MSP430FR2522IPW16R [TI]

具有 8 个触摸 IO(16 个传感器)、8KB FRAM、2KB SRAM、15 个 IO 和 10 位 ADC 的电容式触摸 MCU | PW | 16 | -40 to 85;
MSP430FR2522IPW16R
型号: MSP430FR2522IPW16R
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 8 个触摸 IO(16 个传感器)、8KB FRAM、2KB SRAM、15 个 IO 和 10 位 ADC 的电容式触摸 MCU | PW | 16 | -40 to 85

静态存储器 传感器
文件: 总94页 (文件大小:1366K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
MSP430FR25x2 电容式触摸感应混合信号微控制器  
1 器件概述  
1.1 特性  
1
CapTIvate™ 技术 电容式触控  
性能  
优化的超低功耗模式  
激活模式:120µA/MHz(典型值)  
待机模式:两个传感器的触摸唤醒电流小于 4µA  
关断模式 (LPM4.5)36nA,无 SVS  
低功耗铁电 RAM (FRAM)  
两路同步快速电极扫描  
接近感应  
可靠性  
提高了针对电力线、射频及其他环境噪声的抗  
扰度  
非易失性存储器容量高达 7.5KB  
内置错误修正码 (ECC)  
内置扩展频谱、自动调优、噪声滤除和消抖算  
可配置的写保护  
对程序、常量和存储的统一存储  
耐写次数达 1015  
抗辐射和非磁性  
提供可靠的触控解决方案,该方案具有 10V  
RMS 共模噪声、4kV 电气快速瞬变以及 15kV  
静电放电,符合 IEC61000-4-6IEC-61000-  
4-4 IEC61000-4-2 标准  
降低了射频辐射,简化了电气设计  
支持金属触控和防水设计  
– FRAM SRAM 之比高达 41  
高性能模拟  
高达 8 通道 10 位模数转换器 (ADC)  
– 1.5V 的内部基准电压  
采样与保持 200ksps  
灵活性  
多达 8 个自电容式电极和 16 个互电容式电极  
在同一设计中混合使用自电容式电极和互电容  
式电极  
智能数字外设  
两个 16 位计时器,每个计时器有三个捕捉/比较  
寄存器 (Timer_A3)  
一个 16 位计时器,采用 CapTIvate™技术  
一个仅用作计数器的 16 RTC  
– 16 位循环冗余校验 (CRC)  
支持多点触控功能  
宽电容检测范围;0 300pF 宽电极范围  
低功耗  
两个传感器的触摸唤醒电流小于 4µA  
触摸唤醒状态机支持在 CPU 休眠过程中进行  
电极扫描  
增强型串行通信,支持引脚重映射功能(请参阅 器  
件比较)  
一个 eUSCI_A 接口,支持 UARTIrDA SPI  
一个 eUSCI_B 接口,支持 SPI I2C  
时钟系统 (CS)  
用于环境补偿、滤波和阈值检测的硬件加速  
易于使用  
CapTIvate 设计中心PC GUI 允许工程师对  
电容按钮进行实时设计和调试,无需编写代码  
片上 32kHz RC 振荡器 (REFO)  
带有锁频环 (FLL) 的片上 16MHz 数控振荡器  
存储于 ROM 中的 CapTIvate 软件库为客户应  
用提供充足的 FRAM  
(DCO)  
室温下的精度为 ±1%(具有片上基准)  
片上超低频 10kHz 振荡器 (VLO)  
片上高频调制振荡器 (MODOSC)  
外部 32kHz 晶振 (LFXT)  
嵌入式微控制器  
– 16 RISC 架构  
支持的时钟频率最高可达 16MHz  
– 3.6V 1.8V 的宽电源电压范围(最低电源电压  
受限于 SVS 电平,请参阅 SVS 规格)  
可编程 MCLK 预分频器(1 128)  
通过可编程预分频器(124 8)从 MCLK  
获得的 SMCLK  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASEE4  
 
 
 
 
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
通用输入/输出和引脚功能  
• 12KB ROM 库包含 CapTIvate 触控程序库和驱动程  
序库  
共计 15 I/O(采用 VQFN-20 封装)  
系列成员(另请参阅 器件特性)  
– 15 个中断引脚(P1 P2)可以将 MCU 从低功  
耗模式下唤醒  
– MSP430FR25227.25KB 程序 FRAM256B  
信息 FRAM2KB RAM  
开发工具和软件  
开发工具  
,多达 8 个自电容式传感器和 16 个互电容式传  
感器  
– MSP CapTIvate™ MCU 开发套件评估:与  
CAPTIVATEPGMR 编程器和电容式触控  
MSP430FR2522 MCU 板  
– MSP430FR25127.25KB 程序 FRAM256B  
信息 FRAM2KB RAM  
,多达 4 个自电容式传感器或互电容式传感器  
封装选项  
BOOSTXLCAPKEYPAD 配合使用  
目标开发板 MSPTS430RHL20  
易于使用的生态系统  
– 20 引脚:VQFN (RHL)  
– 16 引脚:TSSOP (PW)  
CapTIvate 设计中心 代码生成、可自定义  
GUI、实时调优  
1.2 应用  
电子智能锁、门键盘和读取器  
车库门系统  
A/V 接收器  
电器  
入侵 HMI 键盘和控制面板  
电梯呼叫按钮  
电动工具  
照明开关  
可视门铃  
个人电子产品  
无线扬声器和耳机  
1.3 说明  
MSP430FR25x2 包含一系列用于电容式触摸传感的超低功耗 MSP430™微控制器 (MCU),它们均采用  
CapTIvate™ 触控技术,适用于 应用 采用116个电容式按钮或接近感应的成本敏感型应用。  
MSP430FR25x2 MCU 适用于 应用 电磁干扰、油液、水和油脂影响的工业应用,可以创造价值,实现高性  
能。这些器件可提供 IEC 认证的解决方案,其功耗比同类竞争解决方案低 5 倍且支持接近感应以及透过玻  
璃、塑料和金属镀层进行触摸操作。  
TI 电容式触摸感应 MSP430 MCU 由一套全面的硬件和软件生态系统进行支持,并配套提供参考设计和代码  
示例,协助用户快速开展设计。BOOSTXL-CAPKEYPAD BoosterPack™插件模块可搭配使用 CAPTIVATE-  
PGMR 编程器电路板(单独使用或作为 MSP-CAPT-FR2633 CapTIvate 开发套件的一部分),或  
LaunchPad 开发套件生态系统。TI 还提供免费的软件,如 CapTIvate 设计中心,工程师可以在其中 借助 方  
便易用的 GUI ™MSP430Ware™ 软件以及包括 CapTIvate 技术指南在内的综合性文档快速进行应用开  
发。  
采用 CapTIvate 技术的 MSP430 MCU 提供市面上集成度和自主性领先的电容式触控解决方案,可在最低功  
耗下实现高可靠性和抗噪能力。有关更多信息,请访问 ti.com.cn/captivate。  
有关完整的模块说明,请参阅MSP430FR4xx MSP430FR2xx 系列器件用户指南》。  
器件信息(1)  
封装  
器件型号  
MSP430FR2522IPW16  
MSP430FR2522IRHL  
MSP430FR2512IPW16  
MSP430FR2512IRHL  
封装尺寸(2)  
5mm x 4.4mm  
4.5mm x 3.5mm  
5mm x 4.4mm  
4.5mm x 3.5mm  
TSSOP (16)  
VQFN (20)  
TSSOP (16)  
VQFN (20)  
(1) 要获得最新的产品、封装和订购信息,请参见封装选项附录9),或者访问德州仪器 (TI) 网站  
www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据9中)。  
2
器件概述  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
CAUTION  
系统级静电放电 (ESD) 保护必须符合器件级 ESD 规范,以防发生电气过载或对  
数据或代码存储器造成干扰。有关更多信息,请参阅MSP430 系统级 ESD 注  
意事项》。  
版权 © 2018–2019, Texas Instruments Incorporated  
器件概述  
3
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
1.4 功能框图  
1-1 给出了功能框图。  
XIN XOUT  
P1.x/P2.x  
FRAM  
RAM  
2KB  
MPY32  
32-bit  
Hardware Redundancy  
Multiplier  
CRC16  
I/O Ports  
P1 : 8 IOs  
P2 : 7 IOs  
Interrupt,  
Wakeup,  
CapTIvate  
DVCC  
DVSS  
LFXT  
Power  
Management  
Module  
16-bit  
Cyclic  
8 channels  
(FR2522)  
4 channels  
(FR2512)  
Clock  
System  
RST/NMI  
VREG  
7.25KB  
+256B  
Check  
PA : 15 IOs  
MAB  
MDB  
16-MHz CPU  
including  
16 registers  
EEM  
RTC  
Counter  
eUSCI_A0  
2 × TA  
eUSCI_B0  
(SPI, I2C)  
ADC  
BAKMEM  
SYS  
TCK  
TMS  
8 channels  
Single-end  
10 bit  
32-bytes  
Backup  
Memory  
16-bit  
Real-Time  
Clock  
Timer_A3  
3 CC  
Registers  
JTAG  
SBW  
TDI/TCLK  
TDO  
(UART,  
IrDA, SPI)  
Watchdog  
200 ksps  
SBWTCK  
SBWTDIO  
LPM3.5 Domain  
Copyright © 2017, Texas Instruments Incorporated  
1-1. 功能框图  
MCU 的主电源对 DVCC DVSS 分别为数字模块和模拟模块供电。推荐的旁路电容和去耦电容分别为  
4.7μF 10μF 0.1μF,精度为 ±5%。  
VREG CapTIvate 稳压器的去耦电容。所需去耦电容的建议值为 1µF,最大等效串联电阻 (ESR)  
200mΩ。  
P1 P2 特有引脚中断功能,可将 MCU 从所有低功耗模式 (LPM) 唤醒(包括 LPM3.5 LPM4)。  
每个 Timer_A3 具有三个捕捉/比较寄存器。仅 CCR1 CCR2 从外部连接。CCR0 寄存器仅用于内部周  
期时序和生成中断。  
LPM3 LPM4 模式下,CapTIvate 模块可以正常工作,而其他外设则会关闭。  
4
器件概述  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
内容  
1
器件概.................................................... 1  
6.1 Overview ............................................ 43  
6.2 CPU ................................................. 43  
6.3 Operating Modes.................................... 43  
6.4 Interrupt Vector Addresses.......................... 44  
6.5 Bootloader (BSL).................................... 46  
6.6 JTAG Standard Interface............................ 46  
6.7 Spy-Bi-Wire Interface (SBW)........................ 47  
6.8 FRAM................................................ 47  
6.9 Memory Protection .................................. 47  
6.10 Peripherals .......................................... 47  
6.11 Input/Output Diagrams .............................. 56  
6.12 Device Descriptors .................................. 60  
6.13 Memory.............................................. 61  
6.14 Identification ......................................... 69  
Applications, Implementation, and Layout........ 70  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能框图 .............................................. 4  
修订历史记录............................................... 6  
Device Comparison ..................................... 7  
3.1 Related Products ..................................... 7  
Terminal Configuration and Functions.............. 8  
4.1 Pin Diagrams ......................................... 8  
4.2 Pin Attributes ........................................ 10  
4.3 Signal Descriptions.................................. 12  
4.4 Pin Multiplexing ..................................... 15  
4.5 Buffer Types......................................... 15  
4.6 Connection of Unused Pins ......................... 15  
Specifications ........................................... 16  
5.1 Absolute Maximum Ratings......................... 16  
5.2 ESD Ratings ........................................ 16  
5.3 Recommended Operating Conditions............... 16  
2
3
4
7
8
5
7.1  
Device Connection and Layout Fundamentals...... 70  
7.2  
Peripheral- and Interface-Specific Design  
Information .......................................... 73  
7.3 CapTIvate Technology Evaluation .................. 76  
器件和文档支持 .......................................... 77  
8.1 入门和后续步骤...................................... 77  
8.2 器件命名规则 ........................................ 77  
8.3 工具和软件 .......................................... 78  
8.4 文档支............................................. 80  
8.5 相关链............................................. 81  
8.6 社区资............................................. 81  
8.7 商标.................................................. 81  
8.8 静电放电警告 ........................................ 82  
8.9 Export Control Notice ............................... 82  
8.10 Glossary ............................................. 82  
机械、封装和可订购信息................................ 83  
5.4  
Active Mode Supply Current Into VCC Excluding  
External Current..................................... 17  
5.5 Active Mode Supply Current Per MHz .............. 17  
5.6  
5.7  
5.8  
5.9  
Low-Power Mode (LPM0) Supply Currents Into VCC  
Excluding External Current.......................... 17  
Low-Power Mode (LPM3, LPM4) Supply Currents  
(Into VCC) Excluding External Current .............. 18  
Low-Power Mode (LPMx.5) Supply Currents (Into  
VCC) Excluding External Current.................... 20  
Typical Characteristics - Low-Power Mode Supply  
Currents ............................................. 21  
5.10 Thermal Resistance Characteristics ................ 22  
5.11 Timing and Switching Characteristics............... 22  
Detailed Description ................................... 43  
9
6
版权 © 2018–2019, Texas Instruments Incorporated  
内容  
5
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
从修订版本 B 更改为修订版本 C  
Changes from August 20, 2019 to December 10, 2019  
Page  
Changed the note that begins "Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset..." in  
Section 5.3, Recommended Operating Conditions ............................................................................. 16  
Added the note that begins "TI recommends that power to the DVCC pin must not exceed the limits..." in  
Section 5.3, Recommended Operating Conditions ............................................................................. 16  
Changed the note that begins "A capacitor tolerance of ±20% or better is required..." in Section 5.3,  
Recommended Operating Conditions ............................................................................................ 16  
Added the note "See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing" to  
Table 5-4, XT1 Crystal Oscillator (Low Frequency) ............................................................................ 24  
Changed the note that begins "Requires external capacitors at both terminals..." in Table 5-4, XT1 Crystal  
Oscillator (Low Frequency) ........................................................................................................ 24  
Added the tTA,cap parameter in Table 5-13, Timer_A............................................................................ 30  
Corrected the test conditions for the RI parameter in Table 5-20, ADC, Power Supply and Input Range Conditions. 37  
Added the note that begins "tSample = ln(2n+1) × τ ..." in Table 5-21, ADC, 10-Bit Timing Parameters.................... 37  
Changed the CRC covered end address to 0x1AF5 in note (1) in Table 6-18, Device Descriptors ..................... 60  
Added "1.5-V reference factor" in Table 6-18, Device Descriptors .......................................................... 61  
从修订版本 A 更改为修订版本 B  
Changes from November 8, 2018 to August 19, 2019  
Page  
更新了1.1特性...................................................................................................................... 1  
Changed CapTIvate BSWP demonstration board to CapTIvate phone demonstration board in note (11) on  
Section 5.7, Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current ................ 18  
Changed CapTIvate BSWP demonstration board to CapTIvate phone demonstration board in note (19) on  
Section 5.7, Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current ................ 19  
Added the tTA,cap parameter in Table 5-13, Timer_A............................................................................ 30  
Moved CREG and CELECTRODE from Section 5.3, Recommended Operating Conditions to Table 5-23, CapTIvate  
Electrical Characteristics ........................................................................................................... 39  
Added test condition for CELECTRODE in Table 5-23 , CapTIvate Electrical Characteristics................................. 39  
Changed the symbol and description of the DCCAPCLK parameter in Table 5-23, CapTIvate Electrical  
Characteristics ...................................................................................................................... 39  
Moved the SNR parameter to Table 5-24, CapTIvate Signal-to-Noise Ratio Characteristics ............................ 39  
Updated Section 7.2.2, CapTIvate Peripheral .................................................................................. 74  
更新了8.2器件命名规则....................................................................................................... 77  
从初始发行版更改为修订版本 A  
Changes from January 12, 2018 to November 7, 2018  
Page  
删除了1.1特性 中接近感应项的“15cm” .................................................................................... 1  
更改了 1.1特性 中的列表项“3.6V 1.8V 的宽电源电压范围............................................................. 1  
Updated Section 3.1, Related Products ........................................................................................... 7  
Changed HBM limit to ±1000 V and CDM limit to ±250 V in Section 5.2, ESD Ratings................................... 16  
Changed the MIN value of the VCC parameter from 2 V to 1.8 V in Section 5.3, Recommended Operating  
Conditions ............................................................................................................................ 16  
Changed the crystal in the footnote that begins "Characterized with a Seiko Crystal SC-32S crystal..." in  
Section 5.7, Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current................. 18  
Changed the crystal in the footnote that begins "Characterized with a Seiko Crystal SC-32S crystal..." in  
Section 5.8, Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current ....................... 20  
Added note on VSVSH- and VSVSH+ parameters to Table 5-2, PMM, SVS and BOR......................................... 22  
6
修订历史记录  
版权 © 2018–2019, Texas Instruments Incorporated  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Changed the minimum VCC from 2.0 V to 1.8 V in the test conditions for the fREFO, dfREFO/ dVCC, and fDC  
parameters and in note (2) in Table 5-7, REFO................................................................................. 26  
Changed the minimum VCC from 2.0 V to 1.8 V in the test conditions for the dfVLO/dVCC parameter and in note  
(2) in Table 5-8, Internal Very-Low-Power Low-Frequency Oscillator (VLO)................................................ 27  
Changed the minimum VCC from 2.0 V to 1.8 V in the test conditions for the fMODOSC/dVCC parameter in Table 5-  
9, Module Oscillator (MODOSC) ................................................................................................. 27  
Added the tTA,cap parameter in Table 5-13, Timer_A............................................................................ 30  
Added the SNR parameter in Table 5-23, CapTIvate Electrical Characteristics ........................................... 39  
Corrected bitfield from RTCCLK to RTCCKSEL in table note that starts "Controlled by ..." in Table 6-8, Clock  
Distribution .......................................................................................................................... 48  
Corrected bitfield from IRDSEL to IRDSSEL in Section 6.10.8, Timers (Timer0_A3, Timer1_A3), in the  
description that starts "The interconnection of Timer0_A3 and ..." ........................................................... 53  
Corrected ADCINCHx column heading in Table 6-13, ADC Channel Connections ....................................... 54  
Corrected ADCINCHx column heading in Table 6-13, ADC Channel Connections ....................................... 55  
Added P1SELC information in Table 6-28, Port P1, P2 Registers (Base Address: 0200h)............................... 64  
Added P2SELC information in Table 6-28, Port P1, P2 Registers (Base Address: 0200h) .............................. 64  
Copyright © 2018–2019, Texas Instruments Incorporated  
修订历史记录  
7
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
3 Device Comparison  
Table 3-1 summarizes the features of the available family members.  
Table 3-1. Device Comparison(1)(2)  
PROGRAM  
FRAM +  
INFORMATION  
FRAM (bytes)  
CapTIvate  
TECHNOLOG  
Y
SRAM  
(bytes)  
10-BIT ADC  
CHANNELS  
DEVICE  
TA0,TA1  
eUSCI_A  
eUSCI_B  
GPIOs  
PACKAGE  
CHANNELS  
20 RHL  
(VQFN)  
MSP430FR2522IRHL  
MSP430FR2522IPW16  
MSP430FR2512IRHL  
MSP430FR2512IPW16  
7424 + 256  
7424 + 256  
7424 + 256  
7424 + 256  
2048  
2048  
2048  
2048  
2, 3 × CCR(3)  
2, 3 × CCR(3)  
2, 3 × CCR(3)  
2, 3 × CCR(3)  
1
1
1
1
1
1
1
1
8
5
8
5
8
8
4
4
15  
11  
15  
11  
16 PW  
(TSSOP)  
20 RHL  
(VQFN)  
16 PW  
(TSSOP)  
(1) For the most current package and ordering information, see the Package Option Addendum in 9, or see the TI website at www.ti.com  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/packaging  
(3) A CCR register is a configurable register that provides internal and external capture or compare inputs, or internal and external PWM  
outputs.  
3.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers  
High-performance, low-power solutions to enable the autonomous future  
Products for MSP430 ultra-low-power sensing and measurement microcontrollers  
One platform. One ecosystem. Endless possibilities.  
Companion Products for MSP430FR2522  
Review products that are frequently purchased or used in conjunction with this product.  
Reference Designs  
Find reference designs leveraging the best in TI technology to solve your system-level challenges  
8
Device Comparison  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
4 Terminal Configuration and Functions  
4.1 Pin Diagrams  
Figure 4-1 shows the pinout for the 20-pin RHL package.  
19 18 17 16 15 14 13 12  
20  
11  
10  
P2.4/TA1CLK/UCB0CLK/A6  
P1.2/UCB0SIMO/UCB0SDA/SMCLK/A2/Veref-/CAP1.2  
P1.1/UCB0CLK/ACLK/A1/VREF+/CAP1.1  
MSP430FR2522IRHL  
MSP430FR2512IRHL  
1
P2.5/UCB0SIMO/UCB0SDA/A7  
2
3
4
5
6
7
8
9
NOTE: CAP1.x are available only on MSP430FR2522 device and NOT available on MSP430FR2512 device.  
Figure 4-1. 20-Pin RHL Package (Top View)  
Copyright © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Figure 4-2 shows the pinout for the 16-pin PW package.  
P1.1/UCB0CLK/ACLK/A1/VREF+/CAP1.1  
P1.0/UCB0STE/A0/Veref+/CAP1.0  
TEST/SBWTCK  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P1.2/UCB0SIMO/UCB0SDA/SMCLK/A2/Veref-/CAP1.2  
P1.3/UCB0SOMI/UCB0SCL/MCLK/A3/CAP1.3  
VREG  
P1.4/UCA0TXD/UCA0SIMO/TA0.1/TCK/CAP0.0  
P1.5/UCA0RXD/UCA0SOMI/TA0.2/TMS/CAP0.1  
P1.6/UCA0CLK/TA0CLK/TDI/TCLK/CAP0.2  
P1.7/UCA0STE/TDO/CAP0.3  
RST/NMI/SBWTDIO  
MSP430FR2522IPW16  
MSP430FR2512IPW16  
DVCC  
DVSS  
P2.1/UCA0RXD/UCA0SOMI/XIN  
P2.0/UCA0TXD/UCA0SIMO/XOUT  
P2.2/TA1.1/SYNC/A4  
NOTE: CAP1.x are available only on MSP430FR2522 device and NOT available on MSP430FR2512 device.  
Figure 4-2. 16-Pin PW Package (Top View)  
10  
Terminal Configuration and Functions  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
4.2 Pin Attributes  
Table 4-1 lists the attributes of all pins.  
Table 4-1. Pin Attributes  
PIN NUMBER  
RHL PW16  
SIGNAL  
RESET STATE  
SIGNAL NAME(1) (2)  
BUFFER TYPE(4)  
POWER SOURCE(5)  
TYPE(3)  
AFTER BOR(6)  
P1.1 (RD)  
UCB0CLK  
ACLK  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
VREG  
OFF  
1
1
CAP1.1(7)  
A1  
Analog  
DVCC  
Power  
DVCC  
DVCC  
VREG  
VREF+  
I
Analog  
P1.0 (RD)  
UCB0STE  
CAP1.0(7)  
A0  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
OFF  
2
2
Analog  
DVCC  
Power  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
Veref+  
I
Analog  
TEST (RD)  
SBWTCK  
RST (RD)  
NMI  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
OFF  
3
4
3
4
I
I
OFF  
I
SBWTDIO  
DVCC  
I/O  
P
5
6
5
6
N/A  
N/A  
OFF  
DVSS  
P
Power  
P2.1 (RD)  
UCA0RXD  
UCA0SOMI  
XIN  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
7
7
I/O  
I
P2.0 (RD)  
UCA0TXD  
UCA0SIMO  
XOUT  
I/O  
O
OFF  
8
9
8
I/O  
O
P2.6 (RD)  
UCB0SOMI  
UCB0SCL  
P2.5 (RD)  
UCB0SIMO  
UCB0SDA  
A7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OFF  
OFF  
10  
P2.4 (RD)  
TA1CLK  
UCB0CLK  
A6  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
11  
I/O  
I
(1) Signals names with (RD) denote the reset default pin name.  
(2) To determine the pin mux encodings for each pin, see Section 6.11.  
(3) Signal Types: I = Input, O = Output, I/O = Input or Output  
(4) Buffer Types: LVCMOS, Analog, or Power (see Table 4-3)  
(5) The power source shown in this table is the I/O power source, which may differ from the module power source.  
(6) Reset States:  
OFF = High-impedance with Schmitt trigger and pullup or pulldown (if available) disabled  
N/A = Not applicable  
(7) MSP430FR2522 only  
Copyright © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 4-1. Pin Attributes (continued)  
PIN NUMBER  
RHL PW16  
SIGNAL  
TYPE(3)  
RESET STATE  
SIGNAL NAME(1) (2)  
BUFFER TYPE(4)  
POWER SOURCE(5)  
AFTER BOR(6)  
P2.3 (RD)  
TA1.2  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
VREG  
OFF  
12  
UCB0STE  
A5  
P2.2 (RD)  
TA1.1  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
13  
14  
9
SYNC  
A4  
I
P1.7 (RD)  
UCA0STE  
TDO  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
10  
CAP0.3  
P1.6 (RD)  
UCA0CLK  
TA0CLK  
TDI  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
VREG  
OFF  
15  
16  
11  
12  
I
TCLK  
I
CAP0.2  
P1.5 (RD)  
UCA0RXD  
UCA0SOMI  
TA0.2  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
VREG  
OFF  
I/O  
I/O  
I
TMS  
CAP0.1  
P1.4 (RD)  
UCA0TXD  
UCA0SIMO  
TA0.1  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
VREG  
OFF  
I/O  
I/O  
I
17  
18  
19  
13  
14  
15  
TCK  
CAP0.0  
VREG  
I/O  
P
Power  
VREG  
N/A  
OFF  
P1.3 (RD)  
UCB0SOMI  
UCB0SCL  
MCLK  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
VREG  
CAP1.3(7)  
I/O  
I
A3  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
VREG  
P1.2 (RD)  
UCB0SIMO  
UCB0SDA  
SMCLK  
CAP1.2(7)  
A2  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
20  
16  
I/O  
I
Analog  
DVCC  
Power  
Veref-  
I
Analog  
12  
Terminal Configuration and Functions  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
4.3 Signal Descriptions  
Table 4-2 describes the signals for all device variants and package options.  
Table 4-2. Signal Descriptions  
PIN NUMBER  
PIN  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
RHL  
2
PW  
2
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
I
Analog input A0  
1
1
I
I
Analog input A1  
20  
19  
13  
12  
11  
10  
2
16  
15  
9
Analog input A2  
I
Analog input A3  
I
Analog input A4  
ADC  
I
Analog input A5  
I
Analog input A6  
I
Analog input A7  
Veref+  
2
I
ADC positive reference  
ADC negative reference  
CapTIvate channel  
CapTIvate channel  
CapTIvate channel  
CapTIvate channel  
CapTIvate channel  
CapTIvate channel  
CapTIvate channel  
CapTIvate channel  
Veref-  
20  
17  
16  
15  
14  
2
16  
13  
12  
11  
10  
2
I
CAP0.0  
CAP0.1  
CAP0.2  
CAP0.3  
CAP1.0(2)  
CAP1.1(2)  
CAP1.2(2)  
CAP1.3(2)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CapTIvate  
1
1
20  
19  
16  
15  
CapTIvate synchronous trigger input for processing and  
conversion  
SYNC  
13  
9
I
ACLK  
MCLK  
SMCLK  
XIN  
1
19  
20  
7
1
15  
16  
7
I/O  
O
O
I
ACLK output  
MCLK output  
Clock  
SMCLK output  
Input terminal for crystal oscillator  
Output terminal for crystal oscillator  
Spy-Bi-Wire input clock  
Spy-Bi-Wire data input/output  
Test clock  
XOUT  
SBWTCK  
SBWTDIO  
TCK  
8
8
O
I
3
3
4
4
I/O  
I
17  
15  
15  
14  
3
13  
11  
11  
10  
3
TCLK  
TDI  
I
Test clock input  
Debug  
I
Test data input  
TDO  
O
I
Test data output  
TEST  
TMS  
Test mode pin – selected digital I/O on JTAG pins  
Test mode select  
16  
12  
I
(1) Pin Types: I = Input, O = Output, I/O = Input or Output, P = Power  
(2) MSP430FR2522 only  
Copyright © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 4-2. Signal Descriptions (continued)  
PIN NUMBER  
PIN  
FUNCTION  
SIGNAL NAME  
P1.0  
DESCRIPTION  
TYPE(1)  
RHL  
2
PW  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O(3)  
General-purpose I/O(3)  
General-purpose I/O(3)  
General-purpose I/O(3)  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
1
1
20  
19  
17  
16  
15  
14  
16  
15  
13  
12  
11  
10  
GPIO  
P2.0  
8
8
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
eUSCI_B0 I2C clock  
eUSCI_B0 I2C data  
P2.1  
7
P2.2  
13  
12  
11  
10  
9
9
P2.3  
P2.4  
P2.5  
P2.6  
UCB0SCL(4)  
UCB0SDA(4)  
19  
20  
15  
16  
I2C  
UCB0SCL(4)  
UCB0SDA(4)  
DVCC  
9
10  
5
I/O  
I/O  
P
eUSCI_B0 I2C clock  
eUSCI_B0 I2C data  
Power supply  
5
DVSS  
6
6
P
Power ground  
Power  
VREF+  
1
1
P
Output of positive reference voltage with ground as reference  
CapTIvate regulator external decoupling capacitor  
eUSCI_A0 SPI slave transmit enable  
eUSCI_A0 SPI clock input/output  
VREG  
18  
14  
15  
16  
17  
7
14  
10  
11  
12  
13  
7
O
UCA0STE  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
UCA0CLK  
UCA0SOMI(4)(5)  
UCA0SIMO(4)(5)  
UCA0SOMI(4)(5)  
UCA0SIMO(4)(5)  
eUSCI_A0 SPI slave out/master in  
eUSCI_A0 SPI slave in/master out  
eUSCI_A0 SPI slave out/master in  
8
8
eUSCI_A0 SPI slave in/master out  
UCB0STE(4)  
UCB0CLK(4)  
UCB0SOMI(4)  
UCB0SIMO(4)  
2
1
2
1
I/O  
I/O  
I/O  
I/O  
eUSCI_B0 slave transmit enable  
eUSCI_B0 clock input/output  
SPI  
19  
20  
15  
16  
eUSCI_B0 SPI slave out/master in  
eUSCI_B0 SPI slave in/master out  
UCB0STE(4)  
UCB0CLK(4)  
UCB0SOMI(4)  
UCB0SIMO(4)  
NMI  
12  
11  
9
4
4
I/O  
I/O  
I/O  
I/O  
I
eUSCI_B0 slave transmit enable  
eUSCI_B0 clock input/output  
eUSCI_B0 SPI slave out/master in  
eUSCI_B0 SPI slave in/master out  
Nonmaskable interrupt input  
Active-low reset input  
10  
4
System  
RST  
4
I
(3) Because this pin is multiplexed with the JTAG function, TI recommends disabling the pin interrupt function while in JTAG debug to  
prevent collisions.  
(4) These signal assignments are controlled by the USCIARMP bit of the SYSCFG3 register or the USCIBRMP bit of the SYSCFG2  
register. Only one group can be selected at one time.  
(5) Signal assignments on these pins are controlled by the remap functionality and are selected by the USCIARMP bit in the SYSCFG3  
register. Only one group can be selected at one time. The CLK and STE assignments are fixed and shared by both SPI function groups.  
14  
Terminal Configuration and Functions  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
FUNCTION  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 4-2. Signal Descriptions (continued)  
PIN NUMBER  
PIN  
SIGNAL NAME  
TA0.1  
DESCRIPTION  
TYPE(1)  
RHL  
17  
PW  
13  
I/O  
I/O  
I
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 outputs  
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 outputs  
Timer clock input TACLK for TA0  
TA0.2  
16  
12  
TA0CLK  
15  
11  
Timer_A  
TA1.1  
13  
12  
11  
16  
17  
9
I/O  
I/O  
I
Timer TA1 CCR1 capture: CCI1A input, compare: Out1 outputs  
Timer TA1 CCR2 capture: CCI2A input, compare: Out2 outputs  
Timer clock input TACLK for TA1  
TA1.2  
TA1CLK  
UCA0RXD(4)  
UCA0TXD(4)  
12  
13  
I
eUSCI_A0 UART receive data  
O
eUSCI_A0 UART transmit data  
UART  
UCA0RXD(4)  
UCA0TXD(4)  
7
8
7
8
I
eUSCI_A0 UART receive data  
O
eUSCI_A0 UART transmit data  
QFN package exposed thermal pad. TI recommends connecting to  
QFN Pad  
QFN thermal pad  
Pad  
VSS  
.
Copyright © 2018–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
4.4 Pin Multiplexing  
Pin multiplexing for this MCU is controlled by both register settings and operating modes (for example, if  
the MCU is in test mode). For details of the settings for each pin and diagrams of the multiplexed ports,  
see Section 6.11.  
4.5 Buffer Types  
Table 4-3 defines the pin buffer types that are listed in Table 4-1  
Table 4-3. Buffer Types  
NOMINAL  
OUTPUT  
DRIVE  
STRENGTH  
(mA)  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)  
OTHER  
CHARACTERISTICS  
HYSTERESIS  
PU OR PD  
See  
Section 5.11.4  
See  
Section 5.11.4  
LVCMOS  
Analog  
3.0 V  
3.0 V  
Y(1)  
N
Programmable  
N/A  
See analog modules in  
Section 5 for details.  
N/A  
N/A  
SVS enables hysteresis on  
DVCC.  
Power (DVCC)  
Power (AVCC)  
3.0 V  
3.0 V  
N
N
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
(1) Only for input pins.  
4.6 Connection of Unused Pins  
Table 4-4 lists the correct termination of unused pins.  
Table 4-4. Connection of Unused Pins(1)  
PIN  
POTENTIAL  
COMMENT  
Switched to port function, output direction (PxDIR.n = 1)  
47-kpullup or internal pullup selected with 10-nF (or 1.1-nF) pulldown(2)  
Px.0 to Px.7  
RST/NMI  
TEST  
Open  
DVCC  
Open  
This pin always has an internal pull-down enabled.  
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection  
guidelines.  
(2) The pulldown capacitor should not exceed 1.1 nF when using MCUs with Spy-Bi-Wire interface in Spy-Bi-Wire mode with TI tools like  
FET interfaces or GANG programmers.  
16  
Terminal Configuration and Functions  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
5 Specifications  
5.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
MAX  
4.1  
UNIT  
V
Voltage applied at DVCC pin to VSS  
(2)  
Voltage applied to any pin in CapTIvate mode  
VREG  
V
VCC + 0.3  
(4.1 V Max)  
Voltage applied to any other pin(3)  
–0.3  
V
Diode current at any device pin  
±2  
85  
mA  
°C  
Maximum junction temperature, TJ  
(4)  
Storage temperature, Tstg  
–40  
125  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) This applies I/Os worked in CapTIvate mode.  
(3) All voltages referenced to VSS  
.
(4) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
5.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
Charged-device model (CDM), per JEDEC specification JESD22C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V  
may actually have higher performance.  
5.3 Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
VCC  
VSS  
TA  
Supply voltage applied at DVCC pin(1)(2)(3)(4)  
Supply voltage applied at DVSS pin  
Operating free-air temperature  
1.8  
3.6  
V
V
0
–40  
–40  
4.7  
85  
85  
°C  
°C  
µF  
TJ  
Operating junction temperature  
Recommended capacitor at DVCC(5)  
CDVCC  
10  
No FRAM wait states  
(NWAITSx = 0)  
0
0
8
fSYSTEM  
Processor frequency (maximum MCLK frequency)(4)(6)  
MHz  
With FRAM wait states  
(NWAITSx = 1)(7)  
16(8)  
fACLK  
Maximum ACLK frequency  
Maximum SMCLK frequency  
40  
16(8)  
kHz  
fSMCLK  
MHz  
(1) Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset even within the recommended supply voltage range. Following the  
data sheet recommendation for capacitor CDVCC limits the slopes accordingly.  
(2) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(3) TI recommends that power to the DVCC pin must not exceed the limits specified in Recommended Operating Conditions. Exceeding the  
specified limits can cause malfunction of the device including erroneous writes to RAM and FRAM.  
(4) The minimum supply voltage is defined by the SVS levels. See the SVS threshold parameters in Table 5-2.  
(5) A capacitor tolerance of ±20% or better is required. A low-ESR ceramic capacitor of 100 nF (minimum) should be placed as close as  
possible (within a few millimeters) to the respective pin pair.  
(6) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(7) Wait states only occur on actual FRAM accesses (that is, on FRAM cache misses). RAM and peripheral accesses are always executed  
without wait states.  
(8) If clock sources such as HF crystals or the DCO with frequencies >16 MHz are used, the clock must be divided in the clock system to  
comply with this operating condition.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.4 Active Mode Supply Current Into VCC Excluding External Current  
(1)  
See  
FREQUENCY (fMCLK = fSMCLK  
8 MHz  
)
1 MHz  
16 MHz  
EXECUTION  
MEMORY  
TEST  
CONDITION  
PARAMETER  
0 WAIT STATES  
(NWAITSx = 0)  
0 WAIT STATES  
(NWAITSx = 0)  
1 WAIT STATE  
(NWAITSx = 1)  
UNIT  
TYP  
454  
471  
191  
MAX  
TYP  
2620  
2700  
573  
MAX  
TYP  
2935  
2980  
950  
MAX  
3 V, 25°C  
3 V, 85°C  
3 V, 25°C  
FRAM  
0% cache hit ratio  
IAM, FRAM(0%)  
µA  
3250  
FRAM  
100% cache hit  
ratio  
IAM, FRAM(100%)  
µA  
µA  
3 V, 85°C  
3 V, 25°C  
199  
216  
592  
772  
974  
1200  
(2)  
IAM, RAM  
RAM  
1300  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Characterized with program executing typical data  
processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency  
Program and data entirely reside in FRAM. All execution is from FRAM.  
(2) Program and data reside entirely in RAM. All execution is from RAM. No access to FRAM.  
5.5 Active Mode Supply Current Per MHz  
VCC = 3 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TYP  
UNIT  
µA/MHz  
Active mode current consumption per MHz,  
execution from FRAM, no wait states  
[IAM (75% cache hit rate) at 8 MHz –  
IAM (75% cache hit rate) at 1 MHz) / 7 MHz  
dIAM,FRAM/df  
120  
5.6 Low-Power Mode (LPM0) Supply Currents Into VCC Excluding External Current  
VCC = 3 V, TA = 25°C (unless otherwise noted)(1)(2)  
FREQUENCY (fSMCLK  
8 MHz  
)
PARAMETER  
VCC  
1 MHz  
TYP  
16 MHz  
TYP MAX  
UNIT  
MAX  
TYP  
292  
300  
MAX  
2 V  
3 V  
145  
155  
395  
394  
ILPM0  
µA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK at specified frequency.  
18  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
5.7 Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current  
(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
–40°C  
TYP MAX  
25°C  
TYP  
85°C  
TYP  
PARAMETER  
VCC  
UNIT  
MAX  
MAX  
3 V  
2 V  
3 V  
2 V  
3 V  
0.96  
0.93  
0.77  
0.75  
0.90  
1.11  
1.08  
0.92  
0.90  
1.05  
2.75  
2.78  
2.66  
2.60  
2.77  
6.2  
Low-power mode 3, 12.5-pF crystal, includes  
SVS(2)(3)(4)  
ILPM3,XT1  
µA  
6.0  
ILPM3,VLO  
Low-power mode 3, VLO, excludes SVS(5)  
Low-power mode 3, RTC, excludes SVS(6)  
µA  
µA  
ILPM3, RTC  
ILPM3, CapTIvate,  
1 proximity, wake on  
touch  
Low-power mode 3, CapTIvate , excludes SVS(7)  
Low-power mode 3, CapTIvate , excludes SVS(8)  
Low-power mode 3, CapTIvate, excludes SVS(9)  
3 V  
3 V  
3 V  
4.7  
3.0  
3.2  
µA  
µA  
µA  
ILPM3, CapTIvate,  
1 button, wake on  
touch  
ILPM3, CapTIvate,  
2 buttons, wake on  
touch  
ILPM3, CapTIvate,  
8 buttons  
Low-power mode 3, CapTIvate, excludes SVS(10)  
Low-power mode 3, CapTIvate, excludes SVS(11)  
3 V  
3 V  
17  
38  
µA  
µA  
ILPM3, CapTIvate,  
16 buttons  
3 V  
2 V  
3 V  
2 V  
0.51  
0.49  
0.35  
0.34  
0.64  
0.61  
0.48  
0.46  
2.30  
2.25  
2.13  
2.10  
ILPM4, SVS  
Low-power mode 4, includes SVS(12)  
Low-power mode 4, excludes SVS(12)  
µA  
µA  
ILPM4  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for MCUs with HF crystal oscillator only.  
(3) Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.  
(4) Low-power mode 3, 12.5-pF crystal, includes SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 3, VLO, excludes SVS test conditions:  
Current for watchdog timer clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3)  
fXT1 = 32768 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(6) RTC periodically wakes up every second with external 32768-Hz input as source.  
(7) CapTIvate technology works in LPM3 with one proximity sensor for wake on touch. CapTIvate BSWP demonstration board with 1.5-mm  
overlay. Current for brownout included. SVS disabled (SVSHE = 0).  
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 800  
(8) CapTIvate technology works in LPM3 with one button, wake on touch.CapTIvate BSWP demonstration board with 1.5-mm overlay,  
Current for brownout included. SVS disabled (SVSHE = 0).  
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250  
(9) CapTIvate technology works in LPM3 with two self-capacitance buttons, wake on touch. CapTIvate BSWP demonstration board with  
1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0).  
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250  
(10) CapTIvate technology works in LPM3 with 8 self-capacitance buttons. The CPU enters active mode in between time cycles to configure  
the conversions and read the results. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS  
disabled (SVSHE = 0).  
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250  
(11) CapTIvate technology works in LPM3 with 16 mutual-capacitance buttons. The CPU enters active mode in between time cycles to  
configure the conversions and read the results. CapTIvate phone demonstration board with 1.5-mm overlay. Current for brownout  
included. SVS disabled (SVSHE = 0).  
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250  
(12) Low-power mode 4, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), CPU and all clocks are disabled, WDT and RTC  
disabled  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External  
Current (continued)  
(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
–40°C  
TYP MAX  
25°C  
TYP  
85°C  
PARAMETER  
VCC  
UNIT  
MAX  
MAX  
TYP  
2.21  
2.19  
2.68  
2.64  
3 V  
2 V  
3 V  
2 V  
0.43  
0.42  
0.80  
0.79  
0.56  
0.55  
0.96  
0.94  
Low-power mode 4, RTC is soured from VLO,  
excludes SVS(13)  
ILPM4,VLO  
µA  
µA  
Low-power mode 4, RTC is soured from XT1,  
excludes SVS(14)  
ILPM4,XT1  
ILPM4, CapTIvate,  
1 proximity, wake on  
touch  
Low-power mode 4, CapTIvate , excludes SVS(15)  
Low-power mode 4, CapTIvate , excludes SVS(16)  
Low-power mode 4, CapTIvate, excludes SVS(17)  
3 V  
3 V  
3 V  
4.5  
2.7  
2.9  
µA  
µA  
µA  
ILPM4, CapTIvate,  
1 button, wake on  
touch  
ILPM4, CapTIvate,  
2 buttons, wake on  
touch  
ILPM4, CapTIvate,  
8 buttons  
Low-power mode 4, CapTIvate, excludes SVS(18)  
Low-power mode 4, CapTIvate, excludes SVS(19)  
3 V  
3 V  
18  
39  
µA  
µA  
ILPM4, CapTIvate,  
16 buttons  
(13) Low-power mode 4, VLO, excludes SVS test conditions:  
Current for RTC clocked by VLO included. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4)  
fXT1 = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(14) Low-power mode 4, XT1, excludes SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4)  
fXT1 = 32768 Hz, fMCLK = fSMCLK = 0 MHz  
(15) CapTIvate technology works in LPM4 with one proximity sensor for wake on touch. CapTIvate BSWP demonstration board with 1.5-mm  
overlay. Current for brownout included. SVS disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal.  
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 800  
(16) CapTIvate technology works in LPM4 with one button, wake on touch. CapTIvate BSWP demonstration board with 1.5-mm overlay,  
Current for brownout included. SVS disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal.  
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250  
(17) CapTIvate technology works in LPM4 with two self-capacitance buttons, wake on touch. CapTIvate BSWP demonstration board with  
1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). VLO (10 kHz) sources the CapTIvate timer, no external  
crystal.  
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250  
(18) CapTIvate technology works in LPM4 with 8 self-capacitance buttons. The CPU enters active mode in between time cycles to configure  
the conversions and read the results. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS  
disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal.  
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250  
(19) CapTIvate technology works in LPM4 with 16 mutual-capacitance buttons. The CPU enters active mode in between time cycles to  
configure the conversions and read the results. CapTIvate phone demonstration board with 1.5-mm overlay. Current for brownout  
included. SVS disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal.  
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250  
20  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
5.8 Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
–40°C  
TYP MAX  
25°C  
TYP  
85°C  
TYP  
PARAMETER  
VCC  
UNIT  
MAX  
MAX  
Low-power mode 3.5, 12.5-pF crystal, includes  
SVS(1)(2) (3)  
(also see Figure 5-3)  
3 V  
2 V  
0.57  
0.54  
0.63  
0.60  
0.81  
0.79  
1.54  
ILPM3.5, XT1  
µA  
3 V  
2 V  
3 V  
2 V  
0.23  
0.21  
0.25  
0.23  
0.31  
0.29  
0.45  
0.15  
ILPM4.5, SVS  
Low-power mode 4.5, includes SVS(4)  
Low-power mode 4.5, excludes SVS(5)  
µA  
µA  
0.027  
0.022  
0.036  
0.031  
0.080  
0.073  
ILPM4.5  
(1) Not applicable for MCUs with HF crystal oscillator only.  
(2) Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.  
(3) Low-power mode 3.5, 12.5-pF crystal, includes SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = 0, fMCLK = fSMCLK = 0 MHz  
(4) Low-power mode 4.5, includes SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5)  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 4.5, excludes SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5)  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.9 Typical Characteristics - Low-Power Mode Supply Currents  
VCC = 3 V  
RTC enabled  
SVS disabled  
VCC = 3 V  
RTC enabled  
SVS disabled  
Figure 5-1. LPM3 Supply Current vs Temperature  
Figure 5-2. LPM4 Supply Current vs Temperature  
VCC = 3 V  
XT1 enabled  
SVS enabled  
VCC = 3 V  
SVS enabled  
Figure 5-3. LPM3.5 Supply Current vs Temperature  
Figure 5-4. LPM4.5 Supply Current vs Temperature  
Table 5-1. Typical Characteristics – Current Consumption Per Module  
MODULE  
Timer_A  
TEST CONDITIONS  
REFERENCE CLOCK  
Module input clock  
MIN  
TYP  
5
MAX  
UNIT  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
nA  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC  
UART mode  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
7
SPI mode  
5
SPI mode  
5
I2C mode, 100 kbaud  
5
85  
8.5  
CRC  
From start to end of operation  
MCLK  
µA/MHz  
22  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
5.10 Thermal Resistance Characteristics  
THERMAL METRIC(1)  
VALUE(2)  
37.8  
UNIT  
VQFN 20 pin (RHL)  
TSSOP 16 pin (PW16)  
VQFN 20 pin (RHL)  
TSSOP 16 pin (PW16)  
VQFN 20 pin (RHL)  
TSSOP 16 pin (PW16)  
RθJA  
RθJC  
RθJB  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ºC/W  
101.7  
34.1  
ºC/W  
ºC/W  
33.7  
15.3  
47.5  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC  
standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
5.11 Timing and Switching Characteristics  
5.11.1 Power Supply Sequencing  
Table 5-2 lists the characteristics of the SVS and BOR.  
Table 5-2. PMM, SVS and BOR  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Safe BOR power-down level(1)  
Safe BOR reset delay(2)  
TEST CONDITIONS  
MIN  
0.1  
10  
TYP  
MAX UNIT  
VBOR, safe  
tBOR, safe  
ISVSH,AM  
ISVSH,LPM  
VSVSH-  
V
ms  
SVSH current consumption, active mode  
SVSH current consumption, low-power modes  
SVSH power-down level(3)  
VCC = 3.6 V  
VCC = 3.6 V  
1.5  
µA  
nA  
V
240  
1.80  
1.88  
80  
1.71  
1.76  
1.87  
1.99  
VSVSH+  
SVSH power-up level(3)  
V
VSVSH_hys SVSH hysteresis  
mV  
tPD,SVSH,  
AM  
SVSH propagation delay, active mode  
10  
µs  
µs  
tPD,SVSH,  
LPM  
SVSH propagation delay, low-power modes  
100  
(1) A safe BOR can be correctly generated only if DVCC drops below this voltage before it rises.  
(2) When an BOR occurs, a safe BOR can be correctly generated only if DVCC is kept low longer than this period before it reaches VSVSH+  
.
(3) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference  
Design.  
V
Power Cycle Reset  
VSVS+  
SVS Reset  
BOR Reset  
VSVS–  
VBOR  
tBOR  
t
Figure 5-5. Power Cycle, SVS, and BOR Reset Conditions  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.11.2 Reset Timing  
Table 5-3 lists the timing characteristics of wakeup from LPMs and reset.  
Table 5-3. Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
Additional wake-up time to activate the FRAM in  
AM if previously disabled by the FRAM controller or  
from a LPM if immediate activation is selected for  
wakeup(1)  
tWAKE-UP FRAM  
10  
µs  
200 +  
ns  
(1)  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode  
2.5 / fDCO  
(2)  
tWAKE-UP LPM3  
tWAKE-UP LPM4  
tWAKE-UP LPM3.5  
Wake-up time from LPM3 to active mode  
3 V  
3 V  
3 V  
10  
10  
µs  
µs  
µs  
µs  
ms  
Wake-up time from LPM4 to active mode  
(2)  
Wake-up time from LPM3.5 to active mode  
350  
350  
1
SVSHE = 1  
SVSHE = 0  
(2)  
tWAKE-UP LPM4.5  
Wake-up time from LPM4.5 to active mode  
3 V  
Wake-up time from RST or BOR event to active  
mode  
tWAKE-UP-RESET  
tRESET  
3 V  
3 V  
1
ms  
µs  
(2)  
Pulse duration required at RST/NMI pin to accept a  
reset  
2
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
24  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
5.11.3 Clock Specifications  
Table 5-4 lists the characteristics of the LF XT1.  
Table 5-4. XT1 Crystal Oscillator (Low Frequency)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
XT1 oscillator crystal, low  
frequency  
fXT1, LF  
LFXTBYPASS = 0  
32768  
Hz  
Measured at MCLK,  
fLFXT = 32768 Hz  
DCXT1, LF  
fXT1,SW  
XT1 oscillator LF duty cycle  
30%  
70%  
kHz  
60%  
kΩ  
XT1 oscillator logic-level square-  
wave input frequency  
(3)(4)  
LFXTBYPASS = 1  
LFXTBYPASS = 1  
32.768  
LFXT oscillator logic-level square-  
wave input duty cycle  
DCXT1, SW  
OALFXT  
CL,eff  
40%  
Oscillation allowance for  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
200  
1
(5)  
LF crystals  
Integrated effective load  
capacitance(6)  
(7)  
See  
pF  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
(8)  
tSTART,LFXT Start-up time  
fFault,LFXT  
1000  
ms  
(9)  
Oscillator fault frequency  
XTS = 0(10)  
0
3500  
Hz  
(1) To improve EMI on the LFXT oscillator, observe the following guidelines:  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing.  
(3) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
.
(4) Maximum frequency of operation of the entire device cannot be exceeded.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF  
For LFXTDRIVE = {1}, 6 pF CL,eff 9 pF  
For LFXTDRIVE = {2}, 6 pF CL,eff 10 pF  
For LFXTDRIVE = {3}, 6 pF CL,eff 12 pF  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
(8) Includes start-up counter of 1024 clock cycles.  
(9) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the  
flag. A static condition or stuck at fault condition sets the flag.  
(10) Measured with logic-level input frequency but also applies to operation with crystals.  
Table 5-5 lists the frequency characteristics of the FLL.  
Table 5-5. DCO FLL, Frequency  
over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
MIN  
–1.0%  
–2.0%  
TYP  
MAX UNIT  
1.0%  
FLL lock frequency, 16 MHz, 25°C  
FLL lock frequency, 16 MHz, –40°C to 85°C  
Measured at MCLK, Internal  
trimmed REFO as reference  
2.0%  
fDCO, FLL  
Measured at MCLK, XT1  
crystal as reference  
FLL lock frequency, 16 MHz, –40°C to 85°C  
3 V  
–0.5%  
0.5%  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 5-5. DCO FLL, Frequency (continued)  
over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
3 V  
MIN  
TYP  
50%  
MAX UNIT  
fDUTY  
Duty cycle  
40%  
60%  
Jittercc  
Jitterlong  
tFLL, lock  
Cycle-to-cycle jitter, 16 MHz  
Long term jitter, 16 MHz  
FLL lock time, 16MHz  
0.25%  
0.022%  
280  
Measured at MCLK, XT1  
crystal as reference  
ms  
Table 5-6 lists the characteristics of the DCO.  
Table 5-6. DCO Frequency  
over recommended operating free-air temperature (unless otherwise noted) (see Figure 5-6)  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP  
UNIT  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
7.1  
11.8  
17  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
fDCO, 16MHz DCO frequency, 16 MHz  
3 V  
3 V  
3 V  
3 V  
3 V  
MHz  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
27.7  
5.5  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
9.1  
fDCO, 12MHz DCO frequency, 12 MHz  
MHz  
MHz  
MHz  
MHz  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
13.1  
21.5  
3.7  
DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
6.3  
fDCO, 8MHz  
fDCO, 4MHz  
fDCO, 2MHz  
DCO frequency, 8 MHz  
DCO frequency, 4 MHz  
DCO frequency, 2 MHz  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
9.0  
DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
14.9  
1.9  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
3.2  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
4.6  
DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
7.8  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
0.96  
1.6  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
2.3  
DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
4.0  
26  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 5-6. DCO Frequency (continued)  
over recommended operating free-air temperature (unless otherwise noted) (see Figure 5-6)  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP  
UNIT  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 0  
0.5  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 000b, DCO = 511  
0.85  
1.2  
fDCO, 1MHz  
DCO frequency, 1 MHz  
3 V  
MHz  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 0  
DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b,  
DCOFTRIM = 111b, DCO = 511  
2.0  
30  
25  
20  
15  
10  
5
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 0  
DCOFTRIM = 7  
DCOFTRIM = 0  
DCOFTRIM = 0  
DCOFTRIM = 0  
0
DCOFTRIM = 0  
DCO  
0
511  
0
511  
0
511  
0
511  
0
511  
0
511  
DCORSEL  
0
1
2
3
4
5
VCC = 3 V  
Figure 5-6. Typical DCO Frequency  
Table 5-7 lists the characteristics of the REFO.  
TA = –40°C to 85°C  
Table 5-7. REFO  
over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA = 25°C  
VCC  
3 V  
3 V  
MIN  
TYP  
15  
MAX UNIT  
IREFO  
REFO oscillator current consumption  
REFO calibrated frequency  
µA  
Hz  
Measured at MCLK  
–40°C to 85°C  
Measured at MCLK(1)  
32768  
fREFO  
REFO absolute calibrated tolerance  
REFO frequency temperature drift  
1.8 V to 3.6 V  
3 V  
–3.5%  
+3.5%  
%/°C  
dfREFO/dT  
0.01  
1
dfREFO  
/
REFO frequency supply voltage drift  
Measured at MCLK at 25°C(2)  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
%/V  
dVCC  
fDC  
REFO duty cycle  
Measured at MCLK  
40%  
50%  
50  
60%  
µs  
tSTART  
REFO start-up time  
40% to 60% duty cycle  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 5-8 lists the characteristics of the VLO.  
Table 5-8. Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
3 V  
TYP UNIT  
10 kHz  
0.5 %/°C  
fVLO  
Measured at MCLK  
dfVLO/dT  
Measured at MCLK(1)  
Measured at MCLK(2)  
Measured at MCLK  
3 V  
dfVLO/dVCC VLO frequency supply voltage drift  
fVLO,DC Duty cycle  
1.8 V to 3.6 V  
3 V  
4
%/V  
50%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
NOTE  
The VLO clock frequency is reduced by 15% (typical) when the device switches from active  
mode to LPM3 or LPM4, because the reference changes. This lower frequency is not a  
violation of the VLO specifications (see Table 5-8).  
Table 5-9 lists the characteristics of the MODOSC.  
Table 5-9. Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
MIN  
TYP  
4.8  
MAX UNIT  
5.8 MHz  
%/℃  
fMODOSC  
MODOSC frequency  
3.8  
fMODOSC/dT  
MODOSC frequency temperature drift  
3 V  
0.102  
1.02  
50%  
fMODOSC/dVCC MODOSC frequency supply voltage drift  
fMODOSC,DC Duty cycle  
1.8 V to 3.6 V  
3 V  
%/V  
40%  
60%  
28  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
5.11.4 Digital I/Os  
Table 5-10 lists the characteristics of the digital inputs.  
Table 5-10. Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
0.90  
1.35  
0.50  
0.75  
0.3  
TYP  
MAX UNIT  
1.50  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
2.25  
1.10  
V
Negative-going input threshold voltage  
1.65  
0.8  
V
Input voltage hysteresis (VIT+ – VIT–  
Pullup or pulldown resistor  
)
0.4  
1.2  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
20  
35  
3
50  
kΩ  
pF  
pF  
nA  
nA  
CI,dig  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
Input capacitance, port pins with shared analog  
functions  
CI,ana  
Ilkg(Px.y)  
Ilkg(Px.y)  
VIN = VSS or VCC  
5
(1) (2)  
High-impedance leakage current of GPIO pins See  
2 V, 3 V  
2 V, 3 V  
–20  
–30  
20  
30  
High-impedance leakage current of GPIO pins  
See  
(1) (2)(3)  
shared with CapTIvate functionality  
Ports with interrupt capability  
(see block diagram and  
terminal function descriptions)  
External interrupt timing (external trigger pulse  
duration to set interrupt flag)(4)  
t(int)  
2 V, 3 V  
50  
ns  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
(3) Applies only to GPIOs that are shared with CapTIvate I/Os  
(4) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
Table 5-11 lists the characteristics of the digital outputs.  
Table 5-11. Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
I(OHmax) = –5 mA(1)  
I(OLmax) = 3 mA(1)  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
1.4  
2.4  
0.0  
0.0  
16  
TYP  
MAX UNIT  
2.0  
V
VOH  
High-level output voltage  
3.0  
0.60  
V
VOL  
Low-level output voltage  
I(OHmax) = 5 mA(1)  
0.60  
fPort_CLK  
trise,dig  
tfall,dig  
Clock output frequency  
CL = 20 pF(2)  
CL = 20 pF  
CL = 20 pF  
MHz  
ns  
16  
10  
7
Port output rise time, digital only port pins  
Port output fall time, digital only port pins  
10  
5
ns  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The port can output frequencies at least up to the specified limit and might support higher frequencies.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.11.4.1 Typical Characteristics – Outputs at 3 V and 2 V  
DVCC = 3 V  
DVCC = 2 V  
Figure 5-7. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
Figure 5-8. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
DVCC = 3 V  
DVCC = 2 V  
Figure 5-9. Typical High-Level Output Current vs High-Level  
Output Voltage  
Figure 5-10. Typical High-Level Output Current vs High-Level  
Output Voltage  
30  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
5.11.5 VREF+ Built-in Reference  
Table 5-12 lists the characteristics of the VREF+.  
Table 5-12. VREF+  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VREF+  
Positive built-in reference voltage  
EXTREFEN = 1 with 1-mA load current  
2 V, 3 V  
1.15  
1.19  
1.23  
V
Temperature coefficient of built-in  
reference voltage  
TCREF+  
30  
µV/°C  
5.11.6 Timer_A  
Table 5-13 lists the characteristics of Timer_A.  
Table 5-13. Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
fTA  
Timer_A input clock frequency  
External: TACLK  
2 V, 3 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTA,cap  
Timer_A capture timing  
2 V, 3 V  
20  
ns  
tTIMR  
Timer Clock  
CCR0-1  
0h  
1h  
CCR0  
CCR0-1  
0h  
CCR0  
tVALID,PWM  
Timer  
TAx.1  
tHD,PWM  
Figure 5-11. Timer PWM Mode  
Capture  
tTIMR  
Timer Clock  
tSU,CCIA  
t,HD,CCIA  
TAx.CCIA  
Figure 5-12. Timer Capture Mode  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.11.7 eUSCI  
Table 5-14 lists the supported frequencies of the eUSCI in UART mode.  
Table 5-14. eUSCI (UART Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, MODCLK  
External: UCLK  
feUSCI  
eUSCI input clock frequency  
2 V, 3 V  
16 MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
(equals baud rate in Mbaud)  
fBITCLK  
2 V, 3 V  
5
MHz  
Table 5-15 lists the characteristics of the eUSCI in UART mode.  
Table 5-15. eUSCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
UCGLITx = 0  
VCC  
TYP UNIT  
12  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
40  
ns  
68  
(1)  
tt  
UART receive deglitch time  
2 V, 3 V  
110  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
Table 5-16 lists the supported frequencies of the eUSCI in SPI master mode.  
Table 5-16. eUSCI (SPI Master Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
MHz  
Internal: SMCLK, MODCLK  
Duty cycle = 50% ±10%  
feUSCI eUSCI input clock frequency  
8
32  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 5-17 lists the characteristics of the eUSCI in SPI master mode.  
Table 5-17. eUSCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX  
UNIT  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 1, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 1, UCMODEx = 01 or 10  
UCxCLK  
cycles  
tSTE,LEAD STE lead time, STE active to clock  
1
UCxCLK  
cycles  
tSTE,LAG  
STE lag time, last clock to STE inactive  
SOMI input data setup time  
1
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
48  
37  
0
tSU,MI  
ns  
ns  
ns  
ns  
tHD,MI  
SOMI input data hold time  
0
20  
20  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO SIMO output data valid time(2)  
SIMO output data hold time(3)  
-6  
-5  
tHD,MO  
CL = 20 pF  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-13 and Figure 5-14.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-  
13 and Figure 5-14.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,ACC  
tSTE,DIS  
Figure 5-13. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,DIS  
tSTE,ACC  
Figure 5-14. SPI Master Mode, CKPH = 1  
34  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 5-18 lists the characteristics of the eUSCI in SPI slave mode.  
Table 5-18. eUSCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
55  
MAX UNIT  
tSTE,LEAD STE lead time, STE active to clock  
ns  
45  
20  
tSTE,LAG  
STE lag time, Last clock to STE inactive  
ns  
20  
65  
ns  
40  
tSTE,ACC STE access time, STE active to SOMI data out  
40  
ns  
35  
STE disable time, STE inactive to SOMI high  
tSTE,DIS  
impedance  
8
6
tSU,SI  
SIMO input data setup time  
SIMO input data hold time  
ns  
ns  
12  
12  
tHD,SI  
68  
ns  
42  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO SOMI output data valid time(2)  
5
5
(3)  
tHD,SO  
SOMI output data hold time  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-15 and Figure 5-16.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-15  
and Figure 5-16.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 5-15. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 5-16. SPI Slave Mode, CKPH = 1  
36  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 5-19 lists the characteristics of the eUSCI in I2C mode.  
Table 5-19. eUSCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17)  
PARAMETER  
eUSCI input clock frequency  
SCL clock frequency  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, MODCLK  
External: UCLK  
Duty cycle = 50% ±10%  
feUSCI  
fSCL  
16 MHz  
2 V, 3 V  
2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2 V, 3 V  
µs  
tHD,DAT Data hold time  
tSU,DAT Data setup time  
2 V, 3 V  
2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO Setup time for STOP  
2 V, 3 V  
µs  
600  
25  
300  
ns  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2 V, 3 V  
12.5  
6.3  
150  
75  
27  
30  
33  
tTIMEOUT Clock low time-out  
2 V, 3 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 5-17. I2C Mode Timing  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
37  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.11.8 ADC  
Table 5-20 lists the characteristics of the ADC power supply and input range conditions.  
Table 5-20. ADC, Power Supply and Input Range Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.0  
0
TYP  
MAX UNIT  
DVCC  
V(Ax)  
ADC supply voltage  
Analog input voltage range  
3.6  
V
V
All ADC pins  
DVCC  
Operating supply current into  
DVCC terminal, reference  
current not included, repeat-  
single-channel mode  
2 V  
3 V  
185  
207  
fADCCLK = 5 MHz, ADCON = 1,  
REFON = 0, SHT0 = 0, SHT1 = 0,  
ADCDIV = 0, ADCCONSEQx = 10b  
IADC  
µA  
Only one terminal Ax can be selected at one  
time from the pad to the ADC capacitor array,  
including wiring and pad  
CI  
RI  
Input capacitance  
2.2 V  
2.5  
3.5  
36  
pF  
Input MUX ON resistance  
DVCC = 2 V, 0 V VAx DVCC  
kΩ  
Table 5-21 lists the ADC 10-bit timing parameters.  
Table 5-21. ADC, 10-Bit Timing Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC linearity  
parameters  
2 V to  
3.6 V  
fADCCLK  
fADCOSC  
0.45  
5
5.5 MHz  
Internal ADC oscillator  
(MODOSC)  
2 V to  
3.6 V  
ADCDIV = 0, fADCCLK = fADCOSC  
3.8  
4.8  
5.8 MHz  
REFON = 0, Internal oscillator,  
10 ADCCLK cycles, 10-bit mode,  
fADCOSC = 4.5 MHz to 5.5 MHz  
2 V to  
3.6 V  
2.18  
2.67  
µs  
tCONVERT  
Conversion time  
External fADCCLK from ACLK, MCLK, or SMCLK,  
ADCSSEL 0  
2 V to  
3.6 V  
12 ×  
1 / fADCCLK  
The error in a conversion started after tADCON is  
less than ±0.5 LSB.  
Reference and input signal are already settled.  
Turnon settling time of  
the ADC  
tADCON  
100  
ns  
µs  
RS = 1000 Ω, RI = 36000 Ω, CI = 3.5 pF.  
Approximately 8 Tau (t) are required for an error  
of less than ±0.5 LSB.(1)  
tSample  
Sampling time  
3 V  
2.0  
(1) tSample = ln(2n+1) × τ, where n = ADC resolution, τ = (RI + RS) × CI  
38  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 5-22 lists the ADC 10-bit linearity parameters.  
Table 5-22. ADC, 10-Bit Linearity Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
–2  
TYP  
MAX UNIT  
Integral linearity error (10-bit mode)  
Integral linearity error (8-bit mode)  
Differential linearity error (10-bit mode)  
Differential linearity error (8-bit mode)  
Offset error (10-bit mode)  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2
EI  
Veref+ reference  
Veref+ reference  
Veref+ reference  
LSB  
2
–2  
–1  
1
ED  
EO  
LSB  
1
–1  
–6.5  
–6.5  
–2.0  
–3.0%  
–2.0  
–3.0%  
–2.0  
–3.0%  
–2.0  
–3.0%  
6.5  
mV  
6.5  
Offset error (8-bit mode)  
Veref+ as reference  
Internal 1.5-V reference  
Veref+ as reference  
Internal 1.5-V reference  
Veref+ as reference  
Internal 1.5-V reference  
Veref+ as reference  
Internal 1.5-V reference  
2.0  
3.0%  
2.0  
LSB  
LSB  
LSB  
LSB  
Gain error (10-bit mode)  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
EG  
Gain error (8-bit mode)  
3.0%  
2.0  
Total unadjusted error (10-bit mode)  
Total unadjusted error (8-bit mode)  
3.0%  
2.0  
ET  
3.0%  
ADCON = 1, INCH = 0Ch,  
TA = 0℃  
(1)  
VSENSOR  
See  
3 V  
3 V  
913  
mV  
(2)  
TCSENSOR See  
ADCON = 1, INCH = 0Ch  
3.35  
mV/℃  
ADCON = 1, INCH = 0Ch,  
Error of conversion result  
1 LSB,  
3 V  
3 V  
30  
tSENSOR  
(sample)  
Sample time required if channel 12 is  
selected(3)  
AM and all LPMs above LPM3  
µs  
ADCON = 1, INCH = 0Ch,  
Error of conversion result  
1 LSB, LPM3  
100  
(1) The temperature sensor offset can vary significantly. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor.  
(2) The device descriptor structure contains calibration values for 30and 85for each available reference voltage level. The sensor  
voltage can be computed as VSENSE = TCSENSOR × (Temperature, ) + VSENSOR, where TCSENSOR and VSENSOR can be computed from  
the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 700 kΩ. The sample time required includes the sensor on time, tSENSOR(on)  
.
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.11.9 CapTIvate  
Table 5-23 lists the characteristics of the CapTIvate module.  
Table 5-23. CapTIvate Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.5  
TYP MAX UNIT  
VREG  
CREG  
Reference voltage output  
External buffer capacitor  
1.55  
1
1.6  
1.2  
V
ESR 200 mΩ  
0.8  
µF  
Maximum capacitance of all external  
electrodes on all CapTIvate blocks  
CELECTRODE  
tWAKEUP,COLD  
Running a conversion at 4 MHz  
300  
pF  
Voltage regulator wake-up time  
LDO completely off then turned on  
700  
260  
16  
µs  
µs  
tWAKEUP,WARM Voltage regulator wake-up time  
LDO in low-power mode then turned on  
TA = 25ºC, CAPCLK0, FREQSHFT = 00b  
Excluding first clock cycle, DC = thigh × f  
fCAPCLK  
CapTIvate oscillator frequency, nominal  
CapTIvate oscillator duty cycle  
MHz  
DCCAPCLK  
40%  
50% 60%  
Table 5-24 lists the signal-to-noise ratio of the CapTIvate module.  
Table 5-24. CapTIvate Signal-to-Noise Ratio Characteristics  
over operating free-air temperature range from –40°C to 105°C ambient (TA), unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TA = 25°C, Ct > 0.5 pF, Cp < 20 pF, >2.5% change in  
capacitance(2)  
5:1  
36:1  
TA = 0°C, Ct > 0.5 pF, Cp < 20 pF, >2.5% change in  
capacitance(2)  
SNR  
Signal-to-noise ratio(1)  
28:1  
19:1  
TA = –40°C, Ct > 0.5 pF, Cp < 20 pF, >2.5% change in  
capacitance(2)  
(1) SNR is defined as the ratio of the measured change in electrode capacitance due to a touch compared with the measured change in  
capacitance due to the device noise floor. For additional detail on SNR in capacitive sensing applications and how to measure it in your  
system, see Sensitivity, SNR, and Design Margin in Capacitive Touch Applications.  
(2) Ct represents the increase or decrease in electrode capacitance due to a touch. Cp represents the inherent parasitic capacitance of the  
sensing electrode that is present when no touch is applied. Therefore, the touch signal is defined as Ct/Cp, expressed as a percent  
change in capacitance. Increasing Ct or decreasing Cp increases signal.  
40  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
5.11.10 FRAM  
Table 5-25 lists the characteristics of the FRAM.  
Table 5-25. FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1015  
100  
40  
TYP  
MAX  
UNIT  
Read and write endurance  
cycles  
TJ = 25°C  
tRetention  
Data retention duration  
TJ = 70°C  
TJ = 85°C  
years  
10  
(1)  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM  
Erase current  
IREAD  
nA  
nA  
ns  
N/A(2)  
(3)  
Write time  
tREAD  
(4)  
(4)  
NWAITSx = 0  
NWAITSx = 1  
1 / fSYSTEM  
2 / fSYSTEM  
tREAD  
Read time  
ns  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current IREAD is included in the active mode current consumption parameter IAM,FRAM  
.
(2) FRAM does not require a special erase sequence.  
(3) Writing into FRAM is as fast as reading.  
(4) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
41  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5.11.11 Debug and Emulation  
Table 5-26 lists the characteristics of the 2-wire SBW interface.  
Table 5-26. JTAG, Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-18)  
PARAMETER  
Spy-Bi-Wire input frequency  
VCC  
MIN  
0
TYP  
MAX UNIT  
fSBW  
2 V, 3 V  
2 V, 3 V  
8
MHz  
µs  
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.028  
15  
SBWTDIO setup time (before falling edge of SBWTCK in TMS and  
TDI slot, Spy-Bi-Wire)  
tSU, SBWTDIO  
tHD, SBWTDIO  
tValid, SBWTDIO  
tSBW, En  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
4
ns  
ns  
ns  
µs  
SBWTDIO hold time (after rising edge of SBWTCK in TMS and TDI  
slot, Spy-Bi-Wire)  
19  
SBWTDIO data valid time (after falling edge of SBWTCK in TDO  
slot, Spy-Bi-Wire)  
31  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
110  
(1)  
edge)  
tSBW,Ret  
Rinternal  
Spy-Bi-Wire return to normal operation time(2)  
2 V, 3 V  
2 V, 3 V  
15  
20  
100  
50  
µs  
Internal pulldown resistance on TEST  
35  
kΩ  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) Maximum tSBW,Ret time after pulling or releasing the TEST/SBWTCK pin low until the Spy-Bi-Wire pins revert from their Spy-Bi-Wire  
function to their application function. This time applies only if the Spy-Bi-Wire mode is selected.  
tSBW,EN  
tSBW,Low  
1/fSBW  
tSBW,High  
tSBW,Ret  
TEST/SBWTCK  
tEN,SBWTDIO  
tValid,SBWTDIO  
RST/NMI/SBWTDIO  
tSU,SBWTDIO  
tHD,SBWTDIO  
Figure 5-18. JTAG Spy-Bi-Wire Timing  
42  
Specifications  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 5-27 lists the characteristics of the 4-wire JTAG interface.  
Table 5-27. JTAG, 4-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-19)  
PARAMETER  
VCC  
MIN  
0
TYP  
MAX UNIT  
fTCK  
TCK input frequency(1)  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
10 MHz  
tTCK,Low  
tTCK,High  
tSU,TMS  
tHD,TMS  
tSU,TDI  
tHD,TDI  
TCK low clock pulse duration  
15  
15  
11  
3
ns  
ns  
ns  
ns  
ns  
ns  
TCK high clock pulse duration  
TMS setup time (before rising edge of TCK)  
TMS hold time (after rising edge of TCK)  
TDI setup time (before rising edge of TCK)  
TDI hold time (after rising edge of TCK)  
13  
5
tZ-Valid,TDO TDO high impedance to valid output time (after falling edge of TCK)  
tValid,TDO TDO to new valid output time (after falling edge of TCK)  
tValid-Z,TDO TDO valid to high-impedance output time (after falling edge of TCK)  
26  
26  
ns  
ns  
ns  
µs  
kΩ  
26  
tJTAG,Ret  
Rinternal  
Spy-Bi-Wire return to normal operation time  
Internal pulldown resistance on TEST  
15  
20  
100  
50  
2 V, 3 V  
35  
(1) fTCK may be restricted to meet the timing requirements of the module selected.  
1/fTCK  
tTCK,Low  
tTCK,High  
TCK  
TMS  
tSU,TMS  
tHD,TMS  
TDI  
(or TDO as TDI)  
tSU,TDI  
tHD,TDI  
TDO  
tZ-Valid,TDO  
tValid,TDO  
tValid-Z,TDO  
tJTAG,Ret  
TEST  
Figure 5-19. JTAG 4-Wire Timing  
Copyright © 2018–2019, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
The MSP430FR2522 and MSP430FR2512 ultra-low-power MCUs are FRAM-based MCUs with integrated  
high-performance charge-transfer CapTIvate technology in ultra-low-power high-reliability high-flexibility  
MCUs. The MSP430FR2522 and MSP430FR2512 MCUs feature up to 8 self-capacitance or 16 mutual-  
capacitance electrodes, proximity sensing, and high accuracy up to 1-fF detection. The MCUs also include  
two 16-bit timers, eUSCIs that support UART, SPI, and I2C, a hardware multiplier, an RTC module, and a  
high-performance 10-bit ADC.  
6.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter (PC), stack pointer (SP), status register  
(SR), and constant generator (CG), respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be handled  
with all instructions.  
6.3 Operating Modes  
The MSP430 has one active mode and several software-selectable low-power modes of operation (see  
Table 6-1). An interrupt event can wake the MCU from low-power mode LPM0, LPM3 or LPM4, service  
the request, and restore the MCU back to the low-power mode on return from the interrupt program. Low-  
power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.  
NOTE  
XT1CLK and VLOCLK can be active during LPM4 mode if requested by low-frequency  
peripherals, such as RTC, WDT, and CapTIvate.  
44  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 6-1. Operating Modes  
AM  
LPM0  
CPU OFF  
16 MHz  
LPM3  
STANDBY  
40 kHz  
LPM4  
OFF  
0
LPM3.5  
ONLY RTC  
40 kHz  
LPM4.5  
SHUTDOWN  
0
ACTIVE  
MODE  
(FRAM ON)  
MODE  
Maximum system clock  
16 MHz  
1.7 µA/button  
average with  
8-Hz scan  
0.73 µA with  
RTC counter  
only in LFXT  
0.49 µA  
without SVS  
16 nA without  
SVS  
Power consumption at 25°C, 3 V  
126 µA/MHz  
40 µA/MHz  
Wake-up time  
N/A  
N/A  
Instant  
All  
10 µs  
10 µs  
350 µs  
350 µs  
I/O  
CapTIvate  
I/O  
RTC  
I/O  
Wake-up events  
All  
Full  
Regulation  
Full  
Regulation  
Partial Power Partial Power Partial Power  
Regulator  
Power Down  
Down  
Optional  
On  
Down  
Optional  
On  
Down  
Optional  
On  
Power  
SVS  
On  
On  
Optional  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Brownout  
MCLK  
SMCLK  
FLL  
On  
On  
Active  
Off  
Off  
Off  
Off  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
On  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
DCO  
Off  
Off  
Off  
MODCLK  
Off  
Off  
Off  
Clock(1)  
REFO  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
ACLK  
Off  
Off  
XT1CLK  
Off  
Optional  
Optional  
Off  
VLOCLK  
CapTIvate MODCLK  
CPU  
Off  
Off  
Off  
Off  
FRAM  
On  
On  
Off  
Off  
Off  
Core  
RAM  
On  
On  
On  
On  
Off  
Backup memory(2)  
Timer0_A3  
Timer1_A3  
WDT  
On  
On  
On  
On  
On  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
eUSCI_A0  
Off  
Off  
Peripherals  
eUSCI_B0  
CRC  
Off  
Off  
Off  
Off  
ADC  
Optional  
Optional  
Optional  
Off  
Off  
RTC  
Off  
Optional  
Off  
CapTIvate  
Off  
General-purpose  
digital input/output  
I/O  
On  
Optional  
State Held  
State Held  
State Held  
State Held  
(1) The status shown for LPM4 applies to internal clocks only.  
(2) Backup memory contains 32 bytes of register space in peripheral memory. See Table 6-20 and Table 6-35 for its memory allocation.  
6.4 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see  
Table 6-2). The vector contains the 16-bit address of the appropriate interrupt-handler instruction  
sequence.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-2. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up, Brownout, Supply supervisor  
External reset RST  
Watchdog time-out, Key violation  
FRAM uncorrectable bit error detection  
Software POR, BOR  
SVSHIFG  
PMMRSTIFG  
WDTIFG  
Reset  
FFFEh  
63, Highest  
PMMPORIFG, PMMBORIFG  
SYSRSTIV  
FLLUNLOCKIFG  
FLL unlock error  
System NMI  
Vacant memory access  
JTAG mailbox  
FRAM access time error  
FRAM bit error detection  
VMAIFG  
JMBINIFG, JMBOUTIFG  
CBDIFG, UBDIFG  
Nonmaskable  
Nonmaskable  
FFFCh  
FFFAh  
62  
61  
User NMI  
External NMI  
Oscillator fault  
NMIIFG  
OFIFG  
Timer0_A3  
Timer0_A3  
Timer1_A3  
Timer1_A3  
TA0CCR0 CCIFG0  
Maskable  
Maskable  
Maskable  
Maskable  
FFF8h  
FFF6h  
FFF4h  
FFF2h  
60  
59  
58  
57  
TA0CCR1 CCIFG1, TA0CCR2 CCIFG2,  
TA0IFG (TA0IV)  
TA1CCR0 CCIFG0  
TA1CCR1 CCIFG1, TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)  
RTC  
RTCIFG  
WDTIFG  
Maskable  
Maskable  
FFF0h  
FFEEh  
56  
55  
Watchdog timer interval mode  
UCTXCPTIFG, UCSTTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
(UCA0IV)  
eUSCI_A0 receive or transmit  
Maskable  
FFECh  
54  
UCB0RXIFG, UCB0TXIFG (SPI mode)  
UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1, UCRXIFG2,  
UCTXIFG2, UCRXIFG3, UCTXIFG3,  
UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB0IV)  
eUSCI_B0 receive or transmit  
Maskable  
Maskable  
FFEAh  
FFE8h  
53  
52  
ADCIFG0, ADCINIFG, ADCLOIFG,  
ADCHIIFG, ADCTOVIFG, ADCOVIFG  
(ADCIV)  
ADC  
P1  
P2  
P1IFG.0 to P1IFG.7 (P1IV)  
P2IFG.0 to P2IFG.6 (P2IV)  
Maskable  
Maskable  
FFE6h  
FFE4h  
51  
50  
(See CapTivate Design Center for  
details)  
CapTIvate  
Reserved  
Maskable  
Maskable  
FFE2h  
49, Lowest  
Reserved  
FFE0h–FF88h  
Table 6-3. Signatures  
SIGNATURE  
BSL Signature2  
BSL Signature1  
JTAG Signature2  
JTAG Signature1  
WORD ADDRESS  
0FF86h  
0FF84h  
0FF82h  
0FF80h  
46  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
6.5 Bootloader (BSL)  
The BSL lets users program the FRAM or RAM using either the UART serial interface or the I2C interface.  
Access to the MCU memory through the BSL is protected by an user-defined password. Use of the BSL  
requires four pins (see Table 6-4 and Table 6-5). The BSL entry requires a specific entry sequence on the  
RST/NMI/SBWTDIO and TEST/SBWTCK pins. This device can support the blank device detection  
automatically to invoke the BSL with bypass this special entry sequence for saving time and on board  
programmable. For the complete description of the feature of the BSL, see the MSP430 FRAM Device  
Bootloader (BSL) User's Guide.  
Table 6-4. UART BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.4  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
P1.5  
Data receive  
DVCC  
Power supply  
DVSS  
Ground supply  
Table 6-5. I2C BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.2  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit and receive  
Clock  
P1.3  
DVCC  
Power supply  
DVSS  
Ground supply  
6.6 JTAG Standard Interface  
The MSP low-power microcontrollers support the standard JTAG interface, which requires four signals for  
sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK  
pin enables the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface  
with MSP430 development tools and device programmers. Table 6-6 lists the JTAG pin requirements. For  
further details on interfacing to development tools and device programmers, see the MSP430 Hardware  
Tools User's Guide. For details on using the JTAG interface, see MSP430 Programming With the JTAG  
Interface.  
Table 6-6. JTAG Pin Requirements and Function  
DEVICE SIGNAL  
P1.4/.../TCK  
DIRECTION  
JTAG FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
IN  
OUT  
IN  
IN  
P1.5/.../TMS  
P1.6/.../TDI/TCLK  
P1.7/.../TDO  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
Power supply  
DVSS  
Ground supply  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6.7 Spy-Bi-Wire Interface (SBW)  
The MSP low-power microcontrollers support the 2-wire SBW interface. SBW can be used to interface  
with MSP development tools and device programmers. Table 6-7 lists the SBW interface pin requirements.  
For further details on interfacing to development tools and device programmers, see the MSP430  
Hardware Tools User's Guide. For details on using the SBW interface, see the MSP430 Programming  
With the JTAG Interface.  
Table 6-7. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
DIRECTION  
SBW FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN  
IN, OUT  
DVSS  
Ground supply  
6.8 FRAM  
The FRAM can be programmed using the JTAG port, SBW, the BSL, or in-system by the CPU. Features  
of the FRAM include:  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
6.9 Memory Protection  
The device features memory protection for user access authority and write protection, including options to:  
Secure the whole memory map to prevent unauthorized access from JTAG port or BSL, by writing  
JTAG and BSL signatures using the JTAG port, SBW, the BSL, or in-system by the CPU.  
Enable write protection to prevent unwanted write operation to FRAM contents by setting the control  
bits in the System Configuration 0 register. For detailed information, see the SYS chapter in the  
MP430FR4xx and MP430FR2xx Family User's Guide.  
6.10 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. All peripherals can be  
handled by using all instructions in the memory map. For complete module description, see the  
MP430FR4xx and MP430FR2xx Family User's Guide.  
6.10.1 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM  
also includes supply voltage supervisor (SVS) and brownout protection. The brownout reset circuit (BOR)  
is implemented to provide the proper internal reset signal to the device during power on and power off.  
The SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is  
available on the primary supply.  
The device contains two on-chip reference: 1.5 V for internal reference and 1.2 V for external reference.  
The 1.5-V reference is internally connected to ADC channel 13. DVCC is internally connected to ADC  
channel 15. When DVCC is set as the reference voltage for ADC conversion, the DVCC can be easily  
represent as Equation 1 by using ADC sampling 1.5-V reference without any external components  
support.  
DVCC = (1023 × 1.5 V) ÷ 1.5-V reference ADC result  
(1)  
48  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
A 1.2-V reference voltage can be buffered, when EXTREFEN = 1 on PMMCTL2 register, and it can be  
output to P1.1/../A1/VREF+ , meanwhile the ADC channel 1 can also be selected to monitor this voltage.  
For more detailed information, see the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
6.10.2 Clock System (CS) and Clock Distribution  
The clock system includes a 32-kHz crystal oscillator (XT1), an internal very-low-power low-frequency  
oscillator (VLO), an integrated 32-kHz RC oscillator (REFO), an integrated internal digitally controlled  
oscillator (DCO) that may use frequency-locked loop (FLL) locking with internal or external 32-kHz  
reference clock, and an on-chip asynchronous high-speed clock (MODOSC). The clock system is  
designed for cost-effective designs with minimal external components. A fail-safe mechanism is included  
for XT1. The clock system module offers the following clock signals.  
Main Clock (MCLK): The system clock used by the CPU and all relevant peripherals accessed by the  
bus. All clock sources except MODOSC can be selected as the source with a predivider of 1, 2, 4, 8,  
16, 32, 64, or 128.  
Sub-Main Clock (SMCLK): The subsystem clock used by the peripheral modules. SMCLK derives from  
the MCLK with a predivider of 1, 2, 4, or 8. This means SMCLK is always equal to or less than MCLK.  
Auxiliary Clock (ACLK): This clock is derived from the external XT1 clock or internal REFO clock up to  
40 kHz.  
All peripherals may have one or several clock sources depending on specific functionality. Table 6-8 lists  
the clock distribution used in this device.  
Table 6-8. Clock Distribution  
CLOCK  
SOURCE  
SELECT  
BITS  
MCLK  
SMCLK  
ACLK  
MODCLK  
XT1CLK  
VLOCLK  
EXTERNAL PIN  
Frequency  
Range  
DC to  
16 MHz  
DC to  
16 MHz  
DC to  
40 kHz  
5 MHz  
±10%  
DC to  
40 kHz  
10 kHz  
±50%  
CPU  
N/A  
N/A  
Default  
FRAM  
RAM  
Default  
N/A  
Default  
CRC  
N/A  
Default  
I/O  
N/A  
Default  
TA0  
TASSEL  
TASSEL  
UCSSEL  
UCSSEL  
WDTSSEL  
ADCSSEL  
CAPTSSEL  
RTCSS  
10b  
01b  
01b  
01b  
01b  
01b  
01b  
00b  
01b(1)  
11b  
00b (TA0CLK pin)  
TA1  
10b  
00b (TA1CLK pin)  
eUSCI_A0  
eUSCI_B0  
WDT  
10b or 11b  
10b or 11b  
00b  
00b (UCA0CLK pin)  
00b (UCB0CLK pin)  
10b  
ADC  
10b or 11b  
01b(1)  
00b  
CapTIvate  
RTC  
01b  
11b  
10b  
(1) Controlled by the RTCCKSEL bit in the SYSCFG2 register  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
CPU  
FRAM  
SRAM  
CRC  
I/O  
MCLK  
Timer_A  
A0  
Timer_A  
A1  
eUSCI_A0  
eUSCI_B0  
WDT  
RTC  
ADC10  
CapTIvate  
Clock System (CS)  
SMCLK  
ACLK  
VLOCLK  
MODCLK  
Selected on SYSCFG2  
XT1CLK  
Figure 6-1. Clock Distribution Block Diagram  
50  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
6.10.3 General-Purpose Input/Output Port (I/O)  
Up to 15 I/O ports are implemented.  
P1 implements 8 bits, and P2 implements 7 bits.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPMx.5 wake-up input capability are available for P1 and P2.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise as a pair.  
CapTIvate functionality is supported on all CAPx.y pins.  
NOTE  
Configuration of digital I/Os after BOR reset  
To prevent any cross currents during start-up of the device, all port pins are high-impedance  
with Schmitt triggers and module functions disabled. To enable the I/O functions after a BOR  
reset, the ports must be configured first and then the LOCKLPM5 bit must be cleared. For  
details, see the Configuration After Reset section in the Digital I/O chapter of the  
MP430FR4xx and MP430FR2xx Family User's Guide.  
6.10.4 Watchdog Timer (WDT)  
The primary function of the WDT module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not  
needed in an application, the module can be configured as an interval timer and can generate interrupts at  
selected time intervals. Table 6-9 lists the system clocks that can be used to source the WDT.  
Table 6-9. WDT Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
Reserved  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6.10.5 System (SYS) Module  
The SYS module handles many of the system functions within the device. These features include power-  
on reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset  
interrupt vector generators, bootloader entry mechanisms, and configuration management (device  
descriptors). The SYS module also includes a data exchange mechanism through SBW called a JTAG  
mailbox mail box that can be used in the application. Table 6-10 summarizes the interrupts that are  
managed by the SYS module.  
Table 6-10. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
Security violation (BOR)  
Reserved  
04h  
06h  
08h  
0Ah  
0Ch  
SVSHIFG SVSH event (BOR)  
Reserved  
0Eh  
10h  
SYSRSTIV, System Reset  
015Eh  
Reserved  
12h  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
FLL unlock (PUC)  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
24h  
Reserved  
22h, 26h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVS low-power reset entry  
Uncorrectable FRAM bit error detection  
Reserved  
02h  
04h  
06h  
Reserved  
08h  
Reserved  
0Ah  
Reserved  
0Ch  
SYSSNIV, System NMI  
015Ch  
Reserved  
0Eh  
Reserved  
10h  
VMAIFG vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
Reserved  
12h  
14h  
16h  
18h  
1Ah to 1Eh  
00h  
Lowest  
Highest  
Lowest  
No interrupt pending  
NMIIFG NMI pin or SVSH event  
OFIFG oscillator fault  
Reserved  
02h  
SYSUNIV, User NMI  
015Ah  
04h  
06h to 1Eh  
52  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
6.10.6 Cyclic Redundancy Check (CRC)  
The 16-bit cyclic redundancy check (CRC) module produces a signature based on a sequence of data  
values and can be used for data checking purposes. The CRC generation polynomial is compliant with  
CRC-16-CCITT standard of x16 + x12 + x5 + 1.  
6.10.7 Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_B0)  
The eUSCI modules are used for serial data communications. The eUSCI_A module supports either  
UART or SPI communications. The eUSCI_B module supports either SPI or I2C communications.  
Additionally, eUSCI_A supports automatic baud-rate detection and IrDA. The eUSCI_A and eUSCI_B are  
connected either from P1 port or P2 port, it can be selected from the USCIARMP of SYSCFG3 or  
USCIBRMP bit of SYSCFG2. Table 6-11 lists the pin configurations that are required for each eUSCI  
mode.  
Table 6-11. eUSCI Pin Configurations  
PIN (USCIARMP = 0)  
UART  
TXD  
RXD  
SPI  
SIMO  
SOMI  
SCLK  
STE  
P1.4  
P1.5  
P1.6  
P1.7  
eUSCI_A0  
PIN (USCIARMP = 1)  
UART  
TXD  
RXD  
SPI  
P2.0  
SIMO  
SOMI  
SCLK  
STE  
P2.1  
P1.6  
P1.7  
PIN (USCIBRMP = 0)  
I2C  
SPI  
P1.0  
STE  
P1.1  
SCLK  
SIMO  
SOMI  
SPI  
P1.2  
SDA  
SCL  
I2C  
P1.3  
eUSCI_B0  
PIN (USCIBRMP = 1)  
P2.3  
P2.4  
P2.5  
P2.6  
STE  
SCLK  
SIMO  
SOMI  
SDA  
SCL  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6.10.8 Timers (Timer0_A3, Timer1_A3)  
The Timer0_A3 and Timer1_A3 modules are 16-bit timers and counters with three capture/compare  
registers each. Each timer supports multiple captures or compares, PWM outputs, and interval timing (see  
Figure 6-2). Each timer has extensive interrupt capabilities. Interrupts may be generated from the counter  
on overflow conditions and from each of the capture/compare registers. The CCR0 registers on both  
Timer0_A3 and Timer1_A3 are not externally connected and can only be used for hardware period timing  
and interrupt generation. In Up mode, they can be used to set the overflow value of the counter.  
Timer_A0  
Timer_A1  
TA0CLK  
ACLK  
00  
01  
10  
11  
TA1CLK  
ACLK  
00  
01  
10  
11  
16-bit Counter  
SMCLK  
VLO  
16-bit Counter  
SMCLK  
00  
01  
10  
11  
ACLK  
VLO  
TA0.0A  
TA0.0B  
00  
01  
10  
11  
CCR0  
DVSS  
DVCC  
TA0.0A  
TA0.0B  
CCR0  
DVSS  
DVCC  
P1.4  
RTC  
00  
01  
10  
11  
TA0.1A  
TA0.1B  
P1.4  
P2.2  
00  
01  
10  
11  
CCR1  
DVSS  
DVCC  
TA0.1A  
TA0.1B  
P2.2  
CCR1  
DVSS  
DVCC  
To ADC Trigger  
P1.5  
00  
01  
10  
11  
TA0.2A  
TA0.2B  
P1.5  
P2.3  
00  
01  
10  
11  
CCR2  
DVSS  
DVCC  
TA0.2A  
TA0.2B  
P2.3  
CCR2  
DVSS  
DVCC  
Coding  
Carrier  
Infrared  
Logic (SYS)  
P2.0/UCA0TXD/UCA0SIMO  
UCA0TXD/UCA0SIMO  
eUSCI_A0  
Data  
Figure 6-2. Timer0_A3 and Timer1_A3 Signal Connections  
The interconnection of Timer0_A3 and Timer1_A3 can be used to modulate the eUSCI_A pin of  
UCA0TXD/UCA0SIMO in either ASK or FSK mode, with which a user can easily acquire a modulated  
infrared command for directly driving an external IR diode. The IR functions are fully controlled by SYS  
configuration registers 1 including IREN (enable), IRPSEL (polarity select), IRMSEL (mode select),  
IRDSSEL (data select), and IRDATA (data) bits. For more information, see the SYS chapter in the  
MP430FR4xx and MP430FR2xx Family User's Guide.  
6.10.9 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs  
operations with 32-, 24-, 16-, and 8-bit operands. The MPY module supports signed multiplication,  
unsigned multiplication, signed multiply-and-accumulate, and unsigned multiply-and-accumulate  
operations.  
54  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
6.10.10 Backup Memory (BAKMEM)  
The BAKMEM supports data retention during LPM3.5. This device provides up to 32 bytes that are  
retained during LPM3.5.  
6.10.11 Real-Time Clock (RTC)  
The RTC is a 16-bit modulo counter that is functional in AM, LPM0, LPM3, and LPM3.5. This module can  
periodically wake up the CPU from LPM0, LPM3, or LPM3.5 based on timing from a low-power clock  
source such as the XT1 and VLO clocks. RTC also can be sourced from ACLK controlled by RTCCLK in  
SYSCFG2. In AM, RTC can be driven by SMCLK to generate high-frequency timing events and interrupts.  
The RTC overflow events trigger:  
Timer0_B3 CCI1B  
ADC conversion trigger when ADCSHSx bits are set as 01b  
Table 6-12. RTC Clock Source  
RTCSS  
00  
CLOCK SOURCE  
Reserved  
SMCLK or ACLK is selected(1)  
XT1CLK  
01  
10  
11  
VLOCLK  
(1) Controlled by the RTCCLK bit of the SYSCFG2 register  
6.10.12 10-Bit Analog-to-Digital Converter (ADC)  
The 10-bit ADC module supports fast 10-bit analog-to-digital conversions with single-ended input. The  
module implements a 10-bit SAR core, sample select control, a reference generator, and a conversion  
result buffer. A window comparator with lower and upper limits allows CPU-independent result monitoring  
with three window comparator interrupt flags.  
The ADC supports 10 external inputs and 4 internal inputs (see Table 6-13).  
Table 6-13. ADC Channel Connections  
ADCINCHx  
ADC CHANNELS  
EXTERNAL PIN  
P1.0  
P1.1  
P1.2  
P1.3  
P2.2  
P2.3  
P2.4  
P2.5  
N/A  
0
1
A0/Veref+  
A1(1)  
2
A2/Veref-  
3
A3  
4
A4  
5
A5  
6
A6  
A7  
7
8
Not used  
9
Not used  
N/A  
10  
11  
12  
13  
Not used  
N/A  
Not used  
N/A  
On-chip temperature sensor  
Reference voltage (1.5 V)  
N/A  
N/A  
(1) When A7 is used, the PMM 1.2-V reference voltage can be output to  
this pin by setting the PMM control register. The 1.2-V voltage can  
be measured by the A1 channel.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-13. ADC Channel Connections (continued)  
ADCINCHx  
ADC CHANNELS  
DVSS  
EXTERNAL PIN  
14  
15  
N/A  
N/A  
DVCC  
The analog-to-digital conversion can be started by software or a hardware trigger. Table 6-14 lists the  
trigger sources that are available.  
Table 6-14. ADC Trigger Signal Connections  
ADCSHSx  
TRIGGER SOURCE  
BINARY  
DECIMAL  
00  
01  
10  
11  
0
1
2
3
ADCSC bit (software trigger)  
RTC event  
TA1.1B  
Reserved  
6.10.13 CapTIvate Technology  
The CapTIvate module detects the capacitance changed with a charge-transfer method and is functional  
in AM, LPM0, LPM3 and LPM4. The CapTIvate module can periodically wake the CPU from LPM0, LPM3  
or LPM4 based on a CapTIvate timer source such as ACLK or VLO clock. The CapTIvate module also  
can work on wake-on-touch state machine mode for better power saving without periodically woke up the  
CPU. The CapTIvate module supports the following touch-sensing capability:  
The MSP430FR2522 supports up to 16 CapTIvate buttons composed of 2 CapTIvate blocks.  
The MSP430FR2512 supports up to 4 CapTIvate buttons composed of 1 CapTIvate block.  
Each block consists of 4 I/Os, and these blocks scan in parallel of 2 electrodes.  
Each block can be individually configured in self or mutual mode. Each CapTIvate I/O can be used for  
either self or mutual electrodes.  
Supports a wake-on-touch state machine.  
Supports synchronized conversion on a zero-crossing event trigger.  
Processing logic to perform filter calculation and threshold detection.  
To learn more about MSP MCUs featuring CapTIvate technology, see the CapTIvate™ Technology Guide.  
6.10.14 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The EEM on these devices has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
EEM version: S  
56  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
6.11 Input/Output Diagrams  
6.11.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger  
Figure 6-3 shows the port diagram. Table 6-15 summarizes the selection of pin function.  
A0 to A3  
CAP0.0 to CAP0.3  
CAP1.0 to CAP1.3  
From CapTIvate  
P1SEL.x = 11  
P1REN.x  
P1DIR.x  
From Module1  
From Module2  
00  
01  
10  
11  
2 bit  
DVSS  
DVCC  
0
1
00  
01  
P1OUT.x  
From Module1  
From Module2  
DVSS  
10  
11  
2 bit  
P1SEL.x  
EN  
D
To module  
P1IN.x  
P1IE.x  
Bus  
Keeper  
P1 Interrupt  
D
S
Q
P1IFG.x  
P1.0/UCB0STE/A0/Veref+/CAP1.0  
Edge  
Select  
P1.1/UCB0CLK/ACLK/A1/VREF+/CAP1.1  
P1.2/UCB0SIMO/UCB0SDA/SMCLK/A2/Veref-/CAP1.2  
P1.3/UCB0SOMI/UCB0SCL/MCLK/A3/CAP1.3  
P1.4/UCA0TXD/UCA0SIMO/TA0.1/TCK/CAP0.0  
P1.5/UCA0RXD/UCA0SOMI/TA0.2/TMS/CAP0.1  
P1.6/UCA0CLK/TA0CLK/TDI/TCLK/CAP0.2  
P1.7/UCA0STE/TDO/CAP0.3  
P1IES.x  
From JTAG  
To JTAG  
NOTE: CapTIvate channel 1 is available on the MSP430FR2522 only.  
Figure 6-3. Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger  
NOTE  
CapTIvate shared with alternative functions  
The CapTIvate function and alternative functions are powered by different power supplies  
(1.5 V and 3.3 V, respectively).  
To prevent pad damage when changing the function, TI recommends checking the external  
application circuit of each pad before enabling the alternative function.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-15. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
ANALOG  
P1DIR.x  
P1SELx  
JTAG  
FUNCTION(2)  
P1.0 (I/O)  
UCB0STE  
I: 0; O: 1  
X
00  
01  
0
0
N/A  
N/A  
P1.0/UCB0STE/A0/  
Veref+/CAP1.0(3)  
0
ADCPCTLx = 1 (x = 0) from  
SYSCFG2  
A0,Veref+  
X
N/A  
CAP1.0(3)  
P1.1 (I/O)  
UCB0CLK  
ACLK  
X
P1SELx = 11, or from CapTIvate  
I: 0; O: 1  
00  
01  
10  
0
0
0
N/A  
N/A  
N/A  
X
1
P1.1/UCB0CLK/ACLK/  
A1/VREF+/CAP1.1(3)  
1
2
3
ADCPCTLx = 1 (x = 1) from  
SYSCFG2  
A1,VREF+  
X
N/A  
CAP1.1(3)  
P1.2 (I/O)  
X
P1SELx = 11, or from CapTIvate  
I: 0; O: 1  
00  
01  
10  
0
0
0
N/A  
N/A  
N/A  
UCB0SIMO/UCB0SDA  
SMCLK  
X
1
P1.2/UCB0SIMO/  
UCB0SDA/SMCLK/A2/  
Veref-/CAP1.2(3)  
ADCPCTLx = 1 (x = 2) from  
SYSCFG2  
A2, Veref-  
X
N/A  
CAP1.2(3)  
X
P1SELx = 11, or from CapTIvate  
P1.3 (I/O)  
I: 0; O: 1  
00  
01  
10  
0
0
0
N/A  
N/A  
N/A  
UCB0SOMI/UCB0SCL  
MCLK  
X
1
P1.3/UCB0SOMI/  
UCB0SCL/MCLK/A3/  
CAP1.3(3)  
ADCPCTLx = 1 (x = 3) from  
SYSCFG2  
A3  
X
N/A  
CAP1.3(3)  
P1.4 (I/O)  
X
P1SELx = 11, or from CapTIvate  
I: 0; O: 1  
00  
01  
0
0
Disabled  
Disabled  
UCA0TXD/UCA0SIMO  
TA0.CCI1A  
TA0.1  
X
P1.4/UCA0TXD/  
UCA0SIMO/TA0.1/  
TCK/CAP0.0  
0
4
5
10  
0
Disabled  
1
CAP0.0  
X
P1SELx = 11, or from CapTIvate  
Disabled  
TCK  
JTAG TCK  
P1.5 (I/O)  
X
X
X
0
0
I: 0; O: 1  
00  
01  
Disabled  
Disabled  
UCA0RXD/UCA0SOMI  
TA0.CCI2A  
TA0.2  
X
P1.5/UCA0RXD/  
UCA0SOMI/TA0.2/  
TMS/CAP0.1  
0
10  
0
Disabled  
1
CAP0.1  
X
P1SELx = 11, or from CapTIvate  
Disabled  
TMS  
JTAG TMS  
P1.6 (I/O)  
X
X
X
0
0
0
I: 0; O: 1  
00  
01  
10  
Disabled  
Disabled  
Disabled  
Disabled  
TDI/TCLK  
Disabled  
Disabled  
Disabled  
TDO  
UCA0CLK  
TA0CLK  
X
P1.6/UCA0CLK/  
TA0CLK/TDI/TCLK/  
CAP0.2  
6
7
0
CAP0.2  
X
P1SELx = 11, or from CapTIvate  
JTAG TDI/TCLK  
P1.7 (I/O)  
X
X
X
0
0
I: 0; O: 1  
00  
01  
UCA0STE  
CAP0.3  
X
X
X
P1.7/UCA0STE/TDO/  
CAP0.3  
P1SELx = 11, or from CapTIvate  
JTAG TDO  
X
X
(1) X = don't care  
(2) Setting the bits disables both the output driver and input Schmitt trigger to prevent leakage when analog signals are applied.  
(3) CapTIvate channel 1 is available on the MSP430FR2522 only.  
58  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
6.11.2 Port P2 (P2.0 to P2.6) Input/Output With Schmitt Trigger  
Figure 6-4 shows the port diagram. Table 6-16 summarizes the selection of pin function.  
A4 to A7  
P2SEL.x = 11  
P2REN.x  
P2DIR.x  
From Module1  
From Module2  
00  
01  
10  
11  
2 bit  
DVSS  
DVCC  
0
1
00  
01  
P2OUT.x  
From Module1  
From Module2  
DVSS  
10  
11  
2 bit  
P2SEL.x  
EN  
D
To module  
P2IN.x  
P2IE.x  
Bus  
Keeper  
P2 Interrupt  
D
S
Q
P2.0/UCA0TXD/UCA0SIMO/XOUT  
P2.1/UCA0RXD/UCA0SOMI/XIN  
P2.2/TA1.1/SYNC/A4  
P2IFG.x  
P2IES.x  
Edge  
Select  
P2.3/TA1.2/UCB0STE/A5  
P2.4/TA1CLK/UCB0CLK/A6  
P2.5/UCB0SIMO/UCB0SDA/A7  
P2.6/UCB0SOMI/UCB0SCL  
Figure 6-4. Port P2 (P2.0 to P2.6) Input/Output With Schmitt Trigger  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-16. Port P2 (P2.0 to P2.6) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
ANALOG  
P2DIR.x  
P2SELx  
FUNCTION(2)  
P2.0 (I/O)  
I: 0; O: 1  
00  
01  
10  
00  
01  
10  
00  
0
0
0
0
0
0
0
P2.0/UCA0TXD/  
UCA0SIMO/XOUT  
0
UCA0TXD/UCA0SIMO  
XOUT  
X
X
P2.1 (I/O)  
I: 0; O: 1  
P2.1/UCA0RXD/  
UCA0SOMI/XIN  
1
2
UCA0RXD/UCA0SOMI  
XIN  
X
X
P2.2 (I/O)  
I: 0; O: 1  
TA1.CCI1A  
TA1.1  
0
1
0
01  
0
0
P2.2/TA1.1/SYNC/A4  
SYNC  
10  
X
ADCPCTLx = 1 (x = 4)  
from SYSCFG2(2)  
A4  
X
P2.3 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
00  
0
0
0
0
1
X
01  
P2.3/TA1.2/  
UCB0STE/A5  
3
4
UCB0STE  
10  
X
ADCPCTLx = 1 (x = 5)  
from SYSCFG2(2)  
A5  
X
P2.4 (I/O)  
TA1CLK  
I: 0; O: 1  
00  
01  
10  
0
0
0
0
P2.4/TA1CLK/  
UCB0CLK/A6  
UCB0CLK  
X
ADCPCTLx = 1 (x = 6)  
from SYSCFG2(2)  
A6  
X
X
P2.5 (I/O)  
I: 0; O: 1  
X
00  
10  
0
0
P2.5/UCB0SIMO/  
UCB0SDA/A7  
UCB0SIMO/UCB0SDA  
5
6
ADCPCTLx = 1 (x = 7)  
from SYSCFG2(2)  
A7  
X
X
P2.6 (I/O)  
I: 0; O: 1  
X
00  
10  
0
0
P2.6/UCB0SOMI/  
UCB0SCL  
UCB0SOMI/UCB0SCL  
(1) X = don't care  
(2) Setting the bits disables both the output driver and input Schmitt trigger to prevent leakage when analog signals are applied.  
60  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
6.12 Device Descriptors  
Table 6-17 lists the Device IDs of the devices. Table 6-18 lists the contents of the device descriptor tag-  
length-value (TLV) structure for the devices.  
Table 6-17. Device IDs  
DEVICE ID  
DEVICE  
1A05h  
83h  
1A04h  
10h  
MSP430FR2522  
MSP430FR2512  
83h  
1Ch  
Table 6-18. Device Descriptors  
MSP430FR25x2  
ADDRESS  
DESCRIPTION  
VALUE  
06h  
Info length  
1A00h  
1A01h  
1A02h  
1A03h  
1A04h  
1A05h  
1A06h  
1A07h  
1A08h  
1A09h  
1A0Ah  
1A0Bh  
1A0Ch  
1A0Dh  
1A0Eh  
1A0Fh  
1A10h  
1A11h  
1A12h  
1A13h  
1A14h  
1A15h  
1A16h  
1A17h  
1A18h  
1A19h  
1A1Ah  
1A1Bh  
1A1Ch  
1A1Dh  
CRC length  
06h  
Per unit  
Per unit  
CRC value(1)  
Information Block  
Device ID  
See Table 6-17.  
Hardware revision  
Firmware revision  
Die record tag  
Per unit  
Per unit  
08h  
Die record length  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot wafer ID  
Die Record  
Die X position  
Die Y position  
Test result  
ADC calibration tag  
ADC calibration length  
ADC gain factor  
ADC calibration  
ADC offset  
ADC 1.5-V reference, temperature 30°C  
ADC 1.5-V reference, temperature 85°C  
(1) The CRC value covers the check sum from 0x1A04h to 0x1AF5h by applying the CRC-CCITT-16 polynomial of x16 + x12 + x5 + 1.  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
61  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-18. Device Descriptors (continued)  
MSP430FR25x2  
DESCRIPTION  
ADDRESS  
1A1Eh  
1A1Fh  
1A20h  
VALUE  
Calibration tag  
12h  
Calibration length  
04h  
Per unit  
Per unit  
Per unit  
Per unit  
Reference and DCO Calibration 1.5-V reference factor  
1A21h  
1A22h  
DCO tap setting for 16 MHz, temperature 30°C(2)  
1A23h  
(2) This value can be directly loaded into DCO bits in CSCTL0 registers to get accurate 16-MHz frequency at room temperature, especially  
when the MCU exits from LPM3 and below. TI suggests using the predivider to decrease the frequency if the temperature drift might  
result an overshoot beyond 16 MHz.  
6.13 Memory  
6.13.1 Memory Organization  
Table 6-19 summarizes the memory organization of the devices.  
Table 6-19. Memory Organization  
ACCESS  
MSP430FR2522 MSP430FR2512  
Memory (FRAM)  
Main: interrupt vectors and signatures  
Main: code memory  
7.25KB  
FFFFh to FF80h  
FFFFh to E300h  
Read/Write  
(Optional Write Protect)(1)  
2KB  
27FFh to 2000h  
RAM  
Read/Write  
Read/Write  
256B  
18FFh to 1800h  
Information Memory (FRAM)  
Bootloader (BSL1) Memory (ROM)  
Bootloader (BSL2) Memory (ROM)  
CapTIvate Libraries and Driver Libraries (ROM)  
Peripherals  
(Optional Write Protect)(2)  
2KB  
17FFh to 1000h  
Read only  
Read only  
Read only  
Read/Write  
1KB  
FFFFFh to FFC00h  
12KB  
6FFFh to 4000h  
4KB  
0FFFh to 0000h  
(1) The Program FRAM can be write protected by setting PFWP bit in SYSCFG0 register. See the SYS chapter in the MP430FR4xx and  
MP430FR2xx Family User's Guide for more details  
(2) The Information FRAM can be write protected by setting DFWP bit in SYSCFG0 register. See the SYS chapter in the MP430FR4xx and  
MP430FR2xx Family User's Guide for more details  
62  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
6.13.2 Peripheral File Map  
Table 6-20 lists the available peripherals and the register base address for each.  
Table 6-20. Peripherals Summary  
MODULE NAME  
Special Functions (See Table 6-21)  
BASE ADDRESS  
0100h  
SIZE  
0010h  
0020h  
0040h  
0020h  
0010h  
0008h  
0002h  
0020h  
0010h  
0030h  
0030h  
0030h  
0020h  
0030h  
0020h  
0040h  
0200h  
PMM (See Table 6-22)  
0120h  
SYS (See Table 6-23)  
0140h  
CS (See Table 6-24)  
0180h  
FRAM (See Table 6-25)  
01A0h  
01C0h  
01CCh  
0200h  
CRC (See Table 6-26)  
WDT (See Table 6-27)  
Port P1, P2 (See Table 6-28)  
RTC (See Table 6-29)  
0300h  
Timer0_A3 (See Table 6-30)  
Timer1_A3 (See Table 6-31)  
MPY32 (See Table 6-32)  
eUSCI_A0 (See Table 6-33)  
eUSCI_B0 (See Table 6-34)  
Backup Memory (See Table 6-35)  
ADC (See Table 6-36)  
0380h  
03C0h  
04C0h  
0500h  
0540h  
0660h  
0700h  
CapTIvate (See CapTivate Design Center for details )  
0A00h  
Table 6-21. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
ACRONYM  
SFRIE1  
OFFSET  
00h  
SFR interrupt enable  
SFR interrupt flag  
SFRIFG1  
SFRRPCR  
02h  
SFR reset pin control  
04h  
Table 6-22. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
ACRONYM  
PMMCTL0  
PMMCTL1  
PMMCTL2  
PMMIFG  
OFFSET  
00h  
PMM control 0  
PMM control 1  
PMM control 2  
PMM interrupt flags  
PM5 control 0  
02h  
04h  
0Ah  
PM5CTL0  
10h  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-23. SYS Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
ACRONYM  
SYSCTL  
OFFSET  
System control  
00h  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
Bootloader configuration area  
JTAG mailbox control  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
SYSSNIV  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
System configuration 0  
System configuration 1  
System configuration 2  
SYSRSTIV  
SYSCFG0  
SYSCFG1  
SYSCFG2  
Table 6-24. CS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
ACRONYM  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
CSCTL7  
CSCTL8  
OFFSET  
00h  
CS control 0  
CS control 1  
CS control 2  
CS control 3  
CS control 4  
CS control 5  
CS control 6  
CS control 7  
CS control 8  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
Table 6-25. FRAM Registers (Base Address: 01A0h)  
REGISTER DESCRIPTION  
ACRONYM  
FRCTL0  
OFFSET  
00h  
FRAM control 0  
General control 0  
General control 1  
GCCTL0  
GCCTL1  
04h  
06h  
Table 6-26. CRC Registers (Base Address: 01C0h)  
REGISTER DESCRIPTION  
ACRONYM  
CRC16DI  
OFFSET  
00h  
CRC data input  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
02h  
04h  
06h  
Table 6-27. WDT Registers (Base Address: 01CCh)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Watchdog timer control  
WDTCTL  
00h  
64  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 6-28. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
ACRONYM  
P1IN  
OFFSET  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
18h  
16h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Ch  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P1 input  
Port P1 output  
Port P1 direction  
P1OUT  
P1DIR  
P1REN  
P1SEL0  
P1SEL1  
P1IV  
Port P1 pulling enable  
Port P1 selection 0  
Port P1 selection 1  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 complement selection  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1IES  
P1SELC  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2SEL1  
P2SELC  
P2IV  
Port P2 direction  
Port P2 pulling enable  
Port P2 selection 0  
Port P2 selection 1  
Port P2 complement selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
Table 6-29. RTC Registers (Base Address: 0300h)  
REGISTER DESCRIPTION  
ACRONYM  
RTCCTL  
RTCIV  
OFFSET  
00h  
RTC control  
RTC interrupt vector  
RTC modulo  
04h  
RTCMOD  
RTCCNT  
08h  
RTC counter  
0Ch  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-30. Timer0_A3 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
ACRONYM  
TA0CTL  
OFFSET  
TA0 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
TA0 interrupt vector  
TA0IV  
Table 6-31. Timer1_A3 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
ACRONYM  
TA1CTL  
OFFSET  
00h  
TA1 control  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
12h  
14h  
16h  
20h  
TA1 interrupt vector  
TA1IV  
2Eh  
66  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 6-32. MPY32 Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
ACRONYM  
MPY  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 – multiply  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control 0  
RES3  
MPY32CTL0  
Table 6-33. eUSCI_A0 Registers (Base Address: 0500h)  
REGISTER DESCRIPTION  
ACRONYM  
UCA0CTLW0  
UCA0CTLW1  
UCA0BR0  
OFFSET  
00h  
eUSCI_A control word 0  
eUSCI_A control word 1  
eUSCI_A control rate 0  
eUSCI_A control rate 1  
eUSCI_A modulation control  
eUSCI_A status  
02h  
06h  
UCA0BR1  
07h  
UCA0MCTLW  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
lUCA0IRTCTL  
IUCA0IRRCTL  
UCA0IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA0IFG  
UCA0IV  
Table 6-34. eUSCI_B0 Registers (Base Address: 0540h)  
REGISTER DESCRIPTION  
ACRONYM  
UCB0CTLW0  
UCB0CTLW1  
UCB0BR0  
OFFSET  
00h  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
02h  
06h  
eUSCI_B bit rate 1  
UCB0BR1  
07h  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-34. eUSCI_B0 Registers (Base Address: 0540h) (continued)  
REGISTER DESCRIPTION  
eUSCI_B status word  
ACRONYM  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
OFFSET  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B receive address  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
UCB0IFG  
eUSCI_B interrupt vector word  
UCB0IV  
68  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 6-35. Backup Memory Registers (Base Address: 0660h)  
REGISTER DESCRIPTION  
ACRONYM  
BAKMEM0  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKMEM4  
BAKMEM5  
BAKMEM6  
BAKMEM7  
BAKMEM8  
BAKMEM9  
BAKMEM10  
BAKMEM11  
BAKMEM12  
BAKMEM13  
BAKMEM14  
BAKMEM15  
OFFSET  
00h  
Backup memory 0  
Backup memory 1  
Backup memory 2  
Backup memory 3  
Backup memory 4  
Backup memory 5  
Backup memory 6  
Backup memory 7  
Backup memory 8  
Backup memory 9  
Backup memory 10  
Backup memory 11  
Backup memory 12  
Backup memory 13  
Backup memory 14  
Backup memory 15  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
Table 6-36. ADC Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
ADCCTL0  
ADCCTL1  
ADCCTL2  
ADCLO  
OFFSET  
00h  
ADC control 0  
ADC control 1  
02h  
ADC control 2  
04h  
ADC window comparator low threshold  
ADC window comparator high threshold  
ADC memory control 0  
ADC conversion memory  
ADC interrupt enable  
06h  
ADCHI  
08h  
ADCMCTL0  
ADCMEM0  
ADCIE  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC interrupt flags  
ADCIFG  
ADC interrupt vector word  
ADCIV  
Copyright © 2018–2019, Texas Instruments Incorporated  
Detailed Description  
69  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6.14 Identification  
6.14.1 Revision Identification  
The device revision information is included as part of the top-side marking on the device package. The  
device-specific errata sheet describes these markings.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the Hardware Revision entries in Section 6.12.  
6.14.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific  
errata sheet describes these markings.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the Device ID entries in Section 6.12.  
6.14.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in  
detail in MSP430 Programming With the JTAG Interface.  
70  
Detailed Description  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
7 Applications, Implementation, and Layout  
NOTE  
Information in the following Applications section is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI's customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
7.1 Device Connection and Layout Fundamentals  
This section discusses the recommended guidelines when designing with the MSP430 devices. These  
guidelines are to make sure that the device has proper connections for powering, programming,  
debugging, and optimum analog performance.  
7.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 10-µF plus a 100-nF low-ESR ceramic decoupling  
capacitor to the DVCC and DVSS pins. Higher-value capacitors may be used but can impact supply rail  
ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple  
(within a few millimeters). Additionally, TI recommends separated grounds with a single-point connection  
for better noise isolation from digital-to-analog circuits on the board and to achieve high analog accuracy.  
DVCC  
Digital  
+
Power Supply  
Decoupling  
DVSS  
10 µF  
100 nF  
Figure 7-1. Power Supply Decoupling  
7.1.2 External Oscillator  
This device supports only a low-frequency crystal (32 kHz) on the XIN and XOUT pins. External bypass  
capacitors for the crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the XIN input pin that meet the specifications of the  
respective oscillator if the appropriate XT1BYPASS mode is selected. In this case, the associated XOUT  
pin can be used for other purposes. If the XIN and XOUT pins are not used, they must be terminated  
according to Section 4.6.  
Figure 7-2 shows a typical connection diagram.  
XIN  
XOUT  
CL1  
CL2  
Figure 7-2. Typical Crystal Connection  
Copyright © 2018–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
71  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP430 devices.  
7.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or  
MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the  
connections also support the MSP-GANG production programmers, thus providing an easy way to  
program prototype boards, if desired. Figure 7-3 shows the connections between the 14-pin JTAG  
connector and the target device required to support in-system programming and debugging for 4-wire  
JTAG communication. Figure 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are  
identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-  
FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an  
alternate connection (pin 4 instead of pin 2). The VCC sense feature detects the local VCC present on the  
target board (that is, a battery or other local power supply) and adjusts the output signals accordingly.  
Figure 7-3 and Figure 7-4 show a jumper block that supports both scenarios of supplying VCC to the target  
board. If this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the  
jumper block. Pins 2 and 4 must not be connected at the same time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User's  
Guide.  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
DVCC  
J2 (see Note A)  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,  
make connection J2.  
B. The upper limit for C1 is 1.1 nF when using current TI tools.  
Figure 7-3. Signal Connections for 4-Wire JTAG Communication  
72  
Applications, Implementation, and Layout  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
DVCC  
R1  
47 kΩ  
(see Note B)  
JTAG  
VCC TOOL  
VCC TARGET  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the  
debug or programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during  
JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with  
the device. The upper limit for C1 is 1.1 nF when using current TI tools.  
Figure 7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
7.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function  
Register (SFR), SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is  
edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the  
external NMI. When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either  
pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not.  
If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an  
external 47-kΩ pullup resistor to the RST/NMI pin with a 10-nF pulldown capacitor. The pulldown capacitor  
should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire  
JTAG mode with TI tools like FET interfaces or GANG programmers.  
See the MP430FR4xx and MP430FR2xx Family User's Guide for more information on the referenced  
control registers and bits.  
7.1.5 Unused Pins  
For details on the connection of unused pins, see Section 4.6.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
73  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
7.1.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430  
32-kHz Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC and reference pins, if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital  
switching signals such as PWM or JTAG signals away from the oscillator circuit.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
7.1.7 Do's and Don'ts  
During power up, power down, and device operation, DVCC must not exceed the limits specified in  
Section 5.1. Exceeding the specified limits may cause malfunction of the device including erroneous writes  
to RAM and FRAM.  
7.2 Peripheral- and Interface-Specific Design Information  
7.2.1 ADC Peripheral  
7.2.1.1 Partial Schematic  
Figure 7-5 shows the recommended decoupling circuit when an external voltage reference is used.  
DVSS  
Using an external  
VREF+/VEREF+  
positive reference  
+
100 nF  
10 µF  
Using an external  
negative reference  
VEREF-  
+
10 µF  
100 nF  
Figure 7-5. ADC Grounding and Noise Considerations  
7.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should  
be followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with  
other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset  
voltages that can add to or subtract from the reference or input voltages of the ADC. The general  
guidelines in Section 7.1.1 combined with the connections shown in Figure 7-5 prevent this.  
Quickly switching digital signals and noisy power supply lines can corrupt the conversion results, so keep  
the ADC input trace shielded from those digital and power supply lines. Putting the MCU in low-power  
mode during the ADC conversion improves the ADC performance in a noisy environment. If the device  
includes the analog power pair inputs (AVCC and AVSS), TI recommends a noise-free design using  
separate analog and digital ground planes with a single-point connection to achieve high accuracy.  
Figure 7-5 shows the recommended decoupling circuit when an external voltage reference is used. The  
internal reference module has a maximum drive current as described in the sections ADC Pin Enable and  
1.2-V Reference Settings of the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
74  
Applications, Implementation, and Layout  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor buffers the reference pin and filters any low-frequency  
ripple. A bypass capacitor of 100 nF filters out any high-frequency noise.  
7.2.1.3 Layout Guidelines  
Components that are shown in the partial schematic (see Figure 7-5) should be placed as close as  
possible to the respective device pins to avoid long traces, because they add additional parasitic  
capacitance, inductance, and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM),  
because the high-frequency switching can be coupled into the analog signal.  
7.2.2 CapTIvate Peripheral  
This section provides a brief introduction to the CapTIvate technology with examples of PCB layout and  
performance from the design kit. A more detailed description of the CapTIvate technology and the tools  
needed to be successful, application development tools, hardware design guides, and software library,  
can be found in the CapTIvate™ Technology Guide.  
7.2.2.1 Device Connection and Layout Fundamentals  
To learn more on how to design the CapTIvate Technology, see the Capacitive Touch Design Flow for  
MSP430™ MCUs With CapTIvate™ Technology application report.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
75  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
7.2.2.2 Measurements  
The following measurements are taken from the CapTIvate Technology Design Center, using the  
CAPTIVATE-PHONE and CAPTIVATE-BSWP panels. Unless otherwise stated, the settings used are the  
out-of-box settings, which can be found in the example projects. The intent of these measurements is to  
show performance in a configuration that is readily available and reproducible.  
Figure 7-6. CAPTIVATE-PHONE and CAPTIVATE-BSWP Panels  
7.2.2.2.1 SNR  
The Sensitivity, SNR, and Design Margin in Capacitive Touch Applications application report provides a  
specific view for analyzing the signal-to-noise ratio of each element.  
7.2.2.2.2 Sensitivity  
To show sensitivity, in terms of farads, the internal reference capacitor is used as the change in  
capacitance. In the mutual-capacitance case, the 0.1-pF capacitor is used. In the self-capacitance case,  
the 1-pF reference capacitor is used. For simplicity, the results for only button 1 on both the CAPTIVATE-  
PHONE and CAPTIVATE-BSWP panels are reported in Table 7-1.  
Table 7-1. Button Sensitivity  
CAPTIVATE-PHONE BUTTON 1 CAPTIVATE-BSWP BUTTON 1  
CONVERSION CONVERSION  
COUNTS FOR  
0.1-pF  
CHANGE  
CONVERSION  
TIME (µs)  
CONVERSION COUNTS FOR  
COUNT  
GAIN  
TIME (µs)  
1-pF CHANGE  
100  
200  
200  
800  
800  
800  
100  
200  
100  
400  
200  
100  
25  
50  
6
50  
8
10  
100  
100  
400  
400  
400  
16  
50  
21  
31  
200  
200  
200  
70  
112  
202  
333  
140  
257  
An alternative measure in sensitivity is the ability to resolve capacitance change over a wide range of base  
capacitance. Table 7-2 shows example conversion times (for a self-mode measurement of discrete  
capacitors) that can be used to achieve the desired resolution for a given parasitic load capacitance.  
76  
Applications, Implementation, and Layout  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
Table 7-2. Button Sensitivity  
COUNTS FOR COUNTS FOR COUNTS FOR  
CAPACITANC CONVERSION CONVERSION  
0.130-pF  
CHANGE  
0.260-pF  
CHANGE  
0.520-pF  
CHANGE  
E Cp (pF)(1)  
COUNT/GAIN  
TIME (µs)  
23  
50  
400/100  
550/100  
650/100  
850/100  
1200/200  
1200/150  
200  
275  
325  
425  
600  
600  
10  
11  
11  
11  
11  
13  
23  
24  
23  
22  
23  
26  
35  
37  
36  
35  
37  
41  
78  
150  
150(2)  
200(2)  
(1) These measurements were taken with the CapTIvate MCU processor board with the 470-Ω series  
resistors replaced with 0-Ω resistors.  
(2) 0-V discharge voltage is used.  
7.2.2.2.3 Power  
The low-power mode LPM3 and LPM4 specifications in Section 5.7 are derived from the CapTIvate  
technology design kit as indicated in the notes.  
7.3 CapTIvate Technology Evaluation  
Table 7-3 lists tools that demonstrate the use of the MSP430FR25x2 devices. See CapTIvate Evaluation  
Tools to get started with evaluating the CapTIvate technology in various real-world application scenarios.  
Consult these evaluation tool designs for additional guidance regarding schematics, layout, and software  
implementation.  
Table 7-3. Evaluation Tools  
DESIGN NAME  
LINK  
MSP430 CapTIvate™ Touch Keypad BoosterPack Plug-in Module  
http://www.ti.com/tool/boostxl-capkeypad  
版权 © 2018–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
77  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
8 器件和文档支持  
8.1 入门和后续步骤  
有关帮助您进行开发的 MSP 低功耗微控制器、工具和库的更多信息,请访问MSP430™ 超低功耗传感和  
测量 MCU 概述》。  
8.2 器件命名规则  
为了标示产品开发周期所处的阶段,TI 为所有 MSP MCU 器件的部件号分配了前缀。每个 MSP MCU 商用  
系列产品成员都具有以下两个前缀之一:MSP XMS。这些前缀代表了产品开发的发展阶段,即从工程原  
(XMS) 直到完全合格的生产器件 (MSP)。  
XMS - 实验器件,不一定代表最终器件的电气规格  
MSP - 完全合格的生产器件  
XMS 器件在供货时附带如下免责声明:  
开发中的产品用于内部评估用途。”  
MSP 器件的特性已经全部明确,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书对该器件适  
用。  
预测显示原型器件 (XMS) 的故障率大于标准生产器件。由于这些器件的预计最终使用故障率尚不确定,德  
州仪器 (TI) 建议不要将它们用于任何生产系统。请仅使用合格的生产器件。  
TI 器件的命名规则还包括一个带有器件系列名称的后缀。此后缀表示温度范围、封装类型和配送形式。8-  
1 提供了解读完整器件名称的图例。  
MSP 430 FR 2 522 I RHL T  
Processor Family  
MCU Platform  
Device Type  
Series  
Distribution Format  
Packaging  
Temperature Range  
Feature Set  
Processor Family  
MCU Platform  
MSP = Mixed-signal processor  
XMS = Experimental silicon  
430 = MSP430 16-bit low-power platform  
FR = FRAM  
Device Type  
Series  
2 = Up to 16 MHz without LCD  
Feature Set  
522 = 2 CapTIvate blocks, 8KB of FRAM, 2KB of RAM, up to 8 CapTIvate I/Os  
512 = 1 CapTIvate block, 8KB of FRAM, 2KB of RAM, up to 4 CapTIvate I/Os  
Temperature Range  
Packaging  
I = –40°C to 85°C  
www.ti.com/packaging  
Distribution Format  
T = Small reel  
R = Large reel  
No marking = Tube or tray  
8-1. 器件命名规则  
78  
器件和文档支持  
版权 © 2018–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
8.3 工具和软件  
8-1 列出 调试 的调试功能。请参阅《适用于 MSP430 MCU Code Composer Studio IDE 用户指  
南》,以了解有关可用 功能)的详细信息。  
8-1. 硬件 特性  
四线制  
JTAG  
两线制  
JTAG  
断点  
(N)  
跟踪缓冲 LPMx.5 调试支  
MSP430 架构  
范围断点  
时钟控制  
状态序列发生器  
EEM 版本  
MSP430Xv2  
3
S
设计套件与评估模块  
适用于 MSP430FR2x MCU MSP-TS430RHL20 20 引脚目标开发板  
MSP-TS430RHL20 是独立的 ZIF 插接目标板,用于通过 JTAG 接口或 Spy Bi-Wire(双线制 JTAG)协议  
MSP430 进行系统内编程和调试。该开发板支持采用 20 引脚 VQFN 封装(TI 封装代码:RHL)的所有  
MSP430FR252x MSP430FR242x 闪存部件。  
MSP-FET + MSP-TS430RHL20 FRAM 微控制器开发套件包  
MSP-FET430RHL20-BNDL  
开发套件包包含适用于  
MSP430FR2422  
微控制器(例如  
MSP430FR2422RHL)且支持 20 引脚 RHL 封装的两种调试工具。这两种工具分别为 MSP-TS430RHL20  
MSP-FET。  
软件  
MSP430Ware™ 软件  
MSP430Ware 软件集合了所有 MSP430 器件的代码示例、数据表以及其他设计资源,打包提供给用户。除  
了提供已有 MSP430 设计资源的完整集合外,MSP430Ware 软件还包含名为 MSP430 驱动程序库的高级  
API。借助该库可以轻松地对 MSP430 硬件进行编程。MSP430Ware 软件以 CCS 组件或独立软件包两种形  
式提供。  
MSP430FR2422 代码示例  
根据不同应用需求配置各集成外设的每个 MSP 器件均具备相应的 C 代码示例。  
MSP 驱动程序库  
驱动程序库的抽象化 API 通过提供易于使用的函数调用使您不再拘泥于 MSP430 硬件的细节。完整的文档  
通过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证的参数的详细信息。开发人员可  
以使用驱动程序库功能,以最低开销编写完整项目。  
MSP EnergyTrace™ 技术  
MSP430 微控制器的 EnergyTrace 技术是基于能量的代码分析工具,用于测量和显示应用的能量配置,同  
时协助优化应用以实现超低功耗。  
ULP(超低功耗)Advisor  
ULP Advisor™软件是一款辅助工具,旨在指导开发人员编写更为高效的代码,从而充分利用 MSP  
MSP432 微控制器独特的 超低功耗 功能。ULP Advisor 的目标人群是微控制器的资深开发者和开发新手,  
可以根据详尽的 ULP 检验表检查代码,以便最大限度地利用应用程序。在编译时,ULP Advisor 会提供通  
知和备注以突出显示代码中可以进一步优化的区域,进而实现更低功耗。  
版权 © 2018–2019, Texas Instruments Incorporated  
器件和文档支持  
79  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
适用于 MSP 超低功耗微控制器的 FRAM 嵌入式软件实用程序  
FRAM 实用程序旨在作为不断扩充的嵌入式软件实用程序集合,其中的实用程序充分利用 FRAM 的超低功  
耗和近乎无限次的写入寿命。这些实用程序适用于 MSP430FRxx FRAM 微控制器并提供示例代码协助应用  
程序开发。其中的实用程序包含功耗计算实用程序 (CTPL)CTPL 是一套实用程序 API 集,通过 CTPL 能  
够轻松使用 LPMx.5 低功耗模式以及强大的关断模式,允许应用程序在检测到功率损耗时节约能耗并恢复关  
键的系统元件。  
IEC60730 软件包  
IEC60730 MSP430 软件包经过专门开发,用于协助客户达到 IEC 60730-1:2010(家用及类似用途的自动化  
电气控制 - 1 部分:一般要求)B 类产品的要求。其中涵盖家用电器、电弧检测器、电源转换器、电动工  
具、电动自行车及其他诸多产品。IEC60730 MSP430 软件包可以嵌入在 MSP430 中 运行的客户应用, 从  
而帮助客户简化其消费类器件在功能安全方面遵循 IEC 60730-1:2010 B 类规范的认证工作。  
适用于 MSP 的定点数学库  
MSP IQmath Qmath 库是为 C 语言开发者提供的一套经过高度优化的高精度数学运算函数集合,能够将  
浮点算法无缝嵌入 MSP430 MSP432 器件的定点代码中。这些例程通常用于计算密集型实时 应用, 而  
优化的执行速度、高精度以及超低能耗通常是影响这些实时应用的关键因素。与使用浮点数学算法编写的同  
等代码相比,使用 IQmath Qmath 库可以大幅提高执行速度并显著降低能耗。  
适用于 MSP430 的浮点数学库  
TI 在低功耗和低成本微控制器领域锐意创新,为您提供 MSPMATHLIB。这是标量函数的浮点数学库,能够  
充分利用器件的智能外设,使性能提升高达 26 倍。Mathlib 能够轻松集成到您的设计中。该运算库免费使用  
并集成在 Code Composer Studio IAR IDE 中。如需深入了解该数学库及相关基准,请阅读用户指南。  
开发工具  
适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境  
Code Composer Studio 是一种集成开发环境 (IDE),支持所有 MSP 微控制器。Code Composer Studio 包  
含一整套开发和调试嵌入式应用 的嵌入式软件实用程序的工具。它包含了优化的 C/C++ 编译器、源代码编  
辑器、项目构建环境、调试器、描述器以及其他多种 功能。直观的 IDE 提供了单个用户界面,有助于完成  
应用程序开发流程的每个步骤。熟悉的实用程序和界面可提升用户的入门速度。Code Composer Studio 将  
Eclipse 软件框架的优点和 TI 先进的嵌入式调试功能相结合,为嵌入式开发人员提供了一种功能丰富的优异  
开发环境。当 CCS MSP MCU 搭配使用时,可以使用独特而强大的插件和嵌入式软件实用程序,从而充  
分利用 MSP 微控制器的功能。  
命令行编程器  
MSP Flasher 是一款基于 shell 的开源接口,可使用 JTAG Spy-Bi-Wire (SBW) 通信通过 FET 编程器或  
eZ430 MSP 微控制器进行编程。MSP Flasher 可用于将二进制文件(.txt .hex 文件)直接下载到  
MSP 微控制器,而无需使用 IDE。  
80  
器件和文档支持  
版权 © 2018–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
MSP MCU 编程器和调试器  
MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可让用户在 MSP 低功耗微控制器 (MCU) 上  
快速进行应用开发。创建 MCU 软件通常需要将生成的二进制程序下载到 MSP 器件,以进行验证和调试。  
MSP-FET 在主机和目标 MSP 间提供调试通信通道。此外,MSP-FET 还在计算机的 USB 接口和 MSP  
UART 之间提供反向通道 UART 连接。这为 MSP 编程器提供了一种便捷方法,实现了 MSP 和在计算机上  
运行的终端之间的串行通信。  
MSP-GANG 生产编程器  
MSP Gang 编程器可同时对多达八个完全相同的 MSP430 MSP432 闪存或 FRAM 器件进行编程。MSP  
Gang 编程器可使用标准的 RS-232 USB 连接与主机 PC 相连并提供灵活的编程选项,允许用户完全自定  
义流程。MSP Gang 编程器配有扩展板“Gang 分离器,可在 MSP Gang 编程器和多个目标器件间实现互  
连。  
8.4 文档支持  
以下文档介绍了 MSP430FR25x2 微控制器。www.ti.com.cn 网站上提供了这些文档的副本。  
接收文档更新通知  
如需接收文档更新通知(包括器件勘误表),请转至  
ti.com.cn  
上相关器件的产品文件夹(例如,  
MSP430FR2522)。请单击右上角的通知我按钮。点击注册后,即可收到产品信息更改每周摘要(如  
有)。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
勘误  
MSP430FR2522 器件勘误表》  
介绍了该器件的所有器件修订版本功能规格的已知例外情况。  
MSP430FR2512 器件勘误表》  
介绍了该器件的所有器件修订版本功能规格的已知例外情况。  
用户指南  
MSP430FR4xx MSP430FR2xx 系列用户指南》  
可 说明 。  
MSP430 FRAM 器件引导加载程序 (BSL) 用户指南》  
BSL 能在 MSP430 MCU 项目开发和更新阶段对存储器进行编程。BSL 可由使用串行协议发送命令的工具激  
活。BSL 支持用户控制 MSP430 器件的活动,可与个人计算机或其他设备进行数据交换。  
《通过 JTAG 接口对 MSP430 进行编程》  
此文档介绍了使用 JTAG 通信端口擦除、编程和验证基于 MSP430 闪存和 FRAM 的微控制器系列的存储器  
模块所需的功能。此外,该文档还介绍了如何编程所有 MSP430 器件上均具备的 JTAG 访问安全保险丝。  
此文档介绍了使用标准四线制 JTAG 接口和两线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))的器件访问。  
版权 © 2018–2019, Texas Instruments Incorporated  
器件和文档支持  
81  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
MSP430 硬件工具用户指南》  
此手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针对 MSP430 超低功耗微控制器的程  
序开发工具。  
应用报告  
MSP430 32kHz 晶体振荡器》  
选择合适的晶体、正确的负载电路和适当的电路板布局是实现稳定的晶体振荡器的关键。该应用报告总结了  
晶体振荡器的功能,介绍了用于选择合适的晶体以实现 MSP430 超低功耗运行的参数。此外,还给出了正  
确电路板布局的提示和示例。此外,为了确保振荡器在大规模生产后能够稳定运行,还可能需要进行一些振  
荡器测试,该文档中提供了有关这些测试的详细信息。  
MSP430 系统级 ESD 注意事项》  
随着芯片技术向更低电压方向发展以及设计具有成本效益的超低功耗组件的需求的出现,系统级 ESD 要求  
变得越来越苛刻。该应用报告介绍了不同的 ESD 主题,旨在帮助电路板设计人员和 OEM 理解并设计出稳  
健耐用的系统级设计。另外还介绍了若干实际应用系统级 ESD 保护设计示例及其结果。  
8.5 相关链接  
8-2 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品  
的快速链接。  
8-2. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具和软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
MSP430FR2522  
MSP430FR2512  
8.6 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参见 TI 《使用条款》。  
TI E2E™ 社区  
TI 的工程师交流 (E2E) 社区. 此社区的创建目的是为了促进工程师之间协作。在 e2e.ti.com 中,您可以提  
问、共享知识、拓展思路,在同领域工程师的帮助下解决问题。  
TI 嵌入式处理器维基网页  
德州仪器 (TI) 嵌入式处理器维基网页。此网站的建立是为了帮助开发人员熟悉德州仪器 (TI) 的嵌入式处理  
器,并且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。  
8.7 商标  
CapTIvate, MSP430, BoosterPack, MSP430Ware, EnergyTrace, ULP Advisor, 适用于 MSP 微控制器的  
Code Composer Studio, E2E are trademarks of Texas Instruments.  
CapTIvate, MSP430, BoosterPack, are trademarks of ~ Texas Instruments.  
All other trademarks are the property of their respective owners.  
82  
器件和文档支持  
版权 © 2018–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
 
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
8.8 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.9 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data  
(as defined by the U.S., EU, and other Export Administration Regulations) including software, or any  
controlled product restricted by other applicable national regulations, received from disclosing party under  
nondisclosure obligations (if any), or any direct product of such technology, to any destination to which  
such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior  
authorization from U.S. Department of Commerce and other competent Government authorities to the  
extent required by those laws.  
8.10 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2018–2019, Texas Instruments Incorporated  
器件和文档支持  
83  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
84  
机械、封装和可订购信息  
版权 © 2018–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
版权 © 2018–2019, Texas Instruments Incorporated  
机械、封装和可订购信息  
85  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
A
3.6  
3.4  
B
PIN 1 INDEX AREA  
4.6  
4.4  
C
1 MAX  
SEATING PLANE  
0.08  
C
2.05 0.1  
2X 1.5  
SYMM  
0.5  
0.3  
20X  
(0.2) TYP  
10  
11  
14X 0.5  
9
12  
SYMM  
2X  
3.5  
21  
3.05 0.1  
19  
2
0.29  
20X  
0.19  
0.1  
0.05  
20  
4X (0.2)  
2X (0.55)  
1
PIN 1 ID  
(OPTIONAL)  
C
A B  
C
4219071 / A 06/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
86  
机械、封装和可订购信息  
版权 © 2018–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
www.ti.com.cn  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
(2.05)  
2X (1.5)  
SYMM  
1
20  
2X (0.4)  
20X (0.6)  
19  
2
20X (0.24)  
14X (0.5)  
SYMM  
21  
(3.05) (4.3)  
6X (0.525)  
2X (0.75)  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
9
12  
(R0.05) TYP  
(Ø0.2) VIA  
TYP)  
10  
11  
4X (0.2)  
4X  
(0.775)  
2X (0.55)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 18X  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219071 / A 06/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271)  
.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to theri  
locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
版权 © 2018–2019, Texas Instruments Incorporated  
机械、封装和可订购信息  
87  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
MSP430FR2522, MSP430FR2512  
ZHCSHB4C JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
2X (1.5)  
(0.55)  
TYP  
(0.56)  
TYP  
1
20  
SOLDER MASK EDGE  
TYP  
20X (0.6)  
2
19  
20X (0.24)  
14X (0.5)  
SYMM  
(1.05)  
TYP  
(4.3)  
21  
6X  
(0.85)  
(R0.05) TYP  
METAL  
TYP  
9
12  
2X  
(0.775)  
2X (0.25)  
11  
10  
4X (0.2)  
6X (0.92)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219071 / A 06/2017  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
88  
机械、封装和可订购信息  
版权 © 2018–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2522 MSP430FR2512  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR2512IPW16  
MSP430FR2512IPW16R  
MSP430FR2512IRHLR  
MSP430FR2512IRHLT  
MSP430FR2522IPW16  
MSP430FR2522IPW16R  
MSP430FR2522IRHLR  
MSP430FR2522IRHLT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
VQFN  
PW  
PW  
16  
16  
20  
20  
16  
16  
20  
20  
90  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR2512  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
FR2512  
FR2512  
FR2512  
FR2522  
FR2522  
FR2522  
FR2522  
RHL  
RHL  
PW  
VQFN  
250  
90  
RoHS & Green  
RoHS & Green  
TSSOP  
TSSOP  
VQFN  
PW  
2000 RoHS & Green  
3000 RoHS & Green  
RHL  
RHL  
VQFN  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jul-2022  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR2512IPW16R TSSOP  
PW  
RHL  
RHL  
PW  
16  
20  
20  
16  
20  
20  
2000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.9  
3.71  
3.71  
6.9  
5.6  
4.71  
4.71  
5.6  
1.6  
1.1  
1.1  
1.6  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
MSP430FR2512IRHLR  
MSP430FR2512IRHLT  
VQFN  
VQFN  
MSP430FR2522IPW16R TSSOP  
2000  
3000  
250  
MSP430FR2522IRHLR  
MSP430FR2522IRHLT  
VQFN  
VQFN  
RHL  
RHL  
3.71  
3.71  
4.71  
4.71  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR2512IPW16R  
MSP430FR2512IRHLR  
MSP430FR2512IRHLT  
MSP430FR2522IPW16R  
MSP430FR2522IRHLR  
MSP430FR2522IRHLT  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
PW  
RHL  
RHL  
PW  
16  
20  
20  
16  
20  
20  
2000  
3000  
250  
367.0  
367.0  
210.0  
367.0  
367.0  
210.0  
367.0  
367.0  
185.0  
367.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
2000  
3000  
250  
RHL  
RHL  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jan-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
MSP430FR2512IPW16  
MSP430FR2522IPW16  
PW  
PW  
TSSOP  
TSSOP  
16  
16  
90  
90  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY