MSP430FR5733IRHAT [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430FR5733IRHAT
型号: MSP430FR5733IRHAT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器和处理器 外围集成电路 装置 时钟
文件: 总109页 (文件大小:1238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
MIXED SIGNAL MICROCONTROLLER  
1
FEATURES  
23  
Embedded Microcontroller  
eUSCI_A0 and eUSCI_A1 Support:  
16-Bit RISC Architecture up to 24-MHz  
Clock  
UART With Automatic Baud-Rate  
Detection  
Wide Supply Voltage Range (2 V to 3.6 V)  
-40°C to 85°C Operation  
IrDA Encode and Decode  
SPI at Rates up to 10 Mbps  
Optimized Ultra-Low Power Modes  
eUSCI_B0 Supports:  
I2C With Multi-Slave Addressing  
Consumption  
Mode  
SPI at Rates up to 10 Mbps  
(Typical)  
81.4 µA/MHz  
6.3 µA  
Hardware UART or I2C Bootstrap Loader  
(BSL)  
Active Mode  
Standby (LPM3 With VLO)  
Real-Time Clock (LPM3.5 With Crystal)  
Shutdown (LPM4.5)  
Power Management System  
1.5 µA  
0.32 µA  
Fully Integrated LDO  
Supply Voltage Supervisor for Core and  
Supply Voltages With Reset Capability  
Ultra-Low Power Ferroelectric RAM  
Up to 16KB Nonvolatile Memory  
Ultra-Low Power Writes  
Always-On Zero-Power Brownout Detection  
Serial On-Board Programming With No  
External Voltage Needed  
Fast Write at 125 ns per Word (16KB in 1  
ms)  
Flexible Clock System  
Built in Error Coding and Correction (ECC)  
and Memory Protection Unit (MPU)  
Fixed-Frequency DCO With Six Selectable  
Factory-Trimmed Frequencies (Device  
Dependent)  
Universal Memory = Program + Data +  
Storage  
1015 Write Cycle Endurance  
Low-Power Low-Frequency Internal Clock  
Source (VLO)  
Radiation Resistant and Nonmagnetic  
32-kHz Crystals (LFXT)  
Intelligent Digital Peripherals  
High-Frequency Crystals (HFXT)  
32-Bit Hardware Multiplier (MPY)  
Three-Channel Internal DMA  
Development Tools and Software  
Free Professional Development  
Environments (IAR, CCS, GCC)  
Real-Time Clock With Calendar and Alarm  
Functions  
Low-Cost Full-Featured Kit (MSP-  
EXP430FR5739)  
Five 16-Bit Timers With up to Three  
Capture/Compare  
Full Development Kit (MSP-FET430U40A)  
Target Board (MSP-TS430RHA40A)  
16-Bit Cyclic Redundancy Checker (CRC)  
High-Performance Analog  
Family Members  
16-Channel Analog Comparator With  
Voltage Reference and Programmable  
Hysteresis  
20 Different Variants and 5 Available  
Packages Summarized in Table 1 and  
Table 2  
14-Channel 10-Bit Analog-to-Digital  
Converter (ADC) With Internal Reference  
and Sample-and-Hold  
For Complete Module Descriptions, See the  
MSP430FR57xx Family User's Guide  
(SLAU272)  
200 ksps at 100-µA Consumption  
Enhanced Serial Communication  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
MSP430 is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
3
UNLESS OTHERWISE NOTED this document contains  
PRODUCTION DATA information current as of publication date.  
Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
CAUTION  
CAUTION  
These products use FRAM nonvolatile memory technology. FRAM retention is sensitive to extreme temperatures, such  
as those experienced during reflow or hand soldering. See Absolute Maximum Ratings for more information.  
System-level ESD protection must be applied in compliance with the device-level ESD specification to prevent electrical  
overstress or disturb of data or code memory. See the application report MSP430™ System-Level ESD Considerations  
(SLAA530) for more information.  
DESCRIPTION  
The Texas Instruments MSP430FR57xx family of ultralow-power microcontrollers consists of multiple devices  
featuring embedded FRAM nonvolatile memory, ultralow power 16-bit MSP430 CPU, and different peripherals  
targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power  
modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a  
new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and  
reliability of flash, all at lower total power consumption. Peripherals include 10-bit A/D converter, 16-channel  
comparator with voltage reference generation and hysteresis capabilities, three enhanced serial channels  
capable of I2C, SPI, or UART protocols, internal DMA, hardware multiplier, real-time clock, five 16-bit timers, and  
more. The family members that are available are summarized in Table 1.  
Table 1. Family Members  
eUSCI  
System  
Clock  
(MHz)  
Channel  
A:  
UART,  
IrDA, SPI  
FRAM  
(KB)  
SRAM  
(KB)  
Device  
ADC10_B Comp_D Timer_A(1) Timer_B(2)  
I/O  
Package  
Channel  
B:  
SPI, I2C  
32  
30  
RHA  
DA  
12 ext,  
2 int ch.  
MSP430FR5739  
16  
16  
1
1
24  
24  
16 ch.  
3, 3  
3, 3  
3, 3, 3  
2
1
1
1
6 ext, 2 int  
ch.  
10 ch.  
12 ch.  
9 ch.  
17  
21  
16  
RGE  
PW  
8 ext, 2 int  
ch.  
MSP430FR5738  
3
5 ext, 2 int  
ch.  
YFF(3)  
32  
30  
17  
21  
16  
32  
30  
RHA  
DA  
MSP430FR5737  
MSP430FR5736  
MSP430FR5735  
16  
16  
8
1
1
1
24  
24  
24  
16 ch.  
3, 3  
3, 3  
3, 3  
3, 3, 3  
3
2
1
2
1
1
1
10 ch.  
12 ch.  
9 ch.  
RGE  
PW  
YFF(3)  
RHA  
DA  
12 ext,  
2 int ch.  
16 ch.  
3, 3, 3  
6 ext, 2 int  
ch.  
10 ch.  
12 ch.  
17  
21  
RGE  
PW  
MSP430FR5734  
8
1
24  
3, 3  
3
1
1
8 ext, 2 int  
ch.  
32  
30  
17  
21  
32  
30  
RHA  
DA  
MSP430FR5733  
MSP430FR5732  
MSP430FR5731  
8
8
4
1
1
1
24  
24  
24  
16 ch.  
3, 3  
3, 3  
3, 3  
3, 3, 3  
3
2
1
2
1
1
1
10 ch.  
12 ch.  
RGE  
PW  
RHA  
DA  
12 ext,  
2 int ch.  
16 ch.  
3, 3, 3  
(1) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM  
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first  
instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.  
(2) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM  
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first  
instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.  
(3) Product Preview  
2
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
 
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Table 1. Family Members (continued)  
eUSCI  
System  
Clock  
(MHz)  
Channel  
Channel  
FRAM  
(KB)  
SRAM  
(KB)  
Device  
ADC10_B Comp_D Timer_A(1) Timer_B(2)  
I/O  
Package  
A:  
B:  
UART,  
IrDA, SPI  
SPI, I2C  
6 ext, 2 int  
10 ch.  
ch.  
17  
21  
16  
RGE  
PW  
8 ext, 2 int  
MSP430FR5730  
4
1
24  
12 ch.  
9 ch.  
3, 3  
3
1
1
ch.  
5 ext, 2 int  
ch.  
YFF(3)  
32  
30  
RHA  
DA  
12 ext,  
2 int ch.  
MSP430FR5729  
MSP430FR5728  
16  
16  
1
1
8
8
16 ch.  
3, 3  
3, 3  
3, 3, 3  
2
1
1
1
6 ext, 2 int  
ch.  
10 ch.  
12 ch.  
17  
21  
RGE  
PW  
3
8 ext, 2 int  
ch.  
32  
30  
17  
21  
32  
30  
RHA  
DA  
MSP430FR5727  
MSP430FR5726  
MSP430FR5725  
16  
16  
8
1
1
1
8
8
8
16 ch.  
3, 3  
3, 3  
3, 3  
3, 3, 3  
3
2
1
2
1
1
1
10 ch.  
12 ch.  
RGE  
PW  
RHA  
DA  
12 ext,  
2 int ch.  
16 ch.  
3, 3, 3  
6 ext, 2 int  
ch.  
10 ch.  
12 ch.  
17  
21  
RGE  
PW  
MSP430FR5724  
8
1
8
3, 3  
3
1
1
8 ext, 2 int  
ch.  
32  
30  
17  
21  
32  
30  
RHA  
DA  
MSP430FR5723  
MSP430FR5722  
MSP430FR5721  
8
8
4
1
1
1
8
8
8
16 ch.  
3, 3  
3, 3  
3, 3  
3, 3, 3  
3
2
1
2
1
1
1
10 ch.  
12 ch.  
RGE  
PW  
RHA  
DA  
12 ext,  
2 int ch.  
16 ch.  
3, 3, 3  
6 ext, 2 int  
ch.  
10 ch.  
12 ch.  
17  
21  
RGE  
PW  
MSP430FR5720  
4
1
8
3, 3  
3
1
1
8 ext, 2 int  
ch.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 2. Ordering Information(1)  
PACKAGED DEVICES(2)  
PLASTIC 40-PIN  
VQFN  
PLASTIC 24-PIN  
PLASTIC 38-PIN  
PLASTIC 28-PIN  
TSSOP  
PLASTIC 25-BALL  
DSBGA  
TA  
VQFN  
(RGE)  
TSSOP  
(DA)  
(RHA)  
(PW)  
(YFF)(3)  
MSP430FR5721IRHA  
MSP430FR5723IRHA  
MSP430FR5725IRHA  
MSP430FR5727IRHA  
MSP430FR5729IRHA  
MSP430FR5731IRHA  
MSP430FR5733IRHA  
MSP430FR5735IRHA  
MSP430FR5737IRHA  
MSP430FR5739IRHA  
MSP430FR5720IRGE  
MSP430FR5722IRGE  
MSP430FR5724IRGE  
MSP430FR5726IRGE  
MSP430FR5728IRGE  
MSP430FR5730IRGE  
MSP430FR5732IRGE  
MSP430FR5734IRGE  
MSP430FR5736IRGE  
MSP430FR5738IRGE  
MSP430FR5721IDA  
MSP430FR5723IDA  
MSP430FR5725IDA  
MSP430FR5727IDA  
MSP430FR5729IDA  
MSP430FR5731IDA  
MSP430FR5733IDA  
MSP430FR5735IDA  
MSP430FR5737IDA  
MSP430FR5739IDA  
MSP430FR5720IPW  
MSP430FR5722IPW  
MSP430FR5724IPW  
MSP430FR5726IPW  
MSP430FR5728IPW  
MSP430FR5730IPW  
MSP430FR5732IPW  
MSP430FR5734IPW  
MSP430FR5736IPW  
MSP430FR5738IPW  
MSP430FR5730IYFF(3)  
MSP430FR5736IYFF(3)  
MSP430FR5738IYFF(3)  
–40°C to  
85°C  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/packaging.  
(3) Product Preview  
4
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Functional Block Diagram –  
MSP430FR5721IRHA, MSP430FR5725IRHA, MSP430FR5729IRHA,  
MSP430FR5731IRHA, MSP430FR5735IRHA, MSP430FR5739IRHA  
PA  
PB  
PJ.4/XIN  
PJ.5/XOUT  
DVCC DVSS VCORE AVCC AVSS  
P1.x P2.x P3.x P4.x  
16 KB  
(’5739, ’5729)  
I/O Ports  
P1/P2  
2×8 I/Os  
I/O Ports  
P3/P4  
ACLK  
SMCLK  
SYS  
8 KB  
(’5735, ‘5725)  
Clock  
System  
Power  
Management  
1×8 I/Os  
1x 2 I/Os  
Interrupt  
& Wakeup  
PB  
1 KB  
Boot  
ROM  
4 KB  
(’5731, ‘5721)  
Watchdog  
REF  
Interrupt  
& Wakeup  
PA  
SVS  
FRAM  
RAM  
MCLK  
Memory  
Protection  
Unit  
1×16 I/Os  
1×10 I/Os  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
eUSCI_A0: eUSCI_A1:  
UART,  
IrDA, SPI  
TA0  
TA1  
TB0  
TB1  
TB2  
ADC10_B  
UART,  
IrDA, SPI  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO  
JTAG/  
SBW  
Interface  
10 Bit  
200KSPS  
Comp_D  
RTC_B  
MPY32  
CRC  
eUSCI_B0:  
SPI, I2C  
(2) Timer_A (3) Timer_B  
3 CC  
Registers  
16 channels  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
3 CC  
Registers  
16 channels  
(12 ext/2 int)  
Functional Block Diagram –  
MSP430FR5723IRHA, MSP430FR5727IRHA,  
MSP430FR5733IRHA, MSP430FR5737IRHA  
PA  
PB  
PJ.4/XIN  
PJ.5/XOUT  
DVCC DVSS VCORE AVCC AVSS  
P1.x P2.x P3.x P4.x  
16 KB  
(’5737, ’5727)  
I/O Ports  
P1/P2  
2×8 I/Os  
I/O Ports  
P3/P4  
ACLK  
SMCLK  
SYS  
8 KB  
(’5733, ‘5723)  
Clock  
System  
Power  
Management  
1×8 I/Os  
1x 2 I/Os  
Interrupt  
& Wakeup  
PB  
1 KB  
Boot  
ROM  
Watchdog  
Interrupt  
& Wakeup  
PA  
SVS  
FRAM  
RAM  
MCLK  
Memory  
Protection  
Unit  
1×16 I/Os  
1×10 I/Os  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
TA0  
TA1  
TB0  
TB1  
TB2  
eUSCI_A0:  
UART,  
IrDA, SPI  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO  
JTAG/  
SBW  
Interface  
eUSCI_A1:  
UART,  
IrDA, SPI  
Comp_D  
RTC_B  
MPY32  
CRC  
REF  
(2) Timer_A (3) Timer_B  
3 CC  
Registers  
16 channels  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
eUSCI_B0:  
SPI, I2C  
3 CC  
Registers  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Pin Designation –  
MSP430FR5721IRHA, MSP430FR5723IRHA, MSP430FR5725IRHA, MSP430FR5727IRHA,  
MSP430FR5729IRHA,  
MSP430FR5731IRHA, MSP430FR5733IRHA, MSP430FR5735IRHA, MSP430FR5737IRHA,  
MSP430FR5739IRHA  
RHA PACKAGE  
(TOP VIEW)  
AVSS  
PJ.4/XIN  
PJ.5/XOUT  
AVSS  
P2.4/TA1.0/UCA1CLK/A7*/CD11  
P2.3/TA0.0/UCA1STE/A6*/CD10  
P2.7  
DVCC  
DVSS  
AVCC  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*  
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*  
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2  
P3.0/A12*/CD12  
VCORE  
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0  
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0  
MSP430FR5721  
MSP430FR5723  
MSP430FR5725  
MSP430FR5727  
MSP430FR5729  
MSP430FR5731  
MSP430FR5733  
MSP430FR5735  
MSP430FR5737  
MSP430FR5739  
3
4
P3.7/TB2.2  
P3.6/TB2.1/TB1CLK  
P3.5/TB1.2/CDOUT  
5
P3.1/A13*/CD13  
P3.2/A14*/CD14  
P3.3/A15*/CD15  
6
7
P3.4/TB1.1/TB2CLK/SMCLK  
P2.2/TB2.2/UCB0CLK/TB1.0  
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0  
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK  
8
P1.3/TA1.2/UCB0STE/A3*/CD3  
P1.4/TB0.1/UCA0STE/A4*/CD4  
P1.5/TB0.2/UCA0CLK/A5*/CD5  
9
10  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO/TB0OUTH/SMCLK/CD6  
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7  
PJ.2/TMS/TB2OUTH/ACLK/CD8  
PJ.3/TCK/CD9  
P2.6/TB1.0/UCA1RXD/UCA1SOMI  
P2.5/TB0.0/UCA1TXD/UCA1SIMO  
P4.1  
P4.0/TB2.0  
* Not available on MSP430FR5737, MSP430FR5733, MSP430FR5727, MSP430FR5723  
Note: Power Pad connection to VSS recommended.  
6
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Functional Block Diagram –  
MSP430FR5721IDA, MSP430FR5725IDA, MSP430FR5729IDA,  
MSP430FR5731IDA, MSP430FR5735IDA, MSP430FR5739IDA  
PA  
PB  
P3.x  
PJ.4/XIN  
PJ.5/XOUT  
DVCC DVSS VCORE AVCC AVSS  
P1.x P2.x  
16 KB  
(’5739, ’5729)  
I/O Ports  
P1/P2  
2×8 I/Os  
I/O Ports  
P3  
1×8 I/Os  
ACLK  
SMCLK  
SYS  
8 KB  
(’5735, ‘5725)  
Clock  
System  
Power  
Management  
1 KB  
Boot  
ROM  
4 KB  
(’5731, ‘5721)  
Watchdog  
REF  
Interrupt  
& Wakeup  
PA  
Interrupt  
& Wakeup  
PB  
SVS  
FRAM  
RAM  
MCLK  
Memory  
Protection  
Unit  
1×16 I/Os  
1×8 I/Os  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
eUSCI_A0: eUSCI_A1:  
UART,  
IrDA, SPI  
TA0  
TA1  
TB0  
TB1  
TB2  
ADC10_B  
UART,  
IrDA, SPI  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO  
JTAG/  
SBW  
Interface  
10 Bit  
200KSPS  
Comp_D  
RTC_B  
MPY32  
CRC  
eUSCI_B0:  
SPI, I2C  
(2) Timer_A (3) Timer_B  
3 CC  
Registers  
16 channels  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
3 CC  
Registers  
16 channels  
(12 ext/2 int)  
Functional Block Diagram –  
MSP430FR5723IDA, MSP430FR5727IDA,  
MSP430FR5733IDA, MSP430FR5737IDA  
PA  
PB  
PJ.4/XIN  
PJ.5/XOUT  
DVCC DVSS VCORE AVCC AVSS  
P1.x P2.x  
P3.x  
16 KB  
(’5737, ’5727)  
I/O Ports  
P1/P2  
2×8 I/Os  
I/O Ports  
P3  
1×8 I/Os  
ACLK  
SMCLK  
SYS  
8 KB  
(’5733, ‘5723)  
Clock  
System  
Power  
Management  
1 KB  
Boot  
ROM  
Watchdog  
Interrupt  
& Wakeup  
PA  
Interrupt  
& Wakeup  
PB  
SVS  
FRAM  
RAM  
MCLK  
Memory  
Protection  
Unit  
1×16 I/Os  
1×8 I/Os  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
TA0  
TA1  
TB0  
TB1  
TB2  
eUSCI_A0:  
UART,  
IrDA, SPI  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO  
JTAG/  
SBW  
Interface  
eUSCI_A1:  
UART,  
IrDA, SPI  
Comp_D  
RTC_B  
MPY32  
CRC  
REF  
(2) Timer_A (3) Timer_B  
3 CC  
Registers  
16 channels  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
eUSCI_B0:  
SPI, I2C  
3 CC  
Registers  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Pin Designation –  
MSP430FR5721IDA, MSP430FR5723IDA, MSP430FR5725IDA, MSP430FR5727IDA,  
MSP430FR5729IDA,  
MSP430FR5731IDA, MSP430FR5733IDA, MSP430FR5735IDA, MSP430FR5737IDA,  
MSP430FR5739IDA  
DA PACKAGE  
(TOP VIEW)  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
PJ.4/XIN  
AVSS  
2
PJ.5/XOUT  
P2.4/TA1.0/UCA1CLK/A7*/CD11  
P2.3/TA0.0/UCA1STE/A6*/CD10  
3
AVSS  
AVCC  
4
P2.7  
5
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*  
DVCC  
DVSS  
VCORE  
MSP430FR5721  
MSP430FR5723  
MSP430FR5725  
MSP430FR5727  
MSP430FR5729  
6
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*  
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2  
7
8
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0  
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0  
P3.0/A12*/CD12  
P3.1/A13*/CD13  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P3.2/A14*/CD14  
P3.7/TB2.2  
MSP430FR5731  
MSP430FR5733  
MSP430FR5735  
MSP430FR5737  
MSP430FR5739  
P3.3/A15*/CD15  
P3.6/TB2.1/TB1CLK  
P3.5/TB1.2/CDOUT  
P1.3/TA1.2/UCB0STE/A3*/CD3  
P1.4/TB0.1/UCA0STE/A4*/CD4  
P1.5/TB0.2/UCA0CLK/A5*/CD5  
PJ.0/TDO/TB0OUTH/SMCLK/CD6  
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7  
PJ.2/TMS/TB2OUTH/ACLK/CD8  
PJ.3/TCK/CD9  
P3.4/TB1.1/TB2CLK/SMCLK  
P2.2/TB2.2/UCB0CLK/TB1.0  
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0  
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P2.5/TB0.0/UCA1TXD/UCA1SIMO  
P2.6/TB1.0/UCA1RXD/UCA1SOMI  
* Not available on MSP430FR5737, MSP430FR5733, MSP430FR5727, MSP430FR5723  
8
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Functional Block Diagram –  
MSP430FR5720IRGE, MSP430FR5724IRGE, MSP430FR5728IRGE,  
MSP430FR5730IRGE, MSP430FR5734IRGE, MSP430FR5738IRGE  
PA  
PJ.4/XIN  
PJ.5/XOUT  
DVCC DVSS VCORE AVCC AVSS  
P1.x P2.x  
16 KB  
(’5738, ’5728)  
I/O Ports  
P1/P2  
1×8 I/Os  
1×3 I/Os  
ACLK  
SMCLK  
SYS  
8 KB  
(’5734, ‘5724)  
Clock  
System  
Power  
Management  
1 KB  
Boot  
ROM  
4 KB  
(’5730, ‘5720)  
Watchdog  
REF  
SVS  
Interrupt  
& Wakeup  
PA  
FRAM  
RAM  
MCLK  
Memory  
Protection  
Unit  
1×11 I/Os  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
eUSCI_A0:  
UART,  
IrDA, SPI  
TA0  
TA1  
TB0  
ADC10_B  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO  
JTAG/  
SBW  
Interface  
10 Bit  
200KSPS  
Comp_D  
RTC_B  
MPY32  
CRC  
eUSCI_B0:  
SPI, I2C  
(2) Timer_A (1) Timer_B  
3 CC  
Registers  
10 channels  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
3 CC  
Registers  
8 channels  
(6 ext/2 int)  
Functional Block Diagram –  
MSP430FR5722IRGE, MSP430FR5726IRGE,  
MSP430FR5732IRGE, MSP430FR5736IRGE  
PA  
PJ.4/XIN  
PJ.5/XOUT  
DVCC DVSS VCORE AVCC AVSS  
P1.x P2.x  
16 KB  
(’5736, ’5726)  
I/O Ports  
P1/P2  
1×8 I/Os  
1×3 I/Os  
ACLK  
SMCLK  
SYS  
8 KB  
(’5732, ‘5722)  
Clock  
System  
Power  
Management  
1 KB  
Boot  
ROM  
Watchdog  
SVS  
Interrupt  
& Wakeup  
PA  
FRAM  
RAM  
MCLK  
Memory  
Protection  
Unit  
1×11 I/Os  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
TA0  
TA1  
TB0  
eUSCI_A0:  
UART,  
IrDA, SPI  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO  
JTAG/  
SBW  
Interface  
Comp_D  
RTC_B  
MPY32  
CRC  
REF  
(2) Timer_A (1) Timer_B  
3 CC  
Registers  
10 channels  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
eUSCI_B0:  
SPI, I2C  
3 CC  
Registers  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Pin Designation –  
MSP430FR5720IRGE, MSP430FR5722IRGE, MSP430FR5724IRGE, MSP430FR5726IRGE,  
MSP430FR5728IRGE,  
MSP430FR5730IRGE, MSP430FR5732IRGE, MSP430FR5734IRGE, MSP430FR5736IRGE,  
MSP430FR5738IRGE  
RGE PACKAGE  
(TOP VIEW)  
PJ.5/XOUT  
AVSS  
AVCC  
PJ.4/XIN  
DVCC  
DVSS  
1
2
3
4
5
6
MSP430FR5720  
MSP430FR5722  
MSP430FR5724  
MSP430FR5726  
MSP430FR5728  
MSP430FR5730  
MSP430FR5732  
MSP430FR5734  
MSP430FR5736  
MSP430FR5738  
18  
VCORE  
17 P1.7/UCB0SOMI/UCB0SCL/TA1.0  
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*  
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*  
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2  
P1.3/TA1.2/UCB0STE/A3*/CD3  
16  
P1.6/UCB0SIMO/UCB0SDA/TA0.0  
15  
P2.2/UCB0CLK  
P2.1/UCA0RXD/UCA0SOMI/TB0.0  
P2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK  
14  
P1.4/TB0.1/UCA0STE/A4*/CD4  
13  
P1.5/TB0.2/UCA0CLK/A5*/CD5  
PJ.0/TDO/TB0OUTH/SMCLK/CD6  
PJ.1/TDI/TCLK/MCLK/CD7  
PJ.2/TMS/ACLK/CD8  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.3/TCK/CD9  
* Not available on MSP430FR5736, MSP430FR5732, MSP430FR5726, MSP430FR5722  
Note: Power Pad connection to VSS recommended.  
10  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Pin Designation –  
MSP430FR5730IYFF, MSP430FR5736IYFF, MSP430FR5738IYFF  
YFF PACKAGE  
(TOP VIEW)  
NC1  
P1.1  
P1.3  
P1.2  
P1.5  
A1  
A2  
A3  
A4  
A5  
PJ.5  
AVCC AVSS  
P1.4  
PJ.1  
B1  
B2  
B3  
B4  
B5  
PJ.4  
AVSS  
PJ.2  
PJ.3  
PJ.0  
C1  
C2  
C4  
C5  
C3  
DVCC DVSS  
D1 D2  
P2.1 RST/NMI TEST  
D3  
D4  
D5  
VCORE P1.6  
E1 E2  
P1.7  
P2.2  
P2.0  
E3  
E4  
E5  
1
NC (no connect). This ball must be attached but remain floating (no electrical connection).  
P1.0 must be initialized properly to avoid the floating input of the device.  
Package Dimensions: The package dimensions for the YFF package are shown in Table 3. See the package  
drawing at the end of this data sheet for more details.  
Table 3. YFF Package Dimensions  
PACKAGED DEVICES  
MSP430FR5738IYFF  
MSP430FR5736IYFF  
MSP430FR5730IYFF  
D
E
2.04 ± 0.03  
2.24 ± 0.03  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
 
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Functional Block Diagram –  
MSP430FR5720IPW, MSP430FR5724IPW, MSP430FR5728IPW,  
MSP430FR5730IPW, MSP430FR5734IPW, MSP430FR5738IPW  
PA  
PJ.4/XIN  
PJ.5/XOUT  
DVCC DVSS VCORE AVCC AVSS  
P1.x P2.x  
16 KB  
(’5738, ’5728)  
I/O Ports  
P1/P2  
1×8 I/Os  
1×7 I/Os  
ACLK  
SMCLK  
SYS  
8 KB  
(’5734, ‘5724)  
Clock  
System  
Power  
Management  
1 KB  
Boot  
ROM  
4 KB  
(’5730, ‘5720)  
Watchdog  
REF  
SVS  
Interrupt  
& Wakeup  
PA  
FRAM  
RAM  
MCLK  
Memory  
Protection  
Unit  
1×15 I/Os  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
eUSCI_A0:  
UART,  
IrDA, SPI  
TA0  
TA1  
TB0  
ADC10_B  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO  
JTAG/  
SBW  
Interface  
10 Bit  
200KSPS  
Comp_D  
RTC_B  
MPY32  
CRC  
eUSCI_B0:  
SPI, I2C  
(2) Timer_A (1) Timer_B  
3 CC  
Registers  
12 channels  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
3 CC  
Registers  
12 channels  
(8 ext/2 int)  
Functional Block Diagram –  
MSP430FR5722IPW, MSP430FR5726IPW,  
MSP430FR5732IPW, MSP430FR5736IPW  
PA  
PJ.4/XIN  
PJ.5/XOUT  
DVCC DVSS VCORE AVCC AVSS  
P1.x P2.x  
16 KB  
(’5736, ’5726)  
I/O Ports  
P1/P2  
1×8 I/Os  
1×7 I/Os  
ACLK  
SMCLK  
SYS  
8 KB  
(’5732, ‘5722)  
Clock  
System  
Power  
Management  
1 KB  
Boot  
ROM  
Watchdog  
SVS  
Interrupt  
& Wakeup  
PA  
FRAM  
RAM  
MCLK  
Memory  
Protection  
Unit  
1×15 I/Os  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S: 3+1)  
TA0  
TA1  
TB0  
eUSCI_A0:  
UART,  
IrDA, SPI  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
PJ.0/TDO  
JTAG/  
SBW  
Interface  
Comp_D  
RTC_B  
MPY32  
CRC  
REF  
(2) Timer_A (1) Timer_B  
3 CC  
Registers  
12 channels  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
eUSCI_B0:  
SPI, I2C  
3 CC  
Registers  
12  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Pin Designation –  
MSP430FR5720IPW, MSP430FR5722IPW, MSP430FR5724IPW, MSP430FR5726IPW,  
MSP430FR5728IPW,  
MSP430FR5730IPW, MSP430FR5732IPW, MSP430FR5734IPW, MSP430FR5736IPW,  
MSP430FR5738IPW  
PW PACKAGE  
(TOP VIEW)  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
PJ.4/XIN  
P2.4/TA1.0/A7*/CD11  
2
PJ.5/XOUT  
P2.3/TA0.0/A6*/CD10  
DVCC  
3
AVSS  
AVCC  
MSP430FR5738  
MSP430FR5736  
MSP430FR5734  
MSP430FR5732  
MSP430FR5730  
4
DVSS  
5
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*  
VCORE  
P1.7/UCB0SOMI/UCB0SCL/TA1.0  
P1.6/UCB0SIMO/UCB0SDA/TA0.0  
6
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*  
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2  
7
8
P1.3/TA1.2/UCB0STE/A3*/CD3  
P1.4/TB0.1/UCA0STE/A4*/CD4  
P1.5/TB0.2/UCA0CLK/A5*/CD5  
PJ.0/TDO/TB0OUTH/SMCLK/CD6  
PJ.1/TDI/TCLK/MCLK/CD7  
P2.2/UCB0CLK  
P2.1/UCA0RXD/UCA0SOMI/TB0.0  
P2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK  
MSP430FR5728  
MSP430FR5726  
MSP430FR5724  
9
10  
11  
12  
13  
14  
MSP430FR5722 18  
MSP430FR5720  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P2.6  
17  
PJ.2/TMS/ACLK/CD8  
16  
15  
P2.5/TB0.0  
PJ.3/TCK/CD9  
* Not available on MSP430FR5736, MSP430FR5732, MSP430FR5726, MSP430FR5722  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 4. Terminal Functions  
TERMINAL  
(1)  
NO.  
I/O  
DESCRIPTION  
NAME  
RHA RGE  
DA  
PW  
YFF  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
TA0 CCR1 capture: CCI1A input, compare: Out1  
External DMA trigger  
P1.0/TA0.1/DMAE0/  
RTCCLK/A0/CD0/VeREF-  
(2)  
1
1
5
5
I/O  
RTC clock calibration output  
Analog input A0 – ADC (not available on devices without ADC)  
Comparator_D input CD0  
External applied reference voltage (not available on devices without  
ADC)  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
TA0 CCR2 capture: CCI2A input, compare: Out2  
TA1 input clock  
P1.1/TA0.2/TA1CLK/  
CDOUT/A1/CD1/VeREF+  
2
2
6
6
A2  
I/O  
Comparator_D output  
Analog input A1 – ADC (not available on devices without ADC)  
Comparator_D input CD1  
Input for an external reference voltage to the ADC (not available on  
devices without ADC)  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
TA1 CCR1 capture: CCI1A input, compare: Out1  
TA0 input clock  
P1.2/TA1.1/TA0CLK/  
CDOUT/A2/CD2  
3
3
7
7
A3  
I/O  
Comparator_D output  
Analog input A2 – ADC (not available on devices without ADC)  
Comparator_D input CD2  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5 (not available on package options PW, RGE)  
Analog input A12 – ADC (not available on devices without ADC or  
package options PW, RGE)  
P3.0/A12/CD12  
P3.1/A13/CD13  
P3.2/A14/CD14  
P3.3/A15/CD15  
4
5
6
7
N/A  
N/A  
N/A  
N/A  
8
9
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
I/O  
I/O  
I/O  
I/O  
Comparator_D input CD12 (not available on package options PW,  
RGE)  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5 (not available on package options PW, RGE)  
Analog input A13 – ADC (not available on devices without ADC or  
package options PW, RGE)  
Comparator_D input CD13 (not available on package options PW,  
RGE)  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5 (not available on package options PW, RGE)  
Analog input A14 – ADC (not available on devices without ADC or  
package options PW, RGE)  
10  
11  
Comparator_D input CD14 (not available on package options PW,  
RGE)  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5 (not available on package options PW, RGE)  
Analog input A15 – ADC (not available on devices without ADC or  
package options PW, RGE)  
Comparator_D input CD15 (not available on package options PW,  
RGE)  
(1) I = input, O = output, N/A = not available  
(2) The functions associated with P1.0 are implemented but not available on the device pinout. To avoid floating inputs, this digital I/O  
should be properly configured. The pullup/down resistors of P1.0 should be enabled.  
14  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Table 4. Terminal Functions (continued)  
TERMINAL  
(1)  
NO.  
DA  
I/O  
DESCRIPTION  
NAME  
RHA RGE  
PW  
YFF  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
TA1 CCR2 capture: CCI2A input, compare: Out2  
Slave transmit enable – eUSCI_B0 SPI mode  
Analog input A3 – ADC (not available on devices without ADC)  
Comparator_D input CD3  
P1.3/TA1.2/UCB0STE/  
A3/CD3  
8
4
12  
8
A4  
I/O  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
TB0 CCR1 capture: CCI1A input, compare: Out1  
Slave transmit enable – eUSCI_A0 SPI mode  
Analog input A4 – ADC (not available on devices without ADC)  
Comparator_D input CD4  
P1.4/TB0.1/UCA0STE/  
A4/CD4  
9
5
13  
9
B4  
I/O  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
TB0 CCR2 capture: CCI2A input, compare: Out2  
P1.5/TB0.2/UCA0CLK/  
A5/CD5  
10  
6
14  
10  
A5  
I/O  
Clock signal input – eUSCI_B0 SPI slave mode, Clock signal  
output – eUSCI_B0 SPI master mode  
Analog input A5 – ADC (not available on devices without ADC)  
Comparator_D input CD5  
General-purpose digital I/O  
Test data output port  
PJ.0/TDO/TB0OUTH/  
SMCLK/CD6  
11  
12  
7
8
15  
16  
11  
12  
C3  
B5  
I/O  
I/O  
(3)  
Switch all PWM outputs high impedance input – TB0  
SMCLK output  
Comparator_D input CD6  
General-purpose digital I/O  
Test data input or test clock input  
PJ.1/TDI/TCLK/TB1OUTH/  
Switch all PWM outputs high impedance input – TB1 (not available  
on devices without TB1)  
(3)  
MCLK/CD7  
MCLK output  
Comparator_D input CD7  
General-purpose digital I/O  
Test mode select  
PJ.2/TMS/TB2OUTH/  
ACLK/CD8  
Switch all PWM outputs high impedance input – TB2 (not available  
on devices without TB2)  
13  
14  
9
17  
18  
13  
14  
C4  
C5  
I/O  
I/O  
(3)  
ACLK output  
Comparator_D input CD8  
General-purpose digital I/O  
Test clock  
(3)  
PJ.3/TCK/CD9  
10  
Comparator_D input CD9  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5 (not available on package options PW, RGE)  
P4.0/TB2.0  
P4.1  
15  
16  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
I/O  
I/O  
TB2 CCR0 capture: CCI0B input, compare: Out0 (not available on  
devices without TB2 or package options DA, PW, RGE)  
General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not  
available on package options DA, PW, RGE)  
(3) See JTAG Operation for use with JTAG function.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 4. Terminal Functions (continued)  
TERMINAL  
(1)  
NO.  
I/O  
DESCRIPTION  
NAME  
RHA RGE  
DA  
PW  
YFF  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
P2.5/TB0.0/UCA1TXD/  
UCA1SIMO  
17  
18  
N/A  
19  
15  
N/A  
I/O  
TB0 CCR0 capture: CCI0A input, compare: Out0  
Transmit data – eUSCI_A1 UART mode, Slave in, master out –  
eUSCI_A1 SPI mode (not available on devices without UCSI_A1)  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
P2.6/TB1.0/UCA1RXD/  
UCA1SOMI  
TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on  
devices without TB1)  
N/A  
20  
16  
N/A  
I/O  
Receive data – eUSCI_A1 UART mode, Slave out, master in –  
eUSCI_A1 SPI mode (not available on devices without UCSI_A1)  
Test mode pin – enable JTAG pins  
Spy-Bi-Wire input clock  
(3) (4)  
TEST/SBWTCK  
19  
20  
11  
12  
21  
22  
17  
18  
D5  
D4  
I
Reset input active low  
(3) (4)  
RST/NMI/SBWTDIO  
I/O  
Non-maskable interrupt input  
Spy-Bi-Wire data input/output  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
TB2 CCR0 capture: CCI0A input, compare: Out0 (not available on  
devices without TB2)  
P2.0/TB2.0/UCA0TXD/  
UCA0SIMO/TB0CLK/ACLK  
21  
13  
23  
19  
E5  
I/O  
(4)  
Transmit data – eUSCI_A0 UART mode, Slave in, master out –  
eUSCI_A0 SPI mode  
TB0 clock input  
ACLK output  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
TB2 CCR1 capture: CCI1A input, compare: Out1 (not available on  
devices without TB2)  
P2.1/TB2.1/UCA0RXD/  
UCA0SOMI/TB0.0  
22  
23  
24  
14  
24  
25  
26  
20  
D3  
I/O  
I/O  
I/O  
(5)  
Receive data – eUSCI_A0 UART mode, Slave out, master in –  
eUSCI_A0 SPI mode  
TB0 CCR0 capture: CCI0A input, compare: Out0  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
TB2 CCR2 capture: CCI2A input, compare: Out2 (not available on  
devices without TB2)  
P2.2/TB2.2/UCB0CLK/ TB1.0  
15  
21  
E4  
Clock signal input – eUSCI_B0 SPI slave mode, Clock signal  
output – eUSCI_B0 SPI master mode  
TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on  
devices without TB1)  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5 (not available on package options PW, RGE)  
TB1 CCR1 capture: CCI1B input, compare: Out1 (not available on  
devices without TB1)  
P3.4/TB1.1/TB2CLK/ SMCLK  
N/A  
N/A  
N/A  
TB2 clock input (not available on devices without TB2 or package  
options PW, RGE)  
SMCLK output (not available on package options PW, RGE)  
(4) See Bootstrap Loader (BSL) and JTAG Operation for use with BSL and JTAG functions.  
(5) See Bootstrap Loader (BSL) and JTAG Operation for use with BSL and JTAG functions.  
16  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Table 4. Terminal Functions (continued)  
TERMINAL  
(1)  
NO.  
DA  
I/O  
DESCRIPTION  
NAME  
RHA RGE  
PW  
YFF  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5 (not available on package options PW, RGE)  
P3.5/TB1.2/CDOUT  
25  
N/A  
27  
N/A  
N/A  
I/O  
TB1 CCR2 capture: CCI2B input, compare: Out2 (not available on  
devices without TB1)  
Comparator_D output (not available on package options PW, RGE)  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5 (not available on package options PW, RGE)  
TB2 CCR1 capture: CCI1B input, compare: Out1 (not available on  
devices without TB2)  
P3.6/TB2.1/TB1CLK  
26  
27  
N/A  
N/A  
28  
29  
N/A  
N/A  
N/A  
N/A  
I/O  
I/O  
TB1 clock input (not available on devices without TB1 or package  
options PW, RGE)  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5 (not available on package options PW, RGE)  
P3.7/TB2.2  
TB2 CCR2 capture: CCI2B input, compare: Out2 (not available on  
devices without TB2 or package options PW, RGE)  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
TB1 CCR1 capture: CCI1A input, compare: Out1 (not available on  
devices without TB1)  
P1.6/TB1.1/UCB0SIMO/  
UCB0SDA/TA0.0  
28  
16  
30  
22  
E2  
I/O  
Slave in, master out – eUSCI_B0 SPI mode  
I2C data – eUSCI_B0 I2C mode  
TA0 CCR0 capture: CCI0A input, compare: Out0  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5  
TB1 CCR2 capture: CCI2A input, compare: Out2 (not available on  
devices without TB1)  
P1.7/TB1.2/UCB0SOMI/  
UCB0SCL/TA1.0  
29  
17  
31  
23  
E3  
I/O  
Slave out, master in – eUSCI_B0 SPI mode  
I2C clock – eUSCI_B0 I2C mode  
TA1 CCR0 capture: CCI0A input, compare: Out0  
Regulated core power supply (internal use only, no external current loading)  
Digital ground supply  
(6)  
VCORE  
30  
31  
32  
18  
19  
20  
32  
33  
34  
24  
25  
26  
E1  
D2  
D1  
DVSS  
DVCC  
Digital power supply  
General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not  
available on package options PW, RGE)  
P2.7  
33  
N/A  
35  
N/A  
N/A  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5 (not available on package options RGE)  
TA0 CCR0 capture: CCI0B input, compare: Out0 (not available on  
package options RGE)  
P2.3/TA0.0/UCA1STE/  
A6/CD10  
34  
N/A  
36  
27  
N/A  
Slave transmit enable – eUSCI_A1 SPI mode (not available on  
devices without eUSCI_A1)  
Analog input A6 – ADC (not available on devices without ADC)  
Comparator_D input CD10 (not available on package options RGE)  
General-purpose digital I/O with port interrupt and wake up from  
LPMx.5 (not available on package options RGE)  
TA1 CCR0 capture: CCI0B input, compare: Out0 (not available on  
package options RGE)  
P2.4/TA1.0/UCA1CLK/  
A7/CD11  
35  
N/A  
37  
28  
N/A  
I/O  
Clock signal input – eUSCI_A1 SPI slave mode, Clock signal  
output – eUSCI_A1 SPI master mode (not available on devices  
without eUSCI_A1)  
Analog input A7 – ADC (not available on devices without ADC)  
Comparator_D input CD11 (not available on package options RGE)  
(6) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended  
capacitor value, CVCORE  
.
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 4. Terminal Functions (continued)  
TERMINAL  
(1)  
NO.  
I/O  
DESCRIPTION  
NAME  
RHA RGE  
DA  
PW  
YFF  
AVSS  
36  
N/A  
38  
N/A  
B3  
Analog ground supply  
General-purpose digital I/O  
PJ.4/XIN  
37  
21  
1
2
1
2
C1  
B1  
I/O  
Input terminal for crystal oscillator XT1  
General-purpose digital I/O  
PJ.5/XOUT  
38  
22  
I/O  
Output terminal of crystal oscillator XT1  
Analog ground supply  
AVSS  
39  
40  
23  
24  
3
4
3
4
C2  
B2  
AVCC  
Analog power supply  
QFN Pad  
Pad  
Pad  
N/A  
N/A  
N/A  
QFN package pad. Connection to VSS recommended.  
18  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
SHORT-FORM DESCRIPTION  
CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant  
generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all  
instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes and  
additional instructions for the expanded address range. Each instruction can operate on word and byte data.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Operating Modes  
The MSP430 has one active mode and seven software-selectable low-power modes of operation. An interrupt  
event can wake up the device from low-power modes LPM0 through LPM4, service the request, and restore back  
to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the  
core supply to minimize power consumption.  
The following eight operating modes can be configured by software:  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK active, MCLK disabled, SMCLK optionally active  
Complete data retention  
Low-power mode 1 (LPM1)  
CPU is disabled  
ACLK active, MCLK disabled, SMCLK optionally active  
DCO disabled  
Complete data retention  
Low-power mode 2 (LPM2)  
CPU is disabled  
ACLK active, MCLK disabled, SMCLK optionally active  
DCO disabled  
Complete data retention  
Low-power mode 3 (LPM3)  
CPU is disabled  
ACLK active, MCLK and SMCLK disabled  
DCO disabled  
Complete data retention  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK, MCLK, SMCLK disabled  
Complete data retention  
Low-power mode 3.5 (LPM3.5)  
RTC operation  
Internal regulator disabled  
No data retention  
I/O pad state retention  
Wake up from RST, general-purpose I/O, RTC events  
Low-power mode 4.5 (LPM4.5)  
Internal regulator disabled  
No data retention  
I/O pad state retention  
Wake up from RST and general-purpose I/O  
20  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The  
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 5. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power-Up, Brownout, Supply  
Supervisors  
SVSLIFG, SVSHIFG  
PMMRSTIFG  
External Reset RST  
WDTIFG  
Watchdog Timeout (Watchdog  
mode)  
WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW  
DBDIFG  
Reset  
0FFFEh  
63, highest  
WDT, FRCTL MPU, CS, PMM  
Password Violation  
MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
FRAM double bit error detection  
MPU segment violation  
Software POR, BOR  
PMMPORIFG, PMMBORIFG  
(1) (2)  
(SYSRSTIV)  
System NMI  
Vacant Memory Access  
JTAG Mailbox  
FRAM access time error  
Access violation  
VMAIFG  
JMBNIFG, JMBOUTIFG  
ACCTIMIFG  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
62  
61  
ACCVIFG  
SBDIFG, DBDIFG  
FRAM single, double bit error  
detection  
(1)  
(SYSSNIV)  
User NMI  
External NMI  
Oscillator Fault  
NMIIFG, OFIFG  
(SYSUNIV)  
(1) (2)  
Comparator_D interrupt flags  
Comparator_D  
TB0  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
60  
59  
(1) (3)  
(CBIV)  
(3)  
TB0CCR0 CCIFG0  
TB0CCR1 CCIFG1 to TB0CCR2 CCIFG2,  
TB0IFG  
TB0  
Maskable  
Maskable  
0FFF4h  
0FFF2h  
58  
57  
(1) (3)  
(TB0IV)  
Watchdog Timer  
(Interval Timer Mode)  
WDTIFG  
UCA0RXIFG, UCA0TXIFG (SPI mode)  
UCA0STTIFG, UCA0TXCPTIFG, UCA0RXIFG,  
UXA0TXIFG (UART mode)  
eUSCI_A0 Receive and Transmit  
eUSCI_B0 Receive and Transmit  
ADC10_B  
Maskable  
Maskable  
Maskable  
0FFF0h  
0FFEEh  
0FFECh  
56  
55  
54  
(1) (3)  
(UCA0IV)  
UCB0STTIFG, UCB0TXCPTIFG, UCB0RXIFG,  
UCB0TXIFG (SPI mode)  
UCB0ALIFG, UCB0NACKIFG, UCB0STTIFG,  
UCB0STPIFG, UCB0RXIFG0, UCB0TXIFG0,  
UCB0RXIFG1, UCB0TXIFG1, UCB0RXIFG2,  
UCB0TXIFG2, UCB0RXIFG3, UCB0TXIFG3,  
UCB0CNTIFG, UCB0BIT9IFG (I2C mode)  
(1) (3)  
(UCB0IV)  
ADC10OVIFG, ADC10TOVIFG, ADC10HIIFG,  
ADC10LOIFG  
ADC10INIFG, ADC10IFG0  
(1) (3) (4)  
(ADC10IV)  
(3)  
TA0  
TA0  
TA0CCR0 CCIFG0  
Maskable  
Maskable  
0FFEAh  
0FFE8h  
53  
52  
TA0CCR1 CCIFG1 to TA0CCR2 CCIFG2,  
TA0IFG  
(1) (3)  
(TA0IV)  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
(3) Interrupt flags are located in the module.  
(4) Only on devices with ADC, otherwise reserved.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 5. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
UCA1RXIFG, UCA1TXIFG (SPI mode)  
UCA1STTIFG, UCA1TXCPTIFG, UCA1RXIFG,  
UXA1TXIFG (UART mode)  
eUSCI_A1 Receive and Transmit  
Maskable  
0FFE6h  
51  
(1) (3)  
(UCA1IV)  
DMA0IFG, DMA1IFG, DMA2IFG  
DMA  
TA1  
Maskable  
Maskable  
0FFE4h  
0FFE2h  
50  
49  
(1) (3)  
(DMAIV)  
(3)  
TA1CCR0 CCIFG0  
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,  
TA1IFG  
TA1  
Maskable  
0FFE0h  
48  
(1) (3)  
(TA1IV)  
P1IFG.0 to P1IFG.7  
I/O Port P1  
TB1  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
47  
46  
(1) (3)  
(P1IV)  
(3)  
TB1CCR0 CCIFG0  
TB1CCR1 CCIFG1 to TB1CCR2 CCIFG2,  
TB1IFG  
TB1  
Maskable  
0FFDAh  
45  
(1) (3)  
(TB1IV)  
P2IFG.0 to P2IFG.7  
I/O Port P2  
TB2  
Maskable  
Maskable  
0FFD8h  
0FFD6h  
44  
43  
(1) (3)  
(P2IV)  
(3)  
TB2CCR0 CCIFG0  
TB2CCR1 CCIFG1 to TB2CCR2 CCIFG2,  
TB2IFG  
TB2  
Maskable  
0FFD4h  
42  
(1) (3)  
(TB2IV)  
P3IFG.0 to P3IFG.7  
I/O Port P3  
I/O Port P4  
Maskable  
Maskable  
0FFD2h  
0FFD0h  
41  
40  
(5) (6)  
(P3IV)  
P4IFG.0 to P4IFG.2  
(5) (6)  
(P4IV)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RT0PSIFG, RT1PSIFG, RTCOFIFG  
RTC_B  
Maskable  
0FFCEh  
39  
(5) (6)  
(RTCIV)  
0FFCCh  
38  
(7)  
Reserved  
Reserved  
0FF80h  
0, lowest  
(5) Multiple source flags  
(6) Interrupt flags are located in the module.  
(7) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain  
compatibility with other devices, it is recommended to reserve these locations.  
22  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Memory Organization  
(1) (2)  
Table 6. Memory Organization  
MSP430FR5726  
MSP430FR5727  
MSP430FR5728  
MSP430FR5729  
MSP430FR5736  
MSP430FR5737  
MSP430FR5738  
MSP430FR5739  
MSP430FR5722  
MSP430FR5723  
MSP430FR5724  
MSP430FR5725  
MSP430FR5732  
MSP430FR5733  
MSP430FR5734  
MSP430FR5735  
MSP430FR5720  
MSP430FR5721  
MSP430FR5730  
MSP430FR5731  
Memory (FRAM)  
Total Size  
15.5 KB  
8.0 KB  
4 KB  
Main: interrupt vectors  
Main: code memory  
00FFFFh–00FF80h  
00FF7Fh–00C200h  
00FFFFh–00FF80h  
00FF7Fh–00E000h  
00FFFFh–00FF80h  
00FF7Fh–00F000h  
1 KB  
001FFFh–001C00h  
1 KB  
001FFFh–001C00h  
1 KB  
001FFFh–001C00h  
RAM  
Device Descriptor Info  
(TLV) (FRAM)  
128 B  
001A7Fh–001A00h  
128 B  
001A7Fh–001A00h  
128 B  
001A7Fh–001A00h  
N/A  
N/A  
0019FFh–001980h  
Address space mirrored to  
Info A  
0019FFh–001980h  
Address space mirrored to  
Info A  
0019FFh–001980h  
Address space mirrored to  
Info A  
00197Fh–001900h  
Address space mirrored to  
Info B  
00197Fh–001900h  
Address space mirrored to  
Info B  
00197Fh–001900h  
Address space mirrored to  
Info B  
Information memory  
(FRAM)  
Info A  
Info B  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
128 B  
0018FFh–001880h  
128 B  
0018FFh–001880h  
128 B  
0018FFh–001880h  
128 B  
00187Fh–001800h  
128 B  
00187Fh–001800h  
128 B  
00187Fh–001800h  
512 B  
0017FFh–001600h  
512 B  
0017FFh–001600h  
512 B  
0017FFh–001600h  
512 B  
0015FFh–001400h  
512 B  
0015FFh–001400h  
512 B  
0015FFh–001400h  
Bootstrap loader (BSL)  
memory (ROM)  
512 B  
0013FFh–001200h  
512 B  
0013FFh–001200h  
512 B  
0013FFh–001200h  
512 B  
0011FFh–001000h  
512 B  
0011FFh–001000h  
512 B  
0011FFh–001000h  
4 KB  
000FFFh–0h  
4 KB  
000FFFh–0h  
4 KB  
000FFFh–0h  
Peripherals  
(1) N/A = Not available  
(2) All address space not listed in this table is considered vacant memory.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Bootstrap Loader (BSL)  
The BSL enables users to program the FRAM or RAM using a UART serial interface. Access to the device  
memory by the BSL is protected by an user-defined password. Use of the BSL requires four pins as shown in  
Table 7. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For  
complete description of the features of the BSL and its implementation, see the MSP430 Programming Via the  
Bootstrap Loader User's Guide (SLAU319).  
Table 7. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P2.0  
P2.1  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
JTAG Operation  
JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430  
development tools and device programmers. The JTAG pin requirements are shown in Table 8. For further  
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's  
Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see  
MSP430 Programming Via the JTAG Interface (SLAU320).  
Table 8. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire interface. Spy-  
Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire  
interface pin requirements are shown in Table 9. For further details on interfacing to development tools and  
device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of  
the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface  
(SLAU320).  
Table 9. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
IN  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN, OUT  
VSS  
Ground supply  
24  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
 
 
 
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
FRAM  
The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU.  
Features of the FRAM include:  
Low-power ultrafast write nonvolatile memory  
Byte and word access capability  
Programmable and automated wait state generation  
Error Correction Coding (ECC) with single bit detection and correction, double bit detection  
Memory Protection Unit (MPU)  
The FRAM can be protected from inadvertent CPU execution or write access by the MPU. Features of the MPU  
include:  
Main memory partitioning programmable up to three segments  
Each segment's (main and information memory) access rights can be individually selected  
Access violation flags with interrupt capability for easy servicing of access violations  
Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430FR57xx Family User's Guide (SLAU272).  
Digital I/O  
There are up to four 8-bit I/O ports implemented:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all ports.  
Read/write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise in pairs.  
Oscillator and Clock System (CS)  
The clock system includes support for a 32-kHz watch crystal oscillator XT1 (LF mode), an internal very-low-  
power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-  
frequency crystal oscillator XT1 (HF mode). The clock system module is designed to meet the requirements of  
both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The clock  
system module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1 LF mode), a high-frequency crystal (XT1  
HF mode), the internal VLO, or the internal DCO.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by the same sources made  
available to ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
the same sources made available to ACLK.  
Power Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also  
includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit is implemented to  
provide the proper internal reset signal to the device during power-on and power-off. The SVS circuitry detects if  
the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the primary and core  
supplies.  
Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations with  
32-bit, 24-bit, 16-bit, and 8-bit operands. The module supports signed and unsigned multiplication as well as  
signed and unsigned multiply-and-accumulate operations.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Real-Time Clock (RTC_B)  
The RTC_B module contains an integrated real-time clock (RTC) (calendar mode). Calendar mode integrates an  
internal calendar which compensates for months with fewer than 31 days and includes leap year correction. The  
RTC_B also supports flexible alarm functions and offset-calibration hardware. RTC operation is available in  
LPM3.5 mode to minimize power consumption.  
Watchdog Timer (WDT_A)  
The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
System Module (SYS)  
The SYS module handles many of the system functions within the device. These include power-on reset (POR)  
and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators,  
bootstrap loader entry mechanisms, and configuration management (device descriptors). It also includes a data  
exchange mechanism using JTAG called a JTAG mailbox that can be used in the application.  
26  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Table 10. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
REGISTER  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
SYSRSTIV,  
System Reset  
019Eh  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
Highest  
RSTIFG RST/NMI (BOR)  
04h  
PMMSWBOR software BOR (BOR)  
LPMx.5 wake up (BOR)  
06h  
08h  
Security violation (BOR)  
0Ah  
SVSLIFG SVSL event (BOR)  
SVSHIFG SVSH event (BOR)  
Reserved  
0Ch  
0Eh  
10h  
Reserved  
12h  
PMMSWPOR software POR (POR)  
WDTIFG watchdog timeout (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
DBDIFG FRAM double bit error (PUC)  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
MPUPW MPU password violation (PUC)  
CSPW CS password violation (PUC)  
MPUSEGIIFG information memory segment violation (PUC)  
MPUSEG1IFG segment 1 memory violation (PUC)  
MPUSEG2IFG segment 2 memory violation (PUC)  
MPUSEG3IFG segment 3 memory violation (PUC)  
Reserved  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
Reserved  
30h to 3Eh  
00h  
Lowest  
Highest  
SYSSNIV, System NMI  
019Ch  
No interrupt pending  
DBDIFG FRAM double bit error  
ACCTIMIFG access time error  
ACCVIFG access violation  
VMAIFG Vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
SBDIFG FRAM single bit error  
Reserved  
02h  
04h  
0Eh  
10h  
12h  
14h  
16h  
18h to 1Eh  
00h  
Lowest  
Highest  
SYSUNIV, User NMI  
019Ah  
No interrupt pending  
NMIFG NMI pin  
02h  
OFIFG oscillator fault  
04h  
Reserved  
06h  
Reserved  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention. For  
example, the DMA controller can be used to move data from the ADC10_B conversion memory to RAM. Using  
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system  
power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or  
from a peripheral.  
(1)  
Table 11. DMA Trigger Assignments  
TRIGGER  
0
CHANNEL 0  
DMAREQ  
CHANNEL 1  
DMAREQ  
CHANNEL 2  
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
Reserved  
2
3
4
5
6
Reserved  
Reserved  
Reserved  
7
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
8
(2)  
(2)  
(2)  
9
TB1CCR0 CCIFG  
TB1CCR2 CCIFG  
TB2CCR0 CCIFG  
TB2CCR2 CCIFG  
Reserved  
TB1CCR0 CCIFG  
TB1CCR2 CCIFG  
TB2CCR0 CCIFG  
TB2CCR2 CCIFG  
Reserved  
TB1CCR0 CCIFG  
TB1CCR2 CCIFG  
TB2CCR0 CCIFG  
TB2CCR2 CCIFG  
Reserved  
(2)  
(3)  
(3)  
(2)  
(3)  
(3)  
(2)  
(3)  
(3)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
UCA0RXIFG  
UCA0RXIFG  
UCA0RXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA0TXIFG  
(4)  
(4)  
(4)  
UCA1RXIFG  
UCA1RXIFG  
UCA1RXIFG  
(4)  
(4)  
(4)  
UCA1TXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCB0RXIFG0  
UCB0TXIFG0  
UCB0RXIFG1  
UCB0TXIFG1  
UCB0RXIFG2  
UCB0TXIFG2  
UCB0RXIFG3  
UCB0TXIFG3  
UCB0RXIFG0  
UCB0TXIFG0  
UCB0RXIFG1  
UCB0TXIFG1  
UCB0RXIFG2  
UCB0TXIFG2  
UCB0RXIFG3  
UCB0TXIFG3  
UCB0RXIFG0  
UCB0TXIFG0  
UCB0RXIFG1  
UCB0TXIFG1  
UCB0RXIFG2  
UCB0TXIFG2  
UCB0RXIFG3  
UCB0TXIFG3  
(5)  
(5)  
(5)  
ADC10IFGx  
ADC10IFGx  
ADC10IFGx  
Reserved  
Reserved  
MPY ready  
DMA2IFG  
Reserved  
Reserved  
MPY ready  
DMA0IFG  
Reserved  
Reserved  
MPY ready  
DMA1IFG  
(6)  
(6)  
(6)  
DMAE0  
DMAE0  
DMAE0  
(1) If a reserved trigger source is selected, no trigger is generated.  
(2) Only on devices with TB1, otherwise reserved  
(3) Only on devices with TB2, otherwise reserved  
(4) Only on devices with eUSCI_A1, otherwise reserved  
(5) Only on devices with ADC, otherwise reserved  
(6) This function is not available on YFF package types.  
28  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Enhanced Universal Serial Communication Interface (eUSCI)  
The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous  
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baudrate detection, and IrDA. Each eUSCI module contains two portions,  
A and B.  
The eUSCI_An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, or IrDA.  
The eUSCI_Bn module provides support for SPI (3 pin or 4 pin) or I2C.  
The MSP430FR572x and MSP430FR573x series include one or two eUSCI_An modules (eUSCI_A0,  
eUSCI_A1) and one eUSCI_Bn module (eUSCI_B).  
TA0, TA1  
TA0 and TA1 are 16-bit timers/counters (Timer_A type) with three capture/compare registers each. Each can  
support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 12. TA0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
RHA  
RGE, YFF  
DA  
PW  
RHA  
RGE, YFF  
DA  
PW  
3-P1.2,  
A3P1.2  
3-P1.2  
7-P1.2  
7-P1.2  
TA0CLK  
TACLK  
ACLK  
ACLK  
(internal)  
Timer  
CCR0  
CCR1  
N/A  
TA0  
TA1  
N/A  
SMCLK  
(internal)  
SMCLK  
TACLK  
CCI0A  
3-P1.2,  
A3P1.2  
3-P1.2  
7-P1.2  
7-P1.2  
TA0CLK  
TA0.0  
16-P1.6,  
E2P1.6  
16-P1.6 ,  
E2P1.6  
28-P1.6  
34-P2.3  
30-P1.6  
36-P2.3  
22-P1.6  
27-P2.3  
28-P1.6  
34-P2.3  
30-P1.6  
36-P2.3  
22-P1.6  
27-P2.3  
N/A  
TA0.0  
DVSS  
DVCC  
CCI0B  
GND  
VCC  
N/A  
TA0.0  
1-P1.0,  
N/A  
1-P1.0  
5-P1.0  
5-P1.0  
TA0.1  
CCI1A  
1-P1.0  
1-P1.0 , N/A  
ADC10  
5-P1.0  
5-P1.0  
ADC10  
(internal)  
ADC10  
(internal)  
ADC10  
(1)  
(1)  
(1)  
(1)  
CDOUT  
(internal)  
(internal)  
(internal)  
CCI1B  
TA0.1  
ADC10SHSx ADC10SHSx ADC10SHSx ADC10SHSx  
= {1}  
= {1}  
= {1}  
= {1}  
DVSS  
DVCC  
GND  
VCC  
2-P1.1,  
A2P1.1  
2-P1.1,  
A2P1.1  
2-P1.1  
6-P1.1  
6-P1.1  
TA0.2  
CCI2A  
CCI2B  
2-P1.1  
6-P1.1  
6-P1.1  
ACLK  
(internal)  
CCR2  
TA2  
TA0.2  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 13. TA1 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
RHA  
RGE, YFF  
DA  
PW  
RHA  
RGE, YFF  
DA  
PW  
2-P1.1,  
A2P1.1  
2-P1.1  
6-P1.1  
6-P1.1  
TA1CLK  
TACLK  
ACLK  
ACLK  
(internal)  
Timer  
N/A  
N/A  
SMCLK  
(internal)  
SMCLK  
TACLK  
CCI0A  
2-P1.1,  
A2P1.1  
2-P1.1  
6-P1.1  
6-P1.1  
TA1CLK  
TA1.0  
17-P1.7,  
E3P1.7  
17-P1.7,  
E3P1.7  
29-P1.7  
35-P2.4  
31-P1.7  
37-P2.4  
23-P1.7  
28-P2.4  
29-P1.7  
35-P2.4  
31-P1.7  
37-P2.4  
23-P1.7  
28-P2.4  
N/A  
TA1.0  
DVSS  
DVCC  
TA1.1  
CCI0B  
GND  
VCC  
N/A  
CCR0  
CCR1  
TA0  
TA1  
TA1.0  
TA1.1  
3-P1.2  
8-P1.3  
3-P1.2, N/A  
7-P1.2  
7-P1.2  
8-P1.3  
CCI1A  
3-P1.2  
8-P1.3  
3-P1.2, N/A  
7-P1.2  
7-P1.2  
8-P1.3  
CDOUT  
(internal)  
CCI1B  
DVSS  
DVCC  
GND  
VCC  
4-P1.3,  
A4P1.3  
4-P1.3,  
A4P1.3  
12-P1.3  
TA1.2  
CCI2A  
CCI2B  
12-P1.3  
ACLK  
(internal)  
CCR2  
TA2  
TA1.2  
DVSS  
DVCC  
GND  
VCC  
30  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
TB0, TB1, TB2  
TB0, TB1, and TB2 are 16-bit timers/counters (Timer_B type) with three capture/compare registers each. Each  
can support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the  
capture/compare registers.  
Table 14. TB0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
RHA  
RGE, YFF  
DA  
PW  
RHA  
RGE, YFF  
DA  
PW  
13-P2.0,  
E5P2.0  
21-P2.0  
23-P2.0  
19-P2.0  
TB0CLK  
TBCLK  
ACLK  
ACLK  
(internal)  
Timer  
N/A  
N/A  
SMCLK  
(internal)  
SMCLK  
TBCLK  
13-P2.0,  
E5P2.0  
21-P2.0  
23-P2.0  
19-P2.0  
TB0CLK  
14-P2.1,  
D3P2.1  
14-P2.1,  
D3P2.1  
22-P2.1  
17-P2.5  
24-P2.1  
19-P2.5  
20-P2.1  
15-P2.5  
TB0.0  
TB0.0  
CCI0A  
CCI0B  
22-P2.1  
17-P2.5  
24-P2.1  
19-P2.5  
20-P2.1  
15-P2.5  
N/A  
N/A  
ADC10  
(internal)  
ADC10  
(internal)  
ADC10  
(internal)  
ADC10  
(1)  
CCR0  
TB0  
TB0.0  
(1)  
(1)  
(1)  
(internal)  
DVSS  
GND  
ADC10SHSx ADC10SHSx ADC10SHSx ADC10SHSx  
= {2}  
= {2}  
= {2}  
= {2}  
DVCC  
VCC  
5-P1.4,  
B4P1.4  
5-P1.4,  
B4P1.4  
9-P1.4  
13-P1.4  
9-P1.4  
TB0.1  
CCI1A  
9-P1.4  
13-P1.4  
9-P1.4  
ADC10  
(internal)  
ADC10  
(internal)  
ADC10  
(internal)  
ADC10  
(1)  
(1)  
(1)  
(1)  
CDOUT  
(internal)  
(internal)  
CCI1B  
CCR1  
TB1  
TB0.1  
ADC10SHSx ADC10SHSx ADC10SHSx ADC10SHSx  
= {3}  
= {3}  
= {3}  
= {3}  
DVSS  
DVCC  
GND  
VCC  
6P1.5, A5-  
P1.5  
6-P1.5,  
A5P1.5  
10-P1.5  
14-P1.5  
19-P1.5  
TB0.2  
CCI2A  
CCI2B  
10-P1.5  
14-P1.5  
19-P1.5  
ACLK  
(internal)  
CCR2  
TB2  
TB0.2  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
(1)  
Table 15. TB1 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
RHA  
RGE, YFF  
DA  
PW  
RHA  
RGE, YFF  
DA  
PW  
N/A (DVSS),  
26-P3.6  
28-P3.6  
N/A (DVSS  
)
TB1CLK  
TBCLK  
ACLK  
N/A (DVSS  
)
ACLK  
(internal)  
Timer  
N/A  
N/A  
SMCLK  
(internal)  
SMCLK  
TBCLK  
CCI0A  
CCI0B  
N/A (DVSS),  
N/A (DVSS  
26-P3.6  
23-P2.2  
18-P2.6  
28-P3.6  
25-P2.2  
20-P2.6  
N/A (DVSS  
N/A (DVSS  
N/A (DVSS  
)
)
)
TB1CLK  
TB1.0  
)
N/A (DVSS),  
N/A (DVSS  
23-P2.2  
18-P2.6  
N/A  
N/A  
25-P2.2  
20-P2.6  
N/A  
N/A  
)
N/A (DVSS),  
N/A (DVSS  
TB1.0  
CCR0  
CCR1  
CCR2  
TB0  
TB1  
TB2  
TB1.0  
TB1.1  
TB1.2  
(1)  
)
DVSS  
DVCC  
GND  
VCC  
N/A (DVSS),  
N/A (DVSS  
28-P1.6  
24-P3.4  
30-P1.6  
26-P3.4  
N/A (DVSS  
N/A (DVSS  
)
)
TB1.1  
TB1.1  
CCI1A  
CCI1B  
28-P1.6  
24-P3.4  
N/A  
N/A  
30-P1.6  
26-P3.4  
N/A  
N/A  
)
N/A (DVSS),  
N/A (DVSS  
)
DVSS  
DVCC  
GND  
VCC  
N/A (DVSS),  
N/A (DVSS  
29-P1.7  
25-P3.5  
31-P1.7  
27-P3.5  
N/A (DVSS  
N/A (DVSS  
)
)
TB1.2  
TB1.2  
CCI2A  
CCI2B  
29-P1.7  
25-P3.5  
N/A  
N/A  
31-P1.7  
27-P3.5  
N/A  
N/A  
)
N/A (DVSS),  
N/A (DVSS  
)
DVSS  
DVCC  
GND  
VCC  
(1) TB1 is not present on all device types.  
Table 16. TB2 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
RHA  
RGE, YFF  
DA  
PW  
RHA  
RGE, YFF  
DA  
PW  
N/A (DVSS),  
24-P3.4  
26-P3.4  
N/A (DVSS  
)
TB2CLK  
TBCLK  
ACLK  
N/A (DVSS  
)
ACLK  
(internal)  
Timer  
N/A  
N/A  
SMCLK  
(internal)  
SMCLK  
TBCLK  
CCI0A  
CCI0B  
N/A (DVSS),  
N/A (DVSS  
24-P3.4  
21-P2.0  
15-P4.0  
26-P3.4  
23-P2.0  
N/A (DVSS  
N/A (DVSS  
N/A (DVSS  
)
)
)
TB2CLK  
TB2.0  
)
N/A (DVSS),  
N/A (DVSS  
21-P2.0  
15-P4.0  
N/A  
N/A  
23-P2.0  
36-P4.0  
N/A  
N/A  
)
N/A (DVSS),  
N/A (DVSS  
N/A (DVSS  
)
TB2.0  
CCR0  
CCR1  
CCR2  
TB0  
TB1  
TB2  
TB2.0  
TB2.1  
TB2.2  
)
DVSS  
DVCC  
GND  
VCC  
N/A (DVSS),  
N/A (DVSS  
22-P2.1  
26-P3.6  
24-P2.1  
28-P3.6  
N/A (DVSS  
N/A (DVSS  
)
)
TB2.1  
TB2.1  
CCI1A  
CCI1B  
22-P2.1  
26-P3.6  
N/A  
N/A  
24-P2.1  
28-P3.6  
N/A  
N/A  
)
N/A (DVSS),  
N/A (DVSS  
)
DVSS  
DVCC  
GND  
VCC  
N/A (DVSS),  
N/A (DVSS  
23-P2.2  
27-P3.7  
25-P2.2  
29-P3.7  
N/A (DVSS  
N/A (DVSS  
)
)
TB2.2  
TB2.2  
CCI2A  
CCI2B  
23-P2.2  
27-P3.7  
N/A  
N/A  
25-P2.2  
29-P3.7  
N/A  
N/A  
)
N/A (DVSS),  
N/A (DVSS  
)
DVSS  
DVCC  
GND  
VCC  
(1) TB2 is not present on all device types.  
32  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
ADC10_B  
The ADC10_B module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator, and a conversion result buffer. A window comparator with a  
lower limit and an upper limit allows CPU-independent result monitoring with three window comparator interrupt  
flags.  
Comparator_D  
The primary function of the Comparator_D module is to support precision slope analog-to-digital conversions,  
battery voltage supervision, and monitoring of external analog signals.  
CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
Shared Reference (REF)  
The reference module (REF) is responsible for generation of all critical reference voltages that can be used by  
the various analog peripherals in the device.  
Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The S version of the EEM implemented on all devices has the  
following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Peripheral File Map  
Table 17. Peripherals  
OFFSET ADDRESS  
RANGE  
MODULE NAME  
BASE ADDRESS  
Special Functions (see Table 18)  
PMM (see Table 19)  
0100h  
0120h  
0140h  
0150h  
015Ch  
0160h  
0180h  
01B0h  
0200h  
0220h  
0320h  
0340h  
0380h  
03C0h  
0400h  
0440h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
05A0h  
05C0h  
05E0h  
0640h  
0700h  
08C0h  
000h-01Fh  
000h-010h  
000h-00Fh  
000h-007h  
000h-001h  
000h-00Fh  
000h-01Fh  
000h-001h  
000h-01Fh  
000h-01Fh  
000h-01Fh  
000h-02Fh  
000h-02Fh  
000h-02Fh  
000h-02Fh  
000h-02Fh  
000h-01Fh  
000h-02Fh  
000h-00Fh  
000h-00Ah  
000h-00Ah  
000h-00Ah  
000h-00Fh  
000h-01Fh  
000h-01Fh  
000h-02Fh  
000h-03Fh  
000h-00Fh  
FRAM Control (see Table 20)  
CRC16 (see Table 21)  
Watchdog (see Table 22)  
CS (see Table 23)  
SYS (see Table 24)  
Shared Reference (see Table 25)  
Port P1/P2 (see Table 26)  
Port P3/P4 (see Table 27)  
Port PJ (see Table 28)  
TA0 (see Table 29)  
TA1 (see Table 30)  
TB0 (see Table 31)  
TB1 (see Table 32)  
TB2 (see Table 33)  
Real-Time Clock (RTC_B) (see Table 34)  
32-Bit Hardware Multiplier (see Table 35)  
DMA General Control (see Table 36)  
DMA Channel 0 (see Table 36)  
DMA Channel 1 (see Table 36)  
DMA Channel 2 (see Table 36)  
MPU Control (see Table 37)  
eUSCI_A0 (see Table 38)  
eUSCI_A1 (see Table 39)  
eUSCI_B0 (see Table 40)  
ADC10_B (see Table 41)  
Comparator_D (see Table 42)  
34  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Table 18. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
OFFSET  
OFFSET  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
Table 19. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
PMM Control 0  
PMM interrupt flags  
PM5 Control 0  
00h  
0Ah  
10h  
PMMIFG  
PM5CTL0  
Table 20. FRAM Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
FRCTLCTL0  
FRAM control 0  
General control 0  
General control 1  
00h  
04h  
06h  
GCCTL0  
GCCTL1  
Table 21. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC16DI  
CRC data input  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
Table 22. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
WDTCTL  
OFFSET  
OFFSET  
Watchdog timer control  
00h  
Table 23. CS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
CS control 0  
CS control 1  
CS control 2  
CS control 3  
CS control 4  
CS control 5  
CS control 6  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 24. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
SYSCTL  
OFFSET  
System control  
00h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus Error vector generator  
User NMI vector generator  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
System NMI vector generator  
Reset vector generator  
SYSSNIV  
SYSRSTIV  
Table 25. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
REFCTL  
OFFSET  
OFFSET  
Shared reference control  
00h  
Table 26. Port P1/P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
Port P1 direction  
P1OUT  
P1DIR  
P1REN  
Port P1 pullup/pulldown enable  
Port P1 selection 0  
P1SEL0  
P1SEL1  
P1IV  
Port P1 selection 1  
Port P1 interrupt vector word  
Port P1 complement selection  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
P1SELC  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 input  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2SEL1  
P2SELC  
P2IV  
Port P2 direction  
Port P2 pullup/pulldown enable  
Port P2 selection 0  
Port P2 selection 1  
Port P2 complement selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
36  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
 
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Table 27. Port P3/P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P3 output  
Port P3 direction  
P3OUT  
P3DIR  
P3REN  
Port P3 pullup/pulldown enable  
Port P3 selection 0  
P3SEL0  
P3SEL1  
P3IV  
Port P3 selection 1  
Port P3 interrupt vector word  
Port P3 complement selection  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
P3SELC  
P3IES  
P3IE  
P3IFG  
P4IN  
Port P4 input  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4SEL0  
P4SEL1  
P4SELC  
P4IV  
Port P4 direction  
Port P4 pullup/pulldown enable  
Port P4 selection 0  
Port P4 selection 1  
Port P4 complement selection  
Port P4 interrupt vector word  
Port P4 interrupt edge select  
Port P4 interrupt enable  
Port P4 interrupt flag  
P4IES  
P4IE  
P4IFG  
Table 28. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
16h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
Port PJ direction  
Port PJ pullup/pulldown enable  
Port PJ selection 0  
Port PJ selection 1  
Port PJ complement selection  
PJSEL0  
PJSEL1  
PJSELC  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
 
 
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 29. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
TA0CTL  
OFFSET  
TA0 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA0 counter register  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA0 expansion register 0  
TA0 interrupt vector  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
TA0IV  
Table 30. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
TA1CTL  
OFFSET  
TA1 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter register  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA1 expansion register 0  
TA1 interrupt vector  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1IV  
Table 31. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
TB0CTL  
OFFSET  
TB0 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TB0 register  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TB0 expansion register 0  
TB0 interrupt vector  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0EX0  
TB0IV  
38  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
 
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Table 32. TB1 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
TB1CTL  
OFFSET  
TB1 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TB1 register  
TB1CCTL0  
TB1CCTL1  
TB1CCTL2  
TB1R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TB1 expansion register 0  
TB1 interrupt vector  
TB1CCR0  
TB1CCR1  
TB1CCR2  
TB1EX0  
TB1IV  
Table 33. TB2 Registers (Base Address: 0440h)  
REGISTER DESCRIPTION  
REGISTER  
TB2CTL  
OFFSET  
TB2 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TB2 register  
TB2CCTL0  
TB2CCTL1  
TB2CCTL2  
TB2R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TB2 expansion register 0  
TB2 interrupt vector  
TB2CCR0  
TB2CCR1  
TB2CCR2  
TB2EX0  
TB2IV  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 34. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
OFFSET  
RTC control 0  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Eh  
RTC control 1  
RTCCTL1  
RTC control 2  
RTCCTL2  
RTC control 3  
RTCCTL3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTC prescaler 1  
RTCPS1  
RTC interrupt vector word  
RTC seconds, RTC counter register 1  
RTC minutes, RTC counter register 2  
RTC hours, RTC counter register 3  
RTC day of week, RTC counter register 4  
RTC days  
RTCIV  
RTCSEC, RTCNT1  
RTCMIN, RTCNT2  
RTCHOUR, RTCNT3  
RTCDOW, RTCNT4  
RTCDAY  
RTC month  
RTCMON  
RTC year low  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTCAHOUR  
RTCADOW  
RTCADAY  
RTC alarm day of week  
RTC alarm days  
Binary-to-BCD conversion register  
BCD-to-binary conversion register  
BIN2BCD  
BCD2BIN  
40  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Table 35. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension register  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control register 0  
RES3  
MPY32CTL0  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 36. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)  
REGISTER DESCRIPTION  
REGISTER  
DMA0CTL  
OFFSET  
DMA channel 0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA module control 0  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA module control 1  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
Table 37. MPU Control Registers (Base Address: 05A0h)  
REGISTER DESCRIPTION  
REGISTER  
MPUCTL0  
OFFSET  
MPU control 0  
00h  
02h  
04h  
06h  
MPU control 1  
MPUCTL1  
MPUSEG  
MPUSAM  
MPU Segmentation Register  
MPU access management  
42  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Table 38. eUSCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTLW0  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
eUSCI_A baud rate 1  
eUSCI_A modulation control  
eUSCI_A status  
00h  
03h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA0CTLW1  
UCA0BR0  
UCA0BR1  
UCA0MCTLW  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
UCA0IFG  
eUSCI_A interrupt vector word  
UCA0IV  
Table 39. eUSCI_A1 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA1CTLW0  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
00h  
03h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA1CTLW1  
UCA1BR0  
eUSCI_A baud rate 1  
UCA1BR1  
eUSCI_A modulation control  
eUSCI_A status  
UCA1MCTLW  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
UCA1IFG  
UCA1IV  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 40. eUSCI_B0 Registers (Base Address: 0640h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTLW0  
OFFSET  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB0CTLW1  
UCB0BR0  
eUSCI_B bit rate 1  
UCB0BR1  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B received address  
eUSCI_B address mask  
eUSCI I2C slave address  
eUSCI interrupt enable  
eUSCI interrupt flags  
UCB0IFG  
eUSCI interrupt vector word  
UCB0IV  
Table 41. ADC10_B Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
ADC10CTL0  
OFFSET  
ADC10_B Control register 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC10_B Control register 1  
ADC10CTL1  
ADC10CTL2  
ADC10LO  
ADC10_B Control register 2  
ADC10_B Window Comparator Low Threshold  
ADC10_B Window Comparator High Threshold  
ADC10_B Memory Control Register 0  
ADC10_B Conversion Memory Register  
ADC10_B Interrupt Enable  
ADC10HI  
ADC10MCTL0  
ADC10MEM0  
ADC10IE  
ADC10_B Interrupt Flags  
ADC10IGH  
ADC10IV  
ADC10_B Interrupt Vector Word  
Table 42. Comparator_D Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
Comparator_D control register 0  
REGISTER  
CDCTL0  
OFFSET  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
Comparator_D control register 1  
Comparator_D control register 2  
Comparator_D control register 3  
Comparator_D interrupt register  
Comparator_D interrupt vector word  
CDCTL1  
CDCTL2  
CDCTL3  
CDINT  
CDIV  
44  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
(1)  
Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
Voltage applied at VCC to VSS  
–0.3 V to 4.1 V  
–0.3 V to VCC + 0.3 V  
±2 mA  
(2)  
Voltage applied to any pin (excluding VCORE)  
Diode current at any device pin  
(3) (4) (5)  
Storage temperature range, Tstg  
-55°C to 125°C  
95°C  
Maximum junction temperature, TJ  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.  
(3) Data retention on FRAM memory cannot be ensured when exceeding the specified maximum storage temperature, Tstg  
.
(4) For soldering during board manufacturing, it is required to follow the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
(5) Programming of devices with user application code should only be performed after reflow or hand soldering. Factory programmed  
information, such as calibration values, are designed to withstand the temperatures reached in the current JEDEC J-STD-020  
specification.  
Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
(1)  
VCC  
VSS  
TA  
Supply voltage during program execution and FRAM programming (AVCC = DVCC)  
Supply voltage (AVSS = DVSS)  
2.0  
3.6  
V
V
0
Operating free-air temperature  
Operating junction temperature  
Required capacitor at VCORE  
I version  
I version  
-40  
-40  
470  
85  
85  
°C  
°C  
nF  
TJ  
CVCORE  
CVCC  
CVCORE  
/
Capacitor ratio of VCC to VCORE  
10  
0
(3)  
No FRAM wait states  
2 V VCC 3.6 V  
,
8.0  
(3)  
(2)  
With FRAM wait states  
NACCESS = {2},  
NPRECHG = {1},  
2 V VCC 3.6 V  
,
fSYSTEM  
Processor frequency (maximum MCLK frequency)  
MHz  
0
24.0  
(1) It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(3) When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common  
system frequencies.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
 
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Electrical Characteristics  
Active Mode Supply Current Into VCC Excluding External Current  
(1) (2) (3)  
over recommended operating free-air temperature (unless otherwise noted)  
(4)  
Frequency (fMCLK = fSMCLK  
)
EXECUTION  
MEMORY  
(5)  
(5)  
(5)  
PARAMETER  
VCC  
1 MHz  
TYP MAX  
0.27  
4 MHz  
TYP MAX  
0.58  
8 MHz  
TYP MAX  
1.0  
16 MHz  
TYP MAX  
1.53  
20 MHz  
TYP MAX  
1.9  
24 MHz  
TYP  
UNIT  
MAX  
(6)  
IAM, FRAM_UNI  
FRAM  
3 V  
3 V  
2.2  
mA  
mA  
mA  
FRAM  
0% cache hit  
ratio  
(7)  
IAM,0%  
0.42  
0.31  
0.27  
0.25  
0.73  
1.2  
0.73  
0.58  
0.5  
1.6  
2.2  
1.3  
2.8  
2.3  
1.75  
1.55  
1.3  
2.9  
2.8  
2.1  
1.9  
1.6  
3.6  
3.45  
4.3  
FRAM  
50% cache hit  
ratio  
(7) (8)  
IAM,50%  
3 V  
3 V  
3 V  
2.5  
2.2  
1.8  
FRAM  
66% cache hit  
ratio  
(7) (8)  
IAM,66%  
1.0  
FRAM  
75% cache hit  
ratio  
(7) (8)  
IAM,75%  
0.82  
FRAM  
100% cache hit  
ratio  
(7) (8)  
IAM,100%  
3 V  
3 V  
0.2  
0.2  
0.43  
0.4  
0.3  
0.55  
0.55  
0.42  
0.55  
0.8  
0.73  
1.0  
1.15  
1.25  
0.88  
1.20  
1.3  
1.0  
1.5  
(8) (9)  
IAM, RAM  
RAM  
0.35  
0.75  
1.45  
1.45  
1.75  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance are chosen to closely match the required 9 pF.  
(3) Characterized with program executing typical data processing.  
(4) At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency,  
fMCLK,eff, decreases. The effective MCLK frequency is also dependent on the cache hit ratio. SMCLK is not affected by the number of  
wait states or the cache hit ratio. The following equation can be used to compute fMCLK,eff:  
fMCLK,eff,MHZ= fMCLK,MHZ x 1 / [# of wait states x ((1 - cache hit ratio percent/100)) + 1]  
(5) MSP430FR573x series only  
(6) Program and data reside entirely in FRAM. No wait states enabled. DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK.  
(7) Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit  
ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 25% ratio implies one of every  
four accesses is from cache, the remaining are FRAM accesses.  
For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK. No wait states enabled.  
For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (fDCO = 16 MHz).MCLK = SMCLK. One wait state enabled.  
For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (fDCO = 20 MHz).MCLK = SMCLK. Three wait states enabled.  
For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (fDCO = 24 MHz).MCLK = SMCLK. Three wait states enabled.  
(8) See Figure 1 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best  
linear fit using the typical data shown in Active Mode Supply Current Into VCC Excluding External Current.  
fACLK = 32786 Hz, fMCLK = fSMCLK at specified frequency. No peripherals active.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.  
(9) All execution is from RAM.  
For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK.  
For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (fDCO = 16 MHz). MCLK = SMCLK.  
For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (fDCO = 20 MHz). MCLK = SMCLK.  
For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (fDCO = 24 MHz). MCLK = SMCLK.  
46  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
 
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Typical Active Mode Supply Current, No Wait States  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
IAM,0% (mA) = 0.2541 * (f, MHz) + 0.1724  
IAM,50% (mA) = 0.1415 * (f, MHz) + 0.1669  
IAM,66%(mA) = 0.1043 * (f, MHz) + 0.1646  
IAM,75% (mA) = 0.0814 * (f, MHz) + 0.1708  
IAM,RAM (mA) = 0.05 * (f, MHz) + 0.150  
IAM,100% (mA) = 0.0314 * (f, MHz) + 0.1708  
0
1
2
3
4
5
6
7
8
9
fMCLK = fSMCLK, MHz  
Figure 1. Typical Active Mode Supply Currents, No Wait States  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1) (2)  
-40°C  
TYP MAX  
25°C  
MAX  
60°C  
MAX  
85°C  
PARAMETER  
VCC  
UNIT  
TYP  
TYP  
TYP  
MAX  
2 V,  
3 V  
(3) (4)  
(5) (4)  
(6) (4)  
(7) (8)  
ILPM0,1MHz  
Low-power mode 0  
Low-power mode 0  
Low-power mode 0  
Low-power mode 2  
166  
175  
190  
225  
µA  
2 V,  
3 V  
170  
274  
56  
177  
285  
61  
244  
195  
315  
75  
225  
340  
110  
48  
360  
455  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
LPM0,8MHz  
2 V,  
3 V  
340  
80  
LPM0,24MHz  
2 V,  
3 V  
ILPM2  
210  
150  
150  
150  
5.0  
Low-power mode 3, crystal  
2 V,  
3 V  
ILPM3,XT1LF  
ILPM3,VLO  
ILPM4  
3.4  
3.3  
2.9  
1.3  
0.3  
6.4  
6.3  
5.9  
1.5  
0.32  
15  
18  
(9) (8)  
mode  
Low-power mode 3,  
2 V,  
3 V  
15  
18  
48  
(10) (8)  
VLO mode  
2 V,  
3 V  
(11) (8)  
Low-power mode 4  
15  
18  
48  
2 V,  
3 V  
(12)  
ILPM3.5  
Low-power mode 3.5  
2.2  
0.66  
1.9  
0.38  
2.8  
0.57  
2 V,  
3 V  
(13)  
ILPM4.5  
Low-power mode 4.5  
2.55  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance are chosen to closely match the required 9 pF.  
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 1 MHz. DCORSEL = 0,  
DCOFSELx = 3 (fDCO = 8 MHz)  
(4) Current for brownout, high-side supervisor (SVSH) and low-side supervisor (SVSL) included.  
(5) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 8 MHz. DCORSEL = 0,  
DCOFSELx = 3 (fDCO = 8 MHz)  
(6) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 24 MHz. DCORSEL = 1,  
DCOFSELx = 3 (fDCO = 24 MHz)  
(7) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCORSEL = 0,  
DCOFSELx = 3, DCO bias generator enabled.  
(8) Current for brownout, high-side supervisor (SVSH) included. Low-side supervisor disabled (SVSL).  
(9) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
(10) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz  
(11) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(12) Internal regulator disabled. No data retention. RTC active.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM3.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(13) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
48  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Schmitt-Trigger Inputs – General Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
0.80  
1.50  
0.45  
0.75  
0.25  
0.30  
TYP  
MAX UNIT  
1.40  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
2.10  
1.10  
V
Negative-going input threshold voltage  
1.65  
0.8  
V
Input voltage hysteresis (VIT+ – VIT–  
)
1.0  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI  
Pullup or pulldown resistor  
Input capacitance  
20  
35  
5
50  
kΩ  
VIN = VSS or VCC  
pF  
(1)  
Inputs – Ports P1 and P2  
(P1.0 to P1.7, P2.0 to P2.7)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
(2)  
t(int)  
External interrupt timing  
External trigger pulse duration to set interrupt flag  
2 V, 3 V  
20  
ns  
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.  
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
Leakage Current – General Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
(1) (2)  
VCC  
MIN  
MAX UNIT  
50 nA  
Ilkg(Px.x)  
High-impedance leakage current  
2 V, 3 V  
-50  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Outputs – General Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
(1)  
I(OHmax) = –1 mA  
VCC  
2 V  
(2)  
(1)  
(2)  
I(OHmax) = –3 mA  
I(OHmax) = –2 mA  
I(OHmax) = –6 mA  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
2 V  
3 V  
VCC  
(1)  
I(OLmax) = 1 mA  
I(OLmax) = 3 mA  
I(OLmax) = 2 mA  
I(OLmax) = 6 mA  
VSS VSS + 0.25  
(2)  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1)  
(2)  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Output Frequency – General Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
MIN  
MAX UNIT  
16  
Port output frequency  
(with load)  
(1) (2)  
fPx.y  
Px.y  
MHz  
24  
16  
ACLK, SMCLK, or MCLK at configured output port,  
fPort_CLK  
Clock output frequency  
MHz  
24  
(2)  
CL = 20 pF, no DC loading  
(1) A resistive divider with 2 × 1.6 kbetween VCC and VSS is used as load. The output is connected to the center tap of the divider.  
CL = 20 pF is connected from the output to VSS  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
.
50  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Typical Characteristics – Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
16  
14  
12  
10  
8
VCC = 2.0 V  
TA = -40 °C  
Px.y  
TA = 25 °C  
TA = 85 °C  
6
4
2
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
VOL Low-Level Output Voltage - V  
Figure 2.  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
35  
30  
25  
20  
15  
10  
5
VCC = 3.0 V  
Px.y  
TA = -40 °C  
TA = 25 °C  
TA = 85 °C  
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0  
VOL Low-Level Output Voltage - V  
Figure 3.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Typical Characteristics – Outputs (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
0
VCC = 2.0 V  
Px.y  
-2  
-4  
-6  
-8  
-10  
TA = 85 °C  
-12  
TA = 25 °C  
-14  
TA = -40 °C  
-16  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
VOH High-Level Output Voltage - V  
Figure 4.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
0
-5  
VCC = 3.0 V  
Px.y  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
TA = 85 °C  
TA = 25 °C  
TA = -40 °C  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0  
VOH High-Level Output Voltage - V  
Figure 5.  
52  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
(1)  
Crystal Oscillator, XT1, Low-Frequency (LF) Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {1},  
CL,eff = 9 pF, TA = 25°C,  
3 V  
60  
Additional current consumption  
XT1 LF mode from lowest drive  
setting  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {2},  
TA = 25°C, CL,eff = 9 pF  
ΔIVCC.LF  
3 V  
3 V  
90  
nA  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {3},  
TA = 25°C, CL,eff = 12 pF  
140  
XT1 oscillator crystal frequency,  
LF mode  
fXT1,LF0  
XTS = 0, XT1BYPASS = 0  
32768  
Hz  
XT1 oscillator logic-level square-  
wave input frequency, LF mode  
(2) (3)  
fXT1,LF,SW  
XTS = 0, XT1BYPASS = 1  
10 32.768  
210  
50 kHz  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {0},  
fXT1,LF = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
OALF  
kΩ  
(4)  
LF crystals  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {3},  
fXT1,LF = 32768 Hz, CL,eff = 12 pF  
300  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30  
10  
70  
%
Oscillator fault frequency, LF mode  
(6)  
fFault,LF  
tSTART,LF  
CL,eff  
XTS = 0  
10000  
Hz  
(5)  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {0},  
TA = 25°C, CL,eff = 6 pF  
1000  
(7)  
Startup time, LF mode  
3 V  
ms  
pF  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVE = {3},  
TA = 25°C, CL,eff = 12 pF  
1000  
1
Integrated effective load  
XTS = 0  
(8) (9)  
capacitance, LF mode  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-trigger Inputs section of this data sheet.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVE  
settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but  
should be evaluated based on the actual crystal selected for the application:  
(a) For XT1DRIVE = {0}, CL,eff 6 pF.  
(b) For XT1DRIVE = {1}, 6 pF CL,eff 9 pF.  
(c) For XT1DRIVE = {2}, 6 pF CL,eff 10 pF.  
(d) For XT1DRIVE = {3}, 6 pF CL,eff 12 pF.  
(5) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(6) Measured with logic-level input frequency but also applies to operation with crystals.  
(7) Includes startup counter of 4096 clock cycles.  
(8) Requires external capacitors at both terminals.  
(9) Values are specified by crystal manufacturers. Include parasitic bond and package capacitance (approximately 2 pF per pin).  
Recommended values supported are 6 pF, 9 pF, and 12 pF. Maximum shunt capacitance of 1.6 pF.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
(1)  
Crystal Oscillator, XT1, High-Frequency (HF) Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVE = {0},  
TA = 25°C, CL,eff = 16 pF  
175  
fOSC = 8 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVE = {1},  
TA = 25°C, CL,eff = 16 pF  
300  
350  
550  
XT1 oscillator crystal current HF  
mode  
IVCC,HF  
3 V  
µA  
fOSC = 16 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVE = {2},  
TA = 25°C, CL,eff = 16 pF  
fOSC = 24 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVE = {3},  
TA = 25°C, CL,eff = 16 pF  
XT1 oscillator crystal frequency,  
HF mode 0  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {0}  
fXT1,HF0  
fXT1,HF1  
fXT1,HF2  
fXT1,HF3  
fXT1,HF,SW  
4
6
6
MHz  
(2)  
(3)  
(3)  
(3)  
XT1 oscillator crystal frequency,  
HF mode 1  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {1}  
10 MHz  
16 MHz  
24 MHz  
24 MHz  
XT1 oscillator crystal frequency,  
HF mode 2  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {2}  
10  
16  
1
XT1 oscillator crystal frequency,  
HF mode 3  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {3}  
XT1 oscillator logic-level square-  
wave input frequency, HF mode  
XTS = 1,  
XT1BYPASS = 1  
(4) (3)  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {0},  
fXT1,HF = 4 MHz, CL,eff = 16 pF  
450  
320  
200  
200  
8
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {1},  
fXT1,HF = 8 MHz, CL,eff = 16 pF  
Oscillation allowance for  
HF crystals  
OAHF  
(5)  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {2},  
fXT1,HF = 16 MHz, CL,eff = 16 pF  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVE = {3},  
fXT1,HF = 24 MHz, CL,eff = 16 pF  
fOSC = 4 MHz, XTS = 1,  
XT2BYPASS = 0, XT2DRIVE = {0},  
TA = 25°C, CL,eff = 16 pF  
(6)  
tSTART,HF  
Startup time, HF mode  
3 V  
ms  
fOSC = 24 MHz, XTS = 1,  
XT2BYPASS = 0, XT2DRIVE = {3},  
TA = 25°C, CL,eff = 16 pF  
2
(1) To improve EMI on the XT1 oscillator the following guidelines should be observed.  
(a) Keep the traces between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(2) Maximum frequency of operation of the entire device cannot be exceeded.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-trigger Inputs section of this data sheet.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes startup counter of 4096 clock cycles.  
54  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Crystal Oscillator, XT1, High-Frequency (HF) Mode (1) (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Integrated effective load  
capacitance  
CL,eff  
XTS = 1  
1
pF  
(7) (8)  
XTS = 1, Measured at ACLK,  
fXT1,HF2 = 24 MHz  
Duty cycle, HF mode  
40  
50  
60  
%
Oscillator fault frequency, HF mode  
(10)  
fFault,HF  
XTS = 1  
145  
900 kHz  
(9)  
(7) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is  
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should  
always match the specification of the used crystal.  
(8) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are 14  
pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF.  
(9) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(10) Measured with logic-level input frequency but also applies to operation with crystals.  
Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
8.3  
0.5  
4
MAX UNIT  
13 kHz  
%/°C  
fVLO  
Measured at ACLK  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
5
(1)  
(2)  
dfVLO/dT  
Measured at ACLK  
Measured at ACLK  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
fVLO,DC Duty cycle  
%/V  
40  
50  
60  
%
(1) Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(2.0 to 3.6 V) – MIN(2.0 to 3.6 V)) / MIN(2.0 to 3.6 V) / (3.6 V – 2 V)  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
 
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
DCO Frequencies  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
VCC  
TA  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2 V to 3.6 V  
-40°C to 85°C  
5.37 ±3.5%  
5.37 ±2.0%  
16.2 ±3.5%  
16.2 ±2.0%  
6.67 ±3.5%  
6.67 ±2.0%  
20 ±3.5%  
Measured at ACLK,  
DCORSEL = 0  
MHz  
MHz  
MHz  
MHz  
MHz  
2 V to 3.6 V  
0°C to 50°C  
fDCO,LO  
DCO frequency low, trimmed  
2 V to 3.6 V  
-40°C to 85°C  
Measured at ACLK,  
(1)  
DCORSEL = 1  
2 V to 3.6 V  
0°C to 50°C  
2 V to 3.6 V  
-40°C to 85°C  
Measured at ACLK,  
DCORSEL = 0  
2 V to 3.6 V  
0°C to 50°C  
fDCO,MID  
DCO frequency mid, trimmed  
2 V to 3.6 V  
-40°C to 85°C  
Measured at ACLK,  
(1)  
DCORSEL = 1  
2 V to 3.6 V  
0°C to 50°C  
20 ±2.0%  
2 V to 3.6 V  
-40°C to 85°C  
8
8
±3.5%  
±2.0%  
Measured at ACLK,  
DCORSEL = 0  
2 V to 3.6 V  
0°C to 50°C  
fDCO,HI  
DCO frequency high, trimmed  
2 V to 3.6 V  
23.8 ±3.5%  
23.8 ±2.0%  
-40°C to 85°C  
Measured at ACLK,  
DCORSEL = 1  
MHz  
%
(1)  
2 V to 3.6 V  
0°C to 50°C  
Measured at ACLK, divide by 1,  
No external divide, all DCO  
settings  
2 V to 3.6 V  
-40°C to 85°C  
fDCO,DC  
Duty cycle  
40  
50  
60  
(1) MSP40FR573x devices only  
MODOSC  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Current consumption  
MODOSC frequency  
Duty cycle  
TEST CONDITIONS  
VCC  
MIN  
TYP  
44  
MAX UNIT  
80 µA  
5.5 MHz  
60  
IMODOSC  
Enabled  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
fMODOSC  
4.5  
40  
5.0  
50  
fMODOSC,DC  
Measured at ACLK, divide by 1  
%
56  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
2 V DVCC 3.6 V  
2 V DVCC 3.6 V  
MIN  
TYP  
1.5  
MAX UNIT  
VCORE(AM)  
Core voltage, active mode  
Core voltage, low-current mode  
V
V
VCORE(LPM)  
1.5  
PMM, SVS, BOR  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC = 3.6 V  
MIN  
TYP  
MAX UNIT  
ISVSH,AM  
ISVSH,LPM  
VSVSH-  
SVSH current consumption, active mode  
SVSH current consumption, low power modes  
SVSH on voltage level, falling supply voltage  
SVSH off voltage level, rising supply voltage  
SVSH propagation delay, active mode  
SVSH propagation delay, low power modes  
SVSL current consumption  
5
0.8  
µA  
VCC = 3.6 V  
1.5  
1.93  
1.98  
µA  
V
1.83  
1.88  
1.88  
1.93  
10  
VSVSH+  
V
tPD,SVSH, AM  
tPD,SVSH, LPM  
ISVSL  
dVCC/dt = 10 mV/µs  
dVCC/dt = 1 mV/µs  
µs  
µs  
µA  
30  
0.3  
0.5  
Wake-Up from Low Power Modes  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
VCC  
TA  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.58  
12  
MAX UNIT  
Wake-up time from LPM0 to active  
2 V, 3 V  
-40°C to 85°C  
tWAKE-UP LPM0  
tWAKE-UP LPM12  
tWAKE-UP LPM34  
1
25  
µs  
µs  
µs  
µs  
µs  
µs  
ms  
(1)  
mode  
Wake-up time from LPM1, LPM2 to  
2 V, 3 V  
-40°C to 85°C  
(1)  
active mode  
Wake-up time from LPM3 or LPM4 to  
2 V, 3 V  
-40°C to 85°C  
78  
120  
575  
1100  
210  
(1)  
active mode  
2 V, 3 V  
0°C to 85°C  
310  
310  
170  
1.6  
Wake-up time from LPM3.5 or  
LPM4.5 to active mode  
tWAKE-UP LPMx.5  
(1)  
2 V, 3 V  
-40°C to 85°C  
Wake-up time from RST to active  
2 V, 3 V  
-40°C to 85°C  
tWAKE-UP RESET  
tWAKE-UP BOR  
VCC stable  
(2)  
mode  
Wake-up time from BOR or power-up  
to active mode  
2 V, 3 V  
-40°C to 85°C  
dVCC/dt = 2400 V/s  
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
(2) The wake-up time is measured from the rising edge of the RST signal until the first instruction of the user program is executed.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
8
fTA  
Timer_A input clock frequency  
External: TACLK  
Duty cycle = 50% ± 10%  
2 V, 3 V  
MHz  
(1)  
24  
All capture inputs, Minimum pulse  
duration required for capture  
tTA,cap  
Timer_A capture timing  
2 V, 3 V  
20  
ns  
(1) MSP430FR573x devices only  
Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
8
fTB  
Timer_B input clock frequency  
External: TBCLK  
Duty cycle = 50% ± 10%  
2 V, 3 V  
MHz  
(1)  
24  
All capture inputs, Minimum pulse  
duration required for capture  
tTB,cap  
Timer_B capture timing  
2 V, 3 V  
20  
ns  
(1) MSP430FR573x devices only  
eUSCI (UART Mode) Recommended Operating Conditions  
PARAMETER  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
feUSCI  
eUSCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
5
MHz  
eUSCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
UCGLITx = 0  
VCC  
MIN  
5
TYP  
15  
MAX UNIT  
20  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
20  
35  
50  
45  
60  
ns  
(1)  
tt  
UART receive deglitch time  
2 V, 3 V  
80  
120  
110  
180  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
58  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
eUSCI (SPI Master Mode) Recommended Operating Conditions  
PARAMETER  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
Duty cycle = 50% ± 10%  
feUSCI  
eUSCI input clock frequency  
fSYSTEM MHz  
eUSCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
UCSTEM = 0,  
UCMODEx = 01 or 10  
2 V, 3 V  
1
UCxCLK  
cycles  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
STE lead time, STE active to clock  
UCSTEM = 1,  
UCMODEx = 01 or 10  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
1
1
1
UCSTEM = 0,  
UCMODEx = 01 or 10  
STE lag time, Last clock to STE  
inactive  
UCxCLK  
cycles  
UCSTEM = 1,  
UCMODEx = 01 or 10  
UCSTEM = 0,  
UCMODEx = 01 or 10  
55  
35  
40  
30  
STE access time, STE active to SIMO  
data out  
ns  
ns  
UCSTEM = 1,  
UCMODEx = 01 or 10  
UCSTEM = 0,  
UCMODEx = 01 or 10  
STE disable time, STE inactive to  
SIMO high impedance  
UCSTEM = 1,  
UCMODEx = 01 or 10  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
35  
35  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
ns  
ns  
ns  
ns  
tHD,MI  
0
30  
30  
UCLK edge to SIMO valid,  
CL = 20 pF  
(2)  
tVALID,MO  
SIMO output data valid time  
0
0
(3)  
tHD,MO  
SIMO output data hold time  
CL = 20 pF  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)).  
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 6 and Figure 7.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 6  
and Figure 7.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tSTE,ACC  
tVALID,MO  
tSTE,DIS  
Figure 6. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tSTE,ACC  
tVALID,MO  
tSTE,DIS  
Figure 7. SPI Master Mode, CKPH = 1  
60  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
eUSCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
7
TYP  
MAX UNIT  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
7
0
STE lag time, Last clock to STE inactive  
ns  
0
65  
ns  
40  
STE access time, STE active to SOMI data out  
40  
ns  
35  
STE disable time, STE inactive to SOMI high  
impedance  
2
2
5
5
SIMO input data setup time  
SIMO input data hold time  
ns  
ns  
tHD,SI  
30  
ns  
30  
UCLK edge to SOMI valid,  
CL = 20 pF  
(2)  
tVALID,SO  
SOMI output data valid time  
4
4
(3)  
tHD,SO  
SOMI output data hold time  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)).  
For the master's parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 8 and Figure 9.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 8  
and Figure 9.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SIMO  
tHD,SIMO  
tLOW/HIGH  
tLOW/HIGH  
SIMO  
SOMI  
tACC  
tVALID,SOMI  
tDIS  
Figure 8. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tACC  
tDIS  
tVALID,SO  
Figure 9. SPI Slave Mode, CKPH = 1  
62  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
eUSCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 10)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
feUSCI  
eUSCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
fSCL  
SCL clock frequency  
2 V, 3 V  
2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2 V, 3 V  
2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2 V, 3 V  
µs  
600  
300  
150  
75  
ns  
ns  
25  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2 V, 3 V  
12.5  
6.25  
ns  
ns  
27  
30  
33  
ms  
ms  
ms  
tTIMEOUT  
Clock low timeout  
2 V, 3 V  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 10. I2C Mode Timing  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
 
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
10-Bit ADC, Power Supply and Input Range Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.0  
0
TYP  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
AVCC  
Analog supply voltage  
Analog input voltage range  
3.6  
V
V
V(Ax)  
All ADC10 pins  
AVCC  
140  
Operating supply current into fADC10CLK = 5 MHz, ADC10ON = 1,  
2 V  
3 V  
90  
IADC10_A  
AVCC terminal, reference  
current not included  
REFON = 0, SHT0 = 0, SHT1 = 0,  
ADC10DIV = 0  
µA  
100  
160  
Only one terminal Ax can be selected at one  
time from the pad to the ADC10_A capacitor  
array including wiring and pad  
CI  
RI  
Input capacitance  
2.2 V  
6
8
pF  
Input MUX ON resistance  
AVCC 2 V, 0 V VAx AVCC  
36  
kΩ  
10-Bit ADC, Timing Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC10 linearity  
parameters  
2 V to  
3.6 V  
fADC10CLK  
fADC10OSC  
0.45  
5
5.5 MHz  
Internal ADC10 oscillator  
(MODOSC)  
2 V to  
3.6 V  
ADC10DIV = 0, fADC10CLK = fADC10OSC  
4.5  
4.5  
5.5 MHz  
REFON = 0, Internal oscillator,  
12 ADC10CLK cycles, 10-bit mode,  
fADC10OSC = 4.5 MHz to 5.5 MHz  
2 V to  
3.6 V  
2.18  
2.67  
µs  
tCONVERT  
Conversion time  
External fADC10CLK from ACLK, MCLK, or SMCLK,  
ADC10SSEL 0  
2 V to  
3.6 V  
(1)  
The error in a conversion started after tADC10ON is  
less than ±0.5 LSB,  
Reference and input signal already settled  
Turn on settling time of  
the ADC  
tADC10ON  
100  
ns  
µs  
RS = 1000 , RI = 36000 , CI = 3.5 pF,  
Approximately eight Tau (τ) are required to get an  
error of less than ±0.5 LSB  
2 V  
3 V  
1.5  
2.0  
tSample  
Sampling time  
(1) 12 × ADC10DIV × 1/fADC10CLK  
10-Bit ADC, Linearity Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
1.4 V (VeREF+ – VREF–/VeREF–)min 1.6 V  
1.6 V < (VeREF+ – VREF–/VeREF–)min VAVCC  
VCC  
MIN  
-1.4  
-1.1  
TYP  
MAX UNIT  
1.4  
Integral  
linearity error  
2 V to  
3.6 V  
EI  
LSB  
1.1  
Differential  
linearity error  
2 V to  
3.6 V  
ED  
EO  
(VeREF+ – VREF–/VeREF–)min (VeREF+ – VREF–/VeREF–  
(VeREF+ – VREF–/VeREF–)min (VeREF+ – VREF–/VeREF–  
(VeREF+ – VREF–/VeREF–)min (VeREF+ – VREF–/VeREF–  
)
)
)
-1  
-6.5  
-1.2  
-4  
1
LSB  
mV  
2 V to  
3.6 V  
Offset error  
6.5  
Gain error, external  
reference  
2 V to  
3.6 V  
1.2 LSB  
EG  
Gain error, internal  
4
2
%
(1)  
reference  
Total unadjusted  
error, external  
reference  
2 V to  
3.6 V  
(VeREF+ – VREF–/VeREF–)min (VeREF+ – VREF–/VeREF–  
)
-2  
-4  
LSB  
ET  
Total unadjusted  
error, internal  
4
%
(1)  
reference  
(1) Error is dominated by the internal reference.  
64  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
REF, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.4  
0
TYP  
MAX UNIT  
(2)  
VeREF+  
VeREF–  
(VeREF+  
Positive external reference voltage input  
VeREF+ > VeREF–  
AVCC  
1.2  
V
V
(3)  
(4)  
Negative external reference voltage input VeREF+ > VeREF–  
Differential external reference voltage  
VeREF+ > VeREF–  
1.4  
AVCC  
V
VREF–/VeREF–  
)
input  
1.4 V VeREF+ VAVCC  
VeREF– = 0 V,  
,
fADC10CLK = 5 MHz,  
ADC10SHTx = 1h,  
Conversion rate 200 ksps  
2.2 V, 3 V  
2.2 V, 3 V  
-6  
6
µA  
IVeREF+  
IVeREF–  
,
Static input current  
1.4 V VeREF+ VAVCC  
VeREF– = 0 V,  
fADC10CLK = 5 MHz,  
ADC10SHTx = 8h,  
,
-1  
1
µA  
µF  
Conversion rate 20 ksps  
Capacitance at VREF+ or VREF- terminal  
CVREF+, CVREF-  
10  
(5)  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC10_B. Also see the MSP430FR57xx Family User's Guide (SLAU272).  
REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
REFVSEL = {2} for 2.5 V, REFON = 1  
REFVSEL = {1} for 2 V, REFON = 1  
REFVSEL = {0} for 1.5 V, REFON = 1  
REFVSEL = {0} for 1.5 V  
VCC  
3 V  
3 V  
3 V  
MIN  
2.4  
TYP  
2.5  
2.0  
1.5  
MAX UNIT  
2.6  
Positive built-in reference  
voltage output  
VREF+  
1.92  
1.44  
2.0  
2.08  
1.56  
V
AVCC minimum voltage,  
Positive built-in reference  
active  
AVCC(min)  
REFVSEL = {1} for 2 V  
2.2  
V
REFVSEL = {2} for 2.5 V  
2.7  
Operating supply current into fADC10CLK = 5 MHz,  
IREF+  
3 V  
33  
45  
µA  
(1)  
AVCC terminal  
REFON = 1, REFBURST = 0  
Temperature coefficient of  
built-in reference  
ppm/  
°C  
TREF+  
REFVSEL = (0, 1, 2}, REFON = 1  
±35  
AVCC = AVCC (min) - AVCC(max)  
TA = 25°C, REFON = 1,  
REFVSEL = (0} for 1.5 V  
,
,
,
,
1600  
1900  
AVCC = AVCC (min) - AVCC(max)  
TA = 25°C, REFON = 1,  
REFVSEL = (1} for 2 V  
Power supply rejection ratio  
(DC)  
PSRR_DC  
µV/V  
AVCC = AVCC (min) - AVCC(max)  
TA = 25°C, REFON = 1,  
REFVSEL = (2} for 2.5 V  
3600  
30  
Settling time of reference  
voltage  
AVCC = AVCC (min) - AVCC(max)  
REFVSEL = (0, 1, 2}, REFON = 0 1  
tSETTLE  
µs  
(2)  
(1) The internal reference current is supplied by terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.  
(2) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
REF, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
790  
MAX UNIT  
mV  
ADC10ON = 1, INCH = 0Ah,  
TA = 0°C  
(1)  
VSENSOR  
See  
2 V, 3 V  
TCSENSOR  
ADC10ON = 1, INCH = 0Ah  
2 V, 3 V  
2 V  
2.55  
mV/°C  
30  
30  
Sample time required if  
channel 10 is selected  
ADC10ON = 1, INCH = 0Ah,  
Error of conversion result 1 LSB  
tSENSOR(sample)  
µs  
(2)  
3 V  
2 V  
0.97  
1.46  
1.0  
1.5  
1.03  
V
ADC10ON = 1, INCH = 0Bh,  
VMID is ~0.5 × VAVCC  
VMID  
AVCC divider at channel 11  
Sample time required if  
3 V  
1.54  
ADC10ON = 1, INCH = 0Bh,  
Error of conversion result 1 LSB  
tVMID(sample)  
2 V, 3 V  
1000  
ns  
(3)  
channel 11 is selected  
(1) The temperature sensor offset can vary significantly. A single-point calibration is recommended to minimize the offset error of the built-in  
temperature sensor.  
(2) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
.
(3) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
1050  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Ambient Temperature - Degrees Celsius  
Figure 11. Typical Temperature Sensor Voltage  
66  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Comparator_D  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Overdrive = 10 mV,  
VIN- = (VIN+ – 400 mV) to (VIN+ + 10 mV)  
50  
100  
200  
ns  
ns  
ns  
Propagation delay,  
AVCC = 2 V to 3.6 V  
Overdrive = 100 mV,  
VIN- = (VIN+ – 400 mV) to (VIN+ + 100 mV)  
tpd  
80  
50  
Overdrive = 250 mV,  
(VIN+ – 400 mV) to (VIN+ + 250 mV)  
CDF = 1, CDFDLY = 00  
CDF = 1, CDFDLY = 01  
CDF = 1, CDFDLY = 10  
CDF = 1, CDFDLY = 11  
AVCC = 2 V to 3.6 V  
0.3  
0.5  
0.9  
1.6  
-20  
0.5  
0.9  
1.6  
3.0  
0.9  
1.5  
2.8  
5.5  
20  
µs  
µs  
Filter timer added to the  
propagation delay of the  
comparator  
tfilter  
µs  
µs  
Voffset  
Input offset  
mV  
Common mode input  
range  
Vic  
AVCC = 2 V to 3.6 V  
0
AVCC - 1  
V
Icomp(AVCC)  
Iref(AVCC)  
Comparator only  
CDON = 1, AVCC = 2 V to 3.6 V  
CDREFLx = 01, AVCC = 2 V to 3.6 V  
29  
20  
34  
24  
µA  
µA  
Reference buffer and R-  
ladder  
CDON = 0 to CDON = 1,  
AVCC = 2 V to 3.6 V  
tenable,comp  
Comparator enable time  
1.1  
1.1  
2.0  
2.0  
µs  
µs  
Resistor ladder enable  
time  
CDON = 0 to CDON = 1,  
AVCC = 2 V to 3.6 V  
tenable,rladder  
VIN ×  
(n + 0.5)  
/ 32  
VIN ×  
(n + 1)  
/ 32  
VIN ×  
(n + 1.5)  
/ 32  
Reference voltage for a  
tap  
VIN = voltage input to the R-ladder,  
n = 0 to 31  
VCB_REF  
V
FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Write supply voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DVCC(WRITE)  
tWRITE  
2.0  
3.6  
120  
60  
V
ns  
Word or byte write time  
(1)  
tACCESS  
Read access time  
ns  
(1)  
tPRECHARGE  
tCYCLE  
Precharge time  
60  
ns  
(1)  
Cycle time, read or write operation  
Read and write endurance  
120  
1015  
100  
40  
ns  
cycles  
TJ = 25°C  
TJ = 70°C  
TJ = 85°C  
tRetention  
Data retention duration  
years  
10  
(1) When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common  
system frequencies.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
 
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Spy-Bi-Wire input frequency  
VCC  
MIN  
0
TYP  
MAX UNIT  
fSBW  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
20 MHz  
tSBW,Low  
tSBW, En  
tSBW,Rst  
Spy-Bi-Wire low clock pulse duration  
0.025  
15  
1
µs  
µs  
(1)  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)  
Spy-Bi-Wire return to normal operation time  
19  
0
35  
5
µs  
2 V  
3 V  
MHz  
(2)  
fTCK  
TCK input frequency, 4-wire JTAG  
0
10 MHz  
50 kΩ  
Rinternal  
Internal pulldown resistance on TEST  
2 V, 3 V  
20  
35  
(1) Tools accessing the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
68  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
INPUT/OUTPUT SCHEMATICS  
Port P1, P1.0 to P1.2, Input/Output With Schmitt Trigger  
Pad Logic  
External ADC reference  
(P1.0, P1.1)  
To ADC  
From ADC  
To Comparator  
From Comparator  
CDPD.x  
P1REN.x  
P1DIR.x  
0 0  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
DVSS  
P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREF-  
P1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+  
P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2  
P1SEL0.x  
P1SEL1.x  
P1IN.x  
Bus  
Keeper  
EN  
D
To modules  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 43. Port P1 (P1.0 to P1.2) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
(1)  
P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREF-  
0
P1.0 (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
0
0
0
1
0
1
0
1
1
0
DMAE0  
RTCCLK  
(2) (3)  
A0  
(2) (4)  
CD0  
X
1
1
(2) (3)  
VeREF-  
P1.1 (I/O)  
TA0.CCI2A  
TA0.2  
P1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+  
1
I: 0; O: 1  
0
0
0
1
0
1
0
1
TA1CLK  
CDOUT  
1
1
0
1
(2) (3)  
A1  
(2) (4)  
CD1  
X
(2) (3)  
VeREF+  
P1.2 (I/O)  
TA1.CCI1A  
TA1.1  
P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2  
2
I: 0; O: 1  
0
0
0
1
0
1
0
1
TA0CLK  
CDOUT  
1
1
0
1
(2) (3)  
A2  
X
(2) (4)  
CD2  
(1) This pin is tied to AVSS for YFF package types. All functions are therefore tied to ground at the pin.  
(2) Setting P1SEL1.x and P1SEL0.x disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Not available on all devices and package types.  
(4) Setting the CDPD.x bit of the comparator disables the output driver as well as the input Schmitt trigger to prevent parasitic cross  
currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically  
disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.  
70  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Port P1, P1.3 to P1.5, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CDPD.x  
P1REN.x  
0 0  
0 1  
1 0  
1 1  
P1DIR.x  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
DVSS  
P1.3/TA1.2/UCB0STE/A3/CD3  
P1.4/TB0.1/UCA0STE/A4/CD4  
P1.5/TB0.2/UCA0CLK/A5/CD5  
P1SEL0.x  
P1SEL1.x  
P1IN.x  
Bus  
Keeper  
EN  
D
To modules  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 44. Port P1 (P1.3 to P1.5) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.3/TA1.2/UCB0STE/A3/CD3  
3
P1.3 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
0
0
0
1
0
1
(1)  
UCB0STE  
X
1
1
0
0
1
0
(2) (3)  
A3  
X
(2) (4)  
CD3  
P1.4/TB0.1/UCA0STE/A4/CD4  
P1.5/TB0.2/UCA0CLK/A5/CD5  
4
5
P1.4 (I/O)  
TB0.CCI1A  
TB0.1  
I: 0; O: 1  
0
1
0
1
(5)  
UCA0STE  
X
1
1
0
0
1
0
(2) (3)  
A4  
X
(2) (4)  
CD4  
P1.5(I/O)  
TB0.CCI2A  
TB0.2  
I: 0; O: 1  
0
1
0
1
(5)  
UCA0CLK  
X
1
1
0
1
(2) (3)  
A5  
X
(2) (4)  
CD5  
(1) Direction controlled by eUSCI_B0 module.  
(2) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Not available on all devices and package types.  
(4) Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output  
driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit  
(5) Direction controlled by eUSCI_A0 module.  
72  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Port P1, P1.6 to P1.7, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P1REN.x  
P1DIR.x  
0 0  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
From module 3  
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0  
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0  
P1SEL0.x  
P1SEL1.x  
P1IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 45. Port P1 (P1.6 to P1.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0  
6
P1.6 (I/O)  
I: 0; O: 1  
0
0
(1)  
TB1.CCI1A  
0
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
(1)  
TB1.1  
(2)  
UCB0SIMO/UCB0SDA  
TA0.CCI0A  
X
0
TA0.0  
1
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0  
7
P1.7 (I/O)  
I: 0; O: 1  
(1)  
TB1.CCI2A  
0
1
(1)  
TB1.2  
(3)  
UCB0SOMI/UCB0SCL  
TA1.CCI0A  
X
0
1
TA1.0  
(1) Not available on all devices and package types.  
(2) Direction controlled by eUSCI_B0 module.  
(3) Direction controlled by eUSCI_A0 module.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Port P2, P2.0 to P2.2, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P2REN.x  
P2DIR.x  
0 0  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
From module 3  
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK  
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0  
P2.2/TB2.2/UCB0CLK/TB1.0  
P2SEL0.x  
P2SEL1.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 46. Port P2 (P2.0 to P2.2) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK  
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0  
P2.2/TB2.2/UCB0CLK/TB1.0  
0
P2.0 (I/O)  
I: 0; O: 1  
0
0
1
0
1
0
1
0
1
0
1
0
1
(1)  
TB2.CCI0A  
0
1
0
1
1
0
0
1
1
0
0
1
1
(1)  
TB2.0  
(2)  
UCA0TXD/UCA0SIMO  
TB0CLK  
X
0
ACLK  
1
1
2
P2.1 (I/O)  
I: 0; O: 1  
(1)  
TB2.CCI1A  
0
1
(1)  
TB2.1  
(2)  
UCA0RXD/UCA0SOMI  
TB0.CCI0A  
X
0
TB0.0  
1
P2.2 (I/O)  
I: 0; O: 1  
(1)  
TB2.CCI2A  
0
(1)  
TB2.2  
1
(3)  
UCB0CLK  
X
(1)  
TB1.CCI0A  
0
1
(1)  
TB1.0  
(1) Not available on all devices and package types.  
(2) Direction controlled by eUSCI_A0 module.  
(3) Direction controlled by eUSCI_B0 module.  
74  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Port P2, P2.3 to P2.4, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CDPD.x  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
DVSS  
P2.3/TA0.0/UCA1STE/A6/CD10  
P2.4/TA1.0/UCA1CLK/A7/CD11  
P2SEL0.x  
P2SEL1.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 47. Port P2 (P2.3 to P2.4) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.3/TA0.0/UCA1STE/A6/CD10  
3
P2.3 (I/O)  
TA0.CCI0B  
TA0.0  
I: 0; O: 1  
0
0
0
1
0
1
(1)  
UCA1STE  
X
1
1
0
0
1
0
(2) (3)  
A6  
X
(2) (4)  
CD10  
P2.4/TA1.0/UCA1CLK/A7/CD11  
4
P2.4 (I/O)  
TA1.CCI0B  
TA1.0  
I: 0; O: 1  
0
1
0
1
(1)  
UCA1CLK  
X
1
1
0
1
(2) (3)  
A7  
X
(2) (4)  
CD11  
(1) Direction controlled by eUSCI_A1 module.  
(2) Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Not available on all devices and package types.  
(4) Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output  
driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.  
76  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Port P2, P2.5 to P2.6, Input/Output With Schmitt Trigger  
Pad Logic  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
DVSS  
P2.5/TB0.0/UCA1TXD/UCA1SIMO  
P2.6/TB1.0/UCA1RXD/UCA1SOMI  
P2SEL0.x  
P2SEL1.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 48. Port P2 (P2.5 to P2.6) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x P2SEL1.x P2SEL0.x  
(1)  
P2.5/TB0.0/UCA1TXD/UCA1SIMO  
5
P2.5(I/O)  
I: 0; O: 1  
0
0
(1)  
TB0.CCI0B  
0
1
0
1
(1)  
TB0.0  
(1)  
(2)  
UCA1TXD/UCA1SIMO  
X
1
0
0
0
(1)  
P2.6/TB1.0/UCA1RXD/UCA1SOMI  
6
P2.6(I/O)  
I: 0; O: 1  
(1)  
TB1.CCI0B  
0
1
0
1
1
0
(1)  
TB1.0  
(1)  
(2)  
UCA1RXD/UCA1SOMI  
X
(1) Not available on all devices and package types.  
(2) Direction controlled by eUSCI_A1 module.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Port P2, P2.7, Input/Output With Schmitt Trigger  
Pad Logic  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
DVSS  
DVSS  
P2.7  
DVSS  
P2SEL0.x  
P2SEL1.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 49. Port P2 (P2.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x P2SEL1.x P2SEL0.x  
(1)  
P2.7  
7
P2.7(I/O)  
I: 0; O: 1  
0
0
(1) Not available on all devices and package types.  
78  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Port P3, P3.0 to P3.3, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CDPD.x  
P3REN.x  
0 0  
0 1  
1 0  
1 1  
P3DIR.x  
DVSS  
DVCC  
0
Direction  
0: Input  
1: Output  
1
1
0 0  
0 1  
1 0  
1 1  
P3OUT.x  
DVSS  
DVSS  
DVSS  
P3.0/A12/CD12  
P3.1/A13/CD13  
P3.2/A14/CD14  
P3.3/A15/CD15  
P3SEL0.x  
P3SEL1.x  
P3IN.x  
Bus  
Keeper  
EN  
D
To modules  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 50. Port P3 (P3.0 to P3.3) Pin Functions  
CONTROL BITS/SIGNALS  
P3DIR.x P3SEL1.x P3SEL0.x  
PIN NAME (P3.x)  
P3.0/A12/CD12  
x
FUNCTION  
0
P3.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
(1) (2)  
A12  
X
(1) (3)  
CD12  
P3.1/A13/CD13  
P3.2/A14/CD14  
P3.3/A15/CD15  
1
2
3
P3.1 (I/O)  
I: 0; O: 1  
(1) (2)  
A13  
X
I: 0; O: 1  
X
(1) (3)  
CD13  
P3.2 (I/O)  
(1) (2)  
A14  
(1) (3)  
CD14  
P3.3 (I/O)  
I: 0; O: 1  
X
(1) (2)  
A15  
(1) (3)  
CD15  
(1) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(2) Not available on all devices and package types.  
(3) Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output  
driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.  
80  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Port P3, P3.4 to P3.6, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P3REN.x  
0 0  
0 1  
1 0  
1 1  
P3DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P3OUT.x  
From module 1  
DVSS  
P3.4/TB1.1/TB2CLK/SMCLK  
P3.5/TB1.2/CDOUT  
P3.6/TB2.1/TB1CLK  
From module 2  
P3SEL0.x  
P3SEL1.x  
P3IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 51. Port P3 (P3.4 to P3.6) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x P3SEL1.x P3SEL0.x  
(1)  
P3.4/TB1.1/TB2CLK/SMCLK  
4
P3.4 (I/O)  
I: 0; O: 1  
0
0
(1)  
TB1.CCI1B  
0
0
1
(1)  
TB1.1  
1
(1)  
TB2CLK  
0
1
0
0
1
0
1
(1)  
SMCLK  
1
(1)  
P3.5/TB1.2/CDOUT  
P3.6/TB2.1/TB1CLK  
5
6
P3.5 (I/O)  
I: 0; O: 1  
(1)  
TB1.CCI2B  
0
(1)  
TB1.2  
1
(1)  
CDOUT  
1
1
0
1
0
(1)  
P3.6 (I/O)  
I: 0; O: 1  
(1)  
TB2.CCI1B  
0
1
0
0
1
1
1
(1)  
TB2.1  
(1)  
TB1CLK  
(1) Not available on all devices and package types.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Port P3, P3.7, Input/Output With Schmitt Trigger  
Pad Logic  
P3REN.x  
0 0  
0 1  
1 0  
1 1  
P3DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P3OUT.x  
From module 1  
DVSS  
DVSS  
P3.7/TB2.2  
P3SEL0.x  
P3SEL1.x  
P3IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 52. Port P3 (P3.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x P3SEL1.x P3SEL0.x  
(1)  
P3.7/TB2.2  
7
P3.7 (I/O)  
I: 0; O: 1  
0
0
(1)  
TB2.CCI2B  
0
1
0
1
(1)  
TB2.2  
(1) Not available on all devices and package types.  
82  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Port P4, P4.0, Input/Output With Schmitt Trigger  
Pad Logic  
P4REN.x  
0 0  
0 1  
1 0  
1 1  
P4DIR.x  
DVSS  
DVCC  
0
Direction  
0: Input  
1: Output  
1
1
0 0  
0 1  
1 0  
1 1  
P4OUT.x  
From module 1  
DVSS  
DVSS  
P4.0/TB2.0  
P4SEL0.x  
P4SEL1.x  
P4IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 53. Port P4 (P4.0) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x P4SEL1.x P4SEL0.x  
(1)  
P4.0/TB2.0  
0
P4.0 (I/O)  
I: 0; O: 1  
0
0
(1)  
TB2.CCI0B  
0
1
0
1
(1)  
TB2.0  
(1) Not available on all devices and package types.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Port P4, P4.1, Input/Output With Schmitt Trigger  
Pad Logic  
P4REN.x  
0 0  
0 1  
1 0  
1 1  
P4DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P4OUT.x  
DVSS  
DVSS  
P4.1  
DVSS  
P4SEL0.x  
P4SEL1.x  
P4IN.x  
Bus  
Keeper  
EN  
D
To modules  
Table 54. Port P4 (P4.1) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x P4SEL1.x P4SEL0.x  
(1)  
P4.1  
1
P4.1 (I/O)  
I: 0; O: 1  
0
0
(1) Not available on all devices and package types.  
84  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Port J, J.0 to J.3 JTAG pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or  
Output  
To Comparator  
From Comparator  
CDPD.x  
From JTAG  
From JTAG  
From JTAG  
Pad Logic  
1
0
PJREN.x  
PJDIR.x  
0 0  
0 1  
1 0  
1 1  
1
0
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
JTAG enable  
0 0  
0 1  
1 0  
1 1  
PJOUT.x  
From module 1  
DVSS  
1
0
PJ.0/TDO/TB0OUTH/SMCLK/CD6  
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7  
PJ.2/TMS/TB2OUTH/ACLK/CD8  
DVSS  
PJSEL0.x  
PJSEL1.x  
PJIN.x  
Bus  
Keeper  
EN  
D
To modules  
and JTAG  
To Comparator  
From Comparator  
CDPD.x  
Pad Logic  
From JTAG  
From JTAG  
From JTAG  
1
0
PJREN.x  
PJDIR.x  
0 0  
0 1  
1 0  
1 1  
1
0
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
JTAG enable  
0 0  
0 1  
1 0  
1 1  
PJOUT.x  
DVSS  
1
0
DVSS  
DVSS  
PJ.3/TCK/CD9  
PJSEL0.x  
PJSEL1.x  
PJIN.x  
Bus  
Keeper  
EN  
D
To modules  
and JTAG  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
(1)  
Table 55. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS/ SIGNALS  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x PJSEL1.x PJSEL0.x  
(2)  
PJ.0/TDO/TB0OUTH/SMCLK/CD6  
0
PJ.0 (I/O)  
I: 0; O: 1  
0
0
(3)  
TDO  
X
X
X
TB0OUTH  
SMCLK  
CD6  
0
0
1
1
X
1
0
X
1
0
X
(2)  
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7  
PJ.2/TMS/TB2OUTH/ACLK/CD8  
PJ.3/TCK/CD9  
1
2
3
PJ.1 (I/O)  
TDI/TCLK  
TB1OUTH  
MCLK  
I: 0; O: 1  
(3) (4)  
X
0
0
1
1
CD7  
X
1
0
X
1
0
X
(2)  
PJ.2 (I/O)  
I: 0; O: 1  
(3) (4)  
TMS  
X
TB2OUTH  
ACLK  
0
0
1
1
CD8  
X
1
0
X
1
1
0
X
1
(2)  
PJ.3 (I/O)  
I: 0; O: 1  
(3) (4)  
TCK  
X
X
CD9  
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module. JTAG mode selection is made by the SYS module or by the Spy-Bi-Wire four-wire  
entry sequence. PJSEL1.x and PJSEL0.x have no effect in these cases.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.  
86  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt Trigger  
Pad Logic  
To XT1 XIN  
PJREN.4  
0 0  
0 1  
1 0  
1 1  
PJDIR.4  
DVSS  
DVCC  
0
Direction  
0: Input  
1: Output  
1
1
0 0  
0 1  
1 0  
1 1  
PJOUT.4  
DVSS  
DVSS  
DVSS  
PJ.4/XIN  
PJSEL0.4  
PJSEL1.4  
PJIN.4  
Bus  
Keeper  
EN  
D
To modules  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Pad Logic  
To XT1 XOUT  
PJSEL0.4  
XT1BYPASS  
PJREN.5  
0 0  
0 1  
1 0  
1 1  
PJDIR.5  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.5  
DVSS  
DVSS  
DVSS  
PJ.5/XOUT  
PJSEL0.5  
PJSEL1.5  
PJIN.5  
Bus  
Keeper  
EN  
D
To modules  
Table 56. Port PJ (PJ.4 and PJ.5) Pin Functions  
(1)  
CONTROL BITS/SIGNALS  
PIN NAME (P7.x)  
x
FUNCTION  
XT1  
BYPASS  
PJDIR.x PJSEL1.5 PJSEL0.5 PJSEL1.4 PJSEL0.4  
PJ.4/XIN  
4
PJ.4 (I/O)  
I: 0; O: 1  
X
X
X
0
X
X
X
0
0
0
0
0
0
1
1
0
X
0
1
X
(2)  
XIN crystal mode  
XIN bypass mode  
PJ.5 (I/O)  
X
X
(2)  
PJ.5/XOUT  
5
I: 0; O: 1  
XOUT crystal mode  
X
X
X
X
X
0
0
1
1
0
1
(3)  
(4)  
PJ.5 (I/O)  
I: 0; O: 1  
(1) X = Don't care  
(2) Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are  
configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass  
operation and PJ.5 is configured as general-purpose I/O.  
(3) Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are  
configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass  
operation and PJ.5 is configured as general-purpose I/O.  
(4) When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.  
88  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
DEVICE DESCRIPTORS (TLV)  
The following tables list the complete contents of the device descriptor tag-length-value (TLV) structure for each  
device type.  
(1)  
Table 57. Device Descriptor Table  
FR5739  
Value  
05h  
FR5738  
Value  
05h  
FR5737  
Value  
05h  
FR5736  
Value  
05h  
FR5735  
Value  
05h  
Description  
Address  
Info Block  
Info length  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
CRC length  
05h  
05h  
05h  
05h  
05h  
per unit  
per unit  
03h  
per unit  
per unit  
02h  
per unit  
per unit  
01h  
per unit  
per unit  
77h  
per unit  
per unit  
76h  
CRC value  
Device ID  
Device ID  
81h  
81h  
81h  
81h  
81h  
Hardware revision  
Firmware revision  
Die Record Tag  
Die Record length  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
Die Record  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
Lot/Wafer ID  
Die X position  
Die Y position  
Test results  
ADC10  
Calibration  
ADC10 Calibration  
Tag  
01A14h  
01A15h  
13h  
10h  
13h  
10h  
13h  
10h  
05h  
10h  
13h  
10h  
ADC10 Calibration  
length  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC Gain Factor  
ADC Offset  
ADC 1.5-V  
Reference  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
Temp. Sensor 30°C  
ADC 1.5-V  
Reference  
Temp. Sensor 85°C  
ADC 2.0-V  
Reference  
Temp. Sensor 30°C  
ADC 2.0-V  
Reference  
Temp. Sensor 85°C  
ADC 2.5-V  
Reference  
Temp. Sensor 30°C  
(1) NA = Not applicable  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
89  
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 57. Device Descriptor Table (1) (continued)  
FR5739  
Value  
FR5738  
Value  
FR5737  
Value  
NA  
FR5736  
Value  
NA  
FR5735  
Value  
Description  
Address  
ADC 2.5-V  
Reference  
Temp. Sensor 85°C  
01A24h  
01A25h  
per unit  
per unit  
per unit  
per unit  
12h  
per unit  
12h  
NA  
NA  
per unit  
12h  
REF  
Calibration  
REF Calibration Tag  
01A26h  
01A27h  
12h  
12h  
REF Calibration  
length  
06h  
06h  
06h  
06h  
06h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
REF 1.5-V  
Reference  
REF 2.0-V  
Reference  
REF 2.5-V  
Reference  
(1)  
Table 58. Device Descriptor Table  
FR5734  
Value  
05h  
FR5733  
Value  
05h  
FR5732  
Value  
05h  
FR5731  
Value  
05h  
FR5730  
Value  
05h  
Description  
Address  
Info Block  
Info length  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
CRC length  
05h  
05h  
05h  
05h  
05h  
per unit  
per unit  
00h  
per unit  
per unit  
7Fh  
per unit  
per unit  
75h  
per unit  
per unit  
7Eh  
per unit  
per unit  
7Ch  
CRC value  
Device ID  
Device ID  
81h  
80h  
81h  
80h  
80h  
Hardware revision  
Firmware revision  
Die Record Tag  
Die Record length  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
Die Record  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
Lot/Wafer ID  
Die X position  
Die Y position  
Test results  
ADC10  
Calibration  
ADC10 Calibration  
Tag  
01A14h  
01A15h  
13h  
10h  
13h  
10h  
13h  
10h  
05h  
10h  
13h  
10h  
ADC10 Calibration  
length  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC Gain Factor  
ADC Offset  
ADC 1.5-V  
Reference  
Temp. Sensor 30°C  
01A1Bh  
per unit  
NA  
NA  
per unit  
per unit  
(1) NA = Not applicable  
90 Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
 
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Table 58. Device Descriptor Table (1) (continued)  
FR5734  
Value  
FR5733  
Value  
NA  
FR5732  
Value  
NA  
FR5731  
Value  
FR5730  
Value  
Description  
Address  
ADC 1.5-V  
Reference  
Temp. Sensor 85°C  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC 2.0-V  
Reference  
Temp. Sensor 30°C  
ADC 2.0-V  
Reference  
Temp. Sensor 85°C  
ADC 2.5-V  
Reference  
Temp. Sensor 30°C  
ADC 2.5-V  
Reference  
Temp. Sensor 85°C  
REF  
Calibration  
REF Calibration Tag  
01A26h  
01A27h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
REF Calibration  
length  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
REF 1.5-V  
Reference  
REF 2.0-V  
Reference  
REF 2.5-V  
Reference  
(1)  
Table 59. Device Descriptor Table  
FR5729  
Value  
05h  
FR5728  
Value  
05h  
FR5727  
Value  
05h  
FR5726  
Value  
05h  
FR5725  
Value  
05h  
Description  
Address  
Info Block  
Info length  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
CRC length  
05h  
05h  
05h  
05h  
05h  
per unit  
per unit  
7Bh  
per unit  
per unit  
7Ah  
per unit  
per unit  
79h  
per unit  
per unit  
74h  
per unit  
per unit  
78h  
CRC value  
Device ID  
Device ID  
80h  
80h  
80h  
81h  
80h  
Hardware revision  
Firmware revision  
Die Record Tag  
Die Record length  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
Die Record  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
Lot/Wafer ID  
Die X position  
Die Y position  
Test results  
(1) NA = Not applicable  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
91  
 
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
Table 59. Device Descriptor Table (1) (continued)  
FR5729  
Value  
FR5728  
Value  
FR5727  
Value  
FR5726  
Value  
FR5725  
Value  
Description  
Address  
ADC10  
Calibration  
ADC10 Calibration  
Tag  
01A14h  
01A15h  
13h  
10h  
13h  
10h  
13h  
10h  
05h  
10h  
13h  
10h  
ADC10 Calibration  
length  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC Gain Factor  
ADC Offset  
ADC 1.5-V  
Reference  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
Temp. Sensor 30°C  
ADC 1.5-V  
Reference  
Temp. Sensor 85°C  
ADC 2.0-V  
Reference  
Temp. Sensor 30°C  
ADC 2.0-V  
Reference  
Temp. Sensor 85°C  
ADC 2.5-V  
Reference  
Temp. Sensor 30°C  
ADC 2.5-V  
Reference  
Temp. Sensor 85°C  
REF  
Calibration  
REF Calibration Tag  
01A26h  
01A27h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
REF Calibration  
length  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
REF 1.5-V  
Reference  
REF 2.0-V  
Reference  
REF 2.5-V  
Reference  
(1)  
Table 60. Device Descriptor Table  
FR5724  
Value  
05h  
FR5723  
Value  
05h  
FR5722  
Value  
05h  
FR5721  
Value  
05h  
FR5720  
Value  
05h  
Description  
Address  
Info Block  
Info length  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
CRC length  
05h  
05h  
05h  
05h  
05h  
per unit  
per unit  
73h  
per unit  
per unit  
72h  
per unit  
per unit  
71h  
per unit  
per unit  
77h  
per unit  
per unit  
70h  
CRC value  
Device ID  
Device ID  
81h  
81h  
81h  
80h  
81h  
Hardware revision  
Firmware revision  
Die Record Tag  
Die Record length  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
Die Record  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
(1) NA = Not applicable  
92 Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
 
MSP430FR573x  
MSP430FR572x  
www.ti.com  
SLAS639D JULY 2011REVISED AUGUST 2012  
Table 60. Device Descriptor Table (1) (continued)  
FR5724  
Value  
FR5723  
Value  
FR5722  
Value  
FR5721  
Value  
FR5720  
Value  
Description  
Address  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
Lot/Wafer ID  
Die X position  
Die Y position  
Test results  
ADC10  
Calibration  
ADC10 Calibration  
Tag  
01A14h  
01A15h  
13h  
10h  
13h  
10h  
13h  
10h  
05h  
10h  
13h  
10h  
ADC10 Calibration  
length  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC Gain Factor  
ADC Offset  
ADC 1.5-V  
Reference  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
Temp. Sensor 30°C  
ADC 1.5-V  
Reference  
Temp. Sensor 85°C  
ADC 2.0-V  
Reference  
Temp. Sensor 30°C  
ADC 2.0-V  
Reference  
Temp. Sensor 85°C  
ADC 2.5-V  
Reference  
Temp. Sensor 30°C  
ADC 2.5-V  
Reference  
Temp. Sensor 85°C  
REF  
Calibration  
REF Calibration Tag  
01A26h  
01A27h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
REF Calibration  
length  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
REF 1.5-V  
Reference  
REF 2.0-V  
Reference  
REF 2.5-V  
Reference  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
93  
 
MSP430FR573x  
MSP430FR572x  
SLAS639D JULY 2011REVISED AUGUST 2012  
www.ti.com  
REVISION HISTORY  
REVISION  
COMMENTS  
SLAS639  
SLAS639A  
SLAS639B  
SLAS639C  
SLAS639D  
Product Preview release  
Updated Product Preview release including preliminary electrical specifications  
Changes throughout for updated Product Preview  
Production Data release  
Changed PW package options from Product Preview to Production Data.  
Added information for YFF package option throughout as Product Preview.  
Table 26 and Table 27, Changed offset of PxSELC registers.  
Table 28, Added PJSELC register.  
Table 29, Removed registers that do no apply (TA0CCTL3,4 and TA0CCR3,4)  
Absolute Maximum Ratings, Changed low limit of Tstg from -40°C to -55°C.  
FRAM, Added tRetention MIN values for TJ = 25°C and TJ = 70°C.  
94  
Submit Documentation Feedback  
Copyright © 2011–2012, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Aug-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430FR5720IPWR  
MSP430FR5720IRGER  
MSP430FR5720IRGET  
MSP430FR5721IDA  
PREVIEW  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
TSSOP  
VQFN  
VQFN  
TSSOP  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
PW  
RGE  
RGE  
DA  
28  
24  
24  
38  
38  
40  
40  
28  
24  
24  
38  
38  
40  
40  
28  
24  
24  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
40  
Green (RoHS  
& no Sb/Br)  
MSP430FR5721IDAR  
MSP430FR5721IRHAR  
MSP430FR5721IRHAT  
MSP430FR5722IPWR  
MSP430FR5722IRGER  
MSP430FR5722IRGET  
MSP430FR5723IDA  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
PW  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
RGE  
RGE  
DA  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
40  
Green (RoHS  
& no Sb/Br)  
MSP430FR5723IDAR  
MSP430FR5723IRHAR  
MSP430FR5723IRHAT  
MSP430FR5724IPWR  
MSP430FR5724IRGER  
MSP430FR5724IRGET  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
PW  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
RGE  
RGE  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Aug-2012  
Status (1)  
PREVIEW  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430FR5725IDA  
MSP430FR5725IDAR  
MSP430FR5725IRHAR  
MSP430FR5726IPWR  
MSP430FR5726IRGER  
MSP430FR5726IRGET  
MSP430FR5727IDA  
TSSOP  
TSSOP  
VQFN  
DA  
DA  
38  
38  
40  
28  
24  
24  
38  
38  
40  
40  
28  
24  
24  
38  
38  
40  
28  
24  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
2000  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
RHA  
PW  
Green (RoHS  
& no Sb/Br)  
TSSOP  
VQFN  
Green (RoHS  
& no Sb/Br)  
RGE  
RGE  
DA  
3000  
250  
Green (RoHS  
& no Sb/Br)  
VQFN  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
VQFN  
40  
Green (RoHS  
& no Sb/Br)  
MSP430FR5727IDAR  
MSP430FR5727IRHAR  
MSP430FR5727IRHAT  
MSP430FR5728IPWR  
MSP430FR5728IRGER  
MSP430FR5728IRGET  
MSP430FR5729IDA  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
PW  
Green (RoHS  
& no Sb/Br)  
VQFN  
Green (RoHS  
& no Sb/Br)  
TSSOP  
VQFN  
Green (RoHS  
& no Sb/Br)  
RGE  
RGE  
DA  
3000  
250  
Green (RoHS  
& no Sb/Br)  
VQFN  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
VQFN  
40  
Green (RoHS  
& no Sb/Br)  
MSP430FR5729IDAR  
MSP430FR5729IRHAR  
MSP430FR5730IPW  
MSP430FR5730IRGER  
DA  
2000  
2500  
Green (RoHS  
& no Sb/Br)  
RHA  
PW  
Green (RoHS  
& no Sb/Br)  
TSSOP  
VQFN  
Green (RoHS  
& no Sb/Br)  
RGE  
3000  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Aug-2012  
Status (1)  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430FR5730IRGET  
MSP430FR5731IDA  
VQFN  
TSSOP  
TSSOP  
VQFN  
RGE  
DA  
24  
38  
38  
40  
40  
28  
24  
24  
38  
38  
40  
40  
28  
24  
24  
38  
38  
40  
250  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-3-260C-168 HR  
MSP430FR5731IDAR  
MSP430FR5731IRHAR  
MSP430FR5731IRHAT  
MSP430FR5732IPWR  
MSP430FR5732IRGER  
MSP430FR5732IRGET  
MSP430FR5733IDA  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
PW  
Green (RoHS  
& no Sb/Br)  
VQFN  
Green (RoHS  
& no Sb/Br)  
TSSOP  
VQFN  
Green (RoHS  
& no Sb/Br)  
RGE  
RGE  
DA  
3000  
250  
Green (RoHS  
& no Sb/Br)  
VQFN  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
VQFN  
40  
Green (RoHS  
& no Sb/Br)  
MSP430FR5733IDAR  
MSP430FR5733IRHAR  
MSP430FR5733IRHAT  
MSP430FR5734IPWR  
MSP430FR5734IRGER  
MSP430FR5734IRGET  
MSP430FR5735IDA  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
PW  
Green (RoHS  
& no Sb/Br)  
VQFN  
Green (RoHS  
& no Sb/Br)  
TSSOP  
VQFN  
Green (RoHS  
& no Sb/Br)  
RGE  
RGE  
DA  
3000  
250  
Green (RoHS  
& no Sb/Br)  
VQFN  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
VQFN  
40  
Green (RoHS  
& no Sb/Br)  
MSP430FR5735IDAR  
MSP430FR5735IRHAR  
DA  
2000  
2500  
Green (RoHS  
& no Sb/Br)  
RHA  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Aug-2012  
Status (1)  
PREVIEW  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430FR5736IPWR  
MSP430FR5736IRGER  
MSP430FR5736IRGET  
MSP430FR5737IDA  
TSSOP  
VQFN  
VQFN  
TSSOP  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
TSSOP  
VQFN  
VQFN  
PW  
RGE  
RGE  
DA  
28  
24  
24  
38  
38  
40  
40  
28  
24  
24  
38  
38  
40  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
40  
Green (RoHS  
& no Sb/Br)  
MSP430FR5737IDAR  
MSP430FR5737IRHAR  
MSP430FR5737IRHAT  
MSP430FR5738IPWR  
MSP430FR5738IRGER  
MSP430FR5738IRGET  
MSP430FR5739IDA  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
PW  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
RGE  
RGE  
DA  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
40  
Green (RoHS  
& no Sb/Br)  
MSP430FR5739IDAR  
MSP430FR5739IRHAR  
MSP430FR5739IRHAT  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Aug-2012  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 5  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY