
1A2Eh  
1A2Fh  
1A30h  
1A31h  
VALUE  
11h  
ADC calibration tag  
ADC calibration length  
ADC gain factor(3)  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
ADC offset(4)  
ADC internal shared 1.5-V reference, temperature sensor 30°C  
ADC internal shared 1.5-V reference, temperature sensor 105°C  
ADC internal shared 2.0-V reference, temperature sensor 30°C  
ADC internal shared 2.0-V reference, temperature sensor 105°C  
ADC internal shared 2.5-V reference, temperature sensor 30°C  
ADC internal shared 2.5-V reference, temperature sensor 105°C  
ADC calibration  
Internal shared reference Calibration tag  
Internal shared reference Calibration length  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Internal shared 1.5-V reference factor  
Internal shared 2.0-V reference factor  
Reference and DCO  
calibration  
Internal shared 2.5-V reference factor  
DCO tap settings for 16 MHz, temperature 30°C  
DCO tap settings for 24 MHz, temperature 30°C (2)  
(1) CRC value covers the checksum from 0x1A04h to 0x1AF7h by applying CRC-CCITT-16 polynomial of x16 + x12 + x5 + 1.  
(2) This value can be directly loaded into the DCO bits in the CSCTL0 register to get an accurate 24-MHz frequency at room temperature,  
especially when MCU exits from LPM3 and below. TI also suggests to use a predivider to decrease the frequency if the temperature  
drift might result an overshoot faster than 24 MHz.  
(3) ADC gain: the gain correction factor is measured at 2.4 V and room temperature using ADCSREFx = 0x7, an external reference  
without internal buffer. VR+= Veref+, VR-= Veref-. Other settings can result in different factors.  
(4) ADC offset: the offset correction factor is measured at 2.4 V and room temperature using ADCSREFx = 0x7, an external reference  
without internal buffer. VR+= Veref+, VR-= Veref-. Other settings can result in different factors  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.13 Memory  
9.13.1 Memory Organization  
9-31 summarizes the memory organization of the devices.  
9-31. Memory Organization  
ACCESS  
MSP430FR2476  
MSP430FR2475  
1KB  
1KB  
Bootloader (BSL2) memory (ROM)  
Read only  
FFFFFh to FFC00h  
FFFFFh to FFC00h  
Memory (FRAM)  
Main: interrupt vectors and signatures  
Main: code memory  
64KB  
FFFFh to FF80h  
17FFFh to 8000h  
32KB  
FFFFh to FF80h  
FFFFh to 8000h  
Read/Write  
(Optional Write Protect)(1)  
8KB  
3FFFh to 2000h  
6KB  
37FFh to 2000h  
RAM  
Read/Write  
Read/Write  
512 bytes  
19FFh to 1800h  
512 bytes  
19FFh to 1800h  
Information memory (FRAM)  
Bootloader (BSL1) memory (ROM)  
Peripherals  
(Optional Write Protect)(2)  
2KB  
17FFh to 1000h  
2KB  
17FFh to 1000h  
Read only  
Read/Write  
Read/Write  
Read only  
4KB  
0FFFh to 0020h  
4KB  
0FFFh to 0020h  
26 bytes  
001Fh to 0006h  
26 bytes  
001Fh to 0006h  
Tiny RAM  
6 bytes  
0005h to 0000h  
6 bytes  
0005h to 0000h  
Reserved(3)  
(1) The Program FRAM can be write protected by setting PFWP bit in SYSCFG0 register. See the SYS chapter in the MP430FR4xx and  
MP430FR2xx Family User's Guide for more details  
(2) The Information FRAM can be write protected by setting DFWP bit in SYSCFG0 register. See the SYS chapter in the MP430FR4xx  
and MP430FR2xx Family User's Guide for more details  
(3) Read as: D032h at 00h (Opcode: BIS.W LPM4, SR), 00F0h at 02h (Opcode: BIS.W LPM4, SR), 3FFFh at 04h (Opcode: JMP$)  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.13.2 Peripheral File Map  
9-32 lists the available peripherals and the register base address for each.  
9-32. Peripherals Summary  
MODULE NAME  
Special Functions (see 9-33)  
BASE ADDRESS  
0100h  
0120h  
0140h  
0180h  
01A0h  
01C0h  
01CCh  
0200h  
0220h  
0240h  
0300h  
0380h  
03C0h  
0400h  
0440h  
0480h  
04C0h  
0500h  
0520h  
0540h  
0580h  
0660h  
0700h  
08E0h  
SIZE  
0010h  
0020h  
0040h  
0020h  
0010h  
0008h  
0002h  
0020h  
0020h  
0020h  
0010h  
0030h  
0030h  
0030h  
0030h  
0030h  
0030h  
0020h  
0020h  
0030h  
0030h  
0020h  
0040h  
0020h  
PMM (see 9-34)  
SYS (see 9-35)  
CS (see 9-36)  
FRAM (see 9-37)  
CRC (see 9-38)  
WDT (see 9-39)  
Port P1, P2 (see 9-40)  
Port P3, P4 (see 9-41)  
Port P5, P6 (see 9-42)  
RTC (see 9-43)  
Timer0_A3 (see 9-44)  
Timer1_A3 (see 9-45)  
Timer2_A3 (see 9-46)  
Timer3_A3 (see 9-47)  
Timer0_B7 (see 9-48)  
MPY32 (see 9-49)  
eUSCI_A0 (see 9-50)  
eUSCI_A1 (see 9-51)  
eUSCI_B0 (see 9-52)  
eUSCI_B1 (see 9-53)  
Backup Memory (see 9-54)  
ADC (see 9-55)  
eCOMP0 (see 9-56)  
9-33. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
SFR interrupt enable  
SFR interrupt flag  
SFRIE1  
SFRIFG1  
SFRRPCR  
02h  
SFR reset pin control  
04h  
9-34. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
ACRONYM  
PMMCTL0  
PMMCTL1  
PMMCTL2  
PMMIFG  
OFFSET  
00h  
PMM control 0  
PMM control 1  
PMM control 2  
PMM interrupt flags  
PM5 control 0  
02h  
04h  
0Ah  
PM5CTL0  
10h  
9-35. SYS Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
System control  
SYSCTL  
00h  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-35. SYS Registers (Base Address: 0140h) (continued)  
REGISTER DESCRIPTION  
ACRONYM  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
OFFSET  
Bootloader configuration area  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
System configuration 0  
System configuration 1  
System configuration 2  
System configuration 3  
SYSSNIV  
SYSRSTIV  
SYSCFG0  
SYSCFG1  
SYSCFG2  
SYSCFG3  
9-36. CS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
ACRONYM  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
CSCTL7  
CSCTL8  
OFFSET  
00h  
CS control 0  
CS control 1  
CS control 2  
CS control 3  
CS control 4  
CS control 5  
CS control 6  
CS control 7  
CS control 8  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
9-37. FRAM Registers (Base Address: 01A0h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
FRAM control 0  
General control 0  
General control 1  
FRCTL0  
GCCTL0  
GCCTL1  
04h  
06h  
9-38. CRC Registers (Base Address: 01C0h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
CRC data input  
CRC16DI  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
02h  
04h  
06h  
9-39. WDT Registers (Base Address: 01CCh)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Watchdog timer control  
WDTCTL  
00h  
9-40. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Port P1 input  
P1IN  
00h  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-40. Port P1, P2 Registers (Base Address: 0200h) (continued)  
REGISTER DESCRIPTION  
ACRONYM  
P1OUT  
P1DIR  
OFFSET  
02h  
Port P1 output  
Port P1 direction  
04h  
Port P1 pulling enable  
Port P1 selection 0  
P1REN  
P1SEL0  
P1SEL1  
P1IV  
06h  
0Ah  
0Ch  
0Eh  
16h  
Port P1 selection 1  
Port P1 interrupt vector word  
Port P1 complement selection  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
P1SELC  
P1IES  
18h  
P1IE  
1Ah  
1Ch  
P1IFG  
Port P2 input  
P2IN  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2SEL1  
P2IV  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
1Eh  
17h  
19h  
1Bh  
1Dh  
Port P2 output  
Port P2 direction  
Port P2 pulling enable  
Port P2 selection 0  
Port P2 selection 1  
Port P2 interrupt vector word  
Port P2 complement selection  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2SELC  
P2IES  
P2IE  
P2IFG  
9-41. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
Port P3 input  
P3IN  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
P3SEL0  
P3SEL1  
P3IV  
02h  
Port P3 direction  
04h  
Port P3 pulling enable  
Port P3 selection 0  
06h  
0Ah  
0Ch  
0Eh  
16h  
Port P3 selection 1  
Port P3 interrupt vector word  
Port P3 complement selection  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
P3SELC  
P3IES  
18h  
P3IE  
1Ah  
1Ch  
P3IFG  
Port P4 input  
P4IN  
P4OUT  
P4DIR  
P4REN  
P4SEL0  
P4SEL1  
P4IV  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
1Eh  
17h  
19h  
1Bh  
Port P4 output  
Port P4 direction  
Port P4 pulling enable  
Port P4 selection 0  
Port P4 selection 1  
Port P4 interrupt vector word  
Port P4 complement selection  
Port P4 interrupt edge select  
Port P4 interrupt enable  
P4SELC  
P4IES  
P4IE  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-41. Port P3, P4 Registers (Base Address: 0220h) (continued)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Port P4 interrupt flag  
P4IFG  
1Dh  
9-42. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
Port P5 input  
P5IN  
Port P5 output  
P5OUT  
P5DIR  
P5REN  
P5SEL0  
P5SEL1  
P5IV  
02h  
Port P5 direction  
04h  
Port P5 pulling enable  
Port P5 selection 0  
06h  
0Ah  
0Ch  
0Eh  
16h  
Port P5 selection 1  
Port P5 interrupt vector word  
Port P5 complement selection  
Port P5 interrupt edge select  
Port P5 interrupt enable  
Port P5 interrupt flag  
P5SELC  
P5IES  
18h  
P5IE  
1Ah  
1Ch  
P5IFG  
Port P6 input  
P6IN  
P6OUT  
P6DIR  
P6REN  
P6SEL0  
P6SEL1  
P6IV  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
1Eh  
17h  
19h  
1Bh  
1Dh  
Port P6 output  
Port P6 direction  
Port P6 pulling enable  
Port P6 selection 0  
Port P6 selection 1  
Port P6 interrupt vector word  
Port P6 complement selection  
Port P6 interrupt edge select  
Port P6 interrupt enable  
Port P6 interrupt flag  
P6SELC  
P6IES  
P6IE  
P6IFG  
9-43. RTC Registers (Base Address: 0300h)  
REGISTER DESCRIPTION  
ACRONYM  
RTCCTL  
RTCIV  
OFFSET  
00h  
RTC control  
RTC interrupt vector  
RTC modulo  
04h  
RTCMOD  
RTCCNT  
08h  
RTC counter  
0Ch  
9-44. Timer0_A3 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
TA0 control  
TA0CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
12h  
14h  
16h  
20h  
TA0 interrupt vector  
TA0IV  
2Eh  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-45. Timer1_A3 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
TA1 control  
TA1CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
12h  
14h  
16h  
20h  
TA1 interrupt vector  
TA1IV  
2Eh  
9-46. Timer2_A3 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
TA2 control  
TA2CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA2 counter  
TA2CCTL0  
TA2CCTL1  
TA2CCTL2  
TA2R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2CCR2  
TA2EX0  
12h  
14h  
16h  
20h  
TA2 interrupt vector  
TA2IV  
2Eh  
9-47. Timer3_A3 Registers (Base Address: 0440h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
TA3 control  
TA3CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA3 counter  
TA3CCTL0  
TA3CCTL1  
TA3CCTL2  
TA3R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA3 expansion 0  
TA3CCR0  
TA3CCR1  
TA3CCR2  
TA3EX0  
12h  
14h  
16h  
20h  
TA3 interrupt vector  
TA3IV  
2Eh  
9-48. Timer0_B7 Registers (Base Address: 0480h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
TB0 control  
TB0CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-48. Timer0_B7 Registers (Base Address: 0480h) (continued)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
TB0 counter  
TB0R  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0 interrupt vector  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
TB0IV  
9-49. MPY32 Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
MPY  
16-bit operand 1 multiply  
MPYS  
16-bit operand 1 signed multiply  
16-bit operand 1 multiply accumulate  
16-bit operand 1 signed multiply accumulate  
16-bit operand 2  
MAC  
MACS  
OP6  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 multiply low word  
32-bit operand 1 multiply high word  
32-bit operand 1 signed multiply low word  
32-bit operand 1 signed multiply high word  
32-bit operand 1 multiply accumulate low word  
32-bit operand 1 multiply accumulate high word  
32-bit operand 1 signed multiply accumulate low word  
32-bit operand 1 signed multiply accumulate high word  
32-bit operand 2 low word  
OP2H  
32-bit operand 2 high word  
RES0  
32 × 32 result 0 least significant word  
32 × 32 result 1  
RES1  
32 × 32 result 2  
RES2  
RES3  
32 × 32 result 3 most significant word  
MPY32 control 0  
MPY32CTL0  
9-50. eUSCI_A0 Registers (Base Address: 0500h)  
REGISTER DESCRIPTION  
ACRONYM  
UCA0CTLW0  
UCA0CTLW1  
UCA0BR0  
OFFSET  
00h  
eUSCI_A control word 0  
eUSCI_A control word 1  
eUSCI_A control rate 0  
eUSCI_A control rate 1  
eUSCI_A modulation control  
eUSCI_A status  
02h  
06h  
UCA0BR1  
07h  
UCA0MCTLW  
UCA0STAT  
08h  
0Ah  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-50. eUSCI_A0 Registers (Base Address: 0500h) (continued)  
REGISTER DESCRIPTION  
ACRONYM  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
lUCA0IRTCTL  
IUCA0IRRCTL  
UCA0IE  
OFFSET  
0Ch  
0Eh  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
10h  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
12h  
13h  
1Ah  
UCA0IFG  
1Ch  
1Eh  
eUSCI_A interrupt vector word  
UCA0IV  
9-51. eUSCI_A1 Registers (Base Address: 0520h)  
REGISTER DESCRIPTION  
ACRONYM  
UCA1CTLW0  
UCA1CTLW1  
UCA1BR0  
OFFSET  
00h  
eUSCI_A control word 0  
eUSCI_A control word 1  
eUSCI_A control rate 0  
eUSCI_A control rate 1  
eUSCI_A modulation control  
eUSCI_A status  
02h  
06h  
UCA1BR1  
07h  
UCA1MCTLW  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
lUCA1IRTCTL  
IUCA1IRRCTL  
UCA1IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA1IFG  
UCA1IV  
9-52. eUSCI_B0 Registers (Base Address: 0540h)  
REGISTER DESCRIPTION  
ACRONYM  
UCB0CTLW0  
UCB0CTLW1  
UCB0BR0  
OFFSET  
00h  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
02h  
06h  
eUSCI_B bit rate 1  
UCB0BR1  
07h  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
08h  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B receive address  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
UCB0IFG  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-52. eUSCI_B0 Registers (Base Address: 0540h) (continued)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
eUSCI_B interrupt vector word  
UCB0IV  
2Eh  
9-53. eUSCI_B1 Registers (Base Address: 0580h)  
REGISTER DESCRIPTION  
ACRONYM  
UCB1CTLW0  
UCB1CTLW1  
UCB1BR0  
OFFSET  
00h  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
02h  
06h  
eUSCI_B bit rate 1  
UCB1BR1  
07h  
eUSCI_B status word  
UCB1STATW  
UCB1TBCNT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA0  
UCB1I2COA1  
UCB1I2COA2  
UCB1I2COA3  
UCB1ADDRX  
UCB1ADDMASK  
UCB1I2CSA  
UCB1IE  
08h  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B receive address  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
eUSCI_B interrupt vector word  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB1IFG  
UCB1IV  
9-54. Backup Memory Registers (Base Address: 0660h)  
REGISTER DESCRIPTION  
ACRONYM  
BAKMEM0  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKMEM4  
BAKMEM5  
BAKMEM6  
BAKMEM7  
BAKMEM8  
BAKMEM9  
BAKMEM10  
BAKMEM11  
BAKMEM12  
BAKMEM13  
BAKMEM14  
BAKMEM15  
OFFSET  
00h  
Backup memory 0  
Backup memory 1  
Backup memory 2  
Backup memory 3  
Backup memory 4  
Backup memory 5  
Backup memory 6  
Backup memory 7  
Backup memory 8  
Backup memory 9  
Backup memory 10  
Backup memory 11  
Backup memory 12  
Backup memory 13  
Backup memory 14  
Backup memory 15  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
9-55. ADC Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
ADCCTL0  
ADCCTL1  
ADCCTL2  
OFFSET  
00h  
ADC control 0  
ADC control 1  
ADC control 2  
02h  
04h  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9-55. ADC Registers (Base Address: 0700h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
06h  
ADC window comparator low threshold  
ADC window comparator high threshold  
ADC memory control 0  
ADCLO  
ADCHI  
08h  
ADCMCTL0  
ADCMEM0  
ADCIE  
0Ah  
ADC conversion memory  
ADC interrupt enable  
12h  
1Ah  
ADC interrupt flags  
ADCIFG  
ADCIV  
1Ch  
1Eh  
ADC interrupt vector word  
9-56. eCOMP Registers (Base Address: 08E0h)  
REGISTER DESCRIPTION  
REGISTER  
CP0CTL0  
CP0CTL1  
CP0INT  
OFFSET  
00h  
Comparator control 0  
Comparator control 1  
02h  
Comparator interrupt  
06h  
Comparator interrupt vector  
Comparator built-in DAC control  
CP0IV  
08h  
CP0DACCTL  
10h  
9.14 Identification  
9.14.1 Revision Identification  
The device revision information is included as part of the top-side marking on the device package. The device-  
specific errata sheet describes these markings.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on  
this value, see the Hardware Revision entries in 9.12.  
9.14.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific errata  
sheet describes these markings.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details  
on this value, see the Device ID entries in 9.12.  
9.14.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in MSP430  
Programming With the JTAG Interface.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10 Applications, Implementation, and Layout  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Device Connection and Layout Fundamentals  
This section discusses the recommended guidelines when designing with the MSP430 devices. These  
guidelines are to make sure that the device has proper connections for powering, programming, debugging, and  
optimum analog performance.  
10.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 10-µF plus a 100-nF low-ESR ceramic decoupling capacitor to  
the DVCC and DVSS pins. Higher-value capacitors may be used but can impact supply rail ramp-up time.  
Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few  
millimeters). Additionally, TI recommends separated grounds with a single-point connection for better noise  
isolation from digital-to-analog circuits on the board and to achieve high analog accuracy.  
DVCC  
Digital  
+
Power Supply  
Decoupling  
DVSS  
10 µF  
100 nF  
10-1. Power Supply Decoupling  
10.1.2 External Oscillator  
This device supports only a low-frequency crystal (32 kHz) on the XIN and XOUT pins. External bypass  
capacitors for the crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the XIN input pin that meet the specifications of the respective  
oscillator if the appropriate XT1BYPASS mode is selected. In this case, the associated XOUT pin can be used  
for other purposes. If the XIN and XOUT pins are not used, they must be terminated according to 7.6.  
10-2 shows a typical connection diagram.  
XIN  
XOUT  
CL1  
CL2  
10-2. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP430 devices.  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-  
FET430UIF) can be used to program and debug code on the target board. In addition, the connections also  
support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if  
desired. 10-3 shows the connections between the 14-pin JTAG connector and the target device required to  
support in-system programming and debugging for 4-wire JTAG communication. 10-4 shows the connections  
for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical.  
Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF  
interface modules and MSP-GANG have a VCC sense feature that, if used, requires an alternate connection (pin  
4 instead of pin 2). The VCC sense feature detects the local VCC present on the target board (that is, a battery or  
other local power supply) and adjusts the output signals accordingly. 10-3 and 10-4 show a jumper block  
that supports both scenarios of supplying VCC to the target board. If this flexibility is not required, the desired VCC  
connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same  
time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User's Guide.  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
DVCC  
J2 (see Note A)  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection  
J2.  
B. The upper limit for C1 is 1.1 nF when using current TI tools.  
10-3. Signal Connections for 4-Wire JTAG Communication  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
DVCC  
R1  
47 kΩ  
(see Note B)  
JTAG  
VCC TOOL  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
VCC TARGET  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or  
programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and  
any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is  
1.1 nF when using current TI tools.  
10-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
10.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function  
Register (SFR), SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge  
sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI.  
When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or  
pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the RST/NMI  
pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-kΩpullup  
resistor to the RST/NMI pin with a 10-nF pulldown capacitor. The pulldown capacitor should not exceed 1.1 nF  
when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like  
FET interfaces or GANG programmers.  
See the MP430FR4xx and MP430FR2xx Family User's Guide for more information on the referenced control  
registers and bits.  
10.1.5 Unused Pins  
For details on the connection of unused pins, see 7.6.  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10.1.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430 32-kHz  
Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC and reference pins, if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching  
signals such as PWM or JTAG signals away from the oscillator circuit.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
10.1.7 Do's and Don'ts  
During power up, power down, and device operation, DVCC must not exceed the limits specified in 8.1,  
Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including  
erroneous writes to RAM and FRAM.  
10.2 Peripheral- and Interface-Specific Design Information  
10.2.1 ADC Peripheral  
10.2.1.1 Partial Schematic  
10-5 shows the recommended decoupling circuit when an external voltage reference is used.  
DVSS  
Using an external  
VREF+/VEREF+  
positive reference  
+
100 nF  
10 µF  
Using an external  
negative reference  
VEREF-  
+
10 µF  
100 nF  
10-5. ADC Grounding and Noise Considerations  
10.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be  
followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with other  
analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can  
add to or subtract from the reference or input voltages of the ADC. The general guidelines in 10.1.1 combined  
with the connections shown in 10-5 prevent this.  
Quickly switching digital signals and noisy power supply lines can corrupt the conversion results, so keep the  
ADC input trace shielded from those digital and power supply lines. Putting the MCU in low-power mode during  
the ADC conversion improves the ADC performance in a noisy environment. If the device includes the analog  
power pair inputs (AVCC and AVSS), TI recommends a noise-free design using separate analog and digital  
ground planes with a single-point connection to achieve high accuracy.  
10-5 shows the recommended decoupling circuit when an external voltage reference is used. The internal  
reference module has a maximum drive current as described in the sections ADC Pin Enable and 1.2-V  
Reference Settings of the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
enters the device. In this case, the 10-µF capacitor buffers the reference pin and filters low-frequency ripple. A  
100-nF bypass capacitor of filters high-frequency noise.  
10.2.1.3 Layout Guidelines  
Components that are shown in the partial schematic (see 10-5) should be placed as close as possible to the  
respective device pins to avoid long traces, because they add additional parasitic capacitance, inductance, and  
resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because  
the high-frequency switching can be coupled into the analog signal.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Getting Started and Next Steps  
For more information on the MSP low-power microcontrollers and the tools and libraries that are available to help  
with your development, visit the MSP430™ ultra-low-power sensing & measurement MCUs overview.  
11.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. 11-1 provides a legend for reading the complete device name.  
476  
MSP  
430 FR  
2
T
RHL  
T
Processor Family  
MCU Platform  
Device Type  
Series  
Tape and Reel  
Packaging  
Temperature Range  
Feature Set  
Processor Family  
MSP = Mixed-signal processor  
XMS = Experimental silicon  
MCU Platform  
Device Type  
430 = MSP430 16-bit low-power platform  
Memory type  
FR = FRAM  
Series  
2 = No LCD driver  
Feature Set  
First and second digits:  
Third digit:  
ADC12 channels / eUSCIs / 16-bit timers FRAM (KB) / SRAM (KB)  
6 = 64 / 8  
47 = Up to 12 / 4 / 5  
5 = 32 / 6  
Temperature Range  
Packaging  
T = –40°C to 105°C  
www.ti.com/packaging  
Distribution Format  
T = Small reel  
R = Large reel  
No marking = Tube or tray  
11-1. Device Nomenclature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
11.3 Tools and Software  
11-1 lists the debug features supported by these microcontrollers. See the Code Composer Studio™ IDE for  
MSP430™ MCUs User's Guide for details on the available features.  
11-1. Hardware Features  
BREAK-  
POINTS  
(N)  
RANGE  
BREAK-  
POINTS  
LPMx.5  
DEBUGGING  
SUPPORT  
MSP430  
ARCHITECTURE  
4-WIRE  
JTAG  
2-WIRE  
JTAG  
CLOCK  
CONTROL  
STATE  
SEQUENCER  
TRACE  
BUFFER  
EEM  
VERSION  
MSP430Xv2  
Yes  
Yes  
3
Yes  
Yes  
No  
No  
No  
S
Design Kits and Evaluation Modules  
MSP430FR2476 LaunchPad™ development kit  
The LP-MSP430FR2476 LaunchPad development kit is an easy-to-use evaluation module (EVM) based on the  
MSP430FR2476 value line sensing microcontroller (MCU). It contains everything needed to start developing on  
the ultra-low-power MSP430FR2x value line sensing MCU platform, including on-board debug probe for  
programming, debugging and energy measurements.  
Target development board for MSP430FR2476 MCU  
The MSP-TS430PT48A microcontroller development board is a standalone ZIF socket target board used to  
program and debug the MSP430 in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG)  
protocol. This development board supports the MSP430FR2476 FRAM devices in a 48-pin QFP package (TI  
package code: PT).  
Software  
MSP430WareSoftware  
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all  
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 design resources, MSP430Ware software also includes a high-level API called MSP430 Driver Library.  
This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of  
CCS or as a stand-alone package.  
MSP430FR267x, MSP430FR247x Code Examples  
C code examples that configure each of the integrated peripherals for various application needs.  
MSP Driver Library  
The driver library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing  
easy-to-use function calls. Thorough documentation is delivered through a helpful API guide, which includes  
details on each function call and the recognized parameters. Developers can use driver library functions to write  
complete projects with minimal overhead.  
MSP EnergyTraceTechnology  
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and  
displays the applications energy profile and helps to optimize it for ultra-low-power consumption.  
ULP (Ultra-Low Power) Advisor  
ULP Advisorsoftware is a tool for guiding developers to write more efficient code to fully utilize the unique  
ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new  
microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every  
last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to  
highlight areas of your code that can be further optimized for lower power.  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
FRAM Embedded Software Utilities for MSP Ultra-Low-Power Microcontrollers  
The FRAM Utilities is designed to grow as a collection of embedded software utilities that leverage the ultra-low-  
power and virtually unlimited write endurance of FRAM. The utilities are available for MSP430FRxx FRAM  
microcontrollers and provide example code to help start application development. Included utilities include  
Compute Through Power Loss (CTPL). CTPL is utility API set that enables ease of use with LPMx.5 low-power  
modes and a powerful shutdown mode that allows an application to save and restore critical system components  
when a power loss is detected.  
IEC60730 Software Package  
The IEC60730 MSP430 software package helps you comply with IEC 60730-1:2010 (Automatic Electrical  
Controls for Household and Similar Use Part 1: General Requirements) for up to Class B products, which  
includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The  
IEC60730 MSP430 software package can be embedded in applications that run on MSP430 MCUs to help  
simplify the certification efforts of functional safety compliant consumer devices to IEC 60730-1:2010 Class B.  
Fixed-Point Math Library for MSP  
The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical  
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and  
MSP432 devices. These routines are typically used in computationally intensive real-time applications where  
optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath  
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably  
lower than equivalent code written using floating-point math.  
Floating-Point Math Library for MSP430  
Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB.  
Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you  
up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated  
in both Code Composer Studio IDE and IAR Embedded Workbench IDE.  
Development Tools  
Code Composer StudioIntegrated Development Environment for MSP Microcontrollers  
Code Composer Studio integrated development environment (IDE) supports all MSP microcontroller devices.  
Code Composer Studio IDE comprises a suite of embedded software utilities used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features.  
IAR Embedded Workbench® IDE  
IAR Embedded Workbench IDE for MSP430 MCUs is a complete C/C++ compiler toolchain for building and  
debugging embedded applications based on MSP430 microcontrollers. The debugger can be used for source  
and disassembly code with support for complex code and data breakpoints. It also provides a hardware  
simulator that allows debugging without a physical target connected.  
Uniflash Standalone Flash Tool  
CCS Uniflash is a stand-alone tool used to program on-chip flash memory on TI MCUs. Uniflash has a GUI,  
command line, and scripting interface. Uniflash is a software tool available by TI Cloud Tools or desktop  
application download from the TI web page.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: MSP430FR2476 MSP430FR2475  
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
MSP MCU Programmer and Debugger  
The MSP-FET is a powerful emulation development tool often called a debug probe that lets users quickly  
begin application development on MSP low-power microcontrollers (MCU). Creating MCU software usually  
requires downloading the resulting binary program to the MSP device for validation and debugging. The MSP-  
FET provides a debug communication pathway between a host computer and the target MSP. Furthermore, the  
MSP-FET also provides a backchannel UART connection between the computer's USB interface and the MSP  
UART. This affords the MSP programmer a convenient method for communicating serially between the MSP and  
a terminal running on the computer.  
MSP-GANG Production Programmer  
The MSP Gang Programmer can program up to eight identical MSP430 or MSP432 flash or FRAM devices at  
the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection  
and provides flexible programming options that allow the user to fully customize the process. The MSP Gang  
Programmer is provided with an expansion board, called the Gang Splitter, that implements the interconnections  
between the MSP Gang Programmer and multiple target devices.  
TIREX Resource Explorer (TIRex)  
An online portal to examples, libraries, executables, and documentation for your device and development board.  
TIRex can be accessed directly in Code Composer Studio IDE or in TI Cloud Tools.  
TI Cloud Tools  
Start development immediately on dev.ti.com. Begin by using the Resource Explorer interface to quickly find all  
the files you need. Then, edit, build, and debug embedded applications in the cloud, using industry-leading Code  
Composer Studio Cloud IDE.  
GCC - Compiler for MSP  
MSP430 and MSP432 GCC open source packages are complete debugger and open source C/C++ compiler  
toolchains for building and debugging embedded applications based on MSP430 and MSP432 microcontrollers.  
These free GCC compilers support all MSP430 and MSP432 devices without code size limitations. In addition,  
these compilers can be used stand-alone from the command-line or within Code Composer Studio v6.0 or later.  
Get started today whether you are using a Windows®, Linux®, or macOS® environment.  
11.4 Documentation Support  
The following documents describe the MSP430FR247x microcontrollers. Copies of these documents are  
available on the Internet at www.ti.com.  
Receiving Notification of Document Updates  
To receive notification of documentation updatesincluding silicon erratago to the product folder for your  
device on ti.com (for example, MSP430FR2476). In the upper right corner, click the "Alert me" button. This  
registers you to receive a weekly digest of product information that has changed (if any). For change details,  
check the revision history of any revised document.  
Errata  
MSP430FR2476 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430FR2475 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
User's Guides  
MSP430FR4xx and MSP430FR2xx Family User's Guide  
Detailed description of all modules and peripherals available in this device family.  
MSP430™ FRAM Devices Bootloader (BSL) User's Guide  
The bootloader (BSL) on MSP430 microcontrollers (MCUs) lets users communicate with embedded memory in  
the MSP430 MCU during the prototyping phase, final production, and in service. Both the programmable  
memory (FRAM memory) and the data memory (RAM) can be modified as required.  
MSP430™ Programming With the JTAG Interface  
This document describes the functions that are required to erase, program, and verify the memory module of the  
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port.  
MSP430™ Hardware Tools User's Guide  
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the  
program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the  
parallel port interface and the USB interface, are described.  
Application Reports  
MSP430 32-kHz Crystal Oscillators  
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal  
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the  
correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout  
are given. The document also contains detailed information on the possible oscillator tests to ensure stable  
oscillator operation in mass production.  
MSP430 System-Level ESD Considerations  
System-level ESD has become increasingly demanding with silicon technology scaling towards lower voltages  
and the need for designing cost-effective and ultra-low-power components. This application report addresses  
ESD topics to help board designers and OEMs understand and design robust system-level designs.  
11.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.6 Trademarks  
TI E2E, MSP430, MSP430Ware, EnergyTrace, ULP Advisor, Code Composer Studio, and are  
trademarks of Texas Instruments.  
IAR Embedded Workbench® is a registered trademark of IAR Systems.  
Windows® is a registered trademark of Microsoft Corporation.  
Linux® is a registered trademark of Linus Torvalds.  
macOS® is a registered trademark of Apple, Inc.  
所有商标均为其各自所有者的财产。  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
11.8 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
11.9 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
MSP430FR2476, MSP430FR2475  
ZHCSJG5C MARCH 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, see the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: MSP430FR2476 MSP430FR2475  
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR2475TPT  
MSP430FR2475TPTR  
MSP430FR2475TRHAR  
MSP430FR2475TRHAT  
MSP430FR2475TRHBR  
MSP430FR2475TRHBT  
MSP430FR2476TPT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
VQFN  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
VQFN  
PT  
48  
48  
40  
40  
32  
32  
48  
48  
40  
40  
32  
32  
250  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
430FR2475  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
PT  
1000 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
430FR2475  
FR2475  
RHA  
RHA  
RHB  
RHB  
PT  
250  
RoHS & Green  
FR2475  
3000 RoHS & Green  
FR2475  
250  
250  
RoHS & Green  
RoHS & Green  
FR2475  
430FR2476  
430FR2476  
FR2476  
MSP430FR2476TPTR  
MSP430FR2476TRHAR  
MSP430FR2476TRHAT  
MSP430FR2476TRHBR  
MSP430FR2476TRHBT  
PT  
1000 RoHS & Green  
2500 RoHS & Green  
RHA  
RHA  
RHB  
RHB  
250  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
FR2476  
FR2476  
FR2476  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jul-2022  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR2475TPTR  
MSP430FR2475TPTR  
MSP430FR2475TRHAR  
MSP430FR2475TRHAT  
MSP430FR2475TRHBR  
MSP430FR2475TRHBT  
MSP430FR2476TPTR  
MSP430FR2476TPTR  
MSP430FR2476TRHAR  
MSP430FR2476TRHAT  
MSP430FR2476TRHBR  
MSP430FR2476TRHBT  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
VQFN  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
VQFN  
PT  
48  
48  
40  
40  
32  
32  
48  
48  
40  
40  
32  
32  
1000  
1000  
2500  
250  
330.0  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
330.0  
180.0  
330.0  
180.0  
16.4  
16.4  
16.4  
16.4  
12.4  
12.4  
16.4  
16.4  
16.4  
16.4  
12.4  
12.4  
9.6  
9.6  
6.3  
6.3  
5.3  
5.3  
9.6  
9.6  
6.3  
6.3  
5.3  
5.3  
9.6  
9.6  
6.3  
6.3  
5.3  
5.3  
9.6  
9.6  
6.3  
6.3  
5.3  
5.3  
1.9  
1.9  
1.1  
1.1  
1.1  
1.1  
1.9  
1.9  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
8.0  
16.0  
16.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
PT  
RHA  
RHA  
RHB  
RHB  
PT  
3000  
250  
8.0  
1000  
1000  
2500  
250  
12.0  
12.0  
12.0  
12.0  
8.0  
PT  
RHA  
RHA  
RHB  
RHB  
3000  
250  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR2475TPTR  
MSP430FR2475TPTR  
MSP430FR2475TRHAR  
MSP430FR2475TRHAT  
MSP430FR2475TRHBR  
MSP430FR2475TRHBT  
MSP430FR2476TPTR  
MSP430FR2476TPTR  
MSP430FR2476TRHAR  
MSP430FR2476TRHAT  
MSP430FR2476TRHBR  
MSP430FR2476TRHBT  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
VQFN  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
VQFN  
PT  
48  
48  
40  
40  
32  
32  
48  
48  
40  
40  
32  
32  
1000  
1000  
2500  
250  
350.0  
336.6  
367.0  
210.0  
367.0  
210.0  
336.6  
350.0  
367.0  
210.0  
367.0  
210.0  
350.0  
336.6  
367.0  
185.0  
367.0  
185.0  
336.6  
350.0  
367.0  
185.0  
367.0  
185.0  
43.0  
31.8  
35.0  
35.0  
35.0  
35.0  
31.8  
43.0  
35.0  
35.0  
35.0  
35.0  
PT  
RHA  
RHA  
RHB  
RHB  
PT  
3000  
250  
1000  
1000  
2500  
250  
PT  
RHA  
RHA  
RHB  
RHB  
3000  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
MSP430FR2475TPT  
MSP430FR2475TPT  
MSP430FR2476TPT  
MSP430FR2476TPT  
PT  
PT  
PT  
PT  
LQFP  
LQFP  
LQFP  
LQFP  
48  
48  
48  
48  
250  
250  
250  
250  
10 x 25  
10 x 25  
10 x 25  
10 x 25  
150  
150  
150  
150  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
11.1 11.25  
11.1 11.25  
11.1 11.25  
11.1 11.25  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040D  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
6.1  
5.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 4.5  
(0.1) TYP  
2.9 0.1  
EXPOSED  
THERMAL PAD  
11  
20  
36X 0.5  
10  
21  
2X  
41  
SYMM  
4.5  
1
30  
SEE TERMINAL  
DETAIL  
0.3  
0.2  
0.1  
40X  
40  
31  
SYMM  
C A  
B
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
40X  
0.05  
4225822/A 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.9)  
SYMM  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
(1.2)  
TYP  
41  
SYMM  
(5.8)  
36X (0.5)  
(
0.2) TYP  
VIA  
21  
10  
(R0.05)  
TYP  
11  
20  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225822/A 03/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(R0.05) TYP  
SYMM  
40  
31  
40X (0.6)  
1
30  
4X ( 1.27)  
40X (0.25)  
(0.735) TYP  
(0.735)  
TYP  
41  
SYMM  
(5.8)  
36X (0.5)  
METAL  
TYP  
21  
10  
20  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
76.46% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4225822/A 03/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PT0048A  
LQFP - 1.6 mm max height  
S
C
A
L
E
2
.
0
0
0
LOW PROFILE QUAD FLATPACK  
9.2  
8.8  
7.2  
6.8  
B
A
9.2  
8.8  
7.2  
6.8  
0.27  
48X  
0.17  
0.08  
C A B  
44X 0.5  
4X 5.5  
SEE DETAIL A  
1.6 MAX  
C
SEATING PLANE  
0.1 C  
1.45  
1.35  
0.25  
GAGE PLANE  
0.75  
0.45  
0.5 MIN  
0 -7  
A15.000  
DETAIL A  
4215159/A 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MS-026.  
4. This may also be a thermally enhanced plastic package with leads conected to the die pads.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PT0048A  
LQFP - 1.6 mm max height  
LOW PROFILE QUAD FLATPACK  
PKG  
SYMM  
48  
37  
SEE SOLDER MASK  
DETAILS  
48X (1.6)  
1
36  
48X (0.3)  
44X (0.5)  
PKG SYMM  
(8.2)  
(R0.05) TYP  
12  
25  
13  
24  
(8.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE 10.000  
0.05 MAX  
ALLAROUND  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL EDGE  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215159/A 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PT0048A  
LQFP - 1.6 mm max height  
LOW PROFILE QUAD FLATPACK  
PKG  
SYMM  
48  
37  
48X (1.6)  
1
36  
48X (0.3)  
44X (0.5)  
PKG SYMM  
(8.2)  
(R0.05) TYP  
12  
25  
13  
24  
(8.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 10X  
4215159/A 12/2021  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY