MSP430FR58721IPMR [TI]

具有 64KB FRAM、2KB SRAM、12 位 ADC、比较器、DMA、UART/SPI/I2C 和计时器的 16MHz MCU | PM | 64 | -40 to 85;
MSP430FR58721IPMR
型号: MSP430FR58721IPMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 64KB FRAM、2KB SRAM、12 位 ADC、比较器、DMA、UART/SPI/I2C 和计时器的 16MHz MCU | PM | 64 | -40 to 85

时钟 静态存储器 外围集成电路 比较器 装置
文件: 总147页 (文件大小:3058K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
MSP430FR597x(1)MSP430FR592x(1) MSP430FR587x(1) 混合信号  
微控制器  
1 器件概述  
1.1 特性  
1
针对随机数生成算法的真随机种子  
用于 IP 封装和安全存储的可锁定内存段  
多功能输入/输出端口  
嵌入式微控制器  
高达 16MHz 时钟频率的 16 RISC 架构  
– 3.6V 1.8V 的宽电源电压范围(最低电源电压  
受限于 SVS 电平,请参阅 SVS 规格)  
所有 I/O 引脚均支持电容触摸功能,无需外部组  
经优化的超低功耗模式  
可每位、每字节和每字访问(成对访问)  
可通过 P1 P4 端口从 LPM 唤醒,边沿可选  
所有端口上可编程上拉和下拉  
工作模式:大约 100µA/MHz  
待机(具有低功率低频内部时钟源 (VLO) 的  
LPM3):0.4µA(典型值)  
实时时钟 (RTC) (LPM3.5)0.35µA(典型值)  
增强型串行通信  
(1)  
– eUSCI_A0 eUSCI_A1 支持:  
关断电流 (LPM4.5)0.04µA(典型值)  
超低功耗铁电 RAM (FRAM)  
支持自动波特率侦测的通用异步收发器  
(UART)  
高达 64KB 的非易失性存储器  
超低功耗写入  
– 125ns 每个字的快速写入(4ms 内写入 64KB)  
统一标准存储器 = 单个空间内的程序、数据和存  
– 1015 写入周期持久性  
抗辐射和非磁性  
– IrDA 编码和解码  
速率高达 10Mbps 的串行外设接口 (SPI)  
– eUSCI_B0 eUSCI_B1 均支持:  
支持多从器件寻址的 I2C  
速率高达 10Mbps 的串行外设接口 (SPI)  
灵活时钟系统  
具有 10 个可选厂家调整频率的定频数控振荡器  
智能数字外设  
(DCO)  
– 32 位硬件乘法器 (MPY)  
三通道内部直接存储器存取 (DMA)  
带有日历和和报警功能的 RTC  
低功率低频内部时钟源 (VLO)  
– 32kHz 晶振 (LFXT)  
高频晶振 (HFXT)  
– 5 个具有多达 7 个捕捉/比较寄存器的 16 位定时  
开发工具和软件  
自由的专业开发环境将 EnergyTrace++™ 技术用  
于电源配置和调试  
– 16 位和 32 位循环冗余校验器(CRC16、  
CRC32)  
高性能模拟  
提供微控制器开发板  
系列产品  
多达 8 通道的模拟比较器  
– 12 位模数转换器 (ADC),具有内部基准和采样保  
持以及多达 8 个外部输入通道  
器件比较 汇总了可用变型和封装  
要获得完整的模块说明,请参见  
MSP430FR58xxMSP430FR59xx 和  
MSP430FR6xx 系列用户指南》  
代码安全性和加密  
– 128 位或 256 AES 安全加密和解密协处理器  
(只适用于 MSP430FR59xx(1))  
(1) RTC 3.7pF 晶振计时。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASE66  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
1.2 应用  
计量  
传感器管理  
数据日志  
能量采集传感器节点  
可穿戴电子产品  
1.3 说明  
该系列超低功耗 MSP430FRxx FRAM 微控制器种类繁多,各成员器件配有嵌入式非易失性 FRAM16 位  
CPU 以及不同的外设集以满足各类应用的 需求。这种架构、FRAM 和外设与 7 种低功耗模式相组合,专为  
在便携式无线感测应用中延长电池的使用寿命而进行了 优化。FRAM 是全新的非易失性存储器,其完美结  
合了 SRAM 的速度、灵活性和耐用性与闪存的稳定性和可靠性,并且总功耗更低。  
器件信息(1)  
封装  
器件型号  
MSP430FR5972IPMR  
MSP430FR5972IRGC  
MSP430FR5922IG56  
封装尺寸(2)  
10mm x 10mm  
9mm x 9mm  
LQFP (64)  
VQFN (64)  
TSSOP (56)  
6.1mm x 14mm  
(1) 要获得所有可用器件的最新部件、封装和订购信息,请参见封装选项附录9)或浏览 TI 网站  
www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据9)。  
2
器件概述  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
1.4 功能框图  
1-1 给出了功能框图。  
中的 48KB RAM 选项  
P1.x,P2.x P3.x,P4.x P5.x,P6.x  
up to  
2x8  
P7.x  
up to  
1x8  
P9.x  
PJ.x  
up to  
1x8  
up to  
2x8  
up to  
2x8  
up to  
1x8  
LFXIN/ LFXOUT/  
HFXIN HFXOUT  
Capacitive Touch IO 0, Capacitive Touch IO 1  
I/O Ports I/O Ports  
P3, P4  
2x8 I/Os  
I/O Port  
P5, P6  
2x8 I/Os  
I/O Port  
P7  
1x8 I/Os  
I/O Port  
P9  
1x8 I/Os  
I/O Port  
PJ  
1x8 I/Os  
Comp_E  
ADC12_B  
REF_A  
P1, P2  
2x8 I/Os  
MCLK  
ACLK  
Clock  
System  
(up to 16  
inputs)  
(up to 16  
std. inputs,  
up to 8  
Voltage  
Reference  
SMCLK  
PA  
PB  
PC  
PD  
1x16 I/Os 1x16 I/Os 1x16 I/Os 1x8 I/Os  
PE  
1x8 I/Os  
diff. inputs)  
DMA  
Controller  
Channel  
3
MAB  
MDB  
Bus  
Control  
Logic  
CPUXV2  
incl. 16  
Registers  
MPU  
IP Encap  
CRC16  
TA2  
TA 3  
Power  
Mgmt  
AES256  
RAM  
2KB  
CRC-16-  
CCITT  
FRAM  
Watchdog  
Security  
En-/De-  
cryption  
(128/256)  
Timer_A  
2 CC  
Registers  
(int. only)  
Timer_A  
5 CC  
Registers  
MPY32  
LDO  
SVS  
Brownout  
CRC32  
64KB  
32KB  
EEM  
(S: 3+1)  
Tiny RAM  
26B  
CRC-32-  
ISO-3309  
MDB  
MAB  
JTAG  
Interface  
Spy-Bi-  
Wire  
TB0  
TA0  
TA1  
RTC_C  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
eUSCI_B1  
Calendar  
Timer_B  
7 CC  
Registers  
(int./ext.)  
Timer_A  
3 CC  
Registers  
(int./ext.)  
Timer_A  
3 CC  
Registers  
(int./ext.)  
and  
Counter  
Mode  
(I2C, SPI)  
(UART,  
IrDA,  
SPI)  
LPM3.5 Domain  
Copyright © 2016, Texas Instruments Incorporated  
NOTE: MSP430FR587x MSP430FR587x1 器件中未实现 AES256。  
NOTE: MSP430FR592x MSP430FR592x1 器件中未实现 HFXIN HFOUT。  
1-1. 功能框图  
版权 © 2015–2018, Texas Instruments Incorporated  
器件概述  
3
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能框图 .............................................. 3  
修订历史记录............................................... 5  
Device Comparison ..................................... 6  
3.1 Related Products ..................................... 8  
Terminal Configuration and Functions.............. 9  
4.1 Pin Diagrams ......................................... 9  
4.2 Pin Attributes ........................................ 12  
4.3 Signal Descriptions.................................. 17  
4.4 Pin Multiplexing ..................................... 23  
4.5 Buffer Type.......................................... 23  
4.6 Connection of Unused Pins ......................... 23  
Specifications ........................................... 24  
5.1 Absolute Maximum Ratings......................... 24  
5.2 ESD Ratings ........................................ 24  
5.3 Recommended Operating Conditions............... 24  
5.12 Timing and Switching Characteristics ............... 32  
Detailed Description ................................... 58  
6.1 Overview ............................................ 58  
6.2 CPU ................................................. 58  
6.3 Operating Modes .................................... 59  
6.4 Interrupt Vector Table and Signatures .............. 61  
6.5 Bootloader (BSL).................................... 64  
6.6 JTAG Operation ..................................... 64  
6.7 FRAM................................................ 65  
6.8 RAM ................................................. 65  
6
2
3
4
6.9 Tiny RAM............................................ 65  
6.10 Memory Protection Unit (MPU) Including IP  
Encapsulation ....................................... 65  
6.11 Peripherals .......................................... 66  
6.12 Device Descriptors (TLV) .......................... 101  
6.13 Memory ............................................ 104  
6.14 Identification........................................ 118  
Applications, Implementation, and Layout ...... 119  
5
7
8
7.1  
Device Connection and Layout Fundamentals .... 119  
Peripheral- and Interface-Specific Design  
7.2  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Active Mode Supply Current Into VCC Excluding  
External Current .................................... 25  
Typical Characteristics - Active Mode Supply  
Information ......................................... 123  
器件和文档支......................................... 125  
8.1 入门和后续步骤 .................................... 125  
8.2 器件命名规则....................................... 125  
8.3 工具与软件 ......................................... 126  
8.4 文档支持 ........................................... 128  
8.5 相关链接 ........................................... 129  
8.6 社区资源 ........................................... 129  
8.7 商标 ................................................ 130  
8.8 静电放电警告....................................... 130  
8.9 出口管制提示....................................... 130  
8.10 术语.............................................. 130  
机械、封装和可订购信息 .............................. 131  
Currents ............................................. 26  
Low-Power Mode (LPM0, LPM1) Supply Currents  
Into VCC Excluding External Current ................ 26  
Low-Power Mode LPM2, LPM3, LPM4 Supply  
Currents (Into VCC) Excluding External Current .... 27  
Low-Power Mode LPMx.5 Supply Currents (Into  
VCC) Excluding External Current.................... 29  
Typical Characteristics, Low-Power Mode Supply  
Currents ............................................. 30  
5.10 Typical Characteristics, Current Consumption per  
Module .............................................. 31  
5.11 Thermal Resistance Characteristics ................ 31  
9
4
内容  
版权 © 2015–2018, Texas Instruments Incorporated  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from January 25, 2017 to August 30, 2018  
Page  
Updated Section 3.1, Related Products ........................................................................................... 8  
Added note (1) to 5-2, SVS..................................................................................................... 32  
Changed capacitor value from 4.7 µF to 470 nF in 7-5, ADC12_B Grounding and Noise Considerations ....... 123  
Changed capacitor value from 4.7 µF to 470 nF in the last paragraph of 7.2.1.2, Design Requirements ......... 124  
更新了8.2器件命名规则 中的文本和图 .................................................................................... 125  
Copyright © 2015–2018, Texas Instruments Incorporated  
修订历史记录  
5
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
3 Device Comparison  
Table 3-1 and Table 3-2 summarize the available family members.  
Table 3-1. Device Comparison – Family Members With UART BSL  
eUSCI  
FRAM  
(KB)  
SRAM  
(KB)  
CLOCK  
SYSTEM  
DEVICE  
Timer_A(1)  
Timer_B(2)  
AES  
ADC12_B  
I/O  
PACKAGE  
A(3)  
B(4)  
DCO  
HFXT  
LFXT  
3, 3(5)  
2, 5  
64 PM  
64 RGC  
MSP430FR5972  
64  
64  
32  
64  
32  
2
2
2
2
2
7
2
2
2
2
2
2
yes  
8 ext  
51  
(6)(7)  
DCO  
HFXT  
LFXT  
3, 3(5)  
64 PM  
64 RGC  
MSP430FR5872  
MSP430FR5970  
MSP430FR5922  
MSP430FR5870  
7
7
7
7
2
2
2
2
no  
yes  
yes  
no  
8 ext  
8 ext  
8 ext  
8 ext  
51  
51  
(6)(7)  
2, 5  
DCO  
HFXT  
LFXT  
3, 3(5)  
64 PM  
64 RGC  
(6)(7)  
2, 5  
64 PM  
64 RGC  
56 DGG  
DCO  
LFXT  
3, 3(5)  
51  
46 (DGG)  
(6)(7)  
2, 5  
DCO  
HFXT  
LFXT  
3, 3(5)  
64 PM  
64 RGC  
51  
(6)(7)  
2, 5  
(1) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output  
generators, respectively.  
(2) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output  
generators, respectively.  
(3) eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI.  
(4) eUSCI_B supports I2C with multiple slave addresses and SPI.  
(5) Timer_A TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs.  
(6) Timer_A TA2 provides only internal capture/compare inputs and only internal PWM outputs (if any).  
(7) Timer_A TA3 provides only internal capture/compare inputs and only internal PWM outputs (if any) for FR592x(1) with RGC and PM packages. For FR592x(1) with DGG package and all  
other devices, Timer_A TA3 provides internal, external capture/compare inputs and internal, external PWM outputs (if any).  
6
Device Comparison  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 3-2. Device Comparison – Family Members With I2C BSL  
eUSCI  
FRAM  
(KB)  
SRAM  
(KB)  
CLOCK  
SYSTEM  
DEVICE  
Timer_A(1)  
Timer_B(2)  
AES  
ADC12_B  
I/O  
PACKAGE  
A(3)  
B(4)  
DCO  
HFXT  
LFXT  
3, 3(5)  
2, 5  
64 PM  
64 RGC  
MSP430FR59721  
MSP430FR59221  
MSP430FR58721  
64  
64  
64  
2
2
2
7
2
2
2
2
yes  
8 ext  
51  
(6)(7)  
64 PM  
64 RGC  
56 DGG  
DCO  
LFXT  
3, 3(5)  
51  
46 (DGG)  
7
7
2
2
yes  
no  
8 ext  
8 ext  
(6)(7)  
2, 5  
DCO  
HFXT  
LFXT  
3, 3(5)  
64 PM  
64 RGC  
51  
(6)(7)  
2, 5  
(1) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output  
generators, respectively.  
(2) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output  
generators, respectively.  
(3) eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI.  
(4) eUSCI_B supports I2C with multiple slave addresses and SPI.  
(5) Timer_A TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs.  
(6) Timer_A TA2 provides only internal capture/compare inputs and only internal PWM outputs (if any).  
(7) Timer_A TA3 provides only internal capture/compare inputs and only internal PWM outputs (if any) for FR592x(1) with RGC and PM packages. For FR592x(1) with DGG package and all  
other devices, Timer_A TA3 provides internal, external capture/compare inputs and internal, external PWM outputs (if any).  
Copyright © 2015–2018, Texas Instruments Incorporated  
Device Comparison  
7
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
3.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers High-performance, low-power solutions to enable the autonomous  
future  
Products for MSP430 ultra-low-power sensing and measurement microcontrollers One platform.  
One ecosystem. Endless possibilities.  
Products for MSP430 ultrasonic and performance sensing microcontrollers Ultra-low-power single-  
chip MCUs with integrated sensing peripherals  
Companion Products for MSP430FR5972 Review products that are frequently purchased or used with  
this product.  
Reference Designs for MSP430FR5972 The TI Designs Reference Design Library is a robust reference  
design library that spans analog, embedded processor, and connectivity. Created by TI  
experts to help you jump start your system design, all TI Designs include schematic or block  
diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at ti.com/tidesigns.  
8
Device Comparison  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
4 Terminal Configuration and Functions  
4.1 Pin Diagrams  
Figure 4-1 shows the pinout for the 64-pin PM and RGC packages of the MSP430FR597x(1) and  
MSP430FR587x(1) MCUs.  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P4.3/UCA0SOMI/UCA0RXD/UCB1STE  
P1.4/UCB0CLK/UCA0STE/TA1.0  
P1.5/UCB0STE/UCA0CLK/TA0.0  
P1.6/UCB0SIMO/UCB0SDA/TA0.1  
P1.7/UCB0SOMI/UCB0SCL/TA0.2  
DNC  
1
48 P9.7/A15/C15  
2
47 P9.6/A14/C14  
3
46 P9.5/A13/C13  
4
45 P9.4/A12/C12  
5
44 P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF-  
43 P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+  
42 P1.2/TA1.1/TA0CLK/COUT/A2/C2  
41 P1.3/TA1.2/A3/C3  
6
P6.0  
7
P6.1  
8
MSP430FR597x  
MSP430FR587x  
P6.2/COUT  
9
40 DVCC2  
P6.3  
10  
11  
12  
13  
14  
15  
16  
39 DVSS2  
P6.4/TB0.0  
38 P7.4/SMCLK  
P6.5/TB0.1  
37 P7.3/TA0.2  
P6.6/TB0.2  
36 P7.2/TA0.1  
P3.0/UCB1CLK/TA3.2  
P3.1/UCB1SIMO/UCB1SDA/TA3.3  
P3.2/UCB1SOMI/UCB1SCL/TA3.4  
35 P7.1/TA0.0/ACLK  
34 P7.0/TA0CLK  
33 P2.0/UCA0SIMO/UCA0TXD/TB0.6/TB0CLK  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
On devices with UART BSL: P2.0: BSL_TX; P2.1: BSL_RX  
On devices with I2C BSL: P1.6: BSL_DAT; P1.7: BSL_CLK  
NOTE: TI recommends connecting the RGC package thermal pad to VSS.  
Figure 4-1. 64-Pin PM and RGC Packages (Top View) – MSP430FR597x(1), MSP430FR587x(1)  
Copyright © 2015–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Figure 4-2 shows the pinout for the 64-pin PM and RGC packages of the MSP430FR592x(1) MCUs.  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P4.3/UCA0SOMI/UCA0RXD/UCB1STE  
P1.4/UCB0CLK/UCA0STE/TA1.0  
P1.5/UCB0STE/UCA0CLK/TA0.0  
P1.6/UCB0SIMO/UCB0SDA/TA0.1  
P1.7/UCB0SOMI/UCB0SCL/TA0.2  
DNC  
1
48 P9.7/A15/C15  
2
47 P9.6/A14/C14  
3
46 P9.5/A13/C13  
4
45 P9.4/A12/C12  
5
44 P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF-  
43 P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+  
42 P1.2/TA1.1/TA0CLK/COUT/A2/C2  
41 P1.3/TA1.2/A3/C3  
6
P6.0  
7
P6.1  
8
MSP430FR592x  
P6.2/COUT  
9
40 DVCC2  
P6.3  
10  
11  
12  
13  
14  
15  
16  
39 DVSS2  
P6.4/TB0.0  
38 P7.4/SMCLK  
P6.5/TB0.1  
37 P7.3/TA0.2  
P6.6/TB0.2  
36 P7.2/TA0.1  
P3.0/UCB1CLK/TA3.2  
P3.1/UCB1SIMO/UCB1SDA/TA3.3  
P3.2/UCB1SOMI/UCB1SCL/TA3.4  
35 P7.1/TA0.0/ACLK  
34 P7.0/TA0CLK  
33 P2.0/UCA0SIMO/UCA0TXD/TB0.6/TB0CLK  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
A. On devices with UART BSL: P2.0: BSL_TX; P2.1: BSL_RX  
On devices with I2C BSL: P1.6: BSL_DAT; P1.7: BSL_CLK  
NOTE: TI recommends connecting the RGC package thermal pad to VSS.  
Figure 4-2. 64-Pin PM and RGC Packages (Top View) – MSP430FR592x(1)  
10  
Terminal Configuration and Functions  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Figure 4-3 shows the pinout for the 56-pin DGG package of the MSP430FR592x(1) MCUs.  
P4.4/UCB1STE/TA1CLK  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
AVSS2  
2
P4.5/UCB1CLK/TA1.0  
P4.6/UCB1SIMO/UCB1SDA/TA1.1  
P4.7/UCB1SOMI/UCB1SCL/TA1.2  
DVSS3  
PJ.5/LFXOUT  
PJ.4/LFXIN  
3
4
AVSS1  
5
AVCC1  
DVCC3  
P1.4/UCB0CLK/UCA0STE/TA1.0  
P1.5/UCB0STE/UCA0CLK/TA0.0  
6
P9.7/A15/C15  
P9.6/A14/C14  
P9.5/A13/C13  
P9.4/A12/C12  
7
8
P1.6/UCB0SIMO/UCB0SDA/TA0.1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
P1.7/UCB0SOMI/UCB0SCL/TA0.2  
P1.0/TA0.1/RTCCLK/DMAE0/A0/C0/VREF-/VeREF-  
DNC  
P6.0  
P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+  
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
P1.3/TA1.2/A3/C3  
DVCC2  
P6.1  
P6.2/COUT  
MSP430FR592x  
P6.3  
DVSS2  
P6.4/TB0.0  
P7.4/SMCLK  
P6.5/TB0.1  
P7.3/TA0.2  
P7.2/TA0.1  
P6.6/TB0.2  
P7.1/TA0.0/ACLK  
P7.0/TA0CLK  
P3.0/UCB1CLK/TA3.2  
P3.1/UCB1SIMO/UCB1SDA/TA3.3  
P3.2/UCB1SOMI/UCB1SCL/TA3.4  
TEST/SBWTCK  
P2.0/UCA0SIMO/UCA0TXD/TB0.6/TB0CLK  
P2.1/UCA0SOMI/UCA0RXD/TB0.5/DMAE0  
P2.2/UCA0CLK/TB0.4/RTCCLK  
P2.3/UCA0STE/TB0OUTH  
RST/NMI/SBWTDIO  
PJ.0/TDO/TB0OUTH/SMCLK/SRSCG1  
PJ.1/TDI/TCLK/MCLK/SRSCG0  
PJ.2/TMS/ACLK/SROSCOFF  
PJ.3/TCK/COUT/SRCPUOFF  
P3.3/TA1.1/TB0CLK  
P3.7/UCA1STE/TB0.3  
P3.6/UCA1CLK/TB0.2  
P3.5/UCA1SOMI/UCA1RXD/TB0.1  
P3.4/UCA1SIMO/UCA1TXD/TB0.0  
A. On devices with UART BSL: P2.0: BSL_TX; P2.1: BSL_RX  
On devices with I2C BSL: P1.6: BSL_DAT; P1.7: BSL_CLK  
Figure 4-3. 56-Pin DGG Package (Top View) – MSP430FR592x(1)  
Copyright © 2015–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
4.2 Pin Attributes  
Table 4-1 lists the attributes of each pin.  
Table 4-1. Pin Attributes  
FR597x(1),  
FR592x(1)  
FR587x(1)  
RESET  
STATE  
AFTER  
BOR(5)  
SIGNAL  
TYPE(3)  
BUFFER  
TYPE(4)  
POWER  
SOURCE  
SIGNAL NAME(1) (2)  
PM, RGC  
PIN NO.  
PM, RGC  
PIN NO.  
DGG  
PIN NO.  
P4.3 (RD)  
UCA0SOMI  
UCA0RXD  
UCB1STE  
P1.4 (RD)  
UCB0CLK  
UCA0STE  
TA1.0  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
1
2
3
1
2
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OFF  
7
8
P1.5 (RD)  
UCB0STE  
UCA0CLK  
TA0.0  
OFF  
P1.6 (RD)  
UCB0SIMO  
UCB0SDA  
BSL_DAT  
TA0.1  
OFF  
4
5
4
5
9
I/O  
I/O  
I/O  
I/O  
I
P1.7 (RD)  
UCB0SOMI  
UCB0SCL  
BSL_CLK  
TA0.2  
OFF  
10  
I/O  
6
7
8
6
7
8
11  
12  
13  
DNC(6)  
P6.0 (RD)  
P6.1 (RD)  
P6.2 (RD)  
COUT  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
OFF  
OFF  
9
9
14  
15  
16  
10  
11  
10  
11  
P6.3 (RD)  
P6.4 (RD)  
TB0.0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OFF  
OFF  
P6.5 (RD)  
TB0.1  
OFF  
12  
13  
12  
13  
17  
18  
P6.6 (RD)  
TB0.2  
OFF  
(1) Signals names with (RD) denote the reset default pin name.  
(2) To determine the pin mux encodings for each pin, see the Port I/O Diagrams section.  
(3) Signal Types: I = Input, O = Output, I/O = Input or Output.  
(4) Buffer Types: LVCMOS, Analog, or Power (see Table 4-3 for details)  
(5) Reset States:  
OFF = High impedance with Schmitt-trigger inputs and pullup or pulldown (if available) disabled  
N/A = Not applicable  
(6) DNC = Do not connect  
12  
Terminal Configuration and Functions  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 4-1. Pin Attributes (continued)  
FR597x(1),  
FR587x(1)  
RESET  
STATE  
AFTER  
BOR(5)  
FR592x(1)  
PM, RGC  
SIGNAL  
TYPE(3)  
BUFFER  
TYPE(4)  
POWER  
SOURCE  
SIGNAL NAME(1) (2)  
PM, RGC  
PIN NO.  
DGG  
PIN NO.  
PIN NO.  
P3.0 (RD)  
UCB1CLK  
TA3.2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
14  
14  
19  
20  
P3.1 (RD)  
UCB1SIMO  
UCB1SDA  
TA3.3  
OFF  
15  
15  
16  
P3.2 (RD)  
UCB1SOMI  
UCB1SCL  
TA3.4  
OFF  
16  
21  
17  
18  
17  
18  
DVSS1  
N/A  
N/A  
OFF  
DVCC1  
TEST  
P
Power  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
19  
19  
22  
23  
SBWTCK  
RST  
I
I
OFF  
20  
20  
NMI  
I
SBWTDIO  
PJ.0 (RD)  
TDO  
I/O  
I/O  
O
OFF  
21  
21  
24  
TB0OUTH  
SMCLK  
SRSCG1  
PJ.1 (RD)  
TDI  
I
O
O
I/O  
I
OFF  
22  
23  
22  
23  
25  
26  
TCLK  
I
MCLK  
O
SRSCG0  
PJ.2 (RD)  
TMS  
O
I/O  
I
OFF  
ACLK  
O
SROSCOFF  
PJ.3 (RD)  
TCK  
O
I/O  
I
OFF  
24  
25  
26  
24  
25  
26  
27  
28  
29  
COUT  
O
SRCPUOFF  
P3.3 (RD)  
TA1.1  
O
I/O  
I/O  
I
OFF  
TB0CLK  
P3.4 (RD)  
UCA1SIMO  
UCA1TXD  
TB0.0  
I/O  
I/O  
O
OFF  
I/O  
Copyright © 2015–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Pin Attributes (continued)  
FR597x(1),  
FR592x(1)  
FR587x(1)  
RESET  
STATE  
AFTER  
BOR(5)  
SIGNAL  
TYPE(3)  
BUFFER  
TYPE(4)  
POWER  
SOURCE  
SIGNAL NAME(1) (2)  
PM, RGC  
PIN NO.  
PM, RGC  
PIN NO.  
DGG  
PIN NO.  
P3.5 (RD)  
UCA1SOMI  
UCA1RXD  
TB0.1  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
27  
27  
30  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P3.6 (RD)  
UCA1CLK  
TB0.2  
OFF  
28  
29  
30  
28  
29  
30  
31  
32  
33  
P3.7 (RD)  
UCA1STE  
TB0.3  
OFF  
P2.3 (RD)  
UCA0STE  
TB0OUTH  
P2.2 (RD)  
UCA0CLK  
TB0.4  
OFF  
I/O  
I/O  
I/O  
O
OFF  
31  
32  
31  
32  
34  
35  
RTCCLK  
P2.1 (RD)  
UCA0SOMI  
UCA0RXD  
BSL_RX  
TB0.5  
I/O  
I/O  
I
OFF  
I
I/O  
I
DMAE0  
P2.0 (RD)  
UCA0SIMO  
UCA0TXD  
BSL_TX  
TB0.6  
I/O  
I/O  
O
OFF  
33  
33  
36  
O
I/O  
I
TB0CLK  
P7.0 (RD)  
TA0CLK  
P7.1 (RD)  
TA0.0  
I/O  
I
OFF  
34  
35  
34  
35  
37  
38  
I/O  
I/O  
O
OFF  
ACLK  
P7.2 (RD)  
TA0.1  
I/O  
I/O  
I/O  
I/O  
I/O  
O
OFF  
36  
37  
38  
36  
37  
38  
39  
40  
41  
P7.3 (RD)  
TA0.2  
OFF  
P7.4 (RD)  
SMCLK  
OFF  
39  
40  
39  
40  
42  
43  
DVSS2  
P
N/A  
N/A  
DVCC2  
P
Power  
14  
Terminal Configuration and Functions  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 4-1. Pin Attributes (continued)  
FR597x(1),  
FR587x(1)  
RESET  
STATE  
AFTER  
BOR(5)  
FR592x(1)  
PM, RGC  
SIGNAL  
TYPE(3)  
BUFFER  
TYPE(4)  
POWER  
SOURCE  
SIGNAL NAME(1) (2)  
PM, RGC  
PIN NO.  
DGG  
PIN NO.  
PIN NO.  
P1.3 (RD)  
TA1.2  
A3  
I/O  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
AVCC  
AVCC  
DVCC  
DVCC  
DVCC  
DVCC  
AVCC  
AVCC  
DVCC  
DVCC  
DVCC  
DVCC  
AVCC  
AVCC  
AVCC  
OFF  
I/O  
41  
42  
41  
44  
45  
I
C3  
I
I/O  
I/O  
I
Analog  
P1.2 (RD)  
TA1.1  
TA0CLK  
COUT  
A2  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
42  
O
I
C2  
I
Analog  
P1.1 (RD)  
TA0.2  
TA1CLK  
COUT  
A1  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
O
I
43  
43  
46  
C1  
I
Analog  
VREF+  
VeREF+  
P1.0 (RD)  
TA0.1  
DMAE0  
RTCCLK  
A0  
O
I
Analog  
Analog  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
AVCC  
AVCC  
AVCC  
OFF  
O
I
44  
44  
47  
C0  
I
Analog  
VREF-  
VeREF-  
P9.4 (RD)  
A12  
O
I
Analog  
Analog  
I/O  
I
LVCMOS  
Analog  
DVCC  
AVCC  
AVCC  
DVCC  
AVCC  
AVCC  
DVCC  
AVCC  
AVCC  
DVCC  
AVCC  
AVCC  
OFF  
45  
46  
47  
48  
45  
46  
47  
48  
48  
49  
50  
51  
C12  
I
Analog  
P9.5 (RD)  
A13  
I/O  
I
LVCMOS  
Analog  
OFF  
C13  
I
Analog  
P9.6 (RD)  
A14  
I/O  
I
LVCMOS  
Analog  
OFF  
C14  
I
Analog  
P9.7 (RD)  
A15  
I/O  
I
LVCMOS  
Analog  
OFF  
C15  
I
Analog  
49  
50  
49  
50  
52  
53  
AVCC1  
AVSS1  
PJ.4 (RD)  
LFXIN  
PJ.5 (RD)  
LFXOUT  
AVSS2  
P
P
I/O  
I
Power  
N/A  
N/A  
OFF  
Power  
LVCMOS  
Analog  
DVCC  
AVCC  
DVCC  
AVCC  
51  
51  
54  
I/O  
O
P
LVCMOS  
Analog  
OFF  
52  
53  
52  
53  
55  
56  
Power  
N/A  
Copyright © 2015–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Pin Attributes (continued)  
FR597x(1),  
FR592x(1)  
FR587x(1)  
RESET  
STATE  
AFTER  
BOR(5)  
SIGNAL  
TYPE(3)  
BUFFER  
TYPE(4)  
POWER  
SOURCE  
SIGNAL NAME(1) (2)  
PM, RGC  
PIN NO.  
PM, RGC  
PIN NO.  
DGG  
PIN NO.  
PJ.7 (RD)  
HFXOUT  
PJ.6 (RD)  
HFXIN  
I/O  
O
LVCMOS  
Analog  
DVCC  
AVCC  
DVCC  
AVCC  
OFF  
54  
I/O  
I
LVCMOS  
Analog  
OFF  
55  
56  
AVSS3  
P
Power  
N/A  
OFF  
P5.4 (RD)  
UCA1SIMO  
UCA1TXD  
P5.5 (RD)  
UCA1SOMI  
UCA1RXD  
P5.6 (RD)  
UCA1CLK  
P5.7 (RD)  
UCA1STE  
TB0CLK  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
54  
I/O  
I/O  
I
OFF  
55  
56  
57  
I/O  
I/O  
I/O  
I/O  
I
OFF  
OFF  
57  
58  
59  
P4.4 (RD)  
UCB1STE  
TA1CLK  
I/O  
I/O  
I
OFF  
58  
59  
1
2
P4.5 (RD)  
UCB1CLK  
TA1.0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
OFF  
P4.6 (RD)  
UCB1SIMO  
UCB1SDA  
TA1.1  
OFF  
60  
61  
60  
61  
3
4
P4.7 (RD)  
UCB1SOMI  
UCB1SCL  
TA1.2  
OFF  
62  
63  
62  
63  
5
6
DVSS3  
N/A  
N/A  
OFF  
DVCC3  
P
Power  
P4.2 (RD)  
UCA0SIMO  
UCA0TXD  
UCB1CLK  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DVCC  
DVCC  
DVCC  
DVCC  
64  
64  
I/O  
16  
Terminal Configuration and Functions  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
4.3 Signal Descriptions  
Table 4-2 describes the signals.  
Table 4-2. Signal Descriptions  
FR597x(1),  
FR587x(1)  
FR592x(1)  
SIGNAL  
TYPE  
FUNCTION  
SIGNAL NAME  
PM,  
RGC  
DESCRIPTION  
PM, RGC  
DGG  
PIN NO.  
44  
PIN NO. PIN NO.  
A0  
44  
43  
42  
41  
45  
46  
47  
48  
43  
44  
47  
46  
45  
44  
48  
49  
50  
51  
46  
47  
I
I
Analog input A0  
Analog input A1  
Analog input A2  
Analog input A3  
A1  
43  
A2  
42  
I
A3  
41  
I
A12  
A13  
A14  
A15  
VREF+  
VREF-  
45  
I
Analog input A12  
46  
I
Analog input A13  
47  
I
Analog input A14  
ADC  
48  
I
Analog input A15  
43  
O
O
Output of positive reference voltage  
Output of negative reference voltage  
44  
Input for an external positive reference voltage  
to the ADC  
VeREF+  
VeREF-  
43  
44  
43  
44  
46  
47  
I
I
Input for an external negative reference  
voltage to the ADC  
BSL_CLK  
BSL_DAT  
BSL_RX  
BSL_TX  
5
4
5
4
10  
9
I
I
BSL Clock (I2C BSL)  
BSL Data (I2C BSL)  
BSL (I2C)  
32  
33  
32  
33  
35  
36  
I
BSL Receive (UART BSL)  
BSL Transmit (UART BSL)  
BSL (UART)  
O
23  
35  
23  
35  
26  
38  
ACLK  
O
ACLK output  
HFXIN  
55  
54  
51  
52  
22  
I
Input terminal of crystal oscillator XT2  
Output terminal for crystal oscillator XT2  
Input terminal for crystal oscillator XT1  
Output terminal of crystal oscillator XT1  
MCLK output  
HFXOUT  
LFXIN  
O
I
51  
52  
22  
54  
55  
25  
Clock  
LFXOUT  
MCLK  
O
O
31  
44  
31  
44  
34  
47  
RTCCLK  
SMCLK  
O
O
RTC clock output for calibration  
SMCLK output  
21  
38  
21  
38  
24  
41  
C0  
44  
43  
42  
41  
45  
46  
47  
48  
44  
43  
42  
41  
45  
46  
47  
48  
47  
46  
45  
44  
48  
49  
50  
51  
I
I
I
I
I
I
I
I
Comparator input C0  
Comparator input C1  
Comparator input C2  
Comparator input C3  
Comparator input C12  
Comparator input C13  
Comparator input C14  
Comparator input C15  
C1  
C2  
C3  
C12  
C13  
C14  
C15  
Comparator  
9
9
14  
27  
45  
46  
24  
42  
43  
24  
42  
43  
COUT  
O
I
Comparator output  
32  
44  
32  
44  
32  
44  
DMA  
DMAE0  
DMA external trigger input  
Copyright © 2015–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions (continued)  
FR597x(1),  
FR592x(1)  
FR587x(1)  
SIGNAL  
TYPE  
FUNCTION  
SIGNAL NAME  
PM,  
DESCRIPTION  
PM, RGC  
PIN NO.  
6
DGG  
RGC  
PIN NO. PIN NO.  
Do Not Connect (DNC). TI strongly  
recommends leaving this pin not connected.  
DNC  
DNC  
6
22  
SBWTCK  
SBWTDIO  
19  
20  
19  
20  
23  
27  
I
Spy-Bi-Wire input clock  
I/O  
Spy-Bi-Wire data input/output  
Low-power debug: CPU status register  
CPUOFF  
SRCPUOFF  
SROSCOFF  
24  
23  
24  
23  
26  
25  
O
O
Low-power debug: CPU status register  
OSCOFF  
SRSCG0  
SRSCG1  
TCK  
22  
21  
24  
22  
22  
21  
19  
23  
22  
21  
24  
22  
22  
21  
19  
23  
24  
27  
25  
25  
24  
22  
26  
23  
O
O
I
Low-power debug: CPU status register SCG0  
Low-power debug: CPU status register SCG1  
Test clock  
Debug  
TCLK  
TDI  
I
Test clock input  
I
Test data input  
TDO  
O
I
Test data output port  
TEST  
TMS  
Test mode pin - select digital I/O on JTAG pins  
Test mode select  
I
18  
Terminal Configuration and Functions  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 4-2. Signal Descriptions (continued)  
FR597x(1),  
FR592x(1)  
FR587x(1)  
SIGNAL  
TYPE  
FUNCTION  
SIGNAL NAME  
PM,  
DESCRIPTION  
PM, RGC  
DGG  
RGC  
PIN NO.  
44  
43  
42  
41  
2
PIN NO. PIN NO.  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P2.0  
P2.1  
P2.2  
P2.3  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.4  
P5.5  
P5.6  
P5.7  
44  
43  
42  
41  
2
47  
46  
45  
44  
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
3
3
8
4
4
9
5
5
10  
36  
35  
34  
33  
19  
20  
21  
28  
29  
30  
31  
32  
33  
32  
31  
30  
14  
15  
16  
25  
26  
27  
28  
29  
64  
1
33  
32  
31  
30  
14  
15  
16  
25  
26  
27  
28  
29  
64  
1
GPIO  
58  
59  
60  
61  
58  
59  
60  
61  
54  
55  
56  
57  
1
2
3
4
57  
Copyright © 2015–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions (continued)  
FR597x(1),  
FR592x(1)  
FR587x(1)  
SIGNAL  
TYPE  
FUNCTION  
SIGNAL NAME  
PM,  
DESCRIPTION  
PM, RGC  
DGG  
RGC  
PIN NO.  
7
PIN NO. PIN NO.  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
P9.4  
P9.5  
P9.6  
P9.7  
PJ.0  
7
12  
13  
14  
15  
16  
17  
18  
37  
38  
39  
40  
41  
48  
49  
50  
51  
24  
25  
26  
27  
54  
55  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
8
8
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
USCI_B0: I2C clock (I2C mode)  
USCI_B0: I2C data (I2C mode)  
9
9
10  
11  
12  
13  
34  
35  
36  
37  
38  
45  
46  
47  
48  
21  
22  
23  
24  
51  
52  
55  
54  
5
10  
11  
12  
13  
34  
35  
36  
37  
38  
45  
46  
47  
48  
21  
22  
23  
24  
51  
52  
55  
54  
5
GPIO  
PJ.1  
PJ.2  
PJ.3  
PJ.4  
PJ.5  
PJ.6  
PJ.7  
UCB0SCL  
UCB0SDA  
10  
9
4
4
I2C  
16  
61  
16  
61  
21  
4
UCB1SCL  
UCB1SDA  
I/O  
I/O  
USCI_B1: I2C clock (I2C mode)  
USCI_B1: I2C data (I2C mode)  
15  
60  
15  
60  
20  
3
AVCC1  
AVSS1  
AVSS2  
AVSS3  
DVCC1  
DVCC2  
DVCC3  
DVSS1  
DVSS2  
DVSS3  
49  
50  
53  
56  
18  
40  
63  
17  
39  
62  
49  
50  
53  
52  
53  
56  
P
P
P
P
P
P
P
P
P
P
Analog power supply  
Analog ground supply  
Analog ground supply  
Analog ground supply  
Digital power supply  
Digital power supply  
Digital power supply  
Digital ground supply  
Digital ground supply  
Digital ground supply  
18  
40  
63  
17  
39  
62  
Power  
43  
6
42  
5
20  
Terminal Configuration and Functions  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 4-2. Signal Descriptions (continued)  
FR597x(1),  
FR592x(1)  
FR587x(1)  
SIGNAL  
TYPE  
FUNCTION  
SIGNAL NAME  
PM,  
DESCRIPTION  
PM, RGC  
PIN NO.  
DGG  
RGC  
PIN NO. PIN NO.  
3
31  
3
31  
8
34  
USCI_A0: Clock signal input (SPI slave mode),  
Clock signal output (SPI master mode)  
UCA0CLK  
UCA0SIMO  
UCA0SOMI  
UCA0STE  
UCA1CLK  
UCA1SIMO  
UCA1SOMI  
UCA1STE  
UCB0CLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
33  
64  
33  
64  
36  
35  
USCI_A0: Slave in, master out (SPI mode)  
USCI_A0: Slave out, master in (SPI mode)  
USCI_A0: Slave transmit enable (SPI mode)  
1
32  
1
32  
2
30  
2
30  
7
33  
28  
56  
USCI_A1: Clock signal input (SPI slave mode),  
Clock signal output (SPI master mode)  
28  
26  
27  
31  
29  
30  
32  
7
26  
54  
USCI_A1: Slave in, master out (SPI mode)  
USCI_A1: Slave out, master in (SPI mode)  
27  
55  
29  
57  
29  
57  
SPI  
USCI_A1: Slave transmit enable (SPI mode)  
USCI_B0: Clock signal input (SPI slave mode),  
Clock signal output (SPI master mode)  
2
2
UCB0SIMO  
UCB0SOMI  
UCB0STE  
4
5
3
4
5
3
9
10  
8
I/O  
I/O  
I/O  
USCI_B0: Slave in, master out (SPI mode)  
USCI_B0: Slave out, master in (SPI mode)  
USCI_B0: Slave transmit enable (SPI mode)  
14  
59  
64  
14  
59  
64  
19  
2
USCI_B1: Clock signal input (SPI slave mode),  
Clock signal output (SPI master mode)  
UCB1CLK  
I/O  
15  
60  
15  
60  
3
20  
UCB1SIMO  
UCB1SOMI  
UCB1STE  
I/O  
I/O  
I/O  
USCI_B1: Slave in, master out (SPI mode)  
USCI_B1: Slave out, master in (SPI mode)  
USCI_B1: Slave transmit enable (SPI mode)  
16  
61  
16  
61  
21  
4
1
58  
1
58  
1
NMI  
RST  
20  
20  
20  
20  
23  
23  
I
I
Nonmaskable interrupt input  
Reset input active low  
System  
Copyright © 2015–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions (continued)  
FR597x(1),  
FR592x(1)  
FR587x(1)  
SIGNAL  
TYPE  
FUNCTION  
SIGNAL NAME  
PM,  
DESCRIPTION  
PM, RGC  
PIN NO.  
DGG  
RGC  
PIN NO. PIN NO.  
3
35  
3
35  
8
38  
Timer_A TA0 CCR0 capture: CCI0A input,  
compare: Out0 output  
TA0.0  
TA0.1  
I/O  
I/O  
4
36  
44  
4
36  
44  
9
39  
47  
Timer_A TA0 CCR1 capture: CCI1A input,  
compare: Out1 output  
5
37  
43  
5
37  
43  
10  
40  
46  
Timer_A TA0 CCR2 capture: CCI2A input,  
compare: Out2 output  
TA0.2  
I/O  
34  
42  
34  
42  
37  
45  
TA0CLK  
TA1.0  
I
Timer_A TA0 clock signal TA0CLK input  
2
59  
2
59  
7
2
Timer_A TA1 CCR0 capture: CCI0A input,  
compare: Out0 output  
I/O  
Timer_A  
25  
42  
60  
25  
42  
60  
28  
45  
3
Timer_A TA1 CCR1 capture: CCI1A input,  
compare: Out1 output  
TA1.1  
I/O  
41  
61  
41  
61  
44  
4
Timer_A TA1 CCR2 capture: CCI2A input,  
compare: Out2 output  
TA1.2  
TA1CLK  
TA3.2  
TA3.3  
TA3.4  
TB0.0  
TB0.1  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
I/O  
I
43  
58  
43  
58  
46  
1
Timer_A TA1 clock signal TA1CLK input  
Timer_A TA3 CCR2 capture: CCI2B input,  
compare: Out2 output  
14  
15  
16  
14  
15  
16  
19  
20  
21  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Timer_A TA3 CCR3 capture: CCI3B input,  
compare: Out3 output  
Timer_A TA3 CCR4 capture: CCI4B input,  
compare: Out4 output  
11  
26  
11  
26  
16  
29  
Timer_B TB0 CCR0 capture: CCI0B input,  
compare: Out0 output  
12  
27  
12  
27  
17  
30  
Timer_B TB0 CCR1 capture: CCI1A input,  
compare: Out1 output  
13  
28  
13  
28  
18  
31  
Timer_B TB0 CCR2 capture: CCI2A input,  
compare: Out2 output  
Timer_B TB0 CCR3 capture: CCI3B input,  
compare: Out3 output  
29  
31  
32  
33  
29  
31  
32  
33  
32  
34  
35  
36  
Timer_B TB0 CCR4 capture: CCI4B input,  
compare: Out4 output  
Timer_B  
Timer_B TB0 CCR5 capture: CCI5B input,  
compare: Out5 output  
Timer_B TB0 CCR6 capture: CCI6B input,  
compare: Out6 output  
25  
33  
57  
25  
33  
57  
28  
36  
TB0CLK  
I
Timer_B TB0 clock signal TB0CLK input  
21  
30  
21  
30  
24  
33  
Switch all PWM outputs high impedance input -  
Timer_B TB0  
TB0OUTH  
UCA0RXD  
UCA0TXD  
I
I
1
32  
1
32  
35  
36  
USCI_A0: Receive data (UART mode)  
USCI_A0: Transmit data (UART mode)  
33  
64  
33  
64  
O
UART  
UCA1RXD  
UCA1TXD  
27  
26  
27  
26  
30  
29  
I
USCI_A1: Receive data (UART mode)  
USCI_A1: Transmit data (UART mode)  
O
RGC package only. VQFN package exposed  
thermal pad. TI recommends connection to  
Thermal Pad  
VSS  
.
22  
Terminal Configuration and Functions  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
4.4 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for  
example, if the device is in test mode). For details of the settings for each pin and schematics of the  
multiplexed ports, see 6.11.22.  
4.5 Buffer Type  
Table 4-3 describes the buffer types that are referenced in Section 4.2.  
Table 4-3. Buffer Type  
NOMINAL  
OUTPUT  
DRIVE  
STRENGTH  
(mA)  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)  
OTHER  
CHARACTERISTICS  
HYSTERESIS  
PU OR PD  
See  
LVCMOS  
Analog  
3.0 V  
3.0 V  
Y(1)  
N
Programmable See Table 5-11  
Section 5.12.5.1  
See analog modules in  
Section 5 for details  
N/A  
N/A  
N/A  
SVS enables hysteresis on  
DVCC  
Power (DVCC)  
Power (AVCC)  
3.0 V  
3.0 V  
N
N
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
(1) Only for Input pins.  
4.6 Connection of Unused Pins  
Table 4-4 lists the correct termination of all unused pins.  
Table 4-4. Connection of Unused Pins(1)  
PIN  
POTENTIAL  
DVCC  
COMMENT  
AVCC  
AVSS  
DVSS  
Px.0 to Px.7  
RST/NMI  
Open  
Switched to port function, output direction (PxDIR.n = 1)  
47-kpullup or internal pullup selected with 10-nF (2.2 nF(2)) pulldown  
DVCC or VCC  
PJ.0/TDO  
PJ.1/TDI  
PJ.2/TMS  
PJ.3/TCK  
The JTAG pins are shared with general-purpose I/O function (PJ.x). If these pins are not used, they  
should be set to port function and output direction. When used as JTAG pins, these pins should  
remain open.  
Open  
Open  
TEST  
This pin always has an internal pulldown enabled.  
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection  
guidelines.  
(2) The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG  
mode with TI tools like FET interfaces or GANG programmers.  
Copyright © 2015–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
5 Specifications  
5.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
4.1  
UNIT  
V
Voltage applied at DVCC and AVCC pins to VSS  
Voltage difference between DVCC and AVCC pins(2)  
–0.3  
–0.3  
–40  
±0.3  
V
VCC + 0.3  
(4.1 Maximum)  
(3)  
Voltage applied to any pin  
V
Diode current at any device pin  
±2  
mA  
°C  
(4)  
Storage temperature, Tstg  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltage differences between DVCC and AVCC exceeding the specified limits may cause malfunction of the device including erroneous  
writes to RAM and FRAM.  
(3) All voltages referenced to VSS  
.
(4) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
5.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V  
may actually have higher performance.  
5.3 Recommended Operating Conditions  
Typical data are based on VCC = 3.0 V, TA = 25°C (unless otherwise noted)  
MIN NOM  
MAX UNIT  
VCC  
VSS  
TA  
Supply voltage applied at all DVCC and AVCC pins(1) (2) (3)  
Supply voltage applied at all DVSS and AVSS pins  
Operating free-air temperature  
1.8(4)  
3.6  
V
V
0
–40  
–40  
1–20%  
0
85  
85  
°C  
°C  
µF  
TJ  
Operating junction temperature  
Capacitor value at DVCC(5)  
CDVCC  
No FRAM wait states (NWAITSx = 0)  
With FRAM wait states (NWAITSx = 1)(8)  
8(7)  
16(9)  
Processor frequency (maximum MCLK  
frequency)(6)  
fSYSTEM  
MHz  
0
fACLK  
Maximum ACLK frequency  
Maximum SMCLK frequency  
50 kHz  
16(9) MHz  
fSMCLK  
(1) TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device  
operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Absolute Maximum Ratings.  
Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.  
(2) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the data sheet recommendation for  
capacitor CDVCC should limit the slopes accordingly.  
(3) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(4) The minimum supply voltage is defined by the supervisor SVS levels. See the PMM SVS threshold parameters in 5-2 for the exact  
values.  
(5) As decoupling capacitor for each supply pin pair (DVCC and DVSS, AVCC and AVSS), a low-ESR ceramic capacitor of 100 nF  
(minimum) should be placed as close as possible (within a few millimeters) to the respective pin pairs.  
(6) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(7) DCO settings and HF cyrstals with a typical value less than or equal to the specified MAX value are permitted.  
(8) Wait states only occur on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always excecuted  
without wait states.  
(9) DCO settings and HF cyrstals with a typical value less than or equal to the specified MAX value are permitted. If a clock source with a  
higher typical value is used, the clock must be divided in the clock system.  
24  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
5.4 Active Mode Supply Current Into VCC Excluding External Current  
(2)  
over recommended operating free-air temperature (unless otherwise noted)(1)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
0 WAIT  
STATES  
4 MHz  
0 WAIT  
STATES  
8 MHz  
0 WAIT  
STATES  
12 MHz  
1 WAIT  
STATES  
16 MHz  
1 WAIT  
STATES  
EXECUTION  
MEMORY  
PARAMETER  
VCC  
UNIT  
(NWAITSx = 0)  
(NWAITSx = 0)  
(NWAITSx = 0)  
(NWAITSx = 1)  
(NWAITSx = 1)  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
IAM, FRAM_UNI  
FRAM  
3.0 V  
3.0 V  
210  
640  
1220  
1475  
1845  
µA  
µA  
(Unified memory)(3)  
FRAM  
0% cache hit  
ratio  
IAM, FRAM(0%)(4)  
370  
240  
200  
170  
110  
1280  
745  
560  
480  
235  
2510  
1440  
1070  
890  
2080  
1575  
1300  
1155  
640  
2650  
1990  
1620  
1420  
730  
(5)  
FRAM  
50% cache hit  
ratio  
IAM, FRAM(50%)(4)  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
µA  
µA  
µA  
µA  
(5)  
FRAM  
66% cache hit  
ratio  
IAM, FRAM(66%)(4)  
(5)  
FRAM  
75% cache hit  
ratio  
IAM, FRAM(75%)(4)  
255  
180  
1085  
1310  
1620  
1300  
(5)  
FRAM  
100% cache hit  
ratio  
IAM, FRAM(100%(4)  
420  
(5)  
(6) (5)  
IAM, RAM  
RAM  
RAM  
3.0 V  
3.0 V  
130  
100  
320  
290  
585  
555  
890  
860  
1070  
1040  
µA  
µA  
(7) (5)  
IAM, RAM only  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Characterized with program executing typical data processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO= 24 MHz and  
fMCLK = fSMCLK = fDCO/2.  
At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency  
(fMCLK,eff) decreases. The effective MCLK frequency also depends on the cache hit ratio. SMCLK is not affected by the number of wait  
states or the cache hit ratio.  
The following equation can be used to compute fMCLK,eff  
:
fMCLK,eff = fMCLK / [wait states × (1 - cache hit ratio) + 1]  
For example, with 1 wait state and 75% cache hit ratio fMCKL,eff = fMCLK / [1 × (1 - 0.75) + 1] = fMCLK / 1.25.  
(3) Represents typical program execution. Program and data reside entirely in FRAM. All execution is from FRAM.  
(4) Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit  
ratio represents number cache accesess divided by the total number of FRAM accesses. For example, a 75% ratio implies three of  
every four accesses is from cache, and the remaining are FRAM accesses.  
(5) See Figure 5-1 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best  
linear fit using the typical data shown in Section 5.4.  
(6) Program and data reside entirely in RAM. All execution is from RAM.  
(7) Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
Copyright © 2015–2018, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
5.5 Typical Characteristics - Active Mode Supply Currents  
3000  
I(AM,0%)  
I(AM,50%)  
2500  
I(AM,66%)  
I(AM,75%)  
2000  
1500  
1000  
500  
0
I(AM,100%)  
I(AM,75%)[uA] = 103*f[MHz] + 68  
I(AM,RAMonly)  
0
1
2
3
4
5
6
7
8
9
MCLK Frequency [MHz]  
C001  
NOTE: I(AM, cache hit ratio): Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with  
cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of  
FRAM accesses. For example, a 75% ratio implies three of every four accesses is from cache, and the remaining are  
FRAM accesses.  
NOTE: I(AM, RAMonly): Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
Figure 5-1. Typical Active Mode Supply Currents, No Wait States  
5.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current  
(2)  
over recommended operating free-air temperature (unless otherwise noted)(1)  
FREQUENCY (fSMCLK  
8 MHz  
)
PARAMETER  
VCC  
1 MHz  
TYP  
4 MHz  
TYP  
12 MHz  
TYP  
16 MHz  
TYP  
UNIT  
MAX  
120  
65  
MAX  
TYP  
165  
175  
130  
130  
MAX  
MAX  
MAX  
275  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
75  
80  
40  
40  
105  
115  
65  
250  
260  
215  
215  
230  
240  
195  
195  
ILPM0  
µA  
µA  
ILPM1  
65  
220  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO at specified frequency - except for 12 MHz: here fDCO=24MHz and fSMCLK = fDCO/2.  
26  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
5.7 Low-Power Mode LPM2, LPM3, LPM4 Supply Currents (Into VCC) Excluding External  
Current  
(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
–40°C  
25°C  
60°C  
85°C  
PARAMETER  
VCC  
UNIT  
μA  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
0.8  
0.8  
0.7  
0.7  
0.5  
0.5  
0.7  
0.7  
0.6  
1.2  
1.2  
1.1  
1.1  
0.9  
0.9  
0.9  
0.9  
0.7  
3.1  
3.1  
3.0  
3.0  
2.8  
2.8  
1.2  
1.2  
1.1  
8.8  
8.8  
8.7  
8.7  
8.5  
8.5  
2.5  
2.5  
2.4  
Low-power mode 2, 12-pF  
ILPM2,XT12  
ILPM2,XT3.7  
ILPM2,VLO  
ILPM3,XT12  
(3) (4)  
crystal(2)  
2.2  
17  
Low-power mode 2, 3.7-pF  
μA  
(5) (4)  
crystal(2)  
Low-power mode 2, VLO,  
includes SVS(6)  
μA  
2.0  
1.2  
16.7  
6.4  
Low-power mode 3, 12-pF  
μA  
crystal, includes SVS(2)  
(3) (7)  
Low-power mode 3, 3.7-pF  
(5) (8)  
ILPM3,XT3.7  
crystal, excludes SVS(2)  
(also see Figure 5-2)  
μA  
μA  
μA  
3.0 V  
0.6  
0.7  
1.1  
2.4  
2.2 V  
3.0 V  
2.2 V  
0.35  
0.35  
0.35  
0.4  
0.4  
0.4  
0.9  
0.9  
0.8  
1.8  
1.8  
1.7  
Low-power mode 3,  
ILPM3,VLO  
VLO, excludes SVS(9)  
0.8  
0.7  
6.1  
5.2  
Low-power mode 3,  
ILPM3,VLO,  
VLO, excludes SVS, RAM  
powered down completely(10)  
RAMoff  
3.0 V  
0.35  
0.4  
0.8  
1.7  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are  
chosen to closely match the required 12.5 pF load.  
(4) Low-power mode 2, crystal oscillator test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7-pF load.  
(6) Low-power mode 2, VLO test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2),  
fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
(7) Low-power mode 3, 12-pF crystal, includes SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
(8) Low-power mode 3, 3.7-pF crystal, excludes SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE =  
0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
(9) Low-power mode 3, VLO, excludes SVS test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout included. SVS disabled  
(SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
(10) Low-power mode 3, VLO, excludes SVS, RAM powered down completely test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout included. SVS disabled  
(SVSHE = 0). RAM disabled (RCCTL0 = 5A55h).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
Copyright © 2015–2018, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Low-Power Mode LPM2, LPM3, LPM4 Supply Currents (Into VCC) Excluding External  
Current (continued)  
(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
–40°C  
25°C  
60°C  
85°C  
PARAMETER  
VCC  
UNIT  
MAX  
TYP  
MAX  
TYP  
MAX  
0.8  
TYP  
MAX  
TYP  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
0.45  
0.45  
0.25  
0.25  
0.25  
0.55  
0.55  
0.4  
0.9  
0.9  
0.7  
0.7  
0.7  
1.8  
1.8  
1.6  
1.6  
1.4  
Low-power mode 4, includes  
SVS(11)  
ILPM4,SVS  
μA  
6.2  
Low-power mode 4, excludes  
SVS(12)  
ILPM4  
μA  
0.4  
0.65  
4.6  
Low-power mode 4, excludes  
SVS, RAM powered down  
completely(13)  
0.4  
ILPM4,RAMoff  
μA  
3.0 V  
0.25  
0.4  
0.65  
0.7  
1.4  
4.6  
Additional idle current if one or  
more modules from Group A  
(see 6.3.2) are activated in  
LPM3 or LPM4  
IIDLE,GroupA  
3.0 V  
0.02  
0.4  
1.0  
1.0  
0.8  
μA  
μA  
μA  
Additional idle current if one or  
more modules from Group B  
(see 6.3.2) are activated in  
LPM3 or LPM4  
IIDLE,GroupB  
3.0 V  
3.0 V  
0.02  
0.02  
0.4  
0.3  
Additional idle current if one or  
more modules from Group C  
(see 6.3.2) are activated in  
LPM3 or LPM4  
IIDLE,GroupC  
(11) Low-power mode 4, includes SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
(12) Low-power mode 4, excludes SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
(13) Low-power mode 4, excludes SVS, RAM powered down completely test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). RAM disabled (RCCTL0 = 5A55h).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
28  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
5.8 Low-Power Mode LPMx.5 Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
–40°C  
25°C  
60°C  
85°C  
PARAMETER  
VCC  
UNIT  
μA  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.45  
0.45  
0.3  
0.5  
0.5  
0.6  
0.6  
0.75  
0.75  
0.65  
0.65  
0.4  
Low-power mode 3.5, 12-pF  
ILPM3.5,XT12  
ILPM3.5,XT3.7  
ILPM4.5,SVS  
ILPM4.5  
crystal including SVS(2)  
(3) (4)  
0.75  
1.4  
0.35  
0.35  
0.3  
0.4  
Low-power mode 3.5, 3.7-pF  
μA  
crystal excluding SVS(2)  
(5) (6)  
0.3  
0.4  
0.2  
0.35  
0.35  
0.06  
0.06  
Low-power mode 4.5, including  
SVS(7)  
μA  
0.2  
0.3  
0.5  
0.4  
0.7  
0.5  
0.03  
0.03  
0.04  
0.04  
0.14  
0.14  
Low-power mode 4.5,  
excluding SVS(8)  
μA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are  
chosen to closely match the required 12.5 pF load.  
(4) Low-power mode 3.5, 1-pF crystal including SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7-pF load.  
(6) Low-power mode 3.5, 3.7-pF crystal excluding SVS test conditions:  
Current for RTC clocked by XT1 included.Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(7) Low-power mode 4.5 including SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(8) Low-power mode 4.5 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Copyright © 2015–2018, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
5.9 Typical Characteristics, Low-Power Mode Supply Currents  
3
2.5  
2
3
2.5  
2
@ 3.0V, SVS off  
@ 2.2V, SVS off  
@ 3.0V, SVS on  
@ 2.2V, SVS on  
@ 3.0V, SVS off  
@ 2.2V, SVS off  
@ 3.0V, SVS on  
@ 2.2V, SVS on  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature [°C]  
Temperature [°C]  
C003  
C001  
Figure 5-2. LPM3 Supply Current vs Temperature (LPM3,XT3.7)  
Figure 5-3. LPM4 Supply Current vs Temperature (LPM4,SVS)  
7.00E-01  
0.7  
@ 3.0V, SVS off  
@ 3.0V, SVS off  
@ 2.2V, SVS off  
6.00E-01  
@ 2.2V, SVS off  
@ 3.0V, SVS on  
0.6  
@ 2.2V, SVS on  
5.00E-01  
0.5  
0.4  
0.3  
0.2  
4.00E-01  
3.00E-01  
2.00E-01  
1.00E-01  
0.00E+00  
-50  
-25  
0
25  
50  
75  
100  
-50.00  
-25.00  
0.00  
25.00  
50.00  
75.00  
100.00  
Temperature [°C]  
Temperature [°C]  
C004  
C003  
Figure 5-5. LPM4.5 Supply Current vs Temperature (LPM4.5)  
Figure 5-4. LPM3.5 Supply Current vs Temperature  
(LPM3.5,XT3.7)  
30  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
5.10 Typical Characteristics, Current Consumption per Module  
MODULE  
Timer_A  
TEST CONDITIONS  
REFERENCE CLOCK  
Module input clock  
MIN  
TYP  
3
MAX  
UNIT  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
nA  
Timer_B  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC_C  
MPY  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
5
UART mode  
5.5  
3.5  
3.5  
3.5  
100  
25  
SPI mode  
SPI mode  
I2C mode, 100 kbaud  
Only from start to end of operation  
Only from start to end of operation  
Only from start to end of operation  
Only from start to end of operation  
MCLK  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
AES  
MCLK  
21  
CRC16  
CRC32  
MCLK  
2.5  
2.5  
MCLK  
5.11 Thermal Resistance Characteristics(1)  
PARAMETER  
PACKAGE  
VALUE(1)  
57.7  
15.1  
26.5  
26.2  
0.5  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
Junction-to-ambient thermal resistance, still air(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
θJC(TOP)  
θJB  
TSSOP-56 (DGG)  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance(5)  
Junction-to-ambient thermal resistance, still air(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
ΨJT  
θJC(BOTTOM)  
θJA  
θJC(TOP)  
θJB  
N/A  
59.3  
19.5  
30.8  
30.5  
1.0  
QFP-64 (PN)  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance(5)  
Junction-to-ambient thermal resistance, still air(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
ΨJT  
θJC(BOTTOM)  
θJA  
θJC(TOP)  
θJB  
N/A  
29.6  
15.8  
8.5  
QFN-64 (RGC)  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance(5)  
8.5  
ΨJT  
0.2  
θJC(BOTTOM)  
1.2  
(1) N/A = not applicable  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
版权 © 2015–2018, Texas Instruments Incorporated  
Specifications  
31  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
5.12 Timing and Switching Characteristics  
5.12.1 Power Supply Sequencing  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up,  
power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the  
limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the  
device including erroneous writes to RAM and FRAM.  
5-1 lists the reset power ramp requirements.  
5-1. Brownout and Device Reset Power Ramp Requirements  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Brownout power-down level(1)  
Brownout power-up level(1)  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s(2)  
| dDVCC/dt | < 3 V/s(2)  
MIN  
0.73  
0.79  
MAX UNIT  
VVCC_BOR–  
VVCC_BOR+  
1.66  
1.68  
V
V
(1) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the data sheet recommendation for  
capacitor CDVCC should limit the slopes accordingly.  
(2) The brownout levels are measured with a slowly changing supply.  
5-2 lists the characteristics of the SVS.  
5-2. SVS  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
170  
MAX UNIT  
ISVSH,LPM  
VSVSH-  
SVSH current consumption, low power modes  
SVSH power-down level(1)  
SVSH power-up level(1)  
300  
1.85  
1.99  
120  
10  
nA  
V
1.75  
1.77  
40  
1.80  
1.88  
VSVSH+  
V
VSVSH_hys  
tPD,SVSH, AM  
SVSH hysteresis  
mV  
µs  
SVSH propagation delay, active mode  
dVVcc/dt = –10 mV/µs  
(1) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference  
Design.  
5.12.2 Reset Timing  
Table 5-11 lists the required reset input timing.  
5-3. Reset Input  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
MIN  
MAX  
UNIT  
t(RST) External reset pulse duration on RST(1)  
2.2 V, 3.0 V  
2
µs  
(1) Not applicable if the RST/NMI pin is configured as NMI.  
32  
Specifications  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
5.12.3 Clock Specifications  
Table 5-4 lists the characteristics of the LFXT.  
Table 5-4. Low-Frequency Crystal Oscillator, LFXT(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
180  
TA = 25°C, CL,eff = 3.7 pF, ESR 44 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
TA = 25°C, CL,eff = 6 pF, ESR 40 kΩ  
185  
225  
IVCC.LFXT  
Current consumption  
3.0 V  
nA  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {2},  
TA = 25°C, CL,eff = 9 pF, ESR 40 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF, ESR ≈  
40 kΩ  
330  
LFXT oscillator crystal  
frequency  
fLFXT  
LFXTBYPASS = 0  
32768  
Hz  
Measured at ACLK,  
fLFXT = 32768 Hz  
DCLFXT  
fLFXT,SW  
DCLFXT, SW  
LFXT oscillator duty cycle  
30%  
70%  
LFXT oscillator logic-level  
square-wave input frequency  
LFXTBYPASS = 1(2) (3)  
10.5 32.768  
50 kHz  
70%  
LFXT oscillator logic-level  
square-wave input duty cycle  
LFXTBYPASS = 1  
30%  
210  
300  
2
LFXTBYPASS = 0, LFXTDRIVE = {1},  
fLFXT = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(4)  
OALFXT  
kΩ  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
Integrated load capacitance at  
LFXIN terminal(5) (6)  
CLFXIN  
pF  
pF  
Integrated load capacitance at  
LFXOUT terminal(5) (6)  
CLFXOUT  
2
(1) To improve EMI on the LFXT oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins LFXIN and LFXOUT.  
Avoid running PCB traces underneath or adjacent to the LFXIN and LFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
.
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF  
For LFXTDRIVE = {1}, CL,eff = 6 pF  
For LFXTDRIVE = {2}, 6 pF CL,eff 9 pF  
For LFXTDRIVE = {3}, 9 pF CL,eff 12.5 pF  
(5) This represents all the parasitic capacitance present at the LFXIN and LFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN x COUT / (CIN + COUT), where CIN and COUT is the  
total capacitance at the LFXIN and LFXOUT terminals, respectively.  
(6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are 3.7  
pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds additional capacitance, so it must also be  
considered in the overall capacitance. Verify that the recommended effective load capacitance of the selected crystal is met.  
Copyright © 2015–2018, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-4. Low-Frequency Crystal Oscillator, LFXT(1) (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
TA = 25°C, CL,eff = 3.7 pF  
3.0 V  
800  
tSTART,LFXT  
Start-up time(7)  
ms  
fOSC = 32768 Hz  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
3.0 V  
1000  
fFault,LFXT  
Oscillator fault frequency(8) (9)  
0
3500  
Hz  
(7) Includes start-up counter of 1024 clock cycles.  
(8) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specification may set the  
flag. A static condition or stuck at fault condition will set the flag.  
(9) Measured with logic-level input frequency but also applies to operation with crystals.  
Table 5-5 lists the characteristics of the HFXT.  
Table 5-5. High-Frequency Crystal Oscillator, HFXT(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1(2)  
TA = 25°C,  
,
75  
CL,eff = 18 pF, typical ESR, Cshunt  
fOSC = 8 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 1,  
HFFREQ = 1  
TA = 25°C,  
120  
190  
250  
CL,eff = 18 pF, typical ESR, Cshunt  
HFXT oscillator crystal current HF  
mode at typical ESR  
IDVCC.HFXT  
3.0 V  
μA  
fOSC = 16 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 2,  
HFFREQ = 2,  
TA = 25°C,  
CL,eff = 18 pF, typical ESR, Cshunt  
fOSC = 24 MHz  
HFXTBYPASS = 0, HFXTDRIVE = 3,  
HFFREQ = 3,  
TA = 25°C,  
CL,eff = 18 pF, typical ESR, Cshunt  
(2)  
HFXTBYPASS = 0, HFFREQ = 1  
4
8
(3)  
HFXT oscillator crystal frequency,  
crystal mode  
fHFXT  
MHz  
16  
(3)  
HFXTBYPASS = 0, HFFREQ = 2  
8.01  
(3)  
HFXTBYPASS = 0, HFFREQ = 3  
16.01  
24  
Measured at SMCLK,  
fHFXT = 16 MHz  
DCHFXT  
HFXT oscillator duty cycle  
40%  
50%  
60%  
(1) To improve EMI on the HFXT oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins HFXIN and HFXOUT.  
Avoid running PCB traces underneath or adjacent to the HFXIN and HFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator HFXIN and HFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(2) HFFREQ = {0} is not supported for HFXT crystal mode of operation.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
34  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 5-5. High-Frequency Crystal Oscillator, HFXT(1) (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
HFXTBYPASS = 1, HFFREQ = 0(4)  
0.9  
4
(3)  
HFXTBYPASS = 1, HFFREQ = 1(4)  
4.01  
8.01  
8
(3)  
HFXT oscillator logic-level  
square-wave input frequency,  
bypass mode  
fHFXT,SW  
MHz  
16  
HFXTBYPASS = 1, HFFREQ = 2(4)  
(3)  
HFXTBYPASS = 1, HFFREQ = 3(4)  
16.01  
40%  
24  
(3)  
DCHFXT,  
HFXT oscillator logic-level  
HFXTBYPASS = 1  
HFXTBYPASS = 0,  
60%  
square-wave input duty cycle  
SW  
HFXTDRIVE = 0, HFFREQ = 1(2)  
fHFXT,HF = 4 MHz, CL,eff = 16 pF  
,
450  
320  
200  
200  
HFXTBYPASS = 0,  
HFXTDRIVE = 1, HFFREQ = 1,  
fHFXT,HF = 8 MHz, CL,eff = 16 pF  
Oscillation allowance for  
HFXT crystals(5)  
OAHFXT  
HFXTBYPASS = 0,  
HFXTDRIVE = 2, HFFREQ = 2,  
fHFXT,HF = 16 MHz, CL,eff = 16 pF  
HFXTBYPASS = 0,  
HFXTDRIVE = 3, HFFREQ = 3,  
fHFXT,HF = 24 MHz, CL,eff = 16 pF  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1,  
TA = 25°C, CL,eff = 16 pF  
3.0 V  
3.0 V  
1.6  
0.6  
tSTART,HFXT Start-up time(6)  
ms  
pF  
fOSC = 24 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 3,  
HFFREQ = 3,  
TA = 25°C, CL,eff = 16 pF  
Integrated load capacitance at  
CHFXIN  
2
2
HFXIN terminaI(7) (8)  
Integrated load capacitance at  
HFXOUT terminaI(7) (8)  
Oscillator fault frequency(9) (10)  
CHFXOUT  
fFault,HFXT  
pF  
0
800 kHz  
(4) When HFXTBYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DCHFXT, SW  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes start-up counter of 1024 clock cycles.  
.
(7) This represents all the parasitic capacitance present at the HFXIN and HFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN x COUT / (CIN + COUT), where CIN and COUT is the  
total capacitance at the HFXIN and HFXOUT terminals, respectively.  
(8) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are  
14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. The PCB adds additional capacitance, so it must also be considered in  
the overall capacitance. Verify that the recommended effective load capacitance of the selected crystal is met.  
(9) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX might set the flag. A static  
condition or stuck at fault condition will set the flag.  
(10) Measured with logic-level input frequency but also applies to operation with crystals.  
Copyright © 2015–2018, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-6 lists the characteristics of the DCO.  
Table 5-6. DCO  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 0  
DCORSEL = 1, DCOFSEL = 0  
DCO frequency range 1 MHz,  
trimmed  
fDCO1  
1
±3.5% MHz  
DCO frequency range 2.7 MHz,  
trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 1  
fDCO2.7  
fDCO3.5  
fDCO4  
2.667  
3.5  
4
±3.5% MHz  
±3.5% MHz  
±3.5% MHz  
DCO frequency range 3.5 MHz,  
trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 2  
DCO frequency range 4 MHz,  
trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 3  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 4  
DCORSEL = 1, DCOFSEL = 1  
DCO frequency range 5.3 MHz,  
trimmed  
fDCO5.3  
fDCO7  
fDCO8  
5.333  
±3.5% MHz  
±3.5% MHz  
±3.5% MHz  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 5  
DCORSEL = 1, DCOFSEL = 2  
DCO frequency range 7 MHz,  
trimmed  
7
8
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 6  
DCORSEL = 1, DCOFSEL = 3  
DCO frequency range 8 MHz,  
trimmed  
DCO frequency range 16 MHz,  
trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 1, DCOFSEL = 4  
fDCO16  
fDCO21  
fDCO24  
16  
21  
24  
±3.5%(1) MHz  
±3.5%(1) MHz  
±3.5%(1) MHz  
DCO frequency range 21 MHz,  
trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 5  
DCO frequency range 24 MHz,  
trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 6  
Measured at SMCLK, divide by 1,  
No external divide, all DCORSEL and  
DCOFSEL settings except DCORSEL  
= 1, DCOFSEL = 5 and DCORSEL =  
1, DCOFSEL = 6  
fDCO,DC  
Duty cycle  
48%  
50%  
52%  
Based on fsignal = 10 kHz and DCO  
used for 12-bit SAR ADC sampling  
source. This achieves >74-dB SNR  
due to jitter; that is, it is limited by  
ADC performance.  
tDCO,  
JITTER  
DCO jitter  
2
3
ns  
dfDCO/dT  
DCO temperature drift(2)  
3.0 V  
0.01  
%/ºC  
(1) After a wakeup from LPM1, LPM2, LPM3 or LPM4, the DCO frequency fDCO might exceed the specified frequency range for a few  
clocks cycles by up to 5% before settling into the specified steady state frequency range.  
(2) Calculated using the box method: (MAX(–40°C to 85ºC) – MIN(–40°C to 85ºC)) / MIN(–40°C to 85ºC) / (85ºC – (–40ºC))  
Table 5-7 lists the characteristics of the VLO.  
Table 5-7. Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
100  
9.4  
MAX UNIT  
nA  
IVLO  
Current consumption  
VLO frequency  
fVLO  
Measured at ACLK  
6
14 kHz  
%/°C  
dfVLO/dT  
dfVLO/dVCC  
fVLO,DC  
VLO frequency temperature drift  
VLO frequency supply voltage drift  
Duty cycle  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
0.2  
0.7  
%/V  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
36  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 5-8 lists the characteristics of the MODOSC.  
Table 5-8. Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
25  
MAX UNIT  
IMODOSC  
Current consumption  
Enabled  
μA  
fMODOSC  
MODOSC frequency  
4.0  
4.8  
5.4  
MHz  
fMODOSC/dT  
MODOSC frequency temperature drift(1)  
0.08  
%/℃  
MODOSC frequency supply voltage  
drift(2)  
fMODOSC/dVCC  
DCMODOSC  
1.4  
%/V  
Duty cycle  
Measured at SMCLK, divide by 1  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
版权 © 2015–2018, Texas Instruments Incorporated  
Specifications  
37  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
5.12.4 Wake-up Characteristics  
Table 5-9 lists the device wake-up times.  
Table 5-9. Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
Additional wake-up time to activate the FRAM  
in AM if previously disabled by the FRAM  
controller or from an LPM if immediate  
activation is selected  
tWAKE-UP FRAM  
6
10  
μs  
MCLKREQEN = 1  
400 ns +  
1.5 / fDCO  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
(1)  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode  
MCLKREQEN = 0  
400 ns +  
2.5 / fDCO  
(1)(2)  
tWAKE-UP LPM1  
tWAKE-UP LPM2  
tWAKE-UP LPM3  
tWAKE-UP LPM4  
Wake-up time from LPM1 to active mode(1)  
Wake-up time from LPM2 to active mode(1)  
Wake-up time from LPM3 to active mode(1)  
Wake-up time from LPM4 to active mode(1)  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
6
6
μs  
μs  
μs  
μs  
μs  
μs  
ms  
7
10  
10  
7
tWAKE-UP LPM3.5 Wake-up time from LPM3.5 to active mode(3)  
250  
250  
0.4  
350  
350  
0.8  
SVSHE = 1  
SVSHE = 0  
tWAKE-UP LPM4.5 Wake-up time from LPM4.5 to active mode(3)  
Wake-up time from a RST pin triggered reset to  
tWAKE-UP-RST  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
250  
0.5  
350  
1.0  
μs  
active mode(3)  
(3)  
tWAKE-UP-BOR  
Wake-up time from power-up to active mode  
ms  
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge with MCLKREQEN = 1. This time includes the activation of the FRAM during wakeup.  
(2) With MCLKREQEN = 0, the MCLK is gated one additoinal one clock cycle (wake from LPM0, LPM1, LPM2, LPM3, and LPM4). The  
device wake-up time is not affected by the status of the MCLKREQEN bit.  
(3) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
Table 5-10 lists the typical charge required for wakeup.  
Table 5-10. Typical Wake-up Charge(1)  
PARAMETER  
TEST CONDITIONS MIN  
TYP  
MAX UNIT  
Charge used for activating the FRAM in AM or during wakeup  
from LPM0 if previously disabled by the FRAM controller.  
QWAKE-UP FRAM  
QWAKE-UP LPM0  
QWAKE-UP LPM1  
QWAKE-UP LPM2  
QWAKE-UP LPM3  
QWAKE-UP LPM4  
15.1  
nAs  
Charge used to wake up from LPM0 to active mode (with FRAM  
active)  
4.4  
nAs  
nAs  
nAs  
nAs  
Charge used to wake up from LPM1 to active mode (with FRAM  
active)  
15.1  
15.3  
16.5  
16.5  
Charge used to wake up from LPM2 to active mode (with FRAM  
active)  
Charge used to wake up from LPM3 to active mode (with FRAM  
active)  
Charge used to wake up from LPM4 to active mode (with FRAM  
active)  
nAs  
nAs  
QWAKE-UP LPM3.5 Charge used to wake up from LPM3.5 to active mode(2)  
QWAKE-UP LPM4.5 Charge used to wake up from LPM4.5 to active mode(2)  
QWAKE-UP-RESET Charge used for reset from RST or BOR event to active mode(2)  
76  
77  
SVSHE = 1  
SVSHE = 0  
nAs  
nAs  
77.5  
75  
(1) Charge used during the wake-up time from a given low-power mode to active mode. This does not include the energy required in active  
mode (for example, for an interrupt service routine).  
(2) Charge required until start of user code. This does not include the energy required to reconfigure the device.  
38  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
5.12.4.1 Typical Characteristics, Average LPM Currents vs Wake-up Frequency  
10000.00  
LPM0  
LPM1  
LPM2,XT12  
1000.00  
LPM3,XT12  
LPM3.5,XT12  
100.00  
10.00  
1.00  
0.10  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
NOTE: The average wake-up current does not include the energy required in active mode; for example, for an interrupt  
service routine or to reconfigure the device.  
Figure 5-6. Average LPM Currents vs Wake-up Frequency at 25°C  
10000.00  
LPM0  
LPM1  
LPM2,XT12  
1000.00  
LPM3,XT12  
LPM3.5,XT12  
100.00  
10.00  
1.00  
0.10  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
NOTE: The average wake-up current does not include the energy required in active mode; for example, for an interrupt  
service routine or to reconfigure the device.  
Figure 5-7. Average LPM Currents vs Wake-up Frequency at 85°C  
版权 © 2015–2018, Texas Instruments Incorporated  
Specifications  
39  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
5.12.5 Digital I/Os  
Table 5-11 lists the characteristics of the digital inputs.  
Table 5-11. Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.2  
TYP  
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
1.65  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.65  
0.55  
0.75  
0.44  
0.60  
2.25  
1.00  
V
Negative-going input threshold voltage  
1.35  
0.98  
V
Input voltage hysteresis (VIT+ – VIT–  
Pullup or pulldown resistor  
)
1.30  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI,dig  
CI,ana  
20  
35  
3
50  
kΩ  
pF  
pF  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
Input capacitance, port pins with shared analog  
functions(1)  
VIN = VSS or VCC  
5
2.2 V,  
3.0 V  
(2)(3)  
Ilkg(Px.y)  
High-impedance input leakage current  
See  
–20  
20  
2
+20  
nA  
ns  
µs  
Ports with interrupt capability  
External interrupt timing (external trigger pulse (see block diagram and  
2.2 V,  
3.0 V  
t(int)  
duration to set interrupt flag)(4)  
terminal function  
descriptions).  
2.2 V,  
3.0 V  
t(RST)  
External reset pulse duration on RST(5)  
(1) If the port pins PJ.4/LFXIN and PJ.5/LFXOUT are used as digital I/Os, they are connected by a 4-pF capacitor and a 35-Mresistor in  
series. At frequencies of approximately 1 kHz and lower, the 4-pF capacitor can add to the pin capacitance of PJ.4/LFXIN and  
PJ.5/LFXOUT.  
(2) The input leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(3) The input leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
(4) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
(5) Not applicable if the RST/NMI pin is configured as NMI.  
40  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 5-12 lists the characteristics of the digital outputs.  
Table 5-12. Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(1)  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
VCC  
0.25  
2.2 V  
VCC  
I(OHmax) = –3 mA(2)  
I(OHmax) = –2 mA(1)  
I(OHmax) = –6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
0.60  
VOH  
High-level output voltage  
V
VCC  
VCC  
0.25  
3.0 V  
2.2 V  
3.0 V  
VCC  
VCC  
0.60  
VSS  
+
VSS  
VSS  
VSS  
VSS  
0.25  
VSS  
+
0.60  
VOL  
Low-level output voltage  
V
VSS  
+
0.25  
VSS  
+
0.60  
2.2 V  
3.0 V  
2.2 V  
16  
16  
16  
Port output frequency (with load)(3)  
Clock output frequency(3)  
CL = 20 pF, RL  
MHz  
MHz  
(4) (5)  
fPx.y  
ACLK, MCLK, or SMCLK at  
configured output port  
CL = 20 pF(5)  
fPort_CLK  
3.0 V  
16  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
4
3
4
3
6
4
6
4
15  
15  
15  
15  
15  
15  
15  
15  
trise,dig  
Port output rise time, digital only port pins  
Port output fall time, digital only port pins  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
ns  
ns  
ns  
ns  
tfall,dig  
Port output rise time, port pins with shared  
analog functions  
trise,ana  
Port output fall time, port pins with shared  
analog functions  
tfall,ana  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) The port can output frequencies at least up to the specified limit. It might support higher frequencies.  
(4) A resistive divider with 2 × R1 and R1 = 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the  
divider. CL = 20 pF is connected from the output to VSS  
.
(5) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2015–2018, Texas Instruments Incorporated  
Specifications  
41  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
5.12.5.1 Typical Characteristics, Digital Outputs at 3.0 V and 2.2 V  
15  
10  
5
30  
20  
10  
0
25°C  
85°C  
25°C  
85°C  
P1.1  
P1.1  
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
3
Low-Level Output Voltage (V)  
Low-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
VCC = 3.0 V  
Figure 5-8. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
Figure 5-9. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
0
0
25°C  
25°C  
85°C  
85°C  
-5  
-10  
-10  
-20  
P1.1  
P1.1  
-15  
-30  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
3
High-Level Output Voltage (V)  
High-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
VCC = 3.0 V  
Figure 5-10. Typical High-Level Output Current vs High-Level  
Output Voltage  
Figure 5-11. Typical High-Level Output Current vs High-Level  
Output Voltage  
42  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 5-13 lists the characteristics of the pin oscillator.  
Table 5-13. Pin-Oscillator Frequency, Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Px.y, CL = 10 pF(1)  
Px.y, CL = 20 pF(1)  
VCC  
MIN  
TYP  
1200  
650  
MAX UNIT  
kHz  
3.0 V  
3.0 V  
foPx.y  
Pin-oscillator frequency  
kHz  
(1) CL is the external load capacitance connected from the output to VSS and includes all parasitic effects such as PCB traces.  
5.12.5.2 Typical Characteristics, Pin-Oscillator Frequency  
fitted  
25°C  
fitted  
25°C  
85°C  
1000  
85°C  
1000  
100  
100  
10  
100  
10  
100  
External Load Capacitance (incl. board etc.) [pF]  
External Load Capacitance (incl. board etc.) [pF]  
C002  
C002  
VCC = 2.2 V  
One output active at a time.  
VCC = 3.0 V  
One output active at a time.  
Figure 5-12. Typical Oscillation Frequency vs Load Capacitance Figure 5-13. Typical Oscillation Frequency vs Load Capacitance  
版权 © 2015–2018, Texas Instruments Incorporated  
Specifications  
43  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
5.12.6 Timer_A and Timer_B  
Table 5-14 lists the characteristics of the Timer_A.  
Table 5-14. Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TACLK,  
Duty cycle = 50% ±10%  
2.2 V,  
3.0 V  
fTA  
Timer_A input clock frequency  
16 MHz  
All capture inputs, minimum pulse  
duration required for capture  
2.2 V,  
3.0 V  
tTA,cap  
Timer_A capture timing  
20  
ns  
Table 5-15 lists the characteristics of the Timer_B.  
Table 5-15. Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
Duty cycle = 50% ±10%  
2.2 V,  
3.0 V  
fTB  
Timer_B input clock frequency  
16 MHz  
All capture inputs, minimum pulse  
duration required for capture  
2.2 V,  
3.0 V  
tTB,cap  
Timer_B capture timing  
20  
ns  
5.12.7 eUSCI  
Table 5-16 lists the supported clock frequencies for the eUSCI in UART mode.  
Table 5-16. eUSCI (UART Mode) Clock Frequency  
PARAMETER  
CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, ACLK  
feUSCI  
eUSCI input clock frequency  
External: UCLK  
16 MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
4
MHz  
Table 5-17 lists the characteristics of the eUSCI in UART mode.  
Table 5-17. eUSCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
UCGLITx = 0  
VCC  
MIN  
5
TYP  
MAX UNIT  
30  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
20  
35  
50  
90  
ns  
2.2 V,  
3.0 V  
tt  
UART receive deglitch time(1)  
160  
220  
(1) Pulses on the UART receive input (UCxRX) that are shorter than the UART receive deglitch time are suppressed. Thus the selected  
deglitch time can limit the maximum usable baud rate. To make sure that pulses are correctly recognized, their duration should exceed  
the maximum specification of the deglitch time.  
44  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 5-18 lists the supported clock frequencies for the eUSCI in SPI master mode.  
Table 5-18. eUSCI (SPI Master Mode) Clock Frequency  
PARAMETER  
CONDITIONS  
Internal: SMCLK, ACLK  
Duty cycle = 50% ±10%  
VCC  
MIN  
MAX UNIT  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Table 5-19 lists the characteristics of the eUSCI in SPI master mode.  
Table 5-19. eUSCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
STE lead time, STE active to clock  
UCSTEM = 1, UCMODEx = 01 or 10  
1
UCxCLK  
cycles  
STE lag time, last clock to STE  
inactive  
UCSTEM = 1, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
1
STE access time, STE active to  
SIMO data out  
2.2 V,  
3.0 V  
60  
80  
ns  
ns  
STE disable time, STE inactive to  
SOMI high impedance  
2.2 V,  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
40  
40  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
ns  
ns  
ns  
ns  
tHD,MI  
0
10  
10  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO  
0
0
tHD,MO  
CL = 20 pF  
(1) fUCxCLK = 1 / 2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)).  
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-14 and Figure 5-15.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-  
14 and Figure 5-15.  
Copyright © 2015–2018, Texas Instruments Incorporated  
Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
CKPL = 0  
1/fUCxCLK  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,ACC  
tSTE,DIS  
Figure 5-14. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,DIS  
tSTE,ACC  
Figure 5-15. SPI Master Mode, CKPH = 1  
46  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 5-20 lists the characteristics of the eUSCI in SPI slave mode.  
Table 5-20. eUSCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
50  
40  
2
TYP  
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
STE lag time, last clock to STE inactive  
ns  
3
50  
ns  
40  
STE access time, STE active to SOMI data out  
50  
ns  
45  
STE disable time, STE inactive to SOMI high  
impedance  
4
4
7
7
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
ns  
tHD,SI  
35  
ns  
35  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
0
0
tHD,SO  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)).  
For the master parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-16 and Figure 5-17.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-16  
and Figure 5-17.  
Copyright © 2015–2018, Texas Instruments Incorporated  
Specifications  
47  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 5-16. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 5-17. SPI Slave Mode, CKPH = 1  
48  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 5-21 lists the characteristics of the eUSCI in I2C mode.  
Table 5-21. eUSCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-18)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3.0 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
ns  
ns  
100  
4.0  
0.6  
4.7  
1.3  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2.2 V, 3.0 V  
µs  
Bus free time between a STOP and  
START condition  
tBUF  
us  
250  
25  
125  
ns  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2.2 V, 3.0 V  
12.5  
6.3  
62.5  
31.5  
27  
30  
33  
tTIMEOUT  
Clock low time-out  
2.2 V, 3.0 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 5-18. I2C Mode Timing  
版权 © 2015–2018, Texas Instruments Incorporated  
Specifications  
49  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
5.12.8 ADC12  
Table 5-22 lists the power supply and input range conditions for the ADC.  
Table 5-22. 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN NOM  
MAX UNIT  
V(Ax)  
Analog input voltage(1)  
All ADC12 analog input pins Ax  
0
AVCC  
199  
V
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 0  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
145  
I(ADC12_B)  
single-  
ended mode  
Operating supply current into  
µA  
AVCC plus DVCC terminal(2) (3)  
140  
175  
170  
190  
245  
230  
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 1  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
I(ADC12_B)  
differential  
mode  
Operating supply current into  
µA  
AVCC and DVCC terminals(2) (3)  
Only one terminal Ax can be selected  
at one time  
CI  
RI  
Input capacitance  
2.2 V  
10  
15  
pF  
>2 V  
<2 V  
0.5  
1
4
Input MUX ON resistance  
0 V V(Ax) AVCC  
kΩ  
10  
(1) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results.  
(2) The internal reference supply current is not included in current consumption parameter I(ADC12_B).  
(3) Typically about 60% of the total current into the AVCC and DVCC terminal is from AVCC.  
Table 5-23 lists the timing parameter for the ADC.  
Table 5-23. 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC12 linearity parameters  
with ADC12PWRMD = 0,  
If ADC12PWRMD = 1, the maximum is 1/4 of the value  
shown here  
fADC12CLK  
Specified performance  
0.45  
5.4  
MHz  
fADC12CLK  
fADC12OSC  
Reduced performance Linearity parameters have reduced performance  
32.768  
4.8  
kHz  
Internal oscillator(1)  
ADC12DIV = 0, fADC12CLK = fADC12OSC from MODCLK  
4
5.4  
3.5  
MHz  
REFON = 0, Internal oscillator,  
fADC12CLK = fADC12OSC from MODCLK,  
ADC12WINC = 0  
2.6  
tCONVERT  
Conversion time  
µs  
External fADC12CLK from ACLK, MCLK, or SMCLK,  
(2)  
ADC12SSEL 0  
Turnon settling time of  
the ADC  
(3)  
tADC12ON  
See  
100  
ns  
ns  
Time ADC must be off  
before can be turned  
on again  
tADC12OFF  
tADC12OFF must be met to make sure tADC12ON time holds  
100  
(1) The ADC12OSC is sourced directly from MODOSC inside the UCS.  
(2) 14 × 1 / fADC12CLK. If ADC12WINC = 1, then 15 × 1 / fADC12CLK  
(3) The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signals are already  
settled.  
50  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 5-23. 12-Bit ADC, Timing Parameters (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
All pulse sample mode  
(ADC12SHP = 1) and  
extended sample mode  
(ADC12SHP = 0) with  
buffered reference (ADC12  
VRSEL = 0x1, 0x3, 0x5, 0x7,  
0x9, 0xB, 0xD, 0xF)  
1
µs  
RS = 400 Ω, RI = 4 kΩ,  
tSample  
Sampling time  
CI = 15 pF, Cpext= 8 pF(4)  
Extended sample mode  
(ADC12SHP = 0) with  
unbuffered reference  
(ADC12 VRSEL= 0x0, 0x2,  
0x4, 0x6, 0xC, 0xE)  
(5)  
µs  
(4) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB: tsample = ln(2n+2) × (RS + RI) × (CI + Cpext), RS < 10 kΩ,  
where n = ADC resolution = 12, RS= external source resistance, Cpext = external parasitic capacitance.  
(5) 6 × (1 / fADC12CLK  
)
Table 5-24 lists the linearity parameters of the ADC when using an external reference.  
Table 5-24. 12-Bit ADC, Linearity Parameters With External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Number of no missing code  
output-code bits  
Resolution  
12  
bits  
Integral linearity error (INL)  
for differential input  
EI  
1.2 V VR+ – VR–AVCC  
±1.8  
±2.2  
+1.0  
±1.5  
LSB  
LSB  
LSB  
mV  
Integral linearity error (INL)  
for single ended inputs  
EI  
1.2 V VR+ – VR–AVCC  
Differential linearity error  
(DNL)  
ED  
EO  
–0.99  
ADC12 VRSEL = 0x2 or 0x4 without TLV calibration,  
Offset error(2) (3)  
±0.5  
±0.8  
TLV calibration data can be used to improve the parameter(4)  
With external voltage reference without internal buffer  
(ADC12 VRSEL = 0x2 or 0x4) without TLV calibration,  
TLV calibration data can be used to improve the parameter(4)  
VR+ = 2.5 V, VR– = AVSS  
±2.5  
±20  
,
EG,ext  
Gain error  
LSB  
LSB  
With external voltage reference with internal buffer (ADC12  
VRSEL = 0x3),  
VR+ = 2.5 V, VR– = AVSS  
±1  
With external voltage reference without internal buffer  
(ADC12 VRSEL = 0x2 or 0x4) without TLV calibration,  
TLV calibration data can be used to improve the parameter(4)  
VR+ = 2.5 V, VR– = AVSS  
±1.4  
±3.5  
,
ET,ext  
Total unadjusted error  
With external voltage reference with internal buffer (ADC12  
VRSEL = 0x3),  
±1.4 ±21.0  
VR+ = 2.5 V, VR– = AVSS  
(1) See Table 5-26 and Table 5-32 for more information on internal reference performance and see Designing With the MSP430FR58xx,  
FR59xx, FR68xx, and FR69xx ADC for details on optimizing ADC performance for your application with the choice of internal versus  
external reference.  
(2) Offset is measured as the input voltage (at which ADC output transitions from 0 to 1) minus 0.5 LSB.  
(3) Offset increases as IR drop increases when VR– is AVSS.  
(4) For details, see the device descriptor table section in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
Copyright © 2015–2018, Texas Instruments Incorporated  
Specifications  
51  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-25 lists the differential dynamic performance characteristics of the ADC with an external  
reference.  
Table 5-25. 12-Bit ADC, Dynamic Performance for Differential Inputs With External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
MIN  
68  
TYP  
71  
MAX  
UNIT  
dB  
SNR  
Signal-to-noise ratio  
Effective number of bits(2)  
ENOB  
10.7  
11.2  
bits  
(1) See Table 5-26 and Table 5-32 for more information on internal reference performance and see Designing With the MSP430FR58xx,  
FR59xx, FR68xx, and FR69xx ADC for details on optimizing ADC performance for your application with the choice of internal versus  
external reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 5-26 lists the differential dynamic performance characteristics of the ADC with an internal reference.  
Table 5-26. 12-Bit ADC, Dynamic Performance for Differential Inputs With Internal Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Effective number of bits(2)  
TEST CONDITIONS  
VR+ = 2.5V, VR– = AVSS  
MIN  
TYP  
MAX  
UNIT  
ENOB  
10.3  
10.7  
Bits  
(1) See Table 5-32 for more information on internal reference performance and see Designing With the MSP430FR58xx, FR59xx, FR68xx,  
and FR69xx ADC for details on optimizing ADC performance for your application with the choice of internal versus external reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 5-27 lists the single-ended dynamic performance characteristics of the ADC with an external  
reference.  
Table 5-27. 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
MIN  
64  
TYP  
68  
MAX  
UNIT  
dB  
SNR  
Signal-to-noise ratio  
Effective number of bits(2)  
ENOB  
10.2  
10.7  
bits  
(1) See Table 5-28 and Table 5-32 for more information on internal reference performance and see Designing With the MSP430FR58xx,  
FR59xx, FR68xx, and FR69xx ADC for details on optimizing ADC performance for your application with the choice of internal versus  
external reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 5-28 lists the single-ended dynamic performance characteristics of the ADC with an internal  
reference.  
Table 5-28. 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With Internal Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Effective number of bits(2)  
TEST CONDITIONS  
VR+ = 2.5 V, VR– = AVSS  
MIN  
TYP  
MAX  
UNIT  
ENOB  
9.4  
10.4  
bits  
(1) See Table 5-32 for more information on internal reference performance and see Designing With the MSP430FR58xx, FR59xx, FR68xx,  
and FR69xx ADC for details on optimizing ADC performance for your application with the choice of internal versus external reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 5-29 lists the dynamic performance characteristics of the ADC with using a 32.768-kHz clock.  
Table 5-29. 12-Bit ADC, Dynamic Performance With 32.768-kHz Clock  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Reduced performance with fADC12CLK from ACLK LFXT  
at 32.768 kHz, VR+ = 2.5 V, VR– = AVSS  
ENOB  
Effective number of bits(1)  
10  
bits  
(1) ENOB = (SINAD – 1.76) / 6.02  
52  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
 
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Table 5-30 lists the temperature sensor and built-in V1/2 characteristics.  
Table 5-30. 12-Bit ADC, Temperature Sensor and Built-In V1/2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
700  
2.5  
MAX UNIT  
mV  
ADC12ON = 1, ADC12TCMAP = 1,  
TA = 0°C (see Figure 5-19)  
(1) (2)  
VSENSOR  
See  
(2)  
TCSENSOR  
See  
ADC12ON = 1, ADC12TCMAP = 1  
mV/°C  
Sample time required if  
tSENSOR(sample) ADCTCMAP = 1 and channel  
(MAX – 1) is selected(3)  
ADC12ON = 1, ADC12TCMAP = 1,  
Error of conversion result 1 LSB  
30  
µs  
AVCC voltage divider for  
V1/2  
ADC12BATMAP = 1 on MAX input  
channel  
ADC12ON = 1, ADC12BATMAP = 1  
ADC12ON = 1, ADC12BATMAP = 1  
ADC12ON = 1, ADC12BATMAP = 1  
47.5%  
50% 52.5%  
current for battery monitor during  
sample time  
IV 1/2  
38  
72  
µA  
µs  
Sample time required if  
ADC12BATMAP = 1 and channel  
MAX is selected(4)  
tV 1/2 (sample)  
1.7  
(1) The temperature sensor offset can be as much as ±30°C. TI recommends a single-point calibration to minimize the offset error of the  
built-in temperature sensor.  
(2) The device descriptor structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage  
levels. The sensor voltage can be computed as VSENSE = TCSENSOR * (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR can  
be computed from the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 250 kΩ. The sample time required includes the sensor on-time tSENSOR(on)  
.
(4) The on-time tV 1/2(on) is included in the sampling time tV 1/2 (sample); no additional on time is needed.  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
–40  
–20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
Figure 5-19. Typical Temperature Sensor Voltage  
Copyright © 2015–2018, Texas Instruments Incorporated  
Specifications  
53  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-31 lists the external reference characteristics of the ADC.  
Table 5-31. 12-Bit ADC, External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Positive external reference voltage input  
VeREF+ or VeREF- based on ADC12 VRSEL bit  
VR+  
VR+ > VR–  
1.2  
AVCC  
V
Negative external reference voltage input  
VeREF+ or VeREF- based on ADC12 VRSEL bit  
VR–  
VR+ > VR–  
VR+ > VR–  
0
1.2  
V
V
(VR+ – VR–  
)
Differential external reference voltage input  
Static input current singled ended input mode  
1.2  
AVCC  
1.2 V VeREF+VAVCC, VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 0, ADC12PWRMD = 0  
±10  
±2.5  
±20  
±5  
IVeREF+  
IVeREF-  
µA  
uA  
1.2 V VeREF+VAVCC , VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 0, ADC12PWRMD = 01  
1.2 V VeREF+VAVCC, VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 1, ADC12PWRMD = 0  
IVeREF+  
IVeREF-  
Static input current differential input mode  
1.2 V VeREF+VAVCC , VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 1, ADC12PWRMD = 1  
IVeREF+  
IVeREF+  
CVeREF+/-  
Peak input current with single ended input  
Peak input current with differential input  
Capacitance at VeREF+ or VeREF- terminal  
0 V VeREF+ VAVCC, ADC12DIF = 0  
0 V VeREF+ VAVCC, ADC12DIF = 1  
1.5  
3
mA  
mA  
µF  
(2)  
See  
10  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) Two decoupling capacitors, 10 µF and 470 nF, should be connected to VeREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC12_B. See also the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's  
Guide.  
54  
Specifications  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
5.12.9 REF Module  
Table 5-32 lists the characteristics of the built-in voltage reference.  
Table 5-32. REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
2.5 ±1.5%  
2.0 ±1.5%  
1.2 ±1.8%  
MAX UNIT  
REFVSEL = {2} for 2.5 V, REFON = 1  
REFVSEL = {1} for 2.0 V, REFON = 1  
REFVSEL = {0} for 1.2 V, REFON = 1  
From 0.1 Hz to 10 Hz, REFVSEL = {0}  
2.7 V  
2.2 V  
1.8 V  
Positive built-in reference  
voltage output  
VREF+  
V
Noise  
RMS noise at VREF(1)  
110  
600  
µV  
VREF ADC BUF_INT buffer TA = 25°C , ADC ON, REFVSEL = {0},  
VOS_BUF_INT  
–12  
–12  
+12  
mV  
offset(2)  
REFON = 1, REFOUT = 0  
VREF ADC BUF_EXT  
buffer offset(2)  
TA = 25°C, REFVSEL = {0} , REFOUT = 1,  
REFON = 1 or ADC ON  
VOS_BUF_EXT  
AVCC(min)  
IREF+  
+12  
mV  
V
REFVSEL = {0} for 1.2 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
1.8  
2.2  
2.7  
AVCC minimum voltage,  
Positive built-in reference  
active  
Operating supply current  
into AVCC terminal(3)  
REFON = 1  
3 V  
8
225  
15  
355  
µA  
ADC ON, REFOUT = 0, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 0,  
ADC ON, REFOUT = 1, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 0  
1030  
120  
1660  
185  
Operating supply current  
into AVCC terminal(3)  
ADC ON, REFOUT = 0, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 1  
IREF+_ADC_BUF  
3 V  
µA  
µA  
ADC ON, REFOUT = 1, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 1  
545  
895  
ADC OFF, REFON = 1, REFOUT = 1,  
REFVSEL = {0, 1, 2}  
1085  
1780  
REFVSEL = {0, 1, 2}, AVCC = AVCC(min) for  
each reference level,  
REFON = REFOUT = 1  
VREF maximum load  
current, VREF+ terminal  
IO(VREF+)  
–1000  
+10  
REFVSEL = {0, 1, 2},  
ΔVout/ΔIo  
(VREF+)  
Load-current regulation,  
VREF+ terminal  
IO(VREF+) = +10 µA or –1000 µA,  
AVCC = AVCC(min) for each reference level,  
REFON = REFOUT = 1  
2500 µV/mA  
Capacitance at VREF+ and  
VREF- terminals  
CVREF+/-  
TCREF+  
REFON = REFOUT = 1  
0
100  
pF  
Temperature coefficient of  
built-in reference  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1,  
TA = –40°C to 85°C(4)  
18  
120  
3.0  
75  
50 ppm/K  
400 µV/V  
mV/V  
Power supply rejection ratio AVCC = AVCC(min) to AVCC(max), TA = 25°C,  
(DC)  
PSRR_DC  
PSRR_AC  
tSETTLE  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1  
Power supply rejection ratio  
(AC)  
dAVCC= 0.1 V at 1 kHz  
Settling time of reference  
voltage(5)  
AVCC = AVCC (min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 0 1  
,
80  
µs  
(1) Internal reference noise affects ADC performance when ADC uses internal reference. See Designing With the MSP430FR59xx and  
MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal versus external  
reference.  
(2) Buffer offset affects ADC gain error and thus total unadjusted error.  
(3) The internal reference current is supplied through the AVCC terminal.  
(4) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).  
(5) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
Copyright © 2015–2018, Texas Instruments Incorporated  
Specifications  
55  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
5.12.10 Comparator  
Table 5-33 lists the characteristics of the comparator.  
Table 5-33. Comparator_E  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
CEPWRMD = 00, CEON = 1,  
CERSx = 00 (fast)  
11  
20  
CEPWRMD = 01, CEON = 1,  
CERSx = 00 (medium)  
9
17  
µA  
0.5  
Comparator operating supply  
current into AVCC, excludes  
reference resistor ladder  
2.2 V,  
3.0 V  
IAVCC_COMP  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 30°C  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 85°C  
1.3  
CEREFLx = 01, CERSx = 10, REFON = 0,  
CEON = 0, CEREFACC = 0  
12  
5
15  
µA  
7
Quiescent current of resistor  
ladder into AVCC, including  
REF module current  
2.2 V,  
3.0 V  
IAVCC_REF  
CEREFLx = 01, CERSx = 10, REFON = 0,  
CEON = 0, CEREFACC = 1  
CERSx = 11, CEREFLx = 01, CEREFACC = 0  
CERSx = 11, CEREFLx = 10, CEREFACC = 0  
CERSx = 11, CEREFLx = 11, CEREFACC = 0  
CERSx = 11, CEREFLx = 01, CEREFACC = 1  
CERSx = 11, CEREFLx = 10, CEREFACC = 1  
CERSx = 11, CEREFLx = 11, CEREFACC = 1  
1.8 V  
2.2 V  
2.7 V  
1.8 V  
2.2 V  
2.7 V  
1.17  
1.92  
2.40  
1.10  
1.90  
2.35  
0
1.2  
2.0  
2.5  
1.2  
2.0  
2.5  
1.23  
2.08  
2.60  
V
1.245  
VREF  
Reference voltage level  
2.08  
2.60  
VIC  
Common-mode input range  
Input offset voltage  
VCC – 1  
32  
V
CEPWRMD = 00  
–32  
–32  
–30  
VOFFSET  
CEPWRMD = 01  
32  
mV  
CEPWRMD = 10  
30  
CEPWRMD = 00 or CEPWRMD = 01  
CEPWRMD = 10  
9
9
1
CIN  
Input capacitance  
pF  
On (switch closed)  
3
k  
RSIN  
Series input resistance  
Off (switch open)  
50  
MΩ  
CEPWRMD = 00, CEF = 0, Overdrive 20 mV  
CEPWRMD = 01, CEF = 0, Overdrive 20 mV  
CEPWRMD = 10, CEF = 0, Overdrive 20 mV  
260  
350  
330  
460  
15  
ns  
Propagation delay, response  
time  
tPD  
µs  
ns  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 00  
700  
1.0  
2.0  
4.0  
0.9  
0.9  
15  
1000  
1.8  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 01  
Propagation delay with filter  
active  
tPD,filter  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 10  
3.5  
µs  
µs  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 11  
7.0  
CEON = 0 1, VIN+, VIN- from pins,  
Overdrive 20 mV, CEPWRMD = 00  
1.5  
CEON = 0 1, VIN+, VIN- from pins,  
Overdrive 20 mV, CEPWRMD = 01  
tEN_CMP  
Comparator enable time  
Comparator and reference  
1.5  
CEON = 0 1, VIN+, VIN- from pins,  
Overdrive 20 mV, CEPWRMD = 10  
100  
CEON = 0 1, CEREFLX = 10, CERSx = 10 or 11,  
tEN_CMP_VREF  
ladder and reference voltage CEREF0 = CEREF1 = 0x0F,  
350  
1500  
µs  
V
enable time  
Overdrive 20 mV  
VIN ×  
VIN ×  
(n + 0.5) (n + 1)  
/ 32 / 32  
VIN ×  
(n + 1.5)  
/ 32  
Reference voltage for a  
given tap  
VIN = reference into resistor ladder,  
n = 0 to 31  
VCE_REF  
56  
Specifications  
Copyright © 2015–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
5.12.11 FRAM Controller  
Table 5-34 lists the characteristics of the FRAM.  
Table 5-34. FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
Read and write endurance  
MIN  
TYP  
MAX UNIT  
1015  
100  
40  
cycles  
TJ = 25°C  
TJ = 70°C  
TJ = 85°C  
tRetention  
Data retention duration  
years  
10  
(1)  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM  
Erase current  
IREAD  
nA  
nA  
ns  
N/A(2)  
(3)  
Write time  
tREAD  
(4)  
(4)  
Read time, NWAITSx = 0  
Read time, NWAITSx = 1  
1 / fSYSTEM  
2 / fSYSTEM  
tREAD  
ns  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current IREAD is included in the active mode current consumption numbers IAM,FRAM  
(2) N/A = not applicable. FRAM does not require a special erase sequence.  
(3) Writing into FRAM is as fast as reading.  
.
(4) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
5.12.12 Emulation and Debug  
Table 5-35 lists the characteristics of the JTAG and Spy-Bi-Wire interface.  
Table 5-35. JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
PARAMETER  
MIN  
TYP  
MAX UNIT  
CONDITIONS  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
IJTAG  
Supply current adder when JTAG active (but not clocked)  
Spy-Bi-Wire input frequency  
40  
100  
μA  
fSBW  
0
10 MHz  
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.04  
15  
110  
100  
μs  
μs  
μs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
edge)(1)  
tSBW, En  
tSBW,Rst  
2.2 V, 3.0 V  
Spy-Bi-Wire return to normal operation time  
TCK input frequency, 4-wire JTAG(2)  
15  
0
2.2 V  
3.0 V  
16 MHz  
16 MHz  
fTCK  
0
Rinternal  
Internal pulldown resistance on TEST  
2.2 V, 3.0 V  
20  
35  
50  
kΩ  
TCLK/MCLK frequency during JTAG access, no FRAM access  
fTCLK  
16 MHz  
(limited by fSYSTEM  
)
tTCLK,Low/High  
fTCLK,FRAM  
TCLK low or high clock pulse duration, no FRAM access  
25  
4
ns  
MHz  
ns  
TCLK/MCLK frequency during JTAG access, including FRAM access  
(limited by fSYSTEM with no FRAM wait states)  
tTCLK,FRAM,Low/High TCLK low or high clock pulse duration, including FRAM accesses  
100  
(1) Tools that access the Spy-Bi-Wire and BSL interfaces must wait for the tSBW,En time after the first transition of the TEST/SBWTCK pin  
(low to high), before the second transition of the pin (high to low) during the entry sequence.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
版权 © 2015–2018, Texas Instruments Incorporated  
Specifications  
57  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
The Texas Instruments MSP430FR597x(1) and MSP430FR587x(1) family of ultra-low-power  
microcontrollers consists of several devices featuring different sets of peripherals. The architecture,  
combined with seven low-power modes is optimized to achieve extended battery life for example in  
portable measurement applications. The devices features a powerful 16-bit RISC CPU, 16-bit registers,  
and constant generators that contribute to maximum code efficiency. The devices are microcontroller  
configurations with up to five 16-bit timers, a comparator, eUSCIs that support UART, SPI, and I2C, a  
hardware multiplier, an AES accelerator, DMA, an RTC module with alarm capabilities, up to 52 I/O pins,  
and a high-performance 12-bit ADC.  
6.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and  
constant generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all  
instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes  
and additional instructions for the expanded address range. Each instruction can operate on word and  
byte data. CPUxV2 can also operate on address-word data (20-bit).  
58  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.3 Operating Modes  
The device has one active mode and seven software selectable low-power modes of operation (see 6-1). An interrupt event can wake up the  
device from low-power modes LPM0 to LPM4, service the request, and restore back to the low-power mode on return from the interrupt program.  
Low-power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.  
6-1. Operating Modes  
MODE  
AM  
LPM0  
LPM1  
CPU Off  
16 MHz  
LPM2  
LPM3  
LPM4  
LPM3.5  
LPM4.5  
Active,  
Shutdown  
Without  
SVS  
Shutdown  
With SVS  
(2)  
Active  
103  
FRAM Off  
CPU Off  
Standby  
Standby  
Off  
RTC Only  
(1)  
(3)  
(3)  
Maximum system clock  
16 MHz  
16 MHz  
50 kHz  
0.9 µA  
6 µs  
50 kHz  
0.4 µA  
7 µs  
0
50 kHz  
0.35 µA  
250 µs  
0
Typical current consumption,  
25°C  
75 µA at  
1 MHz  
40 µA at  
1 MHz  
65 µA/MHz  
N/A  
0.3 µA  
7 µs  
0.2 µA  
250 µs  
0.02 µA  
1000 µs  
µA/MHz  
Typical wake-up time  
instant.  
6 µs  
LF  
RTC  
I/O  
LF  
RTC  
I/O  
_
I/O  
Comp  
RTC  
I/O  
_
I/O  
Wake-up events  
N/A  
all  
all  
Comp  
Comp  
CPU  
on  
off  
off  
off  
off  
off  
off  
off  
reset  
off  
reset  
off  
standby (or off  
FRAM  
on  
off(1)  
off  
off  
(1)  
)
High-frequency peripherals  
Low-frequency peripherals  
Unclocked peripherals(5)  
MCLK  
available  
available  
available  
on  
available  
available  
available  
off  
available  
available  
available  
off  
off  
available  
available  
off  
off  
available  
available  
off  
off  
off  
reset  
RTC  
reset  
off  
reset  
reset  
reset  
off  
(4)  
(4)  
(4)  
available  
off  
(6)  
(6)  
(6)  
SMCLK  
opt.  
opt.  
opt.  
off  
off  
off  
off  
off  
ACLK  
on  
on  
on  
on  
on  
off  
off  
off  
(7)  
(7)  
Full retention  
SVS  
yes  
yes  
yes  
yes  
optional(8)  
yes  
yes  
no  
no  
(9)  
(10)  
always  
always  
always  
always  
always  
always  
optional(8)  
optional(8)  
optional(8)  
on  
off  
Brownout  
always  
always  
always  
always  
always  
(1) FRAM disabled in FRAM controller  
(2) Disabling the FRAM through the FRAM controller decreases the LPM current consumption, but the wake-up time can increase. If the wakeup is for FRAM access (for example, to fetch an  
interrupt vector), wake-up time is increased. If the wakeup is for an operation that does not access FRAM (for example, DMA transfer to RAM), wake-up time is not increased.  
(3) All clocks disabled  
(4) See 6.3.2, which describes the use of peripherals in LPM3 and LPM4.  
(5) "Unclocked peripherals" are peripherals that do not require a clock source to operate; for example, the comparator and REF, or the eUSCI when operated as an SPI slave.  
(6) Controlled by SMCLKOFF  
(7) Using the RAM Controller, the RAM can be completely powered down to save leakage; however, all data is lost.  
(8) Activated SVS (SVSHE = 1) results in higher current consumption. SVS not included in typical current consumption.  
(9) SVSHE = 1  
(10) SVSHE = 0  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
59  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221 MSP430FR5872  
MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.3.1 Peripherals in Low-Power Modes  
Peripherals can be in different states that affect which power mode the device can enter. The states  
depend on the operational modes of the peripherals (see 6-2). The states are:  
A peripheral is in a "high-frequency state" if it requires or uses a clock with a "high" frequency of more  
than 50 kHz.  
A peripheral is in a "low-frequency state" if it requires or uses a clock with a "low" frequency of 50 kHz  
or less.  
A peripheral is in an "unclocked state" if it does not require or use an internal clock.  
If the CPU requests a power mode that does not support the current state of all active peripherals, the  
device does not enter the requested power mode. The device instead enters a power mode that still  
supports the current state of the peripherals, except if an external clock is used. If an external clock is  
used, the application must use the correct frequency range for the requested power mode.  
6-2. Peripheral States  
PERIPHERAL  
WDT  
DMA(4)  
IN HIGH-FREQUENCY STATE(1)  
Clocked by SMCLK  
Not applicable  
IN LOW-FREQUENCY STATE(2)  
Clocked by ACLK  
IN UNCLOCKED STATE(3)  
Not applicable  
Not applicable  
Waiting for a trigger  
Not applicable  
RTC_C  
Not applicable  
Clocked by LFXT  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
Timer_A TAx  
Timer_B TBx  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
Waiting for first edge of START bit.  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
eUSCI_Ax in  
UART mode  
Clocked by SMCLK  
Clocked by SMCLK  
Clocked by ACLK  
Clocked by ACLK  
eUSCI_Ax in SPI  
master mode  
eUSCI_Ax in SPI  
slave mode  
eUSCI_Bx in I2C  
master mode  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
eUSCI_Bx in I2C  
slave mode  
Waiting for START condition or  
clocked by external clock 50 kHz  
Clocked by external clock >50 kHz  
Clocked by SMCLK  
Clocked by external clock 50 kHz  
Clocked by ACLK  
eUSCI_Bx in SPI  
master mode  
Not applicable  
eUSCI_Bx in SPI  
slave mode  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
ADC12_B  
REF_A  
COMP_E  
CRC(5)  
MPY(5)  
AES(5)  
Clocked by SMCLK or by MODOSC  
Not applicable  
Clocked by ACLK  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Waiting for a trigger  
Always  
Not applicable  
Always  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
(1) Peripherals are in a state that requires or uses a clock with a "high" frequency of more than 50 kHz.  
(2) Peripherals are in a state that requires or uses a clock with a "low" frequency of 50 kHz or less.  
(3) Peripherals are in a state that does not require or does not use an internal clock.  
(4) The DMA always transfers data in active mode but can wait for a trigger in any low-power mode. A DMA trigger during a low-power  
mode causes a temporary transition into active mode for the time of the transfer.  
(5) This peripheral operates during active mode only and delays the transition into a low-power mode until its operation is completed.  
60  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.3.2 Idle Currents of Peripherals in LPM3 and LPM4  
Most peripherals can be activated to be operational in LPM3 if clocked by ACLK. Some modules are even  
operational in LPM4 because they do not require a clock to operate (for example, the comparator).  
Activating a peripheral in LPM3 or LPM4 increases the current consumption due to its active supply  
current contribution but also due to an additional idle current. To limit the idle current adder, certain  
peripherals are group together. To achieve optimal current consumption, try to use modules within one  
group and to limit the number of groups with active modules. 6-3 lists the grouping. Modules not listed  
in this table are either already included in the standard LPM3 current consumption specifications or cannot  
be used in LPM3 or LPM4.  
The idle current adder is very small at room temperature (25°C) but increases at high temperatures  
(85°C); see the IIDLE current parameters in Section 5.7 for details.  
6-3. Peripheral Groups  
Group A  
Timer TA0  
Timer TA1  
Comparator  
ADC12_B  
REF_A  
Group B  
Timer TA2  
Timer B0  
Group C  
Timer TA3  
eUSCI_A1  
eUSCI_A0  
eUSCI_B0  
eUSCI_B1  
6.4 Interrupt Vector Table and Signatures  
The interrupt vectors, the power-up start address, and signatures are in the address range 0FFFFh to  
0FF80h. 6-4 summarizes the content of this address range.  
The power-up start address or reset vector is at 0FFFFh to 0FFFEh. It contains the 16-bit address pointing  
to the start address of the application program.  
The interrupt vectors start at 0FFFDh extending to lower addresses. Each vector contains the 16-bit  
address of the appropriate interrupt-handler instruction sequence.  
The vectors programmed into the address range from 0FFFFh to 0FFE0h are used as BSL password (if  
enabled by the corresponding signature)  
The signatures are at 0FF80h extending to higher addresses. Signatures are evaluated during device  
start-up. Starting from address 0FF88h extending to higher addresses a JTAG password can  
programmed. The password can extend into the interrupt vector locations using the interrupt vector  
addresses as additional bits for the password.  
See the chapter System Resets, Interrupts, and Operating Modes, System Control Module (SYS) in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for details.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
61  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
PRIORITY  
6-4. Interrupt Sources, Flags, Vectors, and Signatures  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
System Reset  
Power-up, Brownout, Supply  
Supervisor  
External Reset RST  
Watchdog time-out (watchdog  
mode)  
WDT, FRCTL MPU, CS, PMM  
password violation  
FRAM uncorrectable bit error  
detection  
SVSHIFG  
PMMRSTIFG  
WDTIFG  
WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW  
UBDIFG  
Reset  
0FFFEh  
Highest  
ACCTEIFG  
MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
PMMPORIFG, PMMBORIFG  
FRAM access time error  
MPU segment violation  
Software POR, BOR  
(1) (2)  
(SYSRSTIV)  
VMAIFG  
JMBNIFG, JMBOUTIFG  
CBDIFG, UBDIFG  
System NMI  
Vacant memory access  
JTAG mailbox  
FRAM bit error detection  
MPU segment violation  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
(1) (3)  
(SYSSNIV)  
User NMI  
External NMI  
Oscillator Fault  
NMIIFG, OFIFG  
(1) (3)  
(SYSUNIV)  
Comparator_E interrupt flags  
Comparator_E  
Timer_B TB0  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
(1)  
(CEIV)  
TB0CCR0.CCIFG  
TB0CCR1.CCIFG to TB0CCR6.CCIFG,  
TB0CTL.TBIFG  
Timer_B TB0  
Maskable  
0FFF4h  
(TB0IV)(1)  
Watchdog Timer  
(Interval Timer Mode)  
WDTIFG  
Maskable  
Maskable  
0FFF2h  
0FFF0h  
Reserved  
Reserved  
UCA0IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA0IFG:UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A0 Receive or Transmit  
Maskable  
Maskable  
Maskable  
0FFEEh  
0FFECh  
0FFEAh  
(UCA0IV)(1)  
UCB0IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCB0IFG: UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,  
UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB0IV)(1)  
eUSCI_B0 Receive or Transmit  
ADC12IFG0 to ADC12IFG31  
ADC12LOIFG, ADC12INIFG, ADC12HIIFG,  
ADC12RDYIFG, ADC12OVIFG, ADC12TOVIFG  
ADC12_B  
(1) (4)  
(ADC12IV)  
Timer_A TA0  
Timer_A TA0  
TA0CCR0.CCIFG  
Maskable  
Maskable  
0FFE8h  
0FFE6h  
TA0CCR1.CCIFG to TA0CCR2.CCIFG,  
TA0CTL.TAIFG  
(TA0IV)(1)  
UCA1IFG:UCRXIFG, UCTXIFG (SPI mode)  
UCA1IFG:UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A1 receive or transmit  
Maskable  
0FFE4h  
(UCA1IV)(1)  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space  
(3) (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
(4) Only on devices with ADC, otherwise reserved.  
62  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-4. Interrupt Sources, Flags, Vectors, and Signatures (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
UCB1IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCB1IFG: UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,  
UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB1IV)(1)  
eUSCI_B1 receive or transmit  
(Reserved on MSP430FR592x)  
Maskable  
0FFE2h  
DMA0CTL.DMAIFG, DMA1CTL.DMAIFG,  
DMA2CTL.DMAIFG  
DMA  
Maskable  
Maskable  
Maskable  
0FFE0h  
0FFDEh  
0FFDCh  
(DMAIV)(1)  
Timer_A TA1  
Timer_A TA1  
TA1CCR0.CCIFG  
TA1CCR1.CCIFG to TA1CCR2.CCIFG,  
TA1CTL.TAIFG  
(TA1IV)(1)  
P1IFG.0 to P1IFG.7  
(P1IV)(1)  
I/O Port P1  
Maskable  
Maskable  
0FFDAh  
0FFD8h  
Timer_A TA2  
TA2CCR0.CCIFG  
TA2CCR1.CCIFG  
TA2CTL.TAIFG  
(TA2IV)(1)  
Timer_A TA2  
Maskable  
0FFD6h  
P2IFG.0 to P2IFG.3  
I/O Port P2  
Maskable  
Maskable  
0FFD4h  
0FFD2h  
(1)  
(P2IV)  
Timer_A TA3  
TA3CCR0.CCIFG  
TA3CCR1.CCIFG  
TA3CTL.TAIFG  
(TA3IV)(1)  
Timer_A TA3  
I/O Port P3  
Maskable  
0FFD0h  
0FFCEh  
P3IFG.0 to P3IFG.7  
Maskable  
Maskable  
(1)  
(P3IV)  
P4IFG.2 to P4IFG.7  
I/O Port P4  
Reserved  
0FFCCh  
0FFCAh  
(1)  
(P4IV)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RT0PSIFG, RT1PSIFG, RTCOFIFG  
RTC_C  
AES  
Maskable  
Maskable  
0FFC8h  
(1)  
(RTCIV)  
AESRDYIFG  
0FFC6h  
0FFC4h  
Lowest  
(5)  
Reserved  
Reserved  
0FF8Ch  
0FF8Ah  
0FF88h  
0FF86h  
0FF84h  
0FF82h  
0FF80h  
(5)  
IP Encapsulation Signature2  
(5) (7)  
IP Encapsulation Signature1  
BSL Signature2  
BSL Signature1  
JTAG Signature2  
JTAG Signature1  
(6)  
Signatures  
(5) May contain a JTAG password required to enable JTAG access to the device.  
(6) Signatures are evaluated during device start-up. See the System Resets, Interrupts, and Operating Modes, System Control Module  
(SYS) chapter in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for details.  
(7) Must not contain 0AAAAh if used as JTAG password.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
63  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.5 Bootloader (BSL)  
The BSL enables programming of the FRAM or RAM using a UART serial interface (FRxxxx devices) or  
an I2C interface (FRxxxx1 devices). Access to the device memory through the BSL is protected by an  
user-defined password. Use of the BSL requires four pins as shown in 6-5. BSL entry requires a  
specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of  
the features of the BSL and its implementation, see MSP430 FRAM Device Bootloader (BSL) User's  
Guide  
.
6-5. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
BSL_TX  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Devices with UART BSL (FRxxxx): Data transmit  
Devices with UART BSL (FRxxxx): Data receive  
Devices with I2C BSL (FRxxxx1): Data  
Devices with I2C BSL (FRxxxx1): Clock  
Power supply  
BSL_RX  
BSL_DAT  
BSL_CLK  
VCC  
VSS  
Ground supply  
6.6 JTAG Operation  
6.6.1 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface, which requires four signals for sending and  
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to  
enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with  
MSP430 development tools and device programmers. 6-6 lists the JTAG pin requirements. For further  
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools  
User's Guide. For a complete description of the features of the JTAG interface and its implementation, see  
MSP430 Programming With the JTAG Interface.  
6-6. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
6.6.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the 2-wire Spy-Bi-Wire interface.  
Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. 6-7  
lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and  
device programmers, see the MSP430 Hardware Tools User's Guide.  
64  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-7. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
IN  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN, OUT  
VSS  
Ground supply  
6.7 FRAM  
The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. Features of the FRAM include:  
Ultra-low-power ultra-fast-write nonvolatile memory  
Byte and word access capability  
Programmable and automated wait-state generation  
Error correction coding (ECC)  
Wait States  
For MCLK frequencies > 8 MHz, wait states must be configured following the flow described  
in the "Wait State Control" section of the "FRAM Controller (FRCTRL)" chapter in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
For important software design information regarding FRAM including but not limited to partitioning the  
memory layout according to application-specific code, constant, and data space requirements, the use of  
FRAM to optimize application energy consumption, and the use of the Memory Protection Unit (MPU) to  
maximize application robustness by protecting the program code against unintended write accesses, see  
MSP430™ FRAM Technology – How To and Best Practices  
6.8 RAM  
The RAM is made up of one sector. The sector can be completely powered down in LPM3 and LPM4 to  
save leakage; however, all data is lost during shutdown.  
6.9 Tiny RAM  
Twenty-six bytes of Tiny RAM are provided in addition to the complete RAM (see 6-36). This memory is  
always available even in LPM3 and LPM4, while the complete RAM can be powered down in LPM3 and  
LPM4. Tiny RAM can be used to hold data or a very small stack when the complete RAM is powered  
down in LPM3 and LPM4. Tiny RAM is not available in LPMx.5.  
6.10 Memory Protection Unit (MPU) Including IP Encapsulation  
The FRAM can be protected by the MPU from inadvertent CPU execution and read or write access.  
Features of the MPU include:  
IP encapsulation with programmable boundaries (prevents reads from "outside" like JTAG or non-IP  
software) in steps of 1KB.  
Main memory partitioning that can be configured in up to three segments in steps of 1KB.  
The access rights for each main and information memory segment can be individually selected.  
Access violation flags with interrupt capability for easy servicing of access violations.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
65  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be  
managed using all instructions. For complete module descriptions, see the MSP430FR58xx,  
MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
6.11.1 Digital I/O  
There are up to nine 8-bit I/O ports implemented:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all pins of  
ports P1 to P4.  
Read and write access to port control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise in pairs.  
Capacitive touch functionality is supported on all pins of ports P1 to P7, P9, and PJ.  
Configuration of Digital I/Os After BOR Reset  
To prevent any cross-currents during start-up of the device, all port pins are high-impedance  
with Schmitt triggers and their module functions disabled. To enable the I/O functionality after  
a BOR reset, the ports must be configured first and then the LOCKLPM5 bit must be cleared.  
For details see the "Digital I/O" chapter, section "Configuration After Reset" in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
6.11.2 Oscillator and Clock System (CS)  
The clock system includes support for a 32-kHz watch-crystal oscillator XT1 (LF), an internal very-low-  
power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a  
high-frequency crystal oscillator XT2 (HF). The clock system module is designed to meet the requirements  
of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources.  
The clock system module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (LFXT1), the internal low-frequency  
oscillator (VLO), or a digital external low frequency (<50 kHz) clock source.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced from a high-frequency  
crystal (HFXT2), the internal DCO, a 32-kHz watch crystal (LFXT1), the internal VLO, or a digital  
external clock source.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be  
sourced by same sources made available to MCLK.  
6.11.3 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device . The PMM  
also includes the supply voltage supervisor (SVS) and brownout protection. The brownout circuit is  
implemented to provide the proper internal reset signal to the device during power on and power off. The  
SVS circuitry detects if the supply voltage drops below a safe level. SVS circuitry is available on the  
primary and core supplies.  
6.11.4 Hardware Multiplier  
The multiplication operation is supported by a dedicated peripheral module. The module performs  
operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication  
as well as signed and unsigned multiply-and-accumulate operations.  
66  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.11.5 Real-Time Clock (RTC_C)  
The RTC_C module contains an integrated real-time clock (RTC) with the following features implemented:  
Calendar mode with leap year correction  
General-purpose counter mode  
The internal calendar compensates for months with fewer than 31 days and includes leap year correction.  
The RTC_C also supports flexible alarm functions and offset-calibration hardware. RTC operation is  
available in LPM3.5 modes to minimize power consumption.  
6.11.6 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart after a software  
problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function  
is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals. 6-8 lists the clocks that the WDT_A module can use.  
6-8. WDT_A Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
LFMODOSC  
6.11.7 System Module (SYS)  
The SYS module handles many of the system functions within the device. These system functions include  
power-on reset and power-up clear handling, NMI source selection and management, reset interrupt  
vector generators, bootloader entry mechanisms, and configuration management (device descriptors).  
Also included is a data exchange mechanism using JTAG called a JTAG mailbox that can be used in the  
application. 6-9 lists the SYS module interrupt vector registers.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
67  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-9. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
Security violation (BOR)  
Reserved  
SVSHIFG SVSH event (BOR)  
Reserved  
Reserved  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection (PUC)  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
MPUPW MPU password violation (PUC)  
CSPW CS password violation (PUC)  
SYSRSTIV, System Reset  
019Eh  
MPUSEGPIFG encapsulated IP memory segment violation  
(PUC)  
26h  
MPUSEGIIFG information memory segment violation (PUC)  
MPUSEG1IFG segment 1 memory violation (PUC)  
MPUSEG2IFG segment 2 memory violation (PUC)  
MPUSEG3IFG segment 3 memory violation (PUC)  
ACCTEIFG access time error (PUC)  
Reserved  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
Reserved  
02h  
Uncorrectable FRAM bit error detection  
Reserved  
04h  
06h  
MPUSEGPIFG encapsulated IP memory segment violation  
MPUSEGIIFG information memory segment violation  
MPUSEG1IFG segment 1 memory violation  
MPUSEG2IFG segment 2 memory violation  
MPUSEG3IFG segment 3 memory violation  
VMAIFG vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
Reserved  
08h  
0Ah  
0Ch  
SYSSNIV, System NMI  
019Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah to 1Eh  
00h  
Lowest  
Highest  
No interrupt pending  
NMIIFG NMI pin  
02h  
OFIFG oscillator fault  
04h  
SYSUNIV, User NMI  
019Ah  
Reserved  
06h  
Reserved  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
68  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.11.8 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU  
intervention. For example, the DMA controller can be used to move data from the ADC12_B conversion  
memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA  
controller reduces system power consumption by allowing the CPU to remain in sleep mode, without  
having to awaken to move data to or from a peripheral. 6-10 lists the available DMA triggers.  
(1)  
6-10. DMA Trigger Assignments  
TRIGGER  
CHANNEL 0  
DMAREQ  
CHANNEL 1  
DMAREQ  
CHANNEL 2  
DMAREQ  
0
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2 CCR0 CCIFG  
TA3 CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2 CCR0 CCIFG  
TA3 CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2 CCR0 CCIFG  
TA3 CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Reserved  
Reserved  
Reserved  
AES Trigger 0(2)  
AES Trigger 1(2)  
AES Trigger 2(2)  
UCA0RXIFG  
AES Trigger 0(2)  
AES Trigger 1(2)  
AES Trigger 2(2)  
UCA0RXIFG  
AES Trigger 0(2)  
AES Trigger 1(2)  
AES Trigger 2(2)  
UCA0RXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
18  
19  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
20  
21  
22  
23  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
24  
25  
26  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
ADC12 end of  
conversion(3)  
ADC12 end of conversion(3) ADC12 end of conversion(3)  
27  
28  
29  
30  
31  
Reserved  
Reserved  
MPY ready  
DMA2IFG  
DMAE0  
Reserved  
Reserved  
MPY ready  
DMA0IFG  
DMAE0  
Reserved  
Reserved  
MPY ready  
DMA1IFG  
DMAE0  
(1) If a reserved trigger source is selected, no trigger is generated.  
(2) Only on devices with AES. Reserved on devices without AES.  
(3) Only on devices with ADC. Reserved on devices without ADC.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
69  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11.9 Enhanced Universal Serial Communication Interface (eUSCI)  
The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous  
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols  
such as UART, enhanced UART with automatic baud-rate detection, and IrDA.  
The eUSCI_An module provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.  
The eUSCI_Bn module provides support for SPI (3 or 4 pin) and I2C.  
Two eUSCI_A modules and two eUSCI_B modules are implemented.  
6.11.10 Timer_A TA0, Timer_A TA1  
TA0 and TA1 are 16-bit timers/counters (Timer_A type) with three capture/compare registers each. TA0  
and TA1 can support multiple capture/compares, PWM outputs, and interval timing (see 6-11 and 6-  
12). TA0 and TA1 have extensive interrupt capabilities. Interrupts may be generated from the counter on  
overflow conditions and from each of the capture/compare registers.  
6-11. Timer_A TA0 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
P1.2 or P7.0  
TA0CLK  
ACLK (internal)  
SMCLK (internal)  
TA0CLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
P1.2 or P7.0  
P1.5  
TA0.0  
P1.5  
P7.1  
P7.1  
TA0.0  
TA0.0  
DVSS  
DVCC  
VCC  
P1.0  
P1.6  
P7.2  
P1.0 or P1.6 or  
P7.2  
TA0.1  
CCI1A  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
CCR1  
CCR2  
TA1  
TA2  
TA0.1  
TA0.2  
(1)  
ADC12 (internal)  
ADC12SHSx = {1}  
DVCC  
P1.1 or P1.7 or  
P7.3  
TA0.2  
CCI2A  
P1.1  
ACLK (internal)  
DVSS  
CCI2B  
GND  
VCC  
P1.7  
P7.3  
DVCC  
(1) Only on devices with ADC  
70  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-12. Timer_A TA1 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
P1.1 or P4.4  
TA1CLK  
ACLK (internal)  
SMCLK (internal)  
TA1CLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
P1.1 or P4.4  
P1.4 or P4.5  
TA1.0  
P1.4  
P4.5  
DVSS  
TA1.0  
DVSS  
DVCC  
VCC  
P1.2  
P4.6  
P3.3  
P1.2 or P3.3 or  
P4.6  
TA1.1  
CCI1A  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
CCR1  
CCR2  
TA1  
TA2  
TA1.1  
TA1.2  
(1)  
ADC12 (internal)  
ADC12SHSx = {4}  
DVCC  
P1.3 or P4.7  
TA1.2  
CCI2A  
CCI2B  
GND  
VCC  
P1.3  
P4.7  
ACLK (internal)  
DVSS  
DVCC  
(1) Only on devices with ADC  
6.11.11 Timer_A TA2  
TA2 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers each and with internal  
connections only. TA2 can support multiple capture/compares, PWM outputs, and interval timing (see 表  
6-13). TA2 has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow  
conditions and from each of the capture/compare registers.  
6-13. Timer_A TA2 Signal Connections  
MODULE OUTPUT  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
DEVICE OUTPUT SIGNAL  
SIGNAL  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
TACLK  
ACLK  
Timer  
N/A  
SMCLK  
From Capacitive Touch  
I/O 0 (internal)  
INCLK  
CCI0A  
TA3 CCR0 output  
(internal)  
TA3 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
DVCC  
(1)  
From Capacitive Touch  
I/O 0 (internal)  
ADC12 (internal)  
CCI1A  
ADC12SHSx = {5}  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
DVCC  
(1) Only on devices with ADC  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
71  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11.12 Timer_A TA3  
TA3 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers each and with internal  
connections only. TA3 can support multiple capture/compares, PWM outputs, and interval timing (see 表  
6-14). TA3 has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow  
conditions and from each of the capture/compare registers.  
6-14. Timer_A TA3 Signal Connections  
MODULE OUTPUT  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
DEVICE OUTPUT SIGNAL  
SIGNAL  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
TACLK  
ACLK  
Timer  
N/A  
SMCLK  
From Capacitive Touch  
I/O 1 (internal)  
INCLK  
CCI0A  
TA2 CCR0 output  
(internal)  
TA2 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
DVCC  
(1)  
From Capacitive Touch  
I/O 1 (internal)  
ADC12 (internal)  
CCI1A  
ADC12SHSx = {6}  
COUT (internal)  
DVSS  
CCI1B  
GND  
DVCC  
VCC  
DVSS  
CCI2A  
P3.0  
P3.0 (Note: Not available for  
FR592x(1) 64-pin package  
devices)  
DVSS (FR592x(1) 64pin  
package)  
CCI2B  
CCR2  
CCR3  
CCR4  
TA2  
TA3  
TA4  
DVSS  
DVCC  
DVSS  
GND  
VCC  
CCI3A  
P3.1  
P3.1 (Note: Not available for  
FR592x(1) 64-pin package  
devices)  
DVSS (FR592x(1) 64pin  
package)  
CCI3B  
DVSS  
DVCC  
DVSS  
GND  
VCC  
CCI4A  
P3.2  
P3.2 (Note: Not available for  
FR592x(1) 64-pin package  
devices)  
DVSS (FR592x(1) 64pin  
package)  
CCI4B  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC.  
72  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.11.13 Timer_B TB0  
TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers each. TB0 can support  
multiple capture/compares, PWM outputs, and interval timing (see 6-15). TB0 has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the  
capture/compare registers.  
6-15. Timer_B TB0 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
P2.0 or P3.3 or  
P5.7  
TB0CLK  
TBCLK  
ACLK (internal)  
ACLK  
Timer  
N/A  
N/A  
SMCLK (internal)  
SMCLK  
P2.0 or P3.3 or  
P5.7  
TB0CLK  
INCLK  
P3.4  
P6.4  
TB0.0  
TB0.0  
CCI0A  
CCI0B  
P3.4  
P6.4  
(1)  
CCR0  
CCR1  
TB0  
TB1  
TB0.0  
TB0.1  
ADC12 (internal)  
DVSS  
GND  
ADC12SHSx = {2}  
DVCC  
TB0.1  
VCC  
P3.5 or P6.5  
P3.6 or P6.6  
CCI1A  
CCI1B  
P3.5  
P6.5  
COUT (internal)  
(1)  
ADC12 (internal)  
DVSS  
GND  
ADC12SHSx = {3}  
DVCC  
TB0.2  
ACLK (internal)  
DVSS  
VCC  
CCI2A  
CCI2B  
GND  
P3.6  
P6.6  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
TB2  
TB3  
TB4  
TB5  
TB6  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
DVCC  
VCC  
DVSS  
CCI3A  
CCI3B  
GND  
P3.7  
P2.2  
P2.1  
P2.0  
TB0.3  
DVSS  
P3.7  
P2.2  
P2.1  
P2.0  
DVCC  
VCC  
DVSS  
CCI4A  
CCI4B  
GND  
TB0.4  
DVSS  
DVCC  
VCC  
DVSS  
CCI5A  
CCI5B  
GND  
TB0.5  
DVSS  
DVCC  
VCC  
DVSS  
CCI6A  
CCI6B  
GND  
TB0.6  
DVSS  
DVCC  
VCC  
(1) Only on devices with ADC  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
73  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11.14 ADC12_B  
The ADC12_B module supports fast 12-bit analog-to-digital conversions with differential and single-ended  
inputs. The module implements a 12-bit SAR core, sample select control, reference generator and a  
conversion result buffer. A window comparator with a lower and upper limits allows CPU-independent  
result monitoring with three window comparator interrupt flags.  
6-16 summarizes the available external trigger sources.  
6-17 lists the available multiplexing between internal and external analog inputs.  
6-16. ADC12_B Trigger Signal Connections  
ADC12SHSx  
CONNECTED TRIGGER  
SOURCE  
BINARY  
DECIMAL  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
Software (ADC12SC)  
Timer_A TA0 CCR1 output  
Timer_B TB0 CCR0 output  
Timer_B TB0 CCR1 output  
Timer_A TA1 CCR1 output  
Timer_A TA2 CCR1 output  
Timer_A TA3 CCR1 output  
Reserved (DVSS)  
6-17. ADC12_B External and Internal Signal Mapping  
EXTERNAL  
(CONTROL BIT = 0)  
INTERNAL  
CONTROL BIT  
(CONTROL BIT = 1)  
Battery monitor  
Temperature sensor  
N/A(1)  
ADC12BATMAP  
ADC12TCMAP  
ADC12CH0MAP  
ADC12CH1MAP  
ADC12CH2MAP  
ADC12CH3MAP  
A31  
A30  
A29  
A28  
A27  
A26  
N/A(1)  
N/A(1)  
N/A(1)  
(1) N/A: No internal signal available on this device.  
6.11.15 Comparator_E  
The primary function of the Comparator_E module is to support precision slope analog-to-digital  
conversions, battery voltage supervision, and monitoring of external analog signals.  
6.11.16 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used  
for data checking purposes. The CRC16 signature is based on the CRC-CCITT standard.  
6.11.17 CRC32  
The CRC32 module produces a signature based on a sequence of entered data values and can be used  
for data checking purposes. The CRC32 signature is based on the ISO 3309 standard.  
6.11.18 AES256 Accelerator  
The AES accelerator module performs encryption and decryption of 128-bit data with 128-, 192-, or 256-  
bit keys according to the advanced encryption standard (AES) (FIPS PUB 197) in hardware.  
74  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.11.19 True Random Seed  
The Device Descriptor Info (TLV) (see 6.12) contains a 128-bit true random seed that can be used to  
implement a deterministic random-number generator.  
6.11.20 Shared Reference (REF_A)  
The REF_A module is responsible for generation of all critical reference voltages that can be used by the  
various analog peripherals in the device.  
6.11.21 Embedded Emulation  
6.11.21.1 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers that can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
6.11.21.2 EnergyTrace++ Technology  
The devices implement circuitry to support EnergyTrace++ technology. The EnergyTrace++ technology  
lets you observe information about the internal states of the microcontroller. These states include the CPU  
Program Counter (PC), the ON or OFF status of the peripherals and the system clocks (regardless of the  
clock source), and the low-power mode currently in use. These states can always be read by a debug  
tool, even when the microcontroller sleeps in LPMx.5 modes.  
The activity of the following modules can be observed:  
MPY is calculating.  
WDT is counting.  
RTC is counting.  
ADC: a sequence, sample, or conversion is active.  
REF: REFBG or REFGEN active and BG in static mode.  
COMP is on.  
AES is encrypting or decrypting.  
eUSCI_A0 is transferring (receiving or transmitting) data.  
eUSCI_A1 is transferring (receiving or transmitting) data.  
eUSCI_B0 is transferring (receiving or transmitting) data.  
eUSCI_B1 is transferring (receiving or transmitting) data.  
TB0 is counting.  
TA0 is counting.  
TA1 is counting.  
TA2 is counting.  
TA3 is counting.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
75  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11.22 Input/Output Diagrams  
6.11.22.1 Digital I/O Functionality Port P1 to P7 and P9  
The port pins provide the following features:  
Interrupt and wakeup from LPMx.5 capability for ports P1 to P4  
Capacitive touch functionality (see 6.11.22.2)  
Up to three digital module input and/or output functions  
6-1 shows the features and the corresponding control logic (besides the Capacitive Touch logic). 6-1  
is applicable for all port pins P1.0 to P9.7, unless a dedicated diagram is available in the following  
sections. The module functions provided per pin and whether the direction is controlled by the module or  
by the port direction register for the selected secondary function are described in the following pin function  
tables.  
PxREN.y  
Pad Logic  
0 0  
0 1  
1 0  
1 1  
PxDIR.y  
From module 1(A)  
From module 2(A)  
From module 3(A)  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.y  
From module 1  
From module 2  
From module 3  
Px.y/Mod1/Mod2/Mod3  
PxSEL1.y  
PxSEL0.y  
PxIN.y  
To module 1(B)  
To module 2(B)  
To module 3(B)  
A. The direction is either controlled by connected module or by the corresponding PxDIR.y bit. See pin function tables.  
B. The inputs from several pins towards a module are ORed together.  
NOTE: Functional representation only.  
6-1. General Port Pin Diagram  
76  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.11.22.2 Capacitive Touch Functionality on Port P1 to P7, P9, and PJ  
6-2 shows the the capacitive touch functionality that is available on all port pins. The capacitive touch  
functionality is controlled using the capacitive touch I/O control registers CAPTIO0CTL and CAPTIO1CTL  
as described in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family  
User's Guide. The capacitive touch functionality is not shown in the other pin diagrams.  
Analog Enable  
PxREN.y  
Capacitive Touch Enable 0  
Capacitive Touch Enable 1  
DVSS  
DVCC  
0
1
1
Direction Control  
PxOUT.y  
0
1
Output Signal  
Px.y  
Input Signal  
D
Q
EN  
Capacitive Touch Signal 0  
Capacitive Touch Signal 1  
NOTE: Functional representation only.  
6-2. Capacitive Touch I/O Functionality  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
77  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11.22.3 Port P1 (P1.0 to P1.3) Input/Output With Schmitt Trigger  
6-3 shows the port diagram. 6-18 summarizes the selection of the pin functions.  
To ADC  
From ADC  
To Comparator  
From Comparator  
CEPD.x  
Pad Logic  
P1REN.x  
0 0  
0 1  
1 0  
1 1  
P1DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
DVSS  
DVSS  
P1.0/TA0.1/DMAE0/RTCCLK/  
A0/C0/VREF-/VeREF-  
DVSS  
P1.1/TA0.2/TA1CLK/COUT/  
A1/C1/VREF+/VeREF+  
P1SEL1.x  
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
P1.3/TA1.2/A3/C3  
P1SEL0.x  
P1IN.x  
Bus  
Keeper  
NOTE: Functional representation only.  
6-3. Port P1 (P1.0 to P1.3) Diagram  
78  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-18. Port P1 (P1.0 to P1.3) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/  
VREF-/VeREF-  
0
P1.0 (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
0
0
0
0
1
1
0
1
DMAE0  
RTCCLK(2)  
0
1
(3) (4)  
A0, C0, VREF-, VeREF-  
P1.1 (I/O)  
X
1
0
1
0
P1.1/TA0.2/TA1CLK/COUT/A1/C1/  
VREF+/VeREF+  
1
2
3
I: 0; O: 1  
TA0.CCI2A  
TA0.2  
0
0
1
1
0
1
TA1CLK  
COUT(5)  
0
1
(3) (4)  
A1, C1, VREF+, VeREF+  
P1.2 (I/O)  
X
1
0
1
0
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
I: 0; O: 1  
TA1.CCI1A  
TA1.1  
0
0
1
1
0
1
TA0CLK  
COUT(5)  
0
1
(3) (4)  
A2, C2  
X
1
0
1
0
P1.3/TA1.2/A3/C3  
P1.3 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
0
1
0
1
X
0
1
N/A  
1
1
0
1
Internally tied to DVSS  
(3) (4)  
A3, C3  
(1) X = Don't care  
(2) Do not use this pin as RTCCLK output if the DMAE0 functionality is used on any other pin. Select an alternative RTCCLK output pin.  
(3) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPD.x bit.  
(5) Do not use this pin as COUT output if the TA1CLK functionality is used on any other pin. Select an alternative COUT output pin.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
79  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11.22.4 Port P1 (P1.4 to P1.7) Input/Output With Schmitt Trigger  
For the port diagram, see 6-1. 6-19 summarizes the selection of the pin functions.  
6-19. Port P1 (P1.4 to P1.7) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.4/UCB0CLK/UCA0STE/TA1.0  
4
P1.4 (I/O)  
UCB0CLK  
UCA0STE  
TA1.CCI0A  
TA1.0  
I: 0; O: 1  
0
0
1
0
1
0
(2)  
X
(3)  
X
0
1
1
1
P1.5/UCB0STE/UCA0CLK/TA0.0  
P1.6/UCB0SIMO/UCB0SDA/TA0.1  
5
6
P1.5 (I/O)  
UCB0STE  
UCA0CLK  
TA0.CCI0A  
TA0.0  
I: 0; O: 1  
0
0
1
0
1
0
(2)  
X
(3)  
X
0
1
1
1
P1.6 (I/O)  
I: 0; O: 1  
0
0
0
1
(2)  
UCB0SIMO/UCB0SDA  
N/A  
X
0
1
1
0
1
Internally tied to DVSS  
TA0.CCI1A  
1
0
1
TA0.1  
P1.7/UCB0SOMI/UCB0SCL/TA0.2  
7
P1.7 (I/O)  
I: 0; O: 1  
0
0
0
1
(2)  
UCB0SOMI/UCB0SCL  
N/A  
X
0
1
0
1
1
1
0
1
Internally tied to DVSS  
TA0.CCI2A  
TA0.2  
(1) X = Don't care  
(2) Direction controlled by eUSCI_B0 module.  
(3) Direction controlled by eUSCI_A0 module.  
80  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.11.22.5 Port P2 (P2.0 to P2.3) Input/Output With Schmitt Trigger  
For the port diagram, see 6-1. 6-20 summarizes the selection of the pin functions.  
6-20. Port P2 (P2.0 to P2.3) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.0/UCA0SIMO/UCA0TXD/TB0.6/  
TB0CLK  
0
P2.0 (I/O)  
I: 0; O: 1  
0
0
0
1
(2)  
UCA0SIMO/UCA0TXD  
TB0.CCI6B  
TB0.6  
X
0
1
1
0
1
1
TB0CLK  
0
1
Internally tied to DVSS  
P2.1 (I/O)  
P2.1/UCA0SOMI/UCA0RXD/TB0.5/  
DMAE0  
1
2
3
I: 0; O: 1  
0
0
0
1
(2)  
UCA0SOMI/UCA0RXD  
TB0.CCI5B  
TB0.5  
X
0
1
1
0
1
1
DMA0E  
0
1
Internally tied to DVSS  
P2.2 (I/O)  
P2.2/UCA0CLK/TB0.4/RTCCLK  
I: 0; O: 1  
0
0
0
1
(2)  
UCA0CLK  
X
TB0.CCI4B  
TB0.4  
0
1
1
0
1
1
N/A  
0
1
RTCCLK  
P2.3/UCA0STE/TB0OUTH  
P2.3 (I/O)  
I: 0; O: 1  
0
0
0
1
(2)  
UCA0STE  
X
TB0OUTH  
0
1
0
1
1
1
0
1
Internally tied to DVSS  
N/A  
Internally tied to DVSS  
(1) X = Don't care  
(2) Direction controlled by eUSCI_A0 module.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
81  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11.22.6 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger  
For the port diagram, see 6-1. 6-21 and 6-22 summarize the selection of the pin functions.  
6-21. Port P3 (P3.0 to P3.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P3.x)  
P3.0/UCB1CLK  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
0
P3.0 (I/O)  
UCB1CLK  
I: 0; O: 1  
0
0
0
1
(2)  
X
TA3.CCI2B (Note: not available for  
FR592x(1) 64-pin package devices)  
0
1
1
0
TA3.2  
Internally tied to DVSS (for FR292x(1) 64-pin  
package devices)  
N/A  
0
1
1
1
Internally tied to DVSS  
P3.1 (I/O)  
P3.1/UCB1SIMO/UCB1SDA  
1
2
3
I: 0; O: 1  
0
0
0
1
(2)  
UCB1SIMO/UCB1SDA  
X
TA3.CCI3B (Note: not available for  
FR592x(1) 64-pin package devices)  
0
1
1
0
TA3.3  
Internally tied to DVSS (for FR592x(1) 64-pin  
package devices)  
N/A  
0
1
1
1
Internally tied to DVSS  
P3.2 (I/O)  
P3.2/UCB1SOMI/UCB1SCL  
I: 0; O: 1  
0
0
0
1
(2)  
UCB1SOMI/UCB1SCL  
X
TA3.CCI4B (Note: not available for  
FR592x(1) 64-pin package devices)  
0
1
1
0
TA3.4  
Internally tied to DVSS (for FR592x(1) 64-pin  
package devices)  
0
1
0
0
1
0
1
1
P3.3/TA1.1/TB0CLK  
P3.3 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
0
1
Internally tied to DVSS  
TA1.CCI1A  
TA1.1  
1
1
0
1
TB0CLK  
Internally tied to DVSS  
(1) X = Don't care  
(2) Direction controlled by eUSCI_B1 module.  
82  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-22. Port P3 (P3.4 to P3.7) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
P3.4/UCA1SIMO/UCA1TXD/TB0.0  
P3.5/UCA1SOMI/UCA1RXD/TB0.1  
P3.6/UCA1CLK/TB0.2  
4
P3.4 (I/O)  
I: 0; O: 1  
0
0
0
1
(2)  
UCA1SIMO/UCA1TXD  
TB0CCI0A  
TB0.0  
X
0
1
1
0
1
1
N/A  
0
1
Internally tied to DVSS  
P3.5 (I/O)  
5
6
7
I: 0; O: 1  
0
0
0
1
(2)  
UCA1SOMI/UCA1RXD  
TB0CCI1A  
TB0.1  
X
0
1
1
0
1
1
N/A  
0
1
Internally tied to DVSS  
P3.6 (I/O)  
I: 0; O: 1  
0
0
0
1
(2)  
UCA1CLK  
X
TB0CCI2A  
TB0.2  
0
1
1
0
1
1
N/A  
0
1
Internally tied to DVSS  
P3.7 (I/O)  
P3.7/UCA1STE/TB0.3  
I: 0; O: 1  
0
0
0
1
(2)  
UCA1STE  
X
TB0CCI3B  
TB0.3  
0
1
0
1
1
1
0
1
N/A  
Internally tied to DVSS  
(1) X = Don't care  
(2) Direction controlled by eUSCI_A1 module.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
83  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11.22.7 Port P4 (P4.2 to P4.7) Input/Output With Schmitt Trigger  
For the port diagram, see 6-1. 6-23 and 6-24 summarize the selection of the pin functions.  
6-23. Port P4 (P4.2 and P4.3) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
P4.2/UCA0SIMO/UCA0TXD/UCB1CLK  
2
P4.2 (I/O)  
I: 0; O: 1  
0
0
1
0
1
0
(2)  
UCA0SIMO/UCA0TXD  
UCB1CLK  
X
(3)  
X
N/A  
0
1
1
1
Internally tied to DVSS  
P4.3 (I/O)  
P4.3/UCA0SOMI/UCA0RXD/UCB1STE  
3
I: 0; O: 1  
0
0
1
0
1
0
(2)  
UCA0SOMI/UCA0RXD  
UCB1STE  
X
(3)  
X
N/A  
0
1
1
1
Internally tied to DVSS  
(1) X = Don't care  
(2) Direction controlled by eUSCI_A0 module.  
(3) Direction controlled by eUSCI_B1 module.  
84  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-24. Port P4 (P4.4 to P4.7) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
P4.4/UCB1STE/TA1CLK  
4
P4.4 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Internally tied to DVSS  
UCB1STE  
1
(2)  
X
TA1CLK  
0
Internally tied to DVSS  
P4.5 (I/O)  
1
P4.5/UCB1CLK/TA1.0  
5
6
7
I: 0; O: 1  
N/A  
0
1
Internally tied to DVSS  
UCB1CLK  
(2)  
X
TA1CCI0A  
0
TA1.0  
1
P4.6/UCB1SIMO/UCB1SDA/TA1.1  
P4.7/UCB1SOMI/UCB1SCL/TA1.2  
P4.6 (I/O)  
I: 0; O: 1  
N/A  
0
1
Internally tied to DVSS  
UCB1SIMO/UCB1SDA  
TA1CCI1A  
(2)  
X
0
TA1.1  
1
P4.7 (I/O)  
I: 0; O: 1  
N/A  
0
1
Internally tied to DVSS  
UCB1SOMI/UCB1SCL  
TA1CCI2A  
(2)  
X
0
1
TA1.2  
(1) X = Don't care  
(2) Direction controlled by eUSCI_B1 module.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
85  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11.22.8 Port P5 (P5.4 to P5.7) Input/Output With Schmitt Trigger  
For the port diagram, see 6-1. 6-25 summarizes the selection of the pin functions.  
6-25. Port P5 (P5.4 to P5.7) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
P5.4/UCA1SIMO/UCA1TXD  
4
P5.4 (I/O)  
I: 0; O: 1  
0
0
0
1
(2)  
UCA1SIMO/UCA1TXD  
N/A  
X
0
1
1
0
1
Internally tied to DVSS  
N/A  
1
0
1
Internally tied to DVSS  
P5.5 (I/O)  
P5.5/UCA1SOMI/UCA1RXD  
5
6
7
I: 0; O: 1  
0
0
0
1
(2)  
UCA1SOMI/UCA1RXD  
N/A  
X
0
1
1
0
1
Internally tied to DVSS  
N/A  
1
0
1
Internally tied to DVSS  
P5.6 (I/O)  
P5.6/UCA1CLK  
I: 0; O: 1  
0
0
0
1
(2)  
UCA1CLK  
X
N/A  
0
1
1
0
1
Internally tied to DVSS  
N/A  
1
0
1
Internally tied to DVSS  
P5.7 (I/O)  
P5.7/UCA1STE/TB0CLK  
I: 0; O: 1  
0
0
0
1
(2)  
UCA1STE  
X
N/A  
0
1
0
1
1
1
0
1
Internally tied to DVSS  
TB0CLK  
Internally tied to DVSS  
(1) X = Don't care  
(2) Direction controlled by eUSCI_A1 module.  
86  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.11.22.9 Port P6 (P6.0 to P6.6) Input/Output With Schmitt Trigger  
6-4 shows the port diagram. 6-26 and 6-27 summarize the selection of the pin functions.  
Pad Logic  
P6REN.x  
0 0  
0 1  
1 0  
1 1  
P6DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P6OUT.x  
From module 1  
From module 2  
DVSS  
P6.0  
P6.1  
P6.2/COUT  
P6.3  
P6SEL1.x  
P6.4/TB0.0  
P6.5/TB0.1  
P6.6/TB0.2  
P6SEL0.x  
P6IN.x  
Bus  
Keeper  
To module 1(A)  
To module 2(A)  
NOTE: Functional representation only.  
6-4. Port P6 (P6.0 to P6.6) Diagram  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
87  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-26. Port P6 (P6.0 to P6.2) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
P6.0  
0
P6.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
1
N/A  
X
1
0
1
0
P6.1  
1
2
P6.1 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
1
N/A  
X
1
0
1
0
P6.2/COUT  
P6.2 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
COUT  
N/A  
1
1
0
1
Internally tied to DVSS  
N/A  
(1) X = Don't care  
88  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-27. Port P6 (P6.3 to P6.6) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
P6.3  
3
P6.3 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
1
N/A  
X
1
0
1
0
P6.4/TB0.0  
P6.5/TB0.1  
P6.6/TB0.2  
4
5
6
P6.4 (I/O)  
I: 0; O: 1  
TB0CCI0B  
0
0
1
1
0
TB0.0  
1
N/A  
0
Internally tied to DVSS  
1
N/A  
X
1
0
1
0
P6.5 (I/O)  
I: 0; O: 1  
TB0CCI1A  
0
0
1
1
0
TB0.1  
1
N/A  
0
Internally tied to DVSS  
1
N/A  
X
1
0
1
0
P6.6 (I/O)  
I: 0; O: 1  
TB0CCI2A  
0
1
0
1
X
0
1
TB0.2  
N/A  
1
1
0
1
Internally tied to DVSS  
N/A  
(1) X = Don't care  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
89  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11.22.10 Port P7 (P7.0 to P7.4) Input/Output With Schmitt Trigger  
For the port diagram, see 6-1. 6-28 and 6-29 summarize the selection of the pin functions.  
6-28. Port P7 (P7.0 to P7.3) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P7.x)  
P7.0/TA0CLK  
x
FUNCTION  
P7DIR.x  
P7SEL1.x  
P7SEL0.x  
0
P7.0 (I/O)  
TA0CLK  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
1
N/A  
0
1
0
0
1
0
1
Internally tied to DVSS  
1
P7.1/TA0.0/ACLK  
1
2
3
P7.1 (I/O)  
I: 0; O: 1  
TA0CCI0B  
0
TA0.0  
1
N/A  
0
1
0
Internally tied to DVSS  
1
N/A  
0
1
0
0
1
0
1
ACLK  
1
P7.2/TA0.1  
P7.2 (I/O)  
I: 0; O: 1  
TA0CCI1A  
0
TA0.1  
1
N/A  
0
1
0
Internally tied to DVSS  
1
N/A  
0
1
0
0
1
0
1
N/A  
1
P7.3/TA0.2  
P7.3 (I/O)  
I: 0; O: 1  
TA0CCI2A  
0
1
0
1
0
1
TA0.2  
N/A  
1
1
0
1
Internally tied to DVSS  
N/A  
Internally tied to DVSS  
(1) X = Don't care  
6-29. Port P7 (P7.4) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL1.x  
P7SEL0.x  
P7.4/SMCLK  
4
P7.4 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
1
0
1
0
1
0
1
1
1
Internally tied to DVSS  
N/A  
0
1
Internally tied to DVSS  
N/A  
SMCLK  
(1) X = Don't care  
90  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.11.22.11 Port P9 (P9.4 to P9.7) Input/Output With Schmitt Trigger  
6-5 shows the port diagram. 6-30 summarizes the selection of the pin functions.  
To ADC  
From ADC  
To Comparator  
From Comparator  
CEPD.x  
Pad Logic  
P9REN.x  
P9DIR.x  
0 0  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P9OUT.x  
DVSS  
DVSS  
P9.4/A12/C12  
P9.5/A13/C13  
P9.6/A14/C14  
P9.7/A15/C15  
DVSS  
P9SEL1.x  
P9SEL0.x  
P9IN.x  
Bus  
Keeper  
NOTE: Functional representation only.  
6-5. Port P9 (P9.4 to P9.7) Diagram  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
91  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-30. Port P9 (P9.4 to P9.7) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P9.x)  
P9.4/A12/C12  
x
FUNCTION  
P9DIR.x  
P9SEL1.x  
P9SEL0.x  
4
P9.4 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2) (3)  
A12/C12  
X
1
0
1
0
P9.5/A13/C13  
P9.6/A14/C14  
P9.7/A15/C15  
5
6
7
P9.5 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2) (3)  
A13/C13  
X
1
0
1
0
P9.6 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2) (3)  
A14/C14  
X
1
0
1
0
P9.7 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
(2) (3)  
A15/C15  
(1) X = Don't care  
(2) Setting P9SEL1.x and P9SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Setting the CEPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPD.x bit.  
92  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.11.22.12 Port PJ (PJ.4 and PJ.5) Input/Output With Schmitt Trigger  
6-6 and 6-7 show the port diagrams. 6-31 summarizes the selection of the pin functions.  
Pad Logic  
To LFXT XIN  
PJREN.4  
0 0  
0 1  
1 0  
1 1  
PJDIR.4  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.4  
DVSS  
DVSS  
DVSS  
PJ.4/LFXIN  
PJSEL1.4  
PJSEL0.4  
PJIN.4  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-6. Port PJ (PJ.4) Diagram  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
93  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
Pad Logic  
To LFXT XOUT  
PJSEL0.4  
PJSEL1.4  
LFXTBYPASS  
PJREN.5  
0 0  
0 1  
1 0  
1 1  
PJDIR.5  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.5  
DVSS  
DVSS  
PJ.5/LFXOUT  
DVSS  
PJSEL1.5  
PJSEL0.5  
PJIN.5  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-7. Port PJ (PJ.5) Diagram  
94  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-31. Port PJ (PJ.4 and PJ.5) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJSEL1.5  
PJSEL0.5  
PJSEL1.4  
PJSEL0.4 LFXTBYPASS  
PJ.4/LFXIN  
4
PJ.4 (I/O)  
I: 0; O: 1  
X
X
0
0
X
N/A  
0
1
X
X
1
X
X
Internally tied to DVSS  
(2)  
LFXIN crystal mode  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
1
1
0
1
(2)  
LFXIN bypass mode  
PJ.5/LFXOUT  
5
0
0
1(3)  
0
PJ.5 (I/O)  
I: 0; O: 1  
0
0
X
X
0
(4)  
(4)  
N/A  
0
See  
See  
X
X
0
1(3)  
0
(4)  
(4)  
Internally tied to DVSS  
1
See  
See  
X
X
1(3)  
0
LFXOUT crystal mode  
X
X
X
0
1
(2)  
(1) X = Don't care  
(2) Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When LFXTBYPASS = 0, PJ.4 and PJ.5 are  
configured for crystal operation and PJSEL1.5 and PJSEL0.5 are don't care. When LFXTBYPASS = 1, PJ.4 is configured for bypass  
operation and PJ.5 is configured as general-purpose I/O.  
(3) When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.  
(4) With PJSEL0.5 = 1 or PJSEL1.5 =1 the general-purpose I/O functionality is disabled. No input function is available. Configured as  
output, the pin is actively pulled to zero.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
95  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.11.22.13 Port PJ (PJ.6 and PJ.7) Input/Output With Schmitt Trigger  
6-8 and 6-9 show the port diagrams. 6-32 summarizes the selection of the pin functions.  
Pad Logic  
To HFXT XIN  
PJREN.6  
0 0  
0 1  
1 0  
1 1  
PJDIR.6  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.6  
DVSS  
DVSS  
DVSS  
PJ.6/HFXIN  
PJSEL1.6  
PJSEL0.6  
PJIN.6  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-8. Port PJ (PJ.6) Diagram  
96  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
Pad Logic  
To HFXT XOUT  
PJSEL0.6  
PJSEL1.6  
HFXTBYPASS  
PJREN.7  
0 0  
PJDIR.7  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.7  
DVSS  
DVSS  
DVSS  
PJ.7/HFXOUT  
PJSEL1.7  
PJSEL0.7  
PJIN.7  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-9. Port PJ (PJ.7) Diagram  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
97  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-32. Port PJ (PJ.6 and PJ.7) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (PJ.x)  
x
FUNCTION  
PJ.6 (I/O)  
PJDIR.x  
PJSEL1.7  
PJSEL0.7  
PJSEL1.6  
PJSEL0.6 HFXTBYPASS  
PJ.6/HFXIN  
6
I: 0; O: 1  
X
X
0
0
X
N/A  
0
1
X
X
1
X
X
Internally tied to DVSS  
HFXIN crystal mode(2)  
HFXIN bypass mode(2)  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
PJ.7/HFXOUT  
7
0
0
1(3)  
0
PJ.7 (I/O)  
N/A  
I: 0; O: 1  
0
0
X
X
0
(4)  
(4)  
0
See  
See  
X
X
0
1(3)  
0
(4)  
(4)  
Internally tied to DVSS  
HFXOUT crystal mode(2)  
1
See  
See  
X
X
1
1(3)  
0
X
X
X
(1) X = Don't care  
(2) Setting PJSEL1.6 = 0 and PJSEL0.6 = 1 causes the general-purpose I/O to be disabled. When HFXTBYPASS = 0, PJ.6 and PJ.7 are  
configured for crystal operation and PJSEL1.6 and PJSEL0.7 are don't care. When HFXTBYPASS = 1, PJ.6 is configured for bypass  
operation and PJ.7 is configured as general-purpose I/O.  
(3) When PJ.6 is configured in bypass mode, PJ.7 is configured as general-purpose I/O.  
(4) With PJSEL0.7 = 1 or PJSEL1.7 = 1 the general-purpose I/O functionality is disabled. No input function is available. Configured as  
output, the pin is actively pulled to zero.  
98  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.11.22.14 Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt  
Trigger  
6-10 shows the port diagram. 6-33 summarizes the selection of the pin functions.  
Pad Logic  
DVSS  
JTAG enable  
From JTAG  
From JTAG  
PJREN.x  
0 0  
0 1  
1 0  
1 1  
PJDIR.x  
1
0
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.x  
From module 1  
1
0
From Status Register (SR)  
DVSS  
PJ.0/TDO/TB0OUTH/  
SMCLK SRSCG1  
PJ.1/TDI/TCLK/MCLK/  
SRSCG0  
PJ.2/TMS/ACLK/  
SROSCOFF  
PJSEL1.x  
PJSEL0.x  
PJIN.x  
PJ.3/TCK/COUT/  
SRCPUOFF  
Bus  
Keeper  
EN  
D
To modules  
and JTAG  
NOTE: Functional representation only.  
6-10. Port PJ (PJ.0 to PJ.3) Diagram  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
99  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-33. Port PJ (PJ.0 to PJ.3) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJSEL1.x  
PJSEL0.x  
(2)  
PJ.0/TDO/TB0OUTH/  
SMCLK/SRSCG1  
0
PJ.0 (I/O)  
I: 0; O: 1  
0
0
(3)  
TDO  
X
X
X
TB0OUTH  
SMCLK(4)  
N/A  
0
0
1
1
1
0
1
1
0
CPU Status Register Bit SCG1  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
PJ.1/TDI/TCLK/MCLK/  
SRSCG0  
1
2
3
PJ.1 (I/O)  
I: 0; O: 1  
0
0
(3) (5)  
TDI/TCLK  
X
X
X
N/A  
0
0
1
1
1
0
1
MCLK  
1
N/A  
0
CPU Status Register Bit SCG0  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
PJ.2/TMS/ACLK/  
SROSCOFF  
PJ.2 (I/O)  
I: 0; O: 1  
0
0
(3) (5)  
TMS  
X
X
X
N/A  
0
0
1
1
1
0
1
ACLK  
1
N/A  
0
CPU Status Register Bit OSCOFF  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
PJ.3/TCK/COUT/  
SRCPUOFF  
PJ.3 (I/O)  
I: 0; O: 1  
0
0
(3) (5)  
TCK  
X
0
1
0
1
0
1
X
X
N/A  
0
1
1
1
0
1
COUT  
N/A  
CPU Status Register Bit CPUOFF  
N/A  
Internally tied to DVSS  
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module. JTAG mode selection is made by the SYS module or by the Spy-Bi-Wire 4-wire  
entry sequence. Neither PJSEL1.x and PJSEL0.x nor CEPD.x bits have an effect in these cases.  
(4) Do not use this pin as SMCLK output if the TB0OUTH functionality is used on any other pin. Select an alternative SMCLK output pin.  
(5) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
100  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.12 Device Descriptors (TLV)  
6-34 summarizes the Device IDs. 6-35 list the contents of the device descriptor tag-length-value  
(TLV) structure.  
6-34. Device ID  
DEVICE ID  
DEVICE  
PACKAGE  
At 01A05h  
82h  
At 01A04h  
5Bh  
MSP430FR5970  
PM and RGC  
PM and RGC  
PM and RGC  
DGG  
MSP430FR5972(1)  
82h  
5Dh  
82h  
61h  
MSP430FR5922(1)  
82h  
62h  
MSP430FR5870  
PM and RGC  
PM and RGC  
82h  
5Eh  
MSP430FR5872(1)  
82h  
60h  
(1)  
6-35. Device Descriptor Table  
MSP430FRxxxx (UART BSL)  
MSP430FRxxxx1 (I2C BSL)  
DESCRIPTION  
ADDRESS  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
VALUE  
06h  
ADDRESS  
VALUE  
06h  
Info length  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
CRC length  
06h  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
CRC value  
Info Block  
Device ID  
Device ID  
See 6-34.  
See 6-34.  
Hardware revision  
Firmware revision  
Die record tag  
Die record length  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
0Ah  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot/wafer ID  
Die Record  
Die X position  
Die Y position  
Test results  
(1) NA = Not applicable, Per unit = content can differ from device to device  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
101  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-35. Device Descriptor Table (1) (continued)  
MSP430FRxxxx (UART BSL)  
MSP430FRxxxx1 (I2C BSL)  
DESCRIPTION  
ADDRESS  
01A14h  
01A15h  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
01A26h  
01A27h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
VALUE  
11h  
ADDRESS  
01A14h  
01A15h  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
01A26h  
01A27h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
VALUE  
11h  
ADC12B calibration tag  
ADC12B calibration length  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
ADC gain factor(2)  
ADC offset(3)  
ADC 1.2-V reference  
Temperature sensor 30°C  
ADC12B  
Calibration  
ADC 1.2-V reference  
Temperature sensor 85°C  
ADC 2.0-V reference  
Temperature sensor 30°C  
ADC 2.0-V reference  
Temperature sensor 85°C  
ADC 2.5-V reference  
Temperature sensor 30°C  
ADC 2.5-V reference  
Temperature sensor 85°C  
REF calibration tag  
REF calibration length  
06h  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
REF 1.2-V reference  
REF 2.0-V reference  
REF 2.5-V reference  
REF Calibration  
(2) ADC gain: The gain correction factor is measured using the internal voltage reference with REFOUT = 0. Other settings (for example,  
with REFOUT = 1) can result in different correction factors.  
(3) ADC offset: The offset correction factor is measured using the internal 2.5-V reference.  
102  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-35. Device Descriptor Table (1) (continued)  
MSP430FRxxxx (UART BSL)  
MSP430FRxxxx1 (I2C BSL)  
DESCRIPTION  
ADDRESS  
01A2Eh  
01A2Fh  
01A30h  
01A31h  
01A32h  
01A33h  
01A34h  
01A35h  
01A36h  
01A37h  
01A38h  
01A39h  
01A3Ah  
01A3Bh  
01A3Ch  
01A3Dh  
01A3Eh  
01A3Fh  
01A40h  
01A41h  
01A42h  
01A43h  
VALUE  
15h  
ADDRESS  
01A2Eh  
01A2Fh  
01A30h  
01A31h  
01A32h  
01A33h  
01A34h  
01A35h  
01A36h  
01A37h  
01A38h  
01A39h  
01A3Ah  
01A3Bh  
01A3Ch  
01A3Dh  
01A3Eh  
01A3Fh  
01A40h  
01A41h  
01A42h  
01A43h  
VALUE  
15h  
128-bit random number tag  
Random number length  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
1Ch  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
1Ch  
Random Number  
128-bit random number(4)  
BSL tag  
BSL length  
02h  
02h  
BSL Configuration  
BSL interface  
00h  
01h  
BSL interface configuration  
00h  
48h  
(4) 128-bit random number: The random number is generated during production test using the CryptGenRandom() function from Microsoft®.  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
103  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.13 Memory  
6-36 summarizes the memory map for all devices.  
6-36. Memory Organization(1)  
MSP430FR5972(1)  
MSP430FR5922(1)  
MSP430FR5872(1)  
MSP430FR5970  
MSP430FR5870  
Memory (FRAM)  
Main: interrupt vectors and  
signatures  
Main: code memory  
63KB  
00FFFFh to 00FF80h  
013FFFh to 004400h  
32KB  
00FFFFh to 00FF80h  
00FF7Fh to 008000h  
Total Size  
Sect 1  
2KB  
2KB  
RAM  
0023FFh to 001C00h  
0023FFh to 001C00h  
Device Descriptor Info (TLV)  
(FRAM)  
256 bytes  
001AFFh to 001A00h  
256 bytes  
001AFFh to 001A00h  
128 bytes  
0019FFh to 001980h  
128 bytes  
0019FFh to 001980h  
Info A  
Info B  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
128 bytes  
00197Fh to 001900h  
128 bytes  
00197Fh to 001900h  
Information memory (FRAM)  
128 bytes  
0018FFh to 001880h  
128 bytes  
0018FFh to 001880h  
128 bytes  
00187Fh to 001800h  
128 bytes  
00187Fh to 001800h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
Bootloader (BSL) memory (ROM)  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
4KB  
4KB  
Peripherals  
Tiny RAM  
000FFFh to 000020h  
000FFFh to 000020h  
26 bytes  
000001Fh to 000006h  
26 bytes  
000001Fh to 000006h  
Size  
Reserved  
6 bytes  
000005h to 000000h  
6 bytes  
000005h to 000000h  
Size  
(Read Only)(2)  
(1) All address space not listed is considered vacant memory.  
(2) Read as: D032h at 00h (Opcode: BIS.W LPM4, SR), 00F0h at 02h (Opcode: BIS.W LPM4, SR), 3FFFh at 04h (Opcode: JMP$)  
104  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6.13.1 Peripheral File Map  
6-37 lists the base address and offset range for the registers of supported peripheral modules.  
6-37. Peripherals  
OFFSET ADDRESS  
MODULE NAME  
BASE ADDRESS  
RANGE  
Special Functions (see 6-38)  
PMM (see 6-39)  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
0200h  
0220h  
0240h  
0260h  
0280h  
0320h  
0340h  
0380h  
03C0h  
0400h  
0430h  
0440h  
0470h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
05A0h  
05C0h  
05E0h  
0640h  
0680h  
0800h  
08C0h  
0980h  
09C0h  
000h to 01Fh  
000h to 01Fh  
000h to 00Fh  
000h to 007h  
000h to 001h  
000h to 001h  
000h to 00Fh  
000h to 01Fh  
000h to 001h  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 02Fh  
000h to 02Fh  
000h to 02Fh  
000h to 02Fh  
000h to 00Fh  
000h to 02Fh  
000h to 00Fh  
000h to 01Fh  
000h to 02Fh  
000h to 00Fh  
000h to 00Fh  
000h to 00Fh  
000h to 00Fh  
000h to 00Fh  
000h to 01Fh  
000h to 01Fh  
000h to 02Fh  
000h to 02Fh  
000h to 09Fh  
000h to 00Fh  
000h to 02Fh  
000h to 00Fh  
FRAM Control (see 6-40)  
CRC16 (see 6-41)  
RAM Controller (see 6-42)  
Watchdog (see 6-43)  
CS (see 6-44)  
SYS (see 6-45)  
Shared Reference (see 6-46)  
Port P1, P2 (see 6-47)  
Port P3, P4 (see 6-48)  
Port P5, P6 (see 6-49)  
Port P7 (see 6-50)  
Port P9 (see 6-51)  
Port PJ (see 6-52)  
Timer_A TA0 (see 6-53)  
Timer_A TA1 (see 6-54)  
Timer_B TB0 (see 6-55)  
Timer_A TA2 (see 6-56)  
Capacitive Touch I/O 0 (see 6-57)  
Timer_A TA3 (see 6-58)  
Capacitive Touch I/O 1 (see 6-59)  
Real-Time Clock (RTC_C) (see 6-60)  
32-Bit Hardware Multiplier (see 6-61)  
DMA General Control (see 6-62)  
DMA Channel 0 (see 6-62)  
DMA Channel 1 (see 6-62)  
DMA Channel 2 (see 6-62)  
MPU Control (see 6-63)  
eUSCI_A0 (see 6-64)  
eUSCI_A1 (see 6-65)  
eUSCI_B0 (see 6-66)  
eUSCI_B1 (see 6-67)  
ADC12_B (see 6-68)  
Comparator_E (see 6-69)  
CRC32 (see 6-70)  
AES (see 6-71)  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
105  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-38. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
6-39. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
OFFSET  
PMM control 0  
PMM interrupt flags  
PM5 control 0  
PMMCTL0  
PMMIFG  
00h  
0Ah  
10h  
PM5CTL0  
6-40. FRAM Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
FRCTL0  
FRAM control 0  
General control 0  
General control 1  
00h  
04h  
06h  
GCCTL0  
GCCTL1  
6-41. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC data input  
CRCDI  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
6-42. RAM Controller Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
RCCTL0  
OFFSET  
OFFSET  
OFFSET  
RAM controller control 0  
Watchdog timer control  
00h  
00h  
6-43. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
WDTCTL  
6-44. CS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
CS control 0  
CS control 1  
CS control 2  
CS control 3  
CS control 4  
CS control 5  
CS control 6  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
6-45. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
System control  
SYSCTL  
00h  
06h  
JTAG mailbox control  
SYSJMBC  
106  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-45. SYS Registers (Base Address: 0180h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
SYSJMBI0  
OFFSET  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
User NMI vector generator  
08h  
0Ah  
0Ch  
0Eh  
1Ah  
1Ch  
1Eh  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSUNIV  
System NMI vector generator  
Reset vector generator  
SYSSNIV  
SYSRSTIV  
6-46. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
REFCTL  
OFFSET  
OFFSET  
Shared reference control  
00h  
6-47. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
Port P1 direction  
Port P1 resistor enable  
Port P1 selection 0  
Port P1 selection 1  
Port P1 interrupt vector word  
P1SEL0  
P1SEL1  
P1IV  
Port P1 complement selection  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1SELC  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2SEL1  
P2SELC  
P2IV  
Port P2 direction  
Port P2 resistor enable  
Port P2 selection 0  
Port P2 selection 1  
Port P2 complement selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
6-48. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
Port P3 direction  
Port P3 resistor enable  
Port P3 selection 0  
Port P3 selection 1  
Port P3 interrupt vector word  
P3SEL0  
P3SEL1  
P3IV  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
107  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-48. Port P3, P4 Registers (Base Address: 0220h) (continued)  
REGISTER DESCRIPTION  
Port P3 complement selection  
REGISTER  
P3SELC  
OFFSET  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
Port P4 input  
P3IES  
P3IE  
P3IFG  
P4IN  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4SEL0  
P4SEL1  
P4SELC  
P4IV  
Port P4 direction  
Port P4 resistor enable  
Port P4 selection 0  
Port P4 selection 1  
Port P4 complement selection  
Port P4 interrupt vector word  
Port P4 interrupt edge select  
Port P4 interrupt enable  
Port P4 interrupt flag  
P4IES  
P4IE  
P4IFG  
6-49. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P5 output  
Port P5 direction  
Port P5 resistor enable  
Port P5 selection 0  
Port P5 selection 1  
Reserved  
P5OUT  
P5DIR  
P5REN  
P5SEL0  
P5SEL1  
Port P5 complement selection  
Reserved  
P5SELC  
Reserved  
Reserved  
Port P6 input  
P6IN  
Port P6 output  
Port P6 direction  
Port P6 resistor enable  
Port P6 selection 0  
Port P6 selection 1  
Port P6 complement selection  
Reserved  
P6OUT  
P6DIR  
P6REN  
P6SEL0  
P6SEL1  
P6SELC  
Reserved  
Reserved  
Reserved  
6-50. Port P7 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P7 input  
P7IN  
00h  
02h  
04h  
06h  
Port P7 output  
P7OUT  
P7DIR  
P7REN  
Port P7 direction  
Port P7 resistor enable  
108  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-50. Port P7 Registers (Base Address: 0260h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
P7SEL0  
OFFSET  
Port P7 selection 0  
Port P7 selection 1  
Reserved  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
P7SEL1  
Port P7 complement selection  
Reserved  
P7SELC  
Reserved  
Reserved  
6-51. Port P9 Registers (Base Address: 0280h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P9 input  
P9IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
Port P9 output  
Port P9 direction  
Port P9 resistor enable  
Port P9 selection 0  
Port P9 selection 1  
Reserved  
P9OUT  
P9DIR  
P9REN  
P9SEL0  
P9SEL1  
Port P9 complement selection  
Reserved  
P9SELC  
Reserved  
Reserved  
6-52. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
16h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
Port PJ direction  
Port PJ resistor enable  
Port PJ selection 0  
Port PJ selection 1  
Port PJ complement selection  
PJSEL0  
PJSEL1  
PJSELC  
6-53. Timer_A TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
TA0CTL  
OFFSET  
TA0 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
TA0 interrupt vector  
TA0IV  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
109  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-54. Timer_A TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
TA1CTL  
OFFSET  
TA1 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1 interrupt vector  
TA1IV  
6-55. Timer_B TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
TB0CTL  
OFFSET  
TB0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0 interrupt vector  
TB0IV  
6-56. Timer_A TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
TA2CTL  
OFFSET  
TA2 control  
00h  
02h  
04h  
10h  
12h  
14h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
TA2 counter  
TA2CCTL0  
TA2CCTL1  
TA2R  
Capture/compare 0  
Capture/compare 1  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2EX0  
TA2IV  
TA2 interrupt vector  
6-57. Capacitive Touch I/O 0 Registers (Base Address: 0430h)  
REGISTER DESCRIPTION  
Capacitive touch I/O 0 control  
REGISTER  
CAPTIO0CTL  
OFFSET  
0Eh  
110  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-58. Timer_A TA3 Registers (Base Address: 0440h)  
REGISTER DESCRIPTION  
REGISTER  
TA3CTL  
OFFSET  
TA3 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA3 counter  
TA3CCTL0  
TA3CCTL1  
TA3CCTL2  
TA3CCTL3  
TA3CCTL4  
TA3R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
TA3 expansion 0  
TA3CCR0  
TA3CCR1  
TA3CCR2  
TA3CCR3  
TA3CCR4  
TA3EX0  
TA3 interrupt vector  
TA3IV  
6-59. Capacitive Touch I/O 1 Registers (Base Address: 0470h)  
REGISTER DESCRIPTION  
REGISTER  
CAPTIO1CTL  
OFFSET  
OFFSET  
Capacitive touch I/O 1 control  
0Eh  
6-60. RTC_C Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
RTC control 0  
00h  
01h  
02h  
03h  
04h  
06h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Eh  
RTC password  
RTCPWD  
RTC control 1  
RTCCTL1  
RTC control 3  
RTCCTL3  
RTC offset calibration  
RTC temperature compensation  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTCOCAL  
RTCTCMP  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTC prescaler 1  
RTCPS1  
RTC interrupt vector word  
RTC seconds/counter 1  
RTC minutes/counter 2  
RTC hours/counter 3  
RTC day of week/counter 4  
RTC days  
RTCIV  
RTCSEC/RTCNT1  
RTCMIN/RTCNT2  
RTCHOUR/RTCNT3  
RTCDOW/RTCNT4  
RTCDAY  
RTC month  
RTCMON  
RTC year  
RTCYEAR  
RTC alarm minutes  
RTC alarm hours  
RTCAMIN  
RTCAHOUR  
RTCADOW  
RTCADAY  
RTC alarm day of week  
RTC alarm days  
Binary-to-BCD conversion  
BCD-to-binary conversion  
BIN2BCD  
BCD2BIN  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
111  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-61. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control 0  
RES3  
MPY32CTL0  
6-62. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)  
REGISTER DESCRIPTION  
REGISTER  
DMA0CTL  
OFFSET  
DMA channel 0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA module control 0  
DMACTL0  
DMACTL1  
DMA module control 1  
112  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-62. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
DMACTL2  
OFFSET  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
04h  
06h  
08h  
0Eh  
DMACTL3  
DMACTL4  
DMAIV  
6-63. MPU Control Registers (Base Address: 05A0h)  
REGISTER DESCRIPTION  
REGISTER  
MPUCTL0  
OFFSET  
MPU control 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
MPU control 1  
MPUCTL1  
MPU Segmentation Border 2  
MPU Segmentation Border 1  
MPU access management  
MPU IP control 0  
MPUSEGB2  
MPUSEGB1  
MPUSAM  
MPUIPC0  
MPU IP Encapsulation Segment Border 2  
MPU IP Encapsulation Segment Border 1  
MPUIPSEGB2  
MPUIPSEGB1  
6-64. eUSCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTLW0  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA0CTLW1  
UCA0BR0  
eUSCI_A baud rate 1  
UCA0BR1  
eUSCI_A modulation control  
eUSCI_A status word  
UCA0MCTLW  
UCA0STATW  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
UCA0IFG  
UCA0IV  
6-65. eUSCI_A1 Registers (Base Address:05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA1CTLW0  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
UCA1CTLW1  
UCA1BR0  
eUSCI_A baud rate 1  
UCA1BR1  
eUSCI_A modulation control  
eUSCI_A status word  
UCA1MCTLW  
UCA1STATW  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
113  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-65. eUSCI_A1 Registers (Base Address:05E0h) (continued)  
REGISTER DESCRIPTION  
eUSCI_A IrDA receive control  
REGISTER  
UCA1IRRCTL  
OFFSET  
13h  
1Ah  
1Ch  
1Eh  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
UCA1IE  
UCA1IFG  
UCA1IV  
eUSCI_A interrupt vector word  
6-66. eUSCI_B0 Registers (Base Address: 0640h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTLW0  
OFFSET  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB0CTLW1  
UCB0BR0  
eUSCI_B bit rate 1  
UCB0BR1  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B received address  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
eUSCI_B interrupt vector word  
UCB0IFG  
UCB0IV  
6-67. eUSCI_B1 Registers (Base Address: 0680h)  
REGISTER DESCRIPTION  
REGISTER  
UCB1CTLW0  
OFFSET  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB1CTLW1  
UCB1BR0  
eUSCI_B bit rate 1  
UCB1BR1  
eUSCI_B status word  
UCB1STATW  
UCB1TBCNT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA0  
UCB1I2COA1  
UCB1I2COA2  
UCB1I2COA3  
UCB1ADDRX  
UCB1ADDMASK  
UCB1I2CSA  
UCB1IE  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B received address  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
eUSCI_B interrupt vector word  
UCB1IFG  
UCB1IV  
114  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-68. ADC12_B Registers (Base Address: 0800h)  
REGISTER DESCRIPTION  
REGISTER  
ADC12CTL0  
OFFSET  
ADC12_B control 0  
ADC12_B control 1  
ADC12_B control 2  
ADC12_B control 3  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
4Eh  
50h  
52h  
54h  
56h  
58h  
5Ah  
5Ch  
5Eh  
60h  
62h  
ADC12CTL1  
ADC12CTL2  
ADC12CTL3  
ADC12_B window comparator low threshold  
ADC12_B window comparator high threshold  
ADC12_B interrupt flag 0  
ADC12LO  
ADC12HI  
ADC12IFGR0  
ADC12IFGR1  
ADC12IFGR2  
ADC12IER0  
ADC12_B interrupt flag 1  
ADC12_B interrupt flag 2  
ADC12_B interrupt enable 0  
ADC12_B Interrupt Enable 1  
ADC12_B interrupt enable 2  
ADC12_B interrupt vector  
ADC12IER1  
ADC12IER2  
ADC12IV  
ADC12_B memory control 0  
ADC12_B memory control 1  
ADC12_B memory control 2  
ADC12_B memory control 3  
ADC12_B memory control 4  
ADC12_B memory control 5  
ADC12_B memory control 6  
ADC12_B memory control 7  
ADC12_B memory control 8  
ADC12_B memory control 9  
ADC12_B memory control 10  
ADC12_B memory control 11  
ADC12_B memory control 12  
ADC12_B memory control 13  
ADC12_B memory control 14  
ADC12_B memory control 15  
ADC12_B memory control 16  
ADC12_B memory control 17  
ADC12_B memory control 18  
ADC12_B memory control 19  
ADC12_B memory control 20  
ADC12_B memory control 21  
ADC12_B memory control 22  
ADC12_B memory control 23  
ADC12_B memory control 24  
ADC12_B memory control 25  
ADC12_B memory control 26  
ADC12_B memory control 27  
ADC12_B memory control 28  
ADC12_B memory control 29  
ADC12_B memory control 30  
ADC12_B memory control 31  
ADC12_B memory 0  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MCTL16  
ADC12MCTL17  
ADC12MCTL18  
ADC12MCTL19  
ADC12MCTL20  
ADC12MCTL21  
ADC12MCTL22  
ADC12MCTL23  
ADC12MCTL24  
ADC12MCTL25  
ADC12MCTL26  
ADC12MCTL27  
ADC12MCTL28  
ADC12MCTL29  
ADC12MCTL30  
ADC12MCTL31  
ADC12MEM0  
ADC12MEM1  
ADC12_B memory 1  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
115  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6-68. ADC12_B Registers (Base Address: 0800h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
ADC12MEM2  
OFFSET  
ADC12_B memory 2  
ADC12_B memory 3  
ADC12_B memory 4  
ADC12_B memory 5  
ADC12_B memory 6  
ADC12_B memory 7  
ADC12_B memory 8  
ADC12_B memory 9  
ADC12_B memory 10  
ADC12_B memory 11  
ADC12_B memory 12  
ADC12_B memory 13  
ADC12_B memory 14  
ADC12_B memory 15  
ADC12_B memory 16  
ADC12_B memory 17  
ADC12_B memory 18  
ADC12_B memory 19  
ADC12_B memory 20  
ADC12_B memory 21  
ADC12_B memory 22  
ADC12_B memory 23  
ADC12_B memory 24  
ADC12_B memory 25  
ADC12_B memory 26  
ADC12_B memory 27  
ADC12_B memory 28  
ADC12_B memory 29  
ADC12_B memory 30  
ADC12_B memory 31  
64h  
66h  
68h  
6Ah  
6Ch  
6Eh  
70h  
72h  
74h  
76h  
78h  
7Ah  
7Ch  
7Eh  
80h  
82h  
84h  
86h  
88h  
8Ah  
8Ch  
8Eh  
90h  
92h  
94h  
96h  
98h  
9Ah  
9Ch  
9Eh  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
ADC12MEM16  
ADC12MEM17  
ADC12MEM18  
ADC12MEM19  
ADC12MEM20  
ADC12MEM21  
ADC12MEM22  
ADC12MEM23  
ADC12MEM24  
ADC12MEM25  
ADC12MEM26  
ADC12MEM27  
ADC12MEM28  
ADC12MEM29  
ADC12MEM30  
ADC12MEM31  
6-69. Comparator_E Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
CECTL0  
OFFSET  
Comparator control 0  
Comparator control 1  
Comparator control 2  
Comparator control 3  
Comparator interrupt  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
CECTL1  
CECTL2  
CECTL3  
CEINT  
Comparator interrupt vector word  
CEIV  
6-70. CRC32 Registers (Base Address: 0980h)  
REGISTER DESCRIPTION  
REGISTER  
CRC32DIW0  
OFFSET  
CRC32 data input  
00h  
02h  
04h  
06h  
08h  
Reserved  
Reserved  
CRC32 data input reverse  
CRC32 initialization and result word 0  
CRC32DIRBW0  
CRC32INIRESW0  
116  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
6-70. CRC32 Registers (Base Address: 0980h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
CRC32INIRESW1  
CRC32RESRW1  
CRC32RESRW1  
CRC16DIW0  
OFFSET  
CRC32 initialization and result word 1  
CRC32 result reverse word 1  
CRC32 result reverse word 0  
CRC16 data input  
Reserved  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
Reserved  
CRC16 data input reverse  
CRC16 initialization and result word 0  
Reserved  
CRC16DIRBW0  
CRC16INIRESW0  
Reserved  
CRC16 result reverse word 0  
Reserved  
CRC16RESRW1  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6-71. AES Accelerator Registers (Base Address: 09C0h)  
REGISTER DESCRIPTION  
REGISTER  
AESACTL0  
OFFSET  
AES accelerator control 0  
Reserved  
00h  
02h  
AES accelerator status  
AES accelerator key  
AES accelerator data in  
AES accelerator data out  
AESASTAT  
AESAKEY  
AESADIN  
04h  
06h  
008h  
00Ah  
00Ch  
00Eh  
AESADOUT  
AESAXDIN  
AESAXIN  
AES accelerator XORed data in  
AES accelerator XORed data in (no trigger)  
版权 © 2015–2018, Texas Instruments Incorporated  
Detailed Description  
117  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
6.14 Identification  
6.14.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The  
device-specific errata sheet describes these markings. For links to the errata sheets for the devices in this  
data sheet, see 8.4.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Hardware Revision" entries in 6.12.  
6.14.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific  
errata sheet describes these markings. For links to the errata sheets for the devices in this data sheet, see  
8.4.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Device ID" entries in 6.12.  
6.14.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in  
detail in MSP430 Programming With the JTAG Interface.  
118  
Detailed Description  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
7 Applications, Implementation, and Layout  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
7.1 Device Connection and Layout Fundamentals  
This section describes the recommended guidelines when designing with the MSP430. These guidelines  
are to make sure that the device has proper connections for powering, programming, debugging, and  
optimum analog performance.  
7.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 1-µF plus a 100-nF low-ESR ceramic decoupling capacitor  
to each AVCC and DVCC pin. Higher-value capacitors may be used but can impact supply rail ramp-up  
time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a  
few millimeters). Additionally, TI recommends separated grounds with a single-point connection for better  
noise isolation from digital to analog circuits on the board and to achieve high analog accuracy.  
DVCC  
Digital  
Power Supply  
Decoupling  
+
1 µF  
100 nF  
100 nF  
DVSS  
AVCC  
Analog  
Power Supply  
Decoupling  
+
1 µF  
AVSS  
7-1. Power Supply Decoupling  
7.1.2 External Oscillator  
Depending on the device variant (see Section 3), the device can support a low-frequency crystal (32 kHz)  
on the LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the  
crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the  
specifications of the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is  
selected. In this case, the associated LFXOUT and HFXOUT pins can be used for other purposes. If they  
are left unused, they must be terminated according to Section 4.6.  
7-2 shows a typical connection diagram.  
版权 © 2015–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
119  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
LFXIN  
or  
LFXOUT  
or  
HFXIN  
HFXOUT  
CL1  
CL2  
7-2. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP430 devices.  
7.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or  
MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the  
connections also support the MSP-GANG production programmers, thus providing an easy way to  
program prototype boards, if desired. 7-3 shows the connections between the 14-pin JTAG connector  
and the target device required to support in-system programming and debugging for 4-wire JTAG  
communication. 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are  
identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-  
FET430UIF interface modules and MSP-GANG have a VCC-sense feature that, if used, requires an  
alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the  
target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. 图  
7-3 and 7-4 show a jumper block that supports both scenarios of supplying VCC to the target board. If  
this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the jumper  
block. Pins 2 and 4 must not be connected at the same time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User's  
Guide.  
120  
Applications, Implementation, and Layout  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
AVCC/DVCC  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDO/TDI  
TDI  
2
1
3
VCC TARGET  
TDI  
4
TMS  
TCK  
TMS  
6
5
TEST  
8
7
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,  
make connection J2.  
B. The upper limit for C1 is 2.2 nF when using current TI tools.  
7-3. Signal Connections for 4-Wire JTAG Communication  
版权 © 2015–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
121  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
AVCC/DVCC  
R1  
47 kΩ  
(See Note B)  
JTAG  
VCC TOOL  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
VCC TARGET  
4
6
TCK  
GND  
8
10  
12  
14  
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(See Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the  
debug or programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during  
JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with  
the device. The upper limit for C1 is 2.2 nF when using current TI tools.  
7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
7.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the special function  
register (SFR) SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is  
edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the  
external NMI. When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either  
pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not.  
If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an  
external 47-kΩ pullup resistor to the RST/NMI pin with a 10-nF pulldown capacitor. The pulldown capacitor  
should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire  
JTAG mode with TI tools like FET interfaces or GANG programmers.  
See the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for more information  
on the referenced control registers and bits.  
7.1.5 Unused Pins  
For details on the connection of unused pins, see Section 4.6.  
122  
Applications, Implementation, and Layout  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
7.1.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430  
32-kHz Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC, AVCC, and reference pins if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital  
switching signals such as PWM or JTAG signals away from the oscillator circuit.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
7.1.7 Do's and Don'ts  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up,  
power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the  
limits specified in Section 5.1. Exceeding the specified limits may cause malfunction of the device  
including erroneous writes to RAM and FRAM.  
7.2 Peripheral- and Interface-Specific Design Information  
7.2.1 ADC12_B Peripheral  
7.2.1.1 Partial Schematic  
7-5 shows the recommended decoupling circuit when an external voltage reference is used. The  
internal reference module has a maximum drive current as specified in the IO(VREF+) specification of the  
REF module.  
AVSS  
VREF+/VEREF+  
Using an  
External  
Positive  
Reference  
+
470 nF  
10 µF  
VEREF-  
Using an  
External  
+
Negative  
Reference  
10 µF  
470 nF  
7-5. ADC12_B Grounding and Noise Considerations  
7.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should  
be followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with  
other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset  
voltages that can add to or subtract from the reference or input voltages of the ADC. The general  
guidelines in 7.1.1 combined with the connections shown in 7.2.1.1 prevent this.  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital  
switching or switching power supplies can corrupt the conversion result. TI recommends a noise-free  
design using separate analog and digital ground planes with a single-point connection to achieve high  
accuracy.  
版权 © 2015–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
123  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor is used to buffer the reference pin and filter any low-  
frequency ripple. A 470-nF bypass capacitor is used to filter out any high-frequency noise.  
7.2.1.3 Detailed Design Procedure  
For additional design information, see Designing With the MSP430FR58xx, FR59xx, FR68xx, and FR69xx  
ADC.  
7.2.1.4 Layout Guidelines  
Components that are shown in the partial schematic (see 7-5) should be placed as close as possible to  
the respective device pins. Avoid long traces, because they add additional parasitic capacitance,  
inductance, and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM),  
because the high-frequency switching can be coupled into the analog signal.  
If differential mode is used for the ADC12_B, the analog differential input signals must be routed close  
together to minimize the effect of noise on the resulting signal.  
124  
Applications, Implementation, and Layout  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
8 器件和文档支持  
8.1 入门和后续步骤  
要获得有助于您开发工作的 MSP430™系列器件、工具和库相关信息,请访问入门页面。  
8.2 器件命名规则  
为了标示产品开发周期所处的阶段,TI 为所有 MSP MCU 器件的部件号分配了前缀。每个 MSP MCU 商用  
系列产品成员都具有以下两个前缀之一:MSP XMS。这些前缀代表了产品开发的发展阶段,即从工程原  
(XMS) 直到完全合格的生产器件 (MSP)。  
XMS - 实验器件,不一定代表最终器件的电气规格  
MSP - 完全合格的生产器件  
XMS 器件在供货时附带如下免责声明:  
开发中的产品用于内部评估用途。”  
MSP 器件的特性已经全部明确,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书对该器件适  
用。  
预测显示原型器件 (XMS) 的故障率大于标准生产器件。由于这些器件的预计最终使用故障率尚不确定,德  
州仪器 (TI) 建议不要将它们用于任何生产系统。请仅使用合格的生产器件。  
TI 器件的命名规则还包括一个带有器件系列名称的后缀。此后缀表示温度范围、封装类型和配送形式。8-  
1 提供了解读完整器件名称的图例。  
MSP 430 FR  
5
9721  
I
RGC  
R
Feature Set  
Processor Family  
Distribution Format  
Packaging  
MCU Platform  
Memory Type  
Temperature Range  
Series  
AES  
Optional: BSL  
FRAM  
Oscillators  
Processor Family  
MSP = Mixed Signal Processor  
XMS = Experimental Silicon  
MCU Platform  
Memory Type  
Series  
430 = TI’s 16-bit MSP430 Low-Power Microcontroller Platform  
FR = FRAM  
5 = FRAM 5 Series up to 16 MHz without LCD  
Feature Set  
AES  
9 = AES  
8 = No AES 2 = LFXT  
Oscillators  
7 = HFXT and LFXT 2 = 64  
0 = 32  
FRAM (KB) Optional: BSL  
1 = I2C  
No value = UART  
Temperature Range I = –40°C to 85°C  
Packaging  
http://www.ti.com/packaging  
Distribution Format T = Small reel  
R = Large reel  
No markings = Tube or tray  
8-1. 器件命名规则  
版权 © 2015–2018, Texas Instruments Incorporated  
器件和文档支持  
125  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
8.3 工具与软件  
所有 MSP 微控制器均受多种软件和硬件开发工具的支持。相关工具由 TI 以及多家第三方供应商提供。可从  
低功耗 MCU 开发套件和软件获取全部信息。  
8-1 列出了 MSP430FR235x MSP430FR215x 微控制器所 了 MSP430FR597x(1)MSP430FR592x  
(1) MSP430FR587x(1) MCU 的调试特性。关于可用特性的详细信息,请参见《适用于 MSP430 Code  
Composer Studio 用户指南 》。  
8-1. 硬件调试 特性  
四线制  
JTAG  
两线制  
JTAG  
状态序列发生  
LPMx.5 调试支 EnergyTrace++  
MSP430 架构  
断点  
范围断点  
时钟控制  
跟踪缓冲器  
技术  
MSP430Xv2  
3
设计套件与评估模块  
MSP430FR6989 LaunchPad 开发套件  
MSP-EXP430FR6989  
LaunchPad  
开发套件是适用于  
MSP40FR6989 微控制器 (MCU) 的易用型评估模块 (EVM)。它包含在超低功耗 MSP430FRx  
FRAM 微控制器平台上进行开发所需的全部资源,包括一个用于编程、调试和能量测量的板载  
仿真。  
MSP-TS430PM64F - MSP430 64 引脚 FRAM 目标插接板 MSP-TS430PZ5X100 是独立的 ZIF 插接目标  
板,用于通过 JTAG 接口或 Spy-Bi-Wire(双线制 JTAG)协议对 MSP430 MCU 进行在线编  
程和调试。  
MSP-FET430U64F - MSP430 64 引脚 FRAM TS 板和 MSP-FET MSP-FET430U64F 包由 MSP-FET  
仿真器和一款独立的 64 引脚 ZIF 插接目标板,适用于通过 JTAG 接口或 Spy-Bi-Wire(双线  
JTAG)协议对 MSP430 MCU 系统进行在线编程和调试。该 TS 开发板支持采用 64 引脚  
LQFP 封装(TI 封装代码:PM)的 MSP430FR6972 FRAM 器件。  
软件  
MSP430Ware™ 软件 MSP430Ware 软件集合了所有 MSP430 器件的代码示例、数据表以及其他设计资  
源,打包提供给用户。除了提供已有 MSP430 MCU 设计资源的完整集合外,MSP430Ware  
软件还包含名为 MSP 驱动程序库的高级 API。借助该库可以轻松地对 MSP430 硬件进行编  
程。MSP430Ware 软件以 CCS 组件或独立软件包两种形式提供。  
MSP430FR592xMSP430FR5x7xMSP430FR6x2xMSP430FR6x7x 代码示例  
置各集成外设的每个 MSP 器件均具备相应的 C 代码示例。  
根据不同应用需求配  
电容式触摸软件库 可在 MSP430 MCU 启用电容触控功能的免费 C 代码库。MSP430 MCU 库版本 采用 多  
种电容触控实现方法,包括 RO RC 方法。  
MSP 驱动程序库 MSP 驱动程序库的抽象 API 提供易用的函数调用,无需直接操纵 MSP430 硬件的位与字  
节。完整的文档通过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证的  
参数的详细信息。开发人员可使用驱动程序库函数以尽可能低的费用编写全部项目。  
MSP EnergyTrace™ 技术 适用于 MSP430 微控制器的 EnergyTrace 技术是基于电能的代码分析工具,适  
用于测量和显示应用的电能系统配置并帮助优化应用以实现超低功耗。  
ULP(超低功耗)Advisor ULP Advisor™软件是一款辅助工具,旨在指导开发人员编写更为高效的代码,  
从而充分利用 MSP430 MSP432 微控制器 独特 功能。ULP Advisor 的目标人群是微控制器  
的资深开发者和开发新手,可以根据详尽的 ULP 检验表检查代码,以便最大限度地减少应用  
程序的能耗。在编译时,ULP Advisor 提供通知和备注,以标识代码中可以进一步优化的区  
域,进而实现更低功耗。  
126  
器件和文档支持  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
IEC60730 软件包 IEC60730 MSP430 软件包经过专门开发,用于协助客户达到 IEC 60730-1:2010(家用  
及类似用途的自动化电气控制 - 1 部分:一般要求)B 类产品的要求。其中涵盖家用电器、  
电弧检测器、电源转换器、电动工具、电动自行车及其他诸多产品。IEC60730 MSP430 软件  
包可以嵌入在 MSP430 MCU 中 运行的客户应用, 从而帮助客户简化其消费类器件在功能安  
全方面遵循 IEC 60730-1:2010 B 类规范的认证工作。  
适用于 MSP 的定点数学运算库 MSP IQmath Qmath 库是为 C 语言开发者提供的一套经过高度优化的  
高精度数学运算函数集合,能够将浮点算法无缝嵌入 MSP430 MSP432 器件的定点代码  
中。这些例程通常用于计算密集型实时 应用, 而优化的执行速度、高精度以及超低能耗通常  
是影响这些实时应用的关键因素。与使用浮点数学算法编写的同等代码相比,使用 IQmath 和  
Qmath 库可以大幅提高执行速度并显著降低能耗。  
适用于 MSP430 的浮点数学运算库  
TI  
在低功耗和低成本微控制器领域锐意创新,为您提供  
MSPMATHLIB。这是标量函数的浮点数学运算库,能够充分利用 MSP 器件的智能外设,其速  
度最高可为标准 MSP430 数学函数的 26 倍。Mathlib 能够轻松集成到您的设计中。该运算库  
免费使用并集成在 Code Composer Studio IDE IAR Embedded Workbench IDE 中。  
开发工具  
适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境 Code Composer Studio (CCS) 集成开  
发环境 (IDE) 支持所有 MSP 微控制器器件。CCS 含一整套用于开发和调试嵌入式 应用的  
嵌入式软件实用程序。CCS 包含了优化的 C/C++ 编译器、源代码编辑器、项目构建环境、调  
试器、描述器以及其他众多 功能。  
命令行编程器 MSP Flasher 是一款基于 shell 的开源接口,可使用 JTAG Spy-Bi-Wire (SBW) 通信通过  
FET 编程器或 eZ430 MSP 微控制器进行编程。MSP Flasher 可用于将二进制文件(.txt 或  
.hex 文件)直接下载到 MSP 微控制器,而无需使用 IDE。  
MSP MCU 编程器和调试器 MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可帮助用户在  
MSP 低功耗微控制器 (MCU) 中快速开发应用。创建 MCU 软件通常需要将生成的二进制程序  
下载到 MSP 器件中,从而进行验证和调试。  
MSP-GANG 生产编程器 MSP Gang 编程器是一款 MSP430 MSP432 器件编程器,可同时对多达八个  
完全相同的 MSP430 MSP432 闪存或 FRAM 器件进行编程。MSP Gang 编程器可使用标  
准的 RS-232 USB 连接与主机 PC 相连并提供灵活的编程选项,允许用户完全自定义流  
程。  
版权 © 2015–2018, Texas Instruments Incorporated  
器件和文档支持  
127  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
8.4 文档支持  
以下文档介绍了 MSP430FR597x(1)MSP430FR592x(1) MSP430FR587x(1) MCUwww.ti.com.cn 网  
站上提供了这些文档的副本。  
接收文档更新通知  
要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹(关于产品文件  
夹的链接,请参见8.5)。请单击右上角的通知我按钮。点击注册后,即可收到产品信息更改每周摘要  
(如有)。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
勘误  
MSP430FR5972 器件勘误表》 描述了功能技术规格的已知例外情况。  
MSP430FR59721 器件勘误表》 描述了功能技术规格的已知例外情况。  
MSP430FR5922 器件勘误表》 描述了功能技术规格的已知例外情况。  
MSP430FR59221 器件勘误表》 描述了功能技术规格的已知例外情况。  
MSP430FR5970 器件勘误表》 描述了功能技术规格的已知例外情况。  
MSP430FR5872 器件勘误表》 描述了功能技术规格的已知例外情况。  
MSP430FR58721 器件勘误表》 描述了功能技术规格的已知例外情况。  
MSP430FR5870 器件勘误表》 描述了功能技术规格的已知例外情况。  
用户指南  
MSP430FR58xxMSP430FR59xx MSP430FR6xx 系列用户指南》 详细介绍了该器件系列提供的模  
块和外设。  
MSP430 FRAM 器件引导加载程序 (BSL) 用户指南》 MSP430 MCU 上的引导加载程序 (BSL) 允许用户  
在原型设计、投产和维护等各阶段与 MSP430 MCU 中的嵌入式存储器进行通信。可编程存储  
器(FRAM 存储器)和数据存储器 (RAM) 均可按要求予以修改。  
《通过 JTAG 接口对 MSP430 进行编程》 此文档介绍了使用 JTAG 通信端口擦除、编程和验证基于  
MSP430 闪存和 FRAM 的微控制器系列的存储器模块所需的功能。此外,该文档还介绍了如  
何编程所有 MSP430 器件上均具备的 JTAG 访问安全保险丝。此文档介绍了使用标准四线制  
JTAG 接口和两线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))的器件访问。  
MSP430 硬件工具用户指南》 此手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针对  
MSP430  
超低功耗微控制器的程序开发工具。文中对提供的接口类型,即并行端口接口和  
USB 接口进行了说明。  
应用报告  
MSP-EXP430FR5969 中的 EEMBC ULPBench 入门》 本入门指南旨在介绍获取 ULPMark™-CP评分  
的相关内容,具体方式是将嵌入式微处理器基准协会 (EEMBC) ULPBench™和  
EnergyMonitor MSP430FR5969 微控制器 (MCU) 搭配使用。本文档使用 MSP-  
EXP430FR5969 LaunchPad 开发套件作为执行基准测试的目标评估模块 (EVM)ULPBench  
是一种 EEMBC 基准,提供了测量 MCU 超低功耗性能的行业标准方法。  
128  
器件和文档支持  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
MSP430 FRAM 技术 指南及最佳实践》 FRAM 是一种非易失性存储器技术, 其运行方式类与 SRAM  
类似,支持众多新型应用程序,同时改变了固件设计方式。本应用报告从嵌入式软件开发角度  
概述了在 MSP430 中使用 FRAM 技术的方法和最佳实践。其中讨论了如何根据应用特定的代  
码、常量和数据空间要求来实施存储器布局,如何使用 FRAM 来优化应用程序能耗以及如何  
使用存储器保护单元 (MPU) 为程序代码提供意外写访问保护,从而最大程度提高应用的稳健  
性。  
MSP430 32kHz 晶体振荡器》 对于稳定的晶体振荡器,选择合适的晶振、正确的负载电路和适当的电路  
板布局布线至关重要。该应用报告总结了晶体振荡器的功能,介绍了用于选择合适的晶体以实  
MSP430 超低功耗运行的参数。此外,还给出了正确电路板布局的提示和示例。此外,为  
了确保振荡器在大规模生产后能够稳定运行,还可能需要进行一些振荡器测试,该文档中提供  
了有关这些测试的详细信息。  
MSP430 系统级 ESD 注意事项》  
随着硅晶技术向更低电压方向发展以及设计具有成本效益的超低功耗  
组件的需求的出现,系统级 ESD 要求变得越来越苛刻。该应用报告介绍了三个不同的 ESD 主  
题,旨在帮助电路板设计人员和 OEM 理解并设计出稳健耐用的系统级设计。  
8.5 相关链接  
8-2 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品  
的快速链接。  
8-2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
MSP430FR5972  
MSP430FR59721  
MSP430FR5970  
MSP430FR5922  
MSP430FR59221  
MSP430FR5872  
MSP430FR58721  
MSP430FR5870  
8.6 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参见 TI 《使用条款》。  
TI E2E™ 社区  
TI 的工程师交流 (E2E) 社区. 此社区的创建目的是为了促进工程师之间协作。在 e2e.ti.com 中,您可以提  
问、共享知识、拓展思路,在同领域工程师的帮助下解决问题。  
TI 嵌入式处理器维基网页  
德州仪器 (TI) 嵌入式处理器维基网页。此网站的建立是为了帮助开发人员熟悉德州仪器 (TI) 的嵌入式处理  
器,并且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。  
版权 © 2015–2018, Texas Instruments Incorporated  
器件和文档支持  
129  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
 
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
www.ti.com.cn  
8.7 商标  
EnergyTrace++, MSP430, MSP430Ware, EnergyTrace, ULP Advisor, 适用于 MSP 微控制器的 Code  
Composer Studio, E2E are trademarks of Texas Instruments.  
ULPMark, ULPBench are trademarks of Embedded Microprocessor Benchmark Consortium.  
Microsoft is a registered trademark of Microsoft Corporation.  
All other trademarks are the property of their respective owners.  
8.8 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.9 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过非披露义务的披露方获得的任何产品或技术数据  
(其中包括软件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制  
产品或此项技术的任何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政  
府机构授权的情况下,接收方不得在知情的情况下,以直接或间接的方式将其出口。  
8.10 术语表  
TI 术语表  
这份术语表列出并解释术语、缩写和定义。  
130  
器件和文档支持  
版权 © 2015–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
MSP430FR5972, MSP430FR59721, MSP430FR5970, MSP430FR5922, MSP430FR59221  
MSP430FR5872, MSP430FR58721, MSP430FR5870  
www.ti.com.cn  
ZHCSET8C APRIL 2015REVISED AUGUST 2018  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2018, Texas Instruments Incorporated  
机械、封装和可订购信息  
131  
提交文档反馈意见  
产品主页链接: MSP430FR5972 MSP430FR59721 MSP430FR5970 MSP430FR5922 MSP430FR59221  
MSP430FR5872 MSP430FR58721 MSP430FR5870  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR5870IPMR  
MSP430FR5870IRGCR  
MSP430FR58721IPMR  
MSP430FR58721IRGCR  
MSP430FR5872IPMR  
MSP430FR5872IRGCR  
MSP430FR59221IG56R  
MSP430FR59221IPMR  
MSP430FR59221IRGCR  
MSP430FR5922IG56R  
MSP430FR5922IPM  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
VQFN  
LQFP  
VQFN  
LQFP  
VQFN  
TSSOP  
LQFP  
VQFN  
TSSOP  
LQFP  
LQFP  
VQFN  
LQFP  
VQFN  
LQFP  
LQFP  
VQFN  
LQFP  
LQFP  
PM  
RGC  
PM  
64  
64  
64  
64  
64  
64  
56  
64  
64  
56  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
1000 RoHS & Green  
2000 RoHS & Green  
1000 RoHS & Green  
2000 RoHS & Green  
1000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
1000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR5870  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
FR5870  
FR58721  
FR58721  
FR5872  
FR5872  
FR59221  
FR59221  
FR59221  
FR5922  
FR5922  
FR5922  
FR5922  
FR5970  
FR5970  
FR59721  
FR59721  
FR59721  
FR5972  
FR5972  
RGC  
PM  
RGC  
DGG  
PM  
RGC  
DGG  
PM  
160  
RoHS & Green  
MSP430FR5922IPMR  
MSP430FR5922IRGCR  
MSP430FR5970IPMR  
MSP430FR5970IRGCR  
MSP430FR59721IPM  
MSP430FR59721IPMR  
MSP430FR59721IRGCR  
MSP430FR5972IPM  
PM  
1000 RoHS & Green  
2000 RoHS & Green  
1000 RoHS & Green  
2000 RoHS & Green  
RGC  
PM  
RGC  
PM  
160  
RoHS & Green  
PM  
1000 RoHS & Green  
2000 RoHS & Green  
RGC  
PM  
160  
RoHS & Green  
MSP430FR5972IPMR  
PM  
1000 RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Jan-2023  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR5972IRGCR  
ACTIVE  
VQFN  
RGC  
64  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
FR5972  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR5870IPMR  
MSP430FR58721IPMR  
MSP430FR5872IPMR  
LQFP  
LQFP  
LQFP  
PM  
PM  
64  
64  
64  
56  
56  
64  
64  
64  
64  
1000  
1000  
1000  
2000  
2000  
1000  
1000  
1000  
1000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
13.0  
13.0  
13.0  
8.6  
13.0  
13.0  
13.0  
15.6  
15.6  
13.0  
13.0  
13.0  
13.0  
2.1  
2.1  
2.1  
1.8  
1.8  
2.1  
2.1  
2.1  
2.1  
16.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
Q2  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
Q2  
Q2  
PM  
MSP430FR59221IG56R TSSOP  
MSP430FR5922IG56R TSSOP  
DGG  
DGG  
PM  
8.6  
MSP430FR5922IPMR  
MSP430FR5970IPMR  
MSP430FR59721IPMR  
MSP430FR5972IPMR  
LQFP  
LQFP  
LQFP  
LQFP  
13.0  
13.0  
13.0  
13.0  
PM  
PM  
PM  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR5870IPMR  
MSP430FR58721IPMR  
MSP430FR5872IPMR  
MSP430FR59221IG56R  
MSP430FR5922IG56R  
MSP430FR5922IPMR  
MSP430FR5970IPMR  
MSP430FR59721IPMR  
MSP430FR5972IPMR  
LQFP  
LQFP  
LQFP  
TSSOP  
TSSOP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
64  
64  
64  
56  
56  
64  
64  
64  
64  
1000  
1000  
1000  
2000  
2000  
1000  
1000  
1000  
1000  
336.6  
336.6  
336.6  
350.0  
350.0  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
350.0  
350.0  
336.6  
336.6  
336.6  
336.6  
41.3  
41.3  
41.3  
43.0  
43.0  
41.3  
41.3  
41.3  
41.3  
PM  
DGG  
DGG  
PM  
PM  
PM  
PM  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
MSP430FR5922IPM  
PM  
LQFP  
64  
160  
8 X 20  
150  
315 135.9 7620 15.2  
13.1  
13  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DGG0056A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
0
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
54X 0.5  
56  
1
14.1  
13.9  
NOTE 3  
2X  
13.5  
28  
B
29  
0.27  
0.17  
6.2  
6.0  
56X  
1.2 MAX  
0.08  
C A  
B
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.05  
0.75  
0.50  
DETAIL A  
TYPICAL  
4222167/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05)  
TYP  
SYMM  
28  
29  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222167/A 07/2015  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05) TYP  
SYMM  
28  
29  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4222167/A 07/2015  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PM0064A  
LQFP - 1.6 mm max height  
SCALE 1.400  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
33  
16  
32  
17  
A
0.27  
0.17  
64X  
60X 0.5  
4X 7.5  
0.08  
C A B  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
1.6 MAX  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215162/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
49  
64  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
33  
16  
17  
32  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215162/A 03/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
16  
33  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4215162/A 03/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
RGC0064B  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.15  
8.85  
A
B
PIN 1 INDEX AREA  
9.15  
8.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
17  
32  
16  
33  
65  
SYMM  
2X 7.5  
4.25 0.1  
60X  
0.5  
1
48  
0.30  
0.18  
64X  
49  
64  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
64X  
0.05  
4219010/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.25)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.18) TYP  
(8.8)  
65  
SYMM  
(0.695) TYP  
(
0.2) TYP  
VIA  
33  
16  
32  
17  
(0.695) TYP  
(1.18) TYP  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219010/A 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
9X ( 1.19)  
65  
SYMM  
(8.8)  
(1.39)  
33  
16  
17  
32  
(1.39)  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
71% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219010/A 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY