MSP430FR4133IG56R [TI]

具有 16KB FRAM、2KB SRAM、10 位 ADC、LCD、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | DGG | 56 | -40 to 85;
MSP430FR4133IG56R
型号: MSP430FR4133IG56R
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 16KB FRAM、2KB SRAM、10 位 ADC、LCD、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | DGG | 56 | -40 to 85

时钟 CD 微控制器 静态存储器 光电二极管 外围集成电路 装置
文件: 总109页 (文件大小:3072K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
MSP430FR413x 混合信号微控制器  
• 时钟系(CS)  
1 特性  
– 片32kHz RC 振荡(REFO)  
– 带有锁频(FLL) 的片16MHz 数控振荡器  
(DCO)  
• 嵌入式微控制器  
– 频率高16MHz 16 位精简指令集计算机  
(RISC) 架构  
1.8V 3.6V 的宽电源电压范围最低电源电压  
受限SVS 电平请参阅8.12.1.1)  
• 经优化的低功耗模式3V)  
– 工作模式126µA/MHz  
• 室温下的精度±1%具有片上基准)  
– 片上超低10kHz 振荡(VLO)  
– 片上高频调制振荡器时(MODCLK)  
– 外32kHz (XT1)  
– 可编MCLK 预分频器1 128)  
– 通过可编程预分频器124 8MCLK  
获得SMCLK  
– 待机模式<1µA实时时(RTC) 计数器和液  
晶显示(LCD) 处于工作状态  
– 关(LPM4.5)15nA  
• 通用输入/输出和引脚功能  
• 高性能模拟  
60 I/O64 引脚封装)  
16 个中断引脚P1 P2可以MCU 从  
LPM 唤醒  
10 10 位模数转换(ADC)  
1.5V 的内部基准电压  
• 采样与保200ksps  
– 低功LCD 驱动器  
– 所I/O 均为电容式触I/O  
• 开发工具和软件  
– 开发套件MSP-EXP430FR4133 LaunchPad™  
开发套件MSPTS430PM64D 目标开发板)  
– 免费软件MSP430Ware软件)  
• 系列成员另请参阅6)  
• 支持高4×36 8×32 LCD 配置  
• 片上电荷泵在待机模(LPM3.5) 下可使  
LCD 保持激活状态  
• 每LCD 引脚均可通过软件配置SEG 或  
COM  
2.6V 3.5V 范围内提供对比度控制阶  
0.06V)  
MSP430FR413315KB FRAM + 512B 信  
FRAM + 2KB RAM  
MSP430FR41328KB FRAM + 512B 信  
FRAM + 1KB RAM  
• 低功耗铁RAM (FRAM)  
– 容量高15.5KB 的非易失性存储器  
– 内置错误修正(ECC)  
– 可配置的写保护  
MSP430FR41314KB FRAM + 512B 信  
FRAM + 512B RAM  
• 封装选项  
– 对程序、常量和存储的统一存储  
– 耐写次数1015 次  
– 抗辐射和非磁性  
64 引脚LQFP (PM)  
56 引脚TSSOP (G56)  
48 引脚TSSOP (G48)  
• 智能数字外设  
2 应用  
– 红外调制逻辑  
– 两16 位定时器每个定时器3 个捕捉/比较  
寄存(Timer_A3)  
• 遥控  
• 恒温器  
– 一个仅用作计数器16 RTC 计数器  
16 位循环冗余校验(CRC)  
• 增强型串行通信  
• 水表  
• 热量计  
• 燃气表  
• 一次性密码令牌  
• 血糖监测仪  
• 血压监护仪  
– 增强USCI A (eUSCI_A) UARTIrDA  
SPI  
– 增强USCI B (eUSCI_B) SPI I2C  
3 说明  
MSP430FR41xx 超低功耗 (ULP) 微控制器系列支持低成本 LCD 应用如远程控制、恒温器、智能仪表、血糖监  
测仪和血压监测仪等该系列器件的集成 10 ADC 对这些应用的性能提升大有帮助。MCU 具有功能强大的 16  
RISC CPU16 位寄存器和常数发生器有助于实现最大编码效率。数控振荡(DCO) 可使器件在不10μs  
的时间内从低功耗模式唤醒至活动模式。此架构与多种低功耗模式配合使用是延长便携式测量应用电池寿命的  
最优选择。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLAS865  
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
MSP430微控制器平台将独特的嵌入式铁电随机存取存储器 (FRAM) 和全面的超低功耗系统架构相结合从而  
使系统设计人员能够在降低能耗的同时提升性能。FRAM 技术将 RAM 的低功耗快速写入、灵活性和耐用性与闪  
存的非易失性相结合。  
MSP430FR41x MCU 由一个由各种软、硬件资源组成的生态系统提供支持并配套提供有参考设计和代码示例,  
可帮助您快速开展设计。适用于 MSP430FR41xx 的开发套件包括 MSP-EXP430FR4133 LaunchPad开发套件  
MSP-TS430PM64D 64 引脚目标开发板。TI 还提供免费的 MSP430Ware软件该软件以 Code Composer  
StudioIDE 桌面和云版本组件的形式提供TI Resource Explorer 。我们MSP430 MCU 提供广泛的  
在线配套资料例如内务处理型示例系列MSP Academy 培训),也通TI E2E支持论坛提供在线支持。  
有关完整的模块说明请参阅MSP430FR4xx MSP430FR2xx 系列器件用户指南》。  
器件信息  
器件型号(1)  
MSP430FR4133IPM  
MSP430FR4133IG56  
MSP430FR4133IG48  
封装尺寸(2)  
10mm x 10mm  
14mm x 6.1mm  
12.5mm x 6.1mm  
封装  
LQFP (64)  
TSSOP (56)  
TSSOP (48)  
(1) 要获得最新的产品、封装和订购信息请参阅12 中的封装选项附或者访问德州仪(TI) 网站  
www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸请参阅机械数据12 。  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
4 功能方框图  
4-1 给出了功能方框图。  
XIN  
XOUT  
P1.x/P2.x  
P3.x/P4.x  
P5.x/P6.x  
P7.x/P8.x  
Capacitive Touch I/O  
XT1  
ADC  
FRAM  
RAM  
I/O Ports  
P1, P2  
2×8 IOs  
Interrupt  
and Wakeup  
PA  
I/O Ports  
P3, P4  
2×8 IOs  
I/O Ports  
P5, P6  
2×8 IOs  
I/O Ports  
P7, P8  
1×8 IOs  
1×4 IOs  
PD  
DVCC  
Up to 10-ch  
Single-end  
10-bit  
Clock  
System  
Control  
Power  
Management  
Module  
15KB+512B  
8KB+512B  
4KB+512B  
2KB  
1KB  
512B  
DVSS  
PB  
1×16 IOs  
PC  
1×16 IOs  
200 ksps  
RST/NMI  
1×12 IOs  
1×16 IOs  
MAB  
MDB  
16-MHZ CPU  
inc.  
16 Registers  
EEM  
RTC  
Counter  
LCD  
TA0  
TA1  
eUSCI_A0  
eUSCI_B0  
(SPI, I2C)  
CRC16  
TCK  
TMS  
TDI/TCLK  
TDO  
SBWTCK  
SBWTDIO  
4×36  
8×32  
Segments  
SYS  
16-bit  
Real-Time  
Clock  
16-bit  
Cyclic  
Redundancy  
Check  
JTAG  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
(UART,  
IrDA, SPI)  
Watchdog  
LPM3.5 Domain  
SBW  
4-1. 功能方框图  
• 该器件具有一对主电源DVCC DVSS),分别为数字和模拟模块供电。推荐的旁路和去耦电容分别为  
4.7μF 10μF 0.1μF精度±5%。  
P1 P2 特有引脚中断功能MCU LPM3.5 模式唤醒。  
• 每Timer_A3 3 CC 寄存器不过只CCR1 CCR2 从外部连接。CCR0 寄存器仅用于内部周期  
时序和产生中断。  
LPM3.5 模式下RTC 计数器LCD 可继续工作而其余外设会停止工作。  
• 所I/O 均可配置为电容式触I/O。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
9 Detailed Description......................................................37  
9.1 CPU.......................................................................... 37  
9.2 Operating Modes...................................................... 37  
9.3 Interrupt Vector Addresses....................................... 38  
9.4 Bootloader (BSL)...................................................... 39  
9.5 JTAG Standard Interface.......................................... 39  
9.6 Spy-Bi-Wire Interface (SBW).................................... 40  
9.7 FRAM........................................................................40  
9.8 Memory Protection....................................................40  
9.9 Peripherals................................................................41  
9.10 Device Descriptors (TLV)........................................67  
9.11 Memory................................................................... 68  
9.12 Identification............................................................76  
10 Applications, Implementation, and Layout............... 77  
10.1 Device Connection and Layout Fundamentals....... 77  
10.2 Peripheral- and Interface-Specific Design  
Information.................................................................. 80  
10.3 Typical Applications................................................ 85  
11 Device and Documentation Support..........................86  
11.1 Getting Started........................................................86  
11.2 Device Nomenclature..............................................86  
11.3 Tools and Software..................................................87  
11.4 Documentation Support.......................................... 89  
11.5 支持资源..................................................................90  
11.6 Trademarks............................................................. 91  
11.7 Electrostatic Discharge Caution..............................91  
11.8 Export Control Notice..............................................91  
11.9 术语表..................................................................... 91  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 功能方框图.........................................................................3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................7  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagrams ............................................................. 8  
7.2 Signal Descriptions................................................... 11  
7.3 Pin Multiplexing.........................................................13  
7.4 Connection of Unused Pins...................................... 14  
8 Specifications................................................................ 15  
8.1 Absolute Maximum Ratings...................................... 15  
8.2 ESD Ratings............................................................. 15  
8.3 Recommended Operating Conditions.......................15  
8.4 Active Mode Supply Current Into VCC Excluding  
External Current.......................................................... 16  
8.5 Active Mode Supply Current Per MHz...................... 16  
8.6 Low-Power Mode LPM0 Supply Currents Into  
VCC Excluding External Current.................................. 16  
8.7 Low-Power Mode LPM3, LPM4 Supply Currents  
(Into VCC) Excluding External Current.........................17  
8.8 Low-Power Mode LPMx.5 Supply Currents (Into  
VCC) Excluding External Current................................. 18  
8.9 Typical Characteristics, Low-Power Mode  
Supply Currents...........................................................19  
8.10 Current Consumption Per Module.......................... 20  
8.11 Thermal Characteristics.......................................... 20  
8.12 Timing and Switching Characteristics..................... 21  
Information.................................................................... 92  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from revision E to revision F  
Changes from December 9, 2019 to December 8, 2021  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式。..................................................................................... 1  
Added 10.2.3.1 Generate Accurate PWM Using Internal Oscillator ............................................................83  
Changes from revision D to revision E  
Changes from January 22, 2019 to December 9, 2019  
Page  
Changed the note that begins "Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset..." in 节  
8.3, Recommended Operating Conditions .......................................................................................................15  
Added the note that begins "TI recommends that power to the DVCC pin must not exceed the limits..." in 节  
8.3, Recommended Operating Conditions .......................................................................................................15  
Changed the note that begins "A capacitor tolerance of ±20% or better is required..." in 8.3,  
Recommended Operating Conditions ..............................................................................................................15  
Added the note "See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing" to  
8.12.3.1, XT1 Crystal Oscillator (Low Frequency) ...................................................................................... 23  
Changed the note that begins "Requires external capacitors at both terminals..." in 8.12.3.1, XT1 Crystal  
Oscillator (Low Frequency) ..............................................................................................................................23  
Added the t(int) parameter in 8.12.4.1, Digital Inputs ................................................................................... 26  
Added the tTA,capparameter in 8.12.5.1, Timer_A ........................................................................................27  
Corrected the test conditions for the RI,MUX parameter in 8.12.7.1, ADC, Power Supply and Input Range  
Conditions ........................................................................................................................................................33  
Added the note that begins "tSample = ln(2n+1) × τ..." in 8.12.7.2, ADC, 10-Bit Timing Parameters ..........33  
Changes from revision C to revision D  
Changes from August 30, 2018 to January 21, 2019  
Page  
• 通篇将“调制振荡(MODOSC)”更改为“调制振荡器时(MODCLK)...................................................... 1  
Added "or memory corruption" in table that starts "Stresses beyond those listed..." of 8.1, Absolute  
Maximum Ratings ............................................................................................................................................15  
Added note of VLO clock frequency shift in LPM3 and LPM4 mode in 8.12.3.4, Internal Very-Low-Power  
Low-Frequency Oscillator (VLO) ..................................................................................................................... 24  
Changed from RI to RI,MUX in 8.12.7.1, ADC, Power Supply and Input Range Conditions .........................33  
Added RI,Misc TYP value 34kΩin 8.12.7.1, ADC, Power Supply and Input Range Conditions ..................33  
Removed ADCDIV from the conversion time formula because ADCCLK is after division in 8.12.7.2, ADC,  
10-Bit Timing Parameters ................................................................................................................................33  
Added formula for RI calculation in 8.12.7.2, ADC, 10-Bit Timing Parameters ........................................... 33  
Remove description of "±3°C" in table note that starts "The device descriptor structure ..." of 8.12.7.3,  
ADC, 10-Bit Linearity Parameters ....................................................................................................................34  
Add "10b" for ADCSSEL bit in 9-6, Clock Distribution ................................................................................ 41  
Added "Clock Distribution Block Diagram" in 9.9.2, Clock System (CS) and Clock Distribution .................41  
Corrected bitfield from IRDSEL to IRDSSEL in 9.9.8, Timers (Timer0_A3, Timer1_A3), in the description  
that starts "The interconnection of Timer0_A3 and ..."..................................................................................... 46  
Corrected the ADCINCHx column heading in 9-12, ADC Channel Connections ........................................48  
Added word "Sensor" in 9-27, Device Descriptors ......................................................................................67  
Added word "Sensor" in 9-27, Device Descriptors ......................................................................................67  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
Changes from revision B to revision C  
Changes from August 15, 2015 to August 29, 2018  
Page  
1 特性2 3 中的编辑更改和其他信息...............................................................................1  
Updated 6.1, Related Products .....................................................................................................................7  
Added note to VSVSH- and VSVSH+ parameters in 8.12.1.1, PMM, SVS and BOR ...................................... 21  
Changed all instances of "bootstrap loader" to "bootloader"............................................................................ 39  
Updates to text and figure in 11.2, Device Nomenclature ........................................................................... 86  
Changes from revision A to revision B  
Changes from December 20, 2014 to August 14, 2015  
Page  
• 将特性“待机模式”电流消耗770nA 更改1µA...........................................................................................1  
Added 8.2, ESD Ratings ............................................................................................................................. 15  
Added ILPM3.5, LCD, CP TYP values at 40°C (0.90 µA) and at 85°C (1.27 µA)................................................ 18  
Added the paragraph that starts "The graphs in this section..."........................................................................19  
Changed all graphs in 8.9, Typical Characteristics, Low-Power Mode Supply Currents, for new  
measurements .................................................................................................................................................19  
Added VREF, 1.2V parameter to 8.12.1.1, PMM, SVS and BOR ................................................................... 21  
Changed tSTE,LEAD MIN value at 2 V from 40 ns to 50 ns.................................................................................30  
Changed tSTE,LEAD MIN value at 3 V from 24 ns to 45 ns.................................................................................30  
Changed tVALID,SO MAX value at 2 V from 55 ns to 65 ns................................................................................ 30  
Changed tVALID,SO MAX value at 3 V from 30 ns to 40 ns................................................................................ 30  
Changed fADCOSC TYP value from 4.5 MHz to 5.0 MHz...................................................................................33  
In 9-1, Operating Modes, changed the entry for "Power Consumption at 25°C, 3 V" in AM from  
100 µA/MHz to 126 µA/MHz.............................................................................................................................37  
In 9-1, Operating Modes, added "with RTC only" to the entry for "Power Consumption at 25°C, 3 V" in  
LPM3.5............................................................................................................................................................. 37  
In 9-2, Interrupt Sources, Flags, and Vectors, removed "FRAM access time error" (ACCTEIFG) from the  
"System NMI" row ............................................................................................................................................38  
In 9-8, System Module Interrupt Vector Registers, changed the interrupt event in the SYSSNIV row with a  
VALUE of 06h from "ACCTEIFG access time error" to "Reserved"..................................................................43  
In 9-27, Device Descriptors, added note to "CRC value".............................................................................67  
Changes from initial release to revision A  
Changes from October 3, 2014 to December 19, 2014  
Page  
Moved Tstg to Absolute Maximum Ratings table and added note (3)............................................................... 15  
Changed link to BSL user's guide in 9.4 ..................................................................................................... 39  
Added note (1) to 9-6 .................................................................................................................................. 41  
Changed the values of ADC Calibration Tag and ADC Calibration Length in the ADC Calibration row...........67  
Added Calibration Tag, Calibration Length, and 1.5-V Reference in the Reference and DCO Calibration row....  
67  
Added row for BSL memory to 9-28 ............................................................................................................68  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
6 Device Comparison  
6-1 summarizes the features of the available family members.  
6-1. Device Comparison  
PROGRAM FRAM  
+ INFORMATION  
FRAM (BYTES)  
SRAM  
(BYTES)  
10-BIT ADC  
CHANNELS SEGMENTS  
LCD  
PACKAGE  
TYPE  
DEVICE(1) (2)  
TA0, TA1  
eUSCI_A  
eUSCI_B  
I/O  
4 × 36  
8 × 32  
64 PM  
(LQFP)  
MSP430FR4133IPM  
MSP430FR4132IPM  
MSP430FR4131IPM  
MSP430FR4133IG56  
MSP430FR4132IG56  
MSP430FR4131IG56  
MSP430FR4133IG48  
MSP430FR4132IG48  
MSP430FR4131IG48  
15360 + 512  
8192 + 512  
4096 + 512  
15360 + 512  
8192 + 512  
4096 + 512  
15360 + 512  
8192 + 512  
4096 + 512  
2048  
1024  
512  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
10  
60  
60  
60  
52  
52  
52  
44  
44  
44  
4 × 36  
8 × 32  
64 PM  
(LQFP)  
10  
4 × 36  
8 × 32  
64 PM  
(LQFP)  
10  
4 × 30  
8 × 26  
56 DGG  
(TSSOP56)  
2048  
1024  
512  
8
4 × 30  
8 × 26  
56 DGG  
(TSSOP56)  
8
4 × 30  
8 × 26  
56 DGG  
(TSSOP56)  
8
4 × 24  
8 × 20  
48 DGG  
(TSSOP48)  
2048  
1024  
512  
8
4 × 24  
8 × 20  
48 DGG  
(TSSOP48)  
8
4 × 24  
8 × 20  
48 DGG  
(TSSOP48)  
8
(1) For the most current device, package, and ordering information, see the Package Option Addendum in 12, or see the TI website at  
www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/  
packaging.  
(3) A CCR register is a configurable register that provides internal and external capture or compare inputs, or internal and external PWM  
outputs.  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers  
High-performance, low-power solutions to enable the autonomous future  
Products for MSP430 ultra-low-power sensing and measurement microcontrollers  
One platform. One ecosystem. Endless possibilities.  
Reference designs for MSP430FR4133  
Find reference designs leveraging the best in TI technology from analog and power management to  
embedded processors  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
7-1 shows the pinout of the 64-pin PM package.  
P4.7/R13  
P4.6/R23  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P6.0/L16  
P6.1/L17  
P6.2/L18  
P6.3/L19  
P6.4/L20  
P6.5/L21  
P6.6/L22  
P6.7/L23  
P2.0/L24  
P2.1/L25  
P2.2/L26  
P2.3/L27  
P2.4/L28  
P2.5/L29  
P2.6/L30  
P2.7/L31  
2
P4.5/R33  
3
P4.4/LCDCAP1  
P4.3/LCDCAP0  
P4.2/XOUT  
4
5
6
P4.1/XIN  
7
DVSS  
8
DVCC  
9
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P4.0/TA1.1  
10  
11  
12  
13  
14  
15  
16  
P8.3/TA1.2  
P8.2/TA1CLK  
P8.1/ACLK/A9  
P8.0/SMCLK/A8  
7-1. 64-Pin PM (LQFP) (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
7-2 shows the pinout of the 56-pin DGG package.  
P7.5/L5  
P7.4/L4  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
P3.0/L8  
2
P3.1/L9  
P7.3/L3  
3
P3.2/L10  
P7.2/L2  
4
P3.3/L11  
P7.1/L1  
5
P3.4/L12  
P7.0/L0  
6
P3.5/L13  
P4.7/R13  
7
P3.6/L14  
P4.6/R23  
8
P3.7/L15  
P4.5/R33  
9
P6.0/L16  
P4.4/LCDCAP1  
P4.3/LCDCAP0  
P4.2/XOUT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
P6.1/L17  
P6.2/L18  
P6.3/L19  
P4.1/XIN  
P6.4/L20  
DVSS  
P6.5/L21  
DVCC  
P2.0/L24  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P4.0/TA1.1  
P2.1/L25  
P2.2/L26  
P2.3/L27  
P8.3/TA1.2  
P2.4/L28  
P8.2/TA1CLK  
P2.5/L29  
P1.7/TA0.1/TDO/A7  
P1.6/TA0.2/TDI/TCLK/A6  
P1.5/TA0CLK/TMS/A5  
P1.4/MCLK/TCK/A4/VREF+  
P1.3/UCA0STE/A3  
P1.2/UCA0CLK/A2  
P1.1/UCA0RXD/UCA0SOMI/A1/Veref+  
P1.0/UCA0TXD/UCA0SIMO/A0/Veref–  
P2.6/L30  
P2.7/L31  
P5.0/UCB0STE/L32  
P5.1/UCB0CLK/L33  
P5.2/UCB0SIMO/UCB0SDA/L34  
P5.3/UCB0SOMI/UCB0SCL/L35  
P5.4/L36  
P5.5/L37  
7-2. 56-Pin DGG (TSSOP) (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
7-3 shows the pinout of the 48-pin DGG package.  
P3.1/L9  
P3.0/L8  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P3.2/L10  
2
P3.3/L11  
P7.3/L3  
3
P3.4/L12  
P7.2/L2  
4
P3.5/L13  
P7.1/L1  
5
P3.6/L14  
P7.0/L0  
6
P3.7/L15  
P4.7/R13  
7
P6.0/L16  
P4.6/R23  
8
P6.1/L17  
P4.5/R33  
9
P6.2/L18  
P4.4/LCDCAP1  
P4.3/LCDCAP0  
P4.2/XOUT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P6.3/L19  
P2.0/L24  
P2.1/L25  
P4.1/XIN  
P2.2/L26  
DVSS  
P2.3/L27  
DVCC  
P2.4/L28  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P4.0/TA1.1  
P2.5/L29  
P2.6/L30  
P2.7/L31  
P1.7/TA0.1/TDO/A7  
P1.6/TA0.2/TDI/TCLK/A6  
P1.5/TA0CLK/TMS/A5  
P1.4/MCLK/TCK/A4/VREF+  
P1.3/UCA0STE/A3  
P1.2/UCA0CLK/A2  
P5.0/UCB0STE/L32  
P5.1/UCB0CLK/L33  
P5.2/UCB0SIMO/UCB0SDA/L34  
P5.3/UCB0SOMI/UCB0SCL/L35  
P1.0/UCA0TXD/UCA0SIMO/A0/Veref–  
P1.1/UCA0RXD/UCA0SOMI/A1/Veref+  
7-3. 48-Pin DGG (TSSOP) Designation  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
7.2 Signal Descriptions  
7.2 describes the signals for all device variants and package options.  
7-1. Signal Descriptions  
TERMINAL  
PACKAGE SUFFIX  
I/O  
DESCRIPTION  
NAME  
PM  
G56  
G48  
General-purpose I/O  
Input/output port of third most positive analog LCD voltage V4  
P4.7/R13  
P4.6/R23  
P4.5/R33  
1
2
3
7
7
8
9
I/O  
I/O  
I/O  
General-purpose I/O  
Input/output port of second most positive analog LCD voltage V2  
8
9
General-purpose I/O  
Input/output port of first most positive analog LCD voltage V1  
General-purpose I/O  
P4.4/LCDCAP1  
P4.3/LCDCAP0  
4
5
10  
11  
10  
11  
I/O  
I/O  
LCD charge pump external port connecting to LCDCAP0 pin by 0.1µF  
capacitor  
General-purpose I/O  
LCD charge pump external port connecting to LCDCAP1 pin by 0.1µF  
capacitor  
General-purpose I/O  
Output terminal for crystal oscillator  
P4.2/XOUT  
P4.1/XIN  
6
7
12  
13  
12  
13  
I/O  
I/O  
General-purpose I/O  
Input terminal for crystal oscillator  
DVSS  
DVCC  
8
9
14  
15  
14  
15  
Power ground  
Power supply  
Reset input active low  
RST/NMI/SBWTDIO  
10  
16  
16  
I/O  
Nonmaskable interrupt input  
Spy-Bi-Wire data input/output  
Test Mode pin selected digital I/O on JTAG pins  
Spy-Bi-Wire input clock  
TEST/SBWTCK  
P4.0/TA1.1  
11  
12  
13  
14  
17  
18  
19  
20  
17  
18  
I
General-purpose I/O  
Timer TA1 CCR1 capture: CCI1A input, compare: Out1 outputs  
I/O  
I/O  
I/O  
General-purpose I/O  
Timer TA1 CCR2 capture: CCI2A input, compare: Out2 outputs  
P8.3/TA1.2(1)  
P8.2/TA1CLK(1)  
General-purpose I/O  
Timer clock input TACLK for TA1  
General-purpose I/O  
ACLK output  
Analog input A9  
P8.1/ACLK/A9(1)  
15  
16  
I/O  
I/O  
General-purpose I/O  
SMCLK output  
P8.0/SMCLK/A8(1)  
Analog input A8  
General-purpose I/O(2)  
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 outputs  
Test data output  
Analog input A7  
P1.7/TA0.1/TDO/A7  
17  
18  
19  
21  
22  
23  
19  
20  
21  
I/O  
I/O  
I/O  
General-purpose I/O(2)  
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 outputs  
Test data input or test clock input  
Analog input A6  
P1.6/TA0.2/TDI/TCLK/A6  
P1.5/TA0CLK/TMS/A5  
General-purpose I/O(2)  
Timer clock input TACLK for TA0  
Test mode select  
Analog input A5  
General-purpose I/O(2)  
MCLK output  
P1.4/MCLK/TCK/A4/VREF+  
P1.3/UCA0STE/A3  
20  
21  
24  
25  
22  
23  
I/O  
I/O  
Test clock  
Analog input A4  
Output of positive reference voltage with ground as reference  
General-purpose I/O  
eUSCI_A0 SPI slave transmit enable  
Analog input A3  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
7-1. Signal Descriptions (continued)  
TERMINAL  
PACKAGE SUFFIX  
I/O  
I/O  
I/O  
DESCRIPTION  
NAME  
PM  
G56  
G48  
General-purpose I/O  
P1.2/UCA0CLK/A2  
22  
23  
26  
24  
25  
eUSCI_A0 SPI clock input/output  
Analog input A2  
General-purpose I/O  
P1.1/UCA0RXD/UCA0SOMI/ A1/  
Veref+  
eUSCI_A0 UART receive data  
eUSCI_A0 SPI slave out/master in  
Analog input A1, and ADC positive reference  
27  
28  
General-purpose I/O  
P1.0/UCA0TXD/UCA0SIMO/ A0/  
Veref-  
eUSCI_A0 UART transmit data  
eUSCI_A0 SPI slave in/master out  
Analog input A0, and ADC negative reference  
24  
26  
I/O  
General-purpose I/O  
LCD drive pin; either segment or common output  
P5.7/L39(1)  
P5.6/L38(1)  
P5.5/L37(1)  
P5.4/L36(1)  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
29  
30  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
P5.3/UCB0SOMI/UCB0SCL/L35  
P5.2/UCB0SIMO/UCB0SDA/L34  
P5.1/UCB0CLK/L33  
29  
30  
31  
32  
31  
32  
33  
34  
27  
28  
29  
30  
I/O  
I/O  
I/O  
I/O  
eUSCI_B0 SPI slave out/master in; eUSCI_B0 I2C clock  
LCD drive pin; either segment or common output  
General-purpose I/O  
eUSCI_B0 SPI slave in/master out; eUSCI_B0 I2C data  
LCD drive pin; either segment or common output  
General-purpose I/O  
eUSCI_B0 clock input/output  
LCD drive pin; either segment or common output  
General-purpose I/O  
eUSCI_B0 slave transmit enable  
LCD drive pin; either segment or common output  
P5.0/UCB0STE/L32  
General-purpose I/O  
LCD drive pin; either segment or common output  
P2.7/L31  
P2.6/L30  
P2.5/L29  
P2.4/L28  
P2.3/L27  
P2.2/L26  
P2.1/L25  
P2.0/L24  
P6.7/L23(1)  
P6.6/L22(1)  
P6.5/L21(1)  
P6.4/L20(1)  
P6.3/L19  
P6.2/L18  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
35  
36  
37  
38  
39  
40  
41  
42  
31  
32  
33  
34  
35  
36  
37  
38  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
43  
44  
45  
46  
39  
40  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
7-1. Signal Descriptions (continued)  
TERMINAL  
PACKAGE SUFFIX  
I/O  
DESCRIPTION  
NAME  
PM  
G56  
G48  
General-purpose I/O  
LCD drive pin; either segment or common output  
P6.1/L17  
P6.0/L16  
P3.7/L15  
P3.6/L14  
P3.5/L13  
P3.4/L12  
P3.3/L11  
P3.2/L10  
P3.1/L9  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
47  
41  
42  
43  
44  
45  
46  
47  
48  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O  
LCD drive pin; either segment or common output  
48  
49  
50  
51  
52  
53  
54  
55  
56  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
P3.0/L8  
2
General-purpose I/O  
LCD drive pin; either segment or common output  
P7.7/L7(1)  
P7.6/L6(1)  
P7.5/L5(1)  
P7.4/L4(1)  
P7.3/L3  
1
3
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
General-purpose I/O  
LCD drive pin; either segment or common output  
2
General-purpose I/O  
LCD drive pin; either segment or common output  
3
General-purpose I/O  
LCD drive pin; either segment or common output  
P7.2/L2  
4
4
General-purpose I/O  
LCD drive pin; either segment or common output  
P7.1/L1  
5
5
General-purpose I/O  
LCD drive pin; either segment or common output  
P7.0/L0  
6
6
(1) Any pin that is not bonded out in a smaller package must be initialized by software after reset to achieve the lowest leakage current.  
(2) Because this pin is multiplexed with the JTAG function, TI recommends disabling the pin interrupt function while in JTAG debug to  
prevent collisions.  
7.3 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the  
device is in test mode). For details of the settings for each pin and schematics of the multiplexed ports, see 节  
9.9.13.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
7.4 Connection of Unused Pins  
7-2 shows the correct termination of unused pins.  
7-2. Connection of Unused Pins  
PIN(1)  
Px.0 to Px.7  
RST/NMI  
TEST  
POTENTIAL  
Open  
COMMENT  
Switched to port function, output direction (PxDIR.n = 1)  
47-kpullup or internal pullup selected with 10-nF (1.1-nF) pulldown(2)  
This pin always has an internal pulldown enabled.  
DVCC  
Open  
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection  
guidelines.  
(2) The pulldown capacitor should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode with TI tools like  
FET interfaces or GANG programmers.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Voltage applied at DVCC pin to VSS  
Voltage applied to any pin(2)  
4.1  
V
0.3  
VCC + 0.3  
(4.1 Max)  
V
0.3  
Diode current at any device pin  
±2  
85  
mA  
°C  
Maximum junction temperature, TJ  
(3)  
Storage temperature, Tstg  
125  
°C  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage or memory corruption to the device.  
These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect  
device reliability.  
(2) All voltages referenced to VSS  
.
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
8.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as  
±250 V may actually have higher performance.  
8.3 Recommended Operating Conditions  
Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
VCC  
VSS  
TA  
Supply voltage applied at DVCC pin(1) (2) (3)  
Supply voltage applied at DVSS pin  
Operating free-air temperature  
1.8(6)  
3.6  
V
V
0
85  
85  
°C  
°C  
µF  
40  
40  
4.7  
TJ  
Operating junction temperature  
CDVCC  
Recommended capacitor at DVCC(5)  
10  
No FRAM wait states  
(NWAITSx = 0)  
0
0
8
fSYSTEM Processor frequency (maximum MCLK frequency)(6) (4)  
MHz  
kHz  
With FRAM wait states  
(NWAITSx = 1)(7)  
16(8)  
40  
fACLK  
Maximum ACLK frequency  
Maximum SMCLK frequency  
fSMCLK  
16(8) MHz  
(1) Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset even within the recommended supply voltage range. Following  
the data sheet recommendation for capacitor CDVCC limits the slopes accordingly.  
(2) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(3) TI recommends that power to the DVCC pin must not exceed the limits specified in Recommended Operating Conditions. Exceeding  
the specified limits can cause malfunction of the device including erroneous writes to RAM and FRAM.  
(4) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(5) A capacitor tolerance of ±20% or better is required. A low-ESR ceramic capacitor of 100 nF (minimum) should be placed as close as  
possible (within a few millimeters) to the respective pin pair.  
(6) The minimum supply voltage is defined by the SVS levels. See the SVS threshold parameters in 8.12.1.1.  
(7) Wait states only occur on actual FRAM accesses (that is, on FRAM cache misses). RAM and peripheral accesses are always executed  
without wait states.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
(8) If clock sources such as HF crystals or the DCO with frequencies >16 MHz are used, the clock must be divided in the clock system to  
comply with this operating condition.  
8.4 Active Mode Supply Current Into VCC Excluding External Current  
See (1)  
Frequency (fMCLK = fSMCLK  
)
1 MHz  
0 WAIT STATES  
(NWAITSx = 0)  
8 MHz  
0 WAIT STATES  
(NWAITSx = 0)  
16 MHz  
1 WAIT STATE  
(NWAITSx = 1)  
EXECUTION  
MEMORY  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
TYP  
504  
516  
209  
217  
231  
MAX  
TYP  
2874  
2919  
633  
MAX  
TYP  
3156  
3205  
1056  
1074  
1450  
MAX  
3 V, 25°C  
3 V, 85°C  
3 V, 25°C  
3 V, 85°C  
3 V, 25°C  
3700  
1298  
FRAM  
0% cache hit ratio  
IAM, FRAM(0%)  
µA  
FRAM  
100% cache hit ratio  
IAM, FRAM(100%)  
µA  
µA  
647  
(2)  
IAM, RAM  
RAM  
809  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Characterized with program executing typical data  
processing.  
fACLK = 32786 Hz, fMCLK = fSMCLK = fDCO at specified frequency  
Program and data entirely reside in FRAM. All execution is from FRAM.  
(2) Program and data reside entirely in RAM. All execution is from RAM. No access to FRAM.  
8.5 Active Mode Supply Current Per MHz  
VCC = 3 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TYP  
UNIT  
((IAM, 75% cache hit rate at 8 MHz) –  
(IAM, 75% cache hit rate at 1 MHz))  
/ 7 MHz  
Active mode current consumption per MHz,  
execution from FRAM, no wait states(1)  
dIAM,FRAM/df  
126  
µA/MHz  
(1) All peripherals are turned on in default settings.  
8.6 Low-Power Mode LPM0 Supply Currents Into VCC Excluding External Current  
VCC = 3 V, TA = 25°C (unless otherwise noted)(1) (2)  
FREQUENCY (fSMCLK  
)
PARAMETER  
VCC  
1 MHz  
TYP  
8 MHz  
16 MHz  
UNIT  
MAX  
TYP  
307  
318  
MAX  
TYP  
MAX  
2 V  
3 V  
158  
169  
415  
427  
ILPM0  
Low-power mode LPM0 supply current  
µA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32786 Hz, fMCLK = 0 MHz, fSMCLK at specified frequency.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.7 Low-Power Mode LPM3, LPM4 Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)  
25°C  
85°C  
40°C  
TYP MAX  
PARAMETER  
VCC  
UNIT  
µA  
TYP  
MAX  
TYP  
MAX  
3 V  
2 V  
3 V  
2 V  
3 V  
3 V  
3 V  
2 V  
3 V  
2 V  
1.13  
1.06  
0.92  
0.86  
1.07  
1.08  
0.65  
0.63  
0.51  
0.50  
1.31  
1.21  
1.00  
1.00  
1.25  
1.25  
0.75  
0.73  
0.58  
0.57  
1.99  
3.00  
2.94  
2.89  
2.75  
3.04  
3.04  
1.88  
1.85  
1.51  
1.49  
ILPM3,XT1  
Low-power mode 3, includes SVS(2) (3) (4)  
Low-power mode 3, VLO, excludes SVS(5)  
1.75  
ILPM3,VLO  
µA  
ILPM3, LCD, CP  
ILPM3, RTC  
Low-power mode 3, LCD, excludes SVS(6)  
Low-power mode 3, RTC, excludes SVS(7)  
µA  
µA  
ILPM4, SVS  
Low-power mode 4, includes SVS  
Low-power mode 4, excludes SVS  
µA  
µA  
ILPM4  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Golledge MS1V-TK/I_32.768KHZ crystal with a load capacitance chosen to closely match the required load.  
(4) Low-power mode 3, includes SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 3, VLO, excludes SVS test conditions:  
Current for watchdog timer clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(6) LCD works in LPM3 if internal charge pump and VREF switch mode are enabled. LCD driver pins are configured as 4 × 36 at 32Hz  
frame frequency with external 32768Hz clock source.  
(7) RTC periodically wakes up every second with external 32768Hz as source.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.8 Low-Power Mode LPMx.5 Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
25°C  
85°C  
40°C  
TYP MAX  
PARAMETER  
VCC  
UNIT  
MAX  
TYP  
MAX  
TYP  
Low-power mode 3.5, includes SVS(1) (2) (3)  
(also see 8-3)  
3 V  
2 V  
3 V  
3 V  
2 V  
3 V  
2 V  
0.71  
0.66  
0.77  
0.70  
0.94  
1.25  
1.06  
0.95  
1.27  
0.32  
0.24  
2.06  
µA  
ILPM3.5, XT1  
ILPM3.5, LCD, CP  
ILPM4.5, SVS  
Low-power mode 3.5, excludes SVS(6)  
0.90  
µA  
0.23  
0.25 0.375  
0.20  
0.43  
µA  
Low-power mode 4.5, includes SVS(4)  
0.20  
0.010  
0.008  
0.015 0.070 0.073 0.140  
0.013 0.060  
ILPM4.5  
Low-power mode 4.5, excludes SVS(5)  
µA  
(1) Not applicable for devices with HF crystal oscillator only.  
(2) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance chosen to closely match the required load.  
(3) Low-power mode 3.5, includes SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(4) Low-power mode 4.5, includes SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 4.5, excludes SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(6) LCD works in LPM3.5 if the internal charge pump and VREF switch mode are enabled. The LCD driver pins are configured as 4x36 at  
32Hz frame frequency with an external 32768Hz clock source.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.9 Typical Characteristics, Low-Power Mode Supply Currents  
The graphs in this section show only board-level test result on a small number of samples. A MS1V-T1K crystal from Micro-  
Crystal was populated for 32-kHz clock generation. LCD is configured in 4xCOM mode without LCD panel populated.  
5
4.5  
4
5
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (°C)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (°C)  
LPM3  
RTC counter on  
8-2. LPM3 Supply Current vs Temperature  
DVCC = 3 V  
LPM3  
DVCC = 3 V  
SVS disabled  
SVS disabled  
LCD on  
8-1. LPM3 Supply Current vs Temperature  
3
2.5  
2
0.5  
0.45  
0.4  
0.35  
0.3  
1.5  
1
0.25  
0.2  
0.15  
0.1  
0.5  
0
0.05  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (°C)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (°C)  
LPM3.5  
12.5-pF crystal on XT1  
8-3. LPM3.5 Supply Current vs Temperature  
DVCC = 3 V  
LPM4.5  
DVCC = 3 V  
SVS enabled  
SVS enabled  
8-4. LPM4.5 Supply Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.10 Current Consumption Per Module  
MODULE  
Timer_A  
TEST CONDITIONS  
REFERENCE CLOCK  
Module input clock  
TYP  
5
UNIT  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
nA  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC  
UART mode  
SPI mode  
SPI mode  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
7
5
5
I2C mode, 100 kbaud  
5
85  
8.5  
CRC  
From start to end of operation  
MCLK  
µA/MHz  
8.11 Thermal Characteristics  
PARAMETER  
VALUE  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-ambient thermal resistance, still air(1)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
61.7  
25.4  
32.7  
32.4  
2.5  
θJA  
θJC, (TOP)  
θJB  
LQFP-64 (PM)  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-ambient thermal resistance, still air((1)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
ΨJB  
ΨJT  
62.4  
18.7  
31.4  
31.1  
0.8  
θJA  
θJC, (TOP)  
θJB  
TSSOP-56 (DGG56)  
TSSOP-48 (DGG48)  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-ambient thermal resistance, still air((1)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
ΨJB  
ΨJT  
68.9  
23  
θJA  
θJC, (TOP)  
θJB  
35.8  
35.3  
1.1  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
ΨJB  
ΨJT  
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board,  
as specified in JESD51-7, in an environment described in JESD51-2a.  
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold place test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold place fixture to control the PCB  
temperature, as described in JESD51-8.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12 Timing and Switching Characteristics  
8.12.1 Power Supply Sequencing  
8-5 shows the power cycle, SVS, and BOR reset conditions.  
V
Power Cycle Reset  
VSVS+  
SVS Reset  
BOR Reset  
VSVS–  
VBOR  
tBOR  
t
8-5. Power Cycle, SVS, and BOR Reset Conditions  
8.12.1.1 lists the characteristics of the SVS and BOR.  
8.12.1.1 PMM, SVS and BOR  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.1  
10  
TYP  
MAX UNIT  
VBOR, safe  
tBOR, safe  
ISVSH,AM  
Safe BOR power-down level(1)  
Safe BOR reset delay(2)  
V
ms  
SVSH current consumption, active mode  
SVSH current consumption, low-power modes  
SVSH power-down level(4)  
VCC = 3.6 V  
VCC = 3.6 V  
1.5 µA  
nA  
ISVSH,LPM  
VSVSH-  
240  
1.81  
1.88  
70  
1.71  
1.76  
1.87  
1.99  
V
V
VSVSH+  
SVSH power-up level(4)  
VSVSH_hys  
tPD,SVSH, AM  
tPD,SVSH, LPM  
VREF, 1.2V  
SVSH hysteresis  
mV  
µs  
µs  
V
SVSH propagation delay, active mode  
SVSH propagation delay, low-power modes  
1.2-V REF voltage(3)  
10  
100  
1.158  
1.20  
1.242  
(1) A safe BOR can be correctly generated only if DVCC drops below this voltage before it rises.  
(2) When an BOR occurs, a safe BOR can be correctly generated only if DVCC is kept low longer than this period before it reaches  
VSVSH+  
(3) This is a characterized result with external 1-mA load to ground from 40°C to 85°C.  
.
(4) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO reference  
design.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.2 Reset Timing  
8.12.2.1 lists the device wake-up times.  
8.12.2.1 Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
Additional wake-up time to activate the FRAM in  
AM if previously disabled by the FRAM controller or  
from a LPM if immediate activation is selected for  
wake-up(1)  
tWAKE-UP FRAM  
10  
µs  
200 ns +  
2.5/fDCO  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode (1)  
tWAKE-UP LPM3  
tWAKE-UP LPM4  
Wake-up time from LPM3 to active mode (2)  
Wake-up time from LPM4 to active mode  
3 V  
3 V  
3 V  
3 V  
3 V  
10  
10  
µs  
µs  
µs  
µs  
ms  
tWAKE-UP LPM3.5 Wake-up time from LPM3.5 to active mode (2)  
350  
350  
1
SVSHE = 1  
SVSHE = 0  
tWAKE-UP LPM4.5 Wake-up time from LPM4.5 to active mode (2)  
Wake-up time from RST or BOR event to active  
tWAKE-UP-RESET  
tRESET  
3 V  
3 V  
1
ms  
µs  
mode (2)  
Pulse duration required at RST/NMI pin to accept a  
reset  
2
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.3 Clock Specifications  
8.12.3.1 lists the characteristics of XT1.  
8.12.3.1 XT1 Crystal Oscillator (Low Frequency)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
XT1 oscillator crystal, low  
frequency  
fXT1, LF  
LFXTBYPASS = 0  
32768  
Hz  
Measured at MCLK,  
fLFXT = 32768 Hz  
DCXT1, LF  
fXT1,SW  
DCXT1, SW  
OALFXT  
CL,eff  
XT1 oscillator LF duty cycle  
30%  
70%  
XT1 oscillator logic-level square-  
wave input frequency  
LFXTBYPASS = 1(3) (4)  
32768  
Hz  
LFXT oscillator logic-level  
square-wave input duty cycle  
LFXTBYPASS = 1  
40%  
60%  
Oscillation allowance for  
LF crystals (5)  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
200  
1
kΩ  
Integrated effective load  
capacitance (6)  
See (7)  
pF  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
tSTART,LFXT Start-up time (9)  
fFault,LFXT  
Oscillator fault frequency (10)  
1000  
ms  
XTS = 0(8)  
0
3500  
Hz  
(1) To improve EMI on the LFXT oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing.  
(3) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
(4) Maximum frequency of operation of the entire device cannot be exceeded.  
.
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF.  
For LFXTDRIVE = {1}, 6 pF CL,eff 9 pF.  
For LFXTDRIVE = {2}, 6 pF CL,eff 10 pF.  
For LFXTDRIVE = {3}, 6 pF CL,eff 12 pF.  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers.  
Recommended effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF.  
The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective  
load capacitance of the selected crystal is met.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
(9) Includes startup counter of 1024 clock cycles.  
(10) Frequencies above the MAX specification do not set the fault flag. Frequencies in between the MIN and MAX specification may set the  
flag. A static condition or stuck at fault condition sets the flag.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.3.2 DCO FLL, Frequency  
Over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
MIN  
1.0%  
2.0%  
TYP  
MAX UNIT  
1.0%  
FLL lock frequency, 16 MHz, 25°C  
FLL lock frequency, 16 MHz, 40°C to 85°C  
Measured at MCLK, Internal  
trimmed REFO as reference  
2.0%  
fDCO, FLL  
Measured at MCLK, XT1  
crystal as reference  
3 V  
0.5%  
60%  
FLL lock frequency, 16 MHz, 40°C to 85°C  
0.5%  
fDUTY  
Duty cycle  
3 V  
3 V  
3 V  
3 V  
40%  
50%  
0.25%  
0.022%  
120  
Jittercc  
Jitterlong  
tFLL, lock  
Cycle-to-cycle jitter, 16 MHz  
Long-term jitter, 16 MHz  
FLL lock time  
Measured at MCLK, XT1  
crystal as reference  
ms  
8.12.3.3 lists the characteristics of the REFO.  
8.12.3.3 REFO  
Over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
MIN  
TYP  
15  
MAX UNIT  
IREFO  
REFO oscillator current consumption  
REFO calibrated frequency  
TA = 25°C  
µA  
Hz  
Measured at MCLK  
TA = 40°C to 85°C  
Measured at MCLK(1)  
32768  
fREFO  
REFO absolute calibrated tolerance  
REFO frequency temperature drift  
1.8 V to 3.6 V  
3 V  
+3.5%  
%/°C  
3.5%  
dfREFO/dT  
0.01  
1
dfREFO  
dVCC  
/
Measured at MCLK at  
25°C(2)  
REFO frequency supply voltage drift  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
%/V  
fDC  
REFO duty cycle  
Measured at MCLK  
40%  
50%  
50  
60%  
µs  
tSTART  
REFO startup time  
40% to 60% duty cycle  
(1) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C) / (85°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)  
8.12.3.4 lists the characteristics of the VLO.  
8.12.3.4 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
10  
MAX UNIT  
kHz  
fVLO  
Measured at MCLK  
3 V  
dfVLO/dT  
Measured at MCLK(1)  
Measured at MCLK(2)  
Measured at MCLK  
3 V  
0.5  
4
%/°C  
dfVLO/dVCC VLO frequency supply voltage drift  
fVLO,DC Duty cycle  
1.8 V to 3.6 V  
3 V  
%/V  
50%  
(1) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C) / (85°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)  
备注  
The VLO clock frequency is reduced by 15% (typical) when the device switches from active mode to  
LPM3 or LPM4, because the reference changes. This lower frequency is not a violation of the VLO  
specifications (see 8.12.3.4).  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.3.5 lists the characteristics of the MODCLK.  
8.12.3.5 Module Oscillator Clock (MODCLK)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
5.8 MHz  
%/℃  
fMODCLK  
MODCLK frequency  
3 V  
3.8  
4.8  
fMODCLK/dT  
fMODCLK/dVCC  
fMODCLK,DC  
MODCLK frequency temperature drift  
MODCLK frequency supply voltage drift  
Duty cycle  
3 V  
0.102  
1.02  
50%  
1.8 V to 3.6 V  
3 V  
%/V  
40%  
60%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.4 Digital I/Os  
8.12.4.1 lists the characteristics of the digital inputs.  
8.12.4.1 Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
0.90  
1.35  
0.50  
0.75  
0.3  
TYP  
MAX UNIT  
1.50  
V
2.25  
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.10  
V
1.65  
Negative-going input threshold voltage  
0.8  
V
1.2  
Input voltage hysteresis (VIT+ VIT–  
)
0.4  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI,dig  
CI,ana  
Pullup or pulldown resistor  
20  
35  
3
50  
kΩ  
pF  
pF  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
VIN = VSS or VCC  
Input capacitance, port pins with shared analog  
functions  
5
High-impedance leakage current (also see (1)  
Ilkg(Px.y)  
2 V, 3 V  
2 V, 3 V  
+20  
nA  
ns  
20  
and (2)  
)
Ports with interrupt capability  
External interrupt timing (external trigger pulse (see block diagram and  
t(int)  
50  
duration to set interrupt flag)(3)  
terminal function  
descriptions)  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
(3) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
8.12.4.2 lists the characteristics of the digital outputs.  
8.12.4.2 Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = 3 mA(1)  
I(OHmax) = 5 mA(1)  
I(OLmax) = 3 mA(1)  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
1.4  
2.4  
0.0  
0.0  
16  
TYP  
MAX UNIT  
2.0  
V
3.0  
VOH  
High-level output voltage  
0.60  
V
0.60  
VOL  
Low-level output voltage  
I(OHmax) = 5 mA(1)  
fPort_CLK  
trise,dig  
tfall,dig  
Clock output frequency  
CL = 20 pF(2)  
CL = 20 pF  
CL = 20 pF  
MHz  
ns  
16  
10  
7
Port output rise time, digital only port pins  
Port output fall time, digital only port pins  
10  
5
ns  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The port can output frequencies at least up to the specified limit and might support higher frequencies.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.4.3 Digital I/O Typical Characteristics  
25  
10  
7.5  
5
TA = 85°C  
TA = 85°C  
TA = 25°C  
20  
TA = 25°C  
15  
10  
5
2.5  
0
0
0
0.5  
1
1.5  
2
2.5  
3
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
Low-Level Output Voltage (V)  
Low-Level Output Voltage (V)  
DVCC = 3 V  
DVCC = 2 V  
8-6. Typical Low-Level Output Current vs Low-Level Output  
8-7. Typical Low-Level Output Current vs Low-Level Output  
Voltage  
Voltage  
0
0
TA = 85°C  
TA = 85°C  
-5  
TA = 25°C  
TA = 25°C  
-2.5  
-10  
-15  
-20  
-25  
-5  
-7.5  
-10  
0
0.5  
1
1.5  
2
2.5  
3
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
High-Level Output Voltage (V)  
High-Level Output Voltage (V)  
DVCC = 3 V  
DVCC = 2 V  
8-8. Typical High-Level Output Current vs High-Level Output 8-9. Typical High-Level Output Current vs High-Level Output  
Voltage  
Voltage  
8.12.5 Timer_A  
8.12.5.1 lists the operating frequency of Timer_A.  
8.12.5.1 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN MAX UNIT  
Internal: SMCLK, ACLK  
fTA  
Timer_A input clock frequency  
External: TACLK  
2 V, 3 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTA,cap Timer_A capture timing  
2 V, 3 V  
20  
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.6 eUSCI  
8.12.6.1 lists the operating conditions of the eUSCI in UART mode.  
8.12.6.1 eUSCI (UART Mode) Operating Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, MODCLK  
External: UCLK  
Duty cycle = 50% ±10%  
feUSCI  
eUSCI input clock frequency  
2 V, 3 V  
2 V, 3 V  
16 MHz  
fBITCLK  
BITCLK clock frequency (equals baud rate in Mbaud)  
5
MHz  
8.12.6.2 lists the switching characteristics of the eUSCI in UART mode.  
8.12.6.2 eUSCI (UART Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP UNIT  
UCGLITx = 0  
12  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
40  
ns  
68  
tt  
UART receive deglitch time (1)  
2 V, 3 V  
110  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
8.12.6.3 lists the operating conditions of the eUSCI in SPI master mode.  
8.12.6.3 eUSCI (SPI Master Mode) Operating Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Internal: SMCLK, MODCLK  
Duty cycle = 50% ±10%  
MIN  
MAX UNIT  
MHz  
feUSCI  
eUSCI input clock frequency  
8
8.12.6.4 lists the switching characteristics of the eUSCI in SPI master mode.  
8.12.6.4 eUSCI (SPI Master Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX  
UNIT  
UCxCLK  
cycles  
tSTE,LEAD  
tSTE,LAG  
STE lead time, STE active to clock  
UCSTEM = 1, UCMODEx = 01 or 10  
1
UCxCLK  
cycles  
STE lag time, Last clock to STE inactive UCSTEM = 1, UCMODEx = 01 or 10  
SOMI input data setup time  
1
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
45  
35  
0
tSU,MI  
ns  
ns  
ns  
ns  
tHD,MI  
SOMI input data hold time  
0
20  
20  
UCLK edge to SIMO valid,  
tVALID,MO  
SIMO output data valid time(2)  
CL = 20 pF  
0
0
tHD,MO  
SIMO output data hold time(3)  
CL = 20 pF  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in 8-10 and 8-11.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in 8-10  
and 8-11.  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tVALID,MO  
8-10. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tVALID,MO  
8-11. SPI Master Mode, CKPH = 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.6.5 lists the switching characteristics of the eUSCI in SPI slave mode.  
8.12.6.5 eUSCI (SPI Slave Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
MAX UNIT  
55  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
45  
20  
STE lag time, Last clock to STE inactive  
ns  
20  
65  
ns  
40  
STE access time, STE active to SOMI data out  
40  
ns  
35  
STE disable time, STE inactive to SOMI high  
impedance  
4
4
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time (3)  
ns  
ns  
12  
12  
tHD,SI  
65  
ns  
40  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
5
5
tHD,SO  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in 8-12 and 8-13.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in 8-12  
and 8-13.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SIMO  
tHD,SIMO  
tLOW/HIGH  
tLOW/HIGH  
SIMO  
tACC  
tVALID,SOMI  
tDIS  
SOMI  
8-12. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tACC  
tDIS  
tVALID,SO  
8-13. SPI Slave Mode, CKPH = 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.6.6 lists the switching characteristics of the eUSCI in I2C mode.  
8.12.6.6 eUSCI (I2C Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 8-14)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, MODCLK  
External: UCLK  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2 V, 3 V  
2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2 V, 3 V  
2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2 V, 3 V  
µs  
600  
25  
300  
ns  
150  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2 V, 3 V  
12.5  
6.3  
75  
27  
30  
33  
tTIMEOUT  
Clock low time-out  
2 V, 3 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
8-14. I2C Mode Timing  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.7 ADC  
8.12.7.1 lists the power supply and input conditions of the ADC.  
8.12.7.1 ADC, Power Supply and Input Range Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.0  
0
TYP  
MAX UNIT  
DVCC  
V(Ax)  
ADC supply voltage  
Analog input voltage range  
3.6  
V
V
All ADC pins  
DVCC  
Operating supply current into  
DVCC terminal, reference  
current not included, repeat-  
single-channel mode  
2 V  
3 V  
185  
207  
fADCCLK = 5 MHz, ADCON = 1,  
REFON = 0, SHT0 = 0, SHT1 = 0, ADCDIV  
= 0, ADCCONSEQx = 10b  
IADC  
µA  
pF  
Only one terminal Ax can be selected at one  
time from the pad to the ADC capacitor array,  
including wiring and pad  
CI  
Input capacitance  
2.2 V  
1.6  
34  
2.0  
2
RI,MUX  
RI,Misc  
Input MUX ON resistance  
DVCC = 2 V, 0 V VAx DVCC  
kΩ  
kΩ  
Input miscellaneous resistance  
8.12.7.2 lists the timing parameters of the ADC.  
8.12.7.2 ADC, 10-Bit Timing Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC linearity  
parameters  
fADCCLK  
fADCOSC  
2 V to 3.6 V  
0.45  
5
5.5 MHz  
Internal ADC oscillator  
(MODCLK)  
ADCDIV = 0, fADCCLK = fADCOSC  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
4.5  
5.0  
5.5 MHz  
REFON = 0, Internal oscillator,  
10 ADCCLK cycles, 10-bit mode,  
fADCOSC = 4.5 MHz to 5.5 MHz  
2.18  
2.67  
µs  
tCONVERT  
Conversion time  
External fADCCLK from ACLK, MCLK, or SMCLK,  
ADCSSEL 0  
(1)  
The error in a conversion started after tADCON is  
less than ±0.5 LSB,  
Reference and input signal already settled  
Turn-on settling time of  
the ADC  
tADCON  
100  
ns  
µs  
RS = 1000 Ω, RI (2) = 36000 Ω, CI = 3.5 pF,  
Approximately 8 Tau (t) are required for an error of  
less than ±0.5 LSB(3)  
2 V  
3 V  
1.5  
2.0  
tSample  
Sampling time  
(1) 12 × 1/fADCCLK  
(2) RI = RI,MUX + RI,Misc  
(3) tSample = ln(2n+1) × τ, where n = ADC resolution, τ= (RI + RS) × CI  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.7.3 lists the linearity parameters of the ADC.  
8.12.7.3 ADC, 10-Bit Linearity Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
2.4 V to  
3.6 V  
Integral linearity error (10-bit mode)  
2
2  
EI  
VDVCC as reference  
VDVCC as reference  
VDVCC as reference  
LSB  
2
2 V to  
3.6 V  
Integral linearity error (8-bit mode)  
Differential linearity error (10-bit mode)  
Differential linearity error (8-bit mode)  
Offset error (10-bit mode)  
2  
1  
2.4 V to  
3.6 V  
1
ED  
LSB  
1
2 V to  
3.6 V  
1  
2.4 V to  
3.6 V  
6.5  
mV  
6.5  
6.5  
EO  
2 V to  
3.6 V  
Offset error (8-bit mode)  
6.5  
2.0  
VDVCC as reference  
2.0 LSB  
3.0%  
2.4 V to  
3.6 V  
Gain error (10-bit mode)  
3.0%  
Internal 1.5-V reference  
VDVCC as reference  
EG  
2.0 LSB  
3.0%  
2.0  
2 V to  
3.6 V  
Gain error (8-bit mode)  
3.0%  
Internal 1.5-V reference  
VDVCC as reference  
2.0 LSB  
3.0%  
2.0  
2.4 V to  
3.6 V  
Total unadjusted error (10-bit mode)  
3.0%  
Internal 1.5-V reference  
VDVCC as reference  
ET  
2.0 LSB  
3.0%  
2.0  
2 V to  
3.6 V  
Total unadjusted error (8-bit mode)  
See (1)  
3.0%  
Internal 1.5-V reference  
VSENSOR  
ADCON = 1, INCH = 0Ch, TA = 0°C  
ADCON = 1, INCH = 0Ch  
3 V  
3 V  
1.013  
3.35  
mV  
TCSENSOR See (2)  
mV/°C  
ADCON = 1, INCH = 0Ch, Error of  
conversion result 1 LSB, AM and all  
LPM above LPM3  
3 V  
3 V  
30  
tSENSOR  
Sample time required if channel 12 is  
selected(3)  
µs  
(sample)  
ADCON = 1, INCH = 0Ch, Error of  
conversion result 1 LSB, LPM3  
100  
(1) The temperature sensor offset can vary significantly. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor.  
(2) The device descriptor structure contains calibration values for 30°C and 85°C for each of the available reference voltage levels. The  
sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR can be  
computed from the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 700 kΩ. The sample time required includes the sensor-on time tSENSOR(on)  
.
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.8 LCD Controller  
8.12.8.1 lists the operating conditions of the LCD controller.  
8.12.8.1 LCD Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
LCDCPEN = 1, 0000 < VLCDx 1111,  
LCDREFEN = 1 (charge pump enabled,  
Supply voltage range, charge  
pump enabled, VLCD 3.6 V  
VCC,LCD,CP en,3.6  
VCC,LCD,ext. bias  
VCC,LCD,VLCDEXT  
1.8  
3.6  
3.6  
3.6  
V
V
V
V
LCD 3.6 V)  
Supply voltage range, external  
biasing, charge pump enabled  
LCDCPEN = 1, LCDREFEN = 0  
LCDCPEN = 0, LCDSELVDD = 0  
1.8  
1.8  
Supply voltage range, external  
LCD voltage, external biasing,  
charge pump disabled  
External LCD voltage at LCDCAP/  
R33, external biasing, charge  
pump disabled  
VR33  
LCDCPEN = 0, LCDSELVDD = 0  
2.4  
3.6  
V
CLCDCAP  
CR33  
0.1  
0.1  
0.1  
0.1  
µF  
µF  
µF  
µF  
CR23  
CR13  
fLCD = 2 × mux × fFRAME with  
mux = 1 (static), 2, 3, 4  
fFrame  
LCD frame frequency range  
16  
30  
32  
32  
64  
Hz  
fACLK,in  
CPanel  
ACLK input frequency range  
Panel capacitance  
40 kHz  
32-Hz frame frequency  
8000  
pF  
V
LCDCPEN = 0, LCDSELVDD = 0,  
LCDREFEN = 0  
VR33  
Analog input voltage at R33  
Analog input voltage at R23  
2.4  
1.2  
0.0  
0.8  
3.6  
2.4  
1.2  
1.2  
LCDCPEN = 0, LCDSELVDD = 0,  
LCDREFEN = 0  
VR23,1/3bias  
VR13,1/3bias  
VLCDREF/R13  
V
V
V
Analog input voltage at R13 with  
1/3 biasing  
External LCD reference voltage  
applied at LCDREF/R13  
LCDCPEN = 1, LCDSELVDD = 0,  
LCDREFEN = 0  
1.0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
8.12.9 FRAM  
8.12.9.1 lists the characteristics of the FRAM.  
8.12.9.1 FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1015  
100  
40  
MAX UNIT  
Read and write endurance  
cycles  
TJ = 25°C  
tRetention  
Data retention duration  
TJ = 70°C  
TJ = 85°C  
years  
10  
8.12.10 Emulation and Debug  
8.12.10.1 lists the characteristics of the JTAG and SBW interface.  
8.12.10.1 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
0
10 MHz  
tSBW,Low  
tSBW, En  
tSBW,Rst  
Spy-Bi-Wire low clock pulse duration  
0.028  
15  
110  
100  
µs  
µs  
µs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1)  
Spy-Bi-Wire return to normal operation time  
15  
0
2 V  
3 V  
16 MHz  
16 MHz  
fTCK  
TCK input frequency, 4-wire JTAG (2)  
Internal pulldown resistance on TEST  
0
Rinternal  
2 V, 3 V  
20  
35  
50  
kΩ  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter (PC), stack pointer (SP), status register (SR),  
and constant generator (CG), respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all  
instructions.  
9.2 Operating Modes  
The devices have one active mode and several software-selectable low-power modes of operation. An interrupt  
event can wake up the device from low-power mode LPM0 or LPM3, service the request, and restore back to the  
low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the core  
supply to minimize power consumption.  
9-1. Operating Modes  
AM  
LPM0  
LPM3  
LPM4  
OFF  
0
LPM3.5  
LPM4.5  
SHUTDOWN  
0
ONLY RTC  
COUNTER  
AND LCD  
MODE  
ACTIVE  
MODE  
CPU OFF  
STANDBY  
Maximum System Clock  
16 MHz  
126 µA/MHz  
N/A  
16 MHz  
20 µA/MHz  
Instant  
40 kHz  
1.2 µA  
10 µs  
All  
40 kHz  
0.6 µA  
without SVS  
0.77 µA with  
RTC only  
13 nA  
without SVS  
Power Consumption at 25°C, 3 V  
Wake-up time  
10 µs  
I/O  
150 µs  
150 µs  
I/O  
RTC Counter  
I/O  
Wake-up events  
N/A  
All  
Full  
Regulation  
Full  
Regulation  
Partial Power Partial Power Partial Power  
Regulator  
Power Down  
Down  
Optional  
On  
Down  
Optional  
On  
Down  
Optional  
On  
Power  
SVS  
Brown Out  
MCLK  
On  
On  
On  
On  
Optional  
On  
Active  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
On  
Off  
Off  
Off  
Off  
Off  
SMCLK  
FLL  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
DCO  
Off  
Off  
Off  
Off  
Clock  
MODCLK  
REFO  
Off  
Off  
Off  
Off  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
ACLK  
Off  
Off  
Off  
XT1CLK  
VLOCLK  
CPU  
Off  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
FRAM  
On  
On  
Off  
Off  
Off  
Off  
Core  
RAM  
On  
On  
On  
On  
Off  
Off  
Backup Memory(1)  
On  
On  
On  
On  
On  
Off  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-1. Operating Modes (continued)  
AM  
LPM0  
LPM3  
LPM4  
OFF  
LPM3.5  
LPM4.5  
ONLY RTC  
COUNTER  
AND LCD  
MODE  
ACTIVE  
MODE  
CPU OFF  
STANDBY  
SHUTDOWN  
Timer0_A3  
Timer1_A3  
WDT  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
eUSCI_A0  
eUSCI_B0  
CRC  
Off  
Peripherals  
Off  
Off  
Off  
Off  
ADC  
Optional  
Optional  
Optional  
Off  
LCD  
Optional  
Optional  
RTC Counter  
General Digital Input/  
Output  
On  
Optional  
Optional  
State Held  
Optional  
State Held  
Off  
State Held  
Off  
State Held  
Off  
I/O  
Capacitive Touch I/O  
Optional  
(1) Backup memory contains one 32-byte register in the peripheral memory space. See 9-29 and 9-48 for its memory allocation.  
9.3 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The  
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
9-2. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power-up, Brownout, Supply Supervisor  
External Reset RST  
SVSHIFG  
PMMRSTIFG  
Watchdog Time-out, Key Violation  
FRAM uncorrectable bit error detection  
Software POR,  
WDTIFG  
PMMPORIFG, PMMBORIFG  
SYSRSTIV  
Reset  
FFFEh  
63, Highest  
FLL unlock error  
FLLUNLOCKIFG  
System NMI  
Vacant Memory Access  
JTAG Mailbox  
VMAIFG  
JMBINIFG, JMBOUTIFG  
CBDIFG, UBDIFG  
Nonmaskable  
Nonmaskable  
FFFCh  
FFFAh  
62  
61  
FRAM bit error detection  
User NMI  
External NMI  
Oscillator Fault  
NMIIFG  
OFIFG  
Timer0_A3  
Timer0_A3  
Timer1_A3  
Timer1_A3  
TA0CCR0 CCIFG0  
Maskable  
Maskable  
Maskable  
Maskable  
FFF8h  
FFF6h  
FFF4h  
FFF2h  
60  
59  
58  
57  
TA0CCR1 CCIFG1, TA0CCR2  
CCIFG2, TA0IFG (TA0IV)  
TA1CCR0 CCIFG0  
TA1CCR1 CCIFG1, TA1CCR2  
CCIFG2, TA1IFG (TA1IV)  
RTC Counter  
RTCIFG  
WDTIFG  
Maskable  
Maskable  
FFF0h  
FFEEh  
56  
55  
Watchdog Timer Interval mode  
UCTXCPTIFG, UCSTTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
(UCA0IV))  
eUSCI_A0 Receive or Transmit  
Maskable  
FFECh  
54  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-2. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
UCB0RXIFG, UCB0TXIFG (SPI mode)  
UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1, UCRXIFG2,  
UCTXIFG2, UCRXIFG3, UCTXIFG3,  
UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB0IV)  
eUSCI_B0 Receive or Transmit  
Maskable  
FFEAh  
53  
ADCIFG0, ADCINIFG, ADCLOIFG,  
ADCHIIFG, ADCTOVIFG, ADCOVIFG  
(ADCIV)  
ADC  
Maskable  
FFE8h  
52  
P1  
P2  
P1IFG.0 to P1IFG.7 (P1IV)  
P2IFG.0 to P2IFG.7 (P2IV)  
Maskable  
Maskable  
FFE6h  
FFE4h  
51  
50  
LCDBLKOFFIFG, LCDBLKONIFG,  
LCDFRMIFG (LCDEIV)  
LCD  
Maskable  
Maskable  
FFE2h  
49, Lowest  
Reserved  
Reserved  
FFE0h to FF88h  
0FF86h  
BSL Signature 2  
BSL Signature 1  
JTAG Signature 2  
JTAG Signature 1  
0FF84h  
Signatures  
0FF82h  
0FF80h  
9.4 Bootloader (BSL)  
The BSL lets users program the FRAM or RAM using a UART serial interface. Access to the device memory  
through the BSL is protected by an user-defined password. Use of the BSL requires four pins as shown in 表  
9-3. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For a  
complete description of the features of the BSL and its implementation, see the MSP430 FRAM Devices  
Bootloader (BSL) User's Guide.  
9-3. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.0  
P1.1  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
9.5 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430  
development tools and device programmers. The JTAG pin requirements are shown in  
9-4. For further details on interfacing to development tools and device programmers, see the MSP430  
Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its  
implementation, see MSP430 Programming With the JTAG Interface.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-4. JTAG Pin Requirements and Function  
DEVICE SIGNAL  
P1.4/MCLK/TCK/A4/VREF+  
P1.5/TA0CLK/TMS/A5  
P1.6/TA0.2/TDI/TCLK/A6  
P1.7/TA0.1/TDO/A7  
TEST/SBWTCK  
DIRECTION  
JTAG FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input/TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
IN  
OUT  
IN  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
9.6 Spy-Bi-Wire Interface (SBW)  
The MSP430 family supports the 2-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with  
MSP430 development tools and device programmers. 9-5 shows the Spy-Bi-Wire interface pin requirements.  
For further details on interfacing to development tools and device programmers, see the MSP430 Hardware  
Tools User's Guide.  
9-5. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
SBW FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN  
IN, OUT  
VSS  
Ground supply  
9.7 FRAM  
The FRAM can be programmed using the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU.  
Features of the FRAM include:  
Byte and word access capability  
Programmable wait state generation  
Error correction code (ECC) generation  
9.8 Memory Protection  
The device features memory protection that can restrict user access and enable write protection:  
Securing the whole memory map to prevent unauthorized access from JTAG port or BSL, by writing JTAG  
and BSL signatures using the JTAG port, SBW, the BSL, or in-system by the CPU.  
Write protection enabled to prevent unwanted write operation to FRAM contents by setting the control bits in  
System Configuration register 0. For more detailed information, see the SYS chapter in the MSP430FR4xx  
and MSP430FR2xx Family User's Guide.  
备注  
The FRAM is protected by default on PUC. To write to FRAM during code execution, the application  
must first clear the corresponding PFWP or DFWP bit in System Configuration Register 0 to unprotect  
the FRAM.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. All peripherals can be handled  
by using all instructions in the memory map. For complete module description, see the MSP430FR4xx and  
MSP430FR2xx Family User's Guide.  
9.9.1 Power Management Module (PMM) and On-Chip Reference Voltages  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also  
includes supply voltage supervisor (SVS) and brownout protection. The brownout reset circuit (BOR) is  
implemented to provide the proper internal reset signal to the device during power on and power off. The SVS  
circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the  
primary supply.  
The device contains two on-chip reference: 1.5 V for internal reference and 1.2 V for external reference.  
The 1.5-V reference is internally connected to ADC channel 13. DVCC is internally connected to ADC channel  
15. When DVCC is set as the reference voltage for ADC conversion, the DVCC can be easily represent as 方程  
1 by using ADC sampling 1.5-V reference without any external components support.  
DVCC = (1023 × 1.5 V) ÷ 1.5-V reference ADC result  
(1)  
A 1.2-V reference voltage can be buffered and output to P1.4/MCLK/TCK/A4/VREF+, when the ADC channel 4  
is selected as the function. For more detailed information, see the MSP430FR4xx and MSP430FR2xx Family  
User's Guide.  
9.9.2 Clock System (CS) and Clock Distribution  
The clock system includes a 32-kHz crystal oscillator (XT1), an internal very low-power low-frequency oscillator  
(VLO), an integrated 32-kHz RC oscillator (REFO), an integrated internal digitally controlled oscillator (DCO) that  
may use frequency-locked loop (FLL) locking with internal or external 32-kHz reference clock, and on-chip  
asynchronous high-speed clock (MODCLK). The clock system is designed to target cost-effective designs with  
minimal external components. A fail-safe mechanism is designed for XT1. The clock system module offers the  
following clock signals.  
Main Clock (MCLK): the system clock used by the CPU and all relevant peripherals accessed by the bus. All  
clock sources except MODCLK can be selected as the source with a predivider of 1, 2, 4, 8, 16, 32, 64, or  
128.  
Sub-Main Clock (SMCLK): the subsystem clock used by the peripheral modules. SMCLK derives from the  
MCLK with a predivider of 1, 2, 4, or 8. This means SMCLK is always equal to or less than MCLK.  
Auxiliary Clock (ACLK): this clock is derived from the external XT1 clock or internal REFO clock up to 40 kHz.  
All peripherals may have one or several clock sources depending on specific functionality. 9-6 shows the  
clock distribution used in this device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
EXTERNAL PIN  
9-6. Clock Distribution  
CLOCK  
SOURCE  
SELECT  
BITS  
MCLK  
SMCLK  
ACLK  
MODCLK  
XT1CLK(1)  
VLOCLK  
Frequency  
Range  
DC to  
16 MHz  
DC to  
16 MHz  
DC to 40 kHz 5 MHz ±10% DC to 40 kHz 10 kHz ±50%  
CPU  
N/A  
N/A  
Default  
Default  
Default  
Default  
Default  
FRAM  
RAM  
N/A  
CRC  
N/A  
I/O  
N/A  
TA0  
TASSEL  
TASSEL  
UCSSELx  
UCSSELx  
WDTSSEL  
ADCSSEL  
LCDSSEL  
RTCSS  
10b  
10b  
01b  
01b  
01b  
01b  
00b (TA0CLK pin)  
00b (TA1CLK pin)  
00b (UCA0CLK pin)  
00b (UCB0CLK pin)  
TA1  
eUSCI_A0  
eUSCI_B0  
WDT  
ADC  
10b or 11b  
10b or 11b  
00b  
01b  
01b  
01b  
10b  
10b or 11b  
00b  
LCD  
00b  
10b  
10b  
11b  
RTC  
01b  
(1) To enable XT1 functionality, configure P4SEL0.1 (XIN) and P4SEL0.2 (XOUT) before configuring the Clock System registers.  
CPU  
FRAM  
SRAM  
CRC  
I/O  
MCLK  
Timer_A  
0
Timer_A  
1
eUSCI_  
A0  
eUSCI_  
B0  
WDT  
RTC  
ADC10  
LCD_E  
Clock System (CS)  
SMCLK  
ACLK  
VLOCLK  
MODCLK  
XT1CLK  
9-1. Clock Distribution Block Diagram  
9.9.3 General-Purpose Input/Output Port (I/O)  
Up to 60 I/O ports are implemented.  
P1, P2, P3, P4, P5, P6, and P7 are full 8-bit ports; P8 has 4 bits implemented.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for P1 and P2.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise in pairs.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
Capacitive Touch IO functionality is supported on all pins.  
备注  
Configuration of digital I/Os after BOR reset  
To prevent any cross currents during start-up of the device, all port pins are high-impedance with  
Schmitt triggers and module functions disabled. To enable the I/O functions after a BOR reset, the  
ports must be configured first and then the LOCKLPM5 bit must be cleared. For details, see the  
Configuration After Reset section in the Digital I/O chapter of the MSP430FR4xx and MSP430FR2xx  
Family User's Guide.  
9.9.4 Watchdog Timer (WDT)  
The primary function of the WDT module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as interval timer and can generate interrupts at selected time  
intervals.  
9-7. WDT Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER  
MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
VLOCLK  
9.9.5 System Module (SYS)  
The SYS module handles many of the system functions within the device. These include Power-On Reset (POR)  
and Power-Up Clear (PUC) handling, NMI source selection and management, reset interrupt vector generators,  
bootloader entry mechanisms, and configuration management (device descriptors). SYS also includes a data  
exchange mechanism through SBW called a JTAG mailbox mail box that can be used in the application.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-8. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
REGISTER  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
Security violation (BOR)  
Reserved  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
SVSHIFG SVSH event (BOR)  
Reserved  
10h  
Reserved  
12h  
SYSRSTIV, System Reset  
015Eh  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
Reserved  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
FLL unlock (PUC)  
24h  
Reserved  
26h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVS low-power reset entry  
Uncorrectable FRAM bit error detection  
Reserved  
02h  
04h  
06h  
Reserved  
08h  
Reserved  
0Ah  
Reserved  
0Ch  
0Eh  
SYSSNIV, System NMI  
015Ch  
Reserved  
Reserved  
10h  
VMAIFG Vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
Reserved  
12h  
14h  
16h  
18h  
1Ah to 1Eh  
00h  
Lowest  
Highest  
Lowest  
No interrupt pending  
NMIIFG NMI pin or SVSH event  
OFIFG oscillator fault  
Reserved  
02h  
SYSUNIV, User NMI  
015Ah  
04h  
06h to 1Eh  
9.9.6 Cyclic Redundancy Check (CRC)  
The 16-bit cyclic redundancy check (CRC) module produces a signature based on a sequence of data values  
and can be used for data checking purposes. The CRC generation polynomial is compliant with CRC-16-CCITT  
standard of x16 + x12 + x5 + 1.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.7 Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_B0)  
The eUSCI modules are used for serial data communications. The eUSCI_A module supports either UART or  
SPI communications. The eUSCI_B module supports either SPI or I2C communications. Additionally, eUSCI_A  
supports automatic baud-rate detection and IrDA.  
9-9. eUSCI Pin Configurations  
PIN  
P1.0  
P1.1  
P1.2  
P1.3  
PIN  
UART  
SPI  
SIMO  
SOMI  
SCLK  
STE  
TXD  
eUSCI_A0  
eUSCI_B0  
RXD  
I2C  
SPI  
P5.0  
P5.1  
P5.2  
P5.3  
STE  
SCLK  
SIMO  
SOMI  
SDA  
SCL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.8 Timers (Timer0_A3, Timer1_A3)  
The Timer0_A3 and Timer1_A3 modules are 16-bit timers and counters with three capture/compare registers  
each. Each can support multiple captures or compares, PWM outputs, and interval timing. Each has extensive  
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the  
capture/compare registers. The CCR0 registers on both TA0 and TA1 are not externally connected and can only  
be used for hardware period timing and interrupt generation. In Up Mode, they can be used to set the overflow  
value of the counter.  
9-10. Timer0_A3 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P1.5  
TA0CLK  
TACLK  
ACLK  
ACLK (internal)  
SMCLK (internal)  
Timer  
N/A  
TA0  
TA1  
SMCLK  
from Capacitive  
Touch IO (internal)  
INCLK  
CCI0A  
CCI0B  
Timer1_A3 CCI0B  
input  
CCR0  
CCR1  
DVSS  
DVCC  
TA0.1  
GND  
VCC  
P1.7  
P1.6  
CCI1A  
TA0.1  
Timer1_A3 CCI1B  
input  
from RTC (internal)  
CCI1B  
DVSS  
DVCC  
TA0.2  
GND  
VCC  
CCI2A  
TA0.2  
Timer1_A3 INCLK  
Timer1_A3 CCI2B  
input,  
from Capacitive  
Touch I/O (internal)  
CCI2B  
CCR2  
TA2  
IR Input  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-11. Timer1_A3 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P8.2  
TA1CLK  
TACLK  
ACLK  
ACLK (internal)  
SMCLK (internal)  
Timer  
N/A  
TA0  
TA1  
TA2  
SMCLK  
Timer0_A3 CCR2B  
output (internal)  
INCLK  
CCI0A  
CCI0B  
Timer0_A3 CCR0B  
output (internal)  
CCR0  
CCR1  
CCR2  
DVSS  
DVCC  
TA1.1  
GND  
VCC  
P4.0  
P8.3  
CCI1A  
TA1.1  
Timer0_A3 CCR1B  
output (internal)  
CCI1B  
to ADC trigger  
DVSS  
DVCC  
TA1.2  
GND  
VCC  
CCI2A  
TA1.2  
Timer0_A3 CCR2B  
output (internal)  
CCI2B  
IR Input  
DVSS  
DVCC  
GND  
VCC  
The interconnection of Timer0_A3 and Timer1_A3 can be used to modulate the eUSCI_A pin of UCA0TXD/  
UCA0SIMO in either ASK or FSK mode, with which a user can easily acquire a modulated infrared command for  
directly driving an external IR diode. The IR functions are fully controlled by SYS configuration registers 1  
including IREN (enable), IRPSEL (polarity select), IRMSEL (mode select), IRDSSEL (data select), and IRDATA  
(data) bits. For more information, see the SYS chapter in the MSP430FR4xx and MSP430FR2xx Family User's  
Guide.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.9 Real-Time Clock (RTC) Counter  
The RTC counter is a 16-bit modulo counter that is functional in AM, LPM0, LPM3, and LPM3.5. This module  
may periodically wake up the CPU from LPM0, LPM3, and LPM3.5 based on timing from a low-power clock  
source such as the XT1 and VLO clocks. In AM, RTC can be driven by SMCLK to generate high-frequency  
timing events and interrupts. The RTC overflow events trigger:  
Timer0_A3 CCR1B  
ADC conversion trigger when ADCSHSx bits are set as 01b  
9.9.10 10-Bit Analog Digital Converter (ADC)  
The 10-bit ADC module supports fast 10-bit analog-to-digital conversions with single-ended input. The module  
implements a 10-bit SAR core, sample select control, reference generator and a conversion result buffer. A  
window comparator with a lower and upper limit allows CPU independent result monitoring with three window  
comparator interrupt flags.  
The ADC supports 10 external inputs and four internal inputs (see 9-12).  
9-12. ADC Channel Connections  
ADCINCHx  
ADC CHANNELS  
EXTERNAL PIN OUT  
0
1
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P8.0(1)  
P8.1(1)  
N/A  
A0/Veref–  
A1/Veref+  
2
A2  
3
A3  
4
A4(2)  
5
A5  
6
A6  
7
A7  
8
A8  
9
A9  
Not Used  
10  
11  
12  
13  
14  
15  
Not Used  
N/A  
On-chip Temperature Sensor  
Reference Voltage (1.5 V)  
DVSS  
N/A  
N/A  
N/A  
DVCC  
N/A  
(1) P8.0 and P8.1 are only available in the LQFP-64 package.  
(2) When A4 is used, the PMM 1.2-V reference voltage can be output to this pin by setting the PMM  
control register. The 1.2-V voltage can be directly measured by A4 channel.  
The AD conversion can be started by software or a hardware trigger. 9-13 shows the trigger sources that are  
available.  
9-13. ADC Trigger Signal Connections  
ADCSHSx  
TRIGGER SOURCE  
Binary  
00  
Decimal  
0
1
2
3
ADCSC bit (software trigger)  
01  
RTC event  
TA1.1B  
10  
11  
TA1.2B  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.11 Liquid Crystal Display (LCD)  
The LCD driver generates the segment and common signals to drive segment liquid crystal display (LCD) glass.  
The LCD controller has dedicated data memories to hold segment drive information. Common and segment  
signals are generated as defined by the mode. Static, 2-mux, 3-mux, up to 8-mux LCDs are supported. The  
module can provide an LCD voltage independent from the main supply voltage with its integrated charge pump.  
The LCD display contrast can be trimmed by setting the LCD drive voltage. The LCD module can be fully  
functional in any power mode from AM to LPM3.5.  
When supplied by the on-chip charge pump with on-chip regulator reference, the LCD driver needs five pins and  
four external 0.1-µF capacitors to achieve low-power consumption during operation. 9-2 shows the  
recommended connections.  
R13  
R23  
R33  
LCDCAP1  
0.1 μF 0.1 μF 0.1 μF 0.1 μF  
LCDCAP0  
9-2. LCD Power Supply Configuration With On-Chip Charge Pump and Regulator Reference  
The LCD contains 20 16-bit words (40 bytes) display memory. The use of memory is flexible, depending on the  
selected mode:  
4-mux mode  
LCDM0 to LCDM19 can be used for LCD display contents. If it is not used as LCD drive pin, the  
corresponding LCDMx can be used for user data (up to 20 bytes).  
LCDBM0 to LCDBM19 can be used for LCD blinking contents. If it is not used as blinking, the  
corresponding LCDBMx can be used for user data (up to 20 bytes).  
8-mux mode  
LCDM0 to LCDM39 can be used for LCD display contents. If it is not used as LCD drive pin, the  
corresponding LCDMx can be used for user data (up to 40 bytes).  
9.9.12 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The EEM on these devices has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13 Input/Output Schematics  
9.9.13.1 Port P1 Input/Output With Schmitt Trigger  
9-3 shows the port schematic. 9-14 summarizes the selection of the pin functions.  
A0 to A7  
From ADC A  
P1REN.x  
P1DIR.x  
0
1
From Module  
DVSS  
DVCC  
0
1
P1OUT.x  
0
1
From Module  
P1SEL0.x  
EN  
D
To module  
P1IN.x  
P1IE.x  
Bus  
Keeper  
P1 Interrupt  
D
S
Q
P1.0/UCA0TXD/UCA0SIMO/A0  
P1.1/UCA0RXD/UCA0SOMI/A1  
P1.2/UCA0CLK/A2  
P1IFG.x  
P1.3/UCA0STE/A3  
Edge  
Select  
P1.4/MCLK/TCK/A4/VREF+  
P1.5/TA0CLK/TMS/A5  
P1.6/TA0.2/TDI/TCLK/A6  
P1.7/TA0.1/TDO/A7  
P1IES.x  
From JTAG  
To JTAG  
9-3. Port P1 Input/Output With Schmitt Trigger  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-14. Port P1 Pin Functions  
CONTROL BITS AND SIGNALS(2)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL0.x  
ADCPCTLx(1)  
JTAG  
N/A  
P1.0 (I/O)  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
0
P1.0/UCA0TXD/  
UCA0SIMO/A0  
0
UCA0TXD/UCA0SIMO  
A0  
X
0
N/A  
X
1 (x = 0)  
N/A  
P1.1 (I/O)  
UCA0RXD/UCA0SOMI  
A1  
I: 0; O: 1  
0
N/A  
P1.1/UCA0RXD/  
UCA0SOMI/A1  
1
2
3
X
0
N/A  
X
1 (x = 1)  
N/A  
P1.2 (I/O)  
UCA0CLK  
A2  
I: 0; O: 1  
0
N/A  
P1.2/UCA0CLK/A2  
P1.3/UCA0STE/A3  
X
0
N/A  
X
1 (x = 2)  
N/A  
P1.3 (I/O)  
UCA0STE  
A3  
I: 0; O: 1  
0
N/A  
X
0
1 (x = 3)  
0
N/A  
X
N/A  
P1.4 (I/O)  
VSS  
I: 0; O: 1  
Disabled  
0
1
0
Disabled  
P1.4/MCLK/TCK/A4/  
VREF+  
4
5
6
7
MCLK  
1
A4, VREF+  
JTAG TCK  
P1.5 (I/O)  
TA0CLK  
VSS  
X
X
X
0
1 (x = 4)  
Disabled  
TCK  
X
X
0
I: 0; O: 1  
Disabled  
0
1
0
Disabled  
P1.5/TA0CLK/TMS/A5  
P1.6/TA0.2/TDI/TCLK/ A6  
P1.7/TA0.1/TDO/A7  
1
A5  
X
X
X
0
1 (x = 5)  
Disabled  
TMS  
JTAG TMS  
P1.6 (I/O)  
TA0.CCI2A  
TA0.2  
X
X
0
I: 0; O: 1  
Disabled  
0
1
0
Disabled  
1
A6  
X
X
X
0
1 (x = 6)  
Disabled  
TDI/TCLK  
Disabled  
JTAG TDI/TCLK  
P1.7 (I/O)  
TA0.CCI1A  
TA0.1  
X
X
0
I: 0; O: 1  
0
1
1
0
Disabled  
A7  
X
X
X
X
1 (x = 7)  
X
Disabled  
TDO  
JTAG TDO  
(1) Setting the ADCPCTLx bit in SYSCFG2 register will disable both the output driver and input Schmitt trigger to prevent leakage when  
analog signals are applied.  
(2) X = don't care  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13.2 Port P2 Input/Output With Schmitt Trigger  
9-4 shows the port schematic. 9-15 summarizes the selection of the pin functions.  
L24 to L31  
From LCD  
P2REN.x  
P2DIR.x  
DVSS  
DVCC  
0
1
P2OUT.x  
P2IN.x  
P2IE.x  
Bus  
Keeper  
P2 Interrupt  
1
D
S
Q
P2.0/L24  
P2.1/L25  
P2.2/L26  
P2.3/L27  
P2.4/L28  
P2.5/L29  
P2.6/L30  
P2.7/L31  
P2IFG.x  
P2IES.x  
1
Edge  
Select  
9-4. Port P2 Input/Output With Schmitt Trigger  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-15. Port P2 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
LCDSy  
P2.0 (I/O)  
L24  
I: 0; O: 1  
0
P2.0/L24  
P2.1/L25  
P2.2/L26  
P2.3/L27  
P2.4/L28  
P2.5/L29  
P2.6/L30  
0
1
X
1 (y = 24)  
P2.1 (I/O)  
L25  
I: 0; O: 1  
0
X
1 (y = 25)  
P2.2 (I/O)  
L26  
I: 0; O: 1  
0
2
3
4
5
6
7
X
1 (y = 26)  
P2.3 (I/O)  
L27  
I: 0; O: 1  
0
X
1 (y = 27)  
P2.4 (I/O)  
L28  
I: 0; O: 1  
0
X
1 (y = 28)  
P2.5 (I/O)  
L29  
I: 0; O: 1  
0
X
I: 0; O: 1  
X
1 (y = 29)  
0
P2.6 (I/O)  
L30  
1 (y = 30)  
0
P2.7 (I/O)  
L31  
I: 0; O: 1  
X
P2.7/L31  
1 (y = 31)  
(1) X= don't care  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13.3 Port P3 Input/Output With Schmitt Trigger  
9-5 shows the port schematic. 9-16 summarizes the selection of the pin functions.  
L8 to L15  
From LCD E  
P3REN.x  
P3DIR.x  
DVSS  
DVCC  
0
1
P3OUT.x  
P3IN.x  
Bus  
Keeper  
P3.0/L8  
P3.1/L9  
P3.2/L10  
P3.3/L11  
P3.4/L12  
P3.5/L13  
P3.6/L14  
P3.7/L15  
9-5. Port P3 Input/Output With Schmitt Trigger  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-16. Port P3 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P3.x)  
x
0
1
2
3
4
5
6
7
FUNCTION  
P3DIR.x  
LCDSy  
P3.0 (I/O)  
L8  
I: 0; O: 1  
0
P3.0/L8  
X
1 (y = 8)  
P3.1 (I/O)  
L9  
I: 0; O: 1  
0
P3.1/L9  
X
1 (y = 9)  
P3.2 (I/O)  
L10  
I: 0; O: 1  
0
P3.2/L10  
P3.3/L11  
P3.4/L12  
P3.5/L13  
P3.6/L14  
X
1 (y = 10)  
P3.3 (I/O)  
L11  
I: 0; O: 1  
0
X
1 (y = 11)  
P3.4 (I/O)  
L12  
I: 0; O: 1  
0
X
1 (y = 12)  
P3.5 (I/O)  
L13  
I: 0; O: 1  
0
X
I: 0; O: 1  
X
1 (y = 13)  
0
P3.6 (I/O)  
L14  
1 (y = 14)  
0
P3.7 (I/O)  
L15  
I: 0; O: 1  
X
P3.7/L15  
1 (y = 15)  
(1) X= don't care  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13.4 Port P4.0 Input/Output With Schmitt Trigger  
9-6 shows the port schematic. 9-17 summarizes the selection of the pin functions.  
P4REN.x  
P4DIR.x  
0
1
From Module  
DVSS  
DVCC  
0
1
P4OUT.x  
0
1
From Module  
P4SEL0.x  
EN  
D
To module  
P4IN.x  
Bus  
Keeper  
P4.0/TA1.1  
9-6. Port P4.0 Input/Output With Schmitt Trigger  
9-17. Port P4.0 Pin Functions  
CONTROL BITS AND SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL0.x  
P4.0 (I/O)  
TA1.CCI1A  
TA1.1  
I: 0; O: 1  
0
P4.0/TA1.1  
0
0
1
1
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13.5 Port P4.1 and P4.2 Input/Output With Schmitt Trigger  
9-7 shows the port schematic. 9-18 summarizes the selection of the pin functions.  
XIN, XOUT  
P4REN.x  
P4DIR.x  
DVSS  
DVCC  
0
1
P4OUT.x  
P4SEL0.x  
P4IN.x  
Bus  
Keeper  
P4.1/XIN  
P4.2/XOUT  
9-7. Port P4.1 and P4.2 Input/Output With Schmitt Trigger  
9-18. Port P4.1 and P4.2 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P4.x)  
x
1
2
FUNCTION  
P4DIR.x  
I: 0; O: 1  
X
P4SEL0.x  
P4.1 (I/O)  
XIN  
0
1
0
1
P4.1/XIN  
P4.2 (I/O)  
XOUT  
I: 0; O: 1  
X
P4.2/XOUT  
(1) X= don't care  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13.6 Port 4.3, P4.4, P4.5, P4.6, and P4.7 Input/Output With Schmitt Trigger  
9-8 shows the port schematic. 9-19 summarizes the selection of the pin functions.  
LCDCAP0, LCDCAP1  
R13, R23, R33  
From LCD  
P4REN.x  
P4DIR.x  
DVSS  
DVCC  
0
1
P4OUT.x  
P4IN.x  
Bus  
Keeper  
P4.3/LCDCAP0  
P4.4/LCDCAP1  
P4.5/R33  
P4.6/R23  
P4.7/R13  
9-8. Port 4.3, P4.4, P4.5, P4.6, and P4.7 Input/Output With Schmitt Trigger  
9-19. Port P4.3, P4.4, P4.5, P4.6, and P4.7 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P4.x)  
x
3
4
5
6
7
FUNCTION  
P4DIR.x  
LCDPCTL(2)  
P4.3 (I/O)  
LCDCAP0  
P4.4 (I/O)  
LCDCAP1  
P4.5 (I/O)  
R33  
I: 0; O: 1  
X
1
0
1
0
1
0
1
0
1
P4.3/LCDCAP0  
X
I: 0; O: 1  
P4.4/LCDCAP1  
P4.5/R33  
X
I: 0; O: 1  
X
I: 0; O: 1  
X
P4.6 (I/O)  
R23  
P4.6/R23  
P4.7 (I/O)  
R13  
I: 0; O: 1  
X
P4.7/R13  
(1) X= don't care  
(2) Setting the LCDPCTL bit in SYSCFG2 register will disable both the output driver and input Schmitt trigger to prevent leakage when  
analog signals are applied.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13.7 Port P5.0, P5.1, P5.2, and P5.3 Input/Output With Schmitt Trigger  
9-9 shows the port schematic. 9-20 summarizes the selection of the pin functions.  
L32 to L35  
From LCD E  
P5REN.x  
P5DIR.x  
0
1
From Module  
DVSS  
DVCC  
0
1
P5OUT.x  
0
1
From Module  
P5SEL0.x  
EN  
D
To module  
P5IN.x  
Bus  
Keeper  
P5.0/UCB0STE/L32  
P5.1/UCB0CLK/L33  
P5.2/UCB0SIMO/UCB0SDA/L34  
P5.3/UCB0SOMI/UCB0SCL/L35  
9-9. Port P5.0, P5.1, P5.2, and P5.3 Input/Output With Schmitt Trigger  
9-20. Port P5.0, P5.1, P5.2, and P5.3 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL0.x  
LCDSy  
P5.0 (I/O)  
UCB0STE  
L32  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
P5.0/UCB0STE/L32  
0
0
0
X
1 (y = 32)  
P5.1 (I/O)  
UCB0CLK  
L33  
I: 0; O: 1  
0
P5.1/UCB0CLK/L33  
1
2
3
0
0
X
1 (y = 33)  
P5.2 (I/O)  
I: 0; O: 1  
0
P5.2/UCB0SIMO/  
UCB0SDA/L34  
UCB0SIMO/UCB0SDA  
0
0
L34  
X
1 (y = 34)  
P5.3 (I/O)  
I: 0; O: 1  
0
0
P5.3/UCB0SOMI/  
UCB0SCL/L35  
UCB0SOMI/UCB0SCL  
L35  
0
X
1 (y = 35)  
(1) X= don't care  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13.8 Port P5.4, P5.5, P5.6, and P5.7 Input/Output With Schmitt Trigger  
9-10 shows the port schematic. 9-21 summarizes the selection of the pin functions.  
L36 to L39  
From LCD E  
P5REN.x  
P5DIR.x  
DVSS  
DVCC  
0
1
P5OUT.x  
P5IN.x  
Bus  
Keeper  
P5.4/L36  
P5.5/L37  
P5.6/L38  
P5.7/L39  
9-10. Port P5.4, P5.5, P5.6, and P5.7 Input/Output With Schmitt Trigger  
9-21. Port P5.4, P5.5, P5.6, and P5.7 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P5.x)  
x
4
5
6
7
FUNCTION  
P5DIR.x  
I: 0; O: 1  
X
LCDSy  
P5.4 (I/O)  
L36  
0
P5.4/L36  
1 (y = 36)  
P5.5 (I/O)  
L37  
I: 0; O: 1  
X
0
P5.5/L37  
P5.6/L38  
1 (y = 37)  
0
P5.6 (I/O)  
L38  
I: 0; O: 1  
X
1 (y = 38)  
0
P5.7 (I/O)  
L39  
I: 0; O: 1  
X
P5.7/L39  
1 (y = 39)  
(1) X= don't care  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13.9 Port P6 Input/Output With Schmitt Trigger  
9-11 shows the port schematic. 9-22 summarizes the selection of the pin functions.  
L16 to L23  
From LCD E  
P6REN.x  
P6DIR.x  
DVSS  
DVCC  
0
1
P6OUT.x  
P6IN.x  
Bus  
Keeper  
P6.0/L16  
P6.1/L17  
P6.2/L18  
P6.3/L19  
P6.4/L20  
P6.5/L21  
P6.6/L22  
P6.7/L23  
9-11. Port P6 Input/Output With Schmitt Trigger  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-22. Port P6 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P6.x)  
x
0
1
2
3
4
5
6
7
FUNCTION  
P6DIR.x  
LCDSy  
P6.0 (I/O)  
L16  
I: 0; O: 1  
0
P6.0/L16  
X
1 (y = 16)  
P6.1 (I/O)  
L17  
I: 0; O: 1  
0
P6.1/L17  
P6.2/L18  
P6.3/L19  
P6.4/L20  
P6.5/L21  
P6.6/L22  
X
1 (y = 17)  
P6.2 (I/O)  
L18  
I: 0; O: 1  
0
X
1 (y = 18)  
P6.3 (I/O)  
L19  
I: 0; O: 1  
0
X
1 (y = 19)  
P6.4 (I/O)  
L20  
I: 0; O: 1  
0
X
1 (y = 20)  
P6.5 (I/O)  
L21  
I: 0; O: 1  
0
X
I: 0; O: 1  
X
1 (y = 21)  
0
P6.6 (I/O)  
L22  
1 (y = 22)  
0
P6.7 (I/O)  
L23  
I: 0; O: 1  
X
P6.7/L23  
1 (y = 23)  
(1) X= don't care  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13.10 Port P7 Input/Output With Schmitt Trigger  
9-12 shows the port schematic. 9-23 summarizes the selection of the pin functions.  
L0 to L7  
From LCD_E  
P7REN.x  
P7DIR.x  
DVSS  
DVCC  
0
1
P7OUT.x  
P7IN.x  
Bus  
Keeper  
P7.0/L0  
P7.1/L1  
P7.2/L2  
P7.3/L3  
P7.4/L4  
P7.5/L5  
P7.6/L6  
P7.7/L7  
9-12. Port P7 Input/Output With Schmitt Trigger  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-23. Port P7 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P7.x)  
x
0
1
2
3
4
5
6
7
FUNCTION  
P7DIR.x  
LCDSy  
P7.0 (I/O)  
L0  
I: 0; O: 1  
0
P7.0/L0  
X
1 (y = 0)  
P7.1 (I/O)  
L1  
I: 0; O: 1  
0
P7.1/L1  
P7.2/L2  
P7.3/L3  
P7.4/L4  
P7.5/L5  
P7.6/L6  
X
1 (y = 1)  
P7.2 (I/O)  
L2  
I: 0; O: 1  
0
X
1 (y = 2)  
P7.3 (I/O)  
L3  
I: 0; O: 1  
0
1 (y = 3)  
0
X
P7.4 (I/O)  
L4  
I: 0; O: 1  
X
1 (y = 4)  
0
P7.5 (I/O)  
L5  
I: 0; O: 1  
X
I: 0; O: 1  
X
1 (y = 5)  
0
P7.6 (I/O)  
L6  
1 (y = 6)  
0
P7.7 (I/O)  
L7  
I: 0; O: 1  
X
P7.7/L7  
1 (y = 7)  
(1) X= don't care  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13.11 Port P8.0 and P8.1 Input/Output With Schmitt Trigger  
9-13 shows the port schematic. 9-24 summarizes the selection of the pin functions.  
A8, A9  
From ADC A  
P8REN.x  
P8DIR.x  
0
1
From Module  
DVSS  
DVCC  
0
1
P8OUT.x  
0
1
From MCLK, ACLK  
P8SEL0.x  
EN  
D
To module  
P8IN.x  
Bus  
Keeper  
P8.0/SMCLK/A8  
P8.1/ACLK/A9  
9-13. Port P8.0 and P8.1 Input/Output With Schmitt Trigger  
9-24. Port P8.0 and P8.1 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL0.x  
ADCPCTLx(2)  
P8.0 (I/O)  
VSS  
I: 0; O: 1  
0
0
0
P8.0/SMCLK/A8  
0
1
0
SMCLK  
A8  
1
X
X
0
1 (x = 8)  
0
P8.1 (I/O)  
VSS  
I: 0; O: 1  
0
1
X
P8.1/ACLK/A9  
1
1
0
ACLK  
A9  
X
1 (x = 9)  
(1) X= don't care  
(2) Setting the ADCPCTLx bit in SYSCFG2 register will disable both the output driver and input Schmitt trigger to prevent leakage when  
analog signals are applied.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9.13.12 Port P8.2 and P8.3 Input/Output With Schmitt Trigger  
9-14 shows the port schematic. 9-25 summarizes the selection of the pin functions.  
P8REN.x  
P8DIR.x  
0
1
From Module  
DVSS  
DVCC  
0
1
P8OUT.x  
0
1
From Module  
P8SEL0.x  
EN  
D
To module  
P8IN.x  
Bus  
Keeper  
P8.2/TA1CLK  
P8.3/TA1.2  
9-14. Port P8.2 and P8.3 Input/Output With Schmitt Trigger  
9-25. Port P8.2 and P8.3 Pin Functions  
CONTROL BITS AND SIGNALS  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL0.x  
P8.2 (I/O)  
TA1 CLK  
VSS  
I: 0; O: 1  
0
1
0
1
P8.2/TA1CLK  
2
0
1
P8.3 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
P8.3/TA1.2  
3
0
1
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.10 Device Descriptors (TLV)  
9-26 lists the Device IDs of the MSP430FR413x devices. 9-27 lists the contents of the device descriptor  
tag-length-value (TLV) structure for the MSP430FR413x devices.  
9-26. Device IDs  
DEVICE ID  
DEVICE  
1A04h  
1A05h  
81h  
MSP430FR4133  
MSP430FR4132  
MSP430FR4131  
F0h  
F1h  
81h  
F2h  
81h  
9-27. Device Descriptors  
MSP430FR413x  
ADDRESS  
DESCRIPTION  
VALUE  
06h  
Info length  
1A00h  
1A01h  
1A02h  
1A03h  
1A04h  
1A05h  
1A06h  
1A07h  
1A08h  
1A09h  
1A0Ah  
1A0Bh  
1A0Ch  
1A0Dh  
1A0Eh  
1A0Fh  
1A10h  
1A11h  
1A12h  
1A13h  
1A14h  
1A15h  
1A16h  
1A17h  
1A18h  
1A19h  
1A1Ah  
1A1Bh  
1A1Ch  
1A1Dh  
CRC length  
06h  
Per unit  
Per unit  
CRC value(2)  
Information Block  
Device ID  
See 9-26  
Hardware revision  
Firmware revision  
Die Record Tag  
Per unit  
Per unit  
08h  
Die Record length  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
11h  
Lot Wafer ID  
Die Record  
Die X position  
Die Y position  
Test Result  
ADC Calibration Tag  
ADC Calibration Length  
08h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
ADC Gain Factor  
ADC Calibration  
ADC Offset  
ADC 1.5-V Reference Temperature Sensor 30°C  
ADC 1.5-V Reference Temperature Sensor 85°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-27. Device Descriptors (continued)  
MSP430FR413x  
DESCRIPTION  
ADDRESS  
1A1Eh  
1A1Fh  
1A20h  
VALUE  
Calibration Tag  
12h  
Calibration Length  
04h  
Per unit  
Per unit  
Per unit  
Per unit  
Reference and DCO Calibration 1.5-V Reference Factor  
1A21h  
1A22h  
DCO Tap Settings for 16 MHz, Temperature 30°C(1)  
1A23h  
(1) This value can be directly loaded into DCO bits in CSCTL0 register to get accurate 16-MHz frequency at room temperature, especially  
when MCU exits from LPM3 and below. It is also suggested to use predivider to decrease the frequency if the temperature drift might  
result an overshoot beyond 16 MHz.  
(2) The CRC value covers the checksum from 1A04h to 1A77h by applying the CRC-CCITT-16 polynomial of x16 + x12 + x5 + 1.  
9.11 Memory  
9-28 shows the memory organization of the MSP430FR413x devices.  
9-28. Memory Organization  
ACCESS  
MSP430FR4133  
MSP430FR4132  
MSP430FR4131  
Memory (FRAM)  
Main: interrupt vectors and  
signatures  
Read/Write  
15KB  
FFFFh to FF80h  
FFFFh to C400h  
8KB  
FFFFh to FF80h  
FFFFh to E000h  
4KB  
FFFFh to FF80h  
FFFFh to F000h  
(Optional Write Protect)  
(1)  
Main: code memory  
2KB  
27FFh to 2000h  
1KB  
23FFh to 2000h  
512 bytes  
21FFh to 2000h  
RAM  
Read/Write  
Read/Write  
512 bytes  
19FFh to 1800h  
512 bytes  
19FFh to 1800h  
512 bytes  
19FFh to 1800h  
Information Memory (FRAM)  
(Optional Write Protect)  
(2)  
1KB  
13FFh to 1000h  
1KB  
13FFh to 1000h  
1KB  
13FFh to 1000h  
Bootloader (BSL) Memory (ROM)  
Peripherals  
Read only  
4KB  
0FFFh to 0000h  
4KB  
0FFFh to 0000h  
4KB  
0FFFh to 0000h  
Read/Write  
(1) The Program FRAM can be write protected by setting PFWP bit in SYSCFG0 register. See the SYS chapter in the MSP430FR4xx and  
MSP430FR2xx Family User's Guide for more details.  
(2) The Information FRAM can be write protected by setting DFWP bit in SYSCFG0 register. See the SYS chapter in the MSP430FR4xx  
and MSP430FR2xx Family User's Guide for more details.  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9.11.1 Peripheral File Map  
9-29 shows the base address and the memory size of the registers of each peripheral, and 9-30 through 表  
9-49 show all of the available registers for each peripheral and their address offsets.  
9-29. Peripherals Summary  
MODULE NAME  
Special Functions (see 9-30)  
BASE ADDRESS  
SIZE  
0100h  
0010h  
0020h  
0030h  
0020h  
0010h  
0008h  
0002h  
0020h  
0020h  
0020h  
0020h  
0010h  
0030h  
0030h  
0010h  
0020h  
0030h  
0060h  
0020h  
0040h  
0120h  
PMM (see 9-31)  
0140h  
SYS (see 9-32)  
0180h  
CS (see 9-33)  
01A0h  
01C0h  
01CCh  
0200h  
FRAM (see 9-34)  
CRC (see 9-35)  
WDT (see 9-36)  
Port P1, P2 (see 9-37)  
Port P3, P4 (see 9-38)  
Port P5, P6 (see 9-39)  
Port P7, P8 (see 9-40)  
Capacitive Touch I/O (see 9-41)  
Timer0_A3 (see 9-42)  
Timer1_A3 (see 9-43)  
RTC (see 9-44)  
0220h  
0240h  
0260h  
02E0h  
0300h  
0340h  
03C0h  
0500h  
eUSCI_A0 (see 9-45)  
eUSCI_B0 (see 9-46)  
LCD (see 9-47)  
0540h  
0600h  
0660h  
Backup Memory (see 9-48)  
ADC (see 9-49)  
0700h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-30. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
SFRIE1  
00h  
02h  
04h  
SFRIFG1  
SFRRPCR  
SFR reset pin control  
9-31. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
PMMCTL1  
PMMCTL2  
PMMIFG  
OFFSET  
00h  
PMM control 0  
PMM control 1  
PMM control 2  
PMM interrupt flags  
PM5 Control 0  
02h  
04h  
0Ah  
PM5CTL0  
10h  
9-32. SYS Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
System control  
SYSCTL  
Bootloader configuration area  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus Error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
System configuration 0  
System configuration 1  
System configuration 2  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
SYSSNIV  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
20h  
SYSRSTIV  
SYSCFG0  
SYSCFG1  
SYSCFG2  
22h  
24h  
9-33. CS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
CSCTL7  
CSCTL8  
OFFSET  
00h  
CS control register 0  
CS control register 1  
CS control register 2  
CS control register 3  
CS control register 4  
CS control register 5  
CS control register 6  
CS control register 7  
CS control register 8  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
9-34. FRAM Registers (Base Address: 01A0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
FRAM control 0  
General control 0  
General control 1  
FRCTL0  
GCCTL0  
GCCTL1  
04h  
06h  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-35. CRC Registers (Base Address: 01C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
CRC data input  
CRC16DI  
CRCDIRB  
CRCINIRES  
CRCRESR  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
02h  
04h  
06h  
9-36. WDT Registers (Base Address: 01CCh)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Watchdog timer control  
WDTCTL  
00h  
9-37. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P1 input  
P1IN  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
P1SEL0  
P1IV  
02h  
Port P1 direction  
04h  
Port P1 pulling register enable  
Port P1 selection 0  
06h  
0Ah  
0Eh  
18h  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1IES  
P1IE  
1Ah  
1Ch  
01h  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2IV  
03h  
Port P2 direction  
05h  
Port P2 pulling register enable  
Port P2 selection 0(1)  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
07h  
0Bh  
1Eh  
19h  
P2IES  
P2IE  
1Bh  
1Dh  
P2IFG  
(1) Port P2 selection register does not feature any valid bits. P2SEL0 presents for 16-bit Port A operation with P1SEL0.  
9-38. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P3 input  
P3IN  
Port P3 output  
Port P3 direction  
P3OUT  
P3DIR  
02h  
04h  
Port P3 pulling register enable  
Port P3 selection 0(1)  
Port P4 input  
P3REN  
P3SEL0  
P4IN  
06h  
0Ah  
01h  
Port P4 output  
P4OUT  
P4DIR  
03h  
Port P4 direction  
05h  
Port P4 pulling register enable  
Port P4 selection 0  
P4REN  
P4SEL0  
07h  
0Bh  
(1) Port P3 selection register does not feature any valid bits. P3SEL0 presents for 16-bit Port B operation with P4SEL0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-39. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
0Ah  
01h  
03h  
05h  
07h  
0Bh  
Port P5 output  
Port P5 direction  
P5OUT  
P5DIR  
Port P5 pulling register enable  
Port P5 selection 0  
Port P6 input  
P5REN  
P5SEL0  
P6IN  
Port P6 output  
P6OUT  
P6DIR  
Port P6 direction  
Port P6 pulling register enable  
Port P6 selection 0(1)  
P6REN  
P6SEL0  
(1) Port P6 selection register does not feature any valid bits. P6SEL0 presents for 16-bit Port C operation with P5SEL0.  
9-40. Port P7, P8 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P7 input  
P7IN  
Port P7 output  
Port P7 direction  
P7OUT  
P7DIR  
02h  
04h  
Port P7 pulling register enable  
Port P7 selection 0(1)  
Port P8 input  
P7REN  
P7SEL0  
P8IN  
06h  
0Ah  
01h  
Port P8 output  
P8OUT  
P8DIR  
03h  
Port P8 direction  
05h  
Port P8 pulling register enable  
Port P8 selection 0  
P8REN  
P8SEL0  
07h  
0Bh  
(1) Port P7 selection register does not feature any valid bits. P7SEL0 presents for 16-bit Port D operation with P8SEL0.  
9-41. Capacitive Touch IO Registers (Base Address: 02E0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Capacitive Touch IO 0 control  
CAPTIO0CTL  
0Eh  
9-42. Timer0_A3 Registers (Base Address: 0300h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
TA0 control  
TA0CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA0 counter register  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
02h  
04h  
06h  
10h  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA0 expansion register 0  
TA0 interrupt vector  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
12h  
14h  
16h  
20h  
TA0IV  
2Eh  
9-43. Timer1_A3 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
TA1 control  
TA1CTL  
Capture/compare control 0  
TA1CCTL0  
02h  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-43. Timer1_A3 Registers (Base Address: 0340h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
TA1CCTL1  
TA1CCTL2  
TA1R  
OFFSET  
04h  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter register  
06h  
10h  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA1 expansion register 0  
TA1 interrupt vector  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
12h  
14h  
16h  
20h  
TA1IV  
2Eh  
9-44. RTC Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL  
RTCIV  
OFFSET  
00h  
RTC control  
RTC interrupt vector  
RTC modulo  
04h  
RTCMOD  
RTCCNT  
08h  
RTC counter  
0Ch  
9-45. eUSCI_A0 Registers (Base Address: 0500h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTLW0  
UCA0CTLW1  
UCA0BR0  
OFFSET  
00h  
eUSCI_A control word 0  
eUSCI_A control word 1  
eUSCI_A control rate 0  
eUSCI_A control rate 1  
eUSCI_A modulation control  
eUSCI_A status  
02h  
06h  
UCA0BR1  
07h  
UCA0MCTLW  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
lUCA0IRTCTL  
IUCA0IRRCTL  
UCA0IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA0IFG  
UCA0IV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-46. eUSCI_B0 Registers (Base Address: 0540h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTLW0  
UCB0CTLW1  
UCB0BR0  
OFFSET  
eUSCI_B control word 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
eUSCI_B bit rate 1  
UCB0BR1  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B receive address  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
eUSCI_B interrupt vector word  
UCB0IFG  
UCB0IV  
9-47. LCD Registers (Base Address: 0600h)  
REGISTER DESCRIPTION  
REGISTER  
LCDCTL0  
LCDCTL1  
LCDBLKCTL  
LCDMEMCTL  
LCDVCTL  
LCDPCTL0  
LCDPCTL1  
LCDPCTL2  
LCDCSS0  
LCDCSS1  
LCDCSS2  
LCDIV  
OFFSET  
00h  
LCD control register 0  
LCD control register 1  
LCD blink control register  
LCD memory control register  
LCD voltage control register  
LCD port control 0  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
14h  
LCD port control 1  
LCD port control 2  
LCD COM/SEG select register  
LCD COM/SEG select register  
LCD COM/SEG select register  
LCD interrupt vector  
Display memory Static and 2 to 4 mux modes  
LCD memory 0  
16h  
18h  
1Eh  
LCDM0  
LCDM1  
LCDM2  
20h  
21h  
22h  
LCD memory 1  
LCD memory 2  
LCD memory 19  
LCDM19  
33h  
34h  
Reserved(1)  
Reserved(1)  
3Fh  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-47. LCD Registers (Base Address: 0600h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Blinking memory for Static and 2 to 4 mux modes  
LCD blinking memory 0  
LCDBM0  
LCDBM1  
40h  
41h  
LCD blinking memory 1  
LCD blinking memory 19  
LCDBM19  
53h  
54h  
Reserved(1)  
Reserved(1)  
5Fh  
Display memory for 5 to 8 mux modes  
LCD memory 0  
LCD memory 1  
LCD memory 2  
LCDM0  
LCDM1  
LCDM2  
20h  
21h  
22h  
LCD memory 39  
Reserved(2)  
LCDM39  
47h  
48h  
Reserved(2)  
5Fh  
(1) In static and 2-mux to 4-mux modes, LCD memory and blink memory 40 to 63 are not physically implemented.  
(2) In 5-mux to 8-mux modes, LCD memory and blink memory 40 to 63 are not physically implemented.  
9-48. Backup Memory Registers (Base Address: 0660h)  
REGISTER DESCRIPTION  
REGISTER  
BAKMEM0  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKMEM4  
BAKMEM5  
BAKMEM6  
BAKMEM7  
BAKMEM8  
BAKMEM9  
BAKMEM10  
BAKMEM11  
BAKMEM12  
BAKMEM13  
BAKMEM14  
BAKMEM15  
OFFSET  
00h  
Backup memory 0  
Backup memory 1  
Backup memory 2  
Backup memory 3  
Backup memory 4  
Backup memory 5  
Backup memory 6  
Backup memory 7  
Backup memory 8  
Backup memory 9  
Backup memory 10  
Backup memory 11  
Backup memory 12  
Backup memory 13  
Backup memory 14  
Backup memory 15  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
9-49. ADC Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
ADCCTL0  
ADCCTL1  
ADCCTL2  
ADCLO  
OFFSET  
ADC control register 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC control register 1  
ADC control register 2  
ADC window comparator low threshold  
ADC window comparator high threshold  
ADC memory control register 0  
ADC conversion memory register  
ADC interrupt enable  
ADCHI  
ADCMCTL0  
ADCMEM0  
ADCIE  
ADC interrupt flags  
ADCIFG  
ADC interrupt vector word  
ADCIV  
9.12 Identification  
9.12.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The device-  
specific errata sheet describes these markings. For links to all of the errata sheets for the devices in this data  
sheet, see 11.4.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on  
this value, see the "Hardware Revision" entries in 9.10.  
9.12.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific errata  
sheet describes these markings. For links to all of the errata sheets for the devices in this data sheet, see 节  
11.4.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details  
on this value, see the "Device ID" entries in 9.10.  
9.12.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in MSP430  
Programming With the JTAG Interface.  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
10 Applications, Implementation, and Layout  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Device Connection and Layout Fundamentals  
This section discusses the recommended guidelines when designing with the MSP430FR413x devices. These  
guidelines are to make sure that the device has proper connections for powering, programming, debugging, and  
optimum analog performance.  
10.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 10-µF plus a 100-nF low-ESR ceramic decoupling capacitor to  
the DVCC and DVSS pins (see 10-1). Higher-value capacitors may be used but can impact supply rail ramp-  
up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few  
millimeters).  
DVCC  
+
Power Supply  
Decoupling  
DVSS  
10 µF  
100 nF  
10-1. Power Supply Decoupling  
10.1.2 External Oscillator  
This device supports only a low-frequency crystal (32 kHz) on the XIN and XOUT pins. External bypass  
capacitors for the crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the XIN input pin that meet the specifications of the respective  
oscillator if the appropriate XT1BYPASS mode is selected. In this case, the associated XOUT pin can be used  
for other purposes. If they are left unused, they must be terminated according to 7.4.  
10-2 shows a typical connection diagram.  
XIN  
XOUT  
CL1  
CL2  
10-2. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP430 devices.  
10.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-  
FET430UIF) can be used to program and debug code on the target board. In addition, the connections also  
support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if  
desired. 10-3 shows the connections between the 14-pin JTAG connector and the target device required to  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
support in-system programming and debugging for 4-wire JTAG communication. 10-4 shows the connections  
for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical.  
Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF  
interface modules and MSP-GANG have a VCC-sense feature that, if used, requires an alternate connection (pin  
4 instead of pin 2). The VCC-sense feature senses the local VCC present on the target board (that is, a battery or  
other local power supply) and adjusts the output signals accordingly. 10-3 and 10-4 show a jumper block  
that supports both scenarios of supplying VCC to the target board. If this flexibility is not required, the desired VCC  
connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same  
time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools Users Guide.  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
DVCC  
J2 (see Note A)  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection  
J2.  
B. The upper limit for C1 is 1.1 nF when using current TI tools.  
10-3. Signal Connections for 4-Wire JTAG Communication  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
DVCC  
R1  
47 kΩ  
(see Note B)  
JTAG  
VCC TOOL  
VCC TARGET  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or  
programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and  
any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is  
1.1 nF when using current TI tools.  
10-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
10.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function  
Register (SFR), SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge  
sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI.  
When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or  
pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the RST/NMI  
pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-kΩpullup  
resistor to the RST/NMI pin with a 1.1-nF pulldown capacitor. The pulldown capacitor should not exceed 1.1 nF  
when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like  
FET interfaces or GANG programmers.  
See the MSP430FR4xx and MSP430FR2xx Family User's Guide for more information on the referenced control  
registers and bits.  
10.1.5 Unused Pins  
For details on the connection of unused pins, see 7.4.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
10.1.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430 32-kHz  
Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC and reference pins, if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching  
signals such as PWM or JTAG signals away from the oscillator circuit.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
10.1.7 Do's and Don'ts  
During power up, power down, and device operation, DVCC must not exceed the limits specified in 8.1.  
Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and  
FRAM.  
10.2 Peripheral- and Interface-Specific Design Information  
10.2.1 ADC Peripheral  
10.2.1.1 Partial Schematic  
10-5 shows the recommended circuit for ADC grounding and noise reduction.  
DVSS  
Using an external  
VREF+/VEREF+  
positive reference  
+
100 nF  
10 µF  
Using an external  
negative reference  
VEREF-  
+
10 µF  
100 nF  
10-5. ADC Grounding and Noise Considerations  
10.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be  
followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with other  
analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can  
add to or subtract from the reference or input voltages of the ADC. The general guidelines in 10.1.1 combined  
with the connections shown in 10.2.1.1 prevent this.  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital switching or  
switching power supplies can corrupt the conversion result. TI recommends a noise-free design using separate  
analog and digital ground planes with a single-point connection to achieve high accuracy.  
10-5 shows the recommended decoupling circuit when an external voltage reference is used. The internal  
reference module has a maximum drive current as described in the sections ADC Pin Enable and 1.2-V  
Reference Settings of the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-μF capacitor buffers the reference pin and filters low-frequency ripple. A  
100-nF bypass capacitor filters out high-frequency noise.  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.1.3 Layout Guidelines  
Components that are shown in the partial schematic (see 10-5) should be placed as close as possible to the  
respective device pins to avoid long traces, because they add additional parasitic capacitance, inductance, and  
resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because  
the high-frequency switching can be coupled into the analog signal.  
10.2.2 LCD_E Peripheral  
10.2.2.1 Partial Schematic  
Required LCD connections greatly vary by the type of display that is used (static or multiplexed), whether  
external or internal biasing is used, and also whether the on-chip charge pump is employed. For any display  
used, LCD_E has configurable segment (Sx) or common (COMx) signals connected to the MCU which allows  
optimal PCB layout and for the design of the application software.  
Because LCD connections are application specific, it is difficult to provide a single one-fits-all schematic.  
However, for an example of connecting a 4-mux LCD with 27 segment lines that has a total of 4 × 27 = 108  
individually addressable LCD segments to an MSP430FR4133, see the MSP-EXP430FR4133 LaunchPad™  
development kit as a reference.  
10.2.2.2 Design Requirements  
Due to the flexibility of the LCD_E peripheral module to accommodate various segment-based LCDs, selecting  
the right display for the application in combination with determining specific design requirements is often an  
iterative process. There can be well-defined requirements in terms of how many individually addressable LCD  
segments must be controlled, what the requirements for LCD contrast are, which device pins are available for  
LCD use and which are required by other application functions, and what the power budget is, to name just a  
few. TI strongly recommends reviewing the LCD_E peripheral module chapter in the MSP430FR4xx and  
MSP430FR2xx Family User's Guide during the initial design requirements and decision process. 10-1  
provides a brief overview over different choices that can be made and their impact.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
10-1. LCD_E Design Options  
OPTION OR FEATURE  
IMPACT OR USE CASE  
Multiplexed LCD  
Enable displays with more segments  
Use fewer device pins  
LCD contrast decreases as mux level increases  
Power consumption increases with mux level  
Requires multiple intermediate bias voltages  
Static LCD  
Limited number of segments that can be addressed  
Use a relatively large number of device pins  
Use the least amount of power  
Use only VCC and GND to drive LCD signals  
Internal Bias Generation  
External Bias Generation  
Simpler solution no external circuitry  
Independent of VLCD source  
Somewhat higher power consumption  
Requires external resistor ladder divider  
Resistor size depends on display  
Ability to adjust drive strength to optimize tradeoff between power consumption and good drive of large  
segments (high capacitive load)  
External resistor ladder divider can be stabilized through capacitors to reduce ripple  
Internal Charge Pump  
Helps ensure a constant level of contrast despite decaying supply voltage conditions (battery-powered  
applications)  
Programmable voltage levels allow software-driven contrast control  
Requires an external capacitor on the LCDCAP pins  
Higher current consumption than simply using VCC for the LCD driver  
10.2.2.3 Detailed Design Procedure  
A major component in designing the LCD solution is determining the exact connections between the LCD_E  
peripheral module and the display itself. Two basic design processes can be employed for this step, although  
often a balanced co-design approach is recommended:  
PCB layout-driven design  
Software-driven design  
In the PCB layout-driven design process, LCD_E offers configurable segment Sx and common COMx signals  
which are connected to the respective MSP430 device pins so that the routing of the PCB can be optimized to  
minimize signal crossings and to keep signals on one side of the PCB only, typically the top layer. For example,  
using a multiplexed LCD, it is possible to arbitrarily connect the Sx and COMx signals between the LCD and the  
MSP430 device as long as segment lines are swapped with segment lines and common lines are swapped with  
common lines. It is also possible to not contiguously connect all segment lines but rather skip LCD_E module  
segment connections to optimize layout or to allow access to other functions that may be multiplexed on a  
particular device port pin. Employing a purely layout-driven design approach, however, can result in the LCD_E  
module control bits that are responsible for turning on and off segments to appear scattered throughout the  
memory map of the LCD controller (LCDMx registers). This approach potentially places a rather large burden on  
the software design that may also result in increased energy consumption due to the computational overhead  
required to work with the LCD.  
The other extreme is a purely software-driven approach that starts with the idea that control bits for LCD  
segments that are frequently turned on and off together should be co-located in memory in the same LCDMx  
register or in adjacent registers. For example, in case of a 4-mux display that contains several 7-segment digits,  
from a software perspective it can be very desirable to control all 7 segments of each digit though a single byte-  
wide access to an LCDMx register. And consecutive segments are mapped to consecutive LCDMx registers.  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
This allows use of simple look-up tables or software loops to output numbers on an LCD, reducing computational  
overhead and optimizing the energy consumption of an application. Establishing of the most convenient memory  
layout needs to be performed in conjunction with the specific LCD that is being used to understand its design  
constraints in terms of which segment and which common signals are connected to, for example, a digit.  
For design information regarding the LCD controller input voltage selection including internal and external  
options, contrast control, and bias generation, see the LCD_E controller chapter in the MSP430FR4xx and  
MSP430FR2xx Family User's Guide.  
10.2.2.4 Layout Guidelines  
LCD segment (Sx) and common (COMx) signal traces are continuously switching while the LCD is enabled and  
should, therefore, be kept away from sensitive analog signals such as ADC inputs to prevent any noise coupling.  
TI recommends keeping the LCD signal traces on one side of the PCB grouped together in a bus-like fashion. A  
ground plane underneath the LCD traces and guard traces employed alongside the LCD traces can provide  
shielding.  
If the internal charge pump of the LCD module is used, the externally provided capacitor on the LCDCAP0 and  
LCDCAP1 pins should be located as close as possible to the MCU. The capacitor should be connected to the  
device using a short and direct trace.  
For an example layout of connecting a 4-mux LCD with 27 segments to an MSP430FR4133 and using the  
charge pump feature, see the MSP-EXP430FR4133 LaunchPad development kit.  
10.2.3 Timer  
10.2.3.1 Generate Accurate PWM Using Internal Oscillator  
Generating an accurate PWM signal using the device internal oscillator is an important feature for many cost-  
sensitive applications in which an external crystal is not desired. The MSP430FR4133 uses an on-chip 32-kHz  
RC oscillator (REFO) combined with the 16-MHz digitally controlled oscillator (DCO) with frequency-locked loop  
(FLL) to provide the clock source for the timer peripheral to generate the PWM. The REFO frequency may  
change across different temperatures. To achieve improved PWM accuracy, application software may  
periodically measure the device temperature and compute an appropriate timer capture/compare correction  
value to offset for REFO temperature drift. For more information on how to implement this algorithm refer to How  
to Achieve Higher Accuracy Timer with Internal Oscillator on MSP430 . 10-6 shows the absolute value of a  
typical error percentage for a 44-kHz PWM signal over the temperature range.  
The absolute value error percentages shown below can be interpreted as either positive or negative resulting in  
a slightly faster or slower PWM frequency.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
10-6. Calibrated 44-kHz Timer PWM Error Magnitude  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
10.3 Typical Applications  
10-2 lists reference designs that demonstrate use of the MSP430FR413x family of devices in different real-  
world application scenarios. Consult these designs for additional guidance regarding schematic, layout, and  
software implementation. For the most up-to-date list of available reference designs, visit TI reference designs.  
10-2. Reference Designs  
DESIGN NAME  
LINK  
Thermostat Implementation With MSP430FR4xx  
TIDM-FRAM-THERMOSTAT  
Water Meter Implementation With MSP430FR4xx  
TIDM-FRAM-WATERMETER  
TIDM-REMOTE-CONTROLLER-FOR-AC  
Remote Controller of Air Conditioner Using Low-Power Microcontroller  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Getting Started  
For an introduction to the MSP430 family of devices and the tools and libraries that are available to help with  
your development, visit the MSP430™ ultra-low-power sensing & measurement MCUs overview.  
11.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. 11-1 provides a legend for reading the complete device name.  
MSP 430 FR  
4
133  
I
PM  
R
Distribution Format  
Processor Family  
Platform  
Packaging  
Memory Type  
Temperature Range  
Series  
Feature Set  
Processor Family  
Platform  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
430 = TI’s 16-Bit MSP430 Low-Power Microcontroller Platform  
Memory Type  
Series  
FR = FRAM  
4 = FRAM 4 series up to 16 MHz with LCD  
Feature Set  
First and Second Digits: ADC Channels / 16-bit Timers / I/Os Third Digit: FRAM (KB) / SRAM (KB)  
13 = Up to 10 / 3 / Up to 60  
3 = 16 / 2  
2 = 8 / 1  
1 = 4 / 0.5  
Temperature Range  
Packaging  
I = –40°C to 85°C  
http://www.ti.com/packaging  
Distribution Format  
T = Small reel  
R = Large reel  
No marking = Tube or tray  
11-1. Device Nomenclature  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
11.3 Tools and Software  
11-1 lists the debug features supported by the MSP430FR413x microcontrollers. See the Code Composer  
Studio IDE for MSP430 MCUs User's Guide for details on the available features.  
11-1. Hardware Features  
BREAK-  
POINTS  
(N)  
RANGE  
BREAK-  
POINTS  
LPMX.5  
DEBUGGING  
SUPPORT  
MSP430  
ARCHITECTURE  
4-WIRE  
JTAG  
2-WIRE  
JTAG  
CLOCK  
CONTROL SEQUENCER  
STATE  
TRACE  
BUFFER  
MSP430Xv2  
Yes  
Yes  
3
Yes  
Yes  
No  
No  
No  
Design Kits and Evaluation Modules  
MSP430FR4133 LaunchPad Development Kit  
The MSP-EXP430FR4133 LaunchPad development kit is an easy-to-use Evaluation Module (EVM) for the  
MSP430FR4133 microcontroller. It contains everything needed to start developing on the MSP430 ultra-low-  
power (ULP) FRAM-based microcontroller (MCU) platform, including on-board emulation for programming,  
debugging, and energy measurements.  
MSP-TS430PM64D Target Development Board for MSP430FR2x/4x MCUs  
The MSP-TS430PM64D is a stand-alone 64-pin ZIF socket target board used to program and debug the  
MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.  
MSP-FET430U64D Target Development Board (64-pin) and MSP-FET Programmer Bundle for MSP430FR2x/4x  
MCUs  
The MSP-FET430U64D is a bundle containing the MSP-FET emulator and MSP-TS430PM64D 64-pin ZIF  
socket target board to program and debug the MSP430 MCU in-system through the JTAG interface or the Spy  
Bi-Wire (2-wire JTAG) protocol.  
Software  
MSP430WareSoftware  
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all  
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 MCU design resources, MSP430Ware software also includes a high-level API called MSP Driver  
Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a  
component of CCS or as a stand-alone package.  
MSP430FR413x, MSP430FR203x Code Examples  
C code examples are available for every MSP device that configures each of the integrated peripherals for  
various application needs.  
FRAM Embedded Software Utilities for MSP Ultra-Low-Power Microcontrollers  
The TI FRAM Utilities software is designed to grow as a collection of embedded software utilities that leverage  
the ultra-low-power and virtually unlimited write endurance of FRAM. The utilities are available for MSP430FRxx  
FRAM microcontrollers and provide example code to help start application development.  
MSP430 Touch Pro GUI  
The MSP430 Touch Pro Tool is a PC-based tool that can be used to verify capacitive touch button, slider, and  
wheel designs. The tool receives and visualizes captouch sensor data to help the user quickly and easily  
evaluate, diagnose, and tune button, slider, and wheel designs.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
MSP430 Touch Power Designer GUI  
The MSP430 Capacitive Touch Power Designer enables the calculation of the estimated average current draw  
for a given MSP430 capacitive touch system. By entering system parameters such as operating voltage,  
frequency, number of buttons, and button gate time, the user can have a power estimate for a given capacitive  
touch configuration on a given device family in minutes.  
Digital Signal Processing (DSP) Library for MSP Microcontrollers  
The Digital Signal Processing library is a set of highly optimized functions to perform many common signal  
processing operations on fixed-point numbers for MSP430 and MSP432 microcontrollers. This function set is  
typically used for applications where processing-intensive transforms are done in real-time for minimal energy  
and with very high accuracy. This optimal use of the MSP intrinsic hardware for fixed-point math allows for  
significant performance gains.  
MSP Driver Library  
The abstracted API of MSP Driver Library provides easy-to-use function calls that free you from directly  
manipulating the bits and bytes of the MSP430 hardware. Thorough documentation is delivered through a  
helpful API Guide, which includes details on each function call and the recognized parameters. Developers can  
use Driver Library functions to write complete projects with minimal overhead.  
MSP EnergyTrace Technology  
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and  
displays the energy profile of the application and helps to optimize it for ultra-low-power consumption.  
ULP (Ultra-Low Power) Advisor  
ULP Advisorsoftware is a tool for guiding developers to write more efficient code to fully use the unique ultra-  
low-power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller  
developers, ULP Advisor checks your code against a thorough ULP checklist to help minimize the energy  
consumption of your application. At build time, ULP Advisor provides notifications and remarks to highlight areas  
of your code that can be further optimized for lower power.  
Fixed Point Math Library for MSP  
The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical  
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and  
MSP432 devices. These routines are typically used in computationally intensive real-time applications where  
optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath  
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably  
lower than equivalent code written using floating-point math.  
Floating Point Math Library for MSP430  
Continuing to innovate in the low-power and low-cost microcontroller space, TI provides MSPMATHLIB.  
Leveraging the intelligent peripherals of our devices, this floating-point math library of scalar functions is up to 26  
times faster than the standard MSP430 math functions. Mathlib is easy to integrate into your designs. This library  
is free and is integrated in both Code Composer Studio IDE and IAR Embedded Workbench IDE.  
Development Tools  
Code Composer StudioIntegrated Development Environment for MSP Microcontrollers  
Code Composer Studio (CCS) integrated development environment (IDE) supports all MSP microcontroller  
devices. CCS comprises a suite of embedded software utilities used to develop and debug embedded  
applications. CCS includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features.  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
Command-Line Programmer  
MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET  
programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary  
files (.txt or .hex) directly to the MSP microcontroller without an IDE.  
MSP MCU Programmer and Debugger  
The MSP-FET is a powerful emulation development tool often called a debug probe which lets users  
quickly begin application development on MSP low-power MCUs. Creating MCU software usually requires  
downloading the resulting binary program to the MSP device for validation and debugging.  
MSP-GANG Production Programmer  
The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight  
identical MSP430 or MSP432 flash or FRAM devices at the same time. The MSP Gang Programmer connects to  
a host PC using a standard RS-232 or USB connection and provides flexible programming options that let the  
user fully customize the process.  
11.4 Documentation Support  
The following documents describe the MSP430FR413x microcontrollers. Copies of these documents are  
available on the Internet at www.ti.com.  
Receiving Notification of Document Updates  
To receive notification of documentation updatesincluding silicon erratago to the product folder for your  
device on ti.com. In the upper right corner, click the "Alert me" button. This registers you to receive a weekly  
digest of product information that has changed (if any). For change details, check the revision history of any  
revised document.  
Errata  
MSP430FR4133 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430FR4132 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430FR4131 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
User's Guides  
MSP430FR4xx and MSP430FR2xx Family User's Guide  
Detailed description of all modules and peripherals available in this device family.  
MSP430 FRAM Device Bootloader (BSL) User's Guide  
The bootloader (BSL) on MSP430 MCUs lets users communicate with embedded memory in the MSP430 MCU  
during the prototyping phase, final production, and in service. Both the programmable memory (FRAM memory)  
and the data memory (RAM) can be modified as required.  
MSP430 Programming With the JTAG Interface  
This document describes the functions that are required to erase, program, and verify the memory module of the  
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition,  
it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This  
document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG  
interface, which is also referred to as Spy-Bi-Wire (SBW).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
MSP430 Hardware Tools User's Guide  
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the  
program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the  
parallel port interface and the USB interface, are described.  
Application Reports  
MSP430 FRAM Technology How To and Best Practices  
FRAM is a nonvolatile memory technology that behaves similar to SRAM while enabling a whole host of new  
applications, but also changing the way firmware should be designed. This application report outlines the how to  
and best practices of using FRAM technology in MSP430 from an embedded software development perspective.  
It discusses how to implement a memory layout according to application-specific code, constant, data space  
requirements, and the use of FRAM to optimize application energy consumption.  
MSP430 32-kHz Crystal Oscillators  
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal  
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the  
correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout  
are given. The document also contains detailed information on the possible oscillator tests to ensure stable  
oscillator operation in mass production.  
MSP430 System-Level ESD Considerations  
System-level ESD has become increasingly demanding with silicon technology scaling towards lower voltages  
and the need for designing cost-effective and ultra-low-power components. This application report addresses  
three different ESD topics to help board designers and OEMs understand and design robust system-level  
designs.  
11.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
11.6 Trademarks  
LaunchPad, MSP430Ware, MSP430, Code Composer Studio, TI E2E, and ULP Advisorare  
trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.8 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
11.9 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
 
 
MSP430FR4133, MSP430FR4132, MSP430FR4131  
ZHCSDF6F OCTOBER 2014 REVISED DECEMBER 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: MSP430FR4133 MSP430FR4132 MSP430FR4131  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR4131IG48  
MSP430FR4131IG48R  
MSP430FR4131IG56  
MSP430FR4131IG56R  
MSP430FR4131IPMR  
MSP430FR4132IG48  
MSP430FR4132IG48R  
MSP430FR4132IG56  
MSP430FR4132IG56R  
MSP430FR4132IPMR  
MSP430FR4133IG48  
MSP430FR4133IG48R  
MSP430FR4133IG56  
MSP430FR4133IG56R  
MSP430FR4133IPM  
MSP430FR4133IPMR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
LQFP  
DGG  
DGG  
DGG  
DGG  
PM  
48  
48  
56  
56  
64  
48  
48  
56  
56  
64  
48  
48  
56  
56  
64  
64  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR4131  
2000 RoHS & Green  
35 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
FR4131  
FR4131  
FR4131  
FR4131  
FR4132  
FR4132  
FR4132  
FR4132  
FR4132  
FR4133  
FR4133  
FR4133  
FR4133  
FR4133  
FR4133  
2000 RoHS & Green  
1000 RoHS & Green  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
LQFP  
DGG  
DGG  
DGG  
DGG  
PM  
40  
2000 RoHS & Green  
35 RoHS & Green  
RoHS & Green  
2000 RoHS & Green  
1000 RoHS & Green  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
LQFP  
DGG  
DGG  
DGG  
DGG  
PM  
40  
2000 RoHS & Green  
35 RoHS & Green  
2000 RoHS & Green  
160 RoHS & Green  
1000 RoHS & Green  
RoHS & Green  
LQFP  
PM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Dec-2021  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR4131IG48R TSSOP  
MSP430FR4131IPMR LQFP  
DGG  
PM  
48  
64  
48  
56  
64  
56  
64  
2000  
1000  
2000  
2000  
1000  
2000  
1000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
8.6  
13.0  
8.6  
13.0  
13.0  
13.0  
15.6  
13.0  
15.6  
13.0  
1.8  
2.1  
1.8  
1.8  
2.1  
1.8  
2.1  
12.0  
16.0  
12.0  
12.0  
16.0  
12.0  
16.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
Q1  
Q2  
Q1  
Q1  
Q2  
Q1  
Q2  
MSP430FR4132IG48R TSSOP  
MSP430FR4132IG56R TSSOP  
DGG  
DGG  
PM  
8.6  
MSP430FR4132IPMR  
MSP430FR4133IG56R TSSOP  
MSP430FR4133IPMR LQFP  
LQFP  
13.0  
8.6  
DGG  
PM  
13.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR4131IG48R  
MSP430FR4131IPMR  
MSP430FR4132IG48R  
MSP430FR4132IG56R  
MSP430FR4132IPMR  
MSP430FR4133IG56R  
MSP430FR4133IPMR  
TSSOP  
LQFP  
DGG  
PM  
48  
64  
48  
56  
64  
56  
64  
2000  
1000  
2000  
2000  
1000  
2000  
1000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
TSSOP  
TSSOP  
LQFP  
DGG  
DGG  
PM  
TSSOP  
LQFP  
DGG  
PM  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jul-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
MSP430FR4131IG48  
MSP430FR4131IG56  
MSP430FR4132IG48  
MSP430FR4132IG56  
MSP430FR4133IG48  
MSP430FR4133IG56  
DGG  
DGG  
DGG  
DGG  
DGG  
DGG  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
48  
56  
48  
56  
48  
56  
40  
35  
40  
35  
40  
35  
530  
530  
530  
530  
530  
530  
11.89  
11.89  
11.89  
11.89  
11.89  
11.89  
3600  
3600  
3600  
3600  
3600  
3600  
4.9  
4.9  
4.9  
4.9  
4.9  
4.9  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jul-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
MSP430FR4133IPM  
PM  
LQFP  
64  
160  
8 x 20  
150  
315 135.9 7620 15.2  
13.1  
13  
Pack Materials-Page 4  
PACKAGE OUTLINE  
PM0064A  
LQFP - 1.6 mm max height  
SCALE 1.400  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
33  
16  
32  
17  
A
0.27  
0.17  
64X  
60X 0.5  
4X 7.5  
0.08  
C A B  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
1.6 MAX  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215162/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
49  
64  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
33  
16  
17  
32  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215162/A 03/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
16  
33  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4215162/A 03/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DGG0056A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
0
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
54X 0.5  
56  
1
14.1  
13.9  
NOTE 3  
2X  
13.5  
28  
B
29  
0.27  
0.17  
6.2  
6.0  
56X  
1.2 MAX  
0.08  
C A  
B
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.05  
0.75  
0.50  
DETAIL A  
TYPICAL  
4222167/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05)  
TYP  
SYMM  
28  
29  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222167/A 07/2015  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05) TYP  
SYMM  
28  
29  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4222167/A 07/2015  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DGG0048A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
3
5
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
46X 0.5  
48  
1
12.6  
12.4  
NOTE 3  
2X  
11.5  
24  
B
25  
0.27  
0.17  
48X  
6.2  
6.0  
1.2  
1.0  
0.08  
C A B  
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.75  
0.05  
0.50  
DETAIL A  
TYPICAL  
4214859/B 11/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0048A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
48X (1.5)  
SYMM  
1
48  
48X (0.3)  
46X (0.5)  
(R0.05)  
TYP  
SYMM  
24  
25  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214859/B 11/2020  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0048A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
48X (1.5)  
SYMM  
1
48  
48X (0.3)  
46X (0.5)  
SYMM  
(R0.05) TYP  
24  
25  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4214859/B 11/2020  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
MECHANICAL DATA  
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PINS SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY