MSP430FR5994IZVWR [TI]

具有 256KB FRAM、8KB SRAM、LEA、AES、12 位 ADC、比较器、DMA、UART/SPI/I2C 和计时器的 16MHz MCU | ZVW | 87 | -40 to 85;
MSP430FR5994IZVWR
型号: MSP430FR5994IZVWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 256KB FRAM、8KB SRAM、LEA、AES、12 位 ADC、比较器、DMA、UART/SPI/I2C 和计时器的 16MHz MCU | ZVW | 87 | -40 to 85

静态存储器 比较器
文件: 总175页 (文件大小:3487K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
MSP430FR599xMSP430FR596x 混合信号微控制器  
1 器件概述  
1.1 特性  
1
嵌入式微控制器  
多功能输入/输出端口  
高达 16MHz 时钟频率的 16 RISC 架构  
高达 256KB 的铁电随机存取存储器 (FRAM)  
超低功耗写入  
所有引脚支持电容触控功能,无需使用外部组件  
可每位、每字节和每字访问(成对访问)  
所有端口上,从 LPM 中的边沿可选唤醒  
所有端口上可编程上拉和下拉  
– 125ns 每个字的快速写入(4ms 内写入  
64KB)  
代码安全性和加密  
灵活分配存储器中的数据和应用程序代码  
– 1015 写入周期持久性  
– 128 位或 256 位高级加密标准 (AES) 安全加密和  
解密协处理器  
抗辐射和非磁性  
– 3.6V 1.8V 的宽电源电压范围(最低电源电压  
受限于 SVS 电平,请参阅 SVS 规格)  
针对随机数生成算法的随机数种子  
– IP 封装防止对存储器进行外部访问  
增强型串行通信  
经优化的超低功耗模式  
多达四个 eUSCI_A 串行通信端口  
工作模式:118μA/MHz  
支持自动波特率侦测的通用异步收发器  
待机模式下的 VLO (LPM3)500nA  
(UART)  
待机模式下的实时时钟 (RTC) (LPM3.5)350nA  
– IrDA 编码和解码  
(1)  
多达四个 eUSCI_B 串行通信端口  
支持多从设备寻址的 I2C  
关断电流 (LPM4.5)45nA  
针对信号处理的低功耗加速器 (LEA)(仅限  
MSP430FR599x)  
硬件通用异步收发器 (UART) I2C 自举程序  
(BSL)  
灵活时钟系统  
独立于 CPU 运行  
CPU 共享 4KB RAM  
具有 10 个可选厂家调整频率的定频数控振荡器  
– 256 点高效复变快速傅立叶变换 (FFT):  
(DCO)  
运算速度比 Arm® Cortex®-M0+ 内核快多达 40  
低功率低频内部时钟源 (VLO)  
– 32kHz 晶振 (LFXT)  
高频晶振 (HFXT)  
智能数字外设  
– 32 位硬件乘法器 (MPY)  
– 6 通道内部直接存储器访问 (DMA)  
具备日历和报警功能的 RTC  
六个 16 位定时器,每个定时器具有多达七个捕  
/比较寄存器  
开发工具和软件(另请参阅 工具与软件)  
开发套件(MSP-EXP430FR5994 LaunchPad™  
开发套件和 MSPTS430PN80B 目标插接板)  
MSP430Ware™ 软件,适用于 MSP430™微控  
制器  
– 32 位和 16 位循环冗余校验 (CRC)  
高性能模拟  
器件比较 汇总了可用的器件型号和封装选项  
要获得完整的模块说明,请参见  
MSP430FR58xxMSP430FR59xx 和  
MSP430FR6xx 系列用户指南》  
– 16 通道模拟比较器  
– 12 位模数转换器 (ADC),具有窗口比较器、内部  
基准和采样保持功能以及多达 20 条外部输入通  
(1) RTC 3.7pF 晶振计时。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASE54  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
1.2 应用  
电网基础设施  
工厂自动化与控制  
楼宇自动化  
便携式医疗和健身器材  
可穿戴电子产品  
1.3 说明  
MSP430FR599x 微控制器 (MCU) 借助用于数字信号处理的独特低能耗加速器 (LEA) 将低功耗和性能提高到  
新水平。该加速器提供 40 倍于 Arm® Cortex®-M0+ MCU 的性能,可以协助开发人员使用复变函数(例如  
FFT、有限脉冲响应 (FIR) 和矩阵乘法)有效处理数据。免费提供的 DSP 库无需求助 DSP 专家即可实施。  
此外,此类器件还具备高达 256KB FRAM 统一标准存储器,能够为高级 应用提供更多空间, 并且为实  
现无线固件更新提供更高灵活性。  
MSP 超低功耗 (ULP) FRAM 微控制器平台将独特的嵌入式 FRAM 和全面的超低功耗系统架构相结合,从而  
使系统设计人员在低能耗条件下提升性能。FRAM 技术将 RAM 的低能耗快速写入、灵活性和耐用性与闪存  
的非易失性相结合。  
MSP430FR599x MCU 由一款广泛的硬件和软件生态系统进行支持,提供参考设计和代码示例,协助用户快  
速开展设计。MSP430FR599x 的开发套件包括 MSP-EXP430FR5994 LaunchPad™ 开发套件MSP-  
TS430PN80B 80 引脚目标开发板。此外,TI 免费提供 MSP430Ware™ 软件。该软件以 Code Composer  
Studio™IDE 桌面和云端版本组件的形式在 TI 资源管理器内部提供。  
器件信息(1)(2)  
封装  
器件型号  
MSP430FR5994IZVW  
MSP430FR5994IPN  
MSP430FR5994IPM  
MSP430FR5994IRGZ  
封装尺寸(3)  
6mm x 6mm  
12mm x 12mm  
10mm x 10mm  
7mm x 7mm  
NFBGA (87)  
LQFP (80)  
LQFP (64)  
VQFN (48)  
(1) 要获得所有可用器件的最新部件、封装和订购信息,请参见封装选项附录9)或浏览 TI 网站  
www.ti.com.cn。  
(2) 有关提供的所有器件变型的对比,请参见Section 3。  
(3) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据9)。  
2
器件概述  
版权 © 2016–2018, Texas Instruments Incorporated  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
1.4 功能框图  
1-1 显示了器件的功能方框图。  
P1.x, P2.x P3.x, P4.x P5.x, P6.x P7.x, P8.x  
2x8 2x8 2x8  
PJ.x  
2x8  
1x8  
LFXIN,  
HFXIN  
LFXOUT,  
HFXOUT  
Capacitive Touch I/O 0, Capacitive Touch I/O 1  
ADC12_B  
I/O Ports  
P1, P2  
2x8 I/Os  
I/O Ports  
P3, P4  
2x8 I/Os  
I/O Ports  
P5, P6  
2x8 I/Os  
I/O Ports  
P7, P8  
2x8 I/Os  
I/O Port  
PJ  
1x8 I/Os  
REF_A  
MCLK  
ACLK  
Comp_E  
(up to 16  
standard  
inputs,  
up to 8  
differential  
inputs)  
Clock  
System  
(up to 16  
inputs)  
Voltage  
Reference  
SMCLK  
PA PC  
1x16 I/Os 1x16 I/Os 1x16 I/Os  
PB  
PD  
1x16 I/Os  
DMA  
Controller  
Channel  
6
MAB  
MDB  
Bus  
Control  
Logic  
CPUXV2  
incl. 16  
Registers  
MPU  
IP Encap  
CRC16  
RAM  
AES256  
TA2(int)  
Power  
Mgmt  
TA3(int)  
Timer_A  
2 CC  
CRC-16-  
CCITT  
FRCTL_A  
256KB  
128KB  
4KB + 4KB  
Security  
Encryption,  
Decryption  
(128, 256)  
Watchdog  
MPY32  
LDO  
SVS  
Brownout  
CRC32  
Registers  
EEM  
(S: 3+1)  
Tiny RAM  
22B  
CRC-32-  
ISO-3309  
MDB  
MAB  
JTAG  
Interface  
Spy-Bi-Wire  
TB0  
TA0  
TA1  
TA4  
eUSCI_A0  
eUSCI_B0  
eUSCI_B1  
eUSCI_B2  
eUSCI_B3  
(I2C,  
eUSCI_A1  
eUSCI_A2  
eUSCI_A3  
(UART,  
IrDA,  
SPI)  
LEA  
Subsystem  
Timer_B  
7 CC  
Registers  
(int, ext)  
Timer_A  
3 CC  
Registers  
(int, ext)  
Timer_A  
3 CC  
Registers  
(int, ext)  
Timer_A  
2 CC  
Registers  
(int, ext)  
RTC_C  
SPI)  
LPM3.5 Domain  
Copyright © 2016, Texas Instruments Incorporated  
A. 该器件具备 8KB RAM,其中 4KB RAM LEA 子系统共享。CPU 的优先级高于 LEA 子系统。  
B. MSP430FR599x MCU 提供 LEA 子系统。  
1-1. 功能框图  
版权 © 2016–2018, Texas Instruments Incorporated  
器件概述  
3
 
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能框图 .............................................. 3  
修订历史记录............................................... 5  
Device Comparison ..................................... 6  
3.1 Related Products ..................................... 7  
Terminal Configuration and Functions.............. 8  
4.1 Pin Diagrams ......................................... 8  
4.2 Pin Attributes ........................................ 13  
4.3 Signal Descriptions.................................. 19  
4.4 Pin Multiplexing ..................................... 26  
4.5 Buffer Types......................................... 26  
4.6 Connection of Unused Pins ......................... 26  
Specifications ........................................... 27  
5.1 Absolute Maximum Ratings......................... 27  
5.2 ESD Ratings ........................................ 27  
5.3 Recommended Operating Conditions............... 28  
6.1 Overview ............................................ 65  
6.2 CPU ................................................. 65  
6.3  
Low-Energy Accelerator (LEA) for Signal  
Processing (MSP430FR599x Only)................. 65  
6.4 Operating Modes .................................... 66  
6.5 Interrupt Vector Table and Signatures .............. 68  
6.6 Bootloader (BSL).................................... 71  
6.7 JTAG Operation ..................................... 72  
6.8 FRAM Controller A (FRCTL_A) ..................... 73  
6.9 RAM ................................................ 73  
2
3
4
6.10 Tiny RAM............................................ 73  
6.11 Memory Protection Unit (MPU) Including IP  
Encapsulation ....................................... 73  
6.12 Peripherals .......................................... 74  
6.13 Input/Output Diagrams .............................. 85  
6.14 Device Descriptors (TLV) .......................... 123  
6.15 Memory Map ....................................... 126  
6.16 Identification........................................ 144  
Applications, Implementation, and Layout ...... 145  
5
7
8
7.1  
Device Connection and Layout Fundamentals .... 145  
Peripheral- and Interface-Specific Design  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Active Mode Supply Current Into VCC Excluding  
External Current..................................... 29  
Typical Characteristics, Active Mode Supply  
7.2  
Information ......................................... 149  
器件和文档支......................................... 151  
8.1 入门和下一步....................................... 151  
8.2 器件命名规则....................................... 151  
8.3 工具与软件 ......................................... 152  
8.4 文档支持 ........................................... 154  
8.5 相关链接 ........................................... 155  
8.6 社区资源 ........................................... 155  
8.7 商标 ................................................ 155  
8.8 静电放电警告....................................... 155  
8.9 出口管制提示....................................... 155  
8.10 术语.............................................. 155  
机械、封装和可订购信息 .............................. 156  
Currents ............................................. 30  
Low-Power Mode (LPM0, LPM1) Supply Currents  
Into VCC Excluding External Current ................ 30  
Low-Power Mode (LPM2, LPM3, LPM4) Supply  
Currents (Into VCC) Excluding External Current .... 31  
Low-Power Mode (LPMx.5) Supply Currents (Into  
VCC) Excluding External Current.................... 33  
Typical Characteristics, Low-Power Mode Supply  
Currents ............................................. 34  
5.10 Typical Characteristics, Current Consumption per  
Module .............................................. 35  
5.11 Thermal Packaging Characteristics ................ 35  
5.12 Timing and Switching Characteristics............... 36  
Detailed Description ................................... 65  
9
6
4
内容  
版权 © 2016–2018, Texas Instruments Incorporated  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
2 修订历史记录  
Changes from February 1, 2017 to August 30, 2018  
Page  
Updated Section 3.1, Related Products ........................................................................................... 7  
Added note (1) to 5-2, SVS..................................................................................................... 36  
Corrected the value of P6SEL1.x (changed from 0 to 1) for the N/A and DVSS rows on P6.5, P6.6, and P6.7 in  
6-32, Port P6 (P6.0 to P6.7) Pin Functions ................................................................................. 108  
Changed capacitor value from 4.7 µF to 470 nF in 7-5, ADC12_B Grounding and Noise Considerations ........ 149  
Changed capacitor value from 4.7 µF to 470 nF in the last paragraph of 7.2.1.2, Design Requirements ......... 150  
更新了8.2器件命名规则 中的文本和图....................................................................................... 151  
Copyright © 2016–2018, Texas Instruments Incorporated  
修订历史记录  
5
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
3 Device Comparison  
Table 3-1 summarizes the available family members.  
Table 3-1. Device Comparison(1)(2)  
eUSCI  
FRAM  
(KB)  
SRAM  
(KB)  
CLOCK  
SYSTEM  
DEVICE  
LEA  
ADC12_B  
Comp_E  
Timer_A(3)  
Timer_B(4)  
AES  
BSL  
I/Os  
PACKAGE  
A(5)  
B(6)  
80 PN (LQFP)  
87 ZVW (NFBGA)  
20 ext, 2 int ch.  
4
4
68  
DCO  
HFXT  
LFXT  
3, 3(7)  
MSP430FR5994  
256  
128  
256  
128  
256  
8
8
8
8
8
Yes  
16 ch.  
7
Yes  
UART  
17 ext, 2 int ch.  
16 ext, 2 int ch.  
2, 2,2(8)  
3
2
3
1
54  
40  
64 PM (LQFP)  
48 RGZ (VQFN)  
80 PN (LQFP)  
87 ZVW (NFBGA)  
20 ext, 2 int ch.  
4
4
68  
DCO  
HFXT  
LFXT  
3, 3(7)  
MSP430FR5992  
MSP430FR5964  
MSP430FR5962  
MSP430FR59941  
Yes  
No  
16 ch.  
16 ch.  
16 ch.  
16 ch.  
7
7
7
7
Yes  
Yes  
Yes  
Yes  
UART  
UART  
UART  
I2C  
17 ext, 2 int ch.  
16 ext, 2 int ch.  
2, 2,2(8)  
3
2
3
1
54  
40  
64 PM (LQFP)  
48 RGZ (VQFN)  
80 PN (LQFP)  
87 ZVW (NFBGA)  
20 ext, 2 int ch.  
4
4
68  
DCO  
HFXT  
LFXT  
3, 3(7)  
17 ext, 2 int ch.  
16 ext, 2 int ch.  
2, 2,2(8)  
3
2
3
1
54  
40  
64 PM (LQFP)  
48 RGZ (VQFN)  
80 PN (LQFP)  
87 ZVW (NFBGA)  
20 ext, 2 int ch.  
4
4
68  
DCO  
HFXT  
LFXT  
3, 3(7)  
No  
17 ext, 2 int ch.  
16 ext, 2 int ch.  
2, 2,2(8)  
3
2
3
1
54  
40  
64 PM (LQFP)  
48 RGZ (VQFN)  
80 PN (LQFP)  
87 ZVW (NFBGA)  
20 ext, 2 int ch.  
4
4
68  
DCO  
HFXT  
LFXT  
3, 3(7)  
Yes  
17 ext, 2 int ch.  
16 ext, 2 int ch.  
2, 2,2(8)  
3
2
3
1
54  
40  
64 PM (LQFP)  
48 RGZ (VQFN)  
(1) For the most current package and ordering information, see the Package Option Addendum in 9, or see the TI website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.  
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation  
having 5 capture/compare registers and PWM output generators, respectively.  
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation  
having 5 capture/compare registers and PWM output generators, respectively.  
(5) eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI.  
(6) eUSCI_B supports I2C with multiple slave addresses and SPI.  
(7) Timers TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs.  
(8) Timers TA2 and TA3 provide only internal capture/compare inputs and only internal PWM outputs (if any), whereas Timer TA4 provides internal and external capture/compare inputs and  
internal and external PWM outputs (Note: TA4 in the RGZ package provide only internal capture/compare inputs and only internal PWM outputs.).  
6
Device Comparison  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
3.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers High-performance, low-power solutions to enable the autonomous  
future  
Products for MSP430 ultra-low-power sensing and measurement microcontrollers One platform.  
One ecosystem. Endless possibilities.  
Products for MSP430 ultrasonic and performance sensing microcontrollers Ultra-low-power single-  
chip MCUs with integrated sensing peripherals  
Companion products for MSP430FR5994 Review products that are frequently purchased or used with  
this product.  
Reference designs for MSP430FR5994 The TI Designs Reference Design Library is a robust reference  
design library that spans analog, embedded processor, and connectivity. Created by TI  
experts to help you jump start your system design, all TI Designs include schematic or block  
diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at ti.com/tidesigns.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Device Comparison  
7
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
4 Terminal Configuration and Functions  
4.1 Pin Diagrams  
Figure 4-1 shows the bottom view of the pinout of the 87-pin ZVW package, and Figure 4-2 shows the top  
view of the pinout.  
DVCC1  
L10  
DGND  
L1  
P2.1  
L3  
P8.1  
L4  
P3.5  
L5  
P1.6  
L6  
P5.0  
L7  
P5.3  
L8  
P2.0  
L2  
DVSS1  
L9  
DGND  
L11  
DVCC3 DGND  
K1 K2  
P8.2  
K4  
P3.4  
K5  
P2.2  
K3  
P1.7  
K6  
P5.1  
K7  
P5.2  
K8  
P4.6 DGND P2.4  
K9 K10 K11  
DVSS3 RST  
P5.4 P2.3  
J1  
J2  
J10  
J11  
HFIN  
H11  
P2.6  
H1  
TST  
H2  
P8.3  
H4  
P3.6  
H5  
P3.7  
H6  
P4.4  
H7  
P4.5  
H8  
P5.5  
H10  
P4.2  
G1  
P4.3  
G2  
P2.5  
G4  
P5.7  
G8  
P5.6  
G10  
HFOUT  
G11  
P4.0  
F1  
P7.7  
F2  
P4.1  
F4  
P6.4  
F8  
P6.5  
F10  
P2.7  
F11  
P7.4  
E1  
P7.5  
E2  
P7.6  
E4  
P6.6  
E8  
AVSS3  
E10  
LFIN  
E11  
LFOUT  
D11  
P7.2  
D1  
PJ.3  
D2  
P7.3  
D4  
P8.0  
D5  
P4.7  
D6  
P6.1  
D7  
P6.0  
D8  
AVSS2  
D10  
PJ.1  
C1  
PJ.2  
C2  
P6.7  
C10  
AVSS1  
C11  
PJ.0  
B1  
P1.5  
B4  
P7.1  
B5  
AVCC1  
B11  
P1.4  
B3  
P6.3  
B6  
P3.2  
B7  
P3.1  
B8  
P1.2 AGND  
B9  
B10  
DGND DVSS2  
P1.3  
A4  
P7.0  
A5  
DVCC2  
A3  
P6.2  
A6  
P3.3  
A7  
P3.0  
A8  
P1.1  
A9  
P1.0 AGND  
A10 A11  
A1  
A2  
NOTE: On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX  
NOTE: On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL  
Figure 4-1. 87-Pin ZVW Package (Bottom View)  
8
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
DVCC1  
L10  
P5.3  
L8  
P5.0  
L7  
P1.6  
L6  
P3.5  
L5  
P8.1  
L4  
P2.1  
L3  
DGND  
L1  
DGND  
L11  
DVSS1  
L9  
P2.0  
L2  
P3.4  
K5  
P8.2  
K4  
DGND DVCC3  
K2 K1  
P2.4 DGND P4.6  
P5.2  
K8  
P5.1  
K7  
P1.7  
K6  
P2.2  
K3  
K11  
K10  
K9  
P2.3  
J11  
RST DVSS3  
P5.4  
J10  
J2  
J1  
HFIN  
H11  
P3.6  
H5  
P8.3  
H4  
TST  
H2  
P2.6  
H1  
P5.5  
H10  
P4.5  
H8  
P4.4  
H7  
P3.7  
H6  
P2.5  
G4  
P4.3  
G2  
P4.2  
G1  
P5.6  
G10  
P5.7  
G8  
HFOUT  
G11  
P4.1  
F4  
P7.7  
F2  
P4.0  
F1  
P6.5  
F10  
P6.4  
F8  
P2.7  
F11  
P7.6  
E4  
P7.5  
E2  
P7.4  
E1  
AVSS3  
E10  
P6.6  
E8  
LFIN  
E11  
LFOUT  
D11  
P8.0  
D5  
P7.3  
D4  
PJ.3  
D2  
P7.2  
D1  
AVSS2  
D10  
P6.0  
D8  
P6.1  
D7  
P4.7  
D6  
PJ.2  
C2  
PJ.1  
C1  
P6.7  
C10  
AVSS1  
C11  
AVCC1  
B11  
P7.1  
B5  
P1.5  
B4  
PJ.0  
BL1  
AGND P1.2  
P3.1  
B8  
P3.2  
B7  
P6.3  
B6  
P1.4  
B3  
B10  
B9  
P7.0  
A5  
P1.3  
A4  
DVSS2 DGND  
AGND P1.0  
A11 A10  
P1.1  
A9  
P3.0  
A8  
P3.3  
A7  
P6.2  
A6  
DVCC2  
A3  
A2  
A1  
Figure 4-2. 87-Pin ZVW Package (Top View)  
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Figure 4-3 shows the pinout of the 80-pin PN package.  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF-  
P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+  
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
P3.0/A12/C12  
DVSS1  
2
P4.6  
3
P4.5  
4
P4.4/TB0.5  
P5.3/UCB1STE  
P5.2/UCB1CLK/T  
5
P3.1/A13/C13  
6
A4CLK  
P3.2/A14/C14  
P5.1/UCB1SOMI/UCB1SCL  
P5.0/UCB1SIMO/UCB1SDA  
7
P3.3/A15/C15  
P6.0/UC  
P6.1/UC  
A3T  
XD/UC  
8
A3SIM  
O
A3R  
XD/UC  
9
P1.7/TB0.4/UCB0SOMI/UCB0SCL/TA1.0  
A3SO  
MI  
P6.2/UCA3CLK  
P6.3/UCA3STE  
P4.7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P1.6/TB0.3/UCB0SIMO/UCB0SDA/TA0.0  
P3.7/TB0.6  
P3.6/TB0.5  
P7.0/UCB2SIMO/UCB2SDA  
P7.1/UCB2SOMI/UCB2SCL  
P8.0  
P3.5/TB0.4/COUT  
P3.4/TB0.3/SMCLK  
P8.3  
P1.3/TA1.2/UCB0STE/A3/C3  
P1.4/TB0.1/UCA0STE/A4/C4  
P1.5/TB0.2/UCA0CLK/A5/C5  
DVSS2  
P8.2  
P8.1  
P2.2/TB0.2/UCB0CLK  
P2.1/TB0.0/UCA0RXD/UCA0SOMI  
P2.0/TB0.6/UCA0TXD/UCA0SIMO/TB0CLK/ACLK  
DVCC2  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NOTE: On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX  
NOTE: On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL  
Figure 4-3. 80-Pin PN Package (Top View)  
10  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Figure 4-4 shows the pinout of the 64-pin PM package.  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF-  
P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+  
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
P3.0/A12/C12  
DVSS1  
1
2
3
4
5
6
7
8
9
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P4.6  
P4.5  
P4.4/TB0.5  
P5.3/UCB1STE  
P5.2/UCB1CLK/T  
P3.1/A13/C13  
P3.2/A14/C14  
A4CLK  
P5.1/UCB1SOMI/UCB1SCL  
P5.0/UCB1SIMO/UCB1SDA  
P1.7/TB0.4/UCB0SOMI/UCB0SCL/TA1.0  
P1.6/TB0.3/UCB0SIMO/UCB0SDA/TA0.0  
P3.7/TB0.6  
P3.3/A15/C15  
P4.7  
P7.0/UCB2SIMO/UCB2SDA  
P7.1/UCB2SOMI/UCB2SCL  
P8.0  
10  
11  
12  
13  
14  
15  
16  
P1.3/TA1.2/UCB0STE/A3/C3  
P1.4/TB0.1/UCA0STE/A4/C4  
P1.5/TB0.2/UCA0CLK/A5/C5  
DVSS2  
P3.6/TB0.5  
P3.5/TB0.4/COUT  
P3.4/TB0.3/SMCLK  
P2.2/TB0.2/UCB0CLK  
DVCC2  
P2.1/TB0.0/UCA0RXD/UCA0SOMI  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NOTE: On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX  
NOTE: On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL  
Figure 4-4. 64-Pin PM Package (Top View)  
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Figure 4-5 shows the pinout of the 48-pin RGZ package.  
48 47 46 45 44 43 42 41 40 39 38 37  
P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF-  
P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+  
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
P3.0/A12/C12  
1
2
36 DVSS1  
35 P4.6  
3
34 P4.5  
4
33 P4.4/TB0.5  
P3.1/A13/C13  
5
32 P1.7/TB0.4/UCB0SOMI/UCB0SCL/TA1.0  
31 P1.6/TB0.3/UCB0SIMO/UCB0SDA/TA0.0  
30 P3.7/TB0.6  
P3.2/A14/C14  
6
P3.3/A15/C15  
7
P4.7  
8
29 P3.6/TB0.5  
P1.3/TA1.2/UCB0STE/A3/C3  
P1.4/TB0.1/UCA0STE/A4/C4  
P1.5/TB0.2/UCA0CLK/A5/C5  
PJ.0/TDO/TB0OUTH/SMCLK/SRSCG1/C6  
9
28 P3.5/TB0.4/COUT  
10  
11  
12  
27 P3.4/TB0.3/SMCLK  
26 P2.2/TB0.2/UCB0CLK  
25 P2.1/TB0.0/UCA0RXD/UCA0SOMI  
13 14 15 16 17 18 19 20 21 22 23 24  
NOTE: TI recommends connecting the QFN thermal pad to VSS  
.
NOTE: On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX  
NOTE: On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL  
Figure 4-5. 48-Pin RGZ Package (Top View)  
12  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
4.2 Pin Attributes  
Table 4-1 summarizes the attributes of the pins.  
Table 4-1. Pin Attributes  
PIN NUMBER(1)  
BUFFER  
TYPE(5)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(2) (3) SIGNAL TYPE(4)  
SOURCE(6)  
PN  
PM  
RGZ  
ZVW  
P1.0  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
TA0.1  
DMAE0  
RTCCLK  
A0  
I/O  
I
O
1
1
1
A10  
I
C0  
I
Analog  
VREF-  
VeREF-  
P1.1  
O
Analog  
I
Analog  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0.2  
TA1CLK  
COUT  
A1  
I/O  
I
O
2
2
2
A9  
I
C1  
I
Analog  
VREF+  
VeREF+  
P1.2  
O
Analog  
I
Analog  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA1.1  
TA0CLK  
COUT  
A2  
I/O  
I
3
3
3
B9  
O
I
C2  
I
Analog  
OFF  
P3.0  
I/O  
LVCMOS  
Analog  
4
5
6
7
8
4
5
6
7
4
5
6
7
A8  
B8  
B7  
A7  
D8  
A12  
I
C12  
I
I/O  
I
Analog  
P3.1  
LVCMOS  
Analog  
A13  
C13  
I
Analog  
P3.2  
I/O  
I
LVCMOS  
Analog  
OFF  
A14  
C14  
I
Analog  
P3.3  
I/O  
I
LVCMOS  
Analog  
OFF  
A15  
C15  
I
Analog  
P6.0  
I/O  
O
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
OFF  
UCA3TXD  
UCA3SIMO  
(1) N/A = not available  
(2) The signal that is listed first for each pin is the reset default pin name.  
(3) To determine the pin mux encodings for each pin, see 6.13.  
(4) Signal Types: I = Input, O = Output, I/O = Input or Output.  
(5) Buffer Types: LVCMOS, Analog, or Power (see Table 4-3 for details)  
(6) The power source shown in this table is the I/O power source, which may differ from the module power source.  
(7) Reset States:  
OFF = High impedance with Schmitt-trigger input and pullup or pulldown (if available) disabled  
N/A = Not applicable  
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Pin Attributes (continued)  
PIN NUMBER(1)  
BUFFER  
TYPE(5)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(2) (3) SIGNAL TYPE(4)  
SOURCE(6)  
PN  
PM  
RGZ  
ZVW  
P6.1  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
9
D7  
UCA3RXD  
UCA3SOMI  
P6.2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OFF  
10  
A6  
UCA3CLK  
P6.3  
OFF  
11  
12  
8
8
B6  
D6  
UCA3STE  
P4.7  
OFF  
OFF  
P7.0  
13  
9
A5  
UCB2SIMO  
UCB2SDA  
P7.1  
OFF  
14  
15  
10  
11  
B5  
D5  
UCB2SOMI  
UCB2SCL  
P8.0  
OFF  
OFF  
P1.3  
TA1.2  
UCB0STE  
A3  
16  
17  
18  
12  
13  
14  
9
A4  
B3  
B4  
C3  
I
Analog  
P1.4  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.1  
UCA0STE  
A4  
10  
11  
C4  
I
Analog  
P1.5  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.2  
UCA0CLK  
A5  
C5  
I
Analog  
19  
20  
15  
16  
A2  
A3  
DVSS2  
DVCC2  
PJ.0  
P
Power  
N/A  
N/A  
OFF  
P
Power  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
TDO  
TB0OUTH  
SMCLK  
SRSCG1  
C6  
I
21  
22  
17  
18  
12  
13  
B1  
O
O
I
PJ.1  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TDI  
TCLK  
I
C1  
MCLK  
SRSCG0  
C7  
O
O
I
14  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Table 4-1. Pin Attributes (continued)  
PIN NUMBER(1)  
BUFFER  
TYPE(5)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(2) (3) SIGNAL TYPE(4)  
SOURCE(6)  
PN  
PM  
RGZ  
ZVW  
PJ.2  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
TMS  
23  
19  
14  
C2  
ACLK  
SROSCOFF  
C8  
O
O
I
PJ.3  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TCK  
24  
20  
15  
D2  
SRCPUOFF  
C9  
O
I
P7.2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
25  
26  
21  
22  
D1  
D4  
UCB2CLK  
P7.3  
OFF  
UCB2STE  
TA4.1  
P7.4  
OFF  
27  
23  
E1  
TA4.0  
A16  
P7.5  
I/O  
I
LVCMOS  
Analog  
OFF  
28  
29  
30  
31  
32  
33  
34  
E2  
E4  
F2  
F1  
F4  
G1  
G2  
A17  
P7.6  
I/O  
I
LVCMOS  
Analog  
OFF  
A18  
P7.7  
I/O  
I
LVCMOS  
Analog  
OFF  
A19  
P4.0  
I/O  
I
LVCMOS  
Analog  
OFF  
24  
25  
26  
27  
16  
17  
18  
19  
A8  
P4.1  
I/O  
I
LVCMOS  
Analog  
OFF  
A9  
P4.2  
I/O  
I
LVCMOS  
Analog  
OFF  
A10  
P4.3  
I/O  
I
LVCMOS  
Analog  
OFF  
A11  
P2.5  
I/O  
I/O  
O
I/O  
I/O  
O
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
OFF  
TB0.0  
UCA1TXD  
UCA1SIMO  
P2.6  
35  
36  
28  
29  
20  
21  
G4  
H1  
OFF  
TB0.1  
UCA1RXD  
UCA1SOMI  
TEST  
SBWTCK  
RST  
I/O  
I
OFF  
37  
38  
30  
31  
22  
23  
H2  
J2  
I
I
OFF  
NMI  
I
SBWTDIO  
DVSS3  
DVCC3  
I/O  
P
39  
40  
J1  
N/A  
N/A  
K1  
P
Power  
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Pin Attributes (continued)  
PIN NUMBER(1)  
BUFFER  
TYPE(5)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(2) (3) SIGNAL TYPE(4)  
SOURCE(6)  
PN  
PM  
RGZ  
ZVW  
P2.0  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
TB0.6  
UCA0TXD  
BSLTX  
UCA0SIMO  
TB0CLK  
ACLK  
41  
32  
24  
L2  
O
I/O  
I
O
P2.1  
I/O  
I/O  
I
OFF  
TB0.0  
42  
43  
33  
34  
25  
26  
L3  
K3  
UCA0RXD  
BSLRX  
UCA0SOMI  
P2.2  
I
I/O  
I/O  
O
OFF  
TB0.2  
UCB0CLK  
P8.1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
44  
45  
46  
L4  
K4  
H4  
OFF  
OFF  
OFF  
OFF  
P8.2  
P8.3  
P3.4  
47  
48  
35  
36  
27  
28  
K5  
L5  
TB0.3  
SMCLK  
P3.5  
I/O  
I/O  
O
OFF  
TB0.4  
COUT  
P3.6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OFF  
49  
50  
37  
38  
29  
30  
H5  
H6  
TB0.5  
P3.7  
OFF  
TB0.6  
P1.6  
OFF  
TB0.3  
UCB0SIMO  
UCB0SDA  
BSLSDA  
TA0.0  
51  
52  
39  
40  
31  
32  
L6  
P1.7  
OFF  
TB0.4  
UCB0SOMI  
UCB0SCL  
BSLSCL  
TA1.0  
K6  
P5.0  
OFF  
53  
54  
41  
42  
L7  
K7  
UCB1SIMO  
UCB1SDA  
P5.1  
OFF  
UCB1SOMI  
UCB1SCL  
16  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Table 4-1. Pin Attributes (continued)  
PIN NUMBER(1)  
BUFFER  
TYPE(5)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(2) (3) SIGNAL TYPE(4)  
SOURCE(6)  
PN  
PM  
RGZ  
ZVW  
P5.2  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
55  
43  
K8  
UCB1CLK  
TA4CLK  
P5.3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
OFF  
56  
57  
44  
45  
L8  
UCB1STE  
P4.4  
OFF  
33  
H7  
TB0.5  
58  
59  
60  
61  
62  
46  
47  
48  
49  
50  
34  
35  
36  
37  
38  
H8  
K9  
P4.5  
OFF  
OFF  
N/A  
N/A  
OFF  
OFF  
P4.6  
L9  
DVSS1  
DVCC1  
P2.7  
L10  
F11  
P
Power  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
P2.3  
TA0.0  
63  
64  
51  
52  
39  
40  
J11  
UCA1STE  
A6  
C10  
I
Analog  
P2.4  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA1.0  
K11  
UCA1CLK  
A7  
C11  
I
Analog  
P5.4  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
OFF  
UCA2TXD  
UCA2SIMO  
TB0OUTH  
P5.5  
65  
66  
67  
53  
54  
55  
J10  
H10  
G10  
I/O  
I
I/O  
I
OFF  
UCA2RXD  
UCA2SOMI  
ACLK  
I/O  
O
P5.6  
I/O  
I/O  
I/O  
O
OFF  
UCA2CLK  
TA4.0  
SMCLK  
P5.7  
I/O  
I/O  
I/O  
O
OFF  
UCA2STE  
TA4.1  
68  
69  
56  
G8  
F8  
MCLK  
P6.4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OFF  
UCB3SIMO  
UCB3SDA  
P6.5  
OFF  
70  
71  
F10  
E8  
UCB3SOMI  
UCB3SCL  
P6.6  
OFF  
UCB3CLK  
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Pin Attributes (continued)  
PIN NUMBER(1)  
BUFFER  
TYPE(5)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(2) (3) SIGNAL TYPE(4)  
SOURCE(6)  
PN  
72  
73  
74  
PM  
RGZ  
ZVW  
C10  
E10  
H11  
P6.7  
I/O  
I/O  
P
LVCMOS  
LVCMOS  
Power  
DVCC  
OFF  
UCB3STE  
AVSS3  
PJ.6  
DVCC  
57  
58  
41  
42  
N/A  
I/O  
I
LVCMOS  
Analog  
LVCMOS  
Analog  
Power  
DVCC  
HFXIN  
PJ.7  
DVCC  
I/O  
O
P
DVCC  
OFF  
75  
76  
77  
59  
60  
61  
43  
44  
45  
G11  
D10  
E11  
HFXOUT  
AVSS2  
PJ.4  
DVCC  
N/A  
OFF  
I/O  
I
LVCMOS  
Analog  
LVCMOS  
Analog  
Power  
DVCC  
LFXIN  
PJ.5  
DVCC  
I/O  
O
P
DVCC  
OFF  
78  
62  
46  
D11  
LFXOUT  
AVSS1  
AVCC1  
DGND  
AGND  
AGND  
DGND  
DGND  
DGND  
DGND  
QFN Pad  
DVCC  
79  
80  
63  
64  
47  
48  
C11  
B11  
A1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
P
Power  
P
Power  
A11  
B10  
K2  
P
Power  
P
Power  
P
Power  
K10  
L1  
P
Power  
P
Power  
L11  
P
Power  
Pad  
P
Power  
18  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
4.3 Signal Descriptions  
Table 4-2 describes the signals for all device variants and package options.  
Table 4-2. Signal Descriptions  
PIN NO.(1)  
SIGNAL  
NAME  
PIN  
FUNCTION  
DESCRIPTION  
TYPE(2)  
ZVW  
A10  
A9  
PN  
1
PM  
1
RGZ  
1
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
I
I
ADC analog input A0  
ADC analog input A1  
ADC analog input A2  
ADC analog input A3  
ADC analog input A4  
ADC analog input A5  
ADC analog input A6  
ADC analog input A7  
ADC analog input A8  
ADC analog input A9  
2
2
2
B9  
3
3
3
I
A4  
16  
17  
18  
63  
64  
31  
32  
33  
34  
4
12  
13  
14  
51  
52  
24  
25  
26  
27  
4
9
I
B3  
10  
11  
39  
40  
16  
17  
18  
19  
4
I
B4  
I
J11  
K11  
F1  
I
I
I
F4  
I
A10  
G1  
G2  
A8  
I
ADC analog input A10  
A11  
I
ADC analog input A11  
ADC  
A12  
I
ADC analog input A12  
A13  
B8  
5
5
5
I
ADC analog input A13  
A14  
B7  
6
6
6
I
ADC analog input A14  
A15  
A7  
7
7
7
I
ADC analog input A15  
A16  
E1  
27  
28  
29  
30  
2
23  
I
ADC analog input A16  
A17  
E2  
I
ADC analog input A17  
A18  
E4  
I
ADC analog input A18  
A19  
F2  
I
ADC analog input A19  
VREF+  
VREF-  
VeREF+  
A9  
2
2
O
O
I
Output of positive reference voltage  
Output of negative reference voltage  
Input for an external positive reference voltage to the ADC  
A10  
A9  
1
1
1
2
2
2
Input for an external negative reference voltage to the  
ADC  
VeREF-  
A10  
1
1
1
I
BSLSCL  
BSLSDA  
BSLRX  
BSLTX  
K6  
L6  
L3  
L2  
52  
51  
42  
41  
40  
39  
33  
32  
32  
31  
25  
24  
I/O  
I/O  
I
I2C BSL clock  
I2C BSL data  
BSL (I2C)  
UART BSL receive  
UART BSL transmit  
BSL (UART)  
O
23  
41  
66  
19  
32  
54  
C2  
H10  
14  
24  
ACLK  
O
ACLK output  
HFXIN  
H11  
G11  
E11  
D11  
74  
75  
77  
78  
58  
59  
61  
62  
42  
43  
45  
46  
I
Input for high-frequency crystal oscillator HFXT  
Output for high-frequency crystal oscillator HFXT  
Input for low-frequency crystal oscillator LFXT  
Output of low-frequency crystal oscillator LFXT  
HFXOUT  
LFXIN  
O
I
Clock  
LFXOUT  
O
C1  
G8  
22  
68  
18  
56  
MCLK  
13  
O
MCLK output  
21  
47  
67  
17  
35  
55  
B1  
G10  
12  
27  
SMCLK  
O
SMCLK output  
(1) N/A = not available  
(2) I = input, O = output, P = power  
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions (continued)  
PIN NO.(1)  
SIGNAL  
NAME  
PIN  
FUNCTION  
DESCRIPTION  
TYPE(2)  
ZVW  
A10  
A9  
PN  
1
PM  
1
RGZ  
1
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Comparator input C0  
Comparator input C1  
Comparator input C2  
Comparator input C3  
Comparator input C4  
Comparator input C5  
Comparator input C6  
Comparator input C7  
Comparator input C8  
Comparator input C9  
Comparator input C10  
Comparator input C11  
Comparator input C12  
Comparator input C13  
Comparator input C14  
Comparator input C15  
2
2
2
B9  
3
3
3
A4  
16  
17  
18  
21  
22  
23  
24  
63  
64  
4
12  
13  
14  
17  
18  
19  
20  
51  
52  
4
9
B3  
10  
11  
12  
13  
14  
15  
39  
40  
4
B4  
B1  
C1  
C2  
D2  
J11  
K11  
A8  
Comparator  
C10  
C11  
C12  
C13  
C14  
C15  
B8  
5
5
5
B7  
6
6
6
A7  
7
7
7
2
3
48  
2
3
36  
2
3
28  
A9  
B9  
COUT  
O
Comparator output  
DMA  
DMAE0  
SBWTCK  
SBWTDIO  
SRCPUOFF  
SROSCOFF  
SRSCG0  
SRSCG1  
TCK  
A10  
H2  
J2  
1
1
1
I
I
External DMA trigger  
37  
38  
24  
23  
22  
21  
24  
22  
22  
21  
37  
23  
30  
31  
20  
19  
18  
17  
20  
18  
18  
17  
30  
19  
22  
23  
15  
14  
13  
12  
15  
13  
13  
12  
22  
14  
Spy-Bi-Wire input clock  
I/O  
O
O
O
O
I
Spy-Bi-Wire data input/output  
D2  
C2  
C1  
B1  
D2  
C1  
C1  
B1  
H2  
C2  
Low-power debug: CPU Status register bit CPUOFF  
Low-power debug: CPU Status register bit OSCOFF  
Low-power debug: CPU Status register bit SCG0  
Low-power debug: CPU Status register bit SCG1  
Test clock  
Debug  
TCLK  
I
Test clock input  
TDI  
I
Test data input  
TDO  
O
I
Test data output port  
TEST  
Test mode pin – select digital I/O on JTAG pins  
Test mode select  
TMS  
I
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
A10  
A9  
B9  
A4  
B3  
B4  
L6  
1
1
1
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
2
2
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
3
3
3
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
16  
17  
18  
51  
52  
12  
13  
14  
39  
40  
9
GPIO  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
10  
11  
31  
32  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
K6  
20  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
FUNCTION  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Table 4-2. Signal Descriptions (continued)  
PIN NO.(1)  
SIGNAL  
NAME  
PIN  
DESCRIPTION  
TYPE(2)  
ZVW  
PN  
PM  
RGZ  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
P2.0  
L2  
41  
32  
24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
L3  
K3  
J11  
K11  
G4  
H1  
F11  
A8  
B8  
B7  
A7  
K5  
L5  
42  
43  
63  
64  
35  
36  
62  
4
33  
34  
51  
52  
28  
29  
50  
4
25  
26  
39  
40  
20  
21  
38  
4
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
GPIO  
GPIO  
GPIO  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
5
5
5
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
6
6
6
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
7
7
7
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
47  
48  
49  
50  
31  
32  
33  
34  
57  
58  
59  
12  
35  
36  
37  
38  
24  
25  
26  
27  
45  
46  
47  
8
27  
28  
29  
30  
16  
17  
18  
19  
33  
34  
35  
8
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
H5  
H6  
F1  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
F4  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
G1  
G2  
H7  
H8  
K9  
D6  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions (continued)  
PIN NO.(1)  
SIGNAL  
NAME  
PIN  
FUNCTION  
DESCRIPTION  
TYPE(2)  
ZVW  
PN  
PM  
RGZ  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
P5.0  
L7  
53  
41  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
P7.5  
P7.6  
P7.7  
K7  
K8  
54  
55  
56  
65  
66  
67  
68  
8
42  
43  
44  
53  
54  
55  
56  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
L8  
GPIO  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
J10  
H10  
G10  
G8  
D8  
D7  
A6  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
9
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
10  
11  
69  
70  
71  
72  
13  
14  
25  
26  
27  
28  
29  
30  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
B6  
GPIO  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
F8  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
F10  
E8  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
C10  
A5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
9
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
B5  
10  
21  
22  
23  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
D1  
D4  
E1  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
GPIO  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
E2  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
E4  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
F2  
22  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
FUNCTION  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Table 4-2. Signal Descriptions (continued)  
PIN NO.(1)  
SIGNAL  
NAME  
PIN  
DESCRIPTION  
TYPE(2)  
ZVW  
PN  
PM  
RGZ  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
P8.0  
D5  
15  
11  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
P8.1  
P8.2  
P8.3  
L4  
K4  
H4  
44  
45  
46  
GPIO  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
General-purpose digital I/O with port interrupt and wake  
up from LPMx.5  
PJ.0  
B1  
C1  
21  
22  
23  
24  
77  
78  
74  
75  
52  
51  
54  
53  
14  
13  
70  
69  
17  
18  
19  
20  
61  
62  
58  
59  
40  
39  
42  
41  
10  
9
12  
13  
14  
15  
45  
46  
42  
43  
32  
31  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
I2C clock – eUSCI_B0 I2C mode  
I2C data – eUSCI_B0 I2C mode  
I2C clock – eUSCI_B1 I2C mode  
I2C data – eUSCI_B1 I2C mode  
I2C clock – eUSCI_B2 I2C mode  
I2C data – eUSCI_B2 I2C mode  
I2C clock – eUSCI_B3 I2C mode  
I2C data – eUSCI_B3 I2C mode  
PJ.1  
PJ.2  
C2  
PJ.3  
D2  
GPIO  
PJ.4  
E11  
D11  
H11  
G11  
K6  
PJ.5  
PJ.6  
PJ.7  
UCB0SCL  
UCB0SDA  
UCB1SCL  
UCB1SDA  
UCB2SCL  
UCB2SDA  
UCB3SCL  
UCB3SDA  
L6  
K7  
L7  
I2C  
B5  
A5  
F10  
F8  
B10  
A11  
AGND  
P
Analog ground  
AVCC1  
AVSS1  
AVSS2  
AVSS3  
B11  
C11  
D10  
E10  
80  
79  
76  
73  
64  
63  
60  
57  
48  
47  
44  
41  
P
P
P
P
Analog power supply  
Analog ground supply  
Analog ground supply  
Analog ground supply  
A1  
K2  
DGND  
K10  
L1  
P
Digital ground  
Power  
L11  
DVCC1  
DVCC2  
DVCC3  
DVSS1  
DVSS2  
DVSS3  
L10  
A3  
K1  
L9  
61  
20  
40  
60  
19  
39  
49  
16  
37  
P
P
P
P
P
P
Digital power supply  
Digital power supply  
Digital power supply  
48  
15  
36  
Digital ground supply  
A2  
J1  
Digital ground supply  
Digital ground supply  
QFN package exposed thermal pad. TI recommends  
QFN Pad  
RTCCLK  
1
1
Pad  
1
P
connection to VSS  
.
RTC clock calibration output (not available on  
MSP430FR5x5x devices)  
RTC  
A10  
O
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions (continued)  
PIN NO.(1)  
SIGNAL  
NAME  
PIN  
FUNCTION  
DESCRIPTION  
TYPE(2)  
ZVW  
PN  
PM  
RGZ  
Clock signal input – eUSCI_A0 SPI slave mode  
Clock signal output – eUSCI_A0 SPI master mode  
UCA0CLK  
B4  
18  
14  
11  
I/O  
UCA0SIMO  
UCA0SOMI  
UCA0STE  
L2  
L3  
B3  
41  
42  
17  
32  
33  
13  
24  
25  
10  
I/O  
I/O  
I/O  
Slave in/master out – eUSCI_A0 SPI mode  
Slave out/master in – eUSCI_A0 SPI mode  
Slave transmit enable – eUSCI_A0 SPI mode  
Clock signal input – eUSCI_A1 SPI slave mode  
Clock signal output – eUSCI_A1 SPI master mode  
UCA1CLK  
K11  
64  
52  
40  
I/O  
UCA1SIMO  
UCA1SOMI  
UCA1STE  
G4  
H1  
35  
36  
63  
28  
29  
51  
20  
21  
39  
I/O  
I/O  
I/O  
Slave in/master out – eUSCI_A1 SPI mode  
Slave out/master in – eUSCI_A1 SPI mode  
Slave transmit enable – eUSCI_A1 SPI mode  
J11  
Clock signal input – eUSCI_A2 SPI slave mode  
Clock signal output – eUSCI_A2 SPI master mode  
UCA2CLK  
G10  
67  
55  
I/O  
UCA2SIMO  
UCA2SOMI  
UCA2STE  
J10  
H10  
G8  
65  
66  
68  
53  
54  
56  
I/O  
I/O  
I/O  
Slave in/master out – eUSCI_A2 SPI mode  
Slave out/master in – eUSCI_A2 SPI mode  
Slave transmit enable – eUSCI_A2 SPI mode  
Clock signal input – eUSCI_A3 SPI slave mode  
Clock signal output – eUSCI_A3 SPI master mode  
UCA3CLK  
A6  
10  
I/O  
UCA3SIMO  
UCA3SOMI  
UCA3STE  
D8  
D7  
B6  
8
9
I/O  
I/O  
I/O  
Slave in/master out – eUSCI_A3 SPI mode  
Slave out/master in – eUSCI_A3 SPI mode  
Slave transmit enable – eUSCI_A3 SPI mode  
11  
SPI  
Clock signal input – eUSCI_B0 SPI slave mode  
Clock signal output – eUSCI_B0 SPI master mode  
UCB0CLK  
K3  
43  
34  
26  
I/O  
UCB0SIMO  
UCB0SOMI  
UCB0STE  
L6  
K6  
A4  
51  
52  
16  
39  
40  
12  
31  
32  
9
I/O  
I/O  
I/O  
Slave in/master out – eUSCI_B0 SPI mode  
Slave out/master in – eUSCI_B0 SPI mode  
Slave transmit enable – eUSCI_B0 SPI mode  
Clock signal input – eUSCI_B1 SPI slave mode  
Clock signal output – eUSCI_B1 SPI master mode  
UCB1CLK  
K8  
55  
43  
I/O  
UCB1SIMO  
UCB1SOMI  
UCB1STE  
L7  
K7  
L8  
53  
54  
56  
41  
42  
44  
I/O  
I/O  
I/O  
Slave in/master out – eUSCI_B1 SPI mode  
Slave out/master in – eUSCI_B1 SPI mode  
Slave transmit enable – eUSCI_B1 SPI mode  
Clock signal input – eUSCI_B2 SPI slave mode  
Clock signal output – eUSCI_B2 SPI master mode  
UCB2CLK  
D1  
25  
21  
I/O  
UCB2SIMO  
UCB2SOMI  
UCB2STE  
A5  
B5  
D4  
13  
14  
26  
9
I/O  
I/O  
I/O  
Slave in/master out – eUSCI_B2 SPI mode  
Slave out/master in – eUSCI_B2 SPI mode  
Slave transmit enable – eUSCI_B2 SPI mode  
10  
22  
Clock signal input – eUSCI_B3 SPI slave mode  
Clock signal output – eUSCI_B3 SPI master mode  
UCB3CLK  
E8  
71  
I/O  
UCB3SIMO  
UCB3SOMI  
UCB3STE  
NMI  
F8  
F10  
C10  
J2  
69  
70  
72  
38  
38  
I/O  
I/O  
I/O  
I
Slave in/master out – eUSCI_B3 SPI mode  
Slave out/master in – eUSCI_B3 SPI mode  
Slave transmit enable – eUSCI_B3 SPI mode  
Nonmaskable interrupt input  
31  
31  
23  
23  
System  
RST  
J2  
I
Reset input active low  
24  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
FUNCTION  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Table 4-2. Signal Descriptions (continued)  
PIN NO.(1)  
SIGNAL  
NAME  
PIN  
DESCRIPTION  
TYPE(2)  
ZVW  
L6  
PN  
51  
63  
1
PM  
39  
51  
1
RGZ  
31  
39  
1
TA0.0  
I/O  
I/O  
I/O  
I/O  
I
TA0 CCR0 capture: CCI0A input, compare: Out0  
TA0 CCR0 capture: CCI0B input, compare: Out0  
TA0 CCR1 capture: CCI1A input, compare: Out1  
TA0 CCR2 capture: CCI2A input, compare: Out2  
TA0 input clock  
TA0.0  
TA0.1  
TA0.2  
TA0CLK  
TA1.0  
TA1.0  
TA1.1  
TA1.2  
TA1CLK  
TA4.0  
TA4.0  
TA4.1  
TA4.1  
TA4CLK  
TB0.0  
TB0.0  
TB0.1  
TB0.1  
TB0.2  
TB0.2  
TB0.3  
TB0.3  
TB0.4  
TB0.4  
TB0.5  
TB0.5  
TB0.6  
TB0.6  
TB0CLK  
J11  
A10  
A9  
B9  
K6  
K11  
B9  
A4  
A9  
E1  
G10  
D4  
G8  
K8  
G4  
L3  
2
2
2
3
3
3
52  
64  
3
40  
52  
3
32  
40  
3
I/O  
I/O  
I/O  
I/O  
I
TA1 CCR0 capture: CCI0A input, compare: Out0  
TA1 CCR0 capture: CCI0B input, compare: Out0  
TA1 CCR1 capture: CCI1A input, compare: Out1  
TA1 CCR2 capture: CCI2A input, compare: Out2  
TA1 input clock  
16  
2
12  
2
9
2
27  
67  
26  
68  
55  
35  
42  
17  
36  
18  
43  
47  
51  
48  
52  
49  
57  
41  
50  
41  
23  
55  
22  
56  
43  
28  
33  
13  
29  
14  
34  
35  
39  
36  
40  
37  
45  
32  
38  
32  
I/O  
I/O  
I/O  
I/O  
I
TA4 CCR0 capture: CCI0B input, compare: Out0  
TA4 CCR0 capture: CCI0A input, compare: Out0  
TA4CCR1 capture: CCI1B input, compare: Out1  
TA4 CCR1 capture: CCI1A input, compare: Out1  
TA4 input clock  
20  
25  
10  
21  
11  
26  
27  
31  
28  
32  
29  
33  
24  
30  
24  
I/O  
I/O  
I/O  
O
TB0 CCR0 capture: CCI0B input, compare: Out0  
TB0 CCR0 capture: CCI0A input, compare: Out0  
TB0 CCR1 capture: CCI1A input, compare: Out1  
TB0 CCR1 compare: Out1  
Timer  
B3  
H1  
B4  
K3  
K5  
L6  
I/O  
O
TB0 CCR2 capture: CCI2A input, compare: Out2  
TB0 CCR2 compare: Out2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
TB0 CCR3 capture: CCI3A input, compare: Out3  
TB0 CCR3 capture: CCI3B input, compare: Out3  
TB0 CCR4 capture: CCI4A input, compare: Out4  
TB0 CCR4 capture: CCI4B input, compare: Out4  
TB0 CCR5 capture: CCI5A input, compare: Out5  
TB0CCR5 capture: CCI5B input, compare: Out5  
TB0 CCR6 capture: CCI6B input, compare: Out6  
TB0 CCR6 capture: CCI6A input, compare: Out6  
TB0 clock input  
L5  
K6  
H5  
H7  
L2  
H6  
L2  
B1  
J10  
21  
65  
17  
53  
TB0OUTH  
12  
I
Switch all PWM outputs high impedance input – TB0  
UCA0RXD  
UCA0TXD  
UCA1RXD  
UCA1TXD  
UCA2RXD  
UCA2TXD  
UCA3RXD  
UCA3TXD  
L3  
L2  
42  
41  
36  
35  
66  
65  
9
33  
32  
29  
28  
54  
53  
25  
24  
21  
20  
I
O
I
Receive data – eUSCI_A0 UART mode  
Transmit data – eUSCI_A0 UART mode  
Receive data – eUSCI_A1 UART mode  
Transmit data – eUSCI_A1 UART mode  
Receive data – eUSCI_A2 UART mode  
Transmit data – eUSCI_A2 UART mode  
Receive data – eUSCI_A3 UART mode  
Transmit data – eUSCI_A3 UART mode  
H1  
G4  
H10  
J10  
D7  
D8  
O
I
UART  
O
I
8
O
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
25  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
4.4 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for  
example, if the device is in test mode). For details of the settings for each pin and schematics of the  
multiplexed ports, see 6.13.  
4.5 Buffer Types  
Table 4-3 describes the buffer types that are referenced in Table 4-1.  
Table 4-3. Buffer Type  
NOMINAL  
OUTPUT  
DRIVE  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)(1)  
HYSTERESIS  
PU OR PD(1)  
COMMENTS  
STRENGTH  
(mA)(1)  
See analog modules in  
Specifications for details  
Analog(2)  
LVCMOS  
3.0 V  
3.0 V  
No  
N/A  
N/A  
N/A  
See Typical  
Yes(3)  
Programmable See Digital I/Os Characteristics  
– Outputs  
Power  
SVS enables hysteresis on  
DVCC  
3.0 V  
3.0 V  
0 V  
No  
No  
No  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
(DVCC)(4)  
Power  
(AVCC)(4)  
Power (DVSS  
and AVSS)(4)  
(1) N/A = not applicable  
(2) This is a switch, not a buffer.  
(3) Only for input pins  
(4) This is supply input, not a buffer.  
4.6 Connection of Unused Pins  
Table 4-4 lists the correct termination of all unused pins.  
Table 4-4. Connection of Unused Pins(1)  
PIN  
POTENTIAL  
DVCC  
COMMENT  
AVCC  
AVSS  
DVSS  
Px.0 to Px.7  
RST/NMI  
Open  
Switched to port function, output direction (PxDIR.n = 1)  
47-kpullup or internal pullup selected with 10-nF (2.2 nF(2)) pulldown  
DVCC or VCC  
PJ.0/TDO  
PJ.1/TDI  
PJ.2/TMS  
PJ.3/TCK  
The JTAG pins are shared with general-purpose I/O function (PJ.x). If not being used, these should  
be switched to port function, output direction. When used as JTAG pins, these pins should remain  
open.  
Open  
Open  
TEST  
This pin always has an internal pulldown enabled.  
(1) For any unused pin with a secondary function that is shared with general-purpose I/O, follow the guidelines for the Px.0 to Px.7 pins.  
(2) The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG  
mode with TI tools like FET interfaces or GANG programmers.  
26  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
5 Specifications  
5.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
4.1  
UNIT  
V
Voltage applied at DVCC and AVCC pins to VSS  
Voltage difference between DVCC and AVCC pins(2)  
–0.3  
±0.3  
V
VCC + 0.3 V  
(4.1 V Max)  
(3)  
Voltage applied to any pin  
–0.3  
–40  
V
Diode current at any device pin  
±2  
mA  
°C  
(4)  
Storage temperature, Tstg  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltage differences between DVCC and AVCC exceeding the specified limits may cause malfunction of the device including erroneous  
writes to RAM and FRAM.  
(3) All voltages referenced to VSS  
.
(4) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
5.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V  
may actually have higher performance.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
MAX UNIT  
5.3 Recommended Operating Conditions  
TYP data are based on VCC = 3.0 V and TA = 25°C, unless otherwise noted  
MIN NOM  
VCC  
VSS  
TA  
Supply voltage range applied at all DVCC and AVCC pins(1) (2) (3)  
Supply voltage applied at all DVSS and AVSS pins.  
Operating free-air temperature  
1.8(4)  
3.6  
V
V
0
–40  
–40  
85  
85  
°C  
°C  
µF  
TJ  
Operating junction temperature  
Capacitor value at DVCC(5)  
CDVCC  
1–20%  
No FRAM wait states  
(NWAITSx = 0)  
0
0
8(7)  
fSYSTEM  
Processor frequency (maximum MCLK frequency)(6)  
MHz  
With FRAM wait states  
(NWAITSx = 1)(8)  
16(9)  
fACLK  
Maximum ACLK frequency  
Maximum SMCLK frequency  
50 kHz  
16(9) MHz  
fSMCLK  
(1) TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device  
operation, the voltage difference between AVCC and DVCC must not exceed the limits specified under Absolute Maximum Ratings.  
Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.  
(2) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the data sheet recommendation for  
capacitor CDVCC should limit the slopes accordingly.  
(3) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(4) The minimum supply voltage is defined by the supervisor SVS levels. See the PMM SVS threshold parameters for the exact values.  
(5) For each supply pin pair (DVCC and DVSS, AVCC and AVSS), place a low-ESR ceramic capacitor of 100 nF (minimum) as close as  
possible (within a few millimeters) to the respective pin pairs.  
(6) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(7) DCO settings and HF cyrstals with a typical value less than or equal to the specified MAX value are permitted.  
(8) Wait states only occur on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always excecuted  
without wait states.  
(9) DCO settings and HF cyrstals with a typical value less than or equal to the specified MAX value are permitted. If a clock sources with a  
higher typical value is used, the clock must be divided in the clock system.  
28  
Specifications  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
5.4 Active Mode Supply Current Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1)(2) (see Figure 5-1)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
0 WAIT  
STATES  
4 MHz  
0 WAIT  
STATES  
8 MHz  
0 WAIT  
STATES  
(NWAITSx = 0)  
12 MHz  
1 WAIT STATE 1 WAIT STATE  
(NWAITSx = 1) (NWAITSx = 1)  
16 MHz  
EXECUTION  
MEMORY  
PARAMETER  
VCC  
UNIT  
(NWAITSx = 0)  
(NWAITSx = 0)  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
IAM, FRAM_UNI  
FRAM  
3.0 V  
3.0 V  
225  
665  
1275  
1550  
1970  
µA  
µA  
(Unified memory)(3)  
FRAM  
0% cache hit  
ratio  
IAM, FRAM(0%)(4)  
420  
275  
220  
192  
125  
1455  
855  
650  
535  
255  
2850  
1650  
1240  
1015  
450  
2330  
1770  
1490  
1290  
670  
3000  
2265  
1880  
1620  
790  
(5)  
FRAM  
50% cache hit  
ratio  
IAM, FRAM(50%)(4)  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
µA  
µA  
µA  
µA  
(5)  
FRAM  
66% cache hit  
ratio  
IAM, FRAM(66%)(4)  
(5)  
FRAM  
75% cache hit  
ratio  
IAM, FRAM(75%)(4)  
261  
182  
1170  
1490  
1870  
1313  
(5)  
FRAM  
100% cache hit  
ratio  
IAM, FRAM(100%(4)  
(5)  
(6) (5)  
IAM, RAM  
RAM  
RAM  
3.0 V  
3.0 V  
140  
90  
325  
280  
590  
540  
880  
830  
1070  
1020  
µA  
µA  
(7) (5)  
IAM, RAM only  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Characterized with program executing typical data processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO= 24 MHz and  
fMCLK = fSMCLK = fDCO / 2.  
At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency  
(fMCLK,eff) decreases. The effective MCLK frequency also depends on the cache hit ratio. SMCLK is not affected by the number of wait  
states or the cache hit ratio.  
The following equation can be used to compute fMCLK,eff  
:
fMCLK,eff = fMCLK / [wait states × (1 – cache hit ratio) + 1]  
For example, with 1 wait state and 75% cache hit ratio fMCKL,eff = fMCLK / [1 × (1 – 0.75) + 1] = fMCLK / 1.25.  
(3) Represents typical program execution. Program and data reside entirely in FRAM. All execution is from FRAM.  
(4) Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit  
ratio represents number cache accesess divided by the total number of FRAM accesses. For example, a 75% ratio implies three of  
every four accesses is from cache, and the remaining are FRAM accesses.  
(5) See Figure 5-1 for typical curves. The characteristic equation shown in the graph is computed using the least squares method for best  
linear fit using the typical data shown in Section 5.4.  
(6) Program and data reside entirely in RAM. All execution is from RAM.  
(7) Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
5.5 Typical Characteristics, Active Mode Supply Currents  
3000  
I(AM,0%)  
I(AM,50%)  
I(AM,66%)  
I(AM,75%)  
I(AM,100%)  
I(AM,RAM)  
2500  
2000  
1500  
1000  
500  
I(AM,75%) [µA] = 118 × f [MHz] + 74  
0
1
2
3
4
5
6
7
8
fMCLK, MCLK Frequency (MHz)  
Figure 5-1. Typical Active Mode Supply Currents, No Wait States  
5.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current  
(2)  
over recommended operating free-air temperature (unless otherwise noted)(1)  
FREQUENCY (fSMCLK  
8 MHz  
)
PARAMETER  
VCC  
1 MHz  
TYP  
4 MHz  
TYP  
12 MHz  
TYP  
16 MHz  
TYP  
UNIT  
MAX  
135  
67  
MAX  
TYP  
165  
175  
130  
130  
MAX  
MAX  
MAX  
290  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
75  
85  
40  
40  
105  
115  
65  
240  
250  
215  
215  
220  
240  
195  
195  
ILPM0  
µA  
µA  
ILPM1  
65  
222  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO at specified frequency - except for 12 MHz: here fDCO=24MHz and fSMCLK = fDCO / 2.  
30  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
5.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External  
Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (see Figure 5-2  
and Figure 5-3)  
–40°C  
25°C  
60°C  
85°C  
PARAMETER  
VCC  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
(3)  
Low-power mode 2, 12-pF crystal(2)  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
0.8  
0.8  
0.6  
0.6  
0.5  
0.5  
0.8  
0.8  
0.5  
1.3  
1.3  
1.2  
1.2  
1.0  
1.0  
1.0  
1.0  
0.7  
4.1  
4.1  
4.0  
4.0  
3.8  
3.8  
2.2  
2.2  
2.1  
10.8  
10.8  
10.7  
10.7  
10.5  
10.5  
4.5  
ILPM2,XT12  
ILPM2,XT3.7  
ILPM2,VLO  
ILPM3,XT12  
μA  
(4)  
2.7  
25  
(5)  
Low-power mode 2, 3.7-pF crystal(2)  
μA  
(4)  
Low-power mode 2, VLO, includes  
SVS(6)  
μA  
2.4  
1.5  
24.5  
9.9  
Low-power mode 3, 12-pF crystal,  
μA  
(3) (7)  
includes SVS(2)  
4.5  
Low-power mode 3, 3.7-pF crystal,  
4.4  
(5) (8)  
ILPM3,XT3.7  
excludes SVS(2)  
μA  
3.0 V  
0.5  
0.7  
2.1  
4.4  
(also see Figure 5-2)  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.4  
0.4  
0.5  
0.5  
1.9  
1.9  
1.4  
1.4  
1.9  
1.9  
4.2  
4.2  
2.6  
2.6  
4.3  
4.3  
Low-power mode 3, VLO, excludes  
SVS(9)  
ILPM3,VLO  
μA  
μA  
μA  
1.2  
1.1  
1.2  
9.5  
7.9  
9.5  
0.36  
0.36  
0.5  
0.47  
0.47  
0.6  
Low-power mode 3, VLO, excludes SVS,  
RAM powered down completely(9)  
ILPM3,VLO, RAMoff  
ILPM4,SVS  
Low-power mode 4, includes SVS(10)  
0.5  
0.6  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are  
chosen to closely match the required 12.5 pF load.  
(4) Low-power mode 2, crystal oscillator test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7-pF load.  
(6) Low-power mode 2, VLO test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2),  
fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
(7) Low-power mode 3, 12-pF crystal including SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution and due to additional idle  
current. See the idle currents specified for the respective peripheral groups.  
(8) Low-power mode 3, 3.7-pF crystal excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE =  
0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution and due to additional idle  
current. See the idle currents specified for the respective peripheral groups.  
(9) Low-power mode 3, VLO excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). RAM disabled (RCCTL0 = 5A55h). Current for  
brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution and due to additional idle  
current. See the idle currents specified for the respective peripheral groups.  
(10) Low-power mode 4 including SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution and due to additional idle  
current. See the idle currents specified for the respective peripheral groups.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External  
Current (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (see Figure 5-2  
and Figure 5-3)  
–40°C  
25°C  
60°C  
85°C  
PARAMETER  
VCC  
UNIT  
TYP  
MAX  
TYP  
MAX  
1.1  
TYP  
MAX  
TYP  
MAX  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
1.7  
1.7  
1.2  
1.2  
4.0  
4.0  
2.5  
2.5  
ILPM4  
Low-power mode 4, excludes SVS(11)  
μA  
9.3  
0.37  
0.37  
Low-power mode 4, excludes SVS, RAM  
powered down completely(11)  
ILPM4,RAMoff  
μA  
1.0  
7.8  
1.6  
Additional idle current if one or more  
modules from Group A (see 6-3) are  
activated in LPM3 or LPM4  
IIDLE,GroupA  
IIDLE,GroupB  
IIDLE,GroupC  
3.0 V  
3.0 V  
3.0 V  
0.02  
0.02  
0.02  
0.3  
0.35  
0.38  
μA  
μA  
μA  
Additional idle current if one or more  
modules from Group B (see 6-3) are  
activated in LPM3 or LPM4  
2.1  
2.3  
Additional idle current if one or more  
modules from Group C (see 6-3) are  
activated in LPM3 or LPM4  
(11) Low-power mode 4 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). RAM disabled (RCCTL0 = 5A55h).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution and due to additional idle  
current. See the idle currents specified for the respective peripheral groups.  
32  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
5.8 Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5-4  
and Figure 5-5)  
–40°C  
25°C  
60°C  
85°C  
PARAMETER  
VCC  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.45  
0.45  
0.3  
0.5  
0.5  
0.55  
0.55  
0.4  
0.75  
0.75  
0.65  
0.65  
0.4  
Low-power mode 3.5, 12-pF crystal  
ILPM3.5,XT12  
ILPM3.5,XT3.7  
ILPM4.5,SVS  
ILPM4.5  
μA  
(3) (4)  
including SVS(2)  
0.72  
1.65  
0.35  
0.35  
0.25  
0.25  
0.045  
0.045  
Low-power mode 3.5, 3.7-pF crystal  
μA  
(5) (6)  
excluding SVS(2)  
0.3  
0.4  
0.23  
0.23  
0.035  
0.035  
0.28  
0.28  
0.075  
0.075  
Low-power mode 4.5, including SVS(7)  
Low-power mode 4.5, excluding SVS(8)  
μA  
0.42  
0.4  
0.75  
0.55  
0.15  
0.15  
μA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are  
chosen to closely match the required 12.5 pF load.  
(4) Low-power mode 3.5, 1-pF crystal including SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1; CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7-pF load.  
(6) Low-power mode 3.5, 3.7-pF crystal excluding SVS test conditions:  
Current for RTC clocked by XT1 included.Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1; CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(7) Low-power mode 4.5 including SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1; CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(8) Low-power mode 4.5 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1; CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
5.9 Typical Characteristics, Low-Power Mode Supply Currents  
3.5  
3
2.5  
2
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS on  
2.2 V, SVS on  
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS on  
2.2 V, SVS on  
3
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
-40  
-20  
0
20  
Temperature (°C)  
Figure 5-2. LPM3 Supply Current vs Temperature  
40  
60  
80  
100  
-40  
-20  
0
20  
Temperature (°C)  
Figure 5-3. LPM4 Supply Current vs Temperature  
40  
60  
80  
100  
0.65  
0.5  
2.2 V, SVS Off  
3.0 V, SVS Off  
2.2 V, SVS off  
3.0 V, SVS off  
2.2 V, SVS on  
3.0 V, SVS on  
0.45  
0.4  
0.6  
0.55  
0.5  
0.35  
0.3  
0.45  
0.4  
0.25  
0.2  
0.35  
0.3  
0.15  
0.1  
0.25  
0.2  
0.05  
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
Temperature (°C)  
Figure 5-5. LPM4.5 Supply Current vs Temperature  
40  
60  
80  
100  
Temperature (°C)  
Figure 5-4. LPM3.5 Supply Current vs Temperature  
34  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
5.10 Typical Characteristics, Current Consumption per Module(1)  
MODULE  
Timer_A  
TEST CONDITIONS  
REFERENCE CLOCK  
Module input clock  
MIN  
TYP  
3
MAX  
UNIT  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
nA  
Timer_B  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC_C  
MPY  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
5
UART mode  
6.3  
4
SPI mode  
SPI mode  
4
I2C mode, 100 kbaud  
4
100  
28  
3.3  
3.3  
86  
66  
Only from start to end of operation  
Only from start to end of operation  
Only from start to end of operation  
256 Point Complex FFT, Data = nonzero  
256 Point Complex FFT, Data = zero  
MCLK  
μA/MHz  
μA/MHz  
μA/MHz  
CRC16  
MCLK  
CRC32  
MCLK  
LEA  
MCLK  
µA/MHz  
(1) For other module currents not listed here, see the module-specific parameter sections.  
5.11 Thermal Packaging Characteristics  
THERMAL METRIC(1) (2)  
PACKAGE  
VALUE  
27.5  
12.5  
4.4  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
RθJC(TOP)  
RθJB  
Junction-to-board thermal resistance  
QFN-48 (RGZ)  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
4.4  
ΨJT  
0.2  
RθJC(BOTTOM)  
RθJA  
0.8  
53.2  
14.3  
24.7  
24.4  
0.6  
RθJC(TOP)  
RθJB  
Junction-to-board thermal resistance  
QFP-64 (PM)  
QFP-80 (PN)  
BGA-87 (ZVW)  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
ΨJT  
RθJA  
47.9  
13.0  
22.5  
22.2  
0.6  
RθJC(TOP)  
RθJB  
Junction-to-board thermal resistance  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
ΨJT  
RθJA  
60.6  
18.1  
31.8  
30.1  
0.7  
RθJC(TOP)  
RθJB  
Junction-to-board thermal resistance  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
ΨJT  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC  
standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
版权 © 2016–2018, Texas Instruments Incorporated  
Specifications  
35  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
5.12 Timing and Switching Characteristics  
5.12.1 Power Supply Sequencing  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up,  
power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the  
limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the  
device including erroneous writes to RAM and FRAM.  
5-1 lists the power ramp requirements.  
5-1. Brownout and Device Reset Power Ramp Requirements  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VVCC_BOR– Brownout power-down level(1)  
VVCC_BOR+ Brownout power-up level(1)  
TEST CONDITIONS  
MIN  
0.73  
0.79  
MAX UNIT  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s(2)  
1.66  
1.75  
V
V
(1) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 volts per microsecond (±0.05 V/µs). Following the data sheet recommendation  
for capacitor CDVCC should limit the slopes accordingly.  
(2) The brownout levels are measured with a slowly changing supply.  
5-2 lists the supply voltage supervisor characteristics.  
5-2. SVS  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
170  
MAX UNIT  
ISVSH,LPM  
VSVSH-  
SVSH current consumption, low power modes  
SVSH power-down level(1)  
SVSH power-up level(1)  
300  
1.85  
1.99  
150  
10  
nA  
V
1.75  
1.77  
40  
1.80  
1.88  
VSVSH+  
V
VSVSH_hys  
tPD,SVSH, AM  
SVSH hysteresis  
mV  
µs  
SVSH propagation delay, active mode  
dVVcc/dt = –10 mV/µs  
(1) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference  
Design.  
5.12.2 Reset Timing  
5-3 lists the input requirements of the reset pin.  
5-3. Reset Input  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
VCC  
MIN  
MAX UNIT  
t(RST)  
(1) Not applicable if RST/NMI pin configured as NMI.  
External reset pulse duration on RST(1)  
2.2 V, 3.0 V  
2
µs  
36  
Specifications  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
5.12.3 Clock Specifications  
LFXTCLK (see Table 5-4) is a low-frequency oscillator that can be used either with low-frequency 32768-  
Hz watch crystals, standard crystals, resonators, or external clock sources in the 50 kHz or below range.  
When in bypass mode, LFXTCLK can be driven with an external square-wave signal.  
Table 5-4. Low-Frequency Crystal Oscillator, LFXT(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
180  
TA = 25°C, CL,eff = 3.7 pF, ESR 44 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
TA = 25°C, CL,eff = 6 pF, ESR 40 kΩ  
185  
225  
IVCC.LFXT  
Current consumption  
3.0 V  
nA  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {2},  
TA = 25°C, CL,eff = 9 pF, ESR 40 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF, ESR 40 kΩ  
330  
LFXT oscillator crystal  
frequency  
fLFXT  
LFXTBYPASS = 0  
32768  
Hz  
Measured at ACLK,  
fLFXT = 32768 Hz  
DCLFXT  
fLFXT,SW  
DCLFXT, SW  
LFXT oscillator duty cycle  
30%  
70%  
LFXT oscillator logic-level  
square-wave input frequency  
LFXTBYPASS = 1(2) (3)  
10.5 32.768  
50 kHz  
70%  
LFXT oscillator logic-level  
square-wave input duty cycle  
LFXTBYPASS = 1  
30%  
210  
300  
2
LFXTBYPASS = 0, LFXTDRIVE = {1},  
fLFXT = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(4)  
OALFXT  
kΩ  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
Integrated load capacitance at  
LFXIN terminal(5) (6)  
CLFXIN  
pF  
pF  
Integrated load capacitance at  
LFXOUT terminal(5) (6)  
CLFXOUT  
2
(1) To improve EMI on the LFXT oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins LFXIN and LFXOUT.  
Avoid running PCB traces underneath or adjacent to the LFXIN and LFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DCLFXT, SW  
.
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF  
For LFXTDRIVE = {1}, CL,eff = 6 pF  
For LFXTDRIVE = {2}, 6 pF CL,eff 9 pF  
For LFXTDRIVE = {3}, 9 pF CL,eff 12.5 pF  
(5) This represents all the parasitic capacitance present at the LFXIN and LFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT are the  
total capacitance at the LFXIN and LFXOUT terminals, respectively.  
(6) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
37  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-4. Low-Frequency Crystal Oscillator, LFXT(1) (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
TA = 25°C, CL,eff = 3.7 pF,  
3.0 V  
800  
tSTART,LFXT  
Start-up time(7)  
ms  
fOSC = 32768 Hz  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
3.0 V  
1000  
fFault,LFXT  
Oscillator fault frequency(8) (9)  
0
3500  
Hz  
(7) Includes startup counter of 1024 clock cycles.  
(8) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specification may set the  
flag. A static condition or stuck at fault condition will set the flag.  
(9) Measured with logic-level input frequency but also applies to operation with crystals.  
HFXTCLK (see Table 5-5) is a high-frequency oscillator that can be used with standard crystals or  
resonators in the 4MHz to 24-MHz range. When in bypass mode, HFXTCLK can be driven with an  
external square-wave signal.  
Table 5-5. High-Frequency Crystal Oscillator, HFXT(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1(2), TA = 25°C,  
75  
CL,eff = 18 pF, typical ESR, Cshunt  
fOSC = 8 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 1,  
HFFREQ = 1, TA = 25°C,  
CL,eff = 18 pF, typical ESR, Cshunt  
120  
190  
250  
HFXT oscillator crystal current  
HF mode at typical ESR  
IDVCC.HFXT  
3.0 V  
μA  
fOSC = 16 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 2,  
HFFREQ = 2, TA = 25°C  
CL,eff = 18 pF, typical ESR, Cshunt  
fOSC = 24 MHz  
HFXTBYPASS = 0, HFXTDRIVE = 3,  
HFFREQ = 3, TA = 25°C  
CL,eff = 18 pF, typical ESR, Cshunt  
(2) (3)  
HFXTBYPASS = 0, HFFREQ = 1  
HFXTBYPASS = 0, HFFREQ = 2  
HFXTBYPASS = 0, HFFREQ = 3  
4
8.01  
8
HFXT oscillator crystal  
frequency, crystal mode  
(3)  
(3)  
fHFXT  
16 MHz  
24  
16.01  
Measured at SMCLK,  
fHFXT = 16 MHz  
DCHFXT  
HFXT oscillator duty cycle.  
40%  
50%  
60%  
4
HFXTBYPASS = 1, HFFREQ = 0(4) (3)  
HFXTBYPASS = 1, HFFREQ = 1(4) (3)  
HFXTBYPASS = 1, HFFREQ = 2(4) (3)  
HFXTBYPASS = 1, HFFREQ = 3(4) (3)  
0.9  
4.01  
HFXT oscillator logic-level  
square-wave input frequency,  
bypass mode  
8
fHFXT,SW  
MHz  
16  
8.01  
16.01  
24  
HFXT oscillator logic-level  
square-wave input duty cycle  
DCHFXT, SW  
HFXTBYPASS = 1  
40%  
60%  
(1) To improve EMI on the HFXT oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins HFXIN and HFXOUT.  
Avoid running PCB traces underneath or adjacent to the HFXIN and HFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator HFXIN and HFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) HFFREQ = {0} is not supported for HFXT crystal mode of operation.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) When HFXTBYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DCHFXT, SW  
.
38  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Table 5-5. High-Frequency Crystal Oscillator, HFXT(1) (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1(2)  
,
450  
fHFXT,HF = 4 MHz, CL,eff = 16 pF  
HFXTBYPASS = 0, HFXTDRIVE = 1,  
HFFREQ = 1  
fHFXT,HF = 8 MHz, CL,eff = 16 pF  
320  
200  
200  
1.6  
Oscillation allowance for  
HFXT crystals(5)  
OAHFXT  
HFXTBYPASS = 0, HFXTDRIVE = 2,  
HFFREQ = 2  
fHFXT,HF = 16 MHz, CL,eff = 16 pF  
HFXTBYPASS = 0, HFXTDRIVE = 3,  
HFFREQ = 3  
fHFXT,HF = 24 MHz, CL,eff = 16 pF  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1, TA = 25°C, CL,eff = 16 pF  
tSTART,HFXT  
Startup time(6)  
3.0 V  
ms  
pF  
fOSC = 24 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 3,  
HFFREQ = 3, TA = 25°C, CL,eff = 16 pF  
0.6  
Integrated load capacitance at  
HFXIN terminaI(7) (8)  
CHFXIN  
CHFXOUT  
fFault,HFXT  
2
2
Integrated load capacitance at  
HFXOUT terminaI(7) (8)  
Oscillator fault frequency(9) (10)  
pF  
0
800 kHz  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes startup counter of 1024 clock cycles.  
(7) This represents all the parasitic capacitance present at the HFXIN and HFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT is the  
total capacitance at the HFXIN and HFXOUT terminals, respectively.  
(8) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
(9) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX might set the flag. A static  
condition or stuck at fault condition will set the flag.  
(10) Measured with logic-level input frequency but also applies to operation with crystals.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
The DCO (see Table 5-6) is an internal digitally controlled oscillator (DCO) with selectable frequencies.  
Table 5-6. DCO  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 0,  
DCORSEL = 1, DCOFSEL = 0  
DCO frequency range  
1 MHz, trimmed  
fDCO1  
1
±3.5%  
MHz  
DCO frequency range  
2.7 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 1  
fDCO2.7  
fDCO3.5  
fDCO4  
2.667 ±3.5%  
3.5 ±3.5%  
MHz  
MHz  
MHz  
DCO frequency range  
3.5 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 2  
DCO frequency range  
4 MHz, trimmed  
Measured at SMCLK, divide by 1  
DCORSEL = 0, DCOFSEL = 3  
4
±3.5%  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 4,  
DCORSEL = 1, DCOFSEL = 1  
DCO frequency range  
5.3 MHz, trimmed  
fDCO5.3  
fDCO7  
fDCO8  
5.333 ±3.5%  
MHz  
MHz  
MHz  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 5,  
DCORSEL = 1, DCOFSEL = 2  
DCO frequency range  
7 MHz, trimmed  
7
8
±3.5%  
±3.5%  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 6,  
DCORSEL = 1, DCOFSEL = 3  
DCO frequency range  
8 MHz, trimmed  
DCO frequency range  
16 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 1, DCOFSEL = 4  
fDCO16  
fDCO21  
fDCO24  
16 ±3.5%  
21 ±3.5%  
24 ±3.5%  
MHz  
MHz  
MHz  
DCO frequency range  
21 MHz, trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 5  
DCO frequency range  
24 MHz, trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 6  
Measured at SMCLK, divide by 1,  
No external divide, all DCORSEL and  
DCOFSEL settings except DCORSEL = 1  
with DCOFSEL = 5, and DCORSEL = 1 with  
DCOFSEL = 6  
fDCO,DC  
Duty cycle  
48%  
50%  
52%  
3
Based on fsignal = 10 kHz and DCO used for  
12-bit SAR ADC sampling source. This  
achieves greather than 74-dB SNR due to  
jitter (that is, limited by ADC performance).  
tDCO, JITTER  
DCO jitter  
2
ns  
dfDCO/dT  
DCO temperature drift(1)  
3.0 V  
0.01  
%/ºC  
(1) Calculated using the box method: (MAX(–40°C to 85ºC) - MIN(–40°C to 85ºC)) / MIN(–40°C to 85ºC) / (85ºC - (-40ºC))  
40  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
The VLO is an internal very-low-power low-frequency oscillator with 10-kHz typical frequency (see  
Table 5-7).  
Table 5-7. Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
100  
9.4  
MAX UNIT  
nA  
IVLO  
Current consumption  
(1)  
fVLO  
VLO frequency  
Measured at ACLK  
6
14 kHz  
%/°C  
dfVLO/dT  
VLO frequency temperature drift  
Measured at ACLK(2)  
Measured at ACLK(3)  
Measured at ACLK  
0.2  
dfVLO/dVCC VLO frequency supply voltage drift  
fVLO,DC Duty cycle  
0.7  
%/V  
40%  
50%  
60%  
(1) VLO frequency may decrease in LPM3 or LPM4 mode. The typical ratio of VLO freuqencies (LPM3/4 to AM) is 85%.  
(2) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(3) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
The module oscillator (MODOSC) is an internal low-power oscillator with 5-MHz typical frequency (see  
Table 5-8).  
Table 5-8. Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Enabled  
MIN  
TYP  
25  
MAX UNIT  
IMODOSC  
Current consumption  
μA  
fMODOSC  
MODOSC frequency  
MODOSC frequency temperature drift(1)  
4.0  
4.8  
5.4  
MHz  
%/℃  
%/V  
fMODOSC/dT  
0.08  
1.4  
fMODOSC/dVCC MODOSC frequency supply voltage drift(2)  
DCMODOSC Duty cycle  
Measured at SMCLK, divide by 1  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
版权 © 2016–2018, Texas Instruments Incorporated  
Specifications  
41  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
5.12.4 Wake-up Characteristics  
Table 5-9 lists the wake-up times.  
Table 5-9. Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-6 and  
Figure 5-7)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
(Additional) wake-up time to activate the FRAM  
in AM if previously disabled by the FRAM  
controller or from an LPM if immediate  
activation is selected for wakeup  
tWAKE-UP FRAM  
6
10  
μs  
400 ns +  
1.5 / fDCO  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode(1)  
2.2 V, 3.0 V  
tWAKE-UP LPM1  
tWAKE-UP LPM2  
Wake-up time from LPM1 to active mode(1)  
Wake-up time from LPM2 to active mode(1)  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
6
6
μs  
μs  
6.6 +  
9.6 +  
tWAKE-UP LPM3  
Wake-up time from LPM3 to active mode(1)  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
μs  
μs  
2.0 / fDCO 2.5 / fDCO  
6.6 + 9.6 +  
2.0 / fDCO 2.5 / fDCO  
tWAKE-UP LPM4  
Wake-up time from LPM4 to active mode(1)  
Wake-up time from LPM3.5 to active mode(2)  
tWAKE-UP LPM3.5  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
250  
250  
0.4  
350  
350  
0.8  
μs  
μs  
SVSHE = 1  
SVSHE = 0  
tWAKE-UP LPM4.5  
Wake-up time from LPM4.5 to active mode(2)  
ms  
Wake-up time from a RST pin triggered reset to  
active mode(2)  
tWAKE-UP-RST  
tWAKE-UP-BOR  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
300  
0.5  
403  
1
μs  
(2)  
Wake-up time from power-up to active mode  
ms  
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge with MCLKREQEN = 1. This time includes the activation of the FRAM during wake up. With  
MCLKREQEN = 0, the externally observable MCLK clock is gated one additional cycle.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
5.12.4.1 Typical Characteristics, Average LPM Currents vs Wake-up Frequency  
5000  
LPM0  
LPM1  
LPM2,XT12  
LPM3,XT12  
1000  
LPM3.5,XT12  
100  
10  
1
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
NOTE: The average wake-up current does not include the energy required in active mode; for example, for an interrupt  
service routine (ISR) or to reconfigure the device.  
Figure 5-6. Average LPM Currents vs Wake-up Frequency at 25°C  
42  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
5000  
LPM0  
LPM1  
LPM2,XT12  
LPM3,XT12  
LPM3.5,XT12  
1000  
100  
10  
1
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
NOTE: The average wake-up current does not include the energy required in active mode; for example, for an ISR or to  
reconfigure the device.  
Figure 5-7. Average LPM Currents vs Wake-up Frequency at 85°C  
Table 5-10 lists the typical charge required to wake up from LPM or reset.  
Table 5-10. Typical Wake-up Charge(1)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
16.5  
3.8  
21  
MAX UNIT  
nAs  
Charge used for activating the FRAM in AM or during wake-up  
from LPM0 if previously disabled by the FRAM controller.  
QWAKE-UP FRAM  
QWAKE-UP LPM0  
QWAKE-UP LPM1  
QWAKE-UP LPM2  
QWAKE-UP LPM3  
Charge used for wake-up from LPM0 to active mode (with  
FRAM active)  
nAs  
Charge used for wake-up from LPM1 to active mode (with  
FRAM active)  
nAs  
Charge used for wake-up from LPM2 to active mode (with  
FRAM active)  
22  
nAs  
Charge used for wake-up from LPM3 to active mode (with  
FRAM active)  
25  
nAs  
Charge used for wake-up from LPM4 to active mode (with  
FRAM active)  
Charge used for wake-up from LPM3.5 to active mode(2)  
QWAKE-UP LPM4  
QWAKE-UP LPM3.5  
QWAKE-UP LPM4.5  
25  
nAs  
nAs  
121  
123  
121  
SVSHE = 1  
SVSHE = 0  
Charge used for wake-up from LPM4.5 to active mode(2)  
nAs  
nAs  
Charge used for reset from RST or BOR event to active  
mode(2)  
QWAKE-UP-RESET  
102  
(1) Charge used during the wake-up time from a given low-power mode to active mode. This does not include the energy required in active  
mode (for example, for an ISR).  
(2) Charge required until start of user code. This does not include the energy required to reconfigure the device.  
版权 © 2016–2018, Texas Instruments Incorporated  
Specifications  
43  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
5.12.5 Digital I/Os  
Table 5-11 lists the characteristics of the digital inputs.  
Table 5-11. Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.2  
TYP  
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
1.65  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.65  
0.55  
0.75  
0.44  
0.60  
2.25  
1.00  
V
Negative-going input threshold voltage  
1.35  
0.98  
V
Input voltage hysteresis (VIT+ – VIT–  
Pullup or pulldown resistor  
)
1.30  
For pullup: VIN = VSS  
,
RPull  
CI,dig  
CI,ana  
20  
35  
3
50  
kΩ  
pF  
pF  
For pulldown: VIN = VCC  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
Input capacitance, port pins with shared  
analog functions(1)  
VIN = VSS or VCC  
5
2.2 V,  
3.0 V  
(2)(3)  
Ilkg(Px.y)  
t(int)  
High-impedance input leakage current  
See  
–20  
20  
2
+20  
nA  
ns  
µs  
External interrupt timing (external trigger  
pulse duration to set interrupt flag)(4)  
Ports with interrupt capability (see 2.2 V,  
1.4 and Table 4-2)  
3.0 V  
2.2 V,  
3.0 V  
t(RST)  
External reset pulse duration on RST(5)  
(1) If the port pins PJ.4/LFXIN and PJ.5/LFXOUT are used as digital I/Os, they are connected by a 4-pF capacitor and a 35-Mresistor in  
series. At frequencies of approximately 1 kHz and lower, the 4-pF capacitor can add to the pin capacitance of PJ.4/LFXIN and/or  
PJ.5/LFXOUT.  
(2) The input leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(3) The input leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
(4) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
(5) Not applicable if RST/NMI pin configured as NMI .  
44  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Table 5-12 lists the characteristics of the digital outputs.  
Table 5-12. Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
VSS  
TYP  
MAX UNIT  
VCC  
2.2 V  
I(OHmax) = –3 mA(2)  
I(OHmax) = –2 mA(1)  
I(OHmax) = –6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
High-level output voltage  
(see Figure 5-10 and Figure 5-11)  
VOH  
V
VCC  
3.0 V  
2.2 V  
3.0 V  
VCC  
VSS + 0.25  
VSS  
VSS + 0.60  
VSS + 0.25  
VSS + 0.60  
Low-level output voltage  
(see Figure 5-8 and Figure 5-9)  
VOL  
V
VSS  
VSS  
2.2 V  
3.0 V  
2.2 V  
16  
(4) (5)  
fPx.y  
Port output frequency (with load)(3) CL = 20 pF, RL  
MHz  
MHz  
16  
ACLK, MCLK, or SMCLK at  
configured output port,  
CL = 20 pF(5)  
16  
fPort_CLK Clock output frequency(3)  
3.0 V  
16  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
4
3
4
3
6
4
6
4
15  
15  
15  
15  
15  
15  
15  
15  
Port output rise time, digital only  
port pins  
trise,dig  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
ns  
ns  
ns  
ns  
Port output fall time, digital only port  
tfall,dig  
pins  
Port output rise time, port pins with  
trise,ana  
shared analog functions  
Port output fall time, port pins with  
tfall,ana  
shared analog functions  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) The port can output frequencies at least up to the specified limit, and it might support higher frequencies.  
(4) A resistive divider with 2 × R1 and R1 = 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the  
divider. CL = 20 pF is connected from the output to VSS  
.
(5) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
5.12.5.1 Typical Characteristics, Digital Outputs at 3.0 V and 2.2 V  
15  
10  
5
30  
20  
10  
0
25°C  
85°C  
25°C  
85°C  
P1.1  
P1.1  
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
3
Low-Level Output Voltage (V)  
Low-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
VCC = 3.0 V  
Figure 5-8. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 5-9. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0
0
25°C  
85°C  
25°C  
85°C  
-5  
-10  
-15  
-10  
-20  
-30  
P1.1  
2
P1.1  
0
0.5  
1
1.5  
0
0.5  
1
1.5  
2
2.5  
3
High-Level Output Voltage (V)  
High-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
VCC = 3.0 V  
Figure 5-10. Typical High-Level Output Current vs  
High-Level Output Voltage  
Figure 5-11. Typical High-Level Output Current vs  
High-Level Output Voltage  
46  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Table 5-13 lists the supported oscillation frequencies on the digital I/Os.  
Table 5-13. Pin-Oscillator Frequency, Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Px.y, CL = 10 pF(1)  
Px.y, CL = 20 pF(1)  
VCC  
3.0 V  
3.0 V  
MIN  
TYP  
1200  
650  
MAX UNIT  
kHz  
Pin-oscillator frequency  
(see Figure 5-12 and Figure 5-13)  
foPx.y  
kHz  
(1) CL is the external load capacitance connected from the output to VSS and includes all parasitic effects such as PCB traces.  
5.12.5.2 Typical Characteristics, Pin-Oscillator Frequency  
2000  
2000  
Best Fit  
25°C  
Best Fit  
25°C  
85°C  
85°C  
1000  
1000  
800  
700  
800  
700  
600  
500  
600  
500  
400  
300  
400  
300  
200  
200  
100  
100  
10  
VCC = 2.2 V  
20  
30 40 50 60 7080 100  
CL, Load Capacitance (pF)  
200  
10  
VCC = 3.0 V  
20  
30 40 50 60 7080 100  
CL, Load Capacitance (pF)  
200  
One output active at a time.  
One output active at a time.  
Figure 5-12. Typical Oscillation Frequency vs  
Load Capacitance  
Figure 5-13. Typical Oscillation Frequency vs  
Load Capacitance  
版权 © 2016–2018, Texas Instruments Incorporated  
Specifications  
47  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
5.12.6 LEA (Low-Energy Accelerator) (MSP430FR599x Only)  
The LEA module is a hardware engine designed for operations that involve vector-based signal  
processing. Table 5-14 lists the performance characteristics of the LEA module.  
Table 5-14. Low Energy Accelerator Performance  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Frequency for specified  
performance  
fLEA  
MCLK  
16  
MHz  
LEA subsystem energy on Complex FFT 128-point Q.15 with  
fast Fourier transform random data in LEA-RAM  
VCore = 3 V,  
MCLK = 16 MHz  
W_LEA_FFT  
W_LEA_FIR  
350  
2.6  
nJ  
µJ  
LEA subsystem energy on Real FIR on random Q.31 data with VCore = 3 V,  
finite impulse response  
128 taps on 24 points  
MCLK = 16 MHz  
On 32 Q.31 elements with random  
value out of LEA-RAM with linear  
address increment  
LEA subsystem energy on  
additions  
VCore = 3 V,  
MCLK = 16 MHz  
W_LEA_ADD  
6.6  
nJ  
5.12.7 Timer_A and Timer_B  
Timer_A and Timer_B are 16-bit timers and counters with multiple capture/compare registers. Table 5-15  
lists the Timer_A characteristics, and Table 5-16 lists the Timer_B characteristics.  
Table 5-15. Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
fTA  
Timer_A input clock frequency  
External: TACLK,  
2.2 V, 3.0 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse duration required  
for capture  
tTA,cap  
Timer_A capture timing  
2.2 V, 3.0 V  
20  
ns  
Table 5-16. Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
fTB  
Timer_B input clock frequency  
External: TBCLK,  
2.2 V, 3.0 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse duration required  
for capture  
tTB,cap  
Timer_B capture timing  
2.2 V, 3.0 V  
20  
ns  
48  
Specifications  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
5.12.8 eUSCI  
The enhanced universal serial communication interface (eUSCI) supports multiple serial communication  
modes with one hardware module. The eUSCI_A module supports UART and SPI modes. The eUSCI_B  
module supports I2C and SPI modes.  
Table 5-17 lists the UART clock frequencies.  
Table 5-17. eUSCI (UART Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fBITCLK  
BITCLK clock frequency (equals baud rate in MBaud)  
4
MHz  
Table 5-18 lists the UART operating characteristics.  
Table 5-18. eUSCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
UCGLITx = 0  
VCC  
MIN  
5
MAX UNIT  
30  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
20  
35  
50  
90  
ns  
tt  
UART receive deglitch time(1)  
2.2 V, 3.0 V  
160  
220  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. Thus the selected deglitch  
time can limit the maximum useable baud rate. To ensure that pulses are correctly recognized, their duration should exceed the  
maximum specification of the deglitch time.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
49  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-19 lists the SPI master mode clock frequencies.  
Table 5-19. eUSCI (SPI Master Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Internal: SMCLK or ACLK,  
Duty cycle = 50% ±10%  
MIN  
MAX UNIT  
feUSCI eUSCI input clock frequency  
16  
MHz  
Table 5-20 lists the SPI master mode operating characteristics.  
Table 5-20. eUSCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
STE lead time, STE active to clock  
UCSTEM = 1, UCMODEx = 01 or 10  
1
UCxCLK  
cycles  
STE lag time, Last clock to STE  
inactive  
UCSTEM = 1, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
1
STE access time, STE active to  
SIMO data out  
2.2 V,  
3.0 V  
60  
80  
ns  
ns  
STE disable time, STE inactive to  
SOMI high impedance  
2.2 V,  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
40  
40  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
ns  
ns  
ns  
ns  
tHD,MI  
0
11  
10  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO  
0
0
tHD,MO  
CL = 20 pF  
(1) fUCxCLK = 1/2 tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-14 and Figure 5-15.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-  
14 and Figure 5-15.  
50  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
CKPL = 0  
1/fUCxCLK  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,ACC  
tSTE,DIS  
Figure 5-14. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,DIS  
tSTE,ACC  
Figure 5-15. SPI Master Mode, CKPH = 1  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
51  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-21 lists the SPI slave mode operating characteristics.  
Table 5-21. eUSCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
45  
40  
2
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
STE lag time, Last clock to STE inactive  
ns  
3
45  
ns  
40  
STE access time, STE active to SOMI data out  
50  
ns  
45  
STE disable time, STE inactive to SOMI high  
impedance  
4
4
7
7
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
ns  
tHD,SI  
35  
ns  
35  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
0
0
tHD,SO  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2 tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-16 and Figure 5-17.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-16  
and Figure 5-17.  
52  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 5-16. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 5-17. SPI Slave Mode, CKPH = 1  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
53  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-22 lists the I2C mode operating characteristics.  
Table 5-22. eUSCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-18)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3.0 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
ns  
ns  
100  
4.0  
0.6  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2.2 V, 3.0 V  
µs  
250  
25  
125  
ns  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2.2 V, 3.0 V  
12.5  
6.3  
62.5  
31.5  
27  
30  
33  
tTIMEOUT  
Clock low time-out  
2.2 V, 3.0 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 5-18. I2C Mode Timing  
54  
Specifications  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
5.12.9 ADC12_B  
The ADC12_B module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit  
SAR core, sample select control, and up to 32 independent conversion-and-control buffers. The  
conversion-and-control buffer allows up to 32 independent analog-to-digital converter (ADC) samples to be  
converted and stored without any CPU intervention.  
Table 5-23 lists the power supply and input range conditions.  
Table 5-23. 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN NOM  
MAX UNIT  
V(Ax)  
Analog input voltage range(1)  
All ADC12 analog input pins Ax  
0
AVCC  
199  
V
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 0,  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
145  
I(ADC12_B)  
single-ended  
mode  
Operating supply current into  
µA  
AVCC plus DVCC terminals(2)(3) REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
140  
175  
170  
85  
190  
245  
230  
125  
120  
165  
160  
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 1,  
I(ADC12_B)  
differential  
mode  
Operating supply current into  
µA  
µA  
µA  
AVCC plus DVCC terminals(2) (3) REFON = 0, ADC12SHTx= 0,  
ADC12DIV = 0  
I(ADC12_B)  
fADC12CLK = MODCLK / 4, ADC12ON = 1,  
ADC12PWRMD = 1, ADC12DIF = 0,  
Operating supply current into  
single-ended  
low-power  
mode  
AVCC plus DVCC terminals(2) (3) REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
83  
fADC12CLK = MODCLK / 4, ADC12ON = 1,  
ADC12PWRMD = 1, ADC12DIF = 1,  
110  
109  
I(ADC12_B)  
differential low-  
power mode  
Operating supply current into  
AVCC plus DVCC terminals(2) (3) REFON = 0, ADC12SHTx= 0,  
ADC12DIV = 0  
Only one terminal Ax can be selected at  
one time  
CI  
RI  
Input capacitance  
2.2 V  
10  
15  
pF  
>2 V  
<2 V  
0.5  
1
4
Input MUX ON-resistance  
0 V V(Ax) AVCC  
kΩ  
10  
(1) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results.  
(2) The internal reference supply current is not included in current consumption parameter I(ADC12_B)  
.
(3) Approximately 60% (typical) of the total current into the AVCC and DVCC terminals is from AVCC.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
55  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-24 lists the timing parameters.  
Table 5-24. 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC12 linearity parameters  
with ADC12PWRMD = 0.  
If ADC12PWRMD = 1, the maximum is 1/4 of the value  
shown here.  
Frequency for specified  
performance  
fADC12CLK  
0.45  
5.4 MHz  
Frequency for reduced  
performance  
fADC12OSC Internal oscillator(1)  
fADC12CLK  
Linearity parameters have reduced performance  
32.768  
4.8  
kHz  
ADC12DIV = 0, fADC12CLK = fADC12OSC from MODCLK  
4
5.4 MHz  
REFON = 0, Internal oscillator,  
fADC12CLK = fADC12OSC from MODCLK, ADC12WINC = 0  
2.6  
3.5  
µs  
tCONVERT  
Conversion time  
External fADC12CLK from ACLK, MCLK, or SMCLK,  
(2)  
ADC12SSEL 0  
Turnon settling time of the  
ADC  
(3)  
tADC12ON  
tADC12OFF  
See  
100  
ns  
ns  
Time ADC must be off before tADC12OFF must be met to make sure that tADC12ON time  
it can be turned on again  
100  
1
holds  
All pulse sample mode  
(ADC12SHP = 1) and extended  
sample mode (ADC12SHP = 0)  
with buffered reference  
(ADC12VRSEL = 0x1, 0x3, 0x5,  
0x7, 0x9, 0xB, 0xD, 0xF)  
RS = 400 Ω, RI = 4 kΩ,  
tSample  
Sampling time  
µs  
CI = 15 pF, Cpext= 8 pF(4)  
Extended sample mode  
(ADC12SHP = 0) with  
unbuffered reference  
(ADC12VRSEL = 0x0, 0x2, 0x4,  
0x6, 0xC, 0xE)  
(5)  
(1) The ADC12OSC is sourced directly from MODOSC inside the UCS.  
(2) 14 × 1 / fADC12CLK. If ADC12WINC = 1 then 15 × 1 / fADC12CLK  
(3) The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
(4) Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB: tsample = ln(2n+2) x (RS + RI) x (CI + Cpext), where n = ADC  
resolution = 12, RS= external source resistance, Cpext = external parasitic capacitance.  
(5) 6 × 1 / fADC12CLK  
56  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Table 5-25 lists the linearity parameters.  
Table 5-25. 12-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Integral linearity error (INL) for  
differential input  
±1.8  
LSB  
±2.2  
With external voltage reference (ADC12VRSEL = 0x2,  
0x3, 0x4, 0x14, 0x15), 1.2 V (VR+ – VR–) AVCC  
EI  
Integral linearity error (INL) for  
single-ended inputs  
With external voltage reference (ADC12VRSEL = 0x2,  
0x3, 0x4, 0x14, 0x15)  
ED  
EO  
Differential linearity error (DNL)  
–0.99  
+1.0  
±1.5  
LSB  
mV  
ADC12VRSEL = 0x1 without TLV calibration,  
TLV calibration data can be used to improve the  
(1) (2)  
Offset error  
±0.5  
(3)  
parameter  
With internal voltage reference VREF = 2.5 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
±0.2%  
±0.2%  
±1.7%  
±2.5%  
With internal voltage reference VREF = 1.2 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
With external voltage reference without internal buffer  
(ADC12VRSEL = 0x2 or 0x4) without TLV calibration,  
VR+ = 2.5 V, VR– = AVSS  
EG  
Gain error  
±1  
±2  
±3  
LSB  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3),  
±27  
VR+ = 2.5 V, VR– = AVSS  
With internal voltage reference VREF = 2.5 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
±0.2%  
±0.2%  
±1.8%  
With internal voltage reference VREF = 1.2 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
±2.6%  
With external voltage reference without internal buffer  
(ADC12VRSEL = 0x2 or 0x4) without TLV calibration,  
VR+ = 2.5 V, VR– = AVSS  
ET  
Total unadjusted error  
±1  
±1  
±5  
LSB  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3),  
±28  
VR+ = 2.5 V, VR– = AVSS  
(1) Offset is measured as the input voltage (at which ADC output transitions from 0 to 1) minus 0.5 LSB.  
(2) Offset increases as IR drop increases when VR– is AVSS.  
(3) For details, see the Device Descriptor Table section in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx  
Family User's Guide.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
57  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-26 lists the dynamic performance characteristics when using an external reference.  
Table 5-26. 12-Bit ADC, Dynamic Performance With External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Resolution Number of no missing code output-code bits  
12  
bits  
Signal-to-noise with differential inputs  
SNR  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
71  
70  
dB  
Signal-to-noise with single-ended inputs  
Effective number of bits with differential inputs(1)  
Effective number of bits with single-ended inputs(1)  
ENOB  
11.4  
11.1  
bits  
Reduced performance with fADC12CLK  
from ACLK LFXT 32.768 kHz,  
VR+ = 2.5 V, VR– = AVSS  
Effective number of bits with 32.768-kHz clock  
10.9  
(reduced performance)(1)  
(1) ENOB = (SINAD – 1.76) / 6.02  
Table 5-27 lists the dynamic performance characteristics when using an internal reference.  
Table 5-27. 12-Bit ADC, Dynamic Performance With Internal Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Resolution Number of no missing code output code bits  
12  
bits  
Signal-to-noise with differential inputs  
SNR  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
70  
69  
dB  
Signal-to-noise with single-ended inputs  
Effective number of bits with differential inputs(1)  
Effective number of bits with single-ended inputs(1)  
ENOB  
11.4  
11.0  
bits  
Reduced performance with fADC12CLK  
from ACLK LFXT 32.768 kHz,  
VR+ = 2.5 V, VR– = AVSS  
Effective number of bits with 32.768-kHz clock  
10.9  
(reduced performance)(1)  
(1) ENOB = (SINAD – 1.76) / 6.02  
58  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Table 5-28 lists the temperature sensor and built-in V1/2 characteristics.  
Table 5-28. 12-Bit ADC, Temperature Sensor and Built-In V1/2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Temperature sensor voltage(1)(2) (see  
Figure 5-19)  
TEST CONDITIONS  
MIN  
TYP  
700  
2.5  
MAX UNIT  
ADC12ON = 1, ADC12TCMAP = 1,  
TA = 0°C  
VSENSOR  
mV  
mV/°C  
µs  
(2)  
TCSENSOR  
tSENSOR(sample)  
See  
ADC12ON = 1, ADC12TCMAP = 1  
Sample time required if ADCTCMAP = 1 and  
channel (MAX – 1) is selected(3)  
ADC12ON = 1, ADC12TCMAP = 1,  
Error of conversion result 1 LSB  
30  
AVCC voltage divider for ADC12BATMAP = 1  
on MAX input channel  
V1/2  
ADC12ON = 1, ADC12BATMAP = 1  
47.5%  
50% 52.5%  
38 72  
IV 1/2  
Current for battery monitor during sample time ADC12ON = 1, ADC12BATMAP = 1  
µA  
µs  
Sample time required if ADC12BATMAP = 1  
ADC12ON = 1, ADC12BATMAP = 1  
and channel MAX is selected(4)  
tV 1/2 (sample)  
1.7  
(1) The temperature sensor offset can be as much as ±30°C. TI recommends a single-point calibration to minimize the offset error of the  
built-in temperature sensor.  
(2) The device descriptor structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage  
levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR can  
be computed from the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 250 kΩ. The sample time required includes the sensor on time (tSENSOR(on)).  
(4) The on time (tV1/2(on)) is included in the sampling time (tV1/2(sample)); no additional on time is needed.  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
–40  
–20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
Figure 5-19. Typical Temperature Sensor Voltage  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
59  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-29 lists the external reference characteristics.  
Table 5-29. 12-Bit ADC, External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.2 AVCC  
1.2  
MAX UNIT  
Positive external reference voltage input VeREF+ or  
VeREF- based on ADC12VRSEL bit  
VR+  
VR–  
VR+ > VR–  
V
Negative external reference voltage input VeREF+  
or VeREF- based on ADC12VRSEL bit  
VR+ > VR–  
VR+ > VR–  
0
V
V
VR+ – VR– Differential external reference voltage input  
1.2 AVCC  
±10  
1.2 V VeREF+VAVCC, VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 0, ADC12PWRMD = 0  
IVeREF+  
IVeREF-  
,
Static input current singled-ended input mode  
Static input current differential input mode  
µA  
µA  
1.2 V VeREF+VAVCC , VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 0, ADC12PWRMD = 01  
±2.5  
±20  
±5  
1.2 V VeREF+VAVCC, VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 1, , ADC12PWRMD = 0  
IVeREF+  
IVeREF-  
,
1.2 V VeREF+VAVCC , VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 1, , ADC12PWRMD = 1  
IVeREF+  
IVeREF+  
CVeREF+/-  
Peak input current with single-ended input  
Peak input current with differential input  
Capacitance at VeREF+ or VeREF- terminal  
0 V VeREF+ VAVCC, ADC12DIF = 0  
0 V VeREF+ VAVCC, ADC12DIF = 1  
1.5  
mA  
mA  
µF  
3
(2)  
See  
10  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) Two decoupling capacitors, 10 µF and 470 nF, should be connected to VeREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC12_B. Also see the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx  
Family User's Guide.  
60  
Specifications  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
5.12.10 Reference  
The reference module (REF) generates all of the critical reference voltages that can be used by various  
analog peripherals in a given device. The heart of the reference system is the bandgap from which all  
other references are derived by unity or noninverting gain stages. The REFGEN subsystem consists of the  
bandgap, the bandgap bias, and the noninverting buffer stage, which generates the three primary voltage  
reference available in the system (1.2 V, 2.0 V, and 2.5 V).  
Table 5-30 lists the operating characteristics of the built-in reference.  
Table 5-30. REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
REFVSEL = {2} for 2.5 V, REFON = 1  
REFVSEL = {1} for 2.0 V, REFON = 1  
REFVSEL = {0} for 1.2 V, REFON = 1  
From 0.1 Hz to 10 Hz, REFVSEL = {0}  
VCC  
MIN  
TYP  
2.5 ±1.5%  
2.0 ±1.5%  
1.2 ±1.8%  
MAX UNIT  
2.7 V  
2.2 V  
1.8 V  
Positive built-in reference  
voltage output  
VREF+  
V
(1)  
Noise  
RMS noise at VREF  
30  
130  
µV  
VREF ADC BUF_INT buffer TA = 25°C , ADC on, REFVSEL = {0},  
VOS_BUF_INT  
–16  
–16  
+16  
mV  
offset(2)  
REFON = 1, REFOUT = 0  
VREF ADC BUF_EXT  
buffer offset(3)  
TA = 25°C, REFVSEL = {0} , REFOUT = 1,  
REFON = 1 or ADC on  
VOS_BUF_EXT  
AVCC(min)  
IREF+  
+16  
mV  
V
REFVSEL = {0} for 1.2 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
1.8  
2.2  
2.7  
AVCC minimum voltage,  
Positive built-in reference  
active  
Operating supply current  
into AVCC terminal(4)  
REFON = 1  
3 V  
19  
247  
26  
400  
µA  
ADC on, REFOUT = 0, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 0,  
ADC on, REFOUT = 1, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 0  
1053  
153  
1820  
240  
Operating supply current  
into AVCC terminal(4)  
ADC on, REFOUT = 0, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 1  
IREF+_ADC_BUF  
3 V  
µA  
µA  
ADC on, REFOUT = 1, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 1  
581  
1030  
1890  
ADC OFF, REFON = 1, REFOUT = 1,  
REFVSEL = {0, 1, 2}  
1105  
REFVSEL = {0, 1, 2},  
AVCC = AVCC(min) for each reference level,  
REFON = REFOUT = 1  
VREF maximum load  
current, VREF+ terminal  
IO(VREF+)  
–1000  
10  
REFVSEL = {0, 1, 2},  
ΔVout/  
ΔIo(VREF+)  
Load-current regulation,  
VREF+ terminal  
IO(VREF+) = +10 µA or –1000 µA  
AVCC = AVCC(min) for each reference level,  
REFON = REFOUT = 1  
1500 µV/mA  
Capacitance at VREF+ and  
VREF- terminals  
CVREF+/-  
REFON = REFOUT = 1  
0
100  
pF  
Temperature coefficient of  
built-in reference  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1,  
TA = –40°C to 85°C(5)  
TCREF+  
24  
100  
3.0  
50 ppm/K  
400 µV/V  
mV/V  
Power supply rejection ratio AVCC = AVCC(min) to AVCC(max), TA = 25°C,  
(DC)  
PSRR_DC  
PSRR_AC  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1  
Power supply rejection ratio  
(AC)  
dAVCC= 0.1 V at 1 kHz  
(1) Internal reference noise affects ADC performance when ADC uses internal reference. See Designing With the MSP430FR58xx, FR59xx,  
FR68xx, and FR69xx ADC for details on optimizing ADC performance for your application with the choice of internal or external  
reference.  
(2) Buffer offset affects ADC gain error and thus total unadjusted error.  
(3) Buffer offset affects ADC gain error and thus total unadjusted error.  
(4) The internal reference current is supplied through the AVCC terminal.  
(5) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
61  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-30. REF, Built-In Reference (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
AVCC = AVCC(min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 0 1  
AVCC = AVCC(min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 1 (internal note  
should be for buf_int REFOUT=0 or buf_ext=1 )  
VCC  
MIN  
TYP  
MAX UNIT  
Settling time of reference  
voltage(6)  
,
tSETTLE  
40  
80  
µs  
,
Settling time of ADC  
Tbuf_settle  
0.4  
2
µs  
reference voltage buffer(6)  
(6) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
5.12.11 Comparator  
The COMP_E module supports precision slope analog-to-digital conversions, supply voltage supervision,  
and monitoring of external analog signals. Table 5-31 lists the comparator characteristics.  
Table 5-31. Comparator_E  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
CEPWRMD = 00, CEON = 1,  
CERSx = 00 (fast)  
12  
16  
CEPWRMD = 01, CEON = 1,  
CERSx = 00 (medium)  
Comparator operating  
supply current into  
AVCC, excludes  
10  
14  
µA  
0.3  
2.2 V,  
3.0 V  
IAVCC_COMP  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 30°C  
0.1  
reference resistor ladder  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 85°C  
0.3  
31  
1.3  
38  
Quiescent current of  
Comparator and resistor  
IAVCC_COMP_REF ladder into AVCC,  
including REF module  
current  
CEREFACC = 0  
CEPWRMD = 10,  
CEREFLx = 01,  
2.2 V,  
3.0 V  
µA  
19  
CERSx = 10,  
CEON = 1, REFON = 0  
CEREFACC = 1  
16  
CERSx = 11, CEREFLx = 01,  
CEREFACC = 0  
1.8 V  
2.2 V  
2.7 V  
1.8 V  
2.2 V  
2.7 V  
1.152  
1.92  
2.40  
1.10  
1.90  
2.35  
0
1.2  
2.0  
2.5  
1.2  
2.0  
2.5  
1.248  
2.08  
CERSx = 11, CEREFLx = 10,  
CEREFACC = 0  
CERSx = 11, CEREFLx = 11,  
CEREFACC = 0  
2.60  
V
VREF  
Reference voltage level  
CERSx = 11, CEREFLx = 01,  
CEREFACC = 1  
1.245  
CERSx = 11, CEREFLx = 10,  
CEREFACC = 1  
2.08  
2.60  
CERSx = 11, CEREFLx = 11,  
CEREFACC = 1  
Common mode input  
range  
VIC  
VCC – 1  
16  
V
CEPWRMD = 00  
–16  
–12  
–37  
VOFFSET  
Input offset voltage  
CEPWRMD = 01  
12 mV  
37  
CEPWRMD = 10  
CEPWRMD = 00 or CEPWRMD = 01  
CEPWRMD = 10  
10  
10  
1
CIN  
Input capacitance  
pF  
On (switch closed)  
Off (switch open)  
3
kΩ  
RSIN  
Series input resistance  
50  
MΩ  
CEPWRMD = 00  
193  
230  
5
330  
400  
15  
ns  
µs  
Propagation delay,  
response time  
CEF = 0,  
Overdrive 20 mV  
tPD  
CEPWRMD = 01  
CEPWRMD = 10  
62  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Table 5-31. Comparator_E (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
700  
1.0  
2.0  
4.0  
0.9  
0.9  
15  
MAX UNIT  
CEFDLY = 00  
1000  
1.9  
3.7  
7.7  
1.5  
1.5  
65  
ns  
CEPWRMD = 00 or 01,  
CEF = 1,  
Overdrive 20 mV  
CEFDLY = 01  
CEFDLY = 10  
CEFDLY = 11  
CEPWRMD = 00  
Propagation delay with  
filter active  
tPD,filter  
µs  
CEON = 0 1,  
tEN_CMP  
Comparator enable time VIN+ and VIN– from pins, CEPWRMD = 01  
µs  
µs  
Overdrive 20 mV  
CEPWRMD = 10  
Comparator and  
CEON = 0 1, CEREFLX = 10,  
reference ladder and  
CERSx = 10 or 11,  
tEN_CMP_VREF  
120  
220  
reference voltage enable  
CEREF0 = CEREF1 = 0x0F, REFON = 0  
time  
Comparator and  
reference ladder enable CERSx = 10, REFON = 1,  
time CEREF0 = CEREF1 = 0x0F  
CEON = 0 1, CEREFLX = 10,  
tEN_CMP_RL  
10  
30  
µs  
V
VIN  
(n + 0.5) (n + 1) (n + 1.5)  
/ 32 / 32 / 32  
×
VIN  
×
VIN ×  
Reference voltage for a VIN = reference into resistor ladder  
given tap (n = 0 to 31)  
VCE_REF  
5.12.12 FRAM  
FRAM is a nonvolatile memory that reads and writes like standard SRAM. The FRAM can be read in a  
similar fashion to SRAM and needs no special requirements. Similarly, any writes to unprotected  
segments can be written in the same fashion as SRAM.  
Table 5-32 lists the operating characteristics of the FRAM.  
Table 5-32. FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1015  
100  
40  
TYP  
MAX UNIT  
Read and write endurance  
cycles  
TJ = 25°C  
tRetention  
Data retention duration  
TJ = 70°C  
TJ = 85°C  
years  
10  
(1)  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM  
Erase current  
IREAD  
nA  
nA  
ns  
n/a(2)  
(3)  
Write time  
tREAD  
(4)  
(4)  
NWAITSx = 0  
NWAITSx = 1  
1 / fSYSTEM  
2 / fSYSTEM  
tREAD  
Read time  
ns  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current (IREAD) is included in the active mode current consumption, IAM,FRAM  
(2) FRAM does not require a special erase sequence.  
(3) Writing into FRAM is as fast as reading.  
.
(4) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
版权 © 2016–2018, Texas Instruments Incorporated  
Specifications  
63  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
5.12.13 Emulation and Debug  
The MSP family supports the standard JTAG interface, which requires four signals for sending and  
receiving data. The JTAG signals are shared with general-purpose I/Os. The TEST/SBWTCK pin is used  
to enable the connection of external development tools with the device through Spy-Bi-Wire or JTAG  
debug protocols. The connection is usually enabled when the TEST/SBWTCK is high. When the  
connection is enabled, the device enters a debug mode. In the debug mode, the times for entry to and  
wake up from low-power modes may be different compared to normal operation. Pay careful attention to  
the real-time behavior when using low-power modes with the device connected to a development tool.  
Table 5-33 lists the JTAG and Spy-Bi-Wire interface characteristics.  
Table 5-33. JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
IJTAG  
Supply current adder when JTAG active (but not clocked)  
Spy-Bi-Wire input frequency  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
40  
100  
10  
μA  
MHz  
μs  
fSBW  
0
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.04  
15  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
edge)(1)  
tSBW, En  
tSBW,Rst  
2.2 V, 3.0 V  
110  
μs  
μs  
Spy-Bi-Wire return to normal operation time  
TCK input frequency, 4-wire JTAG(2)  
15  
0
100  
16  
2.2 V  
3.0 V  
fTCK  
MHz  
0
16  
Rinternal  
Internal pulldown resistance on TEST  
2.2 V, 3.0 V  
20  
35  
50  
kΩ  
MHz  
ns  
TCLK and MCLK frequency during JTAG access, no FRAM  
fTCLK  
16  
25  
access (limited by fSYSTEM  
)
tTCLK,Low/High  
fTCLK,FRAM  
tTCLK,FRAM,Low/High  
TCLK low or high clock pulse duration, no FRAM access  
TCLK and MCLK frequency during JTAG access, including  
FRAM access (limited by fSYSTEM with no FRAM wait states)  
4
MHz  
ns  
TCLK low or high clock pulse duration, including FRAM accesses  
100  
(1) Tools that access the Spy-Bi-Wire and the BSL interfaces must wait for the tSBW,En time after the first transition of the TEST/SBWTCK  
pin (low to high), before the second transition of the pin (high to low) during the entry sequence.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
64  
Specifications  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6 Detailed Description  
6.1 Overview  
The TI MSP430FR59xx family of ultra-low-power microcontrollers consists of several devices featuring  
different sets of peripherals. The architecture, combined with seven low-power modes, is optimized to  
achieve extended battery life for example in portable measurement applications. The devices features a  
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency.  
The device is an MSP430FR59xx family device with Low-Energy Accelerator (LEA) (available only on the  
MSP430FR599x MCUs), up to six 16-bit timers, up to eight eUSCIs that support UART, SPI, and I2C, a  
comparator, a hardware multiplier, an AES accelerator, a 6-channel DMA, an RTC module with alarm  
capabilities, up to 67 I/O pins, and a high-performance 12-bit ADC.  
6.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and  
constant generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses. The peripherals can be  
managed with all instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes  
and additional instructions for the expanded address range. Each instruction can operate on word and  
byte data.  
6.3 Low-Energy Accelerator (LEA) for Signal Processing (MSP430FR599x Only)  
The LEA module is a hardware engine designed for operations that involve vector-based signal  
processing, such as FIR, IIR, and FFT. The subsystem offers fast performance and low energy  
consumption when performing vector-based digital signal processing computations; for performance  
benchmarks comparing the LEA module to using the CPU or other processors, see Benchmarking the  
Signal Processing Capabilities of the Low-Energy Accelerator on MSP MCUs.  
The LEA module requires MCLK to be operational; therefore, the subsystem can run only in active mode  
or LPM0 (see 6-1). While the LEA module is running, the LEA data operations are performed on a  
shared 4KB of RAM out of the 8KB of total RAM (see 6-41). This shared RAM can also be used by the  
regular application. The MSP CPU and the LEA module can run simultaneously and independently unless  
they access the same system RAM.  
Direct access to LEA registers is not supported, and TI recommends using the optimized Digital Signal  
Processing (DSP) Library for MSP Microcontrollers for the operations that the LEA module supports.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
65  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.4 Operating Modes  
The MCU has one active mode and seven software selectable low-power modes of operation. An interrupt event can wake up the device from low-  
power modes LPM0 through LPM4, service the request, and restore back to the low-power mode on return from the interrupt program. Low-power  
modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.  
6-1. Operating Modes  
AM  
LPM0  
LPM1  
LPM2  
LPM3  
LPM4  
OFF  
LPM3.5  
LPM4.5  
ACTIVE,  
FRAM  
MODE  
SHUTDOWN  
SHUTDOWN  
ACTIVE  
16 MHz  
120 µA/MHz 65 µA/MHz  
N/A  
CPU OFF(2)  
CPU OFF  
STANDBY  
STANDBY  
RTC ONLY  
WITH SVS  
WITHOUT SVS  
OFF(1)  
Maximum system clock  
16 MHz  
92 µA at 1 MHz  
Instant  
16 MHz  
40 µA at 1 MHz  
6 µs  
50 kHz  
1.0 µA  
6 µs  
50 kHz  
0.7 µA  
7 µs  
0(3)  
0.5 µA  
7 µs  
50 kHz  
0.45 µA  
250 µs  
0(3)  
Typical current consumption,  
TA = 25°C  
0.3 µA  
250 µs  
0.07 µA  
400 µs  
Typical wake-up time  
LF  
RTC  
I/O  
LF  
RTC  
I/O  
I/O  
Comp  
RTC  
I/O  
Wake-up events  
N/A  
All  
All  
I/O  
Comp  
Comp  
CPU  
On  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Reset  
Reset  
Reset  
Reset  
LEA (MSP430FR599x only)  
On(4)  
Off  
Standby  
FRAM  
On  
Off(1)  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
(or off(1)  
)
High-frequency  
peripherals(5)  
Available  
Available  
Available  
Off  
Reset  
Reset  
Low-frequency peripherals(5)  
Unclocked peripherals(5)  
Available  
Available  
On  
Available  
Available  
Available  
Available  
Off  
Available  
Available  
Off  
Available(6)  
Available(6)  
Off  
Off  
Available(6)  
Off  
RTC  
Reset  
Off  
Reset  
Reset  
Off  
MCLK  
On(4)  
Off  
SMCLK  
Optional(7)  
Optional(7)  
Optional(7)  
Off  
Off  
Off  
Off  
Off  
ACLK  
On  
On  
On  
On  
On  
Off  
Off  
Off  
Full retention  
SVS  
Yes  
Yes  
Yes  
Yes  
Optional(8)  
Yes  
Optional(8)  
Yes  
optional(8)  
No  
Optional(8)  
No  
Always  
Always  
Always  
Always  
Always  
Always  
On(9)  
Off(10)  
Brownout  
Always  
Always  
Always  
Always  
Always  
(1) FRAM disabled in FRAM controller A  
(2) Disabling the FRAM through the FRAM controller A allows the application to lower the LPM current consumption but the wake-up time increases when FRAM is accessed (for example, to  
fetch an interrupt vector). For a wake up that does not access FRAM (for example, a DMA transfer to RAM) the wake-up time is not increased.  
(3) All clocks disabled  
(4) Only while the LEA module is performing the task enabled by CPU during AM. The LEA module cannot be enabled in LPM0.  
(5) See 6.4.1 for a detailed description of high-frequency, low-frequency, and unclocked peripherals.  
(6) See 6.4.2, which describes the use of peripherals in LPM3 and LPM4.  
(7) Controlled by SMCLKOFF  
(8) Activate SVS (SVSHE = 1) results in higher current consumption. SVS is not included in typical current consumption.  
(9) SVSHE = 1  
(10) SVSHE = 0  
66  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.4.1 Peripherals in Low-Power Modes  
Peripherals can be in different states that impact the achievable power modes of the device. The states  
depend on the operational modes of the peripherals (see 6-2). The states are:  
A peripheral is in a high-frequency state if it requires or uses a clock with a "high" frequency of more  
than 50 kHz.  
A peripheral is in a low-frequency state if it requires or uses a clock with a "low" frequency of 50 kHz or  
less.  
A peripheral is in an unclocked state if it does not require or use an internal clock.  
If the CPU requests a power mode that does not support the current state of all active peripherals, the  
device does not enter the requested power mode, but it does enter a power mode that still supports the  
current state of the peripherals, except if an external clock is used. If an external clock is used, the  
application must use the correct frequency range for the requested power mode.  
6-2. Peripheral States  
PERIPHERAL  
WDT  
DMA(4)  
IN HIGH-FREQUENCY STATE(1)  
Clocked by SMCLK  
Not applicable  
IN LOW-FREQUENCY STATE(2)  
Clocked by ACLK  
IN UNCLOCKED STATE(3)  
Not applicable  
Not applicable  
Waiting for a trigger  
Not applicable  
RTC_C  
Not applicable  
Clocked by LFXT  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
Timer_A TAx  
Timer_B TBx  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
Waiting for first edge of START bit.  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
eUSCI_Ax in  
UART mode  
Clocked by SMCLK  
Clocked by SMCLK  
Clocked by ACLK  
Clocked by ACLK  
eUSCI_Ax in SPI  
master mode  
eUSCI_Ax in SPI  
slave mode  
eUSCI_Bx in I2C  
master mode  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
eUSCI_Bx in I2C  
slave mode  
Waiting for START condition or  
clocked by external clock 50 kHz  
Clocked by external clock >50 kHz  
Clocked by SMCLK  
Clocked by external clock 50 kHz  
Clocked by ACLK  
eUSCI_Bx in SPI  
master mode  
Not applicable  
eUSCI_Bx in SPI  
slave mode  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
ADC12_B  
REF_A  
COMP_E  
CRC(5)  
MPY(5)  
AES(5)  
Clocked by SMCLK or by MODOSC  
Not applicable  
Clocked by ACLK  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Waiting for a trigger  
Always  
Not applicable  
Always  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
(1) Peripherals are in a state that requires or uses a clock with a "high" frequency of more than 50 kHz  
(2) Peripherals are in a state that requires or uses a clock with a "low" frequency of 50 kHz or less.  
(3) Peripherals are in a state that does not require or does not use an internal clock.  
(4) The DMA always transfers data in active mode but can wait for a trigger in any low-power mode. A DMA trigger during a low-power  
mode causes a temporary transition into active mode for the time of the transfer.  
(5) This peripheral operates during active mode only and will delay the transition into a low-power mode until its operation is completed.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
67  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.4.2 Idle Currents of Peripherals in LPM3 and LPM4  
Most peripherals can be operational in LPM3 if clocked by ACLK. Some modules are operational in LPM4,  
because they do not require a clock to operate (for example, the comparator). Activating a peripheral in  
LPM3 or LPM4 increases the current consumption due to its active supply current contribution but also  
due to an additional idle current. To reduce the idle current adder, certain peripherals are grouped  
together (see 6-3). To achieve optimal current consumption, use modules within one group and limit the  
number of groups with active modules. Modules not listed in 6-3 are either already included in the  
standard LPM3 current consumption or cannot be used in LPM3 or LPM4.  
The idle current adder is very small at room temperature (25°C) but increases at high temperatures  
(85°C). See the IIDLE current parameters in Section 5 for details.  
6-3. Peripheral Groups  
GROUP A  
Timer TA1  
Timer TA2  
Timer TB0  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
GROUP B  
Timer TA0  
Timer TA3  
Comparator  
ADC12_B  
REF_A  
GROUP C  
Timer TA4  
eUSCI_A2  
eUSCI_A3  
eUSCI_B1  
eUSCI_B2  
eUSCI_B3  
6.5 Interrupt Vector Table and Signatures  
The interrupt vectors, the power-up start address and signatures are in the address range 0FFFFh to  
0FF80h. 6-1 summarizes the content of this address range.  
0FFFFh  
Reset Vector  
BSL Password  
Interrupt  
Vectors  
0FFE0h  
JTAG Password  
Reserved  
0FF88h  
0FF80h  
Signatures  
6-1. Interrupt Vectors, Signatures and Passwords  
The power-up start address or reset vector is at 0FFFFh to 0FFFEh. This location contains a 16-bit  
address pointing to the start address of the application program.  
The interrupt vectors start at 0FFFDh and extend to lower addresses. Each vector contains the 16-bit  
address of the appropriate interrupt-handler instruction sequence. 6-4 shows the device specific  
interrupt vector locations.  
The vectors programmed into the address range from 0FFFFh to 0FFE0h are used as BSL password (if  
enabled by the corresponding signature).  
68  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
The signatures are at 0FF80h and extend to higher addresses. Signatures are evaluated during device  
start-up. 6-5 lists the device-specific signature locations.  
A JTAG password can be programmed starting at address 0FF88h and extending to higher addresses.  
The password can extend into the interrupt vector locations using the interrupt vector addresses as  
additional bits for the password. The length of the JTAG password depends on the JTAG signature.  
See the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for details.  
6-4. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up, brownout, supply  
supervisor  
External reset RST  
Watchdog time-out (watchdog  
mode)  
WDT, FRCTL MPU, CS,  
PMM password violation  
FRAM uncorrectable bit error  
detection  
SVSHIFG  
PMMRSTIFG  
WDTIFG  
WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW  
UBDIFG  
MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
Reset  
0FFFEh  
Highest  
PMMPORIFG, PMMBORIFG  
MPU segment violation  
Software POR, BOR  
(SYSRSTIV)(1) (2)  
System NMI  
Vacant memory access  
JTAG mailbox  
FRAM access time error  
FRAM write protection error  
FRAM bit error detection  
MPU segment violation  
VMAIFG  
JMBINIFG, JMBOUTIFG  
ACCTEIFG, WPIFG  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
CBDIFG, UBDIFG  
MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
(SYSSNIV)(1) (3)  
User NMI  
External NMI  
Oscillator fault  
NMIIFG, OFIFG  
(SYSUNIV)(1) (3)  
CEIFG, CEIIFG  
(CEIV)(1)  
Comparator_E  
TB0  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
TB0CCR0.CCIFG  
TB0CCR1.CCIFG ... TB0CCR6.CCIFG,  
TB0CTL.TBIFG  
TB0  
Maskable  
Maskable  
0FFF4h  
0FFF2h  
(TB0IV)(1)  
Watchdog timer (interval timer  
mode)  
WDTIFG  
UCA0IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA0IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A0 receive or transmit  
Maskable  
Maskable  
0FFF0h  
0FFEEh  
(UCA0IV)(1)  
UCB0IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCB0IFG: UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,  
UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB0IV)(1)  
eUSCI_B0 receive or transmit  
ADC12IFG0 to ADC12IFG31  
ADC12LOIFG, ADC12INIFG, ADC12HIIFG,  
ADC12RDYIFG, ADC21OVIFG, ADC12TOVIFG  
(ADC12IV)(1) (4)  
ADC12_B  
TA0  
Maskable  
Maskable  
0FFECh  
0FFEAh  
TA0CCR0.CCIFG  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from peripheral space.  
(3) (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it.  
(4) Only on devices with ADC, otherwise reserved.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
69  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
PRIORITY  
6-4. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
TA0CCR1.CCIFG, TA0CCR2.CCIFG,  
TA0CTL.TAIFG  
TA0  
Maskable  
0FFE8h  
0FFE6h  
(TA0IV)(1)  
UCA1IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA1IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A1 receive or transmit  
Maskable  
(UCA1IV)(1)  
DMA0CTL.DMAIFG, DMA1CTL.DMAIFG,  
DMA2CTL.DMAIFG  
DMA  
TA1  
TA1  
Maskable  
Maskable  
Maskable  
0FFE4h  
0FFE2h  
0FFE0h  
(DMAIV)(1)  
TA1CCR0.CCIFG  
TA1CCR1.CCIFG, TA1CCR2.CCIFG,  
TA1CTL.TAIFG  
(TA1IV)(1)  
P1IFG.0 to P1IFG.7  
(P1IV)(1)  
I/O port P1  
TA2  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
TA2CCR0.CCIFG  
TA2CCR1.CCIFG  
TA2CTL.TAIFG  
(TA2IV)(1)  
TA2  
Maskable  
0FFDAh  
P2IFG.0 to P2IFG.7  
(P2IV)(1)  
I/O port P2  
TA3  
Maskable  
Maskable  
0FFD8h  
0FFD6h  
TA3CCR0.CCIFG  
TA3CCR1.CCIFG  
TA3CTL.TAIFG  
(TA3IV)(1)  
TA3  
Maskable  
0FFD4h  
P3IFG.0 to P3IFG.7  
(P3IV)(1)  
I/O port P3  
I/O port P4  
Maskable  
Maskable  
0FFD2h  
0FFD0h  
P4IFG.0 to P4IFG.2  
(P4IV)(1)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG,  
RT1PSIFG, RTCOFIFG  
RTC_C  
Maskable  
0FFCEh  
(RTCIV)(1)  
AES  
TA4  
AESRDYIFG  
Maskable  
Maskable  
0FFCCh  
0FFCAh  
TA4CCR0.CCIFG  
TA4CCR1.CCIFG  
TA4CTL.TAIFG  
(TA4IV)(1)  
TA4  
Maskable  
0FFC8h  
P5IFG.0 to P5IFG.2  
(P5IV)(1)  
I/O port P5  
I/O port P6  
Maskable  
Maskable  
0FFC6h  
0FFC4h  
P6IFG.0 to P6IFG.2  
(P6IV)(1)  
UCA2IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA2IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A2 receive or transmit  
eUSCI_A3 receive or transmit  
Maskable  
Maskable  
0FFC2h  
0FFC0h  
(UCA2IV)(1)  
UCA3IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA3IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
(UCA3IV)(1)  
UCB1IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCB1IFG: UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,  
UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB1IV)(1)  
eUSCI_B1 receive or transmit  
Maskable  
0FFBEh  
70  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-4. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
UCB2IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCB2IFG: UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,  
UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB2IV)(1)  
eUSCI_B2 receive or transmit  
eUSCI_B3 receive or transmit  
Maskable  
Maskable  
0FFBCh  
0FFBAh  
UCB3IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCB3IFG: UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,  
UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB3IV)(1)  
P7IFG.0 to P7IFG.2  
(P7IV)(1)  
I/O port P7  
I/O port P8  
Maskable  
Maskable  
Maskable  
0FFB8h  
0FFB6h  
0FFB4h  
P6IFG.0 to P6IFG.2  
(P8IV)(1)  
CMDIFG, SDIIFG, OORIFG,TIFG, COVLIFG  
LEAIV(1)  
LEA (MSP430FR599x only)  
Lowest  
6-5. Signatures  
SIGNATURE  
IP Encapsulation Signature 2  
IP Encapsulation Signature 1(1)  
BSL Signature 2  
WORD ADDRESS  
0FF8Ah  
0FF88h  
0FF86h  
BSL Signature 1  
0FF84h  
JTAG Signature 2  
0FF82h  
JTAG Signature 1  
0FF80h  
(1) Must not contain 0AAAAh if used as the JTAG password.  
6.6 Bootloader (BSL)  
The BSL can program the FRAM or RAM using a UART serial interface (FRxxxx devices) or an I2C  
interface (FRxxxx1 devices). Access to the device memory through the BSL is protected by an user-  
defined password. 6-6 lists the pins that are required to use the BSL. BSL entry requires a specific  
entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For a complete description of the  
features of the BSL and its implementation, see the MSP430 FRAM Device Bootloader (BSL) User's  
Guide. Visit Bootloader (BSL) for MSP low-power microcontrollers for more information.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
71  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-6. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P2.0  
Entry sequence signal  
Devices with UART BSL (FRxxxx): Data transmit  
Devices with UART BSL (FRxxxx): Data receive  
Devices with I2C BSL (FRxxxx1): Data  
Devices with I2C BSL (FRxxxx1): Clock  
Power supply  
P2.1  
P1.6  
P1.7  
DVCC  
DVSS  
Ground supply  
6.7 JTAG Operation  
6.7.1 JTAG Standard Interface  
The MSP family supports the standard JTAG interface, which requires four signals for sending and  
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to  
enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with  
MSP development tools and device programmers. 6-7 lists the JTAG pin requirements. For further  
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools  
User's Guide. For a complete description of the features of the JTAG interface and its implementation, see  
MSP430 Programming With the JTAG Interface.  
6-7. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
IN  
Power supply  
DVSS  
Ground supply  
6.7.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP family supports the two wire Spy-Bi-Wire interface.  
Spy-Bi-Wire can be used to interface with MSP development tools and device programmers. The Spy-Bi-  
Wire interface pin requirements are shown in 6-8. For further details on interfacing to development tools  
and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of  
the features of the JTAG interface and its implementation, see MSP430 Programming With the JTAG  
Interface.  
6-8. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
DIRECTION  
IN  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN, OUT  
DVSS  
Ground supply  
72  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.8 FRAM Controller A (FRCTL_A)  
The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in system by the  
CPU (also see 6-45 for control and configuration registers). Features of the FRAM include:  
Ultra-low-power ultra-fast-write nonvolatile memory  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
Wait States  
For MCLK frequencies > 8 MHz, wait states must be configured following the flow described  
in the "Wait State Control" section of the FRAM Controller A (FRCTRL_A) chapter in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
For important software design information regarding FRAM including but not limited to partitioning the  
memory layout according to application-specific code, constant, and data space requirements, the use of  
FRAM to optimize application energy consumption, and the use of the Memory Protection Unit (MPU) to  
maximize application robustness by protecting the program code against unintended write accesses, see  
MSP430™ FRAM Technology – How To and Best Practices.  
6.9 RAM  
The RAM is made up of three sectors: Sector 0 = 2KB, Sector 1 = 2KB, and Sector 2 = 4KB (shared with  
the LEA module). Each sector can be individually powered down in LPM3 and LPM4 to save leakage.  
Data is lost when sectors are powered down in LPM3 and LPM4. See 6-47 for control and configuration  
registers.  
6.10 Tiny RAM  
Tiny RAM provides 22 bytes of RAM in addition to the complete RAM (see 6-41). This memory is  
always available, even in LPM3 and LPM4, while the complete RAM can be powered down in LPM3 and  
LPM4. Tiny RAM can be used to hold data or a very small stack when the complete RAM is powered  
down in LPM3 and LPM4. No memory is available in LPMx.5.  
6.11 Memory Protection Unit (MPU) Including IP Encapsulation  
The FRAM can be protected by the MPU from inadvertent CPU execution, read access, or write access.  
See 6-67 for control and configuration registers. Features of the MPU include:  
IP encapsulation with programmable boundaries in steps of 1KB (prevents reads from "outside"; for  
example, through JTAG or by non-IP software).  
Main memory partitioning is programmable up to three segments in steps of 1KB.  
Access rights of each segment can be individually selected (main and information memory).  
Access violation flags with interrupt capability for easy servicing of access violations.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
73  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.12 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. The peripherals can be  
managed using all instructions. For complete module descriptions, see the MSP430FR58xx,  
MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
6.12.1 Digital I/O  
Up to nine 8-bit I/O ports are implemented (see 6-52 through 6-56 for control and configuration  
registers):  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all pins of  
ports P1 to P8.  
Read and write access to port control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise in pairs.  
All pins of ports P1 to P8, and PJ support capacitive touch functionality.  
No cross-currents during start-up.  
Configuration of Digital I/Os After BOR Reset  
To prevent any cross currents during start-up of the device, all port pins are high-impedance  
with Schmitt triggers and their module functions disabled. To enable the I/O functionality after  
a BOR reset, first configure the ports and then clear the LOCKLPM5 bit. For details, see the  
Configuration After Reset section of the Digital I/O chapter in the MSP430FR58xx,  
MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
6.12.2 Oscillator and Clock System (CS)  
The clock system includes support for a 32-kHz watch-crystal oscillator XT1 (LF), an internal very-low-  
power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a  
high-frequency crystal oscillator XT2 (HF). The clock system module is designed to meet the requirements  
of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources.  
See 6-49 for control and configuration registers.  
The clock system module provides the following clock signals:  
Auxiliary clock (ACLK). ACLK can be sourced from a 32-kHz watch crystal (LFXT1), the internal VLO,  
or a digital external low-frequency (<50 kHz) clock source.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced from a high-frequency  
crystal (HFXT2), the internal DCO, a 32-kHz watch crystal (LFXT1), the internal VLO, or a digital  
external clock source.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be  
sourced by same sources made available to MCLK.  
6.12.3 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM  
also includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit provides the  
proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the  
supply voltage drops below a safe level and below a user-selectable level. SVS circuitry is available on the  
primary and core supplies. See 6-44 for control and configuration registers.  
74  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.12.4 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs  
operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed multiplication, unsigned  
multiplication, signed multiply-and-accumulate, and unsigned multiply-and-accumulate operations. See 表  
6-65 for control and configuration registers.  
6.12.5 Real-Time Clock (RTC_C)  
The RTC_C module contains an integrated real-time clock (RTC) with the following features:  
Calendar mode with leap year correction  
General-purpose counter mode  
The internal calendar compensates for months with fewer than 31 days and includes leap year correction.  
The RTC_C also supports flexible alarm functions and offset-calibration hardware. RTC operation is  
available in LPM3.5 modes to minimize power consumption. See 6-64 for control and configuration  
registers.  
6.12.6 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart if a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not  
needed in an application, the module can be configured as an interval timer and can generate interrupts at  
selected time intervals. 6-9 lists the clocks that can source WDT_A. See 6-48 for control and  
configuration registers.  
6-9. WDT_A Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
LFMODCLK  
6.12.7 System Module (SYS)  
The SYS module manages many of the system functions within the device. These include power-on reset  
(POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector  
generators (see 6-10), bootloader (BSL) entry mechanisms, and configuration management (device  
descriptors). The SYS module also includes a data exchange mechanism through JTAG called a JTAG  
mailbox that can be used in the application. See 6-50 for control and configuration registers.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
75  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-10. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wake up (BOR)  
Security violation (BOR)  
Reserved  
SVSHIFG SVSH event (BOR)  
Reserved  
Reserved  
PMMSWPOR software POR (POR)  
WDTIFG watchdog timeout (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection (PUC)  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
MPUPW MPU password violation (PUC)  
CSPW CS password violation (PUC)  
SYSRSTIV, System Reset  
019Eh  
MPUSEGIPIFG encapsulated IP memory segment violation  
(PUC)  
26h  
MPUSEGIIFG information memory segment violation (PUC)  
MPUSEG1IFG segment 1 memory violation (PUC)  
MPUSEG2IFG segment 2 memory violation (PUC)  
MPUSEG3IFG segment 3 memory violation (PUC)  
Reserved  
28h  
2Ah  
2Ch  
2Eh  
30h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
Reserved  
02h  
Uncorrectable FRAM bit error detection  
FRAM access time error  
04h  
06h  
MPUSEGIPIFG encapsulated IP memory segment violation  
MPUSEGIIFG information memory segment violation  
MPUSEG1IFG segment 1 memory violation  
MPUSEG2IFG segment 2 memory violation  
MPUSEG3IFG segment 3 memory violation  
VMAIFG vacant memory access  
08h  
0Ah  
0Ch  
0Eh  
10h  
SYSSNIV, System NMI  
019Ch  
12h  
JMBINIFG JTAG mailbox input  
14h  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
FRAM write protection detection  
16h  
18h  
1Ah  
1Ch  
1Eh  
LEA time-out fault(1)  
LEA command fault(1)  
Lowest  
(1) Reserved on MSP430FR596x.  
76 Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-10. System Module Interrupt Vector Registers (continued)  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
NMIIFG NMI pin  
OFIFG oscillator fault  
Reserved  
00h  
02h  
Highest  
04h  
SYSUNIV, User NMI  
019Ah  
06h  
Reserved  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
6.12.8 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU  
intervention. For example, the DMA controller can be used to move data from the ADC12_B conversion  
memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA  
controller reduces system power consumption by allowing the CPU to remain in sleep mode, without  
having to awaken to move data to or from a peripheral. See 6-66 for control and configuration registers.  
6-11 lists the available DMA triggers.  
6-11. DMA Trigger Assignments(1)  
TRIGGER  
CHANNEL 0  
DMAREQ  
CHANNEL 1  
DMAREQ  
CHANNEL 2  
DMAREQ  
CHANNEL 3  
DMAREQ  
CHANNEL 4  
DMAREQ  
CHANNEL 5  
DMAREQ  
0
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA2TXIFG  
UCA2TXIFG  
UCA2TXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA3RXIFG  
UCA3RXIFG  
UCA3RXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCA3TXIFG  
UCA3TXIFG  
UCA3TXIFG  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
UCB2RXIFG (SPI)  
UCB2RXIFG0 (I2C)  
UCB3RXIFG (SPI)  
UCB3RXIFG0 (I2C)  
18  
19  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB2TXIFG (SPI)  
UCB2TXIFG0 (I2C)  
UCB3TXIFG (SPI)  
UCB3TXIFG0 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB1RXIFG1 (I2C)  
UCB1TXIFG1 (I2C)  
UCB1RXIFG2 (I2C)  
UCB1TXIFG2 (I2C)  
UCB1RXIFG3 (I2C)  
UCB1TXIFG3 (I2C)  
UCB2RXIFG1 (I2C)  
UCB2TXIFG1 (I2C)  
UCB2RXIFG2 (I2C)  
UCB2TXIFG2 (I2C)  
UCB2RXIFG3 (I2C)  
UCB2TXIFG3 (I2C)  
UCB3RXIFG1 (I2C)  
UCB3TXIFG1 (I2C)  
UCB3RXIFG2 (I2C)  
UCB3TXIFG2 (I2C)  
UCB3RXIFG3 (I2C)  
UCB3TXIFG3 (I2C)  
20  
21  
22  
23  
24  
25  
ADC12 end of  
conversion  
LEA ready(2)  
ADC12 end of  
conversion  
LEA ready(2)  
ADC12 end of  
conversion  
LEA ready(2)  
ADC12 end of  
conversion  
LEA ready(2)  
ADC12 end of  
conversion  
LEA ready(2)  
ADC12 end of  
conversion  
LEA ready(2)  
26  
27  
(1) If a reserved trigger source is selected, no trigger is generated.  
(2) Reserved on MSP430FR596x.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
77  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-11. DMA Trigger Assignments(1) (continued)  
TRIGGER  
CHANNEL 0  
Reserved  
MPY ready  
DMA2IFG  
DMAE0  
CHANNEL 1  
Reserved  
MPY ready  
DMA0IFG  
DMAE0  
CHANNEL 2  
Reserved  
MPY ready  
DMA1IFG  
DMAE0  
CHANNEL 3  
Reserved  
MPY ready  
DMA5IFG  
DMAE0  
CHANNEL 4  
Reserved  
MPY ready  
DMA3IFG  
DMAE0  
CHANNEL 5  
Reserved  
MPY ready  
DMA4IFG  
DMAE0  
28  
29  
30  
31  
6.12.9 Enhanced Universal Serial Communication Interface (eUSCI)  
The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous  
communication protocols such as SPI (3 pin or 4 pin) and I2C, and asynchronous communication  
protocols such as UART, enhanced UART with automatic baud-rate detection, and IrDA.  
The eUSCI_An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, and IrDA.  
The eUSCI_Bn module provides support for SPI (3 pin or 4 pin) and I2C.  
Up to four eUSCI_A modules and up to four eUSCI_B modules are implemented. See 6-68 through 表  
6-75 for control and configuration registers.  
6.12.10 TA0, TA1, and TA4  
TA0, TA1, and TA4 are 16-bit timers and counters (Timer_A type) with three (TA0 and TA1) or two (TA4)  
capture/compare registers each. Each timer can support multiple captures or compares, PWM outputs,  
and interval timing (see 6-12, 6-13, and 6-14). Each timer has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the  
capture/compare registers. See 6-57, 6-58, and 6-76 for control and configuration registers.  
6-12. TA0 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
INPUT PORT PIN  
OUTPUT PORT PIN  
P1.2  
TA0CLK  
ACLK (internal)  
SMCLK (internal)  
TA0CLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
P1.2  
P1.6  
P2.3  
TA0.0  
P1.6  
P2.3  
TA0.0  
TA0.0  
DVSS  
DVCC  
VCC  
P1.0  
P1.1  
TA0.1  
CCI1A  
P1.0  
ADC12(internal)(1)  
ADC12SHSx = {1}  
COUT (internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA0.1  
TA0.2  
DVSS  
DVCC  
GND  
VCC  
TA0.2  
CCI2A  
CCI2B  
GND  
VCC  
P1.1  
ACLK (internal)  
DVSS  
DVCC  
(1) Only on devices with ADC  
78  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-13. TA1 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
INPUT PORT PIN  
OUTPUT PORT PIN  
P1.1  
TA1CLK  
ACLK (internal)  
SMCLK (internal)  
TA1CLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
P1.1  
P1.7  
P2.4  
TA1.0  
P1.7  
P2.4  
TA1.0  
TA1.0  
DVSS  
DVCC  
VCC  
P1.2  
P1.3  
TA1.1  
CCI1A  
P1.2  
ADC12(internal)(1)  
ADC12SHSx = {4}  
COUT (internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA1.1  
TA1.2  
DVSS  
DVCC  
GND  
VCC  
TA1.2  
CCI2A  
CCI2B  
GND  
VCC  
P1.3  
ACLK (internal)  
DVSS  
DVCC  
(1) Only on devices with ADC  
6-14. TA4 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
MODULE INPUT  
MODULE  
BLOCK  
INPUT PORT PIN  
OUTPUT PORT PIN  
SIGNAL  
SIGNAL  
P5.2  
TA4CLK  
ACLK (internal)  
SMCLK (internal)  
TA4CLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
P5.2  
P5.6  
P7.4  
TA4.0  
TA4.0  
TA4.0  
DVSS  
DVCC  
VCC  
P5.7  
P7.3  
TA4.1  
CCI1A  
ADC12(internal)(1)  
ADC12SHSx = {7}  
TA4.1  
CCI1B  
CCR1  
TA1  
TA4.1  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
79  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.12.11 TA2 and TA3  
TA2 and TA3 are 16-bit timers and counters (Timer_A type) with two capture/compare registers each and  
with internal connections only. Each timer can support multiple captures or compares, PWM outputs, and  
interval timing (see 6-15 and 6-16). Each timer has extensive interrupt capabilities. Interrupts may be  
generated from the counter on overflow conditions and from each of the capture/compare registers. See  
6-60 and 6-62 for control and configuration registers.  
6-15. TA2 Signal Connections  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
TACLK  
ACLK  
Timer  
N/A  
TA0  
TA1  
SMCLK  
From Capacitive Touch  
I/O 0 (internal)  
INCLK  
CCI0A  
TA3 CCR0 output  
(internal)  
TA3 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
DVCC  
From Capacitive Touch  
I/O 0 (internal)  
ADC12(internal)(1)  
ADC12SHSx = {5}  
CCI1A  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
DVCC  
(1) Only on devices with ADC  
6-16. TA3 Signal Connections  
MODULE OUTPUT  
DEVICE OUTPUT  
SIGNAL  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
SIGNAL  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
TACLK  
ACLK  
Timer  
N/A  
SMCLK  
From Capacitive Touch  
I/O 1 (internal)  
INCLK  
CCI0A  
TA2 CCR0 output  
(internal)  
TA2 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
DVCC  
From Capacitive Touch  
I/O 1 (internal)  
ADC12(internal)(1)  
ADC12SHSx = {6}  
CCI1A  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
DVCC  
(1) Only on devices with ADC  
80  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.12.12 TB0  
TB0 is a 16-bit timer and counter (Timer_B type) with seven capture/compare registers. TB0 can support  
multiple captures or compares, PWM outputs, and interval timing (see 6-17). TB0 has extensive  
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each  
of the capture/compare registers. See 6-59 for control and configuration registers.  
6-17. TB0 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
INPUT PORT PIN  
OUTPUT PORT PIN  
P2.0  
TB0CLK  
ACLK (internal)  
SMCLK (internal)  
TB0CLK  
TBCLK  
ACLK  
Timer  
CCR0  
N/A  
N/A  
SMCLK  
INCLK  
CCI0A  
CCI0B  
P2.0  
P2.1  
P2.5  
TB0.0  
P2.1  
P2.5  
TB0.0  
ADC12 (internal)(1)  
ADC12SHSx = {2}  
TB0  
TB0.0  
DVSS  
GND  
DVCC  
TB0.1  
VCC  
P1.4  
P1.5  
CCI1A  
CCI1B  
P1.4  
P2.6  
COUT (internal)  
ADC12 (internal)(1)  
ADC12SHSx = {3}  
CCR1  
TB1  
TB0.1  
DVSS  
GND  
DVCC  
TB0.2  
VCC  
CCI2A  
CCI2B  
GND  
P1.5  
P2.2  
ACLK (internal)  
DVSS  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
TB2  
TB3  
TB4  
TB5  
TB6  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
DVCC  
TB0.3  
VCC  
P3.4  
P1.6  
CCI3A  
CCI3B  
GND  
P3.4  
P1.6  
TB0.3  
DVSS  
DVCC  
TB0.4  
VCC  
P3.5  
P1.7  
CCI4A  
CCI4B  
GND  
P3.5  
P1.7  
TB0.4  
DVSS  
DVCC  
TB0.5  
VCC  
P3.6  
P4.4  
CCI5A  
CCI5B  
GND  
P3.6  
P4.4  
TB0.5  
DVSS  
DVCC  
TB0.6  
VCC  
P3.7  
P2.0  
CCI6A  
CCI6B  
GND  
P3.7  
P2.0  
TB0.6  
DVSS  
DVCC  
VCC  
(1) Only on devices with ADC  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
81  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.12.13 ADC12_B  
The ADC12_B module supports fast 12-bit analog-to-digital conversions with differential and single-ended  
inputs. The module implements a 12-bit SAR core, sample select control, a reference generator, and a  
conversion result buffer. A window comparator with lower and upper limits allows CPU-independent result  
monitoring with three window comparator interrupt flags. See 6-77 for control and configuration  
registers.  
6-18 summarizes the available external trigger sources.  
6-19 lists the available multiplexing between internal and external analog inputs.  
6-18. ADC12_B Trigger Signal Connections  
ADC12SHSx  
CONNECTED TRIGGER  
SOURCE  
BINARY  
DECIMAL  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
Software (ADC12SC)  
TA0 CCR1 output  
TB0 CCR0 output  
TB0 CCR1 output  
TA1 CCR1 output  
TA2 CCR1 output  
TA3 CCR1 output  
TA4 CCR1 output  
6-19. ADC12_B External and Internal Signal Mapping  
CONTROL BIT IN ADC12CTL3  
EXTERNAL ADC INPUT  
(CONTROL BIT = 0)  
INTERNAL ADC INPUT  
REGISTER  
(CONTROL BIT = 1)  
Battery monitor  
Temperature sensor  
N/A(1)  
ADC12BATMAP  
ADC12TCMAP  
ADC12CH0MAP  
ADC12CH1MAP  
ADC12CH2MAP  
ADC12CH3MAP  
A31  
A30  
A29  
A28  
A27  
A26  
N/A(1)  
N/A(1)  
N/A(1)  
(1) N/A = No internal signal is available on this device.  
6.12.14 Comparator_E  
The primary function of the Comparator_E module is to support precision slope analog-to-digital  
conversions, battery voltage supervision, and monitoring of external analog signals. See 6-78 for  
control and configuration registers.  
6.12.15 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used  
for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. See 表  
6-46 for control and configuration registers.  
6.12.16 CRC32  
The CRC32 module produces a signature based on a sequence of entered data values and can be used  
for data checking purposes. The CRC32 signature is based on the ISO 3309 standard. See 6-79 for  
control and configuration registers.  
82  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.12.17 AES256 Accelerator  
The AES accelerator module performs encryption and decryption of 128-bit data with 128-, 192-, or 256-  
bit keys according to the Advanced Encryption Standard (AES) (FIPS PUB 197) in hardware. See 6-80  
for control and configuration registers.  
6.12.18 True Random Seed  
The Device Descriptor Information (TLV) section contains a 128-bit true random seed that can be used to  
implement a deterministic random number generator.  
6.12.19 Shared Reference (REF)  
The REF module generates all critical reference voltages that can be used by the various analog  
peripherals in the device.  
6.12.20 Embedded Emulation  
6.12.20.1 Embedded Emulation Module (EEM) (S Version)  
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
6.12.20.2 EnergyTrace++ Technology  
The devices implement circuitry to support EnergyTrace++ technology. The EnergyTrace++ technology  
allows you to observe information about the internal states of the microcontroller. These states include the  
CPU program counter (PC), the ON or OFF status of the peripherals and the system clocks (regardless of  
the clock source), and the low-power mode currently in use. These states can always be read by a debug  
tool, even when the microcontroller sleeps in LPMx.5 modes.  
The activity of the following modules can be observed:  
LEA is running (MSP430FR599x only).  
MPY is calculating.  
WDT is counting.  
RTC is counting.  
ADC: a sequence, sample, or conversion is active.  
REF: REFBG or REFGEN active and BG in static mode.  
COMP is on.  
AES is encrypting or decrypting.  
eUSCI_A0 is transferring (receiving or transmitting) data.  
eUSCI_A1 is transferring (receiving or transmitting) data.  
eUSCI_A2 is transferring (receiving or transmitting) data.  
eUSCI_A3 is transferring (receiving or transmitting) data.  
eUSCI_B0 is transferring (receiving or transmitting) data.  
eUSCI_B1 is transferring (receiving or transmitting) data.  
eUSCI_B2 is transferring (receiving or transmitting) data.  
eUSCI_B3 is transferring (receiving or transmitting) data.  
TB0 is counting.  
TA0 is counting.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
83  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
TA1 is counting.  
TA2 is counting.  
TA3 is counting.  
TA4 is counting.  
84  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13 Input/Output Diagrams  
6.13.1 Capacitive Touch Functionality on Ports P1 to P8, and PJ  
All port pins provide the Capacitive Touch functionality (see 6-2). The Capacitive Touch functionality is  
controlled using the Capacitive Touch I/O control registers CAPTIO0CTL and CAPTIO1CTL as described  
in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide. The Capacitive Touch  
functionality is not shown in the individual pin schematics in the following sections.  
Analog Enable  
PxREN.y  
Capacitive Touch Enable 0  
Capacitive Touch Enable 1  
DVSS  
DVCC  
0
1
1
Direction Control  
PxOUT.y  
0
1
Output Signal  
Px.y  
Input Signal  
D
Q
EN  
Capacitive Touch Signal 0  
Capacitive Touch Signal 1  
NOTE: Functional representation only.  
6-2. Capacitive Touch Functionality on Ports  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
85  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.13.2 Port P1 (P1.0 to P1.2) Input/Output With Schmitt Trigger  
6-3 shows the port diagram. 6-20 summarizes the selection of the pin functions.  
Pad Logic  
(ADC) Reference  
(P1.0, P1.1)  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
P1REN.x  
0 0  
0 1  
1 0  
1 1  
P1DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
DVSS  
P1.0/TA0.1/DMAE0/RTCCLK/  
A0/C0/VREF-/VeREF-  
P1.1/TA0.2/TA1CLK/COUT/  
A1/C1VREF+/VeREF+  
P1SEL1.x  
P1SEL0.x  
P1IN.x  
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-3. Port P1 (P1.0 to P1.2) Diagram  
86  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-20. Port P1 (P1.0 to P1.2) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.0 (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
0
0
0
0
1
1
0
1
P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/  
VREF-/VeREF-  
0
DMAE0  
RTCCLK(2)  
0
1
A0, C0, VREF-, VeREF-(3)(4)  
X
1
0
1
0
P1.1 (I/O)  
I: 0; O: 1  
TA0.CCI2A  
TA0.2  
0
0
1
1
0
1
P1.1/TA0.2/TA1CLK/COUT/A1/C1/  
VREF+/VeREF+  
1
2
TA1CLK  
COUT(5)  
A1, C1, VREF+, VeREF+(3)(4)  
0
1
X
1
0
1
0
P1.2 (I/O)  
I: 0; O: 1  
TA1.CCI1A  
TA1.1  
0
1
0
1
X
0
1
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
(1) X = Don't care  
TA0CLK  
COUT(5)  
A2, C2(3)(4)  
1
1
0
1
(2) Do not use this pin as RTCCLK output if the DMAE0 functionality is used on any other pin. Select an alternate RTCCLK output pin.  
(3) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
(5) Do not use this pin as COUT output if the TA1CLK functionality is used on any other pin. Select an alternate COUT output pin.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
87  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.13.3 Port P1 (P1.3 to P1.5) Input/Output With Schmitt Trigger  
6-4 shows the port diagram. 6-21 summarizes the selection of the pin functions.  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
P1REN.x  
0 0  
0 1  
1 0  
1 1  
P1DIR.x  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
DVSS  
P1.3/TA1.2/UCB0STE/A3/C3  
P1.4/TB0.1/UCA0STE/A4/C4  
P1.5/TB0.2/UCA0CLK/A5/C5  
P1SEL1.x  
P1SEL0.x  
P1IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-4. Port P1 (P1.3 to P1.5) Diagram  
88  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-21. Port P1 (P1.3 to P1.5) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.3 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
0
0
0
0
1
P1.3/TA1.2/UCB0STE/A3/C3  
P1.4/TB0.1/UCA0STE/A4/C4  
3
1
X(2)  
UCB0STE  
A3, C3(3)(4)  
P1.4 (I/O)  
TB0.CCI1A  
TB0.1  
1
1
0
0
1
0
X
I: 0; O: 1  
0
0
1
4
5
1
X(5)  
UCA0STE  
A4, C4(3)(4)  
P1.5(I/O)  
TB0.CCI2A  
TB0.2  
1
1
0
0
1
0
X
I: 0; O: 1  
0
0
1
P1.5/TB0.2/UCA0CLK/A5/C5  
(1) X = Don't care  
1
UCA0CLK  
A5, C5(3)(4)  
X(5)  
X
1
1
0
1
(2) Direction controlled by eUSCI_B0 module.  
(3) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
(5) Direction controlled by eUSCI_A0 module.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
89  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.13.4 Port P1 (P1.6 and P1.7) Input/Output With Schmitt Trigger  
6-5 shows the port diagram. 6-22 summarizes the selection of the pin functions.  
Pad Logic  
P1REN.x  
0 0  
0 1  
1 0  
1 1  
P1DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
From module 2  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
From module 3  
P1.6/TB0.3/UCB0SIMO/UCB0SDA/TA0.0  
P1.7/TB0.4/UCB0SOMI/UCB0SCL/TA1.0  
P1SEL1.x  
P1SEL0.x  
P1IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
6-5. Port P1 (P1.6 and P1.7) Diagram  
6-22. Port P1 (P1.6 and P1.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.6 (I/O)  
TB0.CCI3B  
TB0.3  
I: 0; O: 1  
0
0
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1
X(2)  
P1.6/TB0.3/UCB0SIMO/UCB0SDA/ TA0.0  
6
UCB0SIMO/UCB0SDA  
TA0.CCI0A  
TA0.0  
0
1
P1.7 (I/O)  
I: 0; O: 1  
TB0.CCI4B  
TB0.4  
0
1
X(3)  
P1.7/TB0.4/UCB0SOMI/UCB0SCL/ TA1.0  
(1) X = Don't care  
7
UCB0SOMI/UCB0SCL  
TA1.CCI0A  
TA1.0  
0
1
(2) Direction controlled by eUSCI_B0 module.  
(3) Direction controlled by eUSCI_A0 module.  
90  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.5 Port P2 (P2.0 to P2.2) Input/Output With Schmitt Trigger  
6-6 shows the port diagram. 6-23 summarizes the selection of the pin functions.  
Pad Logic  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
From module 2  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
From module 3  
P2.0/TB0.6/UCA0TXD/UCA0SIMO/  
TB0CLK/ACLK  
P2.1/TB0.0/UCA0RXD/UCA0SOMI/  
TB0.0  
P2.2/TB0.2/UCB0CLK  
P2SEL1.x  
P2SEL0.x  
P2IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
6-6. Port P2 (P2.0 to P2.2) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
91  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-23. Port P2 (P2.0 to P2.2) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.0 (I/O)  
TB0.CCI6B  
TB0.6  
I: 0; O: 1  
0
0
0
0
1
1
0
X
1
0
1
0
1
1
X(2)  
P2.0/TB0.6/UCA0TXD/UCA0SIMO/  
TB0CLK/ACLK  
0
UCA0TXD/UCA0SIMO  
TB0CLK  
ACLK(3)  
0
1
P2.1 (I/O)  
I: 0; O: 1  
TB0.CCI0A  
TB0.0  
0
P2.1/TB0.0/UCA0RXD/UCA0SOMI  
1
2
1
X(2)  
UCA0RXD/UCA0SOMI  
P2.2 (I/O)  
1
0
0
0
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
TB0.2  
1
P2.2/TB0.2/UCB0CLK  
(1) X = Don't care  
(4)  
UCB0CLK  
N/A  
X
0
1
Internally tied to DVSS  
(2) Direction controlled by eUSCI_A0 module.  
(3) Do not use this pin as ACLK output if the TB0CLK functionality is used on any other pin. Select an alternate ACLK output pin.  
(4) Direction controlled by eUSCI_B0 module.  
92  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.6 Port P2 (P2.3 and P2.4) Input/Output With Schmitt Trigger  
6-7 shows the port diagram. 6-24 summarizes the selection of the pin functions.  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
DVSS  
P2.3/TA0.0/UCA1STE/A6/C10  
P2.4/TA1.0/UCA1CLK/A7/C11  
P2SEL1.x  
P2SEL0.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-7. Port P2 (P2.3 and P2.4) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
93  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-24. Port P2 (P2.3 and P2.4) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.3 (I/O)  
TA0.CCI0B  
TA0.0  
I: 0; O: 1  
0
0
0
0
1
P2.3/TA0.0/UCA1STE/A6/C10  
3
1
(2)  
UCA1STE  
A6, C10(3)(4)  
P2.4 (I/O)  
TA1.CCI0B  
TA1.0  
X
1
1
0
0
1
0
X
I: 0; O: 1  
0
0
1
P2.4/TA1.0/UCA1CLK/A7/C11  
(1) X = Don't care  
4
1
(2)  
UCA1CLK  
A7, C11(3)(4)  
X
1
1
0
1
X
(2) Direction controlled by eUSCI_A1 module.  
(3) Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
94  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.7 Port P2 (P2.5 and P2.6) Input/Output With Schmitt Trigger  
6-8 shows the port diagram. 6-25 summarizes the selection of the pin functions.  
Pad Logic  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
From module 2  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
DVSS  
P2.5/TB0.0/UCA1TXD/UCA1SIMO  
P2.6/TB0.1/UCA1RXD/UCA1SOMI  
P2SEL1.x  
P2SEL0.x  
P2IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
6-8. Port P2 (P2.5 and P2.6) Diagram  
6-25. Port P2 (P2.5 and P2.6) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.5(I/O)  
TB0.CCI0B  
TB0.0  
I: 0; O: 1  
0
0
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1
X(2)  
P2.5/TB0.0/UCA1TXD/UCA1SIMO  
5
UCA1TXD/UCA1SIMO  
N/A  
0
Internally tied to DVSS  
1
P2.6(I/O)  
I: 0; O: 1  
N/A  
0
1
X(2)  
TB0.1  
P2.6/TB0.1/UCA1RXD/UCA1SOMI  
(1) X = Don't care  
6
UCA1RXD/UCA1SOMI  
N/A  
0
Internally tied to DVSS  
1
(2) Direction controlled by eUSCI_A1 module.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
95  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.13.8 Port P2 (P2.7) Input/Output With Schmitt Trigger  
6-9 shows the port diagram. 6-26 summarizes the selection of the pin functions.  
Pad Logic  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
DVSS  
DVSS  
P2.7  
DVSS  
P2SEL1.x  
P2SEL0.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-9. Port P2 (P2.7) Diagram  
6-26. Port P2 (P2.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.7(I/O)  
N/A  
I: 0; O: 1  
0
0
0
1
0
1
0
1
1
P2.7  
7
Internally tied to DVSS  
N/A  
X
Internally tied to DVSS  
(1) X = Don't care  
96  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.9 Port P3 (P3.0 to P3.3) Input/Output With Schmitt Trigger  
6-10 shows the port diagram. 6-27 summarizes the selection of the pin functions.  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
P3REN.x  
0 0  
0 1  
1 0  
1 1  
P3DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P3OUT.x  
DVSS  
DVSS  
DVSS  
P3.0/A12/C12  
P3.1/A13/C13  
P3.2/A14/C14  
P3.3/A15/C15  
P3SEL1.x  
P3SEL0.x  
P3IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-10. Port P3 (P3.0 to P3.3) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
97  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-27. Port P3 (P3.0 to P3.3) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
P3.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P3.0/A12/C12  
0
0
Internally tied to DVSS  
A12/C12(2)(3)  
P3.1 (I/O)  
1
X
1
0
1
0
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P3.1/A13/C13  
P3.2/A14/C14  
1
2
3
0
Internally tied to DVSS  
A13/C13(2)(3)  
P3.2 (I/O)  
1
X
1
0
1
0
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
A14/C14(2)(3)  
P3.3 (I/O)  
1
X
1
0
1
0
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
Internally tied to DVSS  
N/A  
P3.3/A15/C15  
1
1
0
1
Internally tied to DVSS  
A15/C15(2)(3)  
(1) X = Don't care  
(2) Setting P3SEL1.x and P3SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
98  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.10 Port P3 (P3.4 to P3.7) Input/Output With Schmitt Trigger  
6-11 shows the port diagram. 6-28 summarizes the selection of the pin functions.  
Pad Logic  
P3REN.x  
0 0  
0 1  
1 0  
1 1  
P3DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P3OUT.x  
From module 1  
From module 2  
From module 3  
P3.4/TB0.3/SMCLK  
P3.5/TB0.4/CBOUT  
P3.6/TB0.5  
P3SEL1.x  
P3.7/TB0.6  
P3SEL0.x  
P3IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
6-11. Port P3 (P3.4 to P3.7) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
99  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-28. Port P3 (P3.4 to P3.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
P3.4 (I/O)  
TB0.CCI3A  
TB0.3  
I: 0; O: 1  
0
0
0
0
1
P3.4/TB0.3/SMCLK  
4
1
N/A  
0
1
0
0
X
0
1
SMCLK  
P3.5 (I/O)  
TB0.CCI4A  
TB0.4  
1
I: 0; O: 1  
0
P3.5/TB0.4/COUT  
5
6
7
1
N/A  
0
1
0
0
X
0
1
COUT  
1
P3.6 (I/O)  
TB0.CCI5A  
TB0.5  
I: 0; O: 1  
0
P3.6/TB0.5  
1
N/A  
0
1
0
0
X
0
1
Internally tied to DVSS  
P3.7 (I/O)  
1
I: 0; O: 1  
TB0.CCI6A  
0
1
0
1
P3.7/TB0.6  
TB0.6  
N/A  
1
X
Internally tied to DVSS  
(1) X = Don't care  
100  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.11 Port P4 (P4.0 to P4.3) Input/Output With Schmitt Trigger  
6-12 shows the port diagram. 6-29 summarizes the selection of the pin functions.  
Pad Logic  
To ADC  
From ADC  
P4REN.x  
0 0  
0 1  
1 0  
1 1  
P4DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P4OUT.x  
DVSS  
DVSS  
P4.0/A8  
P4.1/A9  
P4.2/A10  
P4.3/A11  
DVSS  
P4SEL1.x  
P4SEL0.x  
P4IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-12. Port P4 (P4.0 to P4.3) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
101  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-29. Port P4 (P4.0 to P4.3) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
P4.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
1
P4.0/A8  
0
N/A  
0
Internally tied to DVSS  
1
A8(2)  
X
1
0
1
0
P4.1 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
1
P4.1/A9  
1
2
3
N/A  
0
Internally tied to DVSS  
1
A9(2)  
X
1
0
1
0
P4.2 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
1
P4.2/A10  
N/A  
0
Internally tied to DVSS  
1
A10(2)  
X
1
0
1
0
P4.3 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
Internally tied to DVSS  
N/A  
P4.3/A11  
1
1
0
1
Internally tied to DVSS  
A11(2)  
(1) X = Don't care  
(2) Setting P4SEL1.x and P4SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
102  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.12 Port P4 (P4.4 to P4.7) Input/Output With Schmitt Trigger  
6-13 shows the port diagram. 6-30 summarizes the selection of the pin functions.  
Pad Logic  
P4REN.x  
0 0  
0 1  
1 0  
1 1  
P4DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P4OUT.x  
From module 1  
DVSS  
DVSS  
P4.4/TB0.5  
P4.5  
P4.6  
P4SEL1.x  
P4.7  
P4SEL0.x  
P4IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
6-13. Port P4 (P4.4 to P4.7) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
103  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-30. Port P4 (P4.4 to P4.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
P4.4 (I/O)  
TB0.CCI5B  
TB0.5  
I: 0; O: 1  
0
0
0
0
1
P4.4/TB0.5  
4
1
N/A  
0
1
0
0
X
0
1
Internally tied to DVSS  
1
P4.5 (I/O)  
I: 0; O: 1  
N/A  
0
P4.5  
P4.6  
5
6
7
Internally tied to DVSS  
1
N/A  
0
1
0
0
X
0
1
Internally tied to DVSS  
P4.6 (I/O)  
1
I: 0; O: 1  
N/A  
0
Internally tied to DVSS  
N/A  
1
0
1
0
0
X
0
1
Internally tied to DVSS  
P4.7 (I/O)  
1
I: 0; O: 1  
N/A  
0
1
0
1
P4.7  
Internally tied to DVSS  
N/A  
1
X
Internally tied to DVSS  
(1) X = Don't care  
104  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.13 Port P5 (P5.0 to P5.7) Input/Output With Schmitt Trigger  
6-14 shows the port diagram. 6-31 summarizes the selection of the pin functions.  
Pad Logic  
P5REN.x  
0 0  
0 1  
1 0  
1 1  
P5DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P5OUT.x  
From module 1  
DVSS  
DVSS  
P5.0/UCB1SIMO/UCB1SDA  
P5.1/UCB1SOMI/UCB1SCL  
P5.2/UCB1CLK/TA4CLK  
P5SEL1.x  
P5.3/UCB1STE  
P5SEL0.x  
P5IN.x  
P5.4/UCA2TXD/UCA2SIMO/TB0OUTH  
P5.5/UCA2RXD/UCA2SOMI/ACLK  
P5.6/UCA2CLK/TA4.0/SMCLK  
P5.7/UCA2STE/TA4.1/MCLK  
EN  
D
To modules  
NOTE: Functional representation only.  
6-14. Port P5 (P5.0 to P5.7) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
105  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-31. Port P5 (P5.0 to P5.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
P5.0 (I/O)  
I: 0; O: 1  
X(2)  
0
0
0
1
UCB1SIMO/UCB1SDA  
N/A  
P5.0/UCB1SIMO/UCB1SDA  
0
0
1
X
Internally tied to DVSS  
P5.1 (I/O)  
1
I: 0; O: 1  
X(2)  
0
0
0
1
UCB1SOMI/UCB1SCL  
N/A  
P5.1/UCB1SOMI/UCB1SCL  
P5.2/UCB1CLK/TA4CLK  
P5.3/UCB1STE  
1
2
3
4
0
1
X
Internally tied to DVSS  
P5.2 (I/O)  
1
I: 0; O: 1  
X(2)  
0
0
0
1
UCB1CLK  
TA4CLK  
0
1
1
0
1
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
P5.3 (I/O)  
1
I: 0; O: 1  
X(2)  
0
0
0
1
UCB1STE  
N/A  
0
1
1
Internally tied to DVSS  
P5.4 (I/O)  
1
I: 0; O: 1  
X(3)  
0
0
0
1
UCA2TXD/UCA2SIMO  
N/A  
0
P5.4/UCA2TXD/UCA2SIMO/TB  
0OUTH  
1
1
0
1
Internally tied to DVSS  
TB0OUTH  
1
0
Internally tied to DVSS  
P5.5 (I/O)  
1
I: 0; O: 1  
X(3)  
0
0
0
1
UCA2RXD/UCA2SOMI  
N/A  
0
P5.5/UCA2RXD/UCA2SOMI/AC  
LK  
5
6
7
0
1
1
1
Internally tied to DVSS  
N/A  
1
0
ACLK  
1
P5.6 (I/O)  
I: 0; O: 1  
X(3)  
0
0
0
1
UCA2CLK  
TA4.CCI0A  
TA4.0  
0
P5.6/UCA2CLK/TA4.0/SMCLK  
1
1
0
1
1
N/A  
0
SMCLK  
1
P5.7 (I/O)  
I: 0; O: 1  
X(3)  
0
0
0
1
UCA2STE  
TA4.CCI1A  
TA4.1  
0
P5.7/UCA2STE/TA4.1/MCLK  
(1) X = Don't care  
1
1
0
1
1
NA  
0
MCLK  
1
(2) Direction controlled by eUSCI_B0 module.  
(3) Direction controlled by eUSCI_A2 module.  
106  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.14 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger  
6-15 shows the port diagram. 6-32 summarizes the selection of the pin functions.  
Pad Logic  
P6REN.x  
0 0  
0 1  
1 0  
1 1  
P6DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P6OUT.x  
From module 1  
DVSS  
DVSS  
P6.0/UCA3TXD/UCA3SIMO  
P6.1/UCA3RXD/UCA3SOMI  
P6.2/UCA3CLK  
P6SEL1.x  
P6.3/UCA3STE  
P6SEL0.x  
P6IN.x  
P6.4/UCB3SIMO/UCB3SDA  
P6.5/UCB3SOMI/UCB3SCL  
P6.6/UCB3CLK  
P6.7/UCB3STE  
EN  
D
To modules  
NOTE: Functional representation only.  
6-15. Port P6 (P6.0 to P6.7) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
107  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-32. Port P6 (P6.0 to P6.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
P6.0 (I/O)  
I: 0; O: 1  
X(2)  
0
0
0
1
UCA3TXD/UCA3SIMO  
N/A  
P6.0/UCA3TXD/UCA3SIMO  
0
0
1
X
Internally tied to DVSS  
P6.1 (I/O)  
1
I: 0; O: 1  
X(2)  
0
0
0
1
UCA3RXD/UCA3SOMI  
N/A  
P6.1/UCA3RXD/UCA3SOMI  
P6.2/UCA3CLK  
1
2
3
4
5
6
7
0
1
X
Internally tied to DVSS  
P6.2 (I/O)  
1
I: 0; O: 1  
X(2)  
0
0
0
1
UCA3CLK  
N/A  
0
1
X
Internally tied to DVSS  
P6.3 (I/O)  
1
I: 0; O: 1  
X(2)  
0
0
0
1
UCA3STE  
P6.3/UCA3STE  
N/A  
0
1
X
Internally tied to DVSS  
P6.4 (I/O)  
1
I: 0; O: 1  
X(3)  
0
0
0
1
UCB3SIMO/UCB3SDA  
N/A  
P6.4/UCB3SIMO/UCB3SDA  
P6.5/UCB3SOMI/UCB3SCL  
P6.6/UCB3CLK  
0
1
X
Internally tied to DVSS  
P6.5 (I/O)  
1
I: 0; O: 1  
X(3)  
0
0
0
1
UCB3SOMI/UCB3SCL  
N/A  
0
1
X
Internally tied to DVSS  
P6.6 (I/O)  
1
I: 0; O: 1  
X(3)  
0
0
0
1
UCB3CLK  
N/A  
0
1
X
Internally tied to DVSS  
P6.7 (I/O)  
1
I: 0; O: 1  
X(3)  
0
0
0
1
UCB3STE  
P6.7/UCB3STE  
N/A  
0
1
X
Internally tied to DVSS  
1
(1) X = Don't care  
(2) Direction controlled by eUSCI_A3 module.  
(3) Direction controlled by eUSCI_B3 module.  
108  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.15 Port P7 (P7.0 to P7.3) Input/Output With Schmitt Trigger  
6-16 shows the port diagram. 6-33 summarizes the selection of the pin functions.  
Pad Logic  
P7REN.x  
0 0  
0 1  
1 0  
1 1  
P7DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P7OUT.x  
From module 1  
DVSS  
DVSS  
P7.0/UCB2SIMO/UCB2SDA  
P7.1/UCB2SOMI/UCB2SCL  
P7.2/UCB2CLK  
P7SEL1.x  
P7.3/UCB2STE/TA4.1  
P7SEL0.x  
P7IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
6-16. Port P7 (P7.0 to P7.3) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
109  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-33. Port P7 (P7.0 to P7.3) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL1.x  
P7SEL0.x  
P7.0 (I/O)  
I: 0; O: 1  
X(2)  
0
0
0
1
UCB2SIMO/UCB2SDA  
N/A  
P7.0/UCB2SIMO/UCB2SDA  
0
0
1
X
Internally tied to DVSS  
P7.1 (I/O)  
1
I: 0; O: 1  
X(2)  
0
0
0
1
UCB2SOMI/UCB2SCL  
N/A  
P7.1/UCB2SOMI/UCB2SCL  
P7.2/UCB2CLK  
1
2
0
1
X
Internally tied to DVSS  
P7.2 (I/O)  
1
I: 0; O: 1  
X(2)  
0
0
0
1
UCB2CLK  
N/A  
0
1
X
Internally tied to DVSS  
P7.3 (I/O)  
1
I: 0; O: 1  
X(2)  
0
0
0
1
UCB2STE  
TA4.CCI1B  
0
P7.3/UCB2STE/TA4.1  
(1) X = Don't care  
3
1
1
0
1
TA4.1  
1
N/A  
0
Internally tied to DVSS  
1
(2) Direction controlled by eUSCI_B2 module.  
110  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.16 Port P7 (P7.4 to P7.7) Input/Output With Schmitt Trigger  
6-17 shows the port diagram. 6-34 summarizes the selection of the pin functions.  
Pad Logic  
To ADC  
From ADC  
P7REN.x  
0 0  
0 1  
1 0  
1 1  
P7DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P7OUT.x  
DVSS  
DVSS  
P7.4/TA4.0/A16  
P7.5/A17  
P7.6/A18  
DVSS  
P7SEL1.x  
P7.7/A19  
P7SEL0.x  
P4IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-17. Port P7 (P7.3 to P7.7) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
111  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-34. Port P7 (P7.3 to P7.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL1.x  
P7SEL0.x  
P7.4 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
1
P7.4/TA4.0/A16  
4
TA4.CCI0B  
0
TA4.0  
1
A16(2)  
X
1
0
1
0
P7.5 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
1
P7.5/A17  
P7.6/A18  
5
6
7
N/A  
0
Internally tied to DVSS  
1
A17(2)  
X
1
0
1
0
P7.6 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
A18(2)  
1
X
1
0
1
0
P7.7 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
Internally tied to DVSS  
N/A  
P7.7/A19  
1
1
0
1
Internally tied to DVSS  
A19(2)  
(1) X = Don't care  
(2) Setting P7SEL1.x and P7SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
112  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.17 Port P8 (P8.0 to P8.3) Input/Output With Schmitt Trigger  
6-18 shows the port diagram. 6-35 summarizes the selection of the pin functions.  
Pad Logic  
P8REN.x  
0 0  
0 1  
1 0  
1 1  
P8DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P8OUT.x  
From module 1  
DVSS  
DVSS  
P8.0  
P8.1  
P8.2  
P8.3  
P8SEL1.x  
P8SEL0.x  
P8IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
6-18. Port P8 (P8.0 to P8.3) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
113  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-35. Port P8 (P8.0 to P8.3) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL1.x  
P8SEL0.x  
P8.0(I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
P8.0  
P8.1  
P8.2  
P8.3  
0
Internally tied to DVSS  
1
N/A  
0
1
0
0
X
0
1
Internally tied to DVSS  
1
P8.1 (I/O)  
I: 0; O: 1  
N/A  
0
1
2
3
Internally tied to DVSS  
1
N/A  
0
1
0
0
X
0
1
Internally tied to DVSS  
P8.2 (I/O)  
1
I: 0; O: 1  
N/A  
0
Internally tied to DVSS  
N/A  
1
0
1
0
0
X
0
1
Internally tied to DVSS  
P8.3 (I/O)  
1
I: 0; O: 1  
N/A  
0
1
0
1
Internally tied to DVSS  
N/A  
1
X
Internally tied to DVSS  
(1) X = Don't care  
114  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.18 Port PJ (PJ.4 and PJ.5) Input/Output With Schmitt Trigger  
6-19 and 6-20 show the port diagrams. 6-36 summarizes the selection of the pin functions.  
Pad Logic  
To LFXT XIN  
PJREN.4  
0 0  
0 1  
1 0  
1 1  
PJDIR.4  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.4  
DVSS  
DVSS  
DVSS  
PJ.4/LFXIN  
PJSEL1.4  
PJSEL0.4  
PJIN.4  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-19. Port PJ (PJ.4) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
115  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
Pad Logic  
To LFXT XOUT  
PJSEL0.4  
PJSEL1.4  
LFXTBYPASS  
PJREN.5  
0 0  
0 1  
1 0  
1 1  
PJDIR.5  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.5  
DVSS  
DVSS  
DVSS  
PJ.5/LFXOUT  
PJSEL1.5  
PJSEL0.5  
PJIN.5  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-20. Port PJ (PJ.5) Diagram  
116  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-36. Port PJ (PJ.4 and PJ.5) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJ.4 (I/O)  
LFXT  
BYPASS  
PJDIR.x  
PJSEL1.5  
PJSEL0.5  
PJSEL1.4  
PJSEL0.4  
I: 0; O: 1  
X
X
0
0
X
N/A  
0
1
X
X
1
X
X
PJ.4/LFXIN  
4
Internally tied to DVSS  
LFXIN crystal mode(2)  
LFXIN bypass mode(2)  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
0
0
1(3)  
0
PJ.5 (I/O)  
N/A  
I: 0; O: 1  
0
0
X
X
0
(4)  
(4)  
0
See  
See  
X
X
0
PJ.5/LFXOUT  
5
1(3)  
0
(4)  
(4)  
Internally tied to DVSS  
LFXOUT crystal mode(2)  
1
See  
See  
X
X
1
1(3)  
0
X
X
X
(1) X = Don't care  
(2) If PJSEL1.4 = 0 and PJSEL0.4 = 1, the general-purpose I/O is disabled. When LFXTBYPASS = 0, PJ.4 and PJ.5 are configured for  
crystal operation and PJSEL1.5 and PJSEL0.5 are don't care. When LFXTBYPASS = 1, PJ.4 is configured for bypass operation and  
PJ.5 is configured as general-purpose I/O.  
(3) When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.  
(4) If PJSEL0.5 = 1 or PJSEL1.5 = 1, the general-purpose I/O functionality is disabled. No input function is available. Configured as output,  
the pin is actively pulled to zero.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
117  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.13.19 Port PJ (PJ.6 and PJ.7) Input/Output With Schmitt Trigger  
6-21 and 6-22 show the port diagrams. 6-37 summarizes the selection of the pin functions.  
Pad Logic  
To HFXT XIN  
PJREN.6  
0 0  
0 1  
1 0  
1 1  
PJDIR.6  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.6  
DVSS  
DVSS  
DVSS  
PJ.6/HFXIN  
PJSEL1.6  
PJSEL0.6  
PJIN.6  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-21. Port PJ (PJ.6) Diagram  
118  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
Pad Logic  
To HFXT XOUT  
PJSEL0.6  
PJSEL1.6  
HFXTBYPASS  
PJREN.7  
0 0  
PJDIR.7  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.7  
DVSS  
DVSS  
DVSS  
PJ.7/HFXOUT  
PJSEL1.7  
PJSEL0.7  
PJIN.7  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-22. Port PJ (PJ.7) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
119  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-37. Port PJ (PJ.6 and PJ.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJ.6 (I/O)  
PJDIR.x  
PJSEL1.7  
PJSEL0.7  
PJSEL1.6  
PJSEL0.6 HFXTBYPASS  
I: 0; O: 1  
X
X
0
0
X
N/A  
0
1
X
X
1
X
X
PJ.6/HFXIN  
6
Internally tied to DVSS  
HFXIN crystal mode(2)  
HFXIN bypass mode(2)  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
0
0
1(4)  
0
PJ.7 (I/O)(3)  
I: 0; O: 1  
0
0
X
X
0
(3)  
(3)  
N/A  
0
See  
See  
X
X
0
PJ.7/HFXOUT  
7
1(4)  
0
(3)  
(3)  
Internally tied to DVSS  
HFXOUT crystal mode(2)  
1
See  
See  
X
X
1
1(4)  
0
X
X
X
(1) X = Don't care  
(2) Setting PJSEL1.6 = 0 and PJSEL0.6 = 1 causes the general-purpose I/O to be disabled. When HFXTBYPASS = 0, PJ.6 and PJ.7 are  
configured for crystal operation and PJSEL1.6 and PJSEL0.7 are do not care. When HFXTBYPASS = 1, PJ.6 is configured for bypass  
operation and PJ.7 is configured as general-purpose I/O.  
(3) With PJSEL0.7 = 1 or PJSEL1.7 =1 the general-purpose I/O functionality is disabled. No input function is available. Configured as output  
the pin is actively pulled to zero.  
(4) When PJ.6 is configured in bypass mode, PJ.7 is configured as general-purpose I/O.  
120  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.13.20 Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With  
Schmitt Trigger  
6-23 shows the port diagram. 6-38 summarizes the selection of the pin functions.  
To Comparator  
From Comparator  
Pad Logic  
CBPD.x  
JTAG enable  
From JTAG  
From JTAG  
PJREN.x  
0 0  
0 1  
1 0  
1 1  
PJDIR.x  
1
0
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.x  
From module 1  
1
0
From Status Register (SR)  
DVSS  
PJ.0/TDO/TB0OUTH/SMCLK/  
SRSCG1/C6  
PJ.1/TDI/TCLK/MCLK/  
SRSCG0/C7  
PJ.2/TMS/ACLK/  
SROSCOFF/C8  
PJ.3/TCK/  
PJSEL1.x  
PJSEL0.x  
PJIN.x  
Bus  
Keeper  
EN  
D
SRCPUOFF/C9  
To modules  
and JTAG  
NOTE: Functional representation only.  
6-23. Port PJ (PJ.0 to PJ.3) Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
121  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-38. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJSEL1.x  
PJSEL0.x  
CEPDx (Cx)  
PJ.0 (I/O)(2)  
TDO(3)  
I: 0; O: 1  
0
0
0
0
X
X
X
TB0OUTH  
SMCLK(4)  
N/A  
0
0
1
1
1
0
1
0
0
0
1
PJ.0/TDO/TB0OUTH/  
SMCLK/SRSCG1/C6  
0
0
CPU Status Register Bit SCG1  
1
N/A  
0
Internally tied to DVSS  
1
C6(5)  
PJ.1 (I/O)(2)  
TDI/TCLK(3) (6)  
X
X
0
X
0
1
0
0
I: 0; O: 1  
X
X
X
N/A  
0
0
1
1
1
0
1
0
0
0
MCLK  
1
PJ.1/TDI/TCLK/MCLK/  
SRSCG0/C7  
1
2
3
N/A  
0
CPU Status Register Bit SCG0  
1
N/A  
0
Internally tied to DVSS  
1
C7(5)  
PJ.2 (I/O)(2)  
TMS(3) (6)  
X
X
0
X
0
1
0
0
I: 0; O: 1  
X
X
X
N/A  
0
0
1
1
1
0
1
0
0
0
ACLK  
1
PJ.2/TMS/ACLK/  
SROSCOFF/C8  
N/A  
0
CPU Status Register Bit OSCOFF  
1
N/A  
0
Internally tied to DVSS  
1
C8(5)  
PJ.3 (I/O)(2)  
TCK(3) (6)  
X
X
0
X
0
1
0
0
I: 0; O: 1  
X
0
1
0
1
0
1
X
X
X
N/A  
0
1
1
0
0
0
Internally tied to DVSS  
PJ.3/TCK/SRCPUOFF/C9  
N/A  
CPU Status Register Bit CPUOFF  
N/A  
1
1
0
1
Internally tied to DVSS  
C9(5)  
X
X
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module. JTAG mode selection is made through the SYS module or by the Spy-Bi-Wire four-  
wire entry sequence. Neither PJSEL1.x and PJSEL0.x nor CEPDx bits have an effect in these cases.  
(4) Do not use this pin as SMCLK output if the TB0OUTH functionality is used on any other pin. Select an alternate SMCLK output pin.  
(5) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables The output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
(6) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
122  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.14 Device Descriptors (TLV)  
6-40 lists the contents of the device descriptor tag-length-value (TLV) structure for MSP430FR59xx(1)  
devices including AES. 6-39 summarizes the Device IDs of the MSP430FR59xx(1) devices.  
6-39. Device IDs  
DEVICE ID  
DEVICE  
PACKAGE  
01A05h  
0x82  
01A04h  
0xA1  
0xA2  
0xA3  
0xA4  
0xA6  
MSP430FR5994  
MSP430FR59941  
MSP430FR5992  
MSP430FR5964  
MSP430FR5962  
ZVW, PN, PM, and RGZ  
ZVW, PN, PM, and RGZ  
ZVW, PN, PM, and RGZ  
ZVW, PN, PM, and RGZ  
ZVW, PN, PM, and RGZ  
0x82  
0x82  
0x82  
0x82  
6-40. Device Descriptor Table(1)  
MSP430FR59xx (UART BSL)  
MSP430FR59941 (I2C BSL)  
DESCRIPTION  
ADDRESS  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
VALUE  
06h  
ADDRESS  
01A00h  
01A01h  
01A02h  
01A03h  
VALUE  
06h  
Info Length  
CRC Length  
06h  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
CRC Value  
Device ID  
Info Block  
See 6-39  
01A04h  
See 6-39  
Hardware Revision  
Firmware Revision  
Die Record Tag  
Per unit  
Per unit  
08h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
Per unit  
Per unit  
08h  
Die Record length  
0Ah  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot/Wafer ID  
Die Record  
Die X Position  
Die Y Position  
Test Results  
(1) NA = Not applicable, Per unit = content can differ among individual units  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
123  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-40. Device Descriptor Table(1) (continued)  
MSP430FR59xx (UART BSL)  
MSP430FR59941 (I2C BSL)  
DESCRIPTION  
ADDRESS  
01A14h  
01A15h  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
01A26h  
01A27h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
VALUE  
11h  
ADDRESS  
01A14h  
01A15h  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
01A26h  
01A27h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
VALUE  
11h  
ADC12 Calibration Tag  
ADC12 Calibration Length  
ADC Gain Factor(2)  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
ADC Offset(3)  
ADC 1.2-V Reference  
Temperature Sensor 30°C  
ADC 1.2-V Reference  
Temperature Sensor 85°C  
ADC12 Calibration  
ADC 2.0-V Reference  
Temperature Sensor 30°C  
ADC 2.0-V Reference  
Temperature Sensor 85°C  
ADC 2.5-V Reference  
Temperature Sensor 30°C  
ADC 2.5-V Reference  
Temperature Sensor 85°C  
REF Calibration Tag  
REF Calibration Length  
06h  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
REF 1.2-V Reference  
REF 2.0-V Reference  
REF 2.5-V Reference  
REF Calibration  
(2) ADC Gain: the gain correction factor is measured at room temperature using a 2.5-V external voltage reference without internal buffer  
(ADC12VRSEL = 0x2, 0x4, or 0xE). Other settings (for example, using internal reference) can result in different correction factors.  
(3) ADC Offset: the offset correction factor is measured at room temperature using ADC12VRSEL= 0x2 or 0x4, an external reference, VR+  
external 2.5 V, VR– = AVSS.  
=
124  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-40. Device Descriptor Table(1) (continued)  
MSP430FR59xx (UART BSL)  
MSP430FR59941 (I2C BSL)  
DESCRIPTION  
ADDRESS  
01A2Eh  
01A2Fh  
01A30h  
01A31h  
01A32h  
01A33h  
01A34h  
01A35h  
01A36h  
01A37h  
01A38h  
01A39h  
01A3Ah  
01A3Bh  
01A3Ch  
01A3Dh  
01A3Eh  
01A3Fh  
01A40h  
01A41h  
01A42h  
01A43h  
VALUE  
15h  
ADDRESS  
01A2Eh  
01A2Fh  
01A30h  
01A31h  
01A32h  
01A33h  
01A34h  
01A35h  
01A36h  
01A37h  
01A38h  
01A39h  
01A3Ah  
01A3Bh  
01A3Ch  
01A3Dh  
01A3Eh  
01A3Fh  
01A40h  
01A41h  
01A42h  
01A43h  
VALUE  
15h  
128-Bit Random Number Tag  
Random Number Length  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
1Ch  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
1Ch  
Random Number  
128-Bit Random Number(4)  
BSL Tag  
BSL Length  
02h  
02h  
BSL Configuration  
BSL Interface  
00h  
01h  
BSL Interface Configuration  
00h  
48h  
(4) 128-Bit Random Number: The random number is generated during production test using Microsoft's CryptGenRandom() function.  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
125  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.15 Memory Map  
6-41 summarizes the memory map for all device variants.  
6-41. Memory Organization(1)  
MSP430FR5994, MSP430FR5964  
MSP430FR5992, MSP430FR5962  
Memory (FRAM)  
256KB  
128KB  
Main: interrupt vectors and signatures  
Main: code memory  
Total size  
00FFFFh to 00FF80h  
043FFFh to 004000h  
00FFFFh to 00FF80h  
0023FFFh to 004000h  
RAM  
4KB  
4KB  
(shared with LEA on MSP430FR599x)  
003BFFh to 002C00h  
003BFFh to 002C00h  
4KB  
4KB  
RAM  
002BFFh to 001C00h  
002BFFh to 001C00h  
256 bytes  
001AFFh to 001A00h  
256 bytes  
001AFFh to 001A00h  
Device descriptor (TLV) (FRAM)  
128 bytes  
0019FFh to 001980h  
128 bytes  
0019FFh to 001980h  
Info A  
Info B  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
128 bytes  
00197Fh to 001900h  
128 bytes  
00197Fh to 001900h  
Information memory (FRAM)  
128 bytes  
0018FFh to 001880h  
128 bytes  
0018FFh to 001880h  
128 bytes  
00187Fh to 001800h  
128 bytes  
00187Fh to 001800h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
Bootloader (BSL) memory (ROM)  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
4KB  
4KB  
Peripherals  
Tiny RAM  
Reserved  
000FFFh to 000020h  
000FFFh to 000020h  
22 bytes  
000001Fh to 00000Ah  
22 bytes  
000001Fh to 00000Ah  
Size  
10 bytes  
000009h to 000000h  
10 bytes  
000009h to 000000h  
Size  
(1) All address space not listed is considered vacant memory.  
126  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6.15.1 Peripheral File Map  
6-42 lists the base address and offset range for the supported module registers. For complete module  
register descriptions, see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
6-42. Peripherals  
OFFSET ADDRESS  
MODULE NAME  
BASE ADDRESS  
RANGE  
Special Functions (see 6-43)  
PMM (see 6-44)  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
0200h  
0220h  
0240h  
0260h  
0320h  
0340h  
0380h  
03C0h  
0400h  
0430h  
0440h  
0470h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
0540h  
0550h  
0560h  
05A0h  
05C0h  
05E0h  
0600h  
0620h  
0640h  
0680h  
06C0h  
0700h  
07C0h  
0800h  
08C0h  
000h to 01Fh  
000h to 01Fh  
000h to 00Fh  
000h to 007h  
000h to 00Fh  
000h to 001h  
000h to 00Fh  
000h to 01Fh  
000h to 001h  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 02Fh  
000h to 02Fh  
000h to 02Fh  
000h to 02Fh  
000h to 00Fh  
000h to 02Fh  
000h to 00Fh  
000h to 01Fh  
000h to 02Fh  
000h to 00Fh  
000h to 00Fh  
000h to 00Fh  
000h to 00Fh  
000h to 00Fh  
000h to 00Fh  
000h to 00Fh  
000h to 00Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 02Fh  
000h to 02Fh  
000h to 02Fh  
000h to 02Fh  
000h to 02Fh  
000h to 09Fh  
000h to 00Fh  
FRAM Controller A (see 6-45)  
CRC16 (see 6-46)  
RAM Controller (see 6-47)  
Watchdog (see 6-48)  
CS (see 6-49)  
SYS (see 6-50)  
Shared Reference (see 6-51)  
Port P1, P2 (see 6-52)  
Port P3, P4 (see 6-53)  
Port P5, P6 (see 6-54)  
Port P7, P8 (see 6-55)  
Port PJ (see 6-56)  
TA0 (see 6-57)  
TA1 (see 6-58)  
TB0 (see 6-59)  
TA2 (see 6-60)  
Capacitive Touch I/O 0 (see 6-61)  
TA3 (see 6-62)  
Capacitive Touch I/O 1 (see 6-63)  
Real-Time Clock (RTC_C) (see 6-64)  
32-Bit Hardware Multiplier (see 6-65)  
DMA General Control (see 6-66)  
DMA Channel 0 (see 6-66)  
DMA Channel 1 (see 6-66)  
DMA Channel 2 (see 6-66)  
DMA Channel 3 (see 6-66)  
DMA Channel 4 (see 6-66)  
DMA Channel 5 (see 6-66)  
MPU Control (see 6-67)  
eUSCI_A0 (see 6-68)  
eUSCI_A1 (see 6-69)  
eUSCI_A2 (see 6-70)  
eUSCI_A3 (see 6-71)  
eUSCI_B0 (see 6-72)  
eUSCI_B1 (see 6-73)  
eUSCI_B2 (see 6-74)  
eUSCI_B3 (see 6-75)  
TA4 (see 6-76)  
ADC12_B (see 6-77)  
Comparator_E (see 6-78)  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
127  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-42. Peripherals (continued)  
OFFSET ADDRESS  
RANGE  
MODULE NAME  
BASE ADDRESS  
CRC32 (see 6-79)  
AES (see 6-80)  
LEA(1) (MSP430FR599x only)  
0980h  
09C0h  
0A80h  
000h to 02Fh  
000h to 00Fh  
000h to 07Fh  
(1) Direct access to LEA registers is not supported, and TI recommends using the optimized Digital Signal  
Processing (DSP) Library for MSP Microcontrollers for the operations that the LEA module supports.  
6-43. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
ACRONYM  
SFRIE1  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
6-44. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
PMM control 0  
PMM interrupt flags  
PM5 control 0  
PMMCTL0  
PMMIFG  
00h  
0Ah  
10h  
PM5CTL0  
6-45. FRAM Controller A (FRCTL_A) Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
ACRONYM  
FRCTL0  
OFFSET  
FRAM control 0  
General control 0  
General control 1  
00h  
04h  
06h  
GCCTL0  
GCCTL1  
6-46. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
ACRONYM  
CRC16DI  
OFFSET  
CRC data input  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
6-47. RAM Controller Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
ACRONYM  
RCCTL0  
OFFSET  
OFFSET  
RAM controller control 0  
Watchdog timer control  
00h  
00h  
6-48. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
ACRONYM  
WDTCTL  
128  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-49. CS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
ACRONYM  
CSCTL0  
OFFSET  
CS control 0  
CS control 1  
CS control 2  
CS control 3  
CS control 4  
CS control 5  
CS control 6  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
6-50. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
System control  
SYSCTL  
00h  
06h  
08h  
0Ah  
0Ch  
0Eh  
1Ah  
1Ch  
1Eh  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSUNIV  
SYSSNIV  
SYSRSTIV  
6-51. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
ACRONYM  
REFCTL  
OFFSET  
Shared reference control  
00h  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
129  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-52. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
Port P1 direction  
Port P1 resistor enable  
Port P1 selection 0  
Port P1 selection 1  
Port P1 interrupt vector word  
P1SEL0  
P1SEL1  
P1IV  
Port P1 complement selection  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1SELC  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2SEL1  
P2SELC  
P2IV  
Port P2 direction  
Port P2 resistor enable  
Port P2 selection 0  
Port P2 selection 1  
Port P2 complement selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
6-53. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
Port P3 direction  
Port P3 resistor enable  
Port P3 selection 0  
P3SEL0  
P3SEL1  
P3IV  
Port P3 selection 1  
Port P3 interrupt vector word  
Port P3 complement selection  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
Port P4 input  
P3SELC  
P3IES  
P3IE  
P3IFG  
P4IN  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4SEL0  
P4SEL1  
P4SELC  
P4IV  
Port P4 direction  
Port P4 resistor enable  
Port P4 selection 0  
Port P4 selection 1  
Port P4 complement selection  
Port P4 interrupt vector word  
Port P4 interrupt edge select  
Port P4 interrupt enable  
Port P4 interrupt flag  
P4IES  
P4IE  
P4IFG  
130  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-54. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P5 output  
P5OUT  
P5DIR  
P5REN  
Port P5 direction  
Port P5 resistor enable  
Port P5 selection 0  
Port P5 selection 1  
Port P5 interrupt vector word  
P5SEL0  
P5SEL1  
P5IV  
Port P5 complement selection  
Port P5 interrupt edge select  
Port P5 interrupt enable  
Port P5 interrupt flag  
Port P6 input  
P5SELC  
P5IES  
P5IE  
P5IFG  
P6IN  
Port P6 output  
P6OUT  
P6DIR  
P6REN  
P6SEL0  
P6SEL1  
P6SELC  
P6IV  
Port P6 direction  
Port P6 resistor enable  
Port P6 selection 0  
Port P6 selection 1  
Port P6 complement selection  
Port P6 interrupt vector word  
Port P6 interrupt edge select  
Port P6 interrupt enable  
Port P6 interrupt flag  
P6IES  
P6IE  
P6IFG  
6-55. Port P7, P8 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Port P7 input  
P7IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P7 output  
P7OUT  
P7DIR  
P7REN  
Port P7 direction  
Port P7 resistor enable  
Port P7 selection 0  
P7SEL0  
P7SEL1  
P7IV  
Port P7 selection 1  
Port P7 interrupt vector word  
Port P7 complement selection  
Port P7 interrupt edge select  
Port P7 interrupt enable  
Port P7 interrupt flag  
Port P8 input  
P7SELC  
P7IES  
P7IE  
P7IFG  
P8IN  
Port P8 output  
P8OUT  
P8DIR  
P8REN  
P8SEL0  
P8SEL1  
P8SELC  
P8IV  
Port P8 direction  
Port P8 resistor enable  
Port P8 selection 0  
Port P8 selection 1  
Port P8 complement selection  
Port P8 interrupt vector word  
Port P8 interrupt edge select  
Port P8 interrupt enable  
Port P8 interrupt flag  
P8IES  
P8IE  
P8IFG  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
131  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-56. Port PJ Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
16h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
Port PJ direction  
Port PJ resistor enable  
Port PJ selection 0  
Port PJ selection 1  
PJSEL0  
PJSEL1  
PJSELC  
Port PJ complement selection  
6-57. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
TA0 control  
TA0CTL  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
TA0 interrupt vector  
TA0IV  
6-58. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
TA1 control  
TA1CTL  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1 interrupt vector  
TA1IV  
132  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-59. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
ACRONYM  
TB0CTL  
OFFSET  
TB0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0 interrupt vector  
TB0IV  
6-60. TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
TA2 control  
TA2CTL  
TA2CCTL0  
TA2CCTL1  
TA2R  
00h  
02h  
04h  
10h  
12h  
14h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
TA2 counter  
Capture/compare 0  
Capture/compare 1  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2EX0  
TA2IV  
TA2 interrupt vector  
6-61. Capacitive Touch I/O 0 Registers (Base Address: 0430h)  
REGISTER DESCRIPTION  
Capacitive Touch I/O 0 control  
ACRONYM  
CAPTIO0CTL  
OFFSET  
OFFSET  
0Eh  
6-62. TA3 Registers (Base Address: 0440h)  
REGISTER DESCRIPTION  
ACRONYM  
TA3 control  
TA3CTL  
TA3CCTL0  
TA3CCTL1  
TA3R  
00h  
02h  
04h  
10h  
12h  
14h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
TA3 counter  
Capture/compare 0  
Capture/compare 1  
TA3 expansion 0  
TA3CCR0  
TA3CCR1  
TA3EX0  
TA3IV  
TA3 interrupt vector  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
133  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-63. Capacitive Touch I/O 1 Registers (Base Address: 0470h)  
REGISTER DESCRIPTION  
ACRONYM  
CAPTIO1CTL  
OFFSET  
Capacitive Touch I/O 1 control  
0Eh  
6-64. RTC_C Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
ACRONYM  
RTCCTL0  
OFFSET  
RTC control 0  
00h  
01h  
02h  
03h  
04h  
06h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Eh  
RTC password  
RTCPWD  
RTC control 1  
RTCCTL1  
RTC control 3  
RTCCTL3  
RTC offset calibration  
RTC temperature compensation  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTCOCAL  
RTCTCMP  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTC prescaler 1  
RTCPS1  
RTC interrupt vector word  
RTC seconds/counter 1  
RTC minutes/counter 2  
RTC hours/counter 3  
RTC day of week/counter 4  
RTC days  
RTCIV  
RTCSEC/RTCNT1  
RTCMIN/RTCNT2  
RTCHOUR/RTCNT3  
RTCDOW/RTCNT4  
RTCDAY  
RTC month  
RTCMON  
RTC year  
RTCYEAR  
RTC alarm minutes  
RTC alarm hours  
RTCAMIN  
RTCAHOUR  
RTCADOW  
RTCADAY  
RTC alarm day of week  
RTC alarm days  
Binary-to-BCD conversion  
BCD-to-binary conversion  
BIN2BCD  
BCD2BIN  
134  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-65. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
ACRONYM  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control 0  
RES3  
MPY32CTL0  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
135  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-66. DMA Registers (Base Address DMA General Control: 0500h,  
Channel 0: 0510h, Channel 1: 0520h, Channel 2: 0530h,  
Channel 3: 0540h, Channel 4: 0550h, Channel 5: 0560h)  
REGISTER DESCRIPTION  
ACRONYM  
DMA0CTL  
OFFSET  
DMA channel 0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Eh  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA channel 3 control  
DMA3CTL  
DMA3SAL  
DMA3SAH  
DMA3DAL  
DMA3DAH  
DMA3SZ  
DMA channel 3 source address low  
DMA channel 3 source address high  
DMA channel 3 destination address low  
DMA channel 3 destination address high  
DMA channel 3 transfer size  
DMA channel 4 control  
DMA4CTL  
DMA4SAL  
DMA4SAH  
DMA4DAL  
DMA4DAH  
DMA4SZ  
DMA channel 4 source address low  
DMA channel 4 source address high  
DMA channel 4 destination address low  
DMA channel 4 destination address high  
DMA channel 4 transfer size  
DMA channel 5 control  
DMA5CTL  
DMA5SAL  
DMA5SAH  
DMA5DAL  
DMA5DAH  
DMA5SZ  
DMA channel 5 source address low  
DMA channel 5 source address high  
DMA channel 5 destination address low  
DMA channel 5 destination address high  
DMA channel 5 transfer size  
DMA module control 0  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA module control 1  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
136  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-67. MPU Control Registers (Base Address: 05A0h)  
REGISTER DESCRIPTION  
ACRONYM  
MPUCTL0  
OFFSET  
MPU control 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
MPU control 1  
MPUCTL1  
MPU segmentation border 2  
MPU segmentation border 1  
MPU access management  
MPU IP control 0  
MPUSEGB2  
MPUSEGB1  
MPUSAM  
MPUIPC0  
MPU IP encapsulation segment border 2  
MPU IP encapsulation segment border 1  
MPUIPSEGB2  
MPUIPSEGB1  
6-68. eUSCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
ACRONYM  
UCA0CTLW0  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA0CTLW1  
UCA0BR0  
eUSCI_A baud rate 1  
UCA0BR1  
eUSCI_A modulation control  
eUSCI_A status word  
UCA0MCTLW  
UCA0STATW  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
UCA0IFG  
UCA0IV  
6-69. eUSCI_A1 Registers (Base Address:05E0h)  
REGISTER DESCRIPTION  
ACRONYM  
UCA1CTLW0  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA1CTLW1  
UCA1BR0  
eUSCI_A baud rate 1  
UCA1BR1  
eUSCI_A modulation control  
eUSCI_A status word  
UCA1MCTLW  
UCA1STATW  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
UCA1IFG  
UCA1IV  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
137  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-70. eUSCI_A2 Registers (Base Address:0600h)  
REGISTER DESCRIPTION  
ACRONYM  
UCA2CTLW0  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
eUSCI_A baud rate 1  
eUSCI_A modulation control  
eUSCI_A status word  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA2CTLW1  
UCA2BR0  
UCA2BR1  
UCA2MCTLW  
UCA2STATW  
UCA2RXBUF  
UCA2TXBUF  
UCA2ABCTL  
UCA2IRTCTL  
UCA2IRRCTL  
UCA2IE  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
UCA2IFG  
eUSCI_A interrupt vector word  
UCA2IV  
6-71. eUSCI_A3 Registers (Base Address:0620h)  
REGISTER DESCRIPTION  
ACRONYM  
UCA3CTLW0  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA3CTLW1  
UCA3BR0  
eUSCI_A baud rate 1  
UCA3BR1  
eUSCI_A modulation control  
eUSCI_A status word  
UCA3MCTLW  
UCA3STATW  
UCA3RXBUF  
UCA3TXBUF  
UCA3ABCTL  
UCA3IRTCTL  
UCA3IRRCTL  
UCA3IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
UCA3IFG  
UCA3IV  
138  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-72. eUSCI_B0 Registers (Base Address: 0640h)  
REGISTER DESCRIPTION  
ACRONYM  
UCB0CTLW0  
OFFSET  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB0CTLW1  
UCB0BR0  
eUSCI_B bit rate 1  
UCB0BR1  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B received address  
eUSCI_B address mask  
eUSCI I2C slave address  
eUSCI interrupt enable  
eUSCI interrupt flags  
UCB0IFG  
eUSCI interrupt vector word  
UCB0IV  
6-73. eUSCI_B1 Registers (Base Address: 0680h)  
REGISTER DESCRIPTION  
ACRONYM  
UCB1CTLW0  
OFFSET  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB1CTLW1  
UCB1BR0  
eUSCI_B bit rate 1  
UCB1BR1  
eUSCI_B status word  
UCB1STATW  
UCB1TBCNT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA0  
UCB1I2COA1  
UCB1I2COA2  
UCB1I2COA3  
UCB1ADDRX  
UCB1ADDMASK  
UCB1I2CSA  
UCB1IE  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B received address  
eUSCI_B address mask  
eUSCI I2C slave address  
eUSCI interrupt enable  
eUSCI interrupt flags  
UCB1IFG  
eUSCI interrupt vector word  
UCB1IV  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
139  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-74. eUSCI_B2 Registers (Base Address: 06C0h)  
REGISTER DESCRIPTION  
ACRONYM  
UCB2CTLW0  
OFFSET  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB2CTLW1  
UCB2BR0  
eUSCI_B bit rate 1  
UCB2BR1  
eUSCI_B status word  
UCB2STATW  
UCB2TBCNT  
UCB2RXBUF  
UCB2TXBUF  
UCB2I2COA0  
UCB2I2COA1  
UCB2I2COA2  
UCB2I2COA3  
UCB2ADDRX  
UCB2ADDMASK  
UCB2I2CSA  
UCB2IE  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B received address  
eUSCI_B address mask  
eUSCI I2C slave address  
eUSCI interrupt enable  
eUSCI interrupt flags  
UCB2IFG  
eUSCI interrupt vector word  
UCB2IV  
6-75. eUSCI_B3 Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
ACRONYM  
UCB3CTLW0  
OFFSET  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB3CTLW1  
UCB3BR0  
eUSCI_B bit rate 1  
UCB3BR1  
eUSCI_B status word  
UCB3STATW  
UCB3TBCNT  
UCB3RXBUF  
UCB3TXBUF  
UCB3I2COA0  
UCB3I2COA1  
UCB3I2COA2  
UCB3I2COA3  
UCB3ADDRX  
UCB3ADDMASK  
UCB3I2CSA  
UCB3IE  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B received address  
eUSCI_B address mask  
eUSCI I2C slave address  
eUSCI interrupt enable  
eUSCI interrupt flags  
UCB3IFG  
eUSCI interrupt vector word  
UCB3IV  
140  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-76. TA4 Registers (Base Address: 07C0h)  
REGISTER DESCRIPTION  
ACRONYM  
TA4CTL  
OFFSET  
TA4 control  
00h  
02h  
04h  
10h  
12h  
14h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
TA4 counter  
TA4CCTL0  
TA4CCTL1  
TA4R  
Capture/compare 0  
Capture/compare 1  
TA4 expansion 0  
TA4CCR0  
TA4CCR1  
TA4EX0  
TA4IV  
TA4 interrupt vector  
6-77. ADC12_B Registers (Base Address: 0800h)  
REGISTER DESCRIPTION  
ACRONYM  
ADC12CTL0  
OFFSET  
ADC12_B control 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
ADC12_B control 1  
ADC12CTL1  
ADC12_B control 2  
ADC12CTL2  
ADC12_B control 3  
ADC12CTL3  
ADC12_B window comparator low threshold register  
ADC12_B window comparator high threshold register  
ADC12_B interrupt flag register 0  
ADC12_B interrupt flag register 1  
ADC12_B interrupt flag register 2  
ADC12_B interrupt enable register 0  
ADC12_B interrupt enable register 1  
ADC12_B interrupt enable register 2  
ADC12_B interrupt vector  
ADC12LO  
ADC12HI  
ADC12IFGR0  
ADC12IFGR1  
ADC12IFGR2  
ADC12IER0  
ADC12IER1  
ADC12IER2  
ADC12IV  
ADC12_B memory control 0  
ADC12_B memory control 1  
ADC12_B memory control 2  
ADC12_B memory control 3  
ADC12_B memory control 4  
ADC12_B memory control 5  
ADC12_B memory control 6  
ADC12_B memory control 7  
ADC12_B memory control 8  
ADC12_B memory control 9  
ADC12_B memory control 10  
ADC12_B memory control 11  
ADC12_B memory control 12  
ADC12_B memory control 13  
ADC12_B memory control 14  
ADC12_B memory control 15  
ADC12_B memory control 16  
ADC12_B memory control 17  
ADC12_B memory control 18  
ADC12_B memory control 19  
ADC12_B memory control 20  
ADC12_B memory control 21  
ADC12_B memory control 22  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MCTL16  
ADC12MCTL17  
ADC12MCTL18  
ADC12MCTL19  
ADC12MCTL20  
ADC12MCTL21  
ADC12MCTL22  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
141  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6-77. ADC12_B Registers (Base Address: 0800h) (continued)  
REGISTER DESCRIPTION  
ADC12_B memory control 23  
ACRONYM  
ADC12MCTL23  
OFFSET  
4Eh  
50h  
52h  
54h  
56h  
58h  
5Ah  
5Ch  
5Eh  
60h  
62h  
64h  
66h  
68h  
6Ah  
6Ch  
6Eh  
70h  
72h  
74h  
76h  
78h  
7Ah  
7Ch  
7Eh  
80h  
82h  
84h  
86h  
88h  
8Ah  
8Ch  
8Eh  
90h  
92h  
94h  
96h  
98h  
9Ah  
9Ch  
9Eh  
ADC12_B memory control 24  
ADC12_B memory control 25  
ADC12_B memory control 26  
ADC12_B memory control 27  
ADC12_B memory control 28  
ADC12_B memory control 29  
ADC12_B memory control 30  
ADC12_B memory control 31  
ADC12_B memory 0  
ADC12MCTL24  
ADC12MCTL25  
ADC12MCTL26  
ADC12MCTL27  
ADC12MCTL28  
ADC12MCTL29  
ADC12MCTL30  
ADC12MCTL31  
ADC12MEM0  
ADC12MEM1  
ADC12MEM2  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
ADC12MEM16  
ADC12MEM17  
ADC12MEM18  
ADC12MEM19  
ADC12MEM20  
ADC12MEM21  
ADC12MEM22  
ADC12MEM23  
ADC12MEM24  
ADC12MEM25  
ADC12MEM26  
ADC12MEM27  
ADC12MEM28  
ADC12MEM29  
ADC12MEM30  
ADC12MEM31  
ADC12_B memory 1  
ADC12_B memory 2  
ADC12_B memory 3  
ADC12_B memory 4  
ADC12_B memory 5  
ADC12_B memory 6  
ADC12_B memory 7  
ADC12_B memory 8  
ADC12_B memory 9  
ADC12_B memory 10  
ADC12_B memory 11  
ADC12_B memory 12  
ADC12_B memory 13  
ADC12_B memory 14  
ADC12_B memory 15  
ADC12_B memory 16  
ADC12_B memory 17  
ADC12_B memory 18  
ADC12_B memory 19  
ADC12_B memory 20  
ADC12_B memory 21  
ADC12_B memory 22  
ADC12_B memory 23  
ADC12_B memory 24  
ADC12_B memory 25  
ADC12_B memory 26  
ADC12_B memory 27  
ADC12_B memory 28  
ADC12_B memory 29  
ADC12_B memory 30  
ADC12_B memory 31  
142  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
6-78. Comparator_E Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
ACRONYM  
CECTL0  
OFFSET  
Comparator_E control 0  
Comparator_E control 1  
Comparator_E control 2  
Comparator_E control 3  
Comparator_E interrupt  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
CECTL1  
CECTL2  
CECTL3  
CEINT  
Comparator_E interrupt vector word  
CEIV  
6-79. CRC32 Registers (Base Address: 0980h)  
REGISTER DESCRIPTION  
ACRONYM  
CRC32DIW0  
OFFSET  
CRC32 data input  
Reserved  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
Reserved  
CRC32 data input reverse  
CRC32 initialization and result word 0  
CRC32 initialization and result word 1  
CRC32 result reverse word 1  
CRC32 result reverse word 0  
CRC16 data input  
Reserved  
CRC32DIRBW0  
CRC32INIRESW0  
CRC32INIRESW1  
CRC32RESRW1  
CRC32RESRW1  
CRC16DIW0  
Reserved  
CRC16 data input reverse  
CRC16 initialization and result word 0  
Reserved  
CRC16DIRBW0  
CRC16INIRESW0  
Reserved  
CRC16 result reverse word 0  
Reserved  
CRC16RESRW0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6-80. AES Accelerator Registers (Base Address: 09C0h)  
REGISTER DESCRIPTION  
ACRONYM  
AESACTL0  
OFFSET  
AES accelerator control 0  
Reserved  
00h  
02h  
AES accelerator status  
AES accelerator key  
AES accelerator data in  
AES accelerator data out  
AESASTAT  
AESAKEY  
AESADIN  
04h  
06h  
008h  
00Ah  
00Ch  
00Eh  
AESADOUT  
AESAXDIN  
AESAXIN  
AES accelerator XORed data in  
AES accelerator XORed data in (no trigger)  
版权 © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
143  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
6.16 Identification  
6.16.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The  
device-specific errata sheet describes these markings. For links to all of the errata sheets for the devices  
in this data sheet, see 8.4.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the Hardware Revision entry in 6.14.  
6.16.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific  
errata sheet describes these markings. For links to all of the errata sheets for the devices in this data  
sheet, see 8.4.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the Device ID entry in 6.14.  
6.16.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in  
detail in MSP430 Programming With the JTAG Interface.  
144  
Detailed Description  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
7 Applications, Implementation, and Layout  
Information in the following Applications section is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI's customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
7.1 Device Connection and Layout Fundamentals  
This section discusses the recommended guidelines when designing with the MSP MCU. These  
guidelines are to make sure that the device has proper connections for powering, programming,  
debugging, and optimum analog performance.  
7.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 1-µF plus a 100-nF low-ESR ceramic decoupling capacitor  
to each AVCC and DVCC pin. Higher-value capacitors may be used but can impact supply rail ramp-up  
time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a  
few millimeters). Additionally, TI recommends separated grounds with a single-point connection for better  
noise isolation from digital to analog circuits on the board and to achieve high analog accuracy.  
DVCC  
Digital Power  
Supply Decoupling  
+
DVSS  
AVCC  
1 µF  
100 nF  
Analog Power  
Supply Decoupling  
+
AVSS  
1 µF  
100 nF  
7-1. Power Supply Decoupling  
7.1.2 External Oscillator  
Depending on the device variant (see Section 3), the device can support a low-frequency crystal (32 kHz)  
on the LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the  
crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the  
specifications of the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is  
selected. In this case, the associated LFXOUT and HFXOUT pins can be used for other purposes. If they  
are left unused, they must be terminated according to Section 4.6.  
7-2 shows a typical connection diagram.  
版权 © 2016–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
145  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
LFXIN  
or  
LFXOUT  
or  
HFXIN  
HFXOUT  
CL1  
CL2  
7-2. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP MCUs.  
7.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or  
MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the  
connections also support the MSP-GANG production programmers, thus providing an easy way to  
program prototype boards, if desired. 7-3 shows the connections between the 14-pin JTAG connector  
and the target device required to support in-system programming and debugging for 4-wire JTAG  
communication. 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are  
identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-  
FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an  
alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the  
target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. 图  
7-3 and 7-4 show a jumper block that supports both scenarios of supplying VCC to the target board. If  
this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the jumper  
block. Pins 2 and 4 must not be connected at the same time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User’s  
Guide.  
146  
Applications, Implementation, and Layout  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
AVCC/DVCC  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,  
make connection J2.  
B. The upper limit for C1 is 2.2 nF when using current TI tools.  
7-3. Signal Connections for 4-Wire JTAG Communication  
版权 © 2016–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
147  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
AVCC/DVCC  
R1  
47 kΩ  
See Note B  
JTAG  
VCC TOOL  
TDO/TDI  
2
4
6
8
1
3
5
7
RST/NMI/SBWTDIO  
VCC TARGET  
TCK  
GND  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
See Note B  
Copyright © 2016, Texas Instruments Incorporated  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the  
debug or programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during  
JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with  
the device. The upper limit for C1 is 2.2 nF when using current TI tools.  
7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
7.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the SFRRPCR  
register.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is  
edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the  
external NMI. When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either  
pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not.  
If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an  
external 47-kΩ pullup resistor to the RST/NMI pin with a 10-nF pulldown capacitor. The pulldown capacitor  
should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire  
JTAG mode with TI tools like FET interfaces or GANG programmers.  
See the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide for  
more information on the referenced control registers and bits.  
7.1.5 Unused Pins  
For details on the connection of unused pins, see Section 4.6.  
148  
Applications, Implementation, and Layout  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
7.1.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430  
32-kHz Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC, AVCC, and reference pins if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital  
switching signals such as PWM or JTAG signals away from the oscillator circuit.  
See Circuit Board Layout Techniques for a detailed discussion of PCB layout considerations. This  
document is written primarily about op amps, but the guidelines are generally applicable for all mixed-  
signal applications.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
7.1.7 Do's and Don'ts  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up,  
power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the  
limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the  
device, including erroneous writes to RAM and FRAM.  
7.2 Peripheral- and Interface-Specific Design Information  
7.2.1 ADC12_B Peripheral  
7.2.1.1 Partial Schematic  
7-5 shows the recommended decoupling circuit when an external voltage reference is used. The  
internal reference module has a maximum drive current as specified in the IO(VREF+) parameter of the REF  
module.  
AVSS  
VREF+/VEREF+  
Using an  
External  
Positive  
Reference  
+
470 nF  
10 µF  
VEREF-  
Using an  
External  
+
Negative  
Reference  
10 µF  
470 nF  
7-5. ADC12_B Grounding and Noise Considerations  
7.2.1.2 Design Requirements  
As with any high-resolution ADC, the appropriate printed-circuit-board layout and grounding techniques  
should be followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with  
other analog or digital circuitry. If care is not taken, this current can generate small, unwanted offset  
voltages that can add to or subtract from the reference or input voltages of the ADC. The general  
guidelines in 7.1.1, combined with the connections shown in 7.2.1.1, prevent these offsets.  
版权 © 2016–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
149  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital  
switching or switching power supplies can corrupt the conversion result. TI recommends a noise-free  
design using separate analog and digital ground planes with a single-point connection to achieve high  
accuracy.  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor is used to buffer the reference pin and filter any low-  
frequency ripple. A 470-nF bypass capacitor filters out any high-frequency noise.  
7.2.1.3 Detailed Design Procedure  
For additional design information, see Designing With the MSP430FR58xx, FR59xx, FR68xx, and FR69xx  
ADC.  
7.2.1.4 Layout Guidelines  
Components that are shown in the partial schematic (see 7-5) should be placed as close as possible to  
the respective device pins. Avoid long traces, because they add additional parasitic capacitance,  
inductance, and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM),  
because the high-frequency switching can be coupled into the analog signal.  
If differential mode is used for the ADC12_B, the analog differential input signals must be routed closely  
together to minimize the effect of noise on the resulting signal.  
150  
Applications, Implementation, and Layout  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
8 器件和文档支持  
8.1 入门和下一步  
有关 MSP 系列微控制器以及开发协助工具和库的更多信息,请访问入门页面。  
8.2 器件命名规则  
为了标示产品开发周期所处的阶段,TI 为所有 MSP MCU 器件的部件号分配了前缀。每个 MSP MCU 商用  
系列产品成员都具有以下两个前缀之一:MSP XMS。这些前缀代表了产品开发的发展阶段,即从工程原  
(XMS) 直到完全合格的生产器件 (MSP)。  
XMS - 实验器件,不一定代表最终器件的电气规格  
MSP - 完全合格的生产器件  
XMS 器件在供货时附带如下免责声明:  
开发中的产品用于内部评估用途。”  
MSP 器件的特性已经全部明确,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书对该器件适  
用。  
预测显示原型器件 (XMS) 的故障率大于标准生产器件。由于这些器件的预计最终使用故障率尚不确定,德  
州仪器 (TI) 建议不要将它们用于任何生产系统。请仅使用合格的生产器件。  
TI 器件的命名规则还包括一个带有器件系列名称的后缀。此后缀表示温度范围、封装类型和配送形式。8-  
1 提供了解读完整器件名称的图例。  
MSP  
430  
FR  
5
9941  
I
RGC  
R
Feature Set  
Processor Family  
Distribution Format  
Platform  
Memory Type  
Packaging  
Temperature Range  
Series  
AES  
Oscillators, LEA  
Optional: BSL  
FRAM  
Processor Family  
Platform  
MSP = Mixed Signal Processor  
XMS = Experimental Silicon  
430 = TI’s 16-bit MSP430 Low-Power Microcontroller Platform  
MemoryType  
Series  
FR = FRAM  
5 = Up to 16 MHz without LCD  
Feature Set  
First Digit: AES Second Digit: Oscillators, LEA Third Digit: FRAM (KB) Optional Fourth Digit: BSL  
9 = AES  
9 = HFXT/LFXT and LEA  
6 = HFXT/LFXT  
4 = 256  
2 = 128  
1 = I2C  
No value = UART  
Temperature Range I = –40°C to 85°C  
Packaging  
www.ti.com/packaging  
Distribution Format  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
8-1. 器件命名规则  
版权 © 2016–2018, Texas Instruments Incorporated  
器件和文档支持  
151  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
8.3 工具与软件  
所有 MSP 微控制器均受多种软件和硬件开发工具的支持。相关工具由 TI 以及多家第三方供应商提供。可从  
低功耗 MCU 开发套件和软件获取全部信息。  
有关可用硬件特性的详细信息,请参见 《适用于 MSP430 Code Composer Studio 用户 指南》。8-  
1 列出了 MSP430FR235x MSP430FR215x 微控制器所 MSP430FR599x MSP430FR596x MCU 硬件  
支持的调试特性。  
8-1. 调试 特性  
4 线  
JTAG  
2 线  
JTAG  
断点  
(N)  
状态序列发生  
LPMx.5 调试支 EnergyTrace++ 技  
MSP 架构  
范围断点  
时钟控制  
跟踪缓冲器  
MSP430Xv2  
3
EnergyTrace™技术可用于 Code Composer Studio 6.0 及更高版本。它需要专用的调试器电路,而新一代  
板载 eZ-FET 闪存仿真工具和新一代独立 MSP-FET JTAG 仿真器支持这种电路。有关详细信息,请参见以  
下文档:  
MSP430 高级功耗优化:ULP Advisor™ EnergyTrace™ 技术》  
《使用 Code Composer Studio 与增强型仿真模块 (EEM) 进行高级调试》  
MSP430 硬件工具用户指南》  
设计套件与评估模块  
™MSP430FR5994 LaunchPad 开发套件  
MSP-EXP430FR5994  
LaunchPad  
开发套件是适用于  
MSP430FR5994 微控制器 (MCU) 的易用型评估模块 (EVM)。它包含在超低功耗 MSP430FRx  
FRAM 微控制器平台上进行开发所需的全部资源,包括一个用于编程、调试和能量测量的调试  
探针。  
适用于 MSP430F599x MCU 80 引脚目标开发板和 MSP-FET 编程器包 目标插接板可利用 JTAG 轻松实  
现器件编程和调试。板上还配有用于原型设计的排针引脚。目标插接板可单独订购,也可以与  
JTAG 编程器和调试器一起作为套件订购。  
适用于 MSP430F599x MCU 80 引脚目标开发板 MSP-TS430PN80B 是一款独立的 80 引脚 ZIF 插接目  
标板,适用于通过 JTAG 接口或 Spy Bi-Wire(双线制 JTAG)协议对 MSP430 MCU 系统内  
置器件进行编程和调试。  
软件  
MSP430Ware™ 软件 MSP430Ware 软件集合了所有 MSP430 器件的代码示例、数据表以及其他设计资  
源,打包提供给用户。除了提供已有 MSP430 MCU 设计资源的完整集合外,MSP430Ware  
软件还包含名为 MSP 驱动程序库的高级 API。借助该库可以轻松地对 MSP430 硬件进行编  
程。MSP430Ware 软件以 CCS 组件或独立软件包两种形式提供。  
MSP430FR599xMSP430FR596x 代码示例 根据不同应用需求配置各集成外设的每个 MSP 器件均具备相  
应的 C 代码示例。  
电容式触摸软件库 可在 MSP430 MCU 启用电容触控功能的免费 C 代码库。该代码库 采用 多种电容触控  
实现方法,包括 RO RC 方法。除了完整的 C 代码库,还提供了硬件设计注意事项,简单  
指导如何在任何基于 MSP430 的应用中加入电容触控功能。  
MSP EnergyTrace 技术 适用于 MSP430 微控制器的 EnergyTrace 技术是基于电能的代码分析工具,适用  
于测量和显示应用的电能系统配置并帮助优化应用以实现超低功耗。  
152  
器件和文档支持  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
MSP 驱动程序库 驱动程序库的抽象化 API 通过提供易于使用的函数调用使您不再拘泥于 MSP430 硬件的  
细节。完整的文档通过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证  
的参数的详细信息。开发人员可使用驱动程序库函数以尽可能低的费用编写全部项目。  
数字信号处理库  
该德州仪器 (TI) 数字信号处理库是一组经高度优化的函数,可针对 MSP430™  
MSP432 微控制器对定点数 功耗特性。该功能集通常 用于 要求完成实时密集处理转换,从  
而以最低能耗实现高精度的应用。对于定点数学,该库可最大程度地利用 MSP 系列的固有硬  
件,从而获得极大的性能增益。  
适用于 MSP 超低功耗微控制器的 FRAM 嵌入式软件实用程序 FRAM 实用程序旨在作为不断扩充的嵌入式  
软件实用程序集合,其中的实用程序充分利用 FRAM 的超低功耗和近乎无限次的写入寿命。  
这些实用程序适用于 MSP430FRxx FRAM 微控制器并提供示例代码协助应用程序开发。其中  
的实用程序包含功耗计算实用程序 (CTPL)CTPL 是一种实用程序 API 集,能够确保方便使  
LPMx.5 低功耗模式和强大的关断模式;该关断模式使得应用程序在检测到掉电时保存并恢  
复重要系统组件。  
开发工具  
适用于 MSP 微控制器的 Code Composer Studio 集成开发环境 Code Composer Studio 是一种集成开发  
环境 (IDE),支持所有 MSP 微控制器。Code Composer Studio 包含一整套开发和调试嵌入式  
应用 的嵌入式软件实用程序的工具。它包含了优化的 C/C++ 编译器、源代码编辑器、项目构  
建环境、调试器、描述器以及其他多种 功能。  
适用于 TI 微控制器的 Uniflash 独立闪存工具 CCS Uniflash 是一款独立工具,用于对 TI MCU 中的片上闪  
存以及 Sitara 处理器的板载闪存进行编程。Uniflash 具有 GUI、命令行和脚本接口。CCS  
UniFlash 免费提供。  
MSP MCU 编程器和调试器 MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可允许用户在  
MSP 低功耗微控制器 (MCU) 上快速进行应用开发。创建 MCU 软件通常需要将生成的二进制  
程序下载到 MSP 器件,以进行验证和调试。MSP-FET 在主机和目标 MSP 间提供调试通信通  
道。  
MSP-GANG 生产编程器 MSP Gang 编程器是一款 MSP430 MSP432 器件编程器,可同时对多达八个完  
全相同的 MSP430 MSP432 闪存或 FRAM 器件进行编程。MSP Gang 编程器可使用标准  
RS-232 USB 连接与主机 PC 相连并提供灵活的编程选项,允许用户完全自定义流程。  
MSP Gang 编程器配有扩展板“Gang 分离器,可在 MSP Gang 编程器和多个目标器件间实现  
互连。  
版权 © 2016–2018, Texas Instruments Incorporated  
器件和文档支持  
153  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
8.4 文档支持  
以下文档介绍 MSP430FR599x MSP430FR596x MCUwww.ti.com.cn 网站上提供了这些文档的副本。  
接收文档更新通知  
要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹(关于产品文件  
夹的链接,请参见8.5)。请单击右上角的通知我按钮。点击注册后,即可收到产品信息更改每周摘要  
(如有)。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
勘误  
MSP430FR5994 器件勘误表》 描述了功能技术规格的已知例外情况。  
MSP430FR59941 器件勘误表》 描述了功能技术规格的已知例外情况。  
MSP430FR5992 器件勘误表》 描述了功能技术规格的已知例外情况。  
MSP430FR5964 器件勘误表》 描述了功能技术规格的已知例外情况。  
MSP430FR5962 器件勘误表》 描述了功能技术规格的已知例外情况。  
用户指南  
MSP430FR58xxMSP430FR59xx MSP430FR6xx 系列用户指南》 该器件系列提供的所有模块和外  
设的详细 说明 。  
MSP430 FRAM 器件引导加载程序 (BSL) 用户指南》 MSP430 MCU 上的引导加载程序 (BSL) 允许用户  
在原型设计、投产和维护等各阶段与 MSP430 MCU 中的嵌入式存储器进行通信。可编程存储  
(FRAM) 和数据存储器 (RAM) 均可按要求予以修改。  
《通过 JTAG 接口对 MSP430 进行编程》 此文档介绍了使用 JTAG 通信端口擦除、编程和验证基于  
MSP430 闪存和 FRAM 的微控制器系列的存储器模块所需的功能。此外,该文档还介绍了如  
何编程所有 MSP430 器件上均具备的 JTAG 访问安全保险丝。此文档介绍了使用标准四线制  
JTAG 接口和两线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))的器件访问。  
MSP430 硬件工具用户指南》 此手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针对  
MSP430  
超低功耗微控制器的程序开发工具。文中对提供的接口类型,即并行端口接口和  
USB 接口进行了说明。  
应用报告  
MSP430 32kHz 晶体振荡器》 选择合适的晶体、正确的负载电路和适当的电路板布局是实现稳定的晶体  
振荡器的关键。该应用报告总结了晶体振荡器的功能,介绍了用于选择合适的晶体以实现  
MSP430 超低功耗运行的参数。此外,还给出了正确电路板布局的提示和示例。此外,为了确  
保振荡器在大规模生产后能够稳定运行,还可能需要进行一些振荡器测试,该文档中提供了有  
关这些测试的详细信息。  
MSP430 系统级 ESD 注意事项》 随着硅晶技术向更低电压方向发展以及设计具有成本效益的超低功耗组  
件的需求的出现,系统级 ESD 要求变得越来越苛刻。本应用报告解决了三大不同的 ESD 主  
题,帮助电路板设计人员和 OEM 了解并设计强大的系统级设计:(1) 组件级 ESD 测试和系统  
ESD 测试;(2) 实现不同水平的系统级 ESD 保护的通用设计指南;(3) 系统高效 ESD 设计  
(SEED) 简介。  
154  
器件和文档支持  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
www.ti.com.cn  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
8.5 相关链接  
8-2 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品  
的快速链接。  
8-2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
MSP430FR5994  
MSP430FR59941  
MSP430FR5992  
MSP430FR5964  
MSP430FR5962  
8.6 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参见 TI 《使用条款》。  
TI E2E™ 社区  
TI 的工程师交流 (E2E) 社区. 此社区的创建目的是为了促进工程师之间协作。在 e2e.ti.com 中,您可以提  
问、共享知识、拓展思路,在同领域工程师的帮助下解决问题。  
TI 嵌入式处理器维基网页  
德州仪器 (TI) 嵌入式处理器维基网页。此网站的建立是为了帮助开发人员熟悉德州仪器 (TI) 的嵌入式处理  
器,并且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。  
8.7 商标  
LaunchPad, MSP430Ware, MSP430, Code Composer Studio, EnergyTrace, 功耗, E2E are trademarks of  
Texas Instruments.  
Arm, Cortex are registered trademarks of Arm Limited.  
LaunchPad, MSP430Ware, MSP430, Code Composer Studio, EnergyTrace, are trademarks of ~ Texas  
Instruments.  
All other trademarks are the property of their respective owners.  
8.8 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.9 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过非披露义务的披露方获得的任何产品或技术数据  
(其中包括软件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制  
产品或此项技术的任何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政  
府机构授权的情况下,接收方不得在知情的情况下,以直接或间接的方式将其出口。  
8.10 术语表  
TI 术语表  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2016–2018, Texas Instruments Incorporated  
器件和文档支持  
155  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
 
MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962  
ZHCSF37C MARCH 2016REVISED AUGUST 2018  
www.ti.com.cn  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
156  
机械、封装和可订购信息  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR5962IPMR  
MSP430FR5962IPNR  
MSP430FR5962IRGZR  
MSP430FR5962IZVWR  
MSP430FR5964IPMR  
MSP430FR5964IPNR  
MSP430FR5964IRGZR  
MSP430FR5964IZVWR  
MSP430FR5992IPMR  
MSP430FR5992IPNR  
MSP430FR5992IRGZR  
MSP430FR5992IZVWR  
MSP430FR59941IPM  
MSP430FR59941IPMR  
MSP430FR59941IPN  
MSP430FR59941IPNR  
MSP430FR59941IRGZR  
MSP430FR59941IRGZT  
MSP430FR59941IZVW  
MSP430FR59941IZVWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PM  
PN  
64  
80  
48  
87  
64  
80  
48  
87  
64  
80  
48  
87  
64  
64  
80  
80  
48  
48  
87  
87  
1000 RoHS & Green  
1000 RoHS & Green  
2500 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
2500 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
2500 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR5962  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
FR5962  
FR5962  
FR5962  
FR5964  
FR5964  
FR5964  
FR5964  
FR5992  
FR5992  
FR5992  
FR5992  
FR59941  
FR59941  
FR59941  
FR59941  
FR59941  
FR59941  
FR59941  
FR59941  
VQFN  
NFBGA  
LQFP  
RGZ  
ZVW  
PM  
LQFP  
PN  
VQFN  
NFBGA  
LQFP  
RGZ  
ZVW  
PM  
LQFP  
PN  
VQFN  
NFBGA  
LQFP  
RGZ  
ZVW  
PM  
160  
1000 RoHS & Green  
119 RoHS & Green  
RoHS & Green  
LQFP  
PM  
LQFP  
PN  
LQFP  
PN  
1000 RoHS & Green  
2500 RoHS & Green  
VQFN  
VQFN  
NFBGA  
NFBGA  
RGZ  
RGZ  
ZVW  
ZVW  
250  
250  
RoHS & Green  
RoHS & Green  
1000 RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR5994IPM  
MSP430FR5994IPMR  
MSP430FR5994IPN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PM  
PM  
64  
64  
80  
80  
48  
48  
87  
87  
160  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR5994  
1000 RoHS & Green  
119 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
FR5994  
FR5994  
FR5994  
FR5994  
FR5994  
FR5994  
FR5994  
LQFP  
PN  
MSP430FR5994IPNR  
MSP430FR5994IRGZR  
MSP430FR5994IRGZT  
MSP430FR5994IZVW  
MSP430FR5994IZVWR  
LQFP  
PN  
1000 RoHS & Green  
2500 RoHS & Green  
VQFN  
VQFN  
NFBGA  
NFBGA  
RGZ  
RGZ  
ZVW  
ZVW  
250  
250  
RoHS & Green  
RoHS & Green  
1000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR5962IPMR  
MSP430FR5962IPNR  
MSP430FR5962IRGZR  
LQFP  
LQFP  
VQFN  
PM  
PN  
64  
80  
48  
87  
64  
80  
48  
87  
64  
80  
48  
87  
64  
80  
48  
87  
1000  
1000  
2500  
1000  
1000  
1000  
2500  
1000  
1000  
1000  
2500  
1000  
1000  
1000  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
330.0  
24.4  
24.4  
16.4  
16.4  
24.4  
24.4  
16.4  
16.4  
24.4  
24.4  
16.4  
16.4  
24.4  
24.4  
16.4  
16.4  
13.0  
16.0  
7.3  
13.0  
16.0  
7.3  
2.1  
2.0  
1.1  
1.5  
2.1  
2.0  
1.1  
1.5  
2.1  
2.0  
1.1  
1.5  
2.1  
2.0  
1.1  
1.5  
16.0  
24.0  
12.0  
12.0  
16.0  
24.0  
12.0  
12.0  
16.0  
24.0  
12.0  
12.0  
16.0  
24.0  
12.0  
12.0  
24.0  
24.0  
16.0  
16.0  
24.0  
24.0  
16.0  
16.0  
24.0  
24.0  
16.0  
16.0  
24.0  
24.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q1  
Q2  
Q2  
Q2  
Q1  
Q2  
Q2  
Q2  
Q1  
Q2  
Q2  
Q2  
Q1  
RGZ  
ZVW  
PM  
MSP430FR5962IZVWR NFBGA  
6.3  
6.3  
MSP430FR5964IPMR  
MSP430FR5964IPNR  
MSP430FR5964IRGZR  
LQFP  
LQFP  
VQFN  
13.0  
16.0  
7.3  
13.0  
16.0  
7.3  
PN  
RGZ  
ZVW  
PM  
MSP430FR5964IZVWR NFBGA  
6.3  
6.3  
MSP430FR5992IPMR  
MSP430FR5992IPNR  
MSP430FR5992IRGZR  
LQFP  
LQFP  
VQFN  
13.0  
16.0  
7.3  
13.0  
16.0  
7.3  
PN  
RGZ  
ZVW  
PM  
MSP430FR5992IZVWR NFBGA  
6.3  
6.3  
MSP430FR59941IPMR  
MSP430FR59941IPNR  
LQFP  
LQFP  
13.0  
16.0  
7.3  
13.0  
16.0  
7.3  
PN  
MSP430FR59941IRGZT VQFN  
MSP430FR59941IZVWR NFBGA  
RGZ  
ZVW  
1000  
6.3  
6.3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR5994IPMR  
MSP430FR5994IPNR  
MSP430FR5994IRGZR  
MSP430FR5994IRGZT  
LQFP  
LQFP  
VQFN  
VQFN  
PM  
PN  
64  
80  
48  
48  
87  
1000  
1000  
2500  
250  
330.0  
330.0  
330.0  
180.0  
330.0  
24.4  
24.4  
16.4  
16.4  
16.4  
13.0  
16.0  
7.3  
13.0  
16.0  
7.3  
2.1  
2.0  
1.1  
1.1  
1.5  
16.0  
24.0  
12.0  
12.0  
12.0  
24.0  
24.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q1  
RGZ  
RGZ  
ZVW  
7.3  
7.3  
MSP430FR5994IZVWR NFBGA  
1000  
6.3  
6.3  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR5962IPMR  
MSP430FR5962IPNR  
MSP430FR5962IRGZR  
MSP430FR5962IZVWR  
MSP430FR5964IPMR  
MSP430FR5964IPNR  
MSP430FR5964IRGZR  
MSP430FR5964IZVWR  
MSP430FR5992IPMR  
MSP430FR5992IPNR  
MSP430FR5992IRGZR  
MSP430FR5992IZVWR  
MSP430FR59941IPMR  
MSP430FR59941IPNR  
MSP430FR59941IRGZT  
MSP430FR59941IZVWR  
MSP430FR5994IPMR  
MSP430FR5994IPNR  
LQFP  
LQFP  
VQFN  
NFBGA  
LQFP  
LQFP  
VQFN  
NFBGA  
LQFP  
LQFP  
VQFN  
NFBGA  
LQFP  
LQFP  
VQFN  
NFBGA  
LQFP  
LQFP  
PM  
PN  
64  
80  
48  
87  
64  
80  
48  
87  
64  
80  
48  
87  
64  
80  
48  
87  
64  
80  
1000  
1000  
2500  
1000  
1000  
1000  
2500  
1000  
1000  
1000  
2500  
1000  
1000  
1000  
250  
336.6  
367.0  
367.0  
336.6  
336.6  
367.0  
367.0  
336.6  
336.6  
367.0  
367.0  
336.6  
336.6  
367.0  
210.0  
336.6  
336.6  
367.0  
336.6  
367.0  
367.0  
336.6  
336.6  
367.0  
367.0  
336.6  
336.6  
367.0  
367.0  
336.6  
336.6  
367.0  
185.0  
336.6  
336.6  
367.0  
41.3  
55.0  
38.0  
31.8  
41.3  
55.0  
38.0  
31.8  
41.3  
55.0  
38.0  
31.8  
41.3  
55.0  
35.0  
31.8  
41.3  
55.0  
RGZ  
ZVW  
PM  
PN  
RGZ  
ZVW  
PM  
PN  
RGZ  
ZVW  
PM  
PN  
RGZ  
ZVW  
PM  
1000  
1000  
1000  
PN  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR5994IRGZR  
MSP430FR5994IRGZT  
MSP430FR5994IZVWR  
VQFN  
VQFN  
RGZ  
RGZ  
ZVW  
48  
48  
87  
2500  
250  
367.0  
210.0  
336.6  
367.0  
185.0  
336.6  
38.0  
35.0  
31.8  
NFBGA  
1000  
Pack Materials-Page 4  
PACKAGE OUTLINE  
PM0064A  
LQFP - 1.6 mm max height  
SCALE 1.400  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
33  
16  
32  
17  
A
0.27  
0.17  
64X  
60X 0.5  
4X 7.5  
0.08  
C A B  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
1.6 MAX  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215162/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
49  
64  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
33  
16  
17  
32  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215162/A 03/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
16  
33  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4215162/A 03/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PN0080A  
LQFP - 1.6 mm max height  
SCALE 1.250  
PLASTIC QUAD FLATPACK  
12.2  
11.8  
B
PIN 1 ID  
A
80  
61  
1
60  
12.2  
11.8  
14.2  
TYP  
13.8  
20  
41  
40  
21  
76X 0.5  
0.27  
80X  
0.17  
4X 9.5  
0.08  
C A B  
1.6 MAX  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215166/A 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PN0080A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
80  
61  
80X (1.5)  
1
60  
80X (0.3)  
SYMM  
(13.4)  
76X (0.5)  
(R0.05) TYP  
20  
41  
21  
40  
(13.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215166/A 08/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
6. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PN0080A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
80  
61  
80X (1.5)  
1
60  
80X (0.3)  
SYMM  
(13.4)  
76X (0.5)  
(R0.05) TYP  
20  
41  
21  
40  
(13.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:6X  
4215166/A 08/2022  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY