MSP430FR60371 [TI]

具有 256KB FRAM、8KB SRAM、低功耗加速器、LCD、DMA 和 I2C 引导加载程序和 76 个 IO 的 16MHz MCU;
MSP430FR60371
型号: MSP430FR60371
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 256KB FRAM、8KB SRAM、低功耗加速器、LCD、DMA 和 I2C 引导加载程序和 76 个 IO 的 16MHz MCU

CD 静态存储器
文件: 总188页 (文件大小:2138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
用于水计量应用的 MSP430FR604x(1)MSP430FR603x(1)、超声波  
感应 MSP430™ 微控制器  
1 器件概述  
1.1 特性  
1
具有超低功耗的一流超声波水流量测量  
差分飞行时间 (dTOF) 精度小于 25ps  
高精度时间测量分辨率小于 5ps  
能够检测低流速(<1 /小时)  
经优化的超低功耗模式  
工作模式:大约 120µA/MHz  
待机模式下的实时时钟 (RTC) (LPM3.5)450nA  
(1)  
关断电流 (LPM4.5)30nA  
铁电随机存取存储器 (FRAM)  
高达 256KB 的非易失性存储器  
超低功耗写入  
在每秒测量一次的频率下总体电流消耗大约为  
3µA  
符合并超出 ISO 4064OIML R49 EN 1434 精  
度标准  
能够直接与标准超声波传感器(高达 2.5MHz)连接  
集成模拟前端 超声波感应解决方案 (USS)  
– 125ns 每个字的快速写入(4ms 内写入 64KB)  
统一标准存储器 = 单个空间内的程序 + 数据 + 存  
– 1015 写入周期持久性  
抗辐射和非磁性  
可在不同频率下生成脉冲的可编程脉冲生成  
(PPG)  
具有低阻抗 (4Ω) 输出驱动器的集成物理接口  
(PHY),可控制输入和输出通道  
智能数字外设  
具有高达 8Msps 输出数据速率的高性能高速 12  
Σ-Δ ADC (SDHS)  
具有 –6.5dB 30.8dB 增益的可编程增益放大器  
– 32 位硬件乘法器 (MPY)  
– 6 通道内部直接存储器访问 (DMA)  
具备日历和报警功能的 RTC  
六个 16 位定时器,每个定时器具有多达七个捕  
/比较寄存器  
(PGA)  
输出范围为 68MHz 80MHz 的高性能锁相环  
(PLL)  
– 32 位和 16 位循环冗余校验 (CRC)  
高性能模拟  
计量测试接口 (MTIF)  
脉冲发生器和脉冲计数器  
高达 1016 次脉冲/(p/s) 的脉冲率  
计数容量高达 6553516 位)  
LPM3.5 下以 200nA(典型值)运行  
低能耗加速器 (LEA)  
– 16 通道模拟比较器  
– 12 SAR ADC,具有窗口比较器、内部基准和  
采样保持功能以及多达 16 条外部输入通道  
具有高达 264 段对比度控制的集成 LCD 驱动器  
多功能输入/输出端口  
独立于 CPU 运行  
CPU 共享 4KB RAM  
可每位、每字节和每字访问(成对访问)  
所有端口上,从 LPM 中的边沿可选唤醒  
所有端口上可编程上拉和下拉  
– 256 点高效复变 FFT:  
Arm® Cortex®-M0+ 内核快多达 40 倍  
代码安全性和加密  
嵌入式微控制器  
– 128 位或 256 位高级加密标准 (AES) 安全加密和  
解密协处理器  
高达 16MHz 时钟频率的 16 RISC 架构  
– 3.6V 1.8V 的宽电源电压范围(最低电源电压  
受限于 SVS 电平,请参阅 SVS 规格)  
针对随机数生成算法的随机数种子  
– IP 封装防止对存储器进行外部访问  
– FRAM 可提供固有安全性优势  
(1) RTC 3.7pF 晶振生成。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASEB7  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
增强型串行通信  
高频晶振 (HFXT)  
多达四个 eUSCI_A 串行通信端口  
开发工具和软件(另请参阅 工具和软件)  
超声波感应设计中心图形用户界面  
超声波感应软件库  
支持自动波特率侦测的通用异步收发器  
(UART)  
– IrDA 编码和解码  
EVM430-FR6047 水表评估模块板  
多达两个 eUSCI_B 串行通信端口  
支持多从设备寻址的 I2C  
用于 100 引脚封装的 MSP-TS430PZ100E 目标  
插座板  
硬件通用异步收发器 (UART) I2C 自举程序  
采用 EnergyTrace++ 技术的免费专业开发环境  
用于 MSP430™ 微控制器的 MSP430Ware™  
器件比较 汇总了可用的器件型号和封装选项  
(BSL)  
灵活时钟系统  
具有 10 个可选厂家调整频率的定频数控振荡器  
要获得完整的模块说明,请参见  
MSP430FR58xxMSP430FR59xx 和  
MSP430FR6xx 系列用户指南》  
(DCO)  
低功率低频内部时钟源 (VLO)  
– 32kHz 晶振 (LFXT)  
1.2 应用  
超声波智能水表  
液位感应  
漏水检测  
超声波智能热量计  
1.3 说明  
德州仪器 (TI) MSP430FR604x MSP430FR603x 系列超声波感应和测量 SoC 是针对水表和热量计进行了  
优化的强大且高度集成的微控制器 (MCU)MSP430FR604x MCU 具有集成的超声波感应解决方案 (USS)  
模块,该模块可在多种流速条件下提供高精度。USS 模块高度集成,需要的外部组件极少,因而有助于实现  
超低功耗计量并降低系统成本。MSP430FR604x MSP430FR603x MCU 采用集成式低功耗加速器  
(LEA),可实现基于高速 ADC 的信号采集以及后续优化数字信号处理,为电池供电型计量应用提供了一款理  
想的超低功耗、高精度计量 解决方案。  
USS 模块包括可编程脉冲发生器 (PPG) 和具有低阻抗输出驱动器的物理接口 (PHY),以实现最佳传感器激  
励和准确的阻抗匹配,从而在零流量漂移 (ZFD) 方面达到最佳效果。该模块还包含可编程增益放大器 (PGA)  
和高速 12 8Msps Σ-Δ ADC (SDHS),便于通过行业标准超声波传感器实现精确的信号采集。  
此外,MSP430FR604x MSP430FR603x MCU 还集成了其他外设,可提高系统在计量方面的集成度。这  
些器件还具有计量测试接口 (MTIF) 模块,能够通过脉冲生成来指示仪表测量的流量。MSP430FR604x 和  
MSP430FR603x MCU 还具有片上 8 通道多路复用器 LCD 驱动器、RTC12 SAR ADC、模拟比较器、  
高级加密加速器 (AES256) 和循环冗余校验 (CRC) 模块。  
MSP430FR604x MSP430FR603x MCU 由一款广泛的硬件和软件生态系统提供支持,随附参考设计和代  
码示例,以便用户快速开展设计。开发套件包括 MSP-TS430PZ100E 100 引脚目标开发板EVM430-  
FR6047 超声波水流量计 EVMTI 还提供免费软件,包括超声波感应设计中心、超声波感应软件库和  
MSP430Ware™ 软件。  
TI MSP430 超低功耗 (ULP) FRAM 微控制器平台将独特的嵌入式 FRAM 和全面的超低功耗系统架构相  
结合,从而使系统设计人员能够在降低能耗的同时提升性能。FRAM 技术将 RAM 的低能耗快速写入、灵活  
性和耐用性与闪存的非易失性相结合。  
2
器件概述  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
器件信息(1)(2)  
封装  
器件型号  
封装尺寸(3)  
MSP430FR6047IPZ  
MSP430FR60471IPZ  
MSP430FR6045IPZ  
MSP430FR6037IPZ  
MSP430FR60371IPZ  
MSP430FR6035IPZ  
LQFP (100)  
14mm x 14mm  
(1) 要获得所有可用器件的最新部件、封装和订购信息,请参见封装选项附录9)或浏览 TI 网站  
www.ti.com。  
(2) 有关提供的所有器件变型的对比,请参见3。  
(3) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据9)。  
1.4 功能框图  
1-1 1-2 显示了器件的功能框图。  
P1.x, P2.x P3.x, P4.x P5.x, P6.x P7.x, P8.x  
P9.x  
1x8  
PJ.x  
2x8  
2x8  
2x8  
2x8  
1x8  
LFXIN,  
HFXIN  
LFXOUT,  
HFXOUT  
ADC12_B  
I/O Ports  
P1, P2  
2x8 I/Os  
I/O Ports  
P3, P4  
2x8 I/Os  
I/O Ports  
P5, P6  
2x8 I/Os  
I/O Ports  
P7, P8  
2x8 I/Os  
I/O Ports  
P9  
1x8 I/Os  
I/O Port  
PJ  
1x8 I/Os  
REF_A  
MCLK  
ACLK  
Comp_E  
(up to 16  
standard  
inputs,  
up to 8  
differential  
inputs)  
Clock  
System  
(up to 16  
inputs)  
Voltage  
Reference  
SMCLK  
PA PC  
1x16 I/Os 1x16 I/Os 1x16 I/Os  
PB  
PD  
1x16 I/Os  
PD  
1x8 I/Os  
DMA  
Controller  
Channel  
6
MAB  
MDB  
Bus  
Control  
Logic  
CPUXV2  
Including  
16 Registers  
MPU  
IP Encap  
CRC16  
LCD_C  
Power  
Manage-  
ment  
RAM  
AES256  
TA2  
TA3  
CRC-16-  
CCITT  
(up to  
264 Seg:  
static,  
4KB + 4KB  
Security  
Encryption,  
Decryption  
(128, 256)  
Timer_A Timer_A  
2 CC 2 CC  
Registers Registers  
Watchdog  
Timer  
FRCTL_A  
256KB  
128KB  
MPY32  
CRC32  
LDO  
SVS  
Brownout  
2 to 8 mux)  
EEM  
(S: 3+1)  
(int)  
(int)  
Tiny RAM  
22B  
CRC-32-  
ISO-3309  
MDB  
MAB  
JTAG  
Interface  
Spy-Bi-Wire  
TB0  
TA0  
TA1  
TA4  
eUSCI_A0  
eUSCI_B0  
USS  
Subsystem  
LEA  
Subsystem  
eUSCI_A1  
eUSCI_A2  
eUSCI_A3  
(UART,  
IrDA,  
SPI)  
eUSCI_B1  
(I2C,  
SPI)  
Timer_B  
7 CC  
Registers  
(int, ext)  
Timer_A  
3 CC  
Registers  
(int, ext)  
Timer_A  
3 CC  
Registers  
(int, ext)  
Timer_A  
2 CC  
Registers  
(int, ext)  
RTC_C  
MTIF  
LPM3.5 Domain  
MTIF_PIN_EN  
MTIF_OUT_IN  
CHx_IN, CHx_OUT USSXTIN, USSXTOUT, USSXT_BOUT  
Copyright © 2017, Texas Instruments Incorporated  
NOTE: 该器件具备 8KB RAM,其中 4KB RAM LEA 子系统共享。  
1-1. MSP430FR604x 功能框图  
版权 © 2017–2018, Texas Instruments Incorporated  
器件概述  
3
 
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
P1.x, P2.x P3.x, P4.x P5.x, P6.x P7.x, P8.x  
P9.x  
1x8  
PJ.x  
1x8  
2x8  
2x8  
2x8  
2x8  
LFXIN,  
HFXIN  
LFXOUT,  
HFXOUT  
ADC12_B  
I/O Ports  
P1, P2  
2x8 I/Os  
I/O Ports  
P3, P4  
2x8 I/Os  
I/O Ports  
P5, P6  
2x8 I/Os  
I/O Ports  
P7, P8  
2x8 I/Os  
I/O Ports  
P9  
1x8 I/Os  
I/O Port  
PJ  
1x8 I/Os  
REF_A  
MCLK  
ACLK  
Comp_E  
(up to 16  
standard  
inputs,  
up to 8  
differential  
inputs)  
Clock  
System  
(up to 16  
inputs)  
Voltage  
Reference  
SMCLK  
PA PC  
1x16 I/Os 1x16 I/Os 1x16 I/Os  
PB  
PD  
1x16 I/Os  
PD  
1x8 I/Os  
DMA  
Controller  
Channel  
6
MAB  
MDB  
Bus  
Control  
Logic  
CPUXV2  
incl. 16  
Registers  
MPU  
IP Encap  
CRC16  
LCD_C  
RAM  
AES256  
TA2  
TA3  
Power  
Mgmt  
CRC-16-  
CCITT  
(up to  
264 Seg:  
static,  
FRCTL_A  
256KB  
128KB  
4KB + 4KB  
Security  
Encryption,  
Decryption  
(128, 256)  
Timer_A Timer_A  
2 CC 2 CC  
Registers Registers  
Watchdog  
MPY32  
LDO  
SVS  
Brownout  
CRC32  
2 to 8 mux)  
EEM  
(S: 3+1)  
(int)  
(int)  
Tiny RAM  
22B  
CRC-32-  
ISO-3309  
MDB  
MAB  
JTAG  
Interface  
Spy-Bi-Wire  
TB0  
TA0  
TA1  
TA4  
eUSCI_A0  
eUSCI_B0  
LEA  
eUSCI_A1  
eUSCI_A2  
eUSCI_A3  
(UART,  
IrDA,  
SPI)  
eUSCI_B1  
(I2C,  
SPI)  
Sub  
System  
Timer_B  
7 CC  
Registers  
(int, ext)  
Timer_A  
3 CC  
Registers  
(int, ext)  
Timer_A  
3 CC  
Registers  
(int, ext)  
Timer_A  
2 CC  
Registers  
(int, ext)  
RTC_C  
MTIF  
LPM3.5 Domain  
MTIF_PIN_EN  
MTIF_OUT_IN  
Copyright © 2017, Texas Instruments Incorporated  
NOTE: 该器件具备 8KB RAM,其中 4KB RAM LEA 子系统共享。  
1-2. MSP430FR603x 功能框图  
4
器件概述  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
5.13 Timing and Switching Characteristics ............... 39  
Detailed Description ................................... 72  
6.1 Overview ............................................ 72  
6.2 CPU ................................................. 72  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能框图 .............................................. 3  
修订历史记录............................................... 6  
Device Comparison ..................................... 7  
3.1 Related Products ..................................... 8  
Terminal Configuration and Functions.............. 9  
4.1 Pin Diagram .......................................... 9  
4.2 Pin Attributes ........................................ 11  
4.3 Signal Descriptions.................................. 19  
4.4 Pin Multiplexing ..................................... 28  
4.5 Buffer Type.......................................... 28  
4.6 Connection of Unused Pins ......................... 28  
Specifications ........................................... 29  
5.1 Absolute Maximum Ratings ........................ 29  
5.2 ESD Ratings ........................................ 29  
5.3 Recommended Operating Conditions............... 30  
6
6.3  
Ultrasonic Sensing Solution (USS) Module ......... 72  
6.4  
Low-Energy Accelerator (LEA) for Signal  
2
3
Processing .......................................... 73  
6.5 Operating Modes .................................... 74  
6.6 Interrupt Vector Table and Signatures .............. 77  
6.7 Bootloader (BSL).................................... 80  
6.8 JTAG Operation ..................................... 81  
6.9 FRAM Controller A (FRCTL_A) ..................... 82  
6.10 RAM ................................................ 82  
4
6.11 Tiny RAM............................................ 82  
6.12 Memory Protection Unit (MPU) Including IP  
Encapsulation ....................................... 82  
5
6.13 Peripherals .......................................... 83  
6.14 Input/Output Diagrams .............................. 95  
6.15 Device Descriptors (TLV) .......................... 140  
6.16 Memory Map ....................................... 143  
6.17 Identification........................................ 166  
Applications, Implementation, and Layout ...... 167  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Active Mode Supply Current Into VCC Excluding  
External Current .................................... 31  
Typical Characteristics, Active Mode Supply  
7
8
Currents ............................................. 32  
Low-Power Mode (LPM0, LPM1) Supply Currents  
Into VCC Excluding External Current ................ 32  
Low-Power Mode (LPM2, LPM3, LPM4) Supply  
Currents (Into VCC) Excluding External Current .... 33  
Low-Power Mode With LCD Supply Currents (Into  
VCC) Excluding External Current.................... 35  
Low-Power Mode (LPMx.5) Supply Currents (Into  
VCC) Excluding External Current.................... 36  
7.1  
Device Connection and Layout Fundamentals .... 167  
Peripheral- and Interface-Specific Design  
7.2  
Information ......................................... 173  
器件和文档支......................................... 176  
8.1 入门和下一步....................................... 176  
8.2 器件命名规则....................................... 176  
8.3 工具和软件 ......................................... 177  
8.4 文档支持 ........................................... 178  
8.5 相关链接 ........................................... 179  
8.6 商标 ................................................ 179  
8.7 静电放电警告....................................... 179  
8.8 Export Control Notice .............................. 180  
8.9 Glossary............................................ 180  
机械、封装和可订购信息 .............................. 180  
5.10 Typical Characteristics, Low-Power Mode Supply  
Currents ............................................. 37  
5.11 Typical Characteristics, Current Consumption per  
Module .............................................. 38  
5.12 Thermal Resistance Characteristics for 100-Pin  
LQFP (PZ) Package ................................ 38  
9
版权 © 2017–2018, Texas Instruments Incorporated  
内容  
5
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
2 修订历史记录  
Changes from December 16, 2017 to September 25, 2018  
Page  
Updated 3.1, Related Products ................................................................................................. 8  
Added note (1) to 5-2, SVS..................................................................................................... 39  
Changed capacitor value from 4.7 µF to 470 nF in 7-10, ADC12_B Grounding and Noise Considerations....... 173  
Changed capacitor value from 4.7 µF to 470 nF in the last paragraph of 7.2.1.2, Design Requirements ......... 174  
更新了8.2器件命名规则 中的文本和图....................................................................................... 176  
6
修订历史记录  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
3 Device Comparison  
3-1 summarizes the available family members.  
3-1. Device Comparison(1)(2)  
eUSCI  
FRAM  
(KB)  
SRAM  
(KB)  
CLOCK  
SYSTEM  
USS  
USSXT  
DEVICE  
LEA  
MTIF  
ADC12_B  
Comp_E Timer_A(3) Timer_B(4)  
AES  
BSL  
I/Os  
PACKAGE  
A(5)  
B(6)  
DCO  
HFXT  
LFXT  
3, 3(7)  
MSP430FR6047  
256  
256  
256  
256  
128  
128  
8
8
8
8
8
8
Yes  
Yes  
Yes  
No  
Yes  
16 ext, 2 int ch.  
16 ch.  
16 ch.  
16 ch.  
16 ch.  
16 ch.  
16 ch.  
7
7
7
7
7
7
4
2
Yes  
UART  
76  
100 PZ (LQFP)  
2, 2,2(8)  
DCO  
HFXT  
LFXT  
3, 3(7)  
I2C  
MSP430FR60471  
MSP430FR6037  
MSP430FR60371  
MSP430FR6045  
MSP430FR6035  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
16 ext, 2 int ch.  
16 ext, 2 int ch.  
16 ext, 2 int ch.  
16 ext, 2 int ch.  
16 ext, 2 int ch.  
4
4
4
4
4
2
2
2
2
2
Yes  
Yes  
Yes  
Yes  
Yes  
76  
76  
76  
76  
76  
100 PZ (LQFP)  
100 PZ (LQFP)  
100 PZ (LQFP)  
100 PZ (LQFP)  
100 PZ (LQFP)  
2, 2,2(8)  
DCO  
HFXT  
LFXT  
3, 3(7)  
UART  
I2C  
2, 2,2(8)  
DCO  
HFXT  
LFXT  
3, 3(7)  
No  
2, 2,2(8)  
DCO  
HFXT  
LFXT  
3, 3(7)  
Yes  
No  
UART  
UART  
2, 2,2(8)  
DCO  
HFXT  
LFXT  
3, 3(7)  
2, 2,2(8)  
(1) For the most current package and ordering information, see the Package Option Addendum in 9, or see the TI website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.  
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having three capture/compare registers and PWM output generators and the second  
instantiation having five capture/compare registers and PWM output generators, respectively.  
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having three capture/compare registers and PWM output generators and the second  
instantiation having five capture/compare registers and PWM output generators, respectively.  
(5) eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI.  
(6) eUSCI_B supports I2C with multiple slave addresses and SPI.  
(7) Timers TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs.  
(8) Timers TA2 and TA3 provide only internal capture/compare inputs and only internal PWM outputs (if any) whereas Timer TA4 provides internal, external capture/compare inputs and  
internal, external PWM outputs.  
版权 © 2017–2018, Texas Instruments Incorporated  
Device Comparison  
7
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
3.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers High-performance, low-power solutions to enable the autonomous  
future  
Products for MSP430 ultra-low-power sensing and measurement microcontrollers One platform.  
One ecosystem. Endless possibilities.  
Products for MSP430 ultrasonic and performance sensing microcontrollers Ultra-low-power single-  
chip MCUs with integrated sensing peripherals  
Companion products for MSP430FR6047 Review products that are frequently purchased or used with  
this product.  
Reference designs for MSP430FR6047 The TI Designs Reference Design Library is a robust reference  
design library that spans analog, embedded processor, and connectivity. Created by TI  
experts to help you jump start your system design, all TI Designs include schematic or block  
diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at ti.com/tidesigns.  
8
Device Comparison  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4 Terminal Configuration and Functions  
4.1 Pin Diagram  
4-1 and 4-2 show the pinouts of the 100-pin PZ packages.  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
P2.2/COUT/UCA0CLK/A14/C14  
P2.3/TA0.0/UCA0STE/A15/C15  
P1.0/UCA1CLK/TA1.0/A0/C0/VREF-/VeREF-  
P1.1/UCA1STE/TA4.0/A1/C1/VREF+/VeREF+  
AVSS2  
1
75 DVSS3  
2
74 R33/LCDCAP  
3
73 P6.3/R23  
4
72 P6.2/R13/LCDREF  
5
71 P6.1/R03  
PJ.4/LFXIN  
6
70 P7.3/UCA2STE/TB0.1/COM7/LCDS33  
69 P7.2/UCA2CLK/TB0.0/COM6/LCDS34  
68 P7.1/UCA2SOMI/UCA2RXD/SMCLK/COM5/LCDS35  
67 P7.0/UCA2SIMO/UCA2TXD/ACLK/COM4/LCDS36  
66 P6.7/COM3/LCDS37  
PJ.5/LFXOUT  
7
AVSS3  
8
PJ.6/HFXIN  
9
PJ.7/HFXOUT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AVSS4  
65 P6.6/COM2/LCDS38  
P1.4/TB0.4/UCB0STE/A2/C2  
P1.5/TB0.5/UCB0CLK/A3/C3  
P1.6/UCB0SIMO/UCB0SDA/A4/C4  
P1.7/USSTRG/UCB0SOMI/UCB0SCL/A5/C5  
P2.0/UCA0SIMO/UCA0TXD/A6/C6  
P2.1/UCA0SOMI/UCA0RXD/A7/C7  
P1.2/UCA1SIMO/UCA1TXD/A8/C8  
P1.3/UCA1SOMI/UCA1RXD/A9/C9  
TEST/SBWTCK  
64 P6.5/COM1  
MSP430FR604xPZ  
63 P6.4/COM0  
62 P6.0/COUT/LCDS0  
61 P5.7/UCB1STE/LCDS1  
60 P5.6/UCB1SOMI/UCB1SCL/LCDS2  
59 P5.5/TA0CLK/UCB1SIMO/UCB1SDA/LCDS3  
58 P5.4/UCB1CLK/LCDS4  
57 P5.3/UCA2STE/LCDS5  
56 P5.2/UCA2CLK/LCDS6  
55 P5.1/UCA2SOMI/UCA2RXD/LCDS7  
54 P5.0/UCA2SIMO/UCA2TXD/LCDS8  
53 P4.7/DMAE0/LCDS9  
RST /NMI/SBWTDIO  
PJ.0/TDO/ACLK/SRSCG1/DMAE0/C10  
PJ.1/TDI/TCLK/SMCLK/SRSCG0/TA4CLK/C11  
PJ.2/TMS/MCLK/SROSCOFF/TB0OUTH/C12  
PJ.3/TCK/RTCCLK/SRCPUOFF/TB0.6/C13  
52 DVCC2  
51 DVSS2  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX  
On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL  
4-1. MSP430FR604x 100-Pin PZ Package (Top View)  
版权 © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
P2.2/COUT/UCA0CLK/A14/C14  
P2.3/TA0.0/UCA0STE/A15/C15  
P1.0/UCA1CLK/TA1.0/A0/C0/VREF-/VeREF-  
P1.1/UCA1STE/TA4.0/A1/C1/VREF+/VeREF+  
AVSS2  
1
75 DVSS3  
2
74 R33/LCDCAP  
73 P6.3/R23  
3
4
72 P6.2/R13/LCDREF  
71 P6.1/R03  
5
PJ.4/LFXIN  
6
70 P7.3/UCA2STE/TB0.1/COM7/LCDS33  
69 P7.2/UCA2CLK/TB0.0/COM6/LCDS34  
68 P7.1/UCA2SOMI/UCA2RXD/SMCLK/COM5/LCDS35  
67 P7.0/UCA2SIMO/UCA2TXD/ACLK/COM4/LCDS36  
66 P6.7/COM3/LCDS37  
PJ.5/LFXOUT  
7
AVSS3  
8
PJ.6/HFXIN  
9
PJ.7/HFXOUT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AVSS4  
65 P6.6/COM2/LCDS38  
P1.4/TB0.4/UCB0STE/A2/C2  
P1.5/TB0.5/UCB0CLK/A3/C3  
P1.6/UCB0SIMO/UCB0SDA/A4/C4  
P1.7/UCB0SOMI/UCB0SCL/A5/C5  
P2.0/UCA0SIMO/UCA0TXD/A6/C6  
P2.1/UCA0SOMI/UCA0RXD/A7/C7  
P1.2/UCA1SIMO/UCA1TXD/A8/C8  
P1.3/UCA1SOMI/UCA1RXD/A9/C9  
TEST/SBWTCK  
64 P6.5/COM1  
MSP430FR603xPZ  
63 P6.4/COM0  
62 P6.0/COUT/LCDS0  
61 P5.7/UCB1STE/LCDS1  
60 P5.6/UCB1SOMI/UCB1SCL/LCDS2  
59 P5.5/TA0CLK/UCB1SIMO/UCB1SDA/LCDS3  
58 P5.4/UCB1CLK/LCDS4  
57 P5.3/UCA2STE/LCDS5  
56 P5.2/UCA2CLK/LCDS6  
RST /NMI/SBWTDIO  
55 P5.1/UCA2SOMI/UCA2RXD/LCDS7  
54 P5.0/UCA2SIMO/UCA2TXD/LCDS8  
53 P4.7/DMAE0/LCDS9  
PJ.0/TDO/ACLK/SRSCG1/DMAE0/C10  
PJ.1/TDI/TCLK/SMCLK/SRSCG0/TA4CLK/C11  
PJ.2/TMS/MCLK/SROSCOFF/TB0OUTH/C12  
PJ.3/TCK/RTCCLK/SRCPUOFF/TB0.6/C13  
52 DVCC2  
51 DVSS2  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
DNC = Do Not Connect  
On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX  
On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL  
4-2. MSP430FR603x 100-Pin PZ Package (Top View)  
10  
Terminal Configuration and Functions  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4.2 Pin Attributes  
4-1 lists the attributes of each pin.  
4-1. Pin Attributes  
RESET STATE  
AFTER BOR(6)  
PIN NUMBER  
SIGNAL NAME(1) (2)  
P2.2  
SIGNAL TYPE(3)  
BUFFER TYPE(4)  
POWER SOURCE(5)  
I/O  
O
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
COUT  
UCA0CLK  
A14  
1
C14  
I
Analog  
P2.3  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0.0  
UCA0STE  
A15  
2
3
C15  
I
Analog  
P1.0  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1CLK  
TA1.0  
A0  
C0  
I
Analog  
VREF-  
VeREF-  
P1.1  
O
I
Analog  
Analog  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1STE  
TA4.0  
A1  
4
C1  
I
Analog  
VREF+  
VeREF+  
AVSS2  
PJ.4  
O
I
Analog  
Analog  
5
6
P
Power  
N/A  
OFF  
I/O  
I
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
LFXIN  
PJ.5  
I/O  
O
P
LVCMOS  
Analog  
OFF  
7
8
9
LFXOUT  
AVSS3  
PJ.6  
Power  
N/A  
I/O  
I
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
HFXIN  
PJ.7  
I/O  
O
P
LVCMOS  
Analog  
OFF  
10  
11  
HFXOUT  
AVSS4  
Power  
N/A  
(1) The signal that is listed first for each pin is the reset default pin name.  
(2) To determine the pin mux encodings for each pin, see 6.14.  
(3) Signal Types: I = Input, O = Output, I/O = Input or Output.  
(4) Buffer Types: LVCMOS, Analog, or Power (see 4-3 for details)  
(5) The power source shown in this table is the I/O power source, which may differ from the module power source.  
(6) Reset States:  
OFF = High impedance with Schmitt-trigger input and pullup or pulldown (if available) disabled  
PU = Pullup is enabled  
PD = Pulldown is enabled  
N/A = Not applicable  
版权 © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4-1. Pin Attributes (continued)  
RESET STATE  
PIN NUMBER  
SIGNAL NAME(1) (2)  
P1.4  
SIGNAL TYPE(3)  
BUFFER TYPE(4)  
POWER SOURCE(5)  
AFTER BOR(6)  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
TB0.4  
UCB0STE  
A2  
12  
C2  
I
Analog  
P1.5  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.5  
UCB0CLK  
A3  
13  
14  
C3  
I
Analog  
P1.6  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB0SIMO  
UCB0SDA  
A4  
C4  
I
Analog  
P1.7  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
USSTRG  
UCB0SOMI  
UCB0SCL  
A5  
I/O  
I/O  
I
15  
C5  
I
Analog  
P2.0  
I/O  
O
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0TXD  
UCA0SIMO  
A6  
16  
17  
18  
19  
C6  
I
Analog  
P2.1  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0RXD  
UCA0SOMI  
A7  
I/O  
I
C7  
I
Analog  
P1.2  
I/O  
O
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1TXD  
UCA1SIMO  
A8  
C8  
I
Analog  
P1.3  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1RXD  
UCA1SOMI  
A9  
I/O  
I
C9  
I
Analog  
TEST  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PD  
20  
21  
SBWTCK  
RST  
I
I/O  
I
PU  
NMI  
SBWTDIO  
I/O  
12  
Terminal Configuration and Functions  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
PIN NUMBER  
4-1. Pin Attributes (continued)  
RESET STATE  
AFTER BOR(6)  
SIGNAL NAME(1) (2)  
PJ.0  
SIGNAL TYPE(3)  
BUFFER TYPE(4)  
POWER SOURCE(5)  
I/O  
O
O
O
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
TDO  
ACLK  
SRSCG1  
DMAE0  
C10  
22  
I
PJ.1  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TDI  
TCLK  
SMCLK  
SRSCG0  
TA4CLK  
C11  
I
23  
O
O
I
I
PJ.2  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TMS  
MCLK  
SROSCOFF  
TB0OUTH  
C12  
O
O
I
24  
25  
I
PJ.3  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TCK  
RTCCLK  
SRCPUOFF  
TB0.6  
C13  
O
O
I/O  
I
26  
27  
DVSS1  
DVCC1  
P2.4  
P
Power  
N/A  
N/A  
OFF  
P
Power  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
TA0CLK  
TB0CLK  
TA1CLK  
S32  
28  
I
I
O
I/O  
I/O  
O
I/O  
I/O  
O
I/O  
I/O  
O
I/O  
O
O
I/O  
O
O
P2.5  
LVCMOS  
LVCMOS  
Analog  
OFF  
29  
30  
31  
32  
33  
TA4.0  
S31  
P2.6  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA4.1  
S30  
P3.0  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.0  
S29  
P3.1  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.1  
S28  
P3.2  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.2  
S27  
版权 © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4-1. Pin Attributes (continued)  
RESET STATE  
PIN NUMBER  
SIGNAL NAME(1) (2)  
P3.3  
SIGNAL TYPE(3)  
BUFFER TYPE(4)  
POWER SOURCE(5)  
AFTER BOR(6)  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
34  
TB0.3  
S26  
P3.4  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
OFF  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
TB0OUTH  
S25  
O
P3.5  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.4  
S24  
P3.6  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.5  
S23  
P3.7  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.6  
S22  
OFF  
P2.7  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
TA0.0  
S21  
P9.0  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
TA1.0  
S20  
P9.1  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
SMCLK  
S19  
O
P9.2  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
MCLK  
S18  
O
P9.3  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
ACLK  
S17  
O
P4.0  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
RTCCLK  
S16  
O
P4.1  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0CLK  
S15  
P4.2  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0STE  
S14  
P4.3  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0TXD  
UCA0SIMO  
S13  
47  
48  
I/O  
O
P4.4  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0RXD  
UCA0SOMI  
S12  
I/O  
O
14  
Terminal Configuration and Functions  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4-1. Pin Attributes (continued)  
RESET STATE  
AFTER BOR(6)  
PIN NUMBER  
SIGNAL NAME(1) (2)  
P4.5  
SIGNAL TYPE(3)  
BUFFER TYPE(4)  
POWER SOURCE(5)  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
TA0CLK  
TA1CLK  
S11  
49  
I
O
P4.6  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0CLK  
TA4CLK  
S10  
50  
I
O
51  
52  
DVSS2  
DVCC2  
P4.7  
P
Power  
N/A  
N/A  
OFF  
P
Power  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
53  
DMAE0  
S9  
O
P5.0  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2TXD  
UCA2SIMO  
S8  
54  
I/O  
O
P5.1  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2RXD  
UCA2SOMI  
S7  
55  
I/O  
O
P5.2  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
56  
57  
58  
UCA2CLK  
S6  
P5.3  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2STE  
S5  
P5.4  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1CLK  
S4  
P5.5  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0CLK  
UCB1SIMO  
UCB1SDA  
S3  
59  
I/O  
I/O  
O
P5.6  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1SOMI  
UCB1SCL  
S2  
60  
61  
P5.7  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1STE  
S1  
P6.0  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
OFF  
62  
63  
COUT  
S0  
O
P6.4  
I/O  
O
LVCMOS  
Analog  
OFF  
COM0  
版权 © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4-1. Pin Attributes (continued)  
RESET STATE  
PIN NUMBER  
SIGNAL NAME(1) (2)  
P6.5  
SIGNAL TYPE(3)  
BUFFER TYPE(4)  
POWER SOURCE(5)  
AFTER BOR(6)  
I/O  
O
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
-
OFF  
64  
COM1  
P6.6  
I/O  
O
LVCMOS  
Analog  
OFF  
65  
66  
COM2  
S38  
O
Analog  
P6.7  
I/O  
O
LVCMOS  
Analog  
OFF  
COM3  
S37  
O
Analog  
P7.0  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2TXD  
UCA2SIMO  
ACLK  
I/O  
O
67  
68  
COM4  
S36  
O
O
Analog  
P7.1  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2RXD  
UCA2SOMI  
SMCLK  
COM5  
S35  
I/O  
O
O
O
Analog  
P7.2  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2CLK  
TB0.0  
COM6  
S34  
69  
70  
O
Analog  
P7.3  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA2STE  
TB0.1  
COM7  
S33  
O
Analog  
P6.1  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
Analog  
OFF  
71  
72  
R03  
P6.2  
LVCMOS  
Analog  
OFF  
R13  
LCDREF  
P6.3  
Analog  
I/O  
I/O  
I/O  
I/O  
P
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
73  
74  
R23  
R33  
Analog  
-
LCDCAP  
DVSS3  
DVCC3  
P7.4  
Analog  
75  
76  
Power  
N/A  
N/A  
OFF  
P
Power  
I/O  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
77  
78  
TA0.1  
MTIF_OUT_IN  
P7.5  
OFF  
TA1.1  
MTIF_PIN_EN  
16  
Terminal Configuration and Functions  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4-1. Pin Attributes (continued)  
RESET STATE  
AFTER BOR(6)  
PIN NUMBER  
SIGNAL NAME(1) (2)  
P8.0  
SIGNAL TYPE(3)  
BUFFER TYPE(4)  
POWER SOURCE(5)  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
PVCC  
PVCC  
OFF  
UCA3STE  
TB0.2  
79  
DMAE0  
P8.1  
I/O  
I/O  
I/O  
I
OFF  
UCA3CLK  
TB0.3  
80  
81  
82  
83  
84  
TB0OUTH  
P8.2  
I/O  
O
OFF  
UCA3RXD  
UCA3SOMI  
MCLK  
I/O  
O
P8.3  
I/O  
O
OFF  
UCA3TXD  
UCA3SIMO  
RTCCLK  
P7.6  
I/O  
O
I/O  
I/O  
I
OFF  
TA4.1  
DMAE0  
COUT  
O
P7.7  
I/O  
I/O  
I
OFF  
TA0.2  
TB0OUTH  
COUT  
O
85  
86  
87  
88  
89  
90  
91  
CH1_IN  
CH1_OUT  
PVSS  
I
O
Analog  
P
Power  
N/A  
N/A  
N/A  
PVCC  
P
Power  
PVSS  
P
Power  
CH0_OUT  
CH0_IN  
P8.4  
O
Analog  
PVCC  
PVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
I
Analog  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1CLK  
TA1.2  
92  
93  
94  
95  
A10  
P8.5  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1SIMO  
UCB1SDA  
A11  
P8.6  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1SOMI  
UCB1SCL  
A12  
P8.7  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1STE  
USSXT_BOUT  
A13  
版权 © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4-1. Pin Attributes (continued)  
RESET STATE  
PIN NUMBER  
SIGNAL NAME(1) (2)  
AVSS5  
USSXTIN(7)  
USSXTOUT(7)  
AVSS1  
SIGNAL TYPE(3)  
BUFFER TYPE(4)  
POWER SOURCE(5)  
AFTER BOR(6)  
96  
97  
P
I
Power  
Analog  
Analog  
Power  
Power  
1.5V  
1.5V  
N/A  
98  
O
P
P
99  
N/A  
N/A  
100  
AVCC1  
(7) Do not connect USSXTIN and USSXTOUT pins to AVCC nor to DVCC. USSXTIN does not support bypass mode, so do not drive an  
external clock on the USSXTIN pin.  
18  
Terminal Configuration and Functions  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4.3 Signal Descriptions  
4-2 describes the signals.  
4-2. Signal Descriptions  
PIN  
NO.  
FUNCTION  
SIGNAL NAME  
A0  
PIN TYPE(1)  
DESCRIPTION  
PZ  
3
I
I
ADC analog input A0  
ADC analog input A1  
ADC analog input A2  
ADC analog input A3  
ADC analog input A4  
ADC analog input A5  
ADC analog input A6  
ADC analog input A7  
ADC analog input A8  
ADC analog input A9  
ADC analog input A10  
ADC analog input A11  
ADC analog input A12  
ADC analog input A13  
ADC analog input A14  
ADC analog input A15  
A1  
4
A2  
12  
13  
14  
15  
16  
17  
18  
19  
92  
93  
94  
95  
1
I
A3  
I
A4  
I
A5  
I
A6  
I
A7  
I
A8  
I
A9  
I
ADC  
A10  
A11  
A12  
A13  
A14  
A15  
VREF+  
VREF-  
VeREF+  
VeREF-  
I
I
I
I
I
2
I
4
O
O
I
Output of positive reference voltage  
3
Output of negative reference voltage  
4
Input for an external positive reference voltage to the ADC  
Input for an external negative reference voltage to the ADC  
3
I
22, 43,  
67  
ACLK  
O
ACLK output  
HFXIN  
9
10  
6
I
Input for high-frequency crystal oscillator HFXT  
Output for high-frequency crystal oscillator HFXT  
Input for low-frequency crystal oscillator LFXT  
Output of low-frequency crystal oscillator LFXT  
HFXOUT  
LFXIN  
O
I
Clock  
LFXOUT  
7
O
24, 42,  
81  
MCLK  
O
O
MCLK output  
23, 41,  
68  
SMCLK  
SMCLK output  
(1) I = input, O = output, P = power  
版权 © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4-2. Signal Descriptions (continued)  
PIN  
NO.  
FUNCTION  
SIGNAL NAME  
C0  
PIN TYPE(1)  
DESCRIPTION  
PZ  
3
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Comparator input C0  
Comparator input C1  
Comparator input C2  
Comparator input C3  
Comparator input C4  
Comparator input C5  
Comparator input C6  
Comparator input C7  
Comparator input C8  
Comparator input C9  
Comparator input C10  
Comparator input C11  
Comparator input C12  
Comparator input C13  
Comparator input C14  
Comparator input C15  
C1  
4
C2  
12  
13  
14  
15  
16  
17  
18  
19  
22  
23  
24  
25  
1
C3  
C4  
C5  
C6  
C7  
C8  
Comparator  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
2
1, 83,  
84  
COUT  
O
I
Comparator output  
22, 79,  
83  
DMA  
DMAE0  
External DMA trigger  
SBWTCK  
SBWTDIO  
SRCPUOFF  
SROSCOFF  
SRSCG0  
SRSCG1  
TCK  
20  
21  
25  
24  
23  
22  
25  
23  
23  
22  
20  
24  
3
I
Spy-Bi-Wire input clock  
I/O  
O
Spy-Bi-Wire data input/output  
Low-power debug: CPU Status register bit CPUOFF  
Low-power debug: CPU Status register bit OSCOFF  
Low-power debug: CPU Status register bit SCG0  
Low-power debug: CPU Status register bit SCG1  
Test clock  
O
O
O
Debug  
I
TCLK  
I
Test clock input  
TDI  
I
Test data input  
TDO  
O
Test data output port  
TEST  
I
Test mode pin, selects digital I/O on JTAG pins  
Test mode select  
TMS  
I
P1.0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
P1.1  
4
P1.2  
18  
19  
12  
13  
14  
15  
P1.3  
GPIO Port 1  
P1.4  
P1.5  
P1.6  
P1.7  
20  
Terminal Configuration and Functions  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
FUNCTION  
4-2. Signal Descriptions (continued)  
PIN  
NO.  
SIGNAL NAME  
P2.0  
PIN TYPE(1)  
DESCRIPTION  
PZ  
16  
17  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
2
GPIO Port 2  
GPIO Port 3  
GPIO Port 4  
GPIO Port 5  
GPIO Port 6  
28  
29  
30  
39  
31  
32  
33  
34  
35  
36  
37  
38  
44  
45  
46  
47  
48  
49  
50  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
71  
72  
73  
63  
64  
65  
66  
版权 © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4-2. Signal Descriptions (continued)  
PIN  
NO.  
FUNCTION  
SIGNAL NAME  
P7.0  
PIN TYPE(1)  
DESCRIPTION  
PZ  
67  
68  
69  
70  
77  
78  
83  
84  
79  
80  
81  
82  
92  
93  
94  
95  
40  
41  
42  
43  
22  
23  
24  
25  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O  
P7.1  
P7.2  
P7.3  
GPIO Port 7  
P7.4  
P7.5  
P7.6  
P7.7  
P8.0  
P8.1  
P8.2  
P8.3  
GPIO Port 8  
GPIO Port 9  
GPIO Port J  
I2C  
P8.4  
P8.5  
P8.6  
P8.7  
P9.0  
P9.1  
P9.2  
P9.3  
PJ.0  
PJ.1  
General-purpose digital I/O  
PJ.2  
General-purpose digital I/O  
PJ.3  
General-purpose digital I/O  
PJ.4  
General-purpose digital I/O  
PJ.5  
7
General-purpose digital I/O  
PJ.6  
9
General-purpose digital I/O  
PJ.7  
10  
15  
14  
94, 60  
93, 59  
General-purpose digital I/O  
UCB0SCL  
UCB0SDA  
UCB1SCL  
UCB1SDA  
I2C clock for eUSCI_B0 I2C mode  
I2C data for eUSCI_B0 I2C mode  
I2C clock for eUSCI_B1 I2C mode  
I2C data for eUSCI_B1 I2C mode  
22  
Terminal Configuration and Functions  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
FUNCTION  
4-2. Signal Descriptions (continued)  
PIN  
NO.  
SIGNAL NAME  
COM0  
PIN TYPE(1)  
DESCRIPTION  
PZ  
63  
64  
65  
66  
67  
68  
69  
70  
O
O
O
O
O
O
O
O
LCD common output COM0 for LCD backplane  
LCD common output COM1 for LCD backplane  
LCD common output COM2 for LCD backplane  
LCD common output COM3 for LCD backplane  
LCD common output COM4 for LCD backplane  
LCD common output COM5 for LCD backplane  
LCD common output COM6 for LCD backplane  
LCD common output COM7 for LCD backplane  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
LCD capacitor connection  
CAUTION: LCDCAP/R33 must be connected to DVSS if not used.  
LCDCAP  
74  
I/O  
LCDREF  
R03  
72  
71  
72  
73  
I
External reference voltage input for regulated LCD voltage  
Input/output port of lowest analog LCD voltage (V5)  
I/O  
I/O  
I/O  
R13  
Input/output port of third most positive analog LCD voltage (V3 or V4)  
Input/output port of second most positive analog LCD voltage (V2)  
R23  
Input/output port of most positive analog LCD voltage (V1)  
CAUTION: LCDCAP/R33 must be connected to DVSS if not used.  
R33  
74  
I/O  
S0  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
S1  
S2  
S3  
S4  
S5  
S6  
LCD  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
版权 © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4-2. Signal Descriptions (continued)  
PIN  
NO.  
FUNCTION  
SIGNAL NAME  
S30  
PIN TYPE(1)  
DESCRIPTION  
PZ  
30  
29  
28  
70  
69  
68  
67  
66  
65  
78  
77  
100  
99  
5
O
O
O
O
O
O
O
O
O
I
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
LCD segment output  
S31  
S32  
S33  
LCD (continued)  
S34  
S35  
S36  
S37  
S38  
MTIF_PIN_EN  
MTIF_OUT_IN  
AVCC1  
AVSS1  
AVSS2  
AVSS3  
AVSS4  
AVSS5  
DVCC1  
DVCC2  
DVCC3  
DVSS1  
DVSS2  
DVSS3  
PVCC  
PVSS  
Meter test interface pin enable  
Meter test interface input and output  
Analog power supply  
Analog ground supply  
Analog ground supply  
Analog ground supply  
Analog ground supply  
Analog ground supply  
Digital power supply  
MTIF  
I/O  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
8
11  
96  
27  
52  
76  
26  
51  
75  
88  
87, 89  
Power  
Digital power supply  
Digital power supply  
Digital ground supply  
Digital ground supply  
Digital ground supply  
USS power supply  
USS ground supply  
25, 44,  
82  
RTC  
RTCCLK  
O
RTC clock calibration output  
24  
Terminal Configuration and Functions  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
FUNCTION  
4-2. Signal Descriptions (continued)  
PIN  
NO.  
SIGNAL NAME  
PIN TYPE(1)  
DESCRIPTION  
PZ  
Clock signal input for eUSCI_A0 SPI slave mode  
Clock signal output for eUSCI_A0 SPI master mode  
UCA0CLK  
1, 45  
I/O  
UCA0SIMO  
UCA0SOMI  
UCA0STE  
16, 47  
17, 48  
2, 46  
I/O  
I/O  
I/O  
Slave in/master out for eUSCI_A0 SPI mode  
Slave out/master in for eUSCI_A0 SPI mode  
Slave transmit enable for eUSCI_A0 SPI mode  
Clock signal input for eUSCI_A1 SPI slave mode  
Clock signal output for eUSCI_A1 SPI master mode  
UCA1CLK  
3
I/O  
UCA1SIMO  
UCA1SOMI  
UCA1STE  
18  
19  
4
I/O  
I/O  
I/O  
Slave in/master out for eUSCI_A1 SPI mode  
Slave out/master in for eUSCI_A1 SPI mode  
Slave transmit enable for eUSCI_A1 SPI mode  
Clock signal input for eUSCI_A2 SPI slave mode  
Clock signal output for eUSCI_A2 SPI master mode  
UCA2CLK  
69, 56  
I/O  
UCA2SIMO  
UCA2SOMI  
UCA2STE  
67, 54  
68, 55  
70, 57  
I/O  
I/O  
I/O  
Slave in/master out for eUSCI_A2 SPI mode  
Slave out/master in for eUSCI_A2 SPI mode  
Slave transmit enable for eUSCI_A2 SPI mode  
SPI  
Clock signal input for eUSCI_A3 SPI slave mode  
Clock signal output for eUSCI_A3 SPI master mode  
UCA3CLK  
80  
I/O  
UCA3SIMO  
UCA3SOMI  
UCA3STE  
82  
81  
79  
I/O  
I/O  
I/O  
Slave in/master out for eUSCI_A3 SPI mode  
Slave out/master in for eUSCI_A3 SPI mode  
Slave transmit enable for eUSCI_A3 SPI mode  
Clock signal input for eUSCI_B0 SPI slave mode  
Clock signal output for eUSCI_B0 SPI master mode  
UCB0CLK  
13  
I/O  
UCB0SIMO  
UCB0SOMI  
UCB0STE  
14  
15  
12  
I/O  
I/O  
I/O  
Slave in/master out for eUSCI_B0 SPI mode  
Slave out/master in for eUSCI_B0 SPI mode  
Slave transmit enable for eUSCI_B0 SPI mode  
Clock signal input for eUSCI_B1 SPI slave mode  
Clock signal output for eUSCI_B1 SPI master mode  
UCB1CLK  
92, 58  
I/O  
UCB1SIMO  
UCB1SOMI  
UCB1STE  
NMI  
93, 59  
94, 60  
95, 61  
21  
I/O  
I/O  
I/O  
I
Slave in/master out for eUSCI_B1 SPI mode  
Slave out/master in for eUSCI_B1 SPI mode  
Slave transmit enable for eUSCI_B1 SPI mode  
Nonmaskable interrupt input  
System  
RST  
21  
I/O  
Reset input active low  
版权 © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
25  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4-2. Signal Descriptions (continued)  
PIN  
NO.  
FUNCTION  
SIGNAL NAME  
TA0.0  
PIN TYPE(1)  
DESCRIPTION  
PZ  
2
I/O  
I/O  
I/O  
I/O  
TA0 CCR0 capture: CCI0A input, compare: Out0  
TA0 CCR0 capture: CCI0B input, compare: Out0  
TA0 CCR1 capture: CCI1A input, compare: Out1  
TA0 CCR2 capture: CCI2A input, compare: Out2  
TA0.0  
TA0.1  
TA0.2  
39  
77  
84  
28, 49,  
59  
TA0CLK  
I
TA0 input clock  
TA1.0  
TA1.0  
TA1.1  
TA1.2  
TA1CLK  
TA4.0  
TA4.0  
TA4.1  
TA4.1  
TA4CLK  
TB0.0  
TB0.0  
TB0.1  
TB0.1  
TB0.2  
TB0.2  
TB0.3  
TB0.3  
TB0.4  
TB0.4  
TB0.5  
TB0.5  
TB0.6  
TB0.6  
TB0CLK  
3
40  
I/O  
I/O  
I/O  
I/O  
I
TA1 CCR0 capture: CCI0A input, compare: Out0  
TA1 CCR0 capture: CCI0B input, compare: Out0  
TA1 CCR1 capture: CCI1A input, compare: Out1  
TA1 CCR2 capture: CCI2A input, compare: Out2  
TA1 input clock  
78  
92  
28, 49  
4
I/O  
I/O  
I/O  
I/O  
I
TA4 CCR0 capture: CCI0A input, compare: Out0  
TA4 CCR0 capture: CCI0B input, compare: Out0  
TA4CCR1 capture: CCI1B input, compare: Out1  
TA4 CCR1 capture: CCI1A input, compare: Out1  
TA4 input clock  
29  
30  
83  
23, 50  
31  
Timer  
I/O  
I/O  
I/O  
O
TB0 CCR0 capture: CCI0B input, compare: Out0  
TB0 CCR0 capture: CCI0A input, compare: Out0  
TB0 CCR1 capture: CCI1A input, compare: Out1  
TB0 CCR1 compare: Out1  
69  
32  
70  
33  
I/O  
O
TB0 CCR2 capture: CCI2A input, compare: Out2  
TB0 CCR2 compare: Out2  
79  
34  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
TB0 CCR3 capture: CCI3A input, compare: Out3  
TB0 CCR3 capture: CCI3B input, compare: Out3  
TB0 CCR4 capture: CCI4A input, compare: Out4  
TB0 CCR4 capture: CCI4B input, compare: Out4  
TB0 CCR5 capture: CCI5A input, compare: Out5  
TB0CCR5 capture: CCI5B input, compare: Out5  
TB0 CCR6 capture: CCI6B input, compare: Out6  
TB0 CCR6 capture: CCI6A input, compare: Out6  
TB0 clock input  
80  
12  
36  
13  
37  
25  
38  
28, 50  
24, 35,  
80, 84  
TB0OUTH  
I
Switch all PWM outputs high impedance input – TB0  
UCA0RXD  
UCA0TXD  
UCA1RXD  
UCA1TXD  
UCA2RXD  
UCA2TXD  
UCA3RXD  
UCA3TXD  
17, 48  
16, 47  
19  
I
O
I
Receive data for eUSCI_A0 UART mode  
Transmit data for eUSCI_A0 UART mode  
Receive data for eUSCI_A1 UART mode  
Transmit data for eUSCI_A1 UART mode  
Receive data for eUSCI_A2 UART mode  
Transmit data for eUSCI_A2 UART mode  
Receive data for eUSCI_A3 UART mode  
Transmit data for eUSCI_A3 UART mode  
18  
O
I
UART  
68, 55  
67, 54  
81  
O
I
82  
O
26  
Terminal Configuration and Functions  
版权 © 2017–2018, Texas Instruments Incorporated  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
FUNCTION  
4-2. Signal Descriptions (continued)  
PIN  
NO.  
SIGNAL NAME  
PIN TYPE(1)  
DESCRIPTION  
PZ  
15  
97  
98  
95  
91  
90  
85  
86  
USSTRG  
I
I
USS trigger  
USSXTIN  
USSXTOUT  
USSXT_BOUT  
CH0_IN  
Input for crystal or resonator of oscillator USSXT  
Output for crystal or resonator of oscillator USSXT  
Buffered output clock of USSXT  
USS channel 0 RX  
O
O
I
USS  
CH0_OUT  
CH1_IN  
I/O  
I
USS channel 0 TX  
USS channel 1 RX  
CH1_OUT  
I/O  
USS channel 1 TX  
版权 © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
27  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
4.4 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for  
example, if the device is in test mode). For details of the settings for each pin and diagrams of the  
multiplexed ports, see 6.14.  
4.5 Buffer Type  
4-3 describes the buffer types that are referenced in 4-1.  
4-3. Buffer Type  
NOMINAL  
OUTPUT  
DRIVE  
STRENGTH  
(mA)  
PULLUP (PU)  
OR  
PULLDOWN (PD)  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)  
OTHER  
CHARACTERISTICS  
HYSTERESIS  
See analog modules in 5  
for details.  
Analog(1)  
LVCMOS  
3.0 V  
3.0 V  
3.0 V  
N
Y(2)  
N
N/A  
Programmable  
N/A  
N/A  
See 5.13.5.  
N/A  
N/A  
See 5.13.5.  
N/A  
Power  
SVS enables hysteresis on  
DVCC.  
(DVCC)(3)  
Power  
3.0 V  
3.0 V  
0 V  
N
N
N
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
(AVCC)(3)  
Power  
(PVCC)(3)  
Power (DVSS  
and AVSS)(3)  
(1) This is a switch, not a buffer.  
(2) Only for input pins  
(3) This is supply input, not a buffer.  
4.6 Connection of Unused Pins  
4-4 lists the correct termination of unused pins.  
4-4. Connection of Unused Pins(1)  
PIN  
POTENTIAL  
DVCC  
COMMENT  
AVCC  
PVCC  
AVSS  
PVSS  
DVCC  
DVSS  
DVSS  
CHx_IN,  
CHx_OUT  
DVSS  
USSXTIN  
DVSS  
Open  
Open  
Do not connect to DVCC, AVCC, or PVCC  
USSXTOUT  
Px.0 to Px.7  
Switched to port function, output direction (PxDIR.n = 1)  
RST/NMI/SBWTD  
IO  
DVCC or VCC  
47-kpullup or internal pullup selected with 10-nF (2.2-nF(2)) pulldown  
PJ.0/TDO  
PJ.1/TDI  
PJ.2/TMS  
PJ.3/TCK  
The JTAG pins are shared with general-purpose I/O function (PJ.x). If these pins are not used, set  
them to port function, output direction. If used as JTAG pins, leave them open.  
Open  
Open  
TEST  
This pin always has an internal pulldown enabled.  
(1) For any unused pin with a secondary function that is shared with general-purpose I/O, follow the guidelines for the Px.0 to Px.7 pins.  
(2) The pulldown capacitor must not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG  
mode with TI tools like FET interfaces or GANG programmers.  
28  
Terminal Configuration and Functions  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
4.1  
UNIT  
At DVCC and AVCC pins  
VCC  
Supply voltage(2)  
V
At DVCC, AVCC, and PVCC pins  
4.1  
Voltage difference between DVCC and AVCC pins(3)  
Voltage difference among DVCC, AVCC, and PVCC pins(3)  
Applied to CHx_IN  
±0.3  
±0.3  
1.65  
1.8  
V
V
–0.3  
–0.3  
–0.3  
Applied to CHx_IN with a duty cycle of 10% over 1 ms  
VI  
Input voltage(2)  
V
Applied to USSXTIN (USSXTOUT)  
1.5  
VCC + 0.3 V  
(4.1 V Max)  
Applied to any other pin  
–0.3  
Diode current at any device pin  
±2  
mA  
°C  
(4)  
Tstg  
Storage temperature  
–40  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltages are referenced to VSS  
.
(3) Voltage differences between DVCC and AVCC that exceed the specified limits can cause malfunction of the device including erroneous  
writes to RAM and FRAM.  
(4) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
5.2 ESD Ratings  
VALUE  
UNIT  
Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) (all except CHx_OUT  
terminals)  
±1000  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
±250  
±1000  
±250  
Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) (on CHx_OUT  
terminals)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V  
may actually have higher performance.  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
29  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
MAX UNIT  
5.3 Recommended Operating Conditions  
TYP data are based on VCC = 3.0 V and TA = 25°C (unless otherwise noted)  
MIN NOM  
VCC  
VCC  
VSS  
TA  
Supply voltage range applied at all DVCC and AVCC pins(1) (2) (3) (4)  
Supply voltage range applied at PVCC pin(1)  
Supply voltage applied at all DVSS, AVSS, and PVSS pins  
Operating free-air temperature  
1.8(5)  
2.2  
0
3.6  
3.6  
V
V
V
–40  
85  
°C  
µF  
CDVCC  
Capacitor value at DVCC(6)  
1 – 20%  
No FRAM wait states  
(NWAITSx = 0)  
0
8(8)  
fSYSTEM  
Processor frequency (maximum MCLK frequency)(7)  
With FRAM wait states  
(NWAITSx = 1)(9)  
MHz  
0
0
16(10)  
16(10)  
fLEA  
LEA processor frequency  
Maximum ACLK frequency  
Maximum SMCLK frequency  
fACLK  
fSMCLK  
50 kHz  
16(10) MHz  
(1) TI recommends powering the AVCC, DVCC, PVCC pins from the same source. At a minimum, during power up, power down, and  
device operation, the voltage difference among AVCC, DVCC, PVCC must not exceed the limits specified in Absolute Maximum  
Ratings. Exceeding the specified limits can cause malfunction of the device including erroneous writes to RAM and FRAM.  
(2) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the recommendation for capacitor  
CDVCC should limit the slopes accordingly.  
(3) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(4) The USS module must be disabled if AVCC and DVCC are lower than 2.2 V.  
(5) The minimum supply voltage is defined by the supervisor SVS levels. See the PMM SVS threshold parameters for the exact values.  
(6) As a decoupling capacitor for each supply pin pair (DVCC and DVSS or AVCC and AVSS), place a low-ESR 100-nF (minimum) ceramic  
capacitor as close as possible (within a few millimeters) to the respective pin pairs. For the PVCC and PVSS pair, place a low-ESR 22-  
µF (minimum) ceramic capacitor as close as possible (within a few millimeters) to the pin pair.  
(7) Modules may have a different maximum input clock specification. See the specification of each module in this data sheet.  
(8) DCO settings and HF crystals with a typical value less than or equal to the specified MAX value are permitted.  
(9) Wait states occur only on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always excecuted  
without wait states.  
(10) DCO settings and HF crystals with a typical value less than or equal to the specified MAX value are permitted. If a clock source with a  
higher typical value is used, the clock must be divided in the clock system.  
30  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.4 Active Mode Supply Current Into VCC Excluding External Current  
(2)  
over recommended operating free-air temperature (unless otherwise noted)(1)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
0 WAIT  
STATES  
4 MHz  
0 WAIT  
STATES  
8 MHz  
0 WAIT  
STATES  
12 MHz  
1 WAIT STATE 1 WAIT STATE  
(NWAITSx = 1) (NWAITSx = 1)  
16 MHz  
EXECUTION  
MEMORY  
PARAMETER  
VCC  
UNIT  
(NWAITSx = 0)  
(NWAITSx = 0)  
(NWAITSx = 0)  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
IAM, FRAM_UNI  
FRAM  
3.0 V  
3.0 V  
225  
665  
1275  
1550  
1970  
µA  
µA  
(Unified memory)(3)  
FRAM  
0% cache hit  
ratio  
IAM, FRAM (0%)(4)  
420  
275  
220  
192  
125  
1455  
855  
650  
535  
237  
2850  
1650  
1240  
1015  
450  
2330  
1770  
1490  
1290  
670  
3000  
2265  
1880  
1620  
790  
(5)  
FRAM  
50% cache hit  
ratio  
IAM, FRAM (50%)(4)  
IAM, FRAM (66%)(4)  
IAM, FRAM (75%)(4)  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
1022  
1888  
1443  
1170  
2041  
1735  
1490  
2606  
2197  
1870  
µA  
µA  
µA  
µA  
(5)  
FRAM  
66% cache hit  
ratio  
(5)  
(5)  
FRAM  
75% cache hit  
ratio  
261  
182  
FRAM  
100% cache hit  
ratio  
IAM, FRAM (100%)(4)  
(5)  
(6) (5)  
IAM, RAM  
RAM  
RAM  
3.0 V  
3.0 V  
140  
90  
323  
292  
590  
540  
880  
830  
1070  
1020  
µA  
µA  
(7) (5)  
IAM, RAM only  
1313  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Characterized with program executing typical data processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO = 24 MHz and  
fMCLK = fSMCLK = fDCO/2.  
At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency  
(fMCLK,eff) decreases. The effective MCLK frequency also depends on the cache hit ratio. SMCLK is not affected by the number of wait  
states or the cache hit ratio.  
The following equation can be used to compute fMCLK,eff  
:
fMCLK,eff = fMCLK / [wait states × (1 – cache hit ratio) + 1]  
For example, with 1 wait state and 75% cache hit ratio, fMCKL,eff = fMCLK / [1 × (1 – 0.75) + 1] = fMCLK / 1.25.  
(3) Represents typical program execution. Program and data reside entirely in FRAM. All execution is from FRAM.  
(4) Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit  
ratio represents number cache accesess divided by the total number of FRAM accesses. For example, a 75% ratio implies three of  
every four accesses is from cache, and the remaining are FRAM accesses.  
(5) See for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best linear fit  
using the typical data shown in Section 5.4.  
(6) Program and data reside entirely in RAM. All execution is from RAM.  
(7) Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
31  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.5 Typical Characteristics, Active Mode Supply Currents  
3000  
I(AM,0%)  
I(AM,50%)  
2500  
I(AM,66%)  
I(AM,75%)  
I(AM,75%)[µA] ~ 120 × f[MHz] + 68  
2000  
1500  
1000  
500  
0
I(AM,100%)  
I(AM,RAMonly)  
0
1
2
3
4
5
6
7
8
9
MCLK Frequency (MHz)  
A. I(AM,cache hit ratio): Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-  
to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM  
accesses. For example, a 75% ratio implies three of every four accesses is from cache, and the remaining are FRAM  
accesses.  
B. I(AM,RAMonly): Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
5-1. Typical Active Mode Supply Currents, No Wait States  
5.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current  
(2)  
over recommended operating free-air temperature (unless otherwise noted)(1)  
FREQUENCY (fSMCLK  
8 MHz  
)
PARAMETER  
VCC  
1 MHz  
TYP  
4 MHz  
TYP  
12 MHz  
TYP  
16 MHz  
TYP  
UNIT  
MAX  
148  
70  
MAX  
TYP  
180  
190  
136  
136  
MAX  
MAX  
MAX  
316  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
80  
95  
40  
40  
115  
125  
70  
276  
286  
230  
235  
250  
265  
205  
210  
ILPM0  
µA  
µA  
178  
245  
340  
ILPM1  
70  
250  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO = 24 MHz and  
fMCLK = fSMCLK = fDCO / 2.  
32  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External  
Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 5-2 and 图  
5-3)  
TEMPERATURE  
PARAMETER  
–40°C  
TYP  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
VCC  
MAX  
MAX  
MAX  
MAX  
2.2 V  
3 V  
0.8  
0.8  
0.6  
0.6  
0.5  
0.5  
0.8  
1.3  
1.3  
1.2  
1.2  
1.0  
1.0  
1.0  
4.1  
4.1  
4.0  
4.0  
3.8  
3.8  
2.2  
10.8  
10.8  
10.7  
10.7  
10.5  
10.5  
4.5  
Low-power mode 2, 12pF  
ILPM2,XT12  
ILPM2,XT3.7  
ILPM2,VLO  
μA  
μA  
μA  
crystal(1) (2) (3)  
2.2 V  
3 V  
Low-power mode 2, 3.7pF  
crystal(1) (4) (3)  
2.2 V  
3 V  
Low-power mode 2, VLO,  
includes SVS(5)  
Low-power mode 3, 12pF  
2.2 V  
1.1  
10.1  
ILPM3,XT12  
crystal, includes SVS(1) (2)  
μA  
(6)  
3 V  
2.2 V  
3 V  
0.8  
0.5  
0.5  
1.0  
0.7  
0.7  
2.2  
2.1  
2.1  
4.5  
4.4  
4.4  
Low-power mode 3, 3.7pF  
9.8  
9.8  
9.6  
ILPM3,XT3.7  
crystal, excludes SVS(1) (4)  
μA  
μA  
(7)  
2.2 V  
3 V  
0.4  
0.4  
0.5  
0.5  
1.2  
1.1  
1.9  
1.9  
1.4  
4.2  
4.2  
2.6  
Low-power mode 3,  
ILPM3,VLO  
VLO, excludes SVS(8)  
Low-power mode 3,  
VLO, excludes SVS, RAM  
powered-down  
2.2 V  
0.36  
0.47  
2.9  
8.2  
9.7  
ILPM3,VLO,  
RAMoff  
μA  
μA  
3 V  
0.36  
0.47  
1.4  
2.6  
completely(8)  
2.2 V  
3 V  
0.5  
0.5  
0.6  
0.6  
1.2  
1.9  
1.9  
4.3  
4.3  
Low-power mode 4,  
includes SVS(9)  
ILPM4,SVS  
0.8  
(1) Not applicable for devices with HF crystal oscillator only.  
(2) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are  
chosen to closely match the required 12.5pF load.  
(3) Low-power mode 2, crystal oscillator test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(4) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7pF load.  
(5) Low-power mode 2, VLO test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
(6) Low-power mode 3, 12pF crystal including SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. Refer to the idle currents specified for the respective peripheral groups.  
(7) Low-power mode 3, 3.7pF crystal excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE =  
0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. Refer to the idle currents specified for the respective peripheral groups.  
(8) Low-power mode 3, VLO excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). RAM disabled (RCCTL0 = 5A55h). Current for  
brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. Refer to the idle currents specified for the respective peripheral groups.  
(9) Low-power mode 4 including SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. Refer to the idle currents specified for the respective peripheral groups.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External  
Current (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 5-2 and 图  
5-3)  
TEMPERATURE  
PARAMETER  
–40°C  
TYP  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
μA  
VCC  
MAX  
MAX  
MAX  
MAX  
2.2 V  
3 V  
0.3  
0.3  
0.3  
0.4  
0.4  
1.1  
1.7  
1.7  
1.2  
4.0  
4.0  
2.5  
9.4  
Low-power mode 4,  
excludes SVS(10)  
ILPM4  
Low-power mode 4,  
excludes SVS, RAM  
powered-down  
2.2 V  
0.37  
1.0  
2.8  
8
ILPM4,RAMoff  
μA  
3 V  
3 V  
0.3  
0.37  
0.02  
1.2  
2.5  
completely(10)  
Additional idle current if  
one or more modules from  
Group A (see 6-3) are  
activated in LPM3 or LPM4  
IIDLE,GroupA  
IIDLE,GroupB  
IIDLE,GroupC  
0.3  
μA  
μA  
μA  
Additional idle current if  
one or more modules from  
Group B (see 6-3) are  
activated in LPM3 or LPM4  
3 V  
3 V  
0.02  
0.02  
0.35  
0.38  
Additional idle current if  
one or more modules from  
Group C (see 6-3) are  
activated in LPM3 or LPM4  
(10) Low-power mode 4 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). RAM disabled (RCCTL0 = 5A55h).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. Refer to the idle currents specified for the respective peripheral groups.  
34  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.8 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
–40°C  
TYP  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
MAX  
MAX  
MAX  
MAX  
Low-power mode 3 (LPM3)  
current,12 pF crystal, LCD  
4-mux mode, external  
ILPM3,XT12  
LCD,  
ext. bias  
3.0 V  
0.9  
1.1  
2.5  
5.1  
µA  
biasing, excludes SVS(1) (2)  
Low-power mode 3 (LPM3)  
current,12 pF crystal, LCD  
4-mux mode, internal  
ILPM3,XT12  
LCD,  
int. bias  
3.0 V  
1.3  
1.4  
2.0  
2.2  
4.5  
4.9  
12.5  
µA  
biasing, charge pump  
disabled, excludes SVS(1)  
(3)  
Low-power mode 3 (LPM3)  
current,12 pF crystal, LCD  
4-mux mode, internal  
biasing, charge pump  
enabled, 1/3 bias, excludes  
SVS(1) (4)  
2.2 V  
3.0 V  
3.6  
3.4  
4
5.1  
4.9  
8.1  
8.1  
µA  
µA  
ILPM3,XT12  
LCD,CP  
3.7  
(1) Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE =  
0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current - idle current of Group containing LCD module already included. Refer to the idle currents specified for the respective  
peripheral groups.  
(2) LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Current through external resistors not included (voltage levels are supplied by test equipment).  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(3) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(4) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump  
enabled), VLCDx = 1000 (VLCD = 3 V typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
35  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.9 Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 5-4 and 图  
5-5)  
TEMPERTURE (TA)  
PARAMETER  
VCC  
–40°C  
TYP  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP MAX  
UNIT  
MAX  
MAX  
MAX  
Low-power mode 3.5,  
ILPM3.5,XT12 12pF crystal including  
SVS(1) (2) (3)  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.45  
0.45  
0.3  
0.5  
0.5  
0.55  
0.55  
0.4  
0.75  
0.75  
0.65  
0.65  
μA  
μA  
Low-power mode 3.5,  
ILPM3.5,XT3.7 3.7pF crystal excluding  
SVS(1) (4) (5)  
0.35  
0.35  
0.3  
0.4  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.23  
0.23  
0.2  
0.2  
0.28  
0.28  
0.4  
0.4  
Low-power mode 4.5,  
ILPM4.5,SVS  
μA  
μA  
including SVS(6)  
0.035  
0.035  
0.045  
0.045  
0.075  
0.075  
0.15  
0.15  
Low-power mode 4.5,  
ILPM4.5  
excluding SVS(7)  
(1) Not applicable for devices with HF crystal oscillator only.  
(2) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are  
chosen to closely match the required 12.5pF load.  
(3) Low-power mode 3.5, 1pF crystal including SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(4) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7pF load.  
(5) Low-power mode 3.5, 3.7pF crystal excluding SVS test conditions:  
Current for RTC clocked by XT1 included.Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(6) Low-power mode 4.5 including SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(7) Low-power mode 4.5 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
36  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.10 Typical Characteristics, Low-Power Mode Supply Currents  
3
2.5  
2
3
2.5  
2
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS on  
2.2 V, SVS on  
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS on  
2.2 V, SVS on  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
5-2. LPM3 Supply Current (ILPM3,XT3.7) vs Temperature  
Temperature (°C)  
5-3. LPM4 Supply Current (ILPM4,SVS) vs Temperature  
0.7  
0.7  
3.0 V, SVS off  
3.0 V, SVS off  
2.2 V, SVS off  
0.6  
2.2 V, SVS off  
0.6  
3.0 V, SVS on  
2.2 V, SVS on  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
5-4. LPM3.5 Supply Current (ILPM3.5,XT3.7) vs Temperature  
Temperature (°C)  
5-5. LPM4.5 Supply Current (ILPM4.5) vs Temperature  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
37  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.11 Typical Characteristics, Current Consumption per Module(1)  
MODULE  
Timer_A  
TEST CONDITIONS  
REFERENCE CLOCK  
Module input clock  
MIN  
TYP  
2.5  
3.8  
6.3  
4.4  
4.4  
4.4  
100  
28  
MAX  
UNIT  
μA/MHz  
μA/MHz  
Timer_B  
Module input clock  
UART mode  
SPI mode  
SPI mode  
7.0  
4.8  
eUSCI_A  
Module input clock  
Module input clock  
μA/MHz  
μA/MHz  
eUSCI_B  
I2C mode, 100 kbaud  
RTC_C  
MPY  
32 kHz  
MCLK  
MCLK  
MCLK  
nA  
Only from start to end of operation  
Only from start to end of operation  
Only from start to end of operation  
256-point complex FFT, data = nonzero  
256-point complex FFT, data = zero  
μA/MHz  
μA/MHz  
μA/MHz  
CRC16  
CRC32  
3.3  
3.3  
86  
68  
LEA  
MCLK  
LFXT  
µA/MHz  
µA  
66  
Generator and counter are enabled at 256 Hz, no  
terminal activity, pulse rate = 15 pulses  
MTIF  
0.20  
(1) For other module currents not listed here, see the module-specific parameter sections.  
5.12 Thermal Resistance Characteristics for 100-Pin LQFP (PZ) Package(1)  
THERMAL METRIC(2)  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
VALUE(3)  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
57.6  
RθJC(TOP)  
RθJB  
14.9  
Junction-to-board thermal resistance  
35.6  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance  
35.0  
ΨJT  
0.6  
RθJC(BOTTOM)  
N/A  
(1) N/A = not applicable  
(2) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC  
standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
38  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13 Timing and Switching Characteristics  
5.13.1 Power Supply Sequencing  
TI recommends powering the AVCC, DVCC, and PVCC pins from the same source. At a minimum, during  
power up, power down, and device operation, the voltage difference among AVCC, DVCC, and PVCC  
must not exceed the limits specified in Section 5.1. Exceeding the specified limits can cause malfunction  
of the device including erroneous writes to RAM and FRAM.  
5-1 lists the power ramp requirements for brownout and power up.  
5-1. Brownout and Device Reset Power Ramp Requirements  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Brownout power-down level(1)  
Brownout power-up level(1)  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s(2)  
MIN  
0.7  
MAX UNIT  
VVCC_BOR–  
VVCC_BOR+  
1.66  
1.68  
V
V
0.79  
(1) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the recommendation for capacitor  
CDVCC should limit the slopes accordingly.  
(2) The brownout levels are measured with a slowly changing supply.  
5-2 lists the characteristics of the SVS.  
5-2. SVS  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
170  
MAX UNIT  
ISVSH,LPM  
VSVSH–  
SVSH current consumption, low-power modes  
SVSH power-down level(1)  
SVSH power-up level(1)  
300  
1.85  
1.99  
120  
10  
nA  
V
1.75  
1.77  
40  
1.80  
1.88  
VSVSH+  
V
VSVSH_hys  
tPD,SVSH, AM  
SVSH hysteresis  
mV  
µs  
SVSH propagation delay, active mode  
dVVcc/dt = –10 mV/µs  
(1) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference  
Design.  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
39  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.2 Reset Timing  
5-3 lists the requirements for the reset input.  
5-3. Reset Input  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
t(RST) External reset pulse duration on RST(1)  
VCC  
MIN  
TYP  
MAX UNIT  
2.2 V, 3.0 V  
2
µs  
(1) Not applicable if the RST/NMI pin is configured as NMI.  
5.13.3 Clock Specifications  
Table 5-4 lists the characteristics of the low-frequency oscillator.  
Table 5-4. Low-Frequency Crystal Oscillator, LFXT  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
180  
TA = 25°C, CL,eff = 3.7 pF, ESR 44 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
TA = 25°C, CL,eff = 6 pF, ESR 40 kΩ  
185  
225  
IVCC.LFXT  
Current consumption  
3.0 V  
nA  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {2},  
TA = 25°C, CL,eff = 9 pF, ESR 40 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF, ESR 40 kΩ  
330  
LFXT oscillator crystal  
frequency  
fLFXT  
LFXTBYPASS = 0  
32768  
Hz  
Measured at ACLK,  
fLFXT = 32768 Hz  
DCLFXT  
fLFXT,SW  
DCLFXT, SW  
LFXT oscillator duty cycle  
30%  
70%  
LFXT oscillator logic-level  
square-wave input frequency  
LFXTBYPASS = 1(2) (3)  
10.5 32.768  
50 kHz  
70%  
LFXT oscillator logic-level  
square-wave input duty cycle  
LFXTBYPASS = 1  
30%  
210  
300  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
fLFXT = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(4)  
OALFXT  
kΩ  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
(1) To improve EMI on the LFXT oscillator, observe the following guidelines:  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins LFXIN and LFXOUT.  
Avoid running PCB traces underneath or adjacent to the LFXIN and LFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
.
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF  
For LFXTDRIVE = {1}, CL,eff = 6 pF  
For LFXTDRIVE = {2}, 6 pF CL,eff 9 pF  
For LFXTDRIVE = {3}, 9 pF CL,eff 12.5 pF  
40  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-4. Low-Frequency Crystal Oscillator, LFXT (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Integrated load capacitance at  
LFXIN terminal(5) (6)  
CLFXIN  
2
pF  
Integrated load capacitance at  
LFXOUT terminal(5) (6)  
CLFXOUT  
2
pF  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
TA = 25°C, CL,eff = 3.7 pF  
3.0 V  
3.0 V  
800  
tSTART,LFXT  
Start-up time(7)  
ms  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
1000  
fFault,LFXT  
Oscillator fault frequency(8) (9)  
0
3500  
Hz  
(5) This represents all the parasitic capacitance present at the LFXIN and LFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT is the  
total capacitance at the LFXIN and LFXOUT terminals, respectively.  
(6) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
(7) Includes start-up counter of 1024 clock cycles.  
(8) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications may set the  
flag. A static condition or stuck at fault condition will set the flag.  
(9) Measured with logic-level input frequency but also applies to operation with crystals.  
Table 5-5 lists the characteristics of the high-frequency oscillator.  
Table 5-5. High-Frequency Crystal Oscillator, HFXT  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1(2)  
VCC  
MIN  
TYP  
MAX UNIT  
,
75  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
fOSC = 8 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 1,  
HFFREQ = 1,  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
120  
190  
250  
HFXT oscillator crystal current HF  
mode at typical ESR  
IDVCC.HFXT  
3.0 V  
μA  
fOSC = 16 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 2,  
HFFREQ = 2,  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
fOSC = 24 MHz  
HFXTBYPASS = 0, HFXTDRIVE = 3,  
HFFREQ = 3,  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
HFXTBYPASS = 0, HFFREQ = 1(2) (3)  
HFXTBYPASS = 0, HFFREQ = 2(3)  
HFXTBYPASS = 0, HFFREQ = 3(3)  
4
8.01  
8
HFXT oscillator crystal frequency,  
crystal mode  
fHFXT  
16 MHz  
24  
16.01  
(1) To improve EMI on the HFXT oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins HFXIN and HFXOUT.  
Avoid running PCB traces underneath or adjacent to the HFXIN and HFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) HFFREQ = {0} is not supported for HFXT crystal mode of operation.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
41  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-5. High-Frequency Crystal Oscillator, HFXT (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
40%  
0.9  
TYP  
MAX UNIT  
DCHFXT  
HFXT oscillator duty cycle  
Measured at SMCLK, fHFXT = 16 MHz  
HFXTBYPASS = 1, HFFREQ = 0(4) (3)  
HFXTBYPASS = 1, HFFREQ = 1(4) (3)  
HFXTBYPASS = 1, HFFREQ = 2(4) (3)  
HFXTBYPASS = 1, HFFREQ = 3(4) (3)  
50%  
60%  
4
HFXT oscillator logic-level  
square-wave input frequency,  
bypass mode  
4.01  
8.01  
16.01  
8
fHFXT,SW  
MHz  
16  
24  
DCHFXT,  
SW  
HFXT oscillator logic-level  
square-wave input duty cycle  
HFXTBYPASS = 1  
40%  
60%  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1(2)  
fHFXT,HF = 4 MHz, CL,eff = 16 pF  
,
450  
320  
200  
200  
HFXTBYPASS = 0, HFXTDRIVE = 1,  
HFFREQ = 1,  
fHFXT,HF = 8 MHz, CL,eff = 16 pF  
Oscillation allowance for  
HFXT crystals(5)  
OAHFXT  
HFXTBYPASS = 0, HFXTDRIVE = 2,  
HFFREQ = 2,  
fHFXT,HF = 16 MHz, CL,eff = 16 pF  
HFXTBYPASS = 0, HFXTDRIVE = 3,  
HFFREQ = 3,  
fHFXT,HF = 24 MHz, CL,eff = 16 pF  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1,  
TA = 25°C, CL,eff = 16 pF  
3.0 V  
3.0 V  
1.6  
0.6  
tSTART,HFXT Start-up time(6)  
ms  
pF  
fOSC = 24 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 3,  
HFFREQ = 3,  
TA = 25°C, CL,eff = 16 pF  
Integrated load capacitance at  
CHFXIN  
2
2
HFXIN terminaI(7) (8)  
Integrated load capacitance at  
HFXOUT terminaI(7) (8)  
Oscillator fault frequency(9) (10)  
CHFXOUT  
fFault,HFXT  
pF  
0
800 kHz  
(4) When HFXTBYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DCHFXT, SW  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes start-up counter of 1024 clock cycles.  
.
(7) This represents all the parasitic capacitance present at the HFXIN and HFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT is the  
total capacitance at the HFXIN and HFXOUT terminals, respectively.  
(8) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
(9) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the  
flag. A static condition or stuck at fault condition will set the flag.  
(10) Measured with logic-level input frequency but also applies to operation with crystals.  
42  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-6 lists the characteristics of the DCO.  
Table 5-6. DCO  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 0,  
DCORSEL = 1, DCOFSEL = 0  
DCO frequency range  
1 MHz, trimmed  
fDCO1  
1
±3.5%  
MHz  
DCO frequency range  
2.7 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 1  
fDCO2.7  
fDCO3.5  
fDCO4  
2.667  
3.5  
4
±3.5%  
±3.5%  
±3.5%  
MHz  
MHz  
MHz  
DCO frequency range  
3.5 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 2  
DCO frequency range  
4 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 3  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 4,  
DCORSEL = 1, DCOFSEL = 1  
DCO frequency range  
5.3 MHz, trimmed  
fDCO5.3  
fDCO7  
fDCO8  
5.333  
±3.5%  
±3.5%  
±3.5%  
MHz  
MHz  
MHz  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 5,  
DCORSEL = 1, DCOFSEL = 2  
DCO frequency range  
7 MHz, trimmed  
7
8
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 6,  
DCORSEL = 1, DCOFSEL = 3  
DCO frequency range  
8 MHz, trimmed  
DCO frequency range  
16 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 1, DCOFSEL = 4  
fDCO16  
fDCO21  
fDCO24  
16 ±3.5%(1)  
21 ±3.5%(1)  
24 ±3.5%(1)  
MHz  
MHz  
MHz  
DCO frequency range  
21 MHz, trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 5  
DCO frequency range  
24 MHz, trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 6  
Measured at SMCLK, divide by 1,  
No external divide, all DCORSEL and  
DCOFSEL settings except  
fDCO,DC  
Duty cycle  
48%  
50%  
52%  
DCORSEL = 1, DCOFSEL = 5 and  
DCORSEL = 1, DCOFSEL = 6  
Based on fsignal = 10 kHz and DCO  
used for 12-bit SAR ADC sampling  
source. This achieves >74-dB SNR  
due to jitter; that is, limited by ADC  
performance.  
tDCO, JITTER  
DCO jitter  
2
3
ns  
dfDCO/dT  
DCO temperature drift(2)  
3.0 V  
0.01  
%/ºC  
(1) After a wakeup from LPM1, LPM2, LPM3, or LPM4, the DCO frequency fDCO might exceed the specified frequency range for a few clock  
cycles by up to 5% before settling to the specified steady state frequency range.  
(2) Calculated using the box method: (MAX(–40°C to 85ºC) – MIN(–40°C to 85ºC)) / MIN(–40°C to 85ºC) / (85ºC – (–40ºC))  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
43  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-7 lists the characteristics of the VLO.  
Table 5-7. Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Current consumption  
VLO frequency  
TEST CONDITIONS  
MIN  
TYP  
100  
9.4  
MAX UNIT  
IVLO  
nA  
fVLO  
Measured at ACLK  
6
14  
kHz  
%/°C  
%/V  
dfVLO/dT  
VLO frequency temperature drift  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
0.2  
dfVLO/dVCC VLO frequency supply voltage drift  
fVLO,DC Duty cycle  
0.7  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Table 5-8 lists the characteristics of the MODOSC.  
Table 5-8. Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Current consumption  
TEST CONDITIONS  
Enabled  
MIN  
TYP  
25  
MAX UNIT  
IMODOSC  
μA  
fMODOSC  
MODOSC frequency  
MODOSC frequency temperature drift(1)  
4.0  
4.8  
5.4  
MHz  
%/℃  
%/V  
fMODOSC/dT  
0.08  
1.4  
fMODOSC/dVCC MODOSC frequency supply voltage drift(2)  
Measured at SMCLK,  
divide by 1  
DCMODOSC Duty cycle  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
44  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.4 Wake-up Characteristics  
Table 5-9 lists the times required to wake up from LPM or reset.  
Table 5-9. Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
(Additional) wake-up time to activate the  
FRAM in AM if previously disabled by the  
FRAM controller or from an LPM if immediate  
activation is selected for wakeup  
tWAKE-UP FRAM  
6
10  
μs  
400 +  
1.5 / fDCO  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode(1)  
2.2 V, 3.0 V  
ns  
tWAKE-UP LPM1  
tWAKE-UP LPM2  
Wake-up time from LPM1 to active mode(1)  
Wake-up time from LPM2 to active mode(1)  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
6
6
μs  
μs  
6.6 +  
2.0/fDCO  
9.6 +  
2.5/fDCO  
tWAKE-UP LPM3  
Wake-up time from LPM3 to active mode(1)  
Wake-up time from LPM4 to active mode(1)  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
μs  
μs  
6.6 +  
2.0 / fDCO  
9.6 +  
2.5 / fDCO  
tWAKE-UP LPM4  
tWAKE-UP LPM3.5 Wake-up time from LPM3.5 to active mode(2)  
tWAKE-UP LPM4.5 Wake-up time from LPM4.5 to active mode(2)  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
350  
350  
0.4  
450  
450  
0.8  
μs  
μs  
SVSHE = 1  
SVSHE = 0  
ms  
Wake-up time from a RST pin triggered reset  
tWAKE-UP-RST  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
480  
0.5  
596  
1
μs  
to active mode(2)  
Wake-up time from power-up to active  
tWAKE-UP-BOR  
ms  
mode(2)  
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge with MCLKREQEN = 1. This time includes the activation of the FRAM during wakeup. With  
MCLKREQEN = 0, the externally observable MCLK clock is gated one additional cycle.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
45  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-10 lists the typical charges used during wakeup.  
Table 5-10. Typical Wake-up Charges  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
16.5  
3.8  
21  
MAX UNIT  
nAs  
Charge used for activating the FRAM in AM or during wakeup  
from LPM0 if previously disabled by the FRAM controller.  
QWAKE-UP FRAM  
QWAKE-UP LPM0  
QWAKE-UP LPM1  
QWAKE-UP LPM2  
QWAKE-UP LPM3  
Charge used to wake up from LPM0 to active mode (with  
FRAM active)  
nAs  
Charge used to wake up from LPM1 to active mode (with  
FRAM active)  
nAs  
Charge used to wake up from LPM2 to active mode (with  
FRAM active)  
22  
nAs  
Charge used to wake up from LPM3 to active mode (with  
FRAM active)  
28  
nAs  
Charge used to wake up from LPM4 to active mode (with  
FRAM active)  
Charge used to wake up from LPM3.5 to active mode(2)  
QWAKE-UP LPM4  
QWAKE-UP LPM3.5  
QWAKE-UP LPM4.5  
28  
nAs  
nAs  
170  
173  
171  
SVSHE = 1  
SVSHE = 0  
Charge used to wake up from LPM4.5 to active mode(2)  
nAs  
nAs  
Charge used for reset from RST or BOR event to active  
mode(2)  
QWAKE-UP-RESET  
148  
(1) Charge used during the wake-up time from a given low-power mode to active mode. This does not include the energy required in active  
mode (for example, for an interrupt service routine).  
(2) Charge required until start of user code. This does not include the energy required to reconfigure the device.  
46  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.4.1 Typical Characteristics, Average LPM Currents vs Wake-up Frequency  
5-6 shows the average LPM currents vs wake-up frequency at 25°C.  
10000.00  
LPM0  
LPM1  
LPM2,XT12  
1000.00  
LPM3,XT12  
LPM3.5,XT12  
100.00  
10.00  
1.00  
0.10  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
NOTE: The average wake-up current does not include the energy required in active mode; for example, for an interrupt  
service routine or to reconfigure the device.  
5-6. Average LPM Currents vs Wake-up Frequency at 25°C  
5-7 shows the average LPM currents vs wake-up frequency at 85°C.  
10000.00  
LPM0  
LPM1  
LPM2,XT12  
1000.00  
LPM3,XT12  
LPM3.5,XT12  
100.00  
10.00  
1.00  
0.10  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
NOTE: The average wake-up current does not include the energy required in active mode; for example, for an interrupt  
service routine or to reconfigure the device.  
5-7. Average LPM Currents vs Wake-up Frequency at 85°C  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
47  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.5 Digital I/Os  
Table 5-11 lists the characteristics of the digital inputs.  
Table 5-11. Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.2  
TYP  
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
1.65  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.65  
0.55  
0.75  
0.44  
0.60  
2.25  
1.00  
V
Negative-going input threshold voltage  
1.35  
0.98  
V
Input voltage hysteresis (VIT+ – VIT–  
Pullup or pulldown resistor  
)
1.30  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI,dig  
CI,ana  
20  
35  
3
50  
kΩ  
pF  
pF  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
Input capacitance, port pins with shared analog  
functions(1)  
VIN = VSS or VCC  
5
2.2 V,  
3.0 V  
(2)(3)  
Ilkg(Px.y) High-impedance input leakage current  
See  
–20  
20  
2
+20  
nA  
ns  
µs  
Ports with interrupt  
capability (see 1.4 and  
4.3).  
External interrupt timing (external trigger pulse  
2.2 V,  
3.0 V  
t(int)  
duration to set interrupt flag)(4)  
2.2 V,  
3.0 V  
(5)  
t(RST)  
External reset pulse duration on RST  
(1) If the port pins PJ.4/LFXIN and PJ.5/LFXOUT are used as digital I/Os, they are connected by a 4-pF capacitor and a 35-Mresistor in  
series. At frequencies of approximately 1 kHz and lower, the 4-pF capacitor can add to the pin capacitance of PJ.4/LFXIN and/or  
PJ.5/LFXOUT.  
(2) The input leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(3) The input leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
(4) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It might be set by trigger signals  
shorter than t(int)  
.
(5) Not applicable if RST/NMI pin configured as NMI  
48  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-12 lists the characteristics of the digital outputs.  
Table 5-12. Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(1)  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
VCC  
0.25  
2.2 V  
VCC  
I(OHmax) = –3 mA(2)  
I(OHmax) = –2 mA(1)  
I(OHmax) = –6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
0.60  
High-level output voltage  
(see 5-10 and 5-11)  
VOH  
V
VCC  
VCC  
0.25  
3.0 V  
2.2 V  
3.0 V  
VCC  
VCC  
0.60  
VSS  
+
VSS  
VSS  
VSS  
VSS  
0.25  
VSS  
+
0.60  
Low-level output voltage  
(see 5-8 and 5-9)  
VOL  
V
VSS  
+
0.25  
VSS  
+
0.60  
2.2 V  
3.0 V  
2.2 V  
16  
16  
16  
Port output frequency (with load)(3)  
Clock output frequency(3)  
CL = 20 pF, RL  
MHz  
MHz  
(4) (5)  
fPx.y  
ACLK, MCLK, or SMCLK at  
configured output port,  
CL = 20 pF(5)  
fPort_CLK  
3.0 V  
16  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
4
3
4
3
6
4
6
4
15  
15  
15  
15  
15  
15  
15  
15  
trise,dig  
Port output rise time, digital only port pins  
Port output fall time, digital only port pins  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
ns  
ns  
ns  
ns  
tfall,dig  
Port output rise time, port pins with shared  
analog functions  
trise,ana  
Port output fall time, port pins with shared  
analog functions  
tfall,ana  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) The port can output frequencies at least up to the specified limit, and the port might support higher frequencies.  
(4) A resistive divider with 2 × R1 and R1 = 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the  
divider. CL = 20 pF is connected from the output to VSS  
.
(5) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
49  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.5.1 Typical Characteristics, Digital Outputs  
15  
30  
20  
10  
0
25°C  
25°C  
85°C  
85°C  
10  
5
P1.1  
P1.1  
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
3
Low-Level Output Voltage (V)  
Low-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
VCC = 3.0 V  
5-8. Typical Low-Level Output Current vs  
5-9. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Low-Level Output Voltage  
0
0
25°C  
85°C  
25°C  
85°C  
-5  
-10  
-20  
-30  
-10  
P1.1  
P1.1  
-15  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
3
High-Level Output Voltage (V)  
High-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
5-10. Typical High-Level Output Current vs  
VCC = 3.0 V  
5-11. Typical High-Level Output Current vs  
High-Level Output Voltage  
High-Level Output Voltage  
50  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.6 LEA  
Table 5-13 lists the characteristics of the LEA.  
Table 5-13. Low-Energy Accelerator (LEA) Performance  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Frequency for specified  
performance  
fLEA  
MCLK  
16  
MHz  
LEA subsystem energy on fast Complex FFT 128 pt. Q.15 with  
Fourier transform random data in LEA-RAM  
VCORE = 3 V,  
MCLK = 16 MHz  
W_LEA_FFT  
W_LEA_FIR  
350  
2.6  
nJ  
µJ  
LEA subsystem energy on finite Real FIR on random Q.31 data with  
VCORE = 3 V,  
MCLK = 16 MHz  
impulse response  
128 taps on 24 points  
On 32 Q.31 elements with random  
value out of LEA-RAM with linear  
address increment  
LEA subsystem energy on  
additions  
VCORE = 3 V,  
MCLK = 16 MHz  
W_LEA_ADD  
6.6  
nJ  
5.13.7 Timer_A and Timer_B  
Table 5-14 lists the characteristics of Timer_A.  
Table 5-14. Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TACLK,  
fTA  
Timer_A input clock frequency  
2.2 V, 3.0 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTA,cap  
Timer_A capture timing  
2.2 V, 3.0 V  
20  
ns  
Table 5-15 lists the characteristics of Timer_B.  
Table 5-15. Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
fTB  
Timer_B input clock frequency  
2.2 V, 3.0 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTB,cap  
Timer_B capture timing  
2.2 V, 3.0 V  
20  
ns  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
51  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.8 eUSCI  
Table 5-16 lists the supported clock frequencies of the eUSCI in UART mode.  
Table 5-16. eUSCI (UART Mode) Clock Frequency  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
Duty cycle = 50% ±10%  
feUSCI  
eUSCI input clock frequency  
16  
4
MHz  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
MHz  
Table 5-17 lists the switching characteristics of the eUSCI in UART mode.  
Table 5-17. eUSCI (UART Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
UCGLITx = 0  
VCC  
MIN  
5
TYP  
MAX UNIT  
30  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
20  
35  
50  
90  
ns  
tt  
UART receive deglitch time(1)  
2.2 V, 3.0 V  
160  
220  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. Thus the selected deglitch  
time can limit the maximum useable baud rate. To ensure that pulses are correctly recognized, their duration should exceed the  
maximum specification of the deglitch time.  
Table 5-18 lists the supported clock frequency of the eUSCI in SPI master mode.  
Table 5-18. eUSCI (SPI Master Mode) Clock Frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Internal: SMCLK or ACLK,  
Duty cycle = 50% ±10%  
feUSCI  
eUSCI input clock frequency  
16  
MHz  
52  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-19 lists the switching characteristics of the eUSCI in SPI master mode.  
Table 5-19. eUSCI (SPI Master Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
STE lead time, STE active to  
clock  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
UCSTEM = 1, UCMODEx = 01 or 10  
1
UCxCLK  
cycles  
STE lag time, Last clock to STE  
inactive  
UCSTEM = 1, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
1
STE access time, STE active to  
SIMO data out  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
60  
80  
ns  
ns  
STE disable time, STE inactive to  
SOMI high impedance  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
40  
40  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
ns  
ns  
ns  
ns  
tHD,MI  
0
11  
10  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO  
0
0
tHD,MO  
CL = 20 pF  
(1) fUCxCLK = 1/2 tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)).  
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in 5-12 and 5-13.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in 5-12  
and 5-13.  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
53  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
CKPL = 0  
1/fUCxCLK  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,ACC  
tSTE,DIS  
5-12. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,DIS  
tSTE,ACC  
5-13. SPI Master Mode, CKPH = 1  
54  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-20 lists the switching characteristics of the eUSCI in SPI slave mode.  
Table 5-20. eUSCI (SPI Slave Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
45  
40  
2
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
STE lag time, Last clock to STE inactive  
ns  
3
45  
ns  
40  
STE access time, STE active to SOMI data out  
50  
ns  
45  
STE disable time, STE inactive to SOMI high  
impedance  
4
4
7
7
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
ns  
tHD,SI  
35  
ns  
35  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
0
0
tHD,SO  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2 tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in 5-14 and 5-15.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in 5-14 and  
5-15.  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
55  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
5-14. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
5-15. SPI Slave Mode, CKPH = 1  
56  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-21 lists the switching characteristics of the eUSCI in I2C mode.  
Table 5-21. eUSCI (I2C Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 5-16)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3.0 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
ns  
ns  
100  
4.0  
0.6  
4.7  
1.3  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2.2 V, 3.0 V  
µs  
Bus free time between a STOP and  
START condition  
tBUF  
us  
250  
25  
125  
ns  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2.2 V, 3.0 V  
12.5  
6.3  
62.5  
31.5  
27  
30  
33  
tTIMEOUT  
Clock low time-out  
2.2 V, 3.0 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
5-16. I2C Mode Timing  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
57  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.9 Segment LCD Controller  
Table 5-22 lists the recommended operating conditions for the LCD controller.  
Table 5-22. LCD_C Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
NOM  
MAX UNIT  
Supply voltage range, charge  
pump enabled, VLCD 3.6 V  
LCDCPEN = 1, 0000b < VLCDx 1111b  
(charge pump enabled, VLCD 3.6 V)  
VCC,LCD_C,CP en,3.6  
VCC,LCD_C,CP en,3.3  
VCC,LCD_C,int. bias  
VCC,LCD_C,ext. bias  
2.2  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
Supply voltage range, charge  
pump enabled, VLCD 3.3 V  
LCDCPEN = 1, 0000b < VLCDx 1100b  
(charge pump enabled, VLCD 3.3 V)  
2.0  
2.4  
2.4  
Supply voltage range, internal  
biasing, charge pump disabled  
LCDCPEN = 0, VLCDEXT = 0  
LCDCPEN = 0, VLCDEXT = 0  
Supply voltage range, external  
biasing, charge pump disabled  
Supply voltage range, external  
VCC,LCD_C,VLCDEXT  
LCD voltage, internal or external LCDCPEN = 0, VLCDEXT = 1  
biasing, charge pump disabled  
2.0  
2.4  
3.6  
V
External LCD voltage at  
VLCDCAP  
LCDCAP, internal or external  
biasing, charge pump disabled  
LCDCPEN = 0, VLCDEXT = 1  
3.6  
V
Capacitor value on LCDCAP  
when charge pump enabled  
LCDCPEN = 1, VLCDx > 0000b (charge  
pump enabled)  
CLCDCAP  
fACLK,in  
fLCD  
4.7–20%  
4.7  
10+20%  
µF  
ACLK input frequency range  
30  
0
32.768  
40 kHz  
fFRAME = (1 / (2 × mux)) × fLCD with  
mux = 1 (static) to 8  
LCD frequency range  
1024  
Hz  
Hz  
fFRAME,4mux(MAX) = (1 / (2 × 4)) ×  
fLCD(MAX) = (1 / (2 × 4)) × 1024 Hz  
fFRAME,4mux  
LCD frame frequency range  
128  
fLCD = 1024 Hz, all common lines equally  
loaded  
CPanel  
VR33  
Panel capacitance  
10000  
pF  
V
Analog input voltage at R33  
LCDCPEN = 0, VLCDEXT = 1  
2.4  
VCC + 0.2  
VR03  
2/3 ×  
(VR33  
VR03  
+
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR23,1/3bias  
VR13,1/3bias  
VR13,1/2bias  
Analog input voltage at R23  
VR13  
VR33  
VR23  
VR33  
V
V
V
)
VR03  
+
Analog input voltage at R13 with LCDREXT = 1, LCDEXTBIAS = 1,  
1/3 biasing LCD2B = 0  
1/3 ×  
(VR33  
VR03  
VR03  
)
VR03  
+
Analog input voltage at R13 with LCDREXT = 1, LCDEXTBIAS = 1,  
1/2 ×  
(VR33  
VR03  
VR03  
1/2 biasing  
LCD2B = 1  
)
VR03  
Analog input voltage at R03  
R0EXT = 1  
VSS  
2.4  
V
V
Voltage difference between  
VLCD and R03  
VLCD – VR03  
LCDCPEN = 0, R0EXT = 1  
VCC + 0.2  
1.2  
External LCD reference voltage  
applied at LCDREF  
VLCDREF  
VLCDREFx = 01  
0.8  
1.0  
V
58  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-23 lists the electrical characteristics the LCD controller.  
Table 5-23. LCD_C Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VLCDx = 0000, VLCDEXT = 0  
LCDCPEN = 1, VLCDx = 0001b  
LCDCPEN = 1, VLCDx = 0010b  
LCDCPEN = 1, VLCDx = 0011b  
LCDCPEN = 1, VLCDx = 0100b  
LCDCPEN = 1, VLCDx = 0101b  
LCDCPEN = 1, VLCDx = 0110b  
LCDCPEN = 1, VLCDx = 0111b  
LCDCPEN = 1, VLCDx = 1000b  
LCDCPEN = 1, VLCDx = 1001b  
LCDCPEN = 1, VLCDx = 1010b  
LCDCPEN = 1, VLCDx = 1011b  
LCDCPEN = 1, VLCDx = 1100b  
LCDCPEN = 1, VLCDx = 1101b  
LCDCPEN = 1, VLCDx = 1110b  
LCDCPEN = 1, VLCDx = 1111b  
VCC  
MIN  
TYP  
VCC  
MAX UNIT  
VLCD,0  
VLCD,1  
VLCD,2  
VLCD,3  
VLCD,4  
VLCD,5  
VLCD,6  
VLCD,7  
VLCD,8  
VLCD,9  
VLCD,10  
VLCD,11  
VLCD,12  
VLCD,13  
VLCD,14  
VLCD,15  
2.4 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2 V to 3.6 V  
2.49  
2.60  
2.66  
2.72  
2.78  
2.84  
2.90  
2.96  
3.02  
3.08  
3.14  
3.20  
3.26  
3.32  
3.38  
3.44  
2.72  
LCD voltage  
V
3.32  
3.6  
LCD voltage with external  
reference of 0.8 V  
LCDCPEN = 1, VLCDx = 0111b,  
VLCDREFx = 01b, VLCDREF = 0.8 V  
2.96 ×  
0.8 V  
VLCD,7,0.8  
VLCD,7,1.0  
VLCD,7,1.2  
ΔVLCD  
V
LCD voltage with external  
reference of 1.0 V  
LCDCPEN = 1, VLCDx = 0111b,  
VLCDREFx = 01b, VLCDREF = 1.0 V  
2 V to 3.6 V  
2.96 ×  
1.0 V  
V
V
LCD voltage with external  
reference of 1.2 V  
LCDCPEN = 1, VLCDx = 0111b,  
VLCDREFx = 01b, VLCDREF = 1.2 V  
2.2 V to 3.6 V  
2.96 ×  
1.2 V  
Voltage difference between  
consecutive VLCDx settings  
ΔVLCD = VLCD,x – VLCD,x–1  
with x = 0010b to 1111b  
40  
50  
60  
600  
100  
80  
mV  
µA  
LCDCPEN = 1, VLCDx = 1111b  
external, with decoupling capacitor on  
DVCC supply 1 µF  
Peak supply currents due to  
charge pump activities  
ICC,Peak,CP  
2.2 V  
Time to charge CLCD when  
discharged  
CLCD = 4.7 µF, LCDCPEN = 01,  
VLCDx = 1111b  
tLCD,CP,on  
ICP,Load  
RLCD,Seg  
RLCD,COM  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
500  
ms  
µA  
kΩ  
kΩ  
Maximum charge pump load  
current  
LCDCPEN = 1, VLCDx = 1111b  
LCDCPEN = 0, ILOAD = ±10 µA  
LCDCPEN = 0, ILOAD = ±10 µA  
LCD driver output impedance,  
segment lines  
10  
10  
LCD driver output impedance,  
common lines  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
59  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.10 ADC12_B  
Table 5-24 lists the power and input requirements of the ADC.  
Table 5-24. 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN NOM  
MAX UNIT  
V(Ax)  
Analog input voltage range(1)  
All ADC12 analog input pins Ax  
0
AVCC  
V
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
3.0 V  
2.2 V  
145  
140  
199  
I(ADC12_B)  
single-ended  
mode  
Operating supply current into  
µA  
AVCC and DVCC terminals(2) (3)  
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
190  
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 1,  
3.0 V  
2.2 V  
175  
170  
245  
230  
I(ADC12_B)  
differential  
mode  
Operating supply current into  
µA  
µA  
µA  
AVCC and DVCC terminals(2) (3) REFON = 0, ADC12SHTx= 0,  
ADC12DIV = 0  
fADC12CLK = MODCLK/4, ADC12ON = 1,  
ADC12PWRMD = 1, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
3.0 V  
2.2 V  
85  
83  
125  
120  
I(ADC12_B)  
Operating supply current into  
single-ended  
low-power  
mode  
AVCC and DVCC terminals(2) (3)  
fADC12CLK = MODCLK/4, ADC12ON = 1,  
ADC12PWRMD = 1, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
I(ADC12_B)  
fADC12CLK = MODCLK/4, ADC12ON = 1,  
ADC12PWRMD = 1, ADC12DIF = 1,  
3.0 V  
2.2 V  
110  
109  
165  
160  
Operating supply current into  
differential  
low-power  
mode  
AVCC and DVCC terminals(2) (3) REFON = 0, ADC12SHTx= 0,  
ADC12DIV = 0  
Only one terminal Ax can be selected at  
one time  
CI  
RI  
Input capacitance  
2.2 V  
10  
15  
pF  
>2 V  
<2 V  
0.5  
1
4
Input MUX ON resistance  
0 V V(Ax) AVCC  
kΩ  
10  
(1) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results.  
(2) The internal reference supply current is not included in current consumption parameter I(ADC12_B).  
(3) Approximately 60% (typical) of the total current into the AVCC and DVCC terminal is from AVCC.  
60  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-25 lists the timing requirements of the ADC.  
Table 5-25. 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC12 linearity parameters with  
ADC12PWRMD = 0,  
If ADC12PWRMD = 1, the maximum is 1/4 of the value shown  
here  
Frequency for  
fADC12CLK specified  
0.45  
5.4  
MHz  
performance  
Frequency for  
reduced performance  
fADC12OSC Internal oscillator(1)  
fADC12CLK  
Linearity parameters have reduced performance  
32.768  
4.8  
kHz  
ADC12DIV = 0, fADC12CLK = fADC12OSC from MODCLK  
4
5.4  
3.5  
MHz  
REFON = 0, Internal oscillator, fADC12CLK = fADC12OSC from  
MODCLK, ADC12WINC = 0  
2.6  
tCONVERT  
Conversion time  
µs  
External fADC12CLK from ACLK, MCLK, or SMCLK,  
ADC12SSEL 0  
(2)  
See  
Turnon settling time  
of the ADC  
(3)  
tADC12ON  
See  
100  
ns  
ns  
Time ADC must be  
tADC12OFF off before can be  
turned on again  
Note: tADC12OFF must be met to make sure that tADC12ON time  
holds.  
100  
1
All pulse sample mode  
(ADC12SHP = 1) and extended  
sample mode (ADC12SHP = 0) with  
buffered reference  
(ADC12VRSEL = 0x1, 0x3, 0x5,  
0x7, 0x9, 0xB, 0xD, 0xF)  
RS = 400 Ω, RI = 4 kΩ,  
tSample  
Sampling time  
µs  
CI = 15 pF, Cpext= 8 pF(4)  
Extended sample mode  
(ADC12SHP = 0) with unbuffered  
reference (ADC12VRSEL= 0x0,  
0x2, 0x4, 0x6, 0xC, 0xE)  
(5)  
See  
(1) The ADC12OSC is sourced directly from MODOSC in the UCS.  
(2) 14 × 1 / fADC12CLK. If ADC12WINC = 1 then 15 × 1 / fADC12CLK  
.
(3) The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
(4) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB: tsample = ln(2n+2) × (RS + RI) × (CI + Cpext), where n = ADC  
resolution = 12, RS= external source resistance, Cpext = external parasitic capacitance.  
(5) 6 × 1 / fADC12CLK  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
61  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-26 lists the linearity parameters of the ADC.  
Table 5-26. 12-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
With external voltage reference (ADC12VRSEL = 0x2,  
0x3, 0x4, 0x14, 0x15),  
1.2 V (VR+ – VR–) AVCC  
Integral linearity error (INL) for  
differential input  
±1.8  
LSB  
±2.2  
EI  
With external voltage reference (ADC12VRSEL = 0x2,  
0x3, 0x4, 0x14, 0x15),  
1.2 V (VR+ – VR–) AVCC  
Integral linearity error (INL) for  
single-ended inputs  
With external voltage reference (ADC12VRSEL = 0x2,  
0x3, 0x4, 0x14, 0x15),  
ED  
EO  
Differential linearity error (DNL)  
Offset error(1) (2)  
–0.99  
+1.0  
±1.5  
LSB  
mV  
ADC12VRSEL = 0x1 without TLV calibration,  
TLV calibration data can be used to improve the  
parameter(3)  
±0.5  
With internal voltage reference VREF = 2.5 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
±0.2%  
±0.2%  
±1.7%  
±2.5%  
With internal voltage reference VREF = 1.2 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
EG  
Gain error  
With external voltage reference without internal buffer  
(ADC12VRSEL = 0x2 or 0x4) without TLV calibration,  
VR+ = 2.5 V, VR– = AVSS  
±1  
±3  
LSB  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3), VR+ = 2.5 V, VR– = AVSS  
±2  
±0.2%  
±0.2%  
±27  
±1.8%  
±2.6%  
With internal voltage reference VREF = 2.5 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
With internal voltage reference VREF = 1.2 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
ET  
Total unadjusted error  
With external voltage reference without internal buffer  
(ADC12VRSEL = 0x2 or 0x4) without TLV calibration,  
VR+ = 2.5 V, VR– = AVSS  
±1  
±1  
±5  
LSB  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3), VR+ = 2.5 V, VR– = AVSS  
±28  
(1) Offset is measured as the input voltage (at which ADC output transitions from 0 to 1) minus 0.5 LSB.  
(2) Offset increases as IR drop increases when VR– is AVSS.  
(3) For details, see the Device Descriptor Table section in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
62  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-27 lists the dynamic performance characteristics of the ADC with an external reference.  
Table 5-27. 12-Bit ADC, Dynamic Performance With External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Resolution Number of no missing code output-code bits  
12  
bits  
Signal-to-noise with differential inputs  
SNR  
VR+ = 2.5 V, VR– = AVSS  
71  
70  
dB  
Signal-to-noise with single-ended inputs  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
Effective number of bits with differential inputs(1)  
Effective number of bits with single-ended inputs(1) VR+ = 2.5 V, VR– = AVSS  
11.4  
11.1  
ENOB  
bits  
Reduced performance with fADC12CLK  
from ACLK LFXT 32.768 kHz,  
VR+ = 2.5 V, VR– = AVSS  
Effective number of bits with 32.768-kHz clock  
(reduced performance)(1)  
10.9  
(1) ENOB = (SINAD – 1.76) / 6.02  
Table 5-28 lists the dynamic performance characteristics of the ADC with an internal reference.  
Table 5-28. 12-Bit ADC, Dynamic Performance With Internal Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Resolution Number of no missing code output-code bits  
12  
bits  
Signal-to-noise with differential inputs  
SNR  
VR+ = 2.5 V, VR– = AVSS  
70  
69  
dB  
Signal-to-noise with single-ended inputs  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
Effective number of bits with differential inputs(1)  
Effective number of bits with single-ended inputs(1) VR+ = 2.5 V, VR– = AVSS  
11.4  
11.0  
ENOB  
bits  
Reduced performance with fADC12CLK  
from ACLK LFXT 32.768 kHz,  
VR+ = 2.5 V, VR– = AVSS  
Effective number of bits with 32.768-kHz clock  
(reduced performance)(1)  
10.9  
(1) ENOB = (SINAD – 1.76) / 6.02  
Table 5-29 lists the characteristics of the temperature sensor and the V1/2  
.
Table 5-29. 12-Bit ADC, Temperature Sensor and Built-In V1/2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ADC12ON = 1, ADC12TCMAP = 1,  
TA = 0°C  
VSENSOR  
Temperature sensor voltage(1) (2)  
700  
2.5  
mV  
mV/°C  
µs  
(2)  
TCSENSOR  
tSENSOR(sample)  
See  
ADC12ON = 1, ADC12TCMAP = 1  
Sample time required if ADCTCMAP = 1 and  
channel (MAX – 1) is selected(3)  
ADC12ON = 1, ADC12TCMAP = 1,  
Error of conversion result 1 LSB  
30  
AVCC voltage divider for ADC12BATMAP = 1  
on MAX input channel  
V1/2  
ADC12ON = 1, ADC12BATMAP = 1  
47.5%  
50% 52.5%  
38 72  
IV1/2  
Current for battery monitor during sample time ADC12ON = 1, ADC12BATMAP = 1  
µA  
µs  
Sample time required if ADC12BATMAP = 1  
ADC12ON = 1, ADC12BATMAP = 1  
and channel MAX is selected(4)  
tV1/2 (sample)  
1.7  
(1) The temperature sensor offset can be as much as ±30°C. TI recommends a single-point calibration to minimize the offset error of the  
built-in temperature sensor.  
(2) The device descriptor structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage  
levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR can  
be computed from the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 250 kΩ. The sample time required includes the sensor on-time, tSENSOR(on)  
.
(4) The on-time tV1/2(on) is included in the sampling time tV1/2(sample); no additional on time is needed.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
63  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-30 lists the characteristics of the external reference for the ADC.  
Table 5-30. 12-Bit ADC, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Positive external reference voltage input  
VeREF+ or VeREF- based on  
ADC12VRSEL bit  
VR+  
VR+ > VR–  
1.2  
AVCC  
V
Negative external reference voltage input  
VeREF+ or VeREF- based on  
ADC12VRSEL bit  
VR–  
VR+ > VR–  
0
1.2  
AVCC  
±10  
V
V
VR+  
VR–  
Differential external reference voltage input VR+ > VR–  
1.2  
1.2 V VeREF+VAVCC, VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 0, ADC12PWRMD = 0  
IVeREF+  
IVeREF-  
,
,
Static input current singled-ended input  
mode  
µA  
µA  
1.2 V VeREF+VAVCC , VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 0, ADC12PWRMD = 01  
±2.5  
±20  
±5  
1.2 V VeREF+VAVCC, VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 1, ADC12PWRMD = 0  
IVeREF+  
IVeREF-  
Static input current differential input mode  
1.2 V VeREF+VAVCC , VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 1, ADC12PWRMD = 1  
IVeREF+  
IVeREF+  
Peak input current with single-ended input  
Peak input current with differential input  
0 V VeREF+ VAVCC, ADC12DIF = 0  
0 V VeREF+ VAVCC, ADC12DIF = 1  
1.5  
3
mA  
mA  
Capacitance at VeREF+ or VeREF-  
terminal  
(2)  
CVeREF+/-  
See  
10  
µF  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance (CI) is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) Connect two decoupling capacitors, 10 µF and 470 nF, from VeREF+ or VeREF– to AVSS to decouple the dynamic current required for  
an external reference source if it is used for the ADC12_B. Also see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family  
User's Guide.  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
–40  
–20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
5-17. Typical Temperature Sensor Voltage  
64  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.11 Reference  
Table 5-31 lists the characteristics of the internal reference.  
Table 5-31. REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
2.5 ±1.5%  
2.0 ±1.5%  
1.2 ±1.8%  
MAX UNIT  
REFVSEL = {2} for 2.5 V, REFON = 1  
REFVSEL = {1} for 2.0 V, REFON = 1  
REFVSEL = {0} for 1.2 V, REFON = 1  
From 0.1 Hz to 10 Hz, REFVSEL = {0}  
2.7 V  
2.2 V  
1.8 V  
Positive built-in reference  
voltage output  
VREF+  
V
(1)  
Noise  
RMS noise at VREF  
30  
130  
µV  
VREF ADC BUF_INT buffer TA = 25°C, ADC on, REFVSEL = {0},  
offset(2)  
REFON = 1, REFOUT = 0  
VOS_BUF_INT  
–16  
–16  
+16  
mV  
VREF ADC BUF_EXT buffer TA = 25°C, REFVSEL = {0} , REFOUT = 1,  
VOS_BUF_EXT  
AVCC(min)  
IREF+  
+16  
mV  
V
offset(3)  
REFON = 1 or ADC on  
REFVSEL = {0} for 1.2 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
1.8  
2.2  
2.7  
AVCC minimum voltage,  
Positive built-in reference  
active  
Operating supply current  
into AVCC terminal(4)  
REFON = 1  
3 V  
19  
26  
µA  
ADC ON, REFOUT = 0,  
REFVSEL = {0, 1, or 2},  
ADC12PWRMD = 0  
247  
400  
ADC ON, REFOUT = 1,  
REFVSEL = {0, 1, 2}, ADC12PWRMD = 0  
1053  
153  
1820  
240  
Operating supply current  
into AVCC terminal(4)  
IREF+_ADC_BUF  
ADC ON, REFOUT = 0,  
REFVSEL = {0, 1, 2}, ADC12PWRMD = 1  
3 V  
µA  
µA  
ADC ON, REFOUT = 1,  
REFVSEL = {0, 1, 2}, ADC12PWRMD = 1  
581  
1030  
1890  
ADC OFF, REFON = 1, REFOUT = 1,  
REFVSEL = {0, 1, 2}  
1105  
REFVSEL = {0, 1, 2}, AVCC = AVCC(min) for  
each reference level,  
REFON = REFOUT = 1  
VREF maximum load  
current, VREF+ terminal  
IO(VREF+)  
–1000  
+10  
REFVSEL = {0, 1, 2},  
ΔVout/ΔIo  
(VREF+)  
Load-current regulation,  
VREF+ terminal  
IO(VREF+) = +10 µA or –1000 µA,  
AVCC = AVCC(min) for each reference level,  
REFON = REFOUT = 1  
1500 µV/mA  
Capacitance at VREF+ and  
VREF- terminals  
CVREF+/-  
REFON = REFOUT = 1  
0
100  
pF  
REFVSEL = {0, 1, 2},  
REFON = REFOUT = 1,  
TA = –40°C to 85°C(5)  
Temperature coefficient of  
built-in reference  
TCREF+  
24  
50 ppm/K  
AVCC = AVCC (min) to AVCC(max)  
TA = 25°C, REFVSEL = {0, 1, 2},  
REFON = REFOUT = 1  
,
Power supply rejection ratio  
(DC)  
PSRR_DC  
100  
400  
µV/V  
Power supply rejection ratio  
(AC)  
PSRR_AC  
tSETTLE  
dAVCC= 0.1 V at 1 kHz  
3.0  
40  
mV/V  
µs  
Settling time of reference  
voltage(6)  
AVCC = AVCC (min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 0 1  
,
80  
2
Settling time of ADC  
AVCC = AVCC (min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 1  
,
Tbuf_settle  
0.4  
us  
reference voltage buffer(6)  
(1) Internal reference noise affects ADC performance when ADC uses the internal reference. See Designing With the MSP430FR59xx and  
MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external reference.  
(2) Buffer offset affects ADC gain error and thus total unadjusted error.  
(3) Buffer offset affects ADC gain error and thus total unadjusted error.  
(4) The internal reference current is supplied through the AVCC terminal.  
(5) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).  
(6) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
65  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.12 Comparator  
Table 5-32 lists the characteristics of the comparator.  
Table 5-32. Comparator_E  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
CEPWRMD = 00, CEON = 1,  
CERSx = 00 (fast)  
12  
16  
CEPWRMD = 01, CEON = 1,  
CERSx = 00 (medium)  
Comparator operating  
10  
0.1  
0.3  
14  
µA  
0.3  
supply current into AVCC,  
excludes reference  
resistor ladder  
IAVCC_COMP  
2.2 V, 3.0 V  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 30°C  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 85°C  
1.3  
CEREFLx = 01, CERSx = 10,  
REFON = 0, CEON = 1,  
CEREFACC = 0  
31  
16  
38  
µA  
19  
Quiescent current of  
resistor ladder into AVCC,  
including REF module  
current  
IAVCC_COMP_REF  
2.2 V, 3.0 V  
CEREFLx = 01, CERSx = 10,  
REFON = 0, CEON = 1,  
CEREFACC = 1  
CERSx = 11, CEREFLx = 01,  
CEREFACC = 0  
1.8 V  
2.2 V  
2.7 V  
1.8 V  
2.2 V  
2.7 V  
1.152  
1.92  
2.40  
1.10  
1.90  
2.35  
0
1.2  
2.0  
2.5  
1.2  
2.0  
2.5  
1.248  
2.08  
CERSx = 11, CEREFLx = 10,  
CEREFACC = 0  
CERSx = 11, CEREFLx = 11,  
CEREFACC = 0  
2.60  
V
VREF  
Reference voltage level  
CERSx = 11, CEREFLx = 01,  
CEREFACC = 1  
1.245  
CERSx = 11, CEREFLx = 10,  
CEREFACC = 1  
2.08  
2.60  
CERSx = 11, CEREFLx = 11,  
CEREFACC = 1  
Common-mode input  
range  
VIC  
VCC – 1  
V
CEPWRMD = 00  
CEPWRMD = 01  
CEPWRMD = 10  
–16  
–12  
–37  
16  
12  
37  
VOFFSET  
Input offset voltage  
mV  
CEPWRMD = 00 or  
CEPWRMD = 01  
10  
CIN  
Input capacitance  
pF  
CEPWRMD = 10  
ON (switch closed)  
OFF (switch open)  
10  
1
3
kΩ  
RSIN  
Series input resistance  
50  
MΩ  
CEPWRMD = 00, CEF = 0,  
Overdrive 20 mV  
193  
230  
5
330  
400  
15  
ns  
Propagation delay,  
response time  
CEPWRMD = 01, CEF = 0,  
Overdrive 20 mV  
tPD  
CEPWRMD = 10, CEF = 0,  
Overdrive 20 mV  
µs  
ns  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 00  
700  
1.0  
2.0  
4.0  
1000  
1.9  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 01  
Propagation delay with  
filter active  
tPD,filter  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 10  
3.7  
µs  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 11  
7.7  
66  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-32. Comparator_E (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
CEON = 0 1, VIN+,  
VIN- from pins,  
Overdrive 20 mV,  
CEPWRMD = 00  
0.9  
1.5  
CEON = 0 1, VIN+,  
VIN- from pins,  
Overdrive 20 mV,  
CEPWRMD = 01  
tEN_CMP  
Comparator enable time  
0.9  
15  
1.5  
65  
µs  
CEON = 0 1,  
VIN+, VIN- from pins,  
Overdrive 20 mV,  
CEPWRMD = 10  
CEON = 0 1, CEREFLX = 10,  
CERSx = 10 or 11,  
CEREF0 = CEREF1 = 0x0F,  
REFON = 0  
Comparator and reference  
ladder and reference  
voltage enable time  
tEN_CMP_VREF  
tEN_CMP_RL  
VCE_REF  
120  
220  
µs  
V
CEON = 0 1, CEREFLX = 10,  
CERSx = 10, REFON = 1,  
CEREF0 = CEREF1 = 0x0F  
Comparator and reference  
ladder enable time  
10  
30  
VIN ×  
(n +  
0.5)  
VIN ×  
(n + 1) (n + 1.5)  
/ 32 / 32  
VIN ×  
Reference voltage for a  
given tap  
VIN = reference into resistor ladder,  
n = 0 to 31  
/ 32  
5.13.13 FRAM  
Table 5-33 lists the characteristics of the FRAM.  
Table 5-33. FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Read and write endurance  
TJ  
MIN  
1015  
100  
40  
TYP  
MAX UNIT  
cycles  
25°C  
70°C  
85°C  
tRetention  
Data retention duration  
years  
10  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM(1)  
Erase current(2)  
Write time(4)  
IREAD  
N/A(3)  
nA  
nA  
ns  
tREAD  
NWAITSx = 0  
NWAITSx = 1  
1 / fSYSTEM  
2 / fSYSTEM  
tREAD  
Read time(5)  
ns  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current IREAD is included in the active mode current consumption, IAM,FRAM  
(2) FRAM does not require a special erase sequence.  
(3) N/A = Not applicable  
.
(4) Writing into FRAM is as fast as reading.  
(5) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
67  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
5.13.14 USS  
Table 5-34 lists the USS recommended operating conditions.  
Table 5-34. USS Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
2.2  
TYP  
MAX UNIT  
PVCC  
PVCC  
Analog supply voltage at PVCC pins for LDO operation  
Analog supply voltage at PVCC pins for USS operation  
3.6  
3.6  
V
V
2.2  
Table 5-35 lists the characteristics of the USS LDO.  
Table 5-35. USS LDO  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.2  
TYP  
MAX UNIT  
VCC-LDO  
VUSS  
Analog supply voltage at PVCC pins  
USS voltage  
3.6  
V
V
0 ILOAD ILOAD,MAX  
1.52  
1.6  
0
1.65  
LBHDEL = 0  
LBHDEL = 1  
LBHDEL = 2  
LBHDEL = 3  
100  
200  
300  
tholdoff  
Hold off delay on power up  
µs  
µs  
ttime-out  
Time-out on transition from OFF to READY  
160 +  
tholdoff  
Table 5-36 lists the characteristics of the USS crystal.  
Table 5-36. USSXTAL  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Nphase_osc Integrated phase noise  
fosc = 4 MHz or 8 MHz, range = 10 kHz to 4 MHz  
–74  
dBc  
FRQXTAL  
DCosc  
Resonator frequency  
Duty cycle  
4
8
MHz  
35%  
65%  
fosc = 4 MHz or 8 MHz, CL = 18 pF, CS = 4 pF,  
fully settled, ceramic resonator  
180  
240  
Iosc  
OSC supply current  
Oscillation allowance  
µA  
fosc = 4 MHz or 8 MHz, CL = 12 pF (4 MHz) or  
16 pF (8 MHz), CS = 7 pF, fully settled, crystal resonator  
fosc = 4 MHz, CL = 18 pF, CS = 4 pF, ceramic resonator  
fosc = 4 MHz, CL = 12 pF, CS = 7 pF, crystal resonator  
fosc = 8 MHz, CL = 18 pF, CS = 4 pF, ceramic resonator  
fosc = 8 MHz, CL = 16 pF, CS = 7 pF, crystal resonator  
fosc = 4 MHz, crystal resonator  
1500  
1000  
500  
350  
2.8  
Aosc  
Ω
4.6  
1.9  
fosc = 8 MHz, crystal resonator  
1
Tstart_osc  
Start-up time (gate)  
ms  
fosc = 4 MHz, ceramic resonator  
0.14  
0.08  
0.17  
0.12  
fosc = 8 MHz, ceramic resonator  
68  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-37 lists the characteristics of the USS HSPLL.  
Table 5-37. USS HSPLL  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP  
MAX UNIT  
PLL_CLKin  
PLL_CLKout  
Input clock to HSPLL  
Output clock from HSPLL  
8
MHz  
MHz  
68  
80  
Reference clock = PLL_CLKin,  
Sequence: Set USS.CTL.USSPWRUP bit = 1, then  
measure the time between PSQ_PLLUP (internal  
control signal) is set to 1 and  
LOCKpwr  
Lock time from PLL power up  
64 cycles  
HSPLL.CTL.PLL_LOCK is set to 1  
Table 5-38 lists the characteristics of the USS SDHS.  
Table 5-38. USS SDHS  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SDHS power domain  
supply voltage  
Vsdhs  
Vsdhs = Vuss  
1.52  
1.6  
1.65  
V
Operating supply  
current into AVCC and  
DVCC  
Includes PLL, PGA, SDHS, and DTC,  
modulator clock = 80 MHz, output data rate = 8 Msps  
Isdhs_product  
5.2  
mA  
fmod  
Modulator clock  
68  
80  
MHz  
MHz  
Frequency at –3-dB  
SNR  
Modulator clock = 80 MHz, modulator only (no filter is  
enabled)  
BWmod  
1.5  
Bandwidth from 200  
kHz to 1.5 MHz, PGA  
gain: a gain from the  
PGA gain table for the OSR = 20  
maximum SNR  
Input signal level = 1000 mVpp,  
PVCC = 3.0 V, fmod = 80 MHz,  
58.5  
57.5  
54.5  
49  
62.5  
Bandwidth from 200  
kHz to 1.5 MHz, PGA  
gain: a gain from the  
PGA gain table for the OSR = 20  
maximum SNR  
Input signal level = 760 mVpp,  
PVCC = 2.5 V, fmod = 80 MHz,  
62  
57  
53  
43  
Bandwidth from 200  
kHz to 1.5 MHz, PGA  
gain: a gain from the  
PGA gain table for the OSR = 20  
maximum SNR  
Input signal level = 200 mVpp,  
PVCC = 2.5 V, fmod = 80 MHz,  
SNR  
Signal-to-noise ratio  
dB  
Bandwidth from  
200kHz to 1.5 MHz,  
PGA gain: a gain from PVCC = 2.5 V, fmod = 80 MHz,  
the PGA gain table for OSR = 20  
the maximum SNR  
Input signal level = 100 mVpp,  
Bandwidth from 200  
kHz to 1.5 MHz, PGA  
gain: a gain from the  
Input signal level = 30 mVpp,  
PVCC = 2.5 V, fmod = 80 MHz,  
38.5  
PGA gain table for the OSR = 20  
maximum SNR  
TM2 – TM1, AUTOSSDIS = 0, 1% of settled DC level  
TM2 – TM1, AUTOSSDIS = 1, 1% of settled DC level  
40  
40  
8
SDHS settling time  
(PGA + modulator)  
tMOD_Settle  
µs  
DROUTsdhs  
Output data rate  
Msps  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
69  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-39 lists the characteristics of the USS PHY outputs.  
Table 5-39. USS PHY Output Stage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
PHY supply voltage  
Output impedance of CH0OUT and CH1OUT for  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PVCC  
RDSonT  
PVCC = VCC, PVSS = VSS  
2.2  
3.6  
V
PVCC 2.5 V  
PVCC 2.5 V  
3
3
Ω
high and low sides (trimmed at 3-V PVDD  
)
Termination impedance of CH0OUT and  
CH1OUT toward PVSS (trimmed)  
RTerm  
DrvM  
Ω
High-side to low-side drive mismatch (trimmed)  
PVCC 2.5 V  
5%  
5%  
12.5%  
12.5%  
TermM Termination to drive mismatch (trimmed)  
PVCC 2.5 V  
fMAX  
Maximum output frequency  
PVCC = VCC (2.5 V to 3.6 V)  
PVCC = VCC  
4.5  
22  
MHz  
µF  
CSUPP  
RSUPP  
Supply buffering capacitance (low ESR type)  
Series resistance to CSUPP  
100  
22  
PVCC = VCC  
Ω
Table 5-40 lists the characteristics of the USS PHY inputs.  
Table 5-40. USS PHY Input Stage, Multiplexer  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.8  
PVSS –  
0.3  
VIN  
Input voltage on CH0IN or CH1IN  
PVCC = VCC, PVSS = VSS  
V
Table 5-41 lists the characteristics of the USS PGA.  
Table 5-41. USS PGA  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Supply voltage  
Gain(1)  
TEST CONDITIONS  
MIN  
2.2  
–6.5  
30  
TYP  
MAX UNIT  
PVcc  
GN  
3.6  
V
30.8  
dB  
Vinr1  
Vinr2  
Input range  
Input range  
2.2 V PVCC  
2.5 V PVCC  
800 mVpp  
1000 mVpp  
30  
Recommended input  
range for maximum  
performance  
Vinrperf  
2.5 V PVCC  
30  
800 mVpp  
Gtol  
Gain tolerance  
Full PGA gain range, VOUT = 600 mV  
Full PGA gain range, VOUT = 600 mV  
–1.5  
1.5  
1.4  
dB  
Gain drift with  
temperature  
GTdrift  
0.0019  
dB/℃  
GVdrift  
tSET  
Gain drift with voltage  
Gain settling time  
Full PGA gain range, VOUT = 600 mV  
Gain setting: from 0 dB to 6 dB, to ±5%  
0.15  
0.65  
dB/V  
µs  
DC offset (PGA and  
SDHS)  
DCoffset  
DCdrift  
Full PGA gain range, measured at SDHS output  
Full PGA gain range, measured at SDHS output  
5.5  
4.7  
mV  
DC offset drift (PGA  
and SDHS)  
µV/℃  
PGA gain = 0 dB  
–41  
–37  
–19  
VCC = 3 V + 50 mVpp × sin (2π × fC)  
where fC = 1 MHz, VIN = ground,  
PSRR_AC = 20log(VOUT / 50 mV)  
AC power supply  
rejection ratio  
PSRR_AC  
PGA gain = 10 dB  
PGA gain = 30 dB  
dB  
(1) See the PGA Gain table in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
70  
Specifications  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 5-42 lists the characteristics of the USS bias voltage generator.  
Table 5-42. USS Bias Voltage Generator  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
EXCBIAS = 0  
MIN  
TYP  
200  
MAX  
UNIT  
EXCBIAS = 1  
EXCBIAS = 2  
EXCBIAS = 3  
BIMP = 0  
300  
Excitation bias voltage  
(coupling capacitors)  
Vexc_bias  
PVCC = VCC (2.2 V to 3.6 V)  
mV  
400  
600  
PVCC = VCC (2.2 V to 3.6 V)  
450  
BIMP = 1  
850  
Impedance of excitation bias  
generator  
RVBE  
Ω
BIMP = 2  
1450  
2900  
BIMP = 3  
PVCC = VCC (2.2 V to 3.6 V), to 0.1% end value,  
RET = 200 Ω, CK + C0P = 1 nF, BIMP = 2  
tSBE  
Excitation bias settling time  
20  
µs  
PGABIAS = 0  
750  
800  
PGABIAS = 1  
PVCC = VCC (2.2 V to 3.6 V)  
PGABIAS = 2  
PGA bias voltage (coupling  
capacitors)  
Vpga_bias  
mV  
900  
PGABIAS = 3  
950  
PVCC = VCC (2.2 V to 3.6 V)  
BIMP = 0  
BIMP = 1  
BIMP = 2  
BIMP = 3  
500  
900  
Impedance of acquisition bias  
generator  
RVBA  
Ω
1500  
2950  
PVCC = VCC (2.2 V to 3.6 V), to 0.1% end value,  
RET = 200 Ω, CK + C0P = 1 nF, BIMP = 2  
tSBA  
Acquisition bias settling time  
22  
µs  
5.13.15 Emulation and Debug  
Table 5-43 lists the characteristics of the JTAG and SBW interface.  
Table 5-43. JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
100 μA  
10 MHz  
IJTAG  
Supply current adder when JTAG active (but not clocked)  
Spy-Bi-Wire input frequency  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
40  
fSBW  
0
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.04  
15  
μs  
μs  
μs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
edge)(1)  
tSBW, En  
tSBW,Rst  
2.2 V, 3.0 V  
110  
Spy-Bi-Wire return to normal operation time  
TCK input frequency, 4-wire JTAG(2)  
15  
0
100  
16  
2.2 V  
3.0 V  
fTCK  
MHz  
0
16  
Rinternal  
Internal pulldown resistance on TEST  
2.2 V, 3.0 V  
20  
35  
50  
kΩ  
TCLK/MCLK frequency during JTAG access, no FRAM access  
fTCLK  
16 MHz  
(limited by fSYSTEM  
)
tTCLK,Low/High  
fTCLK,FRAM  
TCLK low or high clock pulse duration, no FRAM access  
25  
4
ns  
TCLK/MCLK frequency during JTAG access, including FRAM access  
(limited by fSYSTEM with no FRAM wait states)  
MHz  
tTCLK,FRAM,  
Low/High  
TCLK low or high clock pulse duration, including FRAM accesses  
100  
ns  
(1) Tools that access the Spy-Bi-Wire and the BSL interfaces must wait for the tSBW,En time after the first transition of the TEST/SBWTCK  
pin (low to high), before the second transition of the pin (high to low) during the entry sequence.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
71  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
The TI MSP430FR60xx(1) family of ultra-low-power microcontrollers consists of several devices featuring  
different sets of peripherals. The architecture, combined with seven low-power modes, is optimized to  
achieve extended battery life for example in portable measurement applications. The devices features a  
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency.  
The device is an MSP430FR6xx family device with Ultrasonic Sensing Solution (USS), Low-Energy  
Accelerator (LEA), up to six 16-bit timers, up to six eUSCIs that support UART, SPI, and I2C, a  
comparator, a hardware multiplier, an AES accelerator, a 6-channel DMA, an RTC module with alarm  
capabilities, up to 76 I/O pins, and a high-performance 12-bit ADC. The MSP430FR60xx(1) devices also  
include an LCD module with contrast control for displays with up to 264 segments.  
6.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and  
constant generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses. The peripherals can be  
managed with all instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes  
and additional instructions for the expanded address range. Each instruction can operate on word and  
byte data.  
6.3 Ultrasonic Sensing Solution (USS) Module  
The USS module provides a high-precision ultrasonic sensing solution. The USS module is a  
sophisticated system that consists of six submodules:  
UUPS (universal USS power supply)  
HSPLL (high-speed PLL) with oscillator  
ASQ (acquisition sequencer)  
PHY (physical interface)  
PPG (programmable pulse generator) with low-output-impedance driver  
PGA (programmable gain amplifier)  
SDHS (sigma-delta high-speed ADC) with DTC (data transfer controller)  
The submodules have different roles, and together they enable high-precision data acquisition in  
ultrasonic applications. See the dedicated chapter for each submodule in the MSP430FR58xx,  
MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
The USS module performs complete measurement sequence without CPU involvement to achieve ultra-  
low power consumption for ultrasonic metrology. 6-1 shows the USS subsystem block diagram. The  
USS module has dedicated I/O pins without secondary functions. See the Ultrasonic Sensing Solution  
(USS) chapter in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for  
details.  
72  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
USS Module  
USSXT  
USSXTOUT  
USSXTIN  
USSXT_BOUT  
MSP430FRxxxx  
SAPH  
CH0_OUT  
CH1_OUT  
OSC  
PHY  
ASQ  
PPG  
PVSS  
PLL_CLK  
PLL  
PVCC  
PVSS  
VOUT  
UUPS  
HSPLL  
SDHS  
RAM  
(Shared with LEA)  
CH0_IN  
CH1_IN  
PGA  
DTC  
MOD  
Filter  
Copyright © 2017, Texas Instruments Incorporated  
6-1. USS Subsystem Block Diagram  
6.4 Low-Energy Accelerator (LEA) for Signal Processing  
The LEA is a hardware engine designed for operations that involve vector-based signal processing, such  
as FIR, IIR, and FFT. The LEA offers fast performance and low energy consumption when performing  
vector-based digital signal processing computations. For performance benchmarks comparing LEA to  
using the CPU or other processors, see Benchmarking the Signal Processing Capabilities of the Low-  
Energy Accelerator.  
The LEA requires MCLK to be operational; therefore, LEA operates only in active mode or LPM0. While  
the LEA is running, the LEA data operations are performed on a shared 4KB of RAM out of the 8KB of  
total RAM (see 6-47). This shared RAM can also be used by the regular application. The MSP CPU  
and the LEA can run simultaneously and independently unless they access the same system RAM.  
Direct access to LEA registers is not supported, and TI offers the optimized Digital Signal Processing  
(DSP) Library for MSP Microcontrollers for the operations that the LEA module supports.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
73  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.5 Operating Modes  
The MCU has one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from low-  
power modes LPM0 to LPM4, service the request, and return to the low-power mode on return from the interrupt program. Low-power modes  
LPM3.5 and LPM4.5 disable the core supply to minimize power consumption. 6-1 lists the operating modes and the clocks and peripherals that  
are available in each.  
6-1. Operating Modes  
MODE  
AM  
LPM0  
LPM1  
LPM2  
LPM3  
LPM4  
OFF  
LPM3.5  
LPM4.5  
ACTIVE,  
FRAM  
SHUTDOWN  
SHUTDOWN  
ACTIVE  
16 MHz  
103 µA/MHz 65 µA/MHz  
N/A  
CPU OFF(2)  
CPU OFF  
STANDBY  
STANDBY  
RTC ONLY  
WITH SVS  
WITHOUT SVS  
OFF(1)  
Maximum system clock  
16 MHz  
70 µA at 1 MHz  
instant  
16 MHz  
35 µA at 1 MHz  
6 µs  
50 kHz  
0.7 µA  
6 µs  
50 kHz  
0.4 µA  
7 µs  
0(3)  
0.3 µA  
7 µs  
50 kHz  
0.25 µA  
250 µs  
0(3)  
Typical current consumption,  
TA = 25°C  
0.2 µA  
250 µs  
0.02 µA  
1000 µs  
Typical wake-up time  
LF  
RTC  
I/O  
LF  
RTC  
I/O  
I/O  
Comp  
RTC  
I/O  
Wake-up events  
N/A  
all  
all  
I/O  
Comp  
Comp  
CPU  
USS  
LEA  
on  
on  
on  
off  
on  
off  
off  
off  
off  
off  
off  
off  
off  
off  
off  
off  
off  
reset  
reset  
reset  
reset  
reset  
reset  
on(4)  
off  
standby  
FRAM  
on  
off(1)  
off  
off  
off  
off  
off  
off  
off  
off  
off  
off  
(or off(1)  
)
High-frequency peripherals  
Low-frequency peripherals  
available  
available  
available  
available  
available  
available  
available  
reset  
reset  
reset  
RTC  
MTIF  
available  
available(5)  
Unclocked peripherals(6)  
MCLK  
available  
on  
optional(7)  
available  
off  
optional(7)  
available  
off  
available(5)  
available(5)  
reset  
off  
reset  
off  
on(4)  
optional(7)  
off  
off  
off  
off  
off  
SMCLK  
off  
off  
off  
ACLK  
on  
on  
on  
on  
on  
off  
off  
off  
Full retention  
yes  
yes  
yes  
yes  
yes  
yes  
no  
no  
(1) FRAM is disabled in the FRAM controller (FRCTL_A).  
(2) Disabling the FRAM through the FRAM controller (FRCTL_A) allows the application to lower the LPM current consumption but the wake-up time increases when FRAM is accessed (for  
example, to fetch an interrupt vector). For a wakeup that does not involve FRAM (for example, a DMA transfer to RAM) the wake-up time is not increased.  
(3) All clocks disabled  
(4) Only while the LEA is performing a task enabled by the CPU during AM. The LEA cannot be enabled in LPM0.  
(5) See 6.5.2, which describes the use of peripherals in LPM3 and LPM4.  
(6) Unclocked peripherals are peripherals that do not require a clock source to operate; for example, the comparator and REF, or the eUSCI when operated as an SPI slave.  
(7) Controlled by SMCLKOFF.  
74  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371 MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-1. Operating Modes (continued)  
MODE  
AM  
LPM0  
LPM1  
LPM2  
LPM3  
LPM4  
OFF  
LPM3.5  
LPM4.5  
ACTIVE,  
FRAM  
SHUTDOWN  
SHUTDOWN  
ACTIVE  
CPU OFF(2)  
CPU OFF  
STANDBY  
STANDBY  
RTC ONLY  
WITH SVS  
WITHOUT SVS  
OFF(1)  
SVS  
always  
always  
always  
optional(8)  
optional(8)  
optional(8)  
optional(8)  
on(9)  
off(10)  
Brownout  
always  
always  
always  
always  
always  
always  
always  
always  
(8) Activated SVS (SVSHE = 1) results in higher current consumption. SVS is not included in typical current consumption.  
(9) SVSHE = 1  
(10) SVSHE = 0  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
75  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371 MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.5.1 Peripherals in Low-Power Modes  
Peripherals can be in different states that affect the achievable power modes of the device. The states  
depend on the operational modes of the peripherals (see 6-2). The states are:  
A peripheral is in a "high-frequency state" if it requires or uses a clock with a "high" frequency of more  
than 50 kHz.  
A peripheral is in a "low-frequency state" if it requires or uses a clock with a "low" frequency of 50 kHz  
or less.  
A peripheral is in an "unclocked state" if it does not require or use an internal clock.  
If the CPU requests a power mode that does not support the current state of all active peripherals, the  
device does not enter the requested power mode, but it does enter a power mode that still supports the  
current state of the peripherals, except if an external clock is used. If an external clock is used, the  
application must use the correct frequency range for the requested power mode.  
6-2. Peripheral States  
PERIPHERAL  
WDT  
DMA(4)  
RTC_C  
LCD_C  
IN HIGH-FREQUENCY STATE(1)  
Clocked by SMCLK  
Not applicable  
IN LOW-FREQUENCY STATE(2)  
Clocked by ACLK  
IN UNCLOCKED STATE(3)  
Not applicable  
Not applicable  
Waiting for a trigger  
Not applicable  
Not applicable  
Clocked by LFXT  
Not applicable  
Clocked by ACLK or VLOCLK  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
Timer_A, TAx  
Timer_B, TBx  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
Waiting for first edge of START bit  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
eUSCI_Ax in  
UART mode  
Clocked by SMCLK  
Clocked by SMCLK  
Clocked by ACLK  
Clocked by ACLK  
eUSCI_Ax in SPI  
master mode  
eUSCI_Ax in SPI  
slave mode  
eUSCI_Bx in I2C  
master mode  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
eUSCI_Bx in I2C  
slave mode  
Waiting for START condition or  
clocked by external clock 50 kHz  
Clocked by external clock >50 kHz  
Clocked by SMCLK  
Clocked by external clock 50 kHz  
Clocked by ACLK  
eUSCI_Bx in SPI  
master mode  
Not applicable  
eUSCI_Bx in SPI  
slave mode  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
ADC12_B  
REF_A  
COMP_E  
CRC(5)  
MPY(5)  
AES(5)  
Clocked by SMCLK or by MODOSC  
Not applicable  
Clocked by ACLK  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Waiting for a trigger  
Always  
Not applicable  
Always  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
(1) Peripherals are in a state that requires or uses a clock with a "high" frequency of more than 50 kHz  
(2) Peripherals are in a state that requires or uses a clock with a "low" frequency of 50 kHz or less.  
(3) Peripherals are in a state that does not require or does not use an internal clock.  
(4) The DMA always transfers data in active mode but can wait for a trigger in any low-power mode. A DMA trigger during a low-power  
mode causes a temporary transition into active mode for the time of the transfer.  
(5) This peripheral operates during active mode only and will delay the transition into a low-power mode until its operation is completed.  
76  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.5.2 Idle Currents of Peripherals in LPM3 and LPM4  
Most peripherals can be operational in LPM3 if clocked by ACLK. Some modules are operational in LPM4,  
because they do not require a clock to operate (for example, the comparator). Activating a peripheral in  
LPM3 or LPM4 increases the current consumption due to its active supply current contribution but also  
due to an additional idle current. To reduce the idle current adder, certain peripherals are grouped  
together. To achieve optimal current consumption, use modules within one group and limit the number of  
groups with active modules. 6-3 lists the peripheral groups. Modules not listed in this table are either  
already included in the standard LPM3 current consumption or cannot be used in LPM3 or LPM4.  
The idle current adder is very small at room temperature (25°C) but increases at high temperatures  
(85°C); see the IIDLE current parameters in for details.  
6-3. Peripheral Groups  
GROUP A  
Timer TA1  
Timer TA2  
Timer TB0  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
GROUP B  
Timer TA0  
Timer TA3  
Comparator  
ADC12_B  
REF_A  
GROUP C  
Timer TA4  
eUSCI_A2  
eUSCI_A3  
eUSCI_B1  
LCD_C  
6.6 Interrupt Vector Table and Signatures  
The interrupt vectors, the power-up start address, and signatures are in the address range 0FFFFh to  
0FF80h. 6-2 summarizes the content of this address range.  
0FFFFh  
Reset Vector  
BSL Password  
Interrupt  
Vectors  
0FFE0h  
JTAG Password  
Reserved  
0FF88h  
0FF80h  
Signatures  
6-2. Interrupt Vectors, Signatures and Passwords  
The power-up start address or reset vector is at 0FFFFh to 0FFFEh. It contains the 16-bit address pointing  
to the start address of the application program.  
The interrupt vectors start at 0FFFDh and extend to lower addresses. Each vector contains the 16-bit  
address of the appropriate interrupt-handler instruction sequence. 6-4 shows the device-specific  
interrupt vector locations.  
The vectors programmed into the address range from 0FFFFh to 0FFE0h are used as BSL password (if  
enabled by the corresponding signature).  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
77  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
The signatures start at 0FF80h and extend to higher addresses. Signatures are evaluated during device  
start-up. 6-5 shows the device-specific signature locations.  
A JTAG password can be programmed starting from address 0FF88h and extending to higher addresses.  
The password can extend into the interrupt vector locations using the interrupt vector addresses as  
additional bits for the password. The length of the JTAG password depends on the JTAG signature.  
See the chapter System Resets, Interrupts, and Operating Modes, System Control Module (SYS) in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for details.  
6-4. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up, brownout, supply  
supervisor  
SVSHIFG  
PMMRSTIFG  
External reset RST  
Watchdog time-out (watchdog  
mode)  
WDT, FRCTL MPU, CS,  
PMM password violation  
FRAM uncorrectable bit error  
detection  
WDTIFG  
WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW  
UBDIFG  
MPUSEG1IFG, MPUSEG2IFG, MPUSEG3IFG  
PMMPORIFG, PMMBORIFG  
(SYSRSTIV)(1) (2)  
Reset  
0FFFEh  
Highest  
MPU segment violation  
Software POR, BOR  
System NMI  
Vacant memory access  
JTAG mailbox  
FRAM access time error  
FRAM write protection error  
FRAM bit error detection  
MPU segment violation  
VMAIFG  
JMBINIFG, JMBOUTIFG  
ACCTEIFG, WPIFG  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
CBDIFG, UBDIFG  
MPUSEG1IFG, MPUSEG2IFG, MPUSEG3IFG  
(SYSSNIV)(1) (3)  
User NMI  
External NMI  
Oscillator fault  
NMIIFG, OFIFG  
DACCESSIFG  
(SYSUNIV)(1) (3)  
LEA RAM access conflict  
CEIFG, CEIIFG  
(CEIV)(1)  
Comparator_E  
TB0  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
TB0CCR0.CCIFG  
TB0CCR1.CCIFG to TB0CCR6.CCIFG,  
TB0CTL.TBIFG  
TB0  
Maskable  
Maskable  
0FFF4h  
0FFF2h  
(TB0IV)(1)  
Watchdog timer (interval timer  
mode)  
WDTIFG  
UCA0IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA0IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A0 receive or transmit  
Maskable  
Maskable  
0FFF0h  
0FFEEh  
(UCA0IV)(1)  
UCB0IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCB0IFG: UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,  
UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB0IV)(1)  
eUSCI_B0 receive or transmit  
ADC12IFG0 to ADC12IFG31  
ADC12LOIFG, ADC12INIFG, ADC12HIIFG,  
ADC12RDYIFG, ADC21OVIFG, ADC12TOVIFG  
(ADC12IV)(1) (4)  
ADC12_B  
TA0  
Maskable  
Maskable  
0FFECh  
0FFEAh  
TA0CCR0.CCIFG  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space.  
(3) (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot disable it.  
(4) Only on devices with ADC, otherwise reserved.  
78  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-4. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
TA0CCR1.CCIFG, TA0CCR2.CCIFG,  
TA0CTL.TAIFG  
TA0  
Maskable  
0FFE8h  
0FFE6h  
(TA0IV)(1)  
UCA1IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA1IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A1 receive or transmit  
Maskable  
(UCA1IV)(1)  
DMA0CTL.DMAIFG, DMA1CTL.DMAIFG,  
DMA2CTL.DMAIFG  
DMA  
TA1  
TA1  
Maskable  
Maskable  
Maskable  
0FFE4h  
0FFE2h  
0FFE0h  
(DMAIV)(1)  
TA1CCR0.CCIFG  
TA1CCR1.CCIFG, TA1CCR2.CCIFG,  
TA1CTL.TAIFG  
(TA1IV)(1)  
P1IFG.0 to P1IFG.7  
(P1IV)(1)  
I/O port P1  
TA2  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
TA2CCR0.CCIFG  
TA2CCR1.CCIFG  
TA2CTL.TAIFG  
(TA2IV)(1)  
TA2  
Maskable  
0FFDAh  
P2IFG.0 to P2IFG.7  
(P2IV)(1)  
I/O port P2  
TA3  
Maskable  
Maskable  
0FFD8h  
0FFD6h  
TA3CCR0.CCIFG  
TA3CCR1.CCIFG  
TA3CTL.TAIFG  
(TA3IV)(1)  
TA3  
Maskable  
Maskable  
0FFD4h  
0FFD2h  
P3IFG.0 to P3IFG.7  
(P3IV)(1)  
I/O port P3  
P4IFG.0 to P4IFG.2  
(P4IV)(1)  
LCD_C Interrupt Flags (LCDCIV)(1)  
I/O port P4  
LCD_C  
Maskable  
Maskable  
0FFD0h  
0FFCEh  
RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG,  
RT1PSIFG, RTCOFIFG  
RTC_C  
Maskable  
0FFCCh  
(RTCIV)(1)  
AES  
TA4  
AESRDYIFG  
Maskable  
Maskable  
0FFCAh  
0FFC8h  
TA4CCR0.CCIFG  
TA4CCR1.CCIFG  
TA4CTL.TAIFG  
(TA4IV)(1)  
TA4  
Maskable  
0FFC6h  
P5IFG.0 to P5IFG.2  
(P5IV)(1)  
I/O port P5  
I/O port P6  
Maskable  
Maskable  
0FFC4h  
0FFC2h  
P6IFG.0 to P6IFG.2  
(P6IV)(1)  
UCA2IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA2IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A2 receive or transmit  
eUSCI_A3 receive or transmit  
Maskable  
Maskable  
0FFC0h  
0FFBEh  
(UCA2IV)(1)  
UCA3IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA3IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
(UCA3IV)(1)  
UCB1IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCB1IFG: UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,  
UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB1IV)(1)  
eUSCI_B1 receive or transmit  
Maskable  
0FFBCh  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
79  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
PRIORITY  
6-4. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
I/O Port P7  
I/O Port P8  
I/O Port P9  
LEA  
INTERRUPT FLAG  
P7IFG.0 to P7IFG.2  
(P7IV)(1)  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFBAh  
0FFB8h  
0FFB6h  
0FFB4h  
0FFB2h  
0FFB0h  
0FFAEh  
P8IFG.0 to P8IFG.2  
(P8IV)(1)  
P9IFG.0 to P9IFG.2  
(P9IV)(1)  
CMDIFG, SDIIFG, OORIFG, TIFG, COVLIFG  
(LEAIV)(1)  
PTMOUT, PREQIG  
(IIDX)(1)  
UUPS  
PLLUNLOCK  
(IIDX)(1)  
HSPLL  
DATAERR, TAMTO, SEQDN, PNGDN  
(IIDX)(1)  
SAPH  
OVF, ACQDONE, SSTRG, DTRDY, WINHI,  
SDHS  
WINLO  
Maskable  
0FFACh  
Lowest  
(IIDX)(1)  
6-5. Signatures  
SIGNATURE  
IP Encapsulation Signature2  
IP Encapsulation Signature1(1)  
BSL Signature2  
WORD ADDRESS  
0FF8Ah  
0FF88h  
0FF86h  
BSL Signature1  
0FF84h  
JTAG Signature2  
0FF82h  
JTAG Signature1  
0FF80h  
(1) Must not contain 0AAAAh if used as the JTAG password.  
6.7 Bootloader (BSL)  
The BSL can program the FRAM or RAM using a UART serial interface (FRxxxx devices) or an I2C  
interface (FRxxxx1 devices). Access to the device memory through the BSL is protected by an user-  
defined password. 6-6 lists the pins that are required for use of the BSL. BSL entry requires a specific  
entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For a complete description of the  
features of the BSL and its implementation, see the MSP430 FRAM Device Bootloader (BSL) User's  
Guide. More information on the BSL can be found at www.ti.com/tool/mspbsl.  
6-6. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P2.0  
Entry sequence signal  
Devices with UART BSL (FRxxxx): Data transmit  
Devices with UART BSL (FRxxxx): Data receive  
Devices with I2C BSL (FRxxxx1): Data  
Devices with I2C BSL (FRxxxx1): Clock  
Power supply  
P2.1  
P1.6  
P1.7  
VCC  
VSS  
Ground supply  
80  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.8 JTAG Operation  
6.8.1 JTAG Standard Interface  
The MSP family supports the standard JTAG interface, which requires four signals for sending and  
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to  
enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with  
MSP development tools and device programmers. 6-7 lists the JTAG pin requirements. For further  
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools  
User's Guide. For a complete description of the features of the JTAG interface and its implementation, see  
MSP430 Programming With the JTAG Interface.  
6-7. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION(1)  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
IN  
N/A  
N/A  
Power supply  
DVSS  
Ground supply  
(1) N/A = not applicable  
6.8.2 Spy-Bi-Wire (SBW) Interface  
In addition to the standard JTAG interface, the MSP family supports the 2-wire SBW interface. SBW can  
be used to interface with MSP development tools and device programmers. 6-8 lists the SBW interface  
pin requirements. For further details on interfacing to development tools and device programmers, see the  
MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface  
and its implementation, see MSP430 Programming With the JTAG Interface.  
6-8. SBW Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC  
DIRECTION(1)  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN  
IN, OUT  
N/A  
DVSS  
N/A  
Ground supply  
(1) N/A = not applicable  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
81  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.9 FRAM Controller A (FRCTL_A)  
The FRAM can be programmed through the JTAG port, SBW, the BSL, or in-system by the CPU.  
Features of the FRAM include:  
Ultra-low-power ultra-fast-write nonvolatile memory  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
Wait States  
For MCLK frequencies > 8 MHz, wait states must be configured following the flow described  
in the "Wait State Control" section of the FRAM Controller A (FRCTRL_A) chapter in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
For important software design information regarding FRAM including but not limited to partitioning the  
memory layout according to application-specific code, constant, and data space requirements, the use of  
FRAM to optimize application energy consumption, and the use of the Memory Protection Unit (MPU) to  
maximize application robustness by protecting the program code against unintended write accesses, see  
MSP430™ FRAM Technology – How To and Best Practices.  
6.10 RAM  
The RAM is made up of three sectors: Sector 0 = 2KB, Sector 1 = 2KB, Sector 2 = 4KB (shared with  
LEA). Each sector can be individually powered down in LPM3 and LPM4 to save leakage. All data in the  
sector is lost when a sector is powered down.  
6.11 Tiny RAM  
Tiny RAM is 22 bytes of RAM in addition to the complete RAM (see 6-47). This memory is always  
available, even in LPM3 and LPM4, while the complete RAM can be powered down in LPM3 and LPM4.  
Tiny RAM can be used to hold data or a very small stack when the complete RAM is powered down in  
LPM3 and LPM4. No memory is available in LPMx.5.  
6.12 Memory Protection Unit (MPU) Including IP Encapsulation  
The FRAM can be protected by the MPU from inadvertent CPU execution, read access, or write access.  
Features of the MPU include:  
IP encapsulation with programmable boundaries in steps of 1KB (prevents reads from outside the  
application; for example, through JTAG or by non-IP software).  
Main memory partitioning is programmable up to three segments in steps of 1KB.  
Access rights of each segment can be individually selected (main and information memory).  
Access violation flags with interrupt capability for easy servicing of access violations.  
82  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.13 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be  
controlled using all instructions. For complete module descriptions, see the MSP430FR58xx,  
MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
6.13.1 Digital I/O  
Up to ten 8-bit I/O ports are implemented:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input is available for all pins of ports P1 to  
P9.  
Read and write access to port control registers is supported by all instructions.  
Ports P1 and P2 (PA), P3 and P4 (PB), P5 and P6 (PC), P7 and P8 (PD), or P9 (PE) can be accessed  
byte-wise or word-wise in pairs.  
No cross currents during start-up.  
Configuration of Digital I/Os After BOR Reset  
To prevent any cross currents during start-up of the device, all port pins are high-impedance  
with Schmitt triggers and their module functions disabled. To enable the I/O functionality after  
a BOR reset, the ports must be configured first and then the LOCKLPM5 bit must be cleared.  
For details, see the Configuration After Reset section of the Digital I/O chapter in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
6.13.2 Oscillator and Clock System (CS)  
The clock system includes support for a 32-kHz watch-crystal oscillator XT1 (LF), an internal very-low-  
power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a  
high-frequency crystal oscillator XT2 (HF). The clock system module is designed to meet the requirements  
of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources.  
The clock system module provides the following clock signals:  
Auxiliary clock (ACLK). ACLK can be sourced from a 32-kHz watch crystal (LFXT1), the internal VLO,  
or a digital external low-frequency (<50-kHz) clock source.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced from a high-frequency  
crystal (HFXT2), the internal DCO, a 32-kHz watch crystal (LFXT1), the internal VLO, or a digital  
external clock source.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be  
sourced by same sources made available to MCLK.  
6.13.3 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device . The PMM  
also includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit provides the  
proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the  
supply voltage drops below a safe level and below a user-selectable level. SVS circuitry is available on the  
primary and core supplies.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
83  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.13.4 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs  
operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed multiplication, unsigned  
multiplication, signed multiply-and-accumulate, and unsigned multiply-and-accumulate operations.  
6.13.5 Real-Time Clock (RTC_C)  
The RTC_C module contains an integrated real-time clock (RTC) with the following features:  
Calendar mode with leap year correction  
General-purpose counter mode  
The internal calendar compensates for months with fewer than 31 days and includes leap year correction.  
The RTC_C also supports flexible alarm functions and offset-calibration hardware. RTC operation is  
available in LPM3.5 modes to minimize power consumption.  
6.13.6 Measurement Test Interface (MTIF)  
The MTIF module provides a simple pulse-based test interface that is used to implement consumption  
monitoring of "legal relevant data" with high integrity. MTIF consists of the a pulse generator, a pulse  
counter, and a pulse interface. MTIF has following features:  
Independent passwords for generator counter and pulse interface  
Pulse rates up to 1016 pulses per second (p/s)  
Pulse frame duration from 1/16 s to 16 s  
Count capacity up to 65535 (16 bit)  
Operating in LPM3.5 with 200 nA  
2-pin interface with MTIF_OUT_IN and MTIF_PIN_EN  
6.13.7 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart if a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not  
needed in an application, the module can be configured as an interval timer and can generate interrupts at  
selected time intervals. 6-9 lists the clocks that can source the WDT_A module.  
6-9. WDT_A Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
LFMODCLK  
6.13.8 System Module (SYS)  
The SYS module manages many system functions within the device. These functions include power-on  
reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt  
vector generators, bootloader (BSL) entry mechanisms, and configuration management (device  
descriptors). The SYS module also includes a data exchange mechanism through JTAG called a JTAG  
mailbox that can be used in the application. 6-10 lists the SYS module interrupt vector registers.  
84  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-10. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
Security violation (BOR)  
Reserved  
SVSHIFG SVSH event (BOR)  
Reserved  
Reserved  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection (PUC)  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
MPUPW MPU password violation (PUC)  
CSPW CS password violation (PUC)  
SYSRSTIV, System Reset  
019Eh  
MPUSEGIPIFG encapsulated IP memory segment violation  
(PUC)  
26h  
Reserved  
MPUSEG1IFG segment 1 memory violation (PUC)  
MPUSEG2IFG segment 2 memory violation (PUC)  
MPUSEG3IFG segment 3 memory violation (PUC)  
Reserved  
28h  
2Ah  
2Ch  
2Eh  
30h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
Reserved  
02h  
Uncorrectable FRAM bit error detection  
FRAM access time error  
04h  
06h  
MPUSEGIPIFG encapsulated IP memory segment violation  
Reserved  
08h  
0Ah  
0Ch  
0Eh  
10h  
MPUSEG1IFG segment 1 memory violation  
MPUSEG2IFG segment 2 memory violation  
MPUSEG3IFG segment 3 memory violation  
VMAIFG vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
FRAM Write Protection Detection  
LEA time-out fault  
SYSSNIV, System NMI  
019Ch  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
LEA command fault  
Lowest  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
85  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-10. System Module Interrupt Vector Registers (continued)  
INTERRUPT VECTOR  
REGISTER  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
No interrupt pending  
NMIIFG NMI pin  
OFIFG oscillator fault  
DACCESSIFG  
Reserved  
00h  
02h  
Highest  
04h  
SYSUNIV, User NMI  
019Ah  
06h  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
6.13.9 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU  
intervention. For example, the DMA controller can be used to move data from the ADC12_B conversion  
memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA  
controller reduces system power consumption by allowing the CPU to remain in sleep mode, without  
having to awaken to move data to or from a peripheral. 6-11 lists the available triggers for the DMA.  
6-11. DMA Trigger Assignments(1)  
TRIGGER  
CHANNEL 0  
DMAREQ  
CHANNEL 1  
DMAREQ  
CHANNEL 2  
DMAREQ  
CHANNEL 3  
DMAREQ  
CHANNEL 4  
DMAREQ  
CHANNEL 5  
DMAREQ  
0
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA2TXIFG  
UCA2TXIFG  
UCA2TXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA3RXIFG  
UCA3RXIFG  
UCA3RXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCA3TXIFG  
UCA3TXIFG  
UCA3TXIFG  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
18  
19  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB1RXIFG1 (I2C)  
UCB1TXIFG1 (I2C)  
UCB1RXIFG2 (I2C)  
UCB1TXIFG2 (I2C)  
UCB1RXIFG3 (I2C)  
UCB1TXIFG3 (I2C)  
UCB1RXIFG1 (I2C)  
UCB1TXIFG1 (I2C)  
UCB1RXIFG2 (I2C)  
UCB1TXIFG2 (I2C)  
UCB1RXIFG3 (I2C)  
UCB1TXIFG3 (I2C)  
UCB1RXIFG1 (I2C)  
UCB1TXIFG1 (I2C)  
UCB1RXIFG2 (I2C)  
UCB1TXIFG2 (I2C)  
UCB1RXIFG3 (I2C)  
UCB1TXIFG3 (I2C)  
20  
21  
22  
23  
24  
25  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
26  
27  
28  
29  
LEA ready  
Reserved  
MPY ready  
LEA ready  
Reserved  
MPY ready  
LEA ready  
Reserved  
MPY ready  
LEA ready  
Reserved  
MPY ready  
LEA ready  
Reserved  
MPY ready  
LEA ready  
Reserved  
MPY ready  
(1) If a reserved trigger source is selected, no trigger is generated.  
86 Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-11. DMA Trigger Assignments(1) (continued)  
TRIGGER  
CHANNEL 0  
DMA2IFG  
DMAE0  
CHANNEL 1  
DMA0IFG  
DMAE0  
CHANNEL 2  
DMA1IFG  
DMAE0  
CHANNEL 3  
DMA5IFG  
DMAE0  
CHANNEL 4  
DMA3IFG  
DMAE0  
CHANNEL 5  
DMA4IFG  
DMAE0  
30  
31  
6.13.10 Enhanced Universal Serial Communication Interface (eUSCI)  
The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous  
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols  
such as UART, enhanced UART with automatic baud-rate detection, and IrDA.  
The eUSCI_A0, eUSCI_A1, eUSCI_A2, and eUSCI_A3 modules support SPI (3- or 4-pin), UART,  
enhanced UART, and IrDA.  
The eUSCI_B0 and eUSCI_B1 modules support SPI (3- or 4-pin) and I2C.  
Four eUSCI_A modules and two eUSCI_B modules are implemented.  
6.13.11 TA0, TA1, and TA4  
TA0, TA1, and TA4 are 16-bit timers and counters (Timer_A type) with three (TA0 and TA1) or two (TA4)  
capture/compare registers each. Each timer can support multiple captures or compares, PWM outputs,  
and interval timing (see 6-12, 6-13, and 6-14). Each timer has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each capture/compare  
register.  
6-12. TA0 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
INPUT PORT PIN  
OUTPUT PORT PIN  
P2.4, P4.5, P5.5  
TA0CLK  
ACLK (internal)  
SMCLK (internal)  
TA0CLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
P2.4. P4.5, P5.5  
P2.3  
P2.7  
TA0.0  
P2.3  
P2.7  
TA0.0  
TA0.0  
DVSS  
DVCC  
VCC  
P7.4  
P7.7  
TA0.1  
CCI1A  
P7.4  
ADC12(internal)(1)  
ADC12SHSx = {1}  
COUT (internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA0.1  
TA0.2  
DVSS  
DVCC  
TA0.2  
GND  
VCC  
CCI2A  
P7.7  
UUPS Trigger  
(USSPWRUP)  
UUPS.CTL.USSPWRU  
PSEL = {2}  
ACLK (internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
87  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-13. TA1 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
INPUT PORT PIN  
OUTPUT PORT PIN  
P2.4, P4.5  
TA1CLK  
ACLK (internal)  
SMCLK (internal)  
TA1CLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
P2.4. P4.5  
P1.0  
TA1.0  
P1.0  
P9.0  
P9.0  
TA1.0  
TA1.0  
DVSS  
DVCC  
VCC  
P7.5  
P8.4  
TA1.1  
CCI1A  
P7.5  
ADC12(internal)(1)  
ADC12SHSx = {4}  
COUT (internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA1.1  
TA1.2  
DVSS  
DVCC  
TA1.2  
GND  
VCC  
CCI2A  
P8.4  
ASQ Trigger  
(ASQTRIG)  
SAPH.ASCTL0.TRIGS  
EL= {2}  
ACLK (internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC.  
6-14. TA4 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
MODULE INPUT  
MODULE  
BLOCK  
INPUT PORT PIN  
OUTPUT PORT PIN  
SIGNAL  
SIGNAL  
PJ.1,P4.6  
TA4CLK  
ACLK (internal)  
SMCLK (internal)  
TA4CLK  
TA4.0  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
PJ.1, P4.6  
P1.1  
P1.1  
P2.5  
P2.5  
TA4.0  
TA4.0  
DVSS  
DVCC  
VCC  
P7.6  
P2.6  
TA4.1  
CCI1A  
CCI1B  
P7.6  
P2.6  
TA4.1  
ADC12(internal)(1)  
ADC12SHSx = {7}  
CCR1  
TA1  
TA4.1  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC.  
88  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.13.12 TA2 and TA3  
TA2 and TA3 are 16-bit timers and counters (Timer_A type) with two capture/compare registers each and  
with internal connections only. Each timer can support multiple captures or compares, PWM outputs, and  
interval timing (see 6-15 and 6-16). Each timer has extensive interrupt capabilities. Interrupts may be  
generated from the counter on overflow conditions and from each capture/compare register.  
6-15. TA2 Signal Connections  
MODULE OUTPUT  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
DEVICE OUTPUT SIGNAL  
SIGNAL  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
Reserved  
TACLK  
ACLK  
Timer  
N/A  
SMCLK  
INCLK  
TA3 CCR0 output  
(internal)  
CCI0A  
TA3 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
DVCC  
ADC12(internal)(1)  
ADC12SHSx = {5}  
Reserved  
CCI1A  
CCI1B  
PPG Trigger (PPGTRIG)  
SAPH.PGCTL.TRSEL= {2}  
COUT (internal)  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC  
6-16. TA3 Signal Connections  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
Reserved  
TACLK  
ACLK  
Timer  
N/A  
SMCLK  
INCLK  
TA2 CCR0 output  
(internal)  
CCI0A  
TA2 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
DVCC  
ADC12(internal)(1)  
ADC12SHSx = {6}  
Reserved  
CCI1A  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
TA1  
DVCC  
(1) Only on devices with ADC  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
89  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.13.13 TB0  
TB0 is a 16-bit timer and counter (Timer_B type) with seven capture/compare registers. TB0 can support  
multiple captures or compares, PWM outputs, and interval timing (see 6-17). TB0 has extensive  
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each  
capture/compare register.  
6-17. TB0 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
INPUT PORT PIN  
OUTPUT PORT PIN  
P2.4, P4.6  
TB0CLK  
ACLK (internal)  
SMCLK (internal)  
TB0CLK  
TBCLK  
ACLK  
Timer  
CCR0  
N/A  
N/A  
SMCLK  
INCLK  
CCI0A  
CCI0B  
P2.4, P4.6  
P7.2  
TB0.0  
P7.2  
P3.0  
P3.0  
TB0.0  
ADC12 (internal)(1)  
ADC12SHSx = {2}  
TB0  
TB0.0  
DVSS  
GND  
DVCC  
TB0.1  
VCC  
P7.3  
P8.0  
CCI1A  
CCI1B  
P7.3  
P3.1  
COUT (internal)  
ADC12 (internal)(1)  
ADC12SHSx = {3}  
CCR1  
TB1  
TB0.1  
DVSS  
GND  
DVCC  
TB0.2  
VCC  
CCI2A  
CCI2B  
GND  
P8.0  
P3.2  
ACLK (internal)  
DVSS  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
TB2  
TB3  
TB4  
TB5  
TB6  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
DVCC  
TB0.3  
VCC  
P8.1  
P3.3  
CCI3A  
CCI3B  
GND  
P8.1  
P3.3  
TB0.3  
DVSS  
DVCC  
TB0.4  
VCC  
P1.4  
P3.5  
CCI4A  
CCI4B  
GND  
P1.4  
P3.5  
TB0.4  
DVSS  
DVCC  
TB0.5  
VCC  
P1.5  
P3.6  
CCI5A  
CCI5B  
GND  
P1.5  
P3.6  
TB0.5  
DVSS  
DVCC  
TB0.6  
VCC  
PJ.3  
P3.7  
CCI6A  
CCI6B  
GND  
PJ.3  
P3.7  
TB0.6  
DVSS  
DVCC  
VCC  
(1) Only on devices with ADC.  
90  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.13.14 ADC12_B  
The ADC12_B module supports fast 12-bit analog-to-digital conversions with differential and single-ended  
inputs. The module implements a 12-bit SAR core, sample select control, a reference generator, and a  
conversion result buffer. A window comparator with lower and upper limits allows CPU-independent result  
monitoring with three window comparator interrupt flags.  
6-18 lists the external trigger sources.  
6-19 lists the available multiplexing between internal and external analog inputs.  
6-18. ADC12_B Trigger Signal Connections  
ADC12SHSx  
CONNECTED TRIGGER  
SOURCE  
BINARY  
DECIMAL  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
Software (ADC12SC)  
TA0 CCR1 output  
TB0 CCR0 output  
TB0 CCR1 output  
TA1 CCR1 output  
TA2 CCR1 output  
TA3 CCR1 output  
TA4 CCR1 output  
6-19. ADC12_B External and Internal Signal Mapping  
CONTROL BIT IN ADC12CTL3  
EXTERNAL ADC INPUT  
(CONTROL BIT = 0)  
INTERNAL ADC INPUT  
REGISTER  
(CONTROL BIT = 1)  
Battery monitor  
Temperature sensor  
N/A(1)  
ADC12BATMAP  
ADC12TCMAP  
ADC12CH0MAP  
ADC12CH1MAP  
ADC12CH2MAP  
ADC12CH3MAP  
A31  
A30  
A29  
A28  
A27  
A26  
N/A(1)  
N/A(1)  
N/A(1)  
(1) N/A = No internal signal is available on this device.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
91  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.13.15 USS  
6-20 lists the available UUPS triggers.  
6-20. UUPS Trigger Signal Connections  
UUPS.CTL.USSPWRUPSEL  
CONNECTED TRIGGER SOURCE  
BINARY  
00  
01  
10  
11  
Software (UUPS.CTL.USSPWRUP)  
RTC (any enabled interrupt events)  
TA0 CCR2 output  
P1.7  
6-21 lists the available PPG triggers.  
6-21. PPG Trigger Signal Connections  
SAPH.PGCTL.TRSEL  
CONNECTED TRIGGER SOURCE  
BINARY  
00  
01  
10  
11  
Software (SAPH.PPGTRIG.PPGTRIG)  
ASQ (Acquisition Sequencer)  
TA2 CCR1 output  
Reserved  
6-22 lists the available ASQ triggers.  
6-22. ASQ Trigger Signal Connections  
SAPH.ASCTL0.TRIGSEL  
CONNECTED TRIGGER SOURCE  
BINARY  
00  
01  
10  
11  
Software (SAPH.ASQTRIG.ASQTRIG)  
PSQ (Power Sequencer)  
TA1 CCR2 output  
Reserved  
6.13.16 Comparator_E  
The primary function of the Comparator_E module is to support precision slope analog-to-digital  
conversions, battery voltage supervision, and monitoring of external analog signals.  
6.13.17 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used  
for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
6.13.18 CRC32  
The CRC32 module produces a signature based on a sequence of entered data values and can be used  
for data checking purposes. The CRC32 module signature is based on the ISO 3309 standard.  
6.13.19 AES256 Accelerator  
The AES accelerator module performs encryption and decryption of 128-bit data with 128-, 192-, or 256-  
bit keys according to the Advanced Encryption Standard (AES) (FIPS PUB 197) in hardware.  
92  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.13.20 True Random Seed  
The device descriptor information (TLV) section contains a 128-bit true random seed that can be used to  
implement a deterministic random number generator.  
6.13.21 Shared Reference (REF)  
The REF module generates critical reference voltages that can be used by the various analog peripherals  
in the device.  
6.13.22 LCD_C  
The LCD_C driver generates the segment and common signals required to drive a liquid crystal display  
(LCD). The LCD_C controller has dedicated data memories to hold segment drive information. Common  
and segment signals are generated as defined by the mode. Static and 2-mux to 8-mux LCDs are  
supported. The module can provide an LCD voltage independent of the supply voltage with its integrated  
charge pump. It is possible to control the level of the LCD voltage and thus contrast by software. The  
module also provides an automatic blinking capability for individual segments in static, 2-, 3-, and 4-mux  
modes.  
To reduce system noise, the charge pump can be temporarily disabled. 6-23 lists the available  
automatic charge pump disable options.  
6-23. LCD Automatic Charge Pump Disable Bits (LCDCPDISx)  
CONTROL BIT  
LCDCPDIS0  
DESCRIPTION  
LCD charge pump disable during ADC12 conversion  
0b = LCD charge pump not automatically disabled during conversion.  
1b = LCD charge pump automatically disabled during conversion.  
LCDCPDIS1 to LCDCPDIS7  
No functionality.  
6.13.23 Embedded Emulation  
6.13.23.1 Embedded Emulation Module (EEM) (S Version)  
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers that can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
6.13.23.2 EnergyTrace++ Technology  
The devices implement circuitry to support EnergyTrace++ technology. The EnergyTrace++ technology  
lets the user observe information about the internal states of the microcontroller. These states include the  
CPU Program Counter (PC), the on or off status of the peripherals and system clocks (regardless of the  
clock source), and the low-power mode currently in use. These states can always be read by a debug  
tool, even when the microcontroller sleeps in LPMx.5 modes.  
The activity of the following modules can be observed:  
LEA is running  
MPY is calculating.  
WDT is counting.  
RTC is counting.  
ADC: a sequence, sample, or conversion is active.  
REF: REFBG or REFGEN active and BG in static mode.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
93  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
COMP is on.  
AES is encrypting or decrypting.  
eUSCI_A0 is transferring (receiving or transmitting) data.  
eUSCI_A1 is transferring (receiving or transmitting) data.  
eUSCI_A2 is transferring (receiving or transmitting) data.  
eUSCI_A3 is transferring (receiving or transmitting) data.  
eUSCI_B0 is transferring (receiving or transmitting) data.  
eUSCI_B1 is transferring (receiving or transmitting) data.  
TB0 is counting.  
TA0 is counting.  
TA1 is counting.  
TA2 is counting.  
TA3 is counting.  
TA4 is counting.  
LCD_C is running.  
USS status  
94  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14 Input/Output Diagrams  
6.14.1 Port Function Select Registers (PySEL1 , PySEL0)  
Port pins are multiplexed with peripheral module functions as described in the MSP430FR58xx,  
MSP430FR59xx, and MSP430FR6xx Family User's Guide. The functions of each port pin are controlled  
by its port function select registers, PySEL1 and PySEL0, where y = port number. The bits in the registers  
are mapped to the pins in the port. The primary module function, secondary module function, and tertiary  
module function of the pins are determined by the configuration of the PySEL1.x and PySEL0.x bits (see  
6-24). For example, P1SEL1.0 and P1SEL0.0 determine the primary module function, secondary  
module function, and tertiary module function of the P1.0 pin, which is in port 1. The module functions may  
also require the PxDIR bits to be configured according to the direction needed for the module function.  
6-24. I/O Function Selection  
I/O FUNCTIONS  
General-purpose I/O is selected  
PySEL1.x  
PySEL1.x  
0
0
1
1
0
1
0
1
Primary module function is selected  
Secondary module function is selected  
Tertiary module function is selected  
See the port pin function tables in the following sections for the configurations of the function and direction  
for each pin.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
95  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.2 Port P1 (P1.0 and P1.1) Input/Output With Schmitt Trigger  
6-3 shows the port diagram. 6-25 summarizes the selection of the pin function.  
Pad Logic  
(ADC) Reference  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-3. Port P1 (P1.0 to P1.1) Diagram  
96  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-25. Port P1 (P1.0 to P1.1) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.0 (I/O)  
UCA1CLK  
TA1.CCI0A  
TA1.0  
I: 0; O: 1  
X(2)  
0
0
0
1
P1.0/UCA1CLK/TA1.0/A0/C0/ VREF-  
/VeREF-  
0
0
1
0
1
A0, C0, VREF-, VeREF-(3)(4)  
X
1
0
0
1
0
1
P1.1 (I/O)  
I: 0; O: 1  
X(2)  
UCA1STE  
P1.1/UCA1STE/TA4.0/A1/C1/  
VREF+/VeREF+  
1
TA4.CCI0A  
0
1
1
0
1
TA4.0  
1
A1, C1, VREF+, VeREF+(3)(4)  
X
(1) X = Don't care  
(2) Direction controlled by eUSCI_A1 module.  
(3) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
97  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.3 Port P1 (P1.2 to P1.7) Input/Output With Schmitt Trigger  
6-4 shows the port diagram. 6-26 summarizes the selection of the pin function.  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-4. Port P1 (P1.2 to P1.7) Diagram  
98  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-26. Port P1 (P1.2 to P1.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.2 (I/O)  
I: 0; O: 1  
X(2)  
0
0
0
1
UCA1SIMO/UCA1TXD  
N/A  
P1.2/UCA1SIMO/UCA1TXD/A8/C8  
P1.3/UCA1SOMI/UCA1RXD/A9/C9  
P1.4/TB0.4/UCB0STE/A2/C2  
2
0
1
0
Internally tied to DVSS  
A8, C8(3)(4)  
P1.3 (I/O)  
1
X
1
0
0
1
0
1
I: 0; O: 1  
X(2)  
UCA1SOMI/UCA1RXD  
N/A  
3
4
5
6
0
1
0
Internally tied to DVSS  
A9, C9(3)(4)  
P1.4 (I/O)  
1
X
1
0
1
0
I: 0; O: 1  
TB0.CCI4A  
TB0.4  
0
0
1
1
X(5)  
UCB0STE  
A2, C2(3)(4)  
1
1
0
0
1
0
X
P1.5(I/O)  
I: 0; O: 1  
TB0.CCI5A  
TB0.5  
0
0
1
P1.5/TB0.5/UCB0CLK/A3/C3  
1
X(5)  
UCB0CLK  
A3, C3(3)(4)  
1
1
0
0
1
0
X
P1.6(I/O)  
I: 0; O: 1  
N/A  
0
0
1
P1.6/UCB0SIMO/UCB0SDA/A4/C4  
Internally tied to DVSS  
UCB0SIMO/UCB0SDA  
A4, C4(3)(4)  
P1.7(I/O)  
1
X(5)  
1
1
0
X
1
0
1
1
0
1
0
1
X
1
0
1
X
I: 0; O: 1  
USSTRG (independent function)  
0
P1.7/USSTRG/UCB0SOMI/UCB0SCL/  
A5/C5  
7
Internally tied to DVSS  
UCB0SOMI/UCB0SCL  
A5, C5(3)(4)  
1
X(5)  
X
(1) X = Don't care  
(2) Direction controlled by eUSCI_A1 module.  
(3) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
(5) Direction controlled by eUSCI_B0 module.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
99  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.4 Port P2 (P2.0 to P2.3) Input/Output With Schmitt Trigger  
6-5 shows the port diagram. 6-27 summarizes the selection of the pin function.  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-5. Port P2 (P2.0 to P2.3) Diagram  
100  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-27. Port P2 (P2.0 to P2.3) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
P2.0/UCA0SIMO/UCA0TXD/A6/C6  
P2.1/UCA0SOMI/UCA0RXD/A7/C7  
P2.2/COUT/UCA0CLK/A14/C14  
0
Internally tied to DVSS  
UCA0SIMO/UCA0TXD  
A6, C6(3)(4)  
P2.1 (I/O)  
1
X(2)  
1
1
0
0
1
0
X
I: 0; O: 1  
N/A  
0
0
1
1
2
3
Internally tied to DVSS  
UCA0SOMI/UCA0RXD  
A7, C7(3)(4)  
P2.2 (I/O)  
1
X(2)  
1
1
0
0
1
0
X
I: 0; O: 1  
N/A  
0
0
1
COUT  
1
X(2)  
UCA0CLK  
A14, C14(3)(4)  
1
1
0
0
1
0
X
P2.3(I/O)  
I: 0; O: 1  
TA0.CCI0A  
TA0.0  
0
1
X(2)  
0
1
P2.3/TA0.0/UCA0STE/A15/C15  
(1) X = Don't care  
UCA0STE  
A15, C15(3)(4)  
1
1
0
1
X
(2) Direction controlled by eUSCI_A0 module.  
(3) Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
101  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.5 Port P2 (P2.4 to P2.7) Input/Output With Schmitt Trigger  
6-6 shows the port diagram. 6-28 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-6. Port P2 (P2.4 to P2.7) Diagram  
102  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-28. Port P2 (P2.4 to P2.7) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
LCDSz  
P2.4 (I/O)  
TA0LCK  
I: 0; O: 1  
0
0
0
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TB0LCK  
1
0
P2.4/TA0LCK/TB0CLK/TA1CLK/  
LCDS32  
4
Internally tied to DVSS  
TA1LCK  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P2.5 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TA4.CCI0B  
1
0
P2.5/TA4.0/LCDS31  
5
6
7
TA4.0  
1
N/A  
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P2.6 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TA4.CCI1B  
1
0
P2.6/TA4.1/LCDS30  
TA4.1  
1
N/A  
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P2.7 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
TA0.CCI0B  
P2.7/TA0.0/LCDS21  
(1) X = Don't care  
TA0.0  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
Sz  
X
X
(2) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 4.1.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
103  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.6 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger  
6-7 shows the port diagram. 6-29 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-7. Port P3 (P3.0 to P3.7) Diagram  
104  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-29. Port P3 (P3.0 to P3.7) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
LCDSz  
P3.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TB0.CCI0B  
1
0
P3.0/TB0.0/LCDS29  
P3.1/TB0.1/LCDS28  
P3.2/TB0.2/LCDS27  
P3.3/TB0.3/LCDS26  
P3.4/TB0OUTH/LCDS25  
0
TB0.0  
1
N/A  
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P3.1 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
1
N/A  
0
1
2
3
4
TB0.1  
1
N/A  
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P3.2 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
1
N/A  
0
TB0.2  
1
N/A  
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P3.3 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TB0.CCI3B  
1
0
TB0.3  
1
N/A  
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P3.4 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
TB0OUTH  
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
Sz  
X
X
(1) X = Don't care  
(2) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 4.1.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
105  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-29. Port P3 (P3.0 to P3.7) Pin Functions (continued)  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
LCDSz  
P3.5 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TB0.CCI4B  
1
0
P3.5/TB0.4/LCDS24  
5
TB0.4  
1
N/A  
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P3.6 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TB0.CCI5B  
1
0
P3.6/TB0.5/LCDS23  
6
TB0.5  
1
N/A  
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P3.7 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
TB0.CCI6B  
P3.7/TB0.6/LCDS22  
7
TB0.6  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
Sz  
X
X
106  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.7 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger  
6-8 shows the port diagram. 6-30 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-8. Port P4 (P4.0 to P4.7) Diagram  
6-30. Port P4 (P4.0 to P4.7) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
LCDSz  
P4.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
N/A  
P4.0/RTCCLK/LCDS16  
0
RTCCLK  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
Sz  
X
X
(1) X = Don't care  
(2) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 4.1.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
107  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-30. Port P4 (P4.0 to P4.7) Pin Functions (continued)  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
LCDSz  
P4.1 (I/O)  
UCA0CLK  
N/A  
I: 0; O: 1  
X(3)  
0
0
0
1
0
0
0
1
1
0
1
0
0
P4.1/UCA0CLK/LCDS15  
1
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
0
X
0
1
1
0
0
P4.2 (I/O)  
I: 0; O: 1  
X(3)  
UCA0STE  
N/A  
0
1
1
0
1
0
0
P4.2/UCA0STE/LCDS14  
2
3
4
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
0
X
0
1
1
0
0
P4.3 (I/O)  
I: 0; O: 1  
X(3)  
UCA0SIMO/UCA0TXD  
N/A  
0
1
1
0
1
0
0
P4.3/UCA0SIMO/UCA0TXD/LCDS13  
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
0
X
0
1
1
0
0
P4.4 (I/O)  
I: 0; O: 1  
X(3)  
UCA0SOMI/UCA0RXD  
N/A  
0
1
1
0
1
0
0
P4.4/UCA0SOMI/UCA0RXD/LCDS12  
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P4.5 (I/O)  
I: 0; O: 1  
TA0CLK  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TA1CLK  
1
0
P4.5/TA0LCK/TA1CLK/LCDS11  
5
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P4.6 (I/O)  
I: 0; O: 1  
TB0CLK  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
TA4CLK  
P4.6/TB0CLK/TA4CLK/LCDS10  
6
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
Sz  
X
X
(3) Direction controlled by eUSCI_A0 module.  
108 Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-30. Port P4 (P4.0 to P4.7) Pin Functions (continued)  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
LCDSz  
P4.7 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
DMAE0  
P4.7/DMAE0/LCDS9  
7
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
Sz  
X
X
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
109  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.8 Port P5 (P5.0 to P5.7) Input/Output With Schmitt Trigger  
6-9 shows the port diagram. 6-31 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-9. Port P5 (P5.0 to P5.7) Diagram  
6-31. Port P5 (P5.0 to P5.7) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
LCDSz  
P5.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
0
1
1
X
1
0
1
X
0
0
0
1
Internally tied to DVSS  
UCA2SIMO/UCA2TXD  
N/A  
1
P5.0/UCA2SIMO/UCA2TXD/LCDS8  
0
X(2)  
0
Internally tied to DVSS  
1
(3)  
Sz  
X
(1) X = Don't care  
(2) Direction controlled by eUSCI_A3 module.  
(3) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 4.1.  
110 Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-31. Port P5 (P5.0 to P5.7) Pin Functions (continued)  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
LCDSz  
P5.1 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCA2SOMI/UCA2RXD  
N/A  
1
X(2)  
P5.1/UCA2SOMI/UCA2RXD/LCDS7  
1
0
Internally tied to DVSS  
1
(3)  
Sz  
X
X
0
X
0
1
0
P5.2 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCA2CLK  
1
X(2)  
P5.2/UCA2CLK/LCDS6  
2
3
4
5
6
N/A  
0
Internally tied to DVSS  
1
(3)  
Sz  
X
X
0
X
0
1
0
P5.3 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCA2STE  
1
X(2)  
P5.3/UCA2STE/LCDS5  
N/A  
0
Internally tied to DVSS  
1
(3)  
Sz  
X
X
0
X
0
1
0
P5.4 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCB1CLK  
1
X(4)  
P5.4/UCB1CLK/LCDS4  
N/A  
0
Internally tied to DVSS  
1
(3)  
Sz  
X
X
0
X
0
1
0
P5.5 (I/O)  
I: 0; O: 1  
TA0CLK  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCB1SIMO/UCB1SDA  
N/A  
1
X(4)  
P5.5/TA0CLK/UCB1SIMO/UCB1SDA  
/LCDS3  
0
Internally tied to DVSS  
1
(3)  
Sz  
X
X
0
X
0
1
0
P5.6 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
X
1
0
1
X
0
0
0
1
Internally tied to DVSS  
UCB1SOMI/UCB1SCL  
N/A  
1
P5.6/UCB1SOMI/UCB1SCL/LCDS2  
X(4)  
0
Internally tied to DVSS  
1
(3)  
Sz  
X
(4) Direction controlled by eUSCI_B1 module.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
111  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-31. Port P5 (P5.0 to P5.7) Pin Functions (continued)  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
LCDSz  
P5.7 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
0
1
1
X
1
0
1
X
0
0
0
1
Internally tied to DVSS  
UCB1STE  
1
P5.7/UCB1STE/LCDS1  
7
X(4)  
0
N/A  
Internally tied to DVSS  
1
(3)  
Sz  
X
112  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.9 Port P6 (P6.0) Input/Output With Schmitt Trigger  
6-10 shows the port diagram. 6-32 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-10. Port P6 (P6.0) Diagram  
6-32. Port P6 (P6.0) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
LCDSz  
P6.0 (I/O)  
I: 0; O: 1  
0
0
0
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
N/A  
P6.0/COUT/LCDS0  
0
COUT  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
Sz  
X
X
(1) X = Don't care  
(2) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 4.1.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
113  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.10 Port P6 (P6.1 to P6.5) Input/Output With Schmitt Trigger  
6-11 shows the port diagram. 6-33 summarizes the selection of the pin function.  
Pad Logic  
To/From LCD  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-11. Port P6 (P6.1 to P6.5) Diagram  
114  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-33. Port P6 (P6.1 to P6.5) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
P6.1 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P6.1/R03  
1
0
Internally tied to DVSS  
1
(2)  
R03  
X
1
0
1
0
P6.2 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P6.2/R13/LCDREF  
2
3
4
5
0
Internally tied to DVSS  
1
(2)  
R13/LCDREF  
X
1
0
1
0
P6.3 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P6.3/R23  
0
Internally tied to DVSS  
1
(2)  
R23  
X
1
0
1
0
P6.4 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P6.4/COM0  
0
Internally tied to DVSS  
1
(2)  
COM0  
X
1
0
1
0
P6.5 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
Internally tied to DVSS  
N/A  
P6.5/COM1  
1
1
0
1
Internally tied to DVSS  
(2)  
COM1  
(1) X = Don't care  
(2) Setting P6SEL1.x and P6SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
115  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.11 Port P6 (P6.6 and P6.7) Input/Output With Schmitt Trigger  
6-12 shows the port diagram. 6-34 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
COMx  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-12. Port P6 (P6.6 and P6.7) Diagram  
116  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-34. Port P6 (P6.6 to P6.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
LCDSz  
P6.6(I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
0
1
X
0
1
1
0
0
Internally tied to DVSS  
N/A  
P6.6/COM2/LCDS38  
6
0
0
1
0
0
Internally tied to DVSS  
COM2(1)  
1
X
0
0
1
0
X
0
(2)  
Sz  
X
P6.7(I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
1
0
Internally tied to DVSS  
N/A  
P6.7/COM3/LCDS37  
7
0
0
1
Internally tied to DVSS  
COM3(1)  
1
X
0
1
0
(2)  
Sz  
X
X
(1) Setting P6SEL1.x and P6SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(2) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 4.1.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
117  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.12 Port P7 (P7.0 to P7.3) Input/Output With Schmitt Trigger  
6-13 shows the port diagram. 6-35 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
COMx  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-13. Port P7 (P7.0 to P7.3) Diagram  
118  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-35. Port P7 (P7.0 to P7.3) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL1.x  
P7SEL0.x  
LCDSz  
P7.0(I/O)  
I: 0; O: 1  
X(1)  
0
0
0
1
0
0
UCA2SIMO/UCA2TXD  
N/A  
0
1
0
0
0
1
P7.0/UCA2SIMO/UCA2TXD/  
ACLK/COM4/LCDS36  
0
ACLK  
COM4(2)  
1
X
1
X
0
0
0
1
0
X
0
1
(3)  
Sz  
X
P7.1(I/O)  
I: 0; O: 1  
X(1)  
0
0
UCA2SOMI/UCA2RXD  
N/A  
0
1
0
0
0
1
P7.1/UCA2SOMI/UCA2RXD/  
SMCLK/COM5/LCDS35  
1
2
3
SMCLK  
COM5(2)  
1
X
1
X
0
0
0
1
0
X
0
1
(3)  
Sz  
X
P7.2(I/O)  
UCA2CLK  
TB0.CCI0A  
TB0.0  
I: 0; O: 1  
X(1)  
0
0
0
1
0
0
0
1
P7.2/UCA2CLK/TB0.0/COM6/  
LCDS34  
1
COM6(2)  
X
1
X
0
0
0
1
0
X
0
1
(3)  
Sz  
X
P7.3(I/O)  
UCA2STE  
TB0.CCI1A  
TB0.1  
I: 0; O: 1  
X(1)  
0
0
0
1
0
0
0
1
P7.3/UCA2STE/TB0.1/COM7/  
LCDS33  
1
COM7(2)  
X
1
X
0
1
0
(3)  
Sz  
X
X
(1) Direction controlled by eUSCI_A2 module.  
(2) Setting P6SEL1.x and P6SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 4.1.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
119  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.13 Port P7 (P7.4) Input/Output With Schmitt Trigger  
6-14 shows the port diagram. 6-36 summarizes the selection of the pin function.  
ACTIVATE  
Pad Logic  
MTIF_PIN_EN  
1
0
TPOE  
1
From MTIF  
PxREN.x  
0
1
0
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
DVSS  
DVCC  
0
1
module 1 or PxDIR.x  
Direction  
0: Input  
1: Output  
1
module 2 or PxDIR.x  
module 3 or PxDIR.x  
1
0
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
1
0
PxSEL1.x  
PxSEL0.x  
PxIN.x  
EN  
D
Bus  
Keeper  
To modules  
To MTIF  
TPIE  
NOTE: Functional representation only.  
6-14. Port P7 (P7.4) Diagram  
120  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-36. Port P7 (P7.4) Pin Functions  
CONTROL BITS OR SIGNALS  
Signal on  
PIN NAME (P7.x)  
x
FUNCTION  
P7SEL  
1.x  
ACTIVATE  
(1)  
P7DIR.x  
P7SEL0.x  
TPOE  
TPIE(1)  
MTIF_PIN_E  
(1)  
(2)  
N pin  
P7.4(I/O)  
I: 0; O: 1  
0
0
0
1
0
0
0
0
X
X
X
TA0.CCI1A  
TA0.1  
0
1
0
1
0
1
X
X
X
N/A  
1
1
0
1
0
0
0
0
X
X
X
X
Internally tied to DVSS  
N/A  
P7.4/TA0.1/  
MTIF_OUT_IN  
4
Internally tied to DVSS  
MTIF_IN  
MTIF_OUT(1)  
X
X
X
X
0
1
1
X
0
X
X
X
Internally tied to  
DVSS(1)  
MTIF_OUT(1)  
X
X
X
X
X
X
1
1
X
X
1
1
0
1
(1) See MTIF.TPCTL register  
(2) When P7.5 pin is configured as MTIF_PIN_EN (See 6-37 for details)  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
121  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.14 Port P7 (P7.5) Input/Output With Schmitt Trigger  
6-15 shows the port diagram. 6-37 summarizes the selection of the pin function.  
Pad Logic  
ACTIVATE  
0
1
0
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
1
0
0
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
EN  
D
Bus  
Keeper  
To modules  
MTIF_PIN_EN  
NOTE: Functional representation only.  
6-15. Port P7 (P7.5) Diagram  
122  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-37. Port P7 (P7.5) Pin Functions  
CONTROL BITS OR SIGNALS  
P7SEL1.  
PIN NAME (P7.x)  
x
FUNCTION  
(1)  
P7DIR.x  
P7SEL0.x  
ACTIVATE  
x
P7.5(I/O)  
TA1.CCI1A  
TA1.1  
I: 0; O: 1  
0
0
0
0
0
1
0
1
0
1
X
0
1
1
0
N/A  
P7.5/TA1.1/MTIF_PIN_EN  
5
0
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
MTIF_PIN_EN  
X
X
(1) See MTIF.TPCTL register  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
123  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.15 Port P7 (P7.6 and P7.7) Input/Output With Schmitt Trigger  
6-16 shows the port diagram. 6-38 summarizes the selection of the pin function.  
Pad Logic  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
6-16. Port P7 (P7.6 and P7.7) Diagram  
124  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-38. Port P7 (P7.6 to P7.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL1.x  
P7SEL0.x  
P7.6(I/O)  
TA4.CCI1A  
TA4.1  
I: 0; O: 1  
0
0
0
0
1
1
1
P7.6/TA4.1/DMAE0/COUT  
6
DMAE0  
0
0
Internally tied to DVSS  
1
N/A  
0
1
0
0
1
0
1
COUT  
1
P7.7(I/O)  
TA0.CCI2A  
TA0.2  
I: 0; O: 1  
0
1
0
1
0
1
P7.7/TA0.2/TB0OUTH/COUT  
7
TB0OUTH  
Internally tied to DVSS  
N/A  
1
1
0
1
COUT  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
125  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.16 Port P8 (P8.0 to P8.3) Input/Output With Schmitt Trigger  
6-17 shows the port diagram. 6-39 summarizes the selection of the pin function.  
Pad Logic  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
6-17. Port P8 (P8.0 to P8.3) Diagram  
126  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-39. Port P8 (P8.0 to P8.3) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL1.x  
P8SEL0.x  
P8.0(I/O)  
UCA3STE  
TB0.CCI2A  
TB0.2  
I: 0; O: 1  
X(1)  
0
0
0
1
0
P8.0/UCA3STE/TB0.2/DMAE0  
0
1
1
0
1
1
DMAE0  
0
Internally tied to DVSS  
P8.1(I/O)  
1
I: 0; O: 1  
X(1)  
0
0
0
1
UCA3CLK  
TB0.CCI3A  
TB0.3  
0
P8.1/UCA3CLK/TB0.3/TB0OUTH  
P8.2/UCA3SOMI/UCA3RXD/MCLK  
P8.3/UCA3SIMO/UCA3TXD/RTCCLK  
1
2
3
1
1
0
1
1
TB0OUTH  
0
Internally tied to DVSS  
P8.2(I/O)  
1
I: 0; O: 1  
X(1)  
0
0
0
1
UCA3SOMI/UCA3RXD  
N/A  
0
1
1
0
1
MCLK  
1
N/A  
0
Internally tied to DVSS  
P8.3(I/O)  
1
I: 0; O: 1  
X(1)  
0
0
0
1
/UCA3SIMO/UCA3TXD  
N/A  
0
1
1
0
1
RTCCLK  
1
N/A  
0
Internally tied to DVSS  
1
(1) Direction controlled by eUSCI_A3 module.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
127  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.17 Port P8 (P8.4 to P8.7) Input/Output With Schmitt Trigger  
6-18 shows the port diagram. 6-40 summarizes the selection of the pin function.  
Pad Logic  
To ADC  
From ADC  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-18. Port P8 (P8.4 to P8.7) Diagram  
128  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-40. Port P8 (P8.4 to P8.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL1.x  
P8SEL0.x  
P8.4(I/O)  
UCB1CLK  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
X(1)  
0
0
0
1
P8.4/UCB1CLK/TA1.2/A10  
4
0
1
0
1
A10(2)  
X
1
0
0
1
0
1
P8.5(I/O)  
I: 0; O: 1  
X(1)  
UCB1SIMO/UCB1SDA  
N/A  
P8.5/UCB1SIMO/UCB1SDA/A11  
P8.6/UCB1SOMI/UCB1SCL/A12  
P8.7/UCB1STE/USSXT_BOUT/A13  
5
6
7
0
1
0
Internally tied to DVSS  
A11(2)  
1
X
1
0
0
1
0
1
P8.6(I/O)  
I: 0; O: 1  
X(1)  
UCB1SOMI/UCB1SCL  
N/A  
0
1
0
Internally tied to DVSS  
A12(2)  
1
X
1
0
0
1
0
1
P8.7(I/O)  
I: 0; O: 1  
X(1)  
UCB1STE  
N/A  
0
1
1
0
1
USSXT_BOUT(3)  
A13(2)  
1
X
(1) Direction controlled by eUSCI_B1 module.  
(2) Setting P8SEL1.x and P8SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) USSXTHSPLL.PLLXTLCTL.XTOUTOFF bit must also be set to 0.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
129  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.18 Port P9 (P9.0 to P9.3) Input/Output With Schmitt Trigger  
6-19 shows the port diagram. 6-41 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-19. Port P9 (P9.0 to P9.3) Diagram  
130  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-41. Port P9 (P9.0 to P9.3) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (P9.x)  
x
FUNCTION  
P9DIR.x  
P9SEL1.x  
P9SEL0.x  
LCDSz  
P9.0 (I/O)  
TA1.CCI0B  
TA1.0  
I: 0; O: 1  
0
0
0
0
0
1
1
1
0
1
0
0
0
1
N/A  
0
P9.0/TA1.0/LCDS20  
P9.1/SMCLK/LCDS19  
P9.2/MCLK/LCDS18  
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P9.1 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
1
N/A  
0
1
2
3
SMCLK  
1
N/A  
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P9.2 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
1
N/A  
0
MCLK  
1
N/A  
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P9.3 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
N/A  
P9.3/ACLK/LCDS17  
(1) X = Don't care  
ACLK  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
Sz  
X
X
(2) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 4.1.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
131  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.19 Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With  
Schmitt Trigger  
6-20 shows the port diagram. 6-42 summarizes the selection of the pin function.  
To Comparator  
From Comparator  
Pad Logic  
CBPD.x  
JTAG enable  
From JTAG  
From JTAG  
PJREN.x  
0 0  
0 1  
1 0  
1 1  
PJDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
1
0
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.x  
1
0
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PJSEL1.x  
PJSEL0.x  
PJIN.x  
Bus  
Keeper  
EN  
D
To modules  
and JTAG  
NOTE: Functional representation only.  
6-20. Port PJ (PJ.0 to PJ.3) Diagram  
132  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-42. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS/ SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJSEL1.x  
PJSEL0.x  
CEPDx (Cx)  
PJ.0 (I/O)(2)  
TDO(3)  
N/A  
I: 0; O: 1  
0
0
0
0
X
X
X
0
0
1
1
1
0
1
0
0
0
ACLK  
N/A  
1
PJ.0/TDO/ACLK/SRSCG1/D  
MAE0/C10  
0
0
CPU Status Register Bit SCG1  
1
DMAE0  
0
Internally tied to DVSS  
1
C10(4)  
PJ.1 (I/O)(2)  
TDI/TCLK(3) (5)  
X
X
0
X
0
1
0
0
I: 0; O: 1  
X
X
X
N/A  
0
0
1
1
1
0
1
0
0
0
SMCLK  
1
PJ.1/TDI/TCLK/SMCLK/SRS  
CG0/TA4CLK/C11  
1
2
3
N/A  
0
CPU Status Register Bit SCG0  
1
TA4CLK  
0
Internally tied to DVSS  
1
C11(4)  
PJ.2 (I/O)(2)  
TMS(3) (5)  
X
X
0
X
0
1
0
0
I: 0; O: 1  
X
X
X
N/A  
0
0
1
1
1
0
1
0
0
0
MCLK  
1
PJ.2/TMS/MCLK/SROSCOF  
F/TB0OUTH/C12  
N/A  
0
CPU Status Register Bit OSCOFF  
1
TB0OUTH  
0
Internally tied to DVSS  
1
C12(4)  
PJ.3 (I/O)(2)  
TCK(3) (5)  
X
X
0
X
0
1
0
0
I: 0; O: 1  
X
0
1
0
1
0
1
X
X
X
N/A  
0
1
1
0
0
0
RTCCLK  
PJ.3/TCK/RTCCLK/SRCPU  
OFF/TB0.6/C13  
N/A  
CPU Status Register Bit CPUOFF  
TB0.CCI6A  
TB0.6  
C13(4)  
1
1
0
1
X
X
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module. JTAG mode selection is made through the SYS module or by the Spy-Bi-Wire four-  
wire entry sequence. Neither PJSEL1.x and PJSEL0.x nor CEPDx bits have an effect in these cases.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables The output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
(5) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
133  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.20 Port PJ (PJ.4 and PJ.5) Input/Output With Schmitt Trigger  
6-21 and 6-22 show the port diagrams. 6-43 summarizes the selection of the pin function.  
Pad Logic  
To LFXT XIN  
PJREN.4  
0 0  
0 1  
1 0  
1 1  
PJDIR.4  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.4  
DVSS  
DVSS  
DVSS  
PJ.4/LFXIN  
PJSEL1.4  
PJSEL0.4  
PJIN.4  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-21. Port PJ (PJ.4) Diagram  
134  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Pad Logic  
To LFXT XOUT  
PJSEL0.4  
PJSEL1.4  
LFXTBYPASS  
PJREN.5  
0 0  
0 1  
1 0  
1 1  
PJDIR.5  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.5  
DVSS  
DVSS  
DVSS  
PJ.5/LFXOUT  
PJSEL1.5  
PJSEL0.5  
PJIN.5  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-22. Port PJ (PJ.5) Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
135  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-43. Port PJ (PJ.4 and PJ.5) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJ.4 (I/O)  
LFXT  
BYPASS  
PJDIR.x  
PJSEL1.5  
PJSEL0.5  
PJSEL1.4  
PJSEL0.4  
I: 0; O: 1  
X
X
0
0
X
N/A  
0
1
X
X
1
X
X
PJ.4/LFXIN  
4
Internally tied to DVSS  
LFXIN crystal mode(2)  
LFXIN bypass mode(2)  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
0
0
1(3)  
0
PJ.5 (I/O)  
N/A  
I: 0; O: 1  
0
0
X
X
0
0
see(4)  
see(4)  
X
X
0
PJ.5/LFXOUT  
5
1(3)  
0
Internally tied to DVSS  
LFXOUT crystal mode(2)  
1
see(4)  
X
see(4)  
X
X
X
1
1(3)  
0
X
(1) X = Don't care  
(2) If PJSEL1.4 = 0 and PJSEL0.4 = 1, the general-purpose I/O is disabled. When LFXTBYPASS = 0, PJ.4 and PJ.5 are configured for  
crystal operation and PJSEL1.5 and PJSEL0.5 are don't care. When LFXTBYPASS = 1, PJ.4 is configured for bypass operation and  
PJ.5 is configured as general-purpose I/O.  
(3) When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.  
(4) If PJSEL0.5 = 1 or PJSEL1.5 = 1, the general-purpose I/O functionality is disabled. No input function is available. Configured as output,  
the pin is actively pulled to zero.  
136  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.14.21 Port PJ (PJ.6 and PJ.7) Input/Output With Schmitt Trigger  
6-23 and 6-24 show the port diagrams. 6-44 summarizes the selection of the pin function.  
Pad Logic  
To HFXT XIN  
PJREN.6  
0 0  
0 1  
1 0  
1 1  
PJDIR.6  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.6  
DVSS  
DVSS  
DVSS  
PJ.6/HFXIN  
PJSEL1.6  
PJSEL0.6  
PJIN.6  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-23. Port PJ (PJ.6) Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
137  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Pad Logic  
To HFXT XOUT  
PJSEL0.6  
PJSEL1.6  
HFXTBYPASS  
PJREN.7  
0 0  
0 1  
1 0  
1 1  
PJDIR.7  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.7  
DVSS  
DVSS  
DVSS  
PJ.7/HFXOUT  
PJSEL1.7  
PJSEL0.7  
PJIN.7  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-24. Port PJ (PJ.7) Diagram  
138  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-44. Port PJ (PJ.6 and PJ.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJ.6 (I/O)  
PJDIR.x  
PJSEL1.7  
PJSEL0.7  
PJSEL1.6  
PJSEL0.6 HFXTBYPASS  
I: 0; O: 1  
X
X
0
0
X
N/A  
0
1
X
X
1
X
X
PJ.6/HFXIN  
6
Internally tied to DVSS  
HFXIN crystal mode(2)  
HFXIN bypass mode(2)  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
0
0
1(4)  
0
PJ.7 (I/O)(3)  
I: 0; O: 1  
0
0
X
X
0
(3)  
(3)  
N/A  
0
see  
see  
X
X
0
PJ.7/HFXOUT  
7
1(4)  
0
(3)  
(3)  
Internally tied to DVSS  
HFXOUT crystal mode(2)  
1
see  
see  
X
X
1
1(4)  
0
X
X
X
(1) X = Don't care  
(2) Setting PJSEL1.6 = 0 and PJSEL0.6 = 1 causes the general-purpose I/O to be disabled. When HFXTBYPASS = 0, PJ.6 and PJ.7 are  
configured for crystal operation and PJSEL1.6 and PJSEL0.7 are do not care. When HFXTBYPASS = 1, PJ.6 is configured for bypass  
operation and PJ.7 is configured as general-purpose I/O.  
(3) With PJSEL0.7 = 1 or PJSEL1.7 =1 the general-purpose I/O functionality is disabled. No input function is available. Configured as output  
the pin is actively pulled to zero.  
(4) When PJ.6 is configured in bypass mode, PJ.7 is configured as general-purpose I/O.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
139  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.15 Device Descriptors (TLV)  
6-45 lists the Device IDs.  
6-45. Device IDs  
DEVICE ID  
DEVICE  
PACKAGE  
01A05h  
82h  
01A04h  
EAh  
MSP430FR6047  
MSP430FR60471  
MSP430FR6045  
MSP430FR6037  
MSP430FR60371  
MSP430FR6035  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
82h  
EEh  
82h  
EBh  
82h  
ECh  
EFh  
82h  
82h  
EDh  
6-46 lists the contents of the device descriptor tag-length-value (TLV) structure.  
6-46. Device Descriptors(1)  
MSP430FR60xx (UART BSL)  
MSP430FR60xx1 (I2C BSL)  
DESCRIPTION  
ADDRESS  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
VALUE  
06h  
ADDRESS  
01A00h  
01A01h  
01A02h  
01A03h  
VALUE  
06h  
Info length  
CRC length  
06h  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
CRC value  
Device ID  
Info Block  
See 6-45.  
01A04h  
See 6-45.  
Hardware revision  
Firmware revision  
Die record tag  
Per unit  
Per unit  
08h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
Per unit  
Per unit  
08h  
Die record length  
0Ah  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot/wafer ID  
Die Record  
Die X position  
Die Y position  
Test results  
(1) NA = Not applicable, Per unit = content can differ from device to device  
140 Detailed Description  
提交文档反馈意见  
版权 © 2017–2018, Texas Instruments Incorporated  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-46. Device Descriptors(1) (continued)  
MSP430FR60xx (UART BSL)  
MSP430FR60xx1 (I2C BSL)  
DESCRIPTION  
ADDRESS  
01A14h  
01A15h  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
01A26h  
01A27h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
VALUE  
11h  
ADDRESS  
01A14h  
01A15h  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
01A26h  
01A27h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
VALUE  
11h  
ADC12 calibration tag  
ADC12 calibration length  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
ADC gain factor(2)  
ADC offset(3)  
ADC 1.2-V reference  
temperature sensor 30°C  
ADC 1.2-V reference  
temperature sensor 85°C  
ADC12 Calibration  
ADC 2.0-V reference  
temperature sensor 30°C  
ADC 2.0-V reference  
temperature sensor 85°C  
ADC 2.5-V reference  
temperature sensor 30°C  
ADC 2.5-V reference  
temperature sensor 85°C  
REF calibration tag  
REF calibration length  
06h  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
REF 1.2-V reference  
REF 2.0-V reference  
REF 2.5-V reference  
REF Calibration  
(2) ADC gain: The gain correction factor is measured at room temperature using a 2.5-V external voltage reference without internal buffer  
(ADC12VRSEL = 0x2, 0x4, or 0xE). Other settings (for example, using internal reference) can result in different correction factors.  
(3) ADC offset: the offset correction factor is measured at room temperature using ADC12VRSEL= 0x2 or 0x4, an external reference, VR+  
external 2.5 V, VR– = AVSS.  
=
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
141  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6-46. Device Descriptors(1) (continued)  
MSP430FR60xx (UART BSL)  
MSP430FR60xx1 (I2C BSL)  
DESCRIPTION  
ADDRESS  
01A2Eh  
01A2Fh  
01A30h  
01A31h  
01A32h  
01A33h  
01A34h  
01A35h  
01A36h  
01A37h  
01A38h  
01A39h  
01A3Ah  
01A3Bh  
01A3Ch  
01A3Dh  
01A3Eh  
01A3Fh  
01A40h  
01A41h  
01A42h  
01A43h  
VALUE  
15h  
ADDRESS  
01A2Eh  
01A2Fh  
01A30h  
01A31h  
01A32h  
01A33h  
01A34h  
01A35h  
01A36h  
01A37h  
01A38h  
01A39h  
01A3Ah  
01A3Bh  
01A3Ch  
01A3Dh  
01A3Eh  
01A3Fh  
01A40h  
01A41h  
01A42h  
01A43h  
VALUE  
15h  
128-bit random number tag  
Random number length  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
1Ch  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
1Ch  
Random Number  
128-bit random number(4)  
BSL tag  
BSL length  
02h  
02h  
BSL Configuration  
BSL interface  
00h  
01h  
BSL interface configuration  
00h  
48h  
(4) 128-bit random number: The random number is generated during production test using the Microsoft® CryptGenRandom() function.  
142  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.16 Memory Map  
6-47 summarizes the memory organization for all device variants.  
6-47. Memory Organization(1)  
MSP430FR6047(1), FR6037(1)  
MSP430FR6045, FR6035  
Memory (FRAM)  
Total Size  
256KB  
128KB  
Main: interrupt vectors and  
signatures  
00FFFFh to 00FF80h  
043FFFh to 004000h  
00FFFFh to 00FF80h  
0023FFFh to 004000h  
Main: code memory  
RAM (shared with LEA)  
(Sector 2)  
Block 0  
Size  
Size  
4KB  
4KB  
(003BFFh to 002C00h)  
003BFFh to 002C00h  
(003BFFh to 002C00h)  
003BFFh to 002C00h  
System RAM  
4KB  
4KB  
(Sector 1)  
(Sector 0)  
Main: base location  
Main: interrupt vectors  
(002BFFh to 002400h)  
(0023FFh to 001C00h)  
002BFFh to 001C00h  
002BFFh to 002B80h  
(002BFFh to 002400h)  
(0023FFh to 001C00h)  
002BFFh to 001C00h  
002BFFh to 002B80h  
Device descriptor info (TLV)  
(FRAM)  
Size  
Size  
256 B  
001AFFh to 001A00h  
256 B  
001AFFh to 001A00h  
TI calibration and configuration  
(FRAM)  
256 B  
0019FFh to 001900h  
256 B  
0019FFh to 001900h  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
512 B  
0017FFh to 001600h  
512 B  
0017FFh to 001600h  
512 B  
0015FFh to 001400h  
512 B  
0015FFh to 001400h  
Bootloader (BSL) memory (ROM)  
512 B  
0013FFh to 001200h  
512 B  
0013FFh to 001200h  
512 B  
0011FFh to 001000h  
512 B  
0011FFh to 001000h  
4KB  
4KB  
Peripherals  
Tiny RAM  
Reserved  
000FFFh to 000020h  
000FFFh to 000020h  
Size  
22 B  
22 B  
000001Fh to 00000Ah  
000001Fh to 00000Ah  
Size  
10 B  
10 B  
000009h to 000000h  
000009h to 000000h  
(1) All address space not listed is considered vacant memory.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
143  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.16.1 Peripheral File Map  
For complete module register descriptions, see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx  
Family User's Guide. Table 6-48 lists the base and end addresses of the registers for each peripheral.  
Table 6-48. Peripherals  
MODULE NAME  
Special Functions (see Table 6-49)  
PMM (see Table 6-50)  
BASE ADDRESS  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
0200h  
0340h  
0380h  
03C0h  
0400h  
0440h  
04A0h  
04C0h  
0500h  
05A0h  
05C0h  
05E0h  
0600h  
0620h  
0640h  
0680h  
07C0h  
0800h  
08C0h  
0980h  
09C0h  
0A00h  
0A80h  
0E00h  
0E80h  
0EC0h  
0EE0h  
0F00h  
END ADDRESS  
011Fh  
013Fh  
014Fh  
0157h  
0159h  
015Dh  
016Fh  
019Fh  
01B1h  
033Fh  
036Fh  
03AFh  
03EFh  
042Fh  
046Fh  
04BFh  
04EFh  
056Fh  
05AFh  
05DFh  
05FFh  
061Fh  
063Fh  
066Fh  
06AFh  
07EFh  
089Fh  
08CFh  
09AFh  
09CFh  
0A5Fh  
0AFFh  
0E7Fh  
0EBFh  
0EDFh  
0EFFh  
0F1Fh  
FRAM Control (see Table 6-51)  
CRC (see Table 6-52)  
RAM Control (see Table 6-53)  
Watchdog (see Table 6-54)  
CS (see Table 6-55)  
SYS (see Table 6-56)  
Shared Reference (see Table 6-57)  
Digital I/O (see Table 6-58)  
TA0 (see Table 6-59)  
TA1 (see Table 6-60)  
TB0 (see Table 6-61)  
TA2 (see Table 6-62)  
TA3 (see Table 6-63)  
RTC_C (see Table 6-64)  
32-Bit Hardware Multiplier (see Table 6-65)  
DMA (see Table 6-66)  
MPU Control (see Table 6-67)  
eUSCI_A0 (see Table 6-68)  
eUSCI_A1 (see Table 6-69)  
eUSCI_A2 (see Table 6-70)  
eUSCI_A3 (see Table 6-71)  
eUSCI_B0 (see Table 6-72)  
eUSCI_B1 (see Table 6-73)  
TA4 (see Table 6-74)  
ADC12_B (see Table 6-75)  
Comparator E (see Table 6-76)  
CRC32 (see Table 6-77)  
AES256 (see Table 6-78)  
LCD_C (see Table 6-79)  
LEA (see Table 6-80)  
SAPH(1) (see Table 6-81)  
SDHS(1) (see Table 6-82)  
UUPS(1) (see Table 6-83)  
HSPLL(1) (see Table 6-84)  
MTIF (see Table 6-85)  
(1) Not available in MSP430FR6037, MSP430FR6035, and MSP430FR60371  
144  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-49. Special Functions Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
ADDRESS  
ADDRESS  
ADDRESS  
Interrupt Enable  
Interrupt Flag  
SFRIE1  
0100h  
0102h  
0104h  
SFRIFG1  
SFRRPCR  
Reset Pin Control  
Table 6-50. PMM Registers  
REGISTER DESCRIPTION  
ACRONYM  
PMM Control 0  
PMMCTL0  
PMMIFG  
0120h  
012Ah  
0130h  
PMM Interrupt Flag  
Power Mode 5 Control 0  
PM5CTL0  
Table 6-51. FRAM Control Registers  
REGISTER DESCRIPTION  
ACRONYM  
FRAM Controller A Control 0  
General Control 0  
FRCTL0  
GCCTL0  
GCCTL1  
0140h  
0144h  
0146h  
General Control 1  
Table 6-52. CRC Registers  
REGISTER DESCRIPTION  
ACRONYM  
CRC Data In  
CRCDI  
0150h  
0152h  
0154h  
0156h  
CRC Data In Reverse Byte  
CRC Initialization and Result  
CRC Result Reverse  
CRCDIRB  
CRCINIRES  
CRCRESR  
Table 6-53. RAM Control Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
RAM Controller Control 0  
RAM Controller Control 1  
RCCTL0  
RCCTL1  
0158h  
015Ah  
Table 6-54. Watchdog Registers  
REGISTER DESCRIPTION  
ACRONYM  
WDTCTL  
ADDRESS  
ADDRESS  
Watchdog Timer Control  
015Ch  
Table 6-55. CS Registers  
REGISTER DESCRIPTION  
ACRONYM  
Clock System Control 0  
Clock System Control 1  
Clock System Control 2  
Clock System Control 3  
Clock System Control 4  
Clock System Control 5  
Clock System Control 6  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
0160h  
0162h  
0164h  
0166h  
0168h  
016Ah  
016Ch  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
145  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-56. SYS Registers  
REGISTER DESCRIPTION  
ACRONYM  
SYSCTL  
ADDRESS  
System Control  
0180h  
0186h  
0188h  
018Ah  
018Ch  
018Eh  
019Ah  
019Ch  
019Eh  
JTAG Mailbox Control  
JTAG Mailbox Input  
JTAG Mailbox Input  
JTAG Mailbox Output  
JTAG Mailbox Output  
User NMI Vector Generator  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSUNIV  
System NMI Vector Generator  
Reset Vector Generator  
SYSSNIV  
SYSRSTIV  
Table 6-57. Shared Reference Registers  
REGISTER DESCRIPTION  
ACRONYM  
REFCTL0  
ADDRESS  
ADDRESS  
REF Control 0  
01B0h  
Table 6-58. Digital I/O Registers  
REGISTER DESCRIPTION  
ACRONYM  
Port A Input  
PAIN  
0200h  
0200h  
0201h  
0202h  
0202h  
0203h  
0204h  
0204h  
0205h  
0206h  
0206h  
0207h  
020Ah  
020Ah  
020Bh  
020Ch  
020Ch  
020Dh  
020Eh  
0216h  
0216h  
0217h  
0218h  
0218h  
0219h  
021Ah  
021Ah  
021Bh  
021Ch  
021Ch  
021Dh  
Port 1 Input  
P1IN  
Port 2 Input  
P2IN  
Port A Output  
PAOUT  
P1OUT  
P2OUT  
PADIR  
P1DIR  
P2DIR  
PAREN  
P1REN  
P2REN  
PASEL0  
P1SEL0  
P2SEL0  
PASEL1  
P1SEL1  
P2SEL1  
P1IV  
Port 1 Output  
Port 2 Output  
Port A Direction  
Port 1 Direction  
Port 2 Direction  
Port A Resistor Enable  
Port 1 Resistor Enable  
Port 2 Resistor Enable  
Port A Select 0  
Port 1 Select 0  
Port 2 Select 0  
Port A Select 1  
Port 1 Select 1  
Port 2 Select 1  
Port 1 Interrupt Vector  
Port A Complement Select  
Port 1 Complement Select  
Port 2 Complement Select  
Port A Interrupt Edge Select  
Port 1 Interrupt Edge Select  
Port 2 Interrupt Edge Select  
Port A Interrupt Enable  
Port 1 Interrupt Enable  
Port 2 Interrupt Enable  
Port A Interrupt Flag  
Port 1 Interrupt Flag  
Port 2 Interrupt Flag  
PASELC  
P1SELC  
P2SELC  
PAIES  
P1IES  
P2IES  
PAIE  
P1IE  
P2IE  
PAIFG  
P1IFG  
P2IFG  
146  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-58. Digital I/O Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
Port 2 Interrupt Vector  
Port B Input  
P2IV  
021Eh  
0220h  
0220h  
0221h  
0222h  
0222h  
0223h  
0224h  
0224h  
0225h  
0226h  
0226h  
0227h  
022Ah  
022Ah  
022Bh  
022Ch  
022Ch  
022Dh  
022Eh  
0236h  
0236h  
0237h  
0238h  
0238h  
0239h  
023Ah  
023Ah  
023Bh  
023Ch  
023Ch  
023Dh  
023Eh  
0240h  
0240h  
0241h  
0242h  
0242h  
0243h  
0244h  
0244h  
0245h  
0246h  
0246h  
0247h  
024Ah  
024Ah  
PBIN  
Port 3 Input  
P3IN  
Port 4 Input  
P4IN  
Port B Output  
PBOUT  
P3OUT  
P4OUT  
PBDIR  
P3DIR  
P4DIR  
PBREN  
P3REN  
P4REN  
PBSEL0  
P3SEL0  
P4SEL0  
PBSEL1  
P3SEL1  
P4SEL1  
P3IV  
Port 3 Output  
Port 4 Output  
Port B Direction  
Port 3 Direction  
Port 4 Direction  
Port B Resistor Enable  
Port 3 Resistor Enable  
Port 4 Resistor Enable  
Port B Select 0  
Port 3 Select 0  
Port 4 Select 0  
Port B Select 1  
Port 3 Select 1  
Port 4 Select 1  
Port 3 Interrupt Vector  
Port B Complement Select  
Port 3 Complement Select  
Port 4 Complement Select  
Port B Interrupt Edge Select  
Port 3 Interrupt Edge Select  
Port 4 Interrupt Edge Select  
Port B Interrupt Enable  
Port 3 Interrupt Enable  
Port 4 Interrupt Enable  
Port B Interrupt Flag  
Port 3 Interrupt Flag  
Port 4 Interrupt Flag  
Port 4 Interrupt Vector  
Port C Input  
PBSELC  
P3SELC  
P4SELC  
PBIES  
P3IES  
P4IES  
PBIE  
P3IE  
P4IE  
PBIFG  
P3IFG  
P4IFG  
P4IV  
PCIN  
Port 5 Input  
P5IN  
Port 6 Input  
P6IN  
Port C Output  
PCOUT  
P5OUT  
P6OUT  
PCDIR  
P5DIR  
P6DIR  
PCREN  
P5REN  
P6REN  
PCSEL0  
P5SEL0  
Port 5 Output  
Port 6 Output  
Port C Direction  
Port 5 Direction  
Port 6 Direction  
Port C Resistor Enable  
Port 5 Resistor Enable  
Port 6 Resistor Enable  
Port C Select 0  
Port 5 Select 0  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
147  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-58. Digital I/O Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
P6SEL0  
ADDRESS  
Port 6 Select 0  
024Bh  
024Ch  
024Ch  
024Dh  
024Eh  
0256h  
0256h  
0257h  
0258h  
0258h  
0259h  
025Ah  
025Ah  
025Bh  
025Ch  
025Ch  
025Dh  
025Eh  
0260h  
0260h  
0261h  
0262h  
0262h  
0263h  
0264h  
0264h  
0265h  
0266h  
0266h  
0267h  
026Ah  
026Ah  
026Bh  
026Ch  
026Ch  
026Dh  
026Eh  
0276h  
0276h  
0277h  
0278h  
0278h  
0279h  
027Ah  
027Ah  
027Bh  
027Ch  
Port C Select 1  
PCSEL1  
P5SEL1  
P6SEL1  
P5IV  
Port 5 Select 1  
Port 6 Select 1  
Port 5 Interrupt Vector  
Port C Complement Select  
Port 5 Complement Select  
Port 6 Complement Select  
Port C Interrupt Edge Select  
Port 5 Interrupt Edge Select  
Port 6 Interrupt Edge Select  
Port C Interrupt Enable  
Port 5 Interrupt Enable  
Port 6 Interrupt Enable  
Port C Interrupt Flag  
Port 5 Interrupt Flag  
Port 6 Interrupt Flag  
Port 6 Interrupt Vector  
Port D Input  
PCSELC  
P5SELC  
P6SELC  
PCIES  
P5IES  
P6IES  
PCIE  
P5IE  
P6IE  
PCIFG  
P5IFG  
P6IFG  
P6IV  
PDIN  
Port 7 Input  
P7IN  
Port 8 Input  
P8IN  
Port D Output  
PDOUT  
P7OUT  
P8OUT  
PDDIR  
P7DIR  
P8DIR  
PDREN  
P7REN  
P8REN  
PDSEL0  
P7SEL0  
P8SEL0  
PDSEL1  
P7SEL1  
P8SEL1  
P7IV  
Port 7 Output  
Port 8 Output  
Port D Direction  
Port 7 Direction  
Port 8 Direction  
Port D Resistor Enable  
Port 7 Resistor Enable  
Port 8 Resistor Enable  
Port D Select 0  
Port 7 Select 0  
Port 8 Select 0  
Port D Select 1  
Port 7 Select 1  
Port 8 Select 1  
Port 7 Interrupt Vector  
Port D Complement Select  
Port 7 Complement Select  
Port 8 Complement Select  
Port D Interrupt Edge Select  
Port 7 Interrupt Edge Select  
Port 8 Interrupt Edge Select  
Port D Interrupt Enable  
Port 7 Interrupt Enable  
Port 8 Interrupt Enable  
Port D Interrupt Flag  
PDSELC  
P7SELC  
P8SELC  
PDIES  
P7IES  
P8IES  
PDIE  
P7IE  
P8IE  
PDIFG  
148  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-58. Digital I/O Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
Port 7 Interrupt Flag  
Port 8 Interrupt Flag  
Port 8 Interrupt Vector  
Port E Input  
P7IFG  
P8IFG  
P8IV  
027Ch  
027Dh  
027Eh  
0280h  
0280h  
0282h  
0282h  
0284h  
0284h  
0286h  
0286h  
028Ah  
028Ah  
028Ch  
028Ch  
028Eh  
0296h  
0296h  
0298h  
0298h  
029Ah  
029Ah  
029Ch  
029Ch  
0320h  
0322h  
0324h  
0326h  
032Ah  
032Ch  
0336h  
PEIN  
Port 9 Input  
P9IN  
Port E Output  
PEOUT  
P9OUT  
PEDIR  
P9DIR  
PEREN  
P9REN  
PESEL0  
P9SEL0  
PESEL1  
P9SEL1  
P9IV  
Port 9 Output  
Port E Direction  
Port 9 Direction  
Port E Resistor Enable  
Port 9 Resistor Enable  
Port E Select 0  
Port 9 Select 0  
Port E Select 1  
Port 9 Select 1  
Port 9 Interrupt Vector  
Port E Complement Select  
Port 9 Complement Select  
Port E Interrupt Edge Select  
Port 9 Interrupt Edge Select  
Port E Interrupt Enable  
Port 9 Interrupt Enable  
Port E Interrupt Flag  
Port 9 Interrupt Flag  
Port J Input  
PESELC  
P9SELC  
PEIES  
P9IES  
PEIE  
P9IE  
PEIFG  
P9IFG  
PJIN  
Port J Output  
PJOUT  
PJDIR  
PJREN  
PJSEL0  
PJSEL1  
PJSELC  
Port J Direction  
Port J Resistor Enable  
Port J Select 0  
Port J Select 1  
Port J Complement Select  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
149  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-59. TA0 Registers  
REGISTER DESCRIPTION  
ACRONYM  
TA0CTL  
ADDRESS  
Timer_A0 Control  
0340h  
0342h  
0344h  
0346h  
0350h  
0352h  
0354h  
0356h  
0360h  
036Eh  
Timer_A0 Capture/Compare Control  
Timer_A0 Capture/Compare Control  
Timer_A0 Capture/Compare Control  
Timer_A0 Counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
Timer_A0 Capture/Compare  
Timer_A0 Capture/Compare  
Timer_A0 Capture/Compare  
Timer_A0 Expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
Timer_A0 Interrupt Vector  
TA0IV  
Table 6-60. TA1 Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
Timer_A1 Control  
TA1CTL  
0380h  
0382h  
0384h  
0386h  
0390h  
0392h  
0394h  
0396h  
03A0h  
03AEh  
Timer_A1 Capture/Compare Control  
Timer_A1 Capture/Compare Control  
Timer_A1 Capture/Compare Control  
Timer_A1 Counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Timer_A1 Capture/Compare  
Timer_A1 Capture/Compare  
Timer_A1 Capture/Compare  
Timer_A1 Expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
Timer_A1 Interrupt Vector  
TA1IV  
Table 6-61. TB0 Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
Timer_B0 Control  
TB0CTL  
03C0h  
03C2h  
03C4h  
03C6h  
03C8h  
03CAh  
03CCh  
03CEh  
03D0h  
03D2h  
03D4h  
03D6h  
03D8h  
03DAh  
03DCh  
03DEh  
03E0h  
03EEh  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Capture/Compare Control  
Timer_B0 Counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Capture/Compare  
Timer_B0 Expansion 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Timer_B0 Interrupt Vector  
TB0IV  
150  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-62. TA2 Registers  
REGISTER DESCRIPTION  
ACRONYM  
TA2CTL  
ADDRESS  
ADDRESS  
ADDRESS  
Timer_A2 Control  
0400h  
0402h  
0404h  
0410h  
0412h  
0414h  
0420h  
042Eh  
Timer_A2 Capture/Compare Control  
Timer_A2 Capture/Compare Control  
Timer_A2 Counter  
TA2CCTL0  
TA2CCTL1  
TA2R  
Timer_A2 Capture/Compare  
Timer_A2 Capture/Compare  
Timer_A2 Expansion 0  
TA2CCR0  
TA2CCR1  
TA2EX0  
TA2IV  
Timer_A2 Interrupt Vector  
Table 6-63. TA3 Registers  
REGISTER DESCRIPTION  
ACRONYM  
Timer_A3 Control  
TA3CTL  
TA3CCTL0  
TA3CCTL1  
TA3R  
0440h  
0442h  
0444h  
0450h  
0452h  
0454h  
0460h  
046Eh  
Timer_A3 Capture/Compare Control  
Timer_A3 Capture/Compare Control  
Timer_A3 Counter  
Timer_A3 Capture/Compare  
Timer_A3 Capture/Compare  
Timer_A3 Expansion 0  
TA3CCR0  
TA3CCR1  
TA3EX0  
TA3IV  
Timer_A3 Interrupt Vector  
Table 6-64. RTC_C Registers  
REGISTER DESCRIPTION  
ACRONYM  
Real-Time Clock Control 0  
RTCCTL0  
RTCCTL13  
RTCOCAL  
RTCTCMP  
RTCPS0CTL  
RTCPS1CTL  
RTCPS  
04A0h  
04A2h  
04A4h  
04A6h  
04A8h  
04AAh  
04ACh  
04ACh  
04ADh  
04AEh  
04B0h  
04B2h  
04B4h  
04B6h  
04B8h  
04BAh  
04BCh  
04BEh  
Real-Time Clock Control 1, 3  
Real-Time Clock Offset Calibration  
Real-Time Clock Temperature Compensation  
Real-Time Clock Prescale Timer 0 Control  
Real-Time Clock Prescale Timer 1 Control  
Real-Time Clock Prescale Timer Counter  
Prescale Timer 0 Counter Value  
Prescale Timer 1 Counter Value  
Real-Time Clock Interrupt Vector  
Real-Time Clock Seconds and Minutes  
Real-Time Clock Hour, Day of Week  
Real-Time Clock Date  
RT0PS  
RT1PS  
RTCIV  
RTCTIM0  
RTCTIM1  
RTCDATE  
RTCYEAR  
RTCAMINHR  
RTCADOWDAY  
BIN2BCD  
BCD2BIN  
Real-Time Clock Year  
Real-Time Clock Minute and Hour  
Real-Time Clock Alarm Day of Week and Day  
Binary-to-BCD Conversion  
BCD-to-Binary Conversion  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
151  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-65. 32-Bit Hardware Multiplier Registers  
REGISTER DESCRIPTION  
16-bit operand one – multiply  
ACRONYM  
ADDRESS  
MPY  
04C0h  
04C2h  
04C4h  
04C6h  
04C8h  
04CAh  
04CCh  
04CEh  
04D0h  
04D2h  
04D4h  
04D6h  
04D8h  
04DAh  
04DCh  
04DEh  
04E0h  
04E2h  
04E4h  
04E6h  
04E8h  
04EAh  
04ECh  
16-bit operand one – signed multiply  
16-bit operand one – multiply accumulate  
16-bit operand one – signed multiply accumulate  
16-bit operand two  
MPYS  
MAC  
MACS  
OP2  
16x16-bit result low word  
RESLO  
RESHI  
16x16-bit result high word  
16x16-bit sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply – low word  
32-bit operand 1 – multiply – high word  
32-bit operand 1 – signed multiply – low word  
32-bit operand 1 – signed multiply – high word  
32-bit operand 1 – multiply accumulate – low word  
32-bit operand 1 – multiply accumulate – high word  
32-bit operand 1 – signed multiply accumulate – low word  
32-bit operand 1 – signed multiply accumulate – high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32x32-bit result 0 – least significant word  
32x32-bit result 1  
RES0  
RES1  
32x32-bit result 2  
RES2  
32x32-bit result 3 – most significant word  
MPY32 control 0  
RES3  
MPY32CTL0  
152  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-66. DMA Registers  
REGISTER DESCRIPTION  
ACRONYM  
DMACTL0  
ADDRESS  
DMA Control 0  
0500h  
0502h  
0504h  
0508h  
050Eh  
0510h  
0512h  
0516h  
051Ah  
0520h  
0522h  
0526h  
052Ah  
0530h  
0532h  
0536h  
053Ah  
0540h  
0542h  
0546h  
054Ah  
0550h  
0552h  
0556h  
055Ah  
0560h  
0562h  
0566h  
056Ah  
DMA Control 1  
DMACTL1  
DMACTL2  
DMACTL4  
DMAIV  
DMA Control 2  
DMA Control 4  
DMA Interrupt Vector  
DMA Channel 0 Control  
DMA0CTL  
DMA0SA  
DMA0DA  
DMA0SZ  
DMA1CTL  
DMA1SA  
DMA1DA  
DMA1SZ  
DMA2CTL  
DMA2SA  
DMA2DA  
DMA2SZ  
DMA3CTL  
DMA3SA  
DMA3DA  
DMA3SZ  
DMA4CTL  
DMA4SA  
DMA4DA  
DMA4SZ  
DMA5CTL  
DMA5SA  
DMA5DA  
DMA5SZ  
DMA Channel 0 Source Address  
DMA Channel 0 Destination Address  
DMA Channel 0 Transfer Size  
DMA Channel 1 Control  
DMA Channel 1 Source Address  
DMA Channel 1 Destination Address  
DMA Channel 1 Transfer Size  
DMA Channel 2 Control  
DMA Channel 2 Source Address  
DMA Channel 2 Destination Address  
DMA Channel 2 Transfer Size  
DMA Channel 3 Control  
DMA Channel 3 Source Address  
DMA Channel 3 Destination Address  
DMA Channel 3 Transfer Size  
DMA Channel 4 Control  
DMA Channel 4 Source Address  
DMA Channel 4 Destination Address  
DMA Channel 4 Transfer Size  
DMA Channel 5 Control  
DMA Channel 5 Source Address  
DMA Channel 5 Destination Address  
DMA Channel 5 Transfer Size  
Table 6-67. MPU Control Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
Memory Protection Unit Control 0  
MPUCTL0  
05A0h  
05A2h  
05A4h  
05A6h  
05A8h  
05AAh  
05ACh  
05AEh  
Memory Protection Unit Control 1  
MPUCTL1  
Memory Protection Unit Segmentation Border 2 Register  
Memory Protection Unit Segmentation Border 1 Register  
Memory Protection Unit Segmentation Access Management Register  
Memory Protection Unit IP Control 0 Register  
MPUSEGB2  
MPUSEGB1  
MPUSAM  
MPUIPC0  
Memory Protection Unit IP Encapsulation Segment Border 2 Register  
Memory Protection Unit IP Encapsulation Segment Border 1 Register  
MPUIPSEGB2  
MPUIPSEGB1  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
153  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-68. eUSCI_A0 Registers  
REGISTER DESCRIPTION  
eUSCI_A0 Control Word Register 0  
ACRONYM  
UCA0CTLW0  
ADDRESS  
05C0h  
05C2h  
05C6h  
05C8h  
05CAh  
05CCh  
05CEh  
05D0h  
05D2h  
05DAh  
05DCh  
05DEh  
eUSCI_A0 Control Word Register 1  
eUSCI_A0 Baud Rate Control Word  
eUSCI_A0 Modulation Control Word  
eUSCI_A0 Status Register  
UCA0CTLW1  
UCA0BRW  
UCA0MCTLW  
UCA0STATW  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRCTL  
UCA0IE  
eUSCI_A0 Receive Buffer  
eUSCI_A0 Transmit Buffer  
eUSCI_A0 Auto Baud Rate Control  
eUSCI_A0 IrDA Control Word  
eUSCI_A0 Interrupt Enable  
eUSCI_A0 Interrupt Flag  
UCA0IFG  
eUSCI_A0 Interrupt Vector  
UCA0IV  
Table 6-69. eUSCI_A1 Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
eUSCI_A1 Control Word Register 0  
eUSCI_A1 Control Word Register 1  
eUSCI_A1 Baud Rate Control Word  
eUSCI_A1 Modulation Control Word  
eUSCI_A1 Status Register  
UCA1CTLW0  
UCA1CTLW1  
UCA1BRW  
UCA1MCTLW  
UCA1STATW  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRCTL  
UCA1IE  
05E0h  
05E2h  
05E6h  
05E8h  
05EAh  
05ECh  
05EEh  
05F0h  
05F2h  
05FAh  
05FCh  
05FEh  
eUSCI_A1 Receive Buffer  
eUSCI_A1 Transmit Buffer  
eUSCI_A1 Auto Baud Rate Control  
eUSCI_A1 IrDA Control Word  
eUSCI_A1 Interrupt Enable  
eUSCI_A1 Interrupt Flag  
UCA1IFG  
eUSCI_A1 Interrupt Vector  
UCA1IV  
Table 6-70. eUSCI_A2 Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
eUSCI_A2 Control Word Register 0  
eUSCI_A2 Control Word Register 1  
eUSCI_A2 Baud Rate Control Word  
eUSCI_A2 Modulation Control Word  
eUSCI_A2 Status Register  
UCA2CTLW0  
UCA2CTLW1  
UCA2BRW  
UCA2MCTLW  
UCA2STATW  
UCA2RXBUF  
UCA2TXBUF  
UCA2ABCTL  
UCA2IRCTL  
UCA2IE  
0600h  
0602h  
0606h  
0608h  
060Ah  
060Ch  
060Eh  
0610h  
0612h  
061Ah  
061Ch  
061Eh  
eUSCI_A2 Receive Buffer  
eUSCI_A2 Transmit Buffer  
eUSCI_A2 Auto Baud Rate Control  
eUSCI_A2 IrDA Control Word  
eUSCI_A2 Interrupt Enable  
eUSCI_A2 Interrupt Flag  
UCA2IFG  
eUSCI_A2 Interrupt Vector  
UCA2IV  
154  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-71. eUSCI_A3 Registers  
REGISTER DESCRIPTION  
ACRONYM  
UCA3CTLW0  
ADDRESS  
eUSCI_A3 Control Word Register 0  
eUSCI_A3 Control Word Register 1  
eUSCI_A3 Baud Rate Control Word  
eUSCI_A3 Modulation Control Word  
eUSCI_A3 Status Register  
0620h  
0622h  
0626h  
0628h  
062Ah  
062Ch  
062Eh  
0630h  
0632h  
063Ah  
063Ch  
063Eh  
UCA3CTLW1  
UCA3BRW  
UCA3MCTLW  
UCA3STATW  
UCA3RXBUF  
UCA3TXBUF  
UCA3ABCTL  
UCA3IRCTL  
UCA3IE  
eUSCI_A3 Receive Buffer  
eUSCI_A3 Transmit Buffer  
eUSCI_A3 Auto Baud Rate Control  
eUSCI_A3 IrDA Control Word  
eUSCI_A3 Interrupt Enable  
eUSCI_A3 Interrupt Flag  
UCA3IFG  
eUSCI_A3 Interrupt Vector  
UCA3IV  
Table 6-72. eUSCI_B0 Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
eUSCI_B0 Control Word Register 0  
eUSCI_B0 Control Word Register 1  
eUSCI_B0 Baud Rate Control Word  
eUSCI_B0 Status Register  
UCB0CTLW0  
UCB0CTLW1  
UCB0BRW  
0640h  
0642h  
0646h  
0648h  
064Ah  
064Ch  
064Eh  
0654h  
0656h  
0658h  
065Ah  
065Ch  
065Eh  
0660h  
066Ah  
066Ch  
066Eh  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
eUSCI_B0 Byte Counter Threshold  
eUSCI_B0 Receive Buffer  
eUSCI_B0 Transmit Buffer  
eUSCI_B0 I2C Own Address 0  
eUSCI_B0 I2C Own Address 1  
eUSCI_B0 I2C Own Address 2  
eUSCI_B0 I2C Own Address 3  
eUSCI_B0 I2C Received Address  
eUSCI_B0 I2C Address Mask  
eUSCI_B0 I2C Slave Address  
eUSCI_B0 Interrupt Enable  
eUSCI_B0 Interrupt Flag  
UCB0IFG  
eUSCI_B0 Interrupt Vector  
UCB0IV  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
155  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-73. eUSCI_B1 Registers  
REGISTER DESCRIPTION  
eUSCI_B1 Control Word Register 0  
ACRONYM  
UCB1CTLW0  
ADDRESS  
0680h  
0682h  
0686h  
0688h  
068Ah  
068Ch  
068Eh  
0694h  
0696h  
0698h  
069Ah  
069Ch  
069Eh  
06A0h  
06AAh  
06ACh  
06AEh  
eUSCI_B1 Control Word Register 1  
eUSCI_B1 Baud Rate Control Word  
eUSCI_B1 Status Register  
UCB1CTLW1  
UCB1BRW  
UCB1STATW  
UCB1TBCNT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA0  
UCB1I2COA1  
UCB1I2COA2  
UCB1I2COA3  
UCB1ADDRX  
UCB1ADDMASK  
UCB1I2CSA  
UCB1IE  
eUSCI_B1 Byte Counter Threshold  
eUSCI_B1 Receive Buffer  
eUSCI_B1 Transmit Buffer  
eUSCI_B1 I2C Own Address 0  
eUSCI_B1 I2C Own Address 1  
eUSCI_B1 I2C Own Address 2  
eUSCI_B1 I2C Own Address 3  
eUSCI_B1 I2C Received Address  
eUSCI_B1 I2C Address Mask  
eUSCI_B1 I2C Slave Address  
eUSCI_B1 Interrupt Enable  
eUSCI_B1 Interrupt Flag  
UCB1IFG  
eUSCI_B1 Interrupt Vector  
UCB1IV  
Table 6-74. TA4 Registers  
REGISTER DESCRIPTION  
ACRONYM  
TA4CTL  
ADDRESS  
Timer_A4 Control  
07C0h  
07C2h  
07C4h  
07D0h  
07D2h  
07D4h  
07E0h  
07EEh  
Timer_A4 Capture/Compare Control  
Timer_A4 Capture/Compare Control  
Timer_A4 Counter  
TA4CCTL0  
TA4CCTL1  
TA4R  
Timer_A4 Capture/Compare  
Timer_A4 Capture/Compare  
Timer_A4 Expansion 0  
TA4CCR0  
TA4CCR1  
TA4EX0  
TA4IV  
Timer_A4 Interrupt Vector  
156  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-75. ADC12_B Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADC12CTL0  
ADDRESS  
ADC12_B Control 0  
ADC12_B Control 1  
ADC12_B Control 2  
ADC12_B Control 3  
0800h  
0802h  
0804h  
0806h  
0808h  
080Ah  
080Ch  
080Eh  
0810h  
0812h  
0814h  
0816h  
0818h  
0820h  
0822h  
0824h  
0826h  
0828h  
082Ah  
082Ch  
082Eh  
0830h  
0832h  
0834h  
0836h  
0838h  
083Ah  
083Ch  
083Eh  
0840h  
0842h  
0844h  
0846h  
0848h  
084Ah  
084Ch  
084Eh  
0850h  
0852h  
0854h  
0856h  
0858h  
085Ah  
085Ch  
085Eh  
0860h  
0862h  
ADC12CTL1  
ADC12CTL2  
ADC12CTL3  
ADC12_B Window Comparator Low Threshold Register  
ADC12_B Window Comparator High Threshold Register  
ADC12_B Interrupt Flag 0  
ADC12LO  
ADC12HI  
ADC12IFGR0  
ADC12IFGR1  
ADC12IFGR2  
ADC12IER0  
ADC12_B Interrupt Flag 1  
ADC12_B Interrupt Flag 2  
ADC12_B Interrupt Enable 0  
ADC12_B Interrupt Enable 1  
ADC12_B Interrupt Enable 2  
ADC12_B Interrupt Vector  
ADC12IER1  
ADC12IER2  
ADC12IV  
ADC12_B Memory Control 0  
ADC12_B Memory Control 1  
ADC12_B Memory Control 2  
ADC12_B Memory Control 3  
ADC12_B Memory Control 4  
ADC12_B Memory Control 5  
ADC12_B Memory Control 6  
ADC12_B Memory Control 7  
ADC12_B Memory Control 8  
ADC12_B Memory Control 9  
ADC12_B Memory Control 10  
ADC12_B Memory Control 11  
ADC12_B Memory Control 12  
ADC12_B Memory Control 13  
ADC12_B Memory Control 14  
ADC12_B Memory Control 15  
ADC12_B Memory Control 16  
ADC12_B Memory Control 17  
ADC12_B Memory Control 18  
ADC12_B Memory Control 19  
ADC12_B Memory Control 20  
ADC12_B Memory Control 21  
ADC12_B Memory Control 22  
ADC12_B Memory Control 23  
ADC12_B Memory Control 24  
ADC12_B Memory Control 25  
ADC12_B Memory Control 26  
ADC12_B Memory Control 27  
ADC12_B Memory Control 28  
ADC12_B Memory Control 29  
ADC12_B Memory Control 30  
ADC12_B Memory Control 31  
ADC12_B Memory 0  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MCTL16  
ADC12MCTL17  
ADC12MCTL18  
ADC12MCTL19  
ADC12MCTL20  
ADC12MCTL21  
ADC12MCTL22  
ADC12MCTL23  
ADC12MCTL24  
ADC12MCTL25  
ADC12MCTL26  
ADC12MCTL27  
ADC12MCTL28  
ADC12MCTL29  
ADC12MCTL30  
ADC12MCTL31  
ADC12MEM0  
ADC12MEM1  
ADC12_B Memory 1  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
157  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-75. ADC12_B Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADC12MEM2  
ADDRESS  
ADC12_B Memory 2  
ADC12_B Memory 3  
ADC12_B Memory 4  
ADC12_B Memory 5  
ADC12_B Memory 6  
ADC12_B Memory 7  
ADC12_B Memory 8  
ADC12_B Memory 9  
ADC12_B Memory 10  
ADC12_B Memory 11  
ADC12_B Memory 12  
ADC12_B Memory 13  
ADC12_B Memory 14  
ADC12_B Memory 15  
ADC12_B Memory 16  
ADC12_B Memory 17  
ADC12_B Memory 18  
ADC12_B Memory 19  
ADC12_B Memory 20  
ADC12_B Memory 21  
ADC12_B Memory 22  
ADC12_B Memory 23  
ADC12_B Memory 24  
ADC12_B Memory 25  
ADC12_B Memory 26  
ADC12_B Memory 27  
ADC12_B Memory 28  
ADC12_B Memory 29  
ADC12_B Memory 30  
ADC12_B Memory 31  
0864h  
0866h  
0868h  
086Ah  
086Ch  
086Eh  
0870h  
0872h  
0874h  
0876h  
0878h  
087Ah  
087Ch  
087Eh  
0880h  
0882h  
0884h  
0886h  
0888h  
088Ah  
088Ch  
088Eh  
0890h  
0892h  
0894h  
0896h  
0898h  
089Ah  
089Ch  
089Eh  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
ADC12MEM16  
ADC12MEM17  
ADC12MEM18  
ADC12MEM19  
ADC12MEM20  
ADC12MEM21  
ADC12MEM22  
ADC12MEM23  
ADC12MEM24  
ADC12MEM25  
ADC12MEM26  
ADC12MEM27  
ADC12MEM28  
ADC12MEM29  
ADC12MEM30  
ADC12MEM31  
158  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-76. Comparator_E Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
Comparator Control Register 0  
Comparator Control Register 1  
Comparator Control Register 2  
Comparator Control Register 3  
Comparator Interrupt Control  
Comparator Interrupt Vector Word  
CECTL0  
CECTL1  
CECTL2  
CECTL3  
CEINT  
08C0h  
08C2h  
08C4h  
08C6h  
08CCh  
08CEh  
CEIV  
Table 6-77. CRC32 Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
CRC32 Data Input Word 0  
CRC32 Data Input Word 1  
CRC32 Data In Reverse Word 1  
CRC32 Data In Reverse Word 0  
CRC32 Initialization and Result Word 0  
CRC32 Initialization and Result Word 1  
CRC32 Result Reverse Word 1  
CRC32 Result Reverse Word 0  
CRC16 Data Input  
CRC32DIW0  
0980h  
0982h  
0984h  
0986h  
0988h  
098Ah  
098Ch  
098Eh  
0990h  
0996h  
0998h  
099Eh  
CRC32DIW1  
CRC32DIRBW1  
CRC32DIRBW0  
CRC32INIRESW0  
CRC32INIRESW1  
CRC32RESRW1  
CRC32RESRW0  
CRC16DIW0  
CRC16 Data In Reverse  
CRC16DIRBW0  
CRC16INIRESW0  
CRC16RESRW0  
CRC16 Init and Result  
CRC16 Result Reverse  
Table 6-78. AES256 Registers  
REGISTER DESCRIPTION  
ACRONYM  
AESACTL0  
ADDRESS  
AES Accelerator Control 0  
AES Accelerator Control 1  
AES Accelerator Status  
09C0h  
09C2h  
09C4h  
09C6h  
09C8h  
09CAh  
09CCh  
09CEh  
AESACTL1  
AESASTAT  
AESAKEY  
AESADIN  
AES Accelerator Key  
AES Accelerator Data In  
AES Accelerator Data Out  
AES Accelerator XORed Data In  
AES Accelerator XORed Data In  
AESADOUT  
AESAXDIN  
AESAXIN  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
159  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-79. LCD_C Registers  
REGISTER DESCRIPTION  
ACRONYM  
LCDCCTL0  
ADDRESS  
LCD_C control 0  
0A00h  
0A02h  
0A04h  
0A06h  
0A08h  
0A0Ah  
0A0Ch  
0A0Eh  
0A10h  
0A12h  
0A1Eh  
LCD_C control 1  
LCDCCTL1  
LCD_C blinking control  
LCD_C memory control  
LCD_C Voltage Control  
LCD_C port control 0  
LCD_C port control 1  
LCDCBLKCTL  
LCDCMEMCTL  
LCDCVCTL  
LCDCPCTL0  
LCDCPCTL1  
LCDCPCTL2  
LCDCPCTL3  
LCDCCPCTL  
LCDCIV  
LCD_C port control 2 (256 segments)  
LCD_C port control 3 (384 segments)  
LCD_C charge pump control  
LCD_C interrupt vector  
LCDMX = 0 ... 4  
LCD memory 1  
LCDM1  
0A20h  
0A21h  
0A22h  
0A23h  
0A24h  
0A25h  
0A26h  
0A27h  
0A28h  
0A29h  
0A2Ah  
0A2Bh  
0A2Ch  
0A2Dh  
0A2Eh  
0A2Fh  
0A30h  
0A31h  
0A32h  
0A33h  
0A40h  
0A41h  
0A42h  
0A43h  
0A44h  
0A45h  
0A46h  
0A47h  
0A48h  
0A49h  
0A4Ah  
0A4Bh  
0A4Ch  
0A4Dh  
0A4Eh  
LCD memory 2  
LCDM2  
LCD memory 3  
LCDM3  
LCD memory 4  
LCDM4  
LCD memory 5  
LCDM5  
LCD memory 6  
LCDM6  
LCD memory 7  
LCDM7  
LCD memory 8  
LCDM8  
LCD memory 9  
LCDM9  
LCD memory 10  
LCDM10  
LCD memory 11  
LCDM11  
LCD memory 12  
LCDM12  
LCD memory 13  
LCDM13  
LCD memory 14  
LCDM14  
LCD memory 15  
LCDM15  
LCD memory 16  
LCDM16  
LCD memory 17  
LCDM17  
LCD memory 18  
LCDM18  
LCD memory 19  
LCDM19  
LCD memory 20  
LCDM20  
LCD blinking memory 1  
LCD blinking memory 2  
LCD blinking memory 3  
LCD blinking memory 4  
LCD blinking memory 5  
LCD blinking memory 6  
LCD blinking memory 7  
LCD blinking memory 8  
LCD blinking memory 9  
LCD blinking memory 10  
LCD blinking memory 11  
LCD blinking memory 11  
LCD blinking memory 13  
LCD blinking memory 14  
LCD blinking memory 15  
LCDM33_LCDBM1  
LCDM34_LCDBM2  
LCDM35_LCDBM3  
LCDM36_LCDBM4  
LCDM37_LCDBM5  
LCDM38_LCDBM6  
LCDM39_LCDBM7  
LCDM40_LCDBM8  
LCDM41_LCDBM9  
LCDM42_LCDBM10  
LCDM43_LCDBM11  
LCDM44_LCDBM12  
LCDM45_LCDBM13  
LCDM46_LCDBM14  
LCDM47_LCDBM15  
160  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-79. LCD_C Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
LCD blinking memory 16  
LCD blinking memory 17  
LCD blinking memory 18  
LCD blinking memory 19  
LCD blinking memory 20  
LCDM48_LCDBM16  
LCDM49_LCDBM17  
LCDM50_LCDBM18  
LCDM51_LCDBM19  
LCDM52_LCDBM20  
0A4Fh  
0A50h  
0A51h  
0A52h  
0A53h  
LCDMX = 5 ... 8  
LCD memory 1  
LCD memory 2  
LCD memory 3  
LCD memory 4  
LCD memory 5  
LCD memory 6  
LCD memory 7  
LCD memory 8  
LCD memory 9  
LCD memory 10  
LCD memory 11  
LCD memory 12  
LCD memory 13  
LCD memory 14  
LCD memory 15  
LCD memory 16  
LCD memory 17  
LCD memory 18  
LCD memory 19  
LCD memory 20  
LCD memory 21  
LCD memory 22  
LCD memory 23  
LCD memory 24  
LCD memory 25  
LCD memory 26  
LCD memory 27  
LCD memory 28  
LCD memory 29  
LCD memory 30  
LCD memory 31  
LCD memory 32  
LCD memory 33  
LCD memory 34  
LCD memory 35  
LCD memory 36  
LCDM1  
0A20h  
0A21h  
0A22h  
0A23h  
0A24h  
0A25h  
0A26h  
0A27h  
0A28h  
0A29h  
0A2Ah  
0A2Bh  
0A2Ch  
0A2Dh  
0A2Eh  
0A2Fh  
0A30h  
0A31h  
0A32h  
0A33h  
0A34h  
0A35h  
0A36h  
0A37h  
0A38h  
0A39h  
0A3Ah  
0A3Bh  
0A3Ch  
0A3Dh  
0A3Eh  
0A3Fh  
0A40h  
0A41h  
0A42h  
0A43h  
LCDM2  
LCDM3  
LCDM4  
LCDM5  
LCDM6  
LCDM7  
LCDM8  
LCDM9  
LCDM10  
LCDM11  
LCDM12  
LCDM13  
LCDM14  
LCDM15  
LCDM16  
LCDM17  
LCDM18  
LCDM19  
LCDM20  
LCDM21  
LCDM22  
LCDM23  
LCDM24  
LCDM25  
LCDM26  
LCDM27  
LCDM28  
LCDM29  
LCDM30  
LCDM31  
LCDM32  
LCDM33_LCDBM1  
LCDM34_LCDBM2  
LCDM35_LCDBM3  
LCDM36_LCDBM4  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
161  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-80. LEA Registers  
REGISTER DESCRIPTION  
ACRONYM  
LEACAP  
ADDRESS  
LEA Capability Register  
Configuration Register 0  
Configuration Register 1  
Configuration Register 2  
Memory Bottom Register  
Memory Top Register  
Code Memory Access  
Code Memory Control  
LEA Command Status  
LEA Source 1 Status  
LEA Source 0 Status  
LEA Result Status  
0A80h  
0A84h  
0A88h  
0A8Ch  
0A90h  
0A94h  
0A98h  
0A9Ch  
0AA8h  
0AACh  
0AB0h  
0AB4h  
0AC0h  
0AC4h  
0AC8h  
0ACCh  
0AD0h  
0AF0h  
0AF4h  
0AF8h  
0AFCh  
LEACNF0  
LEACNF1  
LEACNF2  
LEAMB  
LEAMT  
LEACMA  
LEACMCTL  
LEACMDSTAT  
LEAS1STAT  
LEAS0STAT  
LEADSTSTAT  
LEAPMCTL  
LEAPMDST  
LEAPMS1  
LEAPMS0  
LEAPMCB  
LEAIFGSET  
LEAIE  
PM Control Register  
PM Result Register  
PM Source 1 Register  
PM Source 0 Register  
PM Command Buffer  
Interrupt Flag and Set  
Interrupt Enable  
Interrupt Flag and Clear  
Interrupt Vector  
LEAIFG  
LEAIV  
162  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-81. SAPH Registers  
REGISTER DESCRIPTION  
ACRONYM  
SAPHIIDX  
ADDRESS  
Interrupt Index  
0E00h  
0E02h  
0E04h  
0E06h  
0E08h  
0E0Ah  
0E0Ch  
0E0Eh  
0E10h  
0E12h  
0E14h  
0E16h  
0E20h  
0E22h  
0E24h  
0E26h  
0E28h  
0E2Ah  
0E2Ch  
0E2Eh  
0E30h  
0E34h  
0E40h  
0E42h  
0E44h  
0E46h  
0E48h  
0E60h  
0E62h  
0E64h  
0E66h  
0E68h  
0E6Ah  
0E6Eh  
0E70h  
0E72h  
0E74h  
0E76h  
0E78h  
0E7Ah  
0E7Ch  
0E7Eh  
Masked Interrupt Satus  
Raw Interrupt Status  
Interrupt Mask  
SAPHMIS  
SAPHRIS  
SAPHIMSC  
Interrupt Clear  
SAPHICR  
Interrupt Set  
SAPHISR  
Module-Descriptor Low Word  
SAPHDESCLO  
SAPHDESCHI  
SAPHKEY  
Module-Descriptor High Word  
Key  
Physical Interface Output Control #0  
Physical Interface Output Control #1  
Physical Interface Output Function Select  
Channel 0 Pull UpTrim  
Channel 0 Pull DownTrim  
Channel 0 Termination Trim  
Channel 1 Pull UpTrim  
Channel 1 Pull DownTrim  
Channel 1 Termination Trim  
Mode Configuration Register  
Trim Access Control  
SAPHOCTL0  
SAPHOCTL1  
SAPHOSEL  
SAPHCH0PUT  
SAPHCH0PDT  
SAPHCH0TT  
SAPHCH1PUT  
SAPHCH1PDT  
SAPHCH1TT  
SAPHMCNF  
SAPHTACTL  
SAPHICTL0  
SAPHBCTL  
Physical Interface Input Control #0  
Bias Control  
PPG Count  
SAPHPGC  
Pulse Generator Low Period  
Pulse Generator High Period  
PPG Control  
SAPHPGLPER  
SAPHPGHPER  
SAPHPGCTL  
SAPHPPGTRIG  
SAPHASCTL0  
SAPHASCTL1  
SAPHASQTRIG  
SAPHAPOL  
PPG Software Trigger  
A-SEQ control 0  
A-SEQ control 1  
ASQ Software Trigger  
ASQ ping output polarity  
ASQ ping pause level  
SAPHAPLEV  
SAPHAPHIZ  
SAPHATM_A  
SAPHATM_B  
SAPHATM_C  
SAPHATM_D  
SAPHATM_E  
SAPHATM_F  
SAPHTBCTL  
SAPHATIMLO  
SAPHATIMHI  
ASQ ping pause impedance  
A-SEQ start to 1st ping  
ASQ start to ADC arm  
Count for the TIMEMARK C Event  
ASQ start to ADC trig  
ASQ start to restart  
ASQ start to time-out  
Time Base Control  
Acquisition Timer Low Part  
Acquisition Timer High Part  
Copyright © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
163  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-82. SDHS Registers(1)  
REGISTER DESCRIPTION  
ACRONYM  
SDHSIIDX  
ADDRESS  
Interrupt Index Register  
0E80h  
0E82h  
0E84h  
0E86h  
0E88h  
0E8Ah  
0E8Ch  
0E8Eh  
0E90h  
0E92h  
0E94h  
0E96h  
0E98h  
0E9Ah  
0E9Ch  
0E9Eh  
0EA2h  
0EA4h  
0EA6h  
0EA8h  
Masked Interrupt Status and Clear Register  
Raw Interrupt Status  
SDHSMIS  
SDHSRIS  
Interrupt Mask Register  
SDHSIMSC  
SDHSICR  
Interrupt Clear  
Interrupt Set Register  
SDHSISR  
SDHS Descriptor Register L  
SDHS Descriptor Register H  
SDHS Control Register 0  
SDHSDESCLO  
SDHSDESCHI  
SDHSCTL0  
SDHSCTL1  
SDHSCTL2  
SDHSCTL3  
SDHSCTL4  
SDHSCTL5  
SDHSCTL6  
SDHSCTL7  
SDHSDT  
SDHS Control Register 1  
SDHS Control Register 2  
SDHS Control Register 3  
SDHS Control Register 4  
SDHS Control Register 5  
SDHS Control Register 6  
SDHS Control Register 7  
SDHS Data Converstion Register  
SDHS Window Comparator High Threshold Register  
SDHS Window Comparator Low Threshold Register  
DTC destination address  
SDHSWINHITH  
SDHSWINLOTH  
SDHSDTCDA  
(1) Not available in MSP430FR6037, MSP430FR6035, and MSP430FR60371  
Table 6-83. UUPS Registers(1)  
REGISTER DESCRIPTION  
ACRONYM  
UUPSIIDX  
ADDRESS  
Interrupt Index Register  
Masked Interrupt Status  
Raw Interrupt Status  
Interrupt Mask Register  
Interrupt Clear  
0EC0h  
0EC2h  
0EC4h  
0EC6h  
0EC8h  
0ECAh  
0ECCh  
0ECEh  
0ED0h  
UUPSMIS  
UUPSRIS  
UUPSIMSC  
UUPSICR  
Interrupt Flag Set  
UUPSISR  
UUPS Descriptor Register L  
UUPS Descriptor Register H  
UUPS Control  
UUPSDESCLO  
UUPSDESCHI  
UUPSCTL  
(1) Not available in MSP430FR6037, MSP430FR6035, and MSP430FR60371  
164  
Detailed Description  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 6-84. HSPLL Registers(1)  
REGISTER DESCRIPTION  
ACRONYM  
HSPLLIIDX  
ADDRESS  
Interrupt Index Register  
Masked Interrupt Status  
Raw Interrupt Status  
Interrupt Mask Register  
Interrupt Flag Clear  
0EE0h  
0EE2h  
0EE4h  
0EE6h  
0EE8h  
0EEAh  
0EECh  
0EEEh  
0EF0h  
0EF2h  
HSPLLMIS  
HSPLLRIS  
HSPLLIMSC  
HSPLLICR  
Interrupt Flag Set  
HSPLLISR  
HSPLL Descriptor Register L  
HSPLLDESCLO  
HSPLLDESCHI  
HSPLLCTL  
HSPLL Descriptor Register H  
HSPLL Control Register  
USSXT Control Register  
HSPLLUSSXTLCTL  
(1) Not available in MSP430FR6037, MSP430FR6035, and MSP430FR60371  
Table 6-85. MTIF Registers  
REGISTER DESCRIPTION  
Pulse Generator Configuration  
Pulse Generator Value  
ACRONYM  
MTIFPGCNF  
ADDRESS  
0F00h  
0F02h  
0F04h  
0F06h  
0F08h  
0F0Ah  
0F0Ch  
0F0Eh  
0F10h  
MTIFPGKVAL  
MTIFPGCTL  
MTIFPGSR  
MTIFPCCNF  
MTIFPCR  
Pulse Generator Control  
Pulse Generator Status  
Pulse Counter Configuration  
Pulse Counter Value  
Pulse Counter Control  
MTIFPCCTL  
MTIFPCSR  
MTIFTPCTL  
Pulse Counter Status  
Measurement Test Port Control  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
165  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.17 Identification  
6.17.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The  
device-specific errata sheet describes these markings. For links to the errata sheets for the devices in this  
data sheet, see 8.4.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Hardware Revision" entries in the Device Descriptor structure (see 6.15).  
6.17.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific  
errata sheet describes these markings. For links to the errata sheets for the devices in this data sheet, see  
8.4.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Device ID" entries in the Device Descriptor structure.  
6.17.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in  
MSP430 Programming With the JTAG Interface.  
166  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
7 Applications, Implementation, and Layout  
Information in the following Applications section is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI's customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
7.1 Device Connection and Layout Fundamentals  
This section describes the recommended guidelines when designing with the MSP MCU. These guidelines  
are to make sure that the device has proper connections for powering, programming, debugging, and  
optimum analog performance.  
7.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 1-µF plus a 100-nF low-ESR ceramic decoupling capacitor  
to each AVCC and DVCC pin (see 7-1). Higher-value capacitors may be used but can affect supply rail  
ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple  
(within a few millimeters). Additionally, TI recommends separated grounds with a single-point connection  
for better noise isolation from digital to analog circuits on the board and to achieve high analog accuracy.  
DVCC  
Digital Power  
Supply Decoupling  
+
DVSS  
AVCC  
1 µF  
100 nF  
Analog Power  
Supply Decoupling  
+
AVSS  
1 µF  
100 nF  
7-1. Power Supply Decoupling  
For PVCC and PVSS, TI recommends connecting a combination of a 1-µF plus a 22-µF low-ESR ceramic  
decoupling capacitor between the PVCC and PVSS pins and a serial 22-Ω resistor to filter low-frequency  
noise on the supply line (see 7-2).  
22 W  
PVCC  
+
1 nF  
22 µF  
PVSS  
USS module power supply decoupling  
7-2. Power Supply Decoupling for PVCC and PVSS  
7.1.2 External Oscillator (HFXT and LFXT)  
Depending on the device variant (see 3), the device can support a low-frequency crystal (32 kHz) on  
the LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the  
crystal oscillator pins are required.  
版权 © 2017–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
167  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the  
specifications of the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is  
selected. In this case, the associated LFXOUT and HFXOUT pins can be used for other purposes. If they  
are left unused, they must be terminated according to 4.6.  
7-3 shows a typical connection diagram.  
LFXIN  
or  
LFXOUT  
or  
HFXIN  
HFXOUT  
CL1  
CL2  
7-3. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP MCUs.  
7.1.3 USS Oscillator (USSXT)  
Depending on the device variant (see 3), the device with USS module supports a high-frequency  
crystal on the USSXT pins. External bypass capacitors for the crystal oscillator pins are required. Serially  
connect a 22-Ω resistor close to the USSXTOUT pin (see 7-4). The USSXT does not support bypass  
mode, so it is not possible to apply digital clock signals to the USSXTIN pin. Never connect the USSXTIN  
pin to a power supply line (AVCC, DVCC, or PVCC). If the USSXT pins are not used, terminate them  
according to 4.6.  
7-4 shows a typical connection diagram.  
USSXTIN  
USSXTOUT  
22 W  
CL2  
CL1  
7-4. Typical Crystal Connection  
Consider the following items for the USSXT layout:  
Keep the trace of USSXTIN and USSXTOUT as short as possible. If one must be longer than the  
other, keep USSXTIN shorter, because USSXTIN is more sensitive to EMI.  
Make the ground shield open ended without making a loop.  
Use a ground plane to reduce the impedance of the ground trace.  
If USSXT_BOUT is used, keep coupling to USSXTIN and CH0_IN to a minimum.  
If USSXT_BOUT is feeding other clock or device inputs, apply a small capacitor (10 pF) as the line  
termination load at the end of the line. This avoids reflection artifacts on sensitive inputs (for example,  
HFXTIN).  
7-5 shows the recommended PCB layout.  
168  
Applications, Implementation, and Layout  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Plane  
Plane  
Transducer  
Interface  
Area  
Transducer  
Interface  
Area  
Oscillator  
Area  
CL2  
CL1  
Oscillator  
Area  
XTAL  
22R  
XTAL  
22R  
Keep-out area for  
high currents down  
to next GND plane  
Keep-out area for  
high currents down  
to next GND plane  
7-5. USSXT PCB Layout Recommendation  
7.1.4 Transducer Connection to the USS Module  
7-6 shows a typical connection of two transducers to the USS output and input pins. TI recommends  
1% error tolerance for the external termination resistors (Rterm0 and Rterm1) and the AC coupling  
capacitors (Cac0 and Cac1). Typical value of the termination resistors is in the range of 150 to 400 Ω, the  
AC coupling capacitors are 1 to 2 nF. Actual values should be determined to meet the requirements of  
each application.  
Rterm0  
CH0_OUT  
Rterm1  
CH1_OUT  
T0  
T1  
Cac0  
Cac1  
CH1_IN  
CH0_IN  
7-6. Typical Transducer Connection  
7.1.5 Charge Pump Control of Input Multiplexer  
7-7 shows the control logic of the charge pump control of the input multiplexer of CHx_IN. The charge  
pump is enabled as long the SAPH_AMCNF.CPEO is high and during the arming of the SDHS. Use the  
CPDA bit to control the CP during data acquisition.  
版权 © 2017–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
169  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
SAPH_ABCTL.CPDA  
ASQ.acquisition  
ASQ.adc_arming  
Charge  
pump  
enable  
en CP  
SAPH_AMCNF.CPEO  
SDHS.adc_arming  
SDHS.acquisition  
CH0_IN  
CH1_IN  
PGA  
To SDHS  
7-7. Control Of Input Multiplexer  
7.1.6 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or  
MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the  
connections also support the MSP-GANG production programmers, thus providing an easy way to  
program prototype boards, if desired. 7-8 shows the connections between the 14-pin JTAG connector  
and the target device required to support in-system programming and debugging for 4-wire JTAG  
communication. 7-9 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are  
identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-  
FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an  
alternate connection (pin 4 instead of pin 2). The VCC sense feature senses the local VCC present on the  
target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. 图  
7-8 and 7-9 show a jumper block that supports both scenarios of supplying VCC to the target board. If  
this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the jumper  
block. Pins 2 and 4 must not be connected at the same time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User’s  
Guide.  
170  
Applications, Implementation, and Layout  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
AVCC/DVCC  
J1 (see Note A)  
J2 (see Note A)  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,  
make connection J2.  
B. The upper limit for C1 is 2.2 nF when using current TI tools.  
7-8. Signal Connections for 4-Wire JTAG Communication  
版权 © 2017–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
171  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
AVCC/DVCC  
R1  
47 kΩ  
See Note B  
JTAG  
VCC TOOL  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
VCC TARGET  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
See Note B  
Copyright © 2016, Texas Instruments Incorporated  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the  
debug or programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during  
JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with  
the device. The upper limit for C1 is 2.2 nF when using current TI tools.  
7-9. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
7.1.7 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the SFRRPCR  
register.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is  
edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the  
external NMI. When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either  
pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not.  
If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an  
external 47-kΩ pullup resistor to the RST/NMI pin with a 2.2-nF pulldown capacitor. The pulldown  
capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or  
in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers.  
See the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for more information  
on the referenced control registers and bits.  
7.1.8 Unused Pins  
For details on the connection of unused pins, see 4.6.  
172  
Applications, Implementation, and Layout  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
7.1.9 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430  
32-kHz Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC, AVCC, and reference pins if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital  
switching signals such as PWM or JTAG signals away from the oscillator circuit.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
7.1.10 Do's and Don'ts  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up,  
power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the  
limits specified in Section 5.1. Exceeding the specified limits may cause malfunction of the device  
including erroneous writes to RAM and FRAM.  
7.2 Peripheral- and Interface-Specific Design Information  
7.2.1 ADC12_B Peripheral  
7.2.1.1 Partial Schematic  
7-10 shows the recommended connections for the reference input pins.  
AVSS  
VREF+/VEREF+  
Using an  
External  
Positive  
Reference  
+
470 nF  
10 µF  
VEREF-  
Using an  
External  
+
Negative  
Reference  
10 µF  
470 nF  
7-10. ADC12_B Grounding and Noise Considerations  
7.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should  
be followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with  
other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset  
voltages that can add to or subtract from the reference or input voltages of the ADC. The general  
guidelines in 7.1.1 combined with the connections shown in 7-10 prevent these offsets.  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital  
switching or switching power supplies can corrupt the conversion result. A noise-free design using  
separate analog and digital ground planes with a single-point connection is recommend to achieve high  
accuracy.  
7-10 shows the recommended decoupling circuit when an external voltage reference is used. The  
internal reference module has a maximum drive current as specified in the IO(VREF+) specification of the  
REF module.  
版权 © 2017–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
173  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor buffers the reference pin and filter any low-frequency  
ripple. A 470-nF bypass capacitor filters out any high-frequency noise.  
7.2.1.3 Detailed Design Procedure  
For additional design information, see Designing With the MSP430FR58xx, FR59xx, FR68xx, and FR69xx  
ADC.  
7.2.1.4 Layout Guidelines  
Component that are shown in the partial schematic (see 7-10) should be placed as close as possible to  
the respective device pins. Avoid long traces, because they add additional parasitic capacitance,  
inductance, and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM),  
because the high-frequency switching can be coupled into the analog signal.  
If differential mode is used for the ADC12_B, the analog differential input signals must be routed closely  
together to minimize the effect of noise on the resulting signal.  
7.2.2 LCD_C Peripheral  
7.2.2.1 Partial Schematic  
Required LCD connections greatly vary by the type of display that is used (static or multiplexed), whether  
external or internal biasing is used, and whether the on-chip charge pump is employed. Also, there is a  
fair amount of flexibility as to how the segment (Sx) and common (COMx) signals are connected to the  
MCU, which can provide unique benefits. Because LCD connections are application-specific, it is difficult  
to provide a single one-fits-all schematic. However, for examples and how-to circuit design guidance, see  
Designing With MSP430™ MCUs and Segment LCDs.  
7.2.2.2 Design Requirements  
Due to the flexibility of the LCD_C peripheral module to accommodate various segment-based LCDs,  
selecting the correct display for the application in combination with determining specific design  
requirements is often an iterative process. TI strongly recommends reviewing the LCD_C peripheral  
module chapter in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide and  
Designing With MSP430™ MCUs and Segment LCDs during the initial design requirements and decision  
process.  
7.2.2.3 Detailed Design Procedure  
A major component in designing the LCD solution is determining the exact connections between the  
LCD_C peripheral module and the display. Two basic design processes can be employed for this step,  
although in reality often a balanced co-design approach is recommended:  
PCB layout-driven design, optimizing signal routing  
Software-driven design, focusing on optimizing computational overhead  
For a detailed discussion of the design procedure as well as for design information regarding the LCD  
controller input voltage selection including internal and external options, contrast control, and bias  
generation, see Designing With MSP430™ MCUs and Segment LCDs and the LCD_C Controller chapter  
in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
174  
Applications, Implementation, and Layout  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
7.2.2.4 Layout Guidelines  
LCD segment (Sx) and common (COMx) signal traces are continuously switching while the LCD is  
enabled and should, therefore, be kept away from sensitive analog signals such as ADC inputs to prevent  
any noise coupling. TI recommends keeping the LCD signal traces on one side of the PCB grouped  
together in a bus-like fashion. A ground plane beneath the LCD traces and guard traces alongside the  
LCD traces can provide shielding.  
If the internal charge pump of the LCD module is used, place the externally provided capacitor on the  
LCDCAP pin as close as possible to the MCU. Connect the capacitor to the device using a short and  
direct trace and also have a solid connection to the ground plane that supplies the VSS pins of the MCU.  
For an example layouts and a more in-depth discussion, see Designing With MSP430™ MCUs and  
Segment LCDs.  
版权 © 2017–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
175  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
8 器件和文档支持  
8.1 入门和下一步  
有关 MSP 系列微控制器以及开发协助工具和库的更多信息,请访问入门页面。  
8.2 器件命名规则  
为了标示产品开发周期所处的阶段,TI 为所有 MSP MCU 器件的部件号分配了前缀。每个 MSP MCU 商用  
系列产品成员都具有以下两个前缀之一:MSP XMS。这些前缀代表了产品开发的发展阶段,即从工程原  
(XMS) 直到完全合格的生产器件 (MSP)。  
XMS - 实验器件,不一定代表最终器件的电气规格  
MSP - 完全合格的生产器件  
XMS 器件在供货时附带如下免责声明:  
开发中的产品用于内部评估用途。”  
MSP 器件的特性已经全部明确,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书对该器件适  
用。  
预测显示原型器件 (XMS) 的故障率大于标准生产器件。由于这些器件的预计最终使用故障率尚不确定,德  
州仪器 (TI) 建议不要将它们用于任何生产系统。请仅使用合格的生产器件。  
TI 器件的命名规则还包括一个带有器件系列名称的后缀。此后缀表示温度范围、封装类型和配送形式。8-  
1 提供了解读完整器件名称的图例。  
MSP  
430  
FR  
6
0471  
I
PZ  
R
Feature Set  
Processor Family  
Distribution Format  
MCU Platform  
Packaging  
Memory Type  
Temperature Range  
Series  
AES  
Oscillators, LEA  
Optional: BSL  
FRAM  
Processor Family  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
MCU Platform  
Memory Type  
Series  
430 = 16-Bit Low-Power Platform  
FR = FRAM  
6 = FRAM 6 Series up to 16 MHz with LCD  
Feature Set  
First Digit: Feature Second Digit: Oscillators, LEA Third Digit: FRAM (KB) Optional Fourth Digit: BSL  
0 = AES  
4 = HFXT + LFXT + LEA + USS  
3 = HFXT + LFXT + LEA  
2 = HFXT + LFXT  
7 = 256  
6 = 192  
5 = 128  
4 = 96  
1 = I2C  
No value = UART  
1 = LFXT  
3 = 64  
Temperature Range I = –40°C to 85°C  
Packaging  
http://www.ti.com/packaging  
Distribution Format  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
8-1. 器件命名规则  
176  
器件和文档支持  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
8.3 工具和软件  
8-1 列出 了 的调试功能。请参阅《适用于 MSP430 Code Composer Studio™ IDE 用户指南》,以了  
解可用特性的 详细信息。有关详细使用信息,请参阅以下文档:  
《使用 Code Composer Studio™ IDE 与增强型仿真模块 (EEM) 进行高级调试》  
MSP430™ 高级功耗优化:ULP Advisor™ 软件和 EnergyTrace™ 技术》  
8-1. 硬件 特性  
断点  
(N)  
状态序列发生  
LPMx.5 调试支  
MSP 架构  
4 线 JTAG 2 线 JTAG  
范围断点  
时钟控制  
跟踪缓冲器  
EnergyTrace++  
MSP430Xv2  
3
设计套件与评估模块  
MSP430FR6047 超声波感应评估模块 EVM430-FR6047 评估套件是一款开发平台,可用于评估超声波感  
应 应用 (例如,智能水表)中 MSP430FR6047 的性能。  
MSP-TS430PZ100E 100 引脚目标开发板 MSP-TS430PZ100E 是一款独立的 100 引脚 ZIF 插座目标板,  
用于通过 JTAG 接口或 Spy Bi-Wire2 线 JTAG)协议对 MSP430 MCU 系统内置器件进行  
编程和调试。  
软件  
MSP430Ware™ 软件 MSP430Ware 软件集合了所有 MSP430 器件的代码示例、产品说明书以及其他设计  
资源,打包提供给用户。除了提供已有 MSP430 设计资源的完整集合外,MSP430Ware 软件  
还包含名为 MSP430 驱动程序库的高级 API。借助该库可以轻松地对 MSP430 硬件进行编  
程。MSP430Ware 软件以 Code Composer Studio IDE 组件或独立软件包的形式提供。  
MSP430FR604x(1)MSP430FR603x(1) 代码示例 根据不同应用需求配置各集成外设的每个 MSP 器件均  
具备相应的 C 代码示例。  
MSP 驱动程序库 驱动程序库的抽象化 API 通过提供易于使用的函数调用使您不再拘泥于 MSP430 硬件的  
细节。完整的文档通过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证  
的参数的详细信息。开发人员可以使用驱动程序库功能,以最低开销编写完整项目。  
MSP EnergyTrace™ 技术 适用于 MSP430 微控制器的 EnergyTrace 技术是基于电能的代码分析工具,适  
用于测量和显示应用的电能系统配置并帮助优化应用以实现超低功耗。  
ULP(超低功耗)Advisor ULP Advisor™软件是一款辅助工具,旨在指导开发人员编写更为高效的代码,  
从而充分利用 MSP430 MSP432 微控制器独特的 超低功耗 功能。ULP Advisor 的目标用户  
是微控制器的资深开发者和开发新手,可以根据详尽的 ULP 检验表检查代码,以便以最低的  
功耗最大限度地利用应用。在生成时,ULP Advisor 提供通知和备注,以标识代码中可以进一  
步优化的区域,进而实现更低的功耗。  
适用于 MSP MCU 的定点数学库 MSP IQmath Qmath 库是为 C 语言开发者提供的一套经过高度优化的  
高精度数学运算函数集合,能够将浮点算法无缝嵌入 MSP430 MSP432 器件的定点代码  
中。这些例程通常用于计算密集型实时 应用, 而优化的执行速度、高精度以及超低能耗通常  
是影响这些实时应用的关键因素。与使用浮点数学算法编写的同等代码相比,使用 IQmath 和  
Qmath 库可以大幅提高执行速度并显著降低能耗。  
适用于 MSP430™ MCU 的浮点数学库  
TI  
在低功耗和低成本微控制器领域锐意创新,为您提供  
MSPMATHLIB。这是标量函数的浮点数学运算库,能够充分利用器件的智能外设,使性能提  
升高达 26 倍。Mathlib 能够轻松集成到您的设计中。该运算库免费使用并集成在 Code  
Composer Studio IAR IDE 中。如需深入了解该数学运算库及相关基准,请阅读用户指南。  
开发工具  
适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境 Code Composer Studio 是一种集成开  
发环境 (IDE),支持所有 MSP 微控制器。Code Composer Studio 包含一整套开发和调试嵌入  
式应用 的嵌入式软件实用程序的工具。它包含了优化的 C/C++ 编译器、源代码编辑器、项目  
构建环境、调试器、描述器以及其他多种 功能。直观的 IDE 提供了单个用户界面,有助于完  
成应用程序开发流程的每个步骤。熟悉的实用程序和界面可提升用户的入门速度。Code  
Composer Studio Eclipse 软件框架的优点和 TI 先进的嵌入式调试功能相结合,为嵌入式开  
发人员提供了一种功能丰富的优异开发环境。当 CCS MSP MCU 搭配使用时,可以使用独  
特而强大的插件和嵌入式软件实用程序,从而充分利用 MSP 微控制器的功能。  
命令行编程器 MSP Flasher 是一款基于 shell 的开源接口,可使用 JTAG Spy-Bi-Wire (SBW) 通信通过  
FET 编程器或 eZ430 MSP 微控制器进行编程。MSP Flasher 可用于将二进制文件(.txt 或  
版权 © 2017–2018, Texas Instruments Incorporated  
器件和文档支持  
177  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
.hex 文件)直接下载到 MSP 微控制器,而无需使用 IDE。  
MSP MCU 编程器和调试器 MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可帮助用户在  
MSP 低功耗微控制器 (MCU) 中快速开发应用。创建 MCU 软件通常需要将生成的二进制程序  
下载到 MSP 器件,以进行验证和调试。MSP-FET 在主机和目标 MSP 间提供调试通信通道。  
此外,MSP-FET 还可在计算机的 USB 接口和 MSP UART 间提供反向通道 UART 连接。这  
MSP 编程器提供了一种在 MSP 和计算机上运行的终端之间进行串行通信的便捷方法。  
MSP-FET 还支持使用 BSL 通过 UART I2C 通信协议向 MSP 目标加载程序(通常称为固  
件)。  
MSP-GANG 生产编程器 MSP Gang 编程器是一款 MSP430 MSP432 器件编程器,可同时对多达八个完  
全相同的 MSP430 MSP432 闪存或 FRAM 器件进行编程。MSP Gang 编程器可使用标准  
RS-232 USB 连接与主机 PC 相连并提供灵活的编程选项,允许用户完全自定义流程。  
MSP Gang 编程器配有扩展板,即“Gang 分离器,可在 MSP Gang 编程器和多个目标器件间  
实施互连。提供了八条电缆,用于将扩展板与八个目标器件相连(通过 JTAG SPY-Bi-Wire  
连接器)。编程工作可在 PC 或独立设备上完成。PC 端具备基于 DLL 的图形化用户界面。  
8.4 文档支持  
以下文档对 MSP430FR604x(1)MSP430FR603x(1)MCU 进行了介绍。www.ti.com.cn 网站上提供了这  
些文档的副本。  
接收文档更新通知  
要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹(关于产品文件  
夹的链接,请参见8.5)。单击右上角的提醒我”(Alert me) 按钮。点击注册后,即可收到产品信息更改每  
周摘要(如有)。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
勘误  
MSP430FR6047 器件勘误表》 介绍功能规格的已知例外情况。  
MSP430FR60471 器件勘误表》 介绍功能规格的已知例外情况。  
MSP430FR6045 器件勘误表》 介绍功能规格的已知例外情况。  
MSP430FR6037 器件勘误表》 介绍功能规格的已知例外情况。  
MSP430FR60371 器件勘误表》 介绍功能规格的已知例外情况。  
MSP430FR6035 器件勘误表》 介绍功能规格的已知例外情况。  
178  
器件和文档支持  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
用户指南  
MSP430FR58xxMSP430FR59xx MSP430FR6xx 系列用户指南》 该器件系列提供的所有模块和外  
设的详细 说明 。  
MSP430™ FRAM 器件引导加载程序 (BSL) 用户指南》 MSP430 微控制器 (MCU) 上的引导加载程序  
(BSL) 允许用户在原型设计、最终生产和使用期间与 MSP430 MCU 中的嵌入式存储器进行通  
信。可编程存储器(FRAM 存储器)和数据存储器 (RAM) 均可按要求予以修改。  
通过 JTAG 接口进行 MSP430™ 编程 此文档介绍了使用 JTAG 通信端口擦除、编程和验证基于 MSP430  
闪存和 FRAM 的微控制器系列的存储器模块所需的功能。此外,该文档还介绍了如何编程所  
MSP430 器件上均具备的 JTAG 访问安全保险丝。此文档介绍了使用标准四线制 JTAG 接  
口和两线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))的器件访问。  
MSP430™ 硬件工具用户指南》 此手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针  
MSP430 超低功耗微控制器的程序开发工具。  
应用报告  
MSP430™ 32kHz 晶体振荡器》 对于稳定的晶体振荡器,选择合适的晶振、正确的负载电路和适当的电  
路板布局布线至关重要。该应用报告总结了晶体振荡器的功能,介绍了用于选择合适的晶体以  
实现 MSP430 超低功耗运行的参数。此外,还给出了正确电路板布局的提示和示例。此外,  
为了确保振荡器在大规模生产后能够稳定运行,还可能需要进行一些振荡器测试,该文档中提  
供了有关这些测试的详细信息。  
MSP430™ 系统级 ESD 注意事项》 系统级 ESD 对于低电压下的硅晶技术以及经济高效型和超低功耗组  
件的需求日益增加。本应用报告解决了三大不同的 ESD 主题,帮助电路板设计人员和 OEM  
了解并设计强大的系统级设计:(1) 组件及 ESD 测试和系统级 ESD 测试、二者的差异及组件  
ESD 标准无法保障系统级稳健性的原因。(2) 不同层级的系统级 ESD 防护常规设计指南,  
包括外壳、电缆、PCB 布线以及板载 ESD 保护器件。(3) 系统高效 ESD 设计 (SEED) 简介,  
这是一种可实现系统级 ESD 稳健性的板载和片上 ESD 防护协同设计方法,包括示例仿真和测  
试结果。另外还介绍了若干实际应用系统级 ESD 保护设计示例及其结果。  
8.5 相关链接  
8-2 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具与软件,以及立即订购快速访问。  
8-2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
MSP430FR6047  
MSP430FR60471  
MSP430FR6045  
MSP430FR6037  
MSP430FR60371  
MSP430FR6035  
8.6 商标  
MSP430, MSP430Ware, EnergyTrace, ULP Advisor, 适用于 MSP 微控制器的 Code Composer Studio are  
trademarks of Texas Instruments.  
Arm, Cortex are registered trademarks of Arm Limited.  
Microsoft is a registered trademark of Microsoft Corporation.  
All other trademarks are the property of their respective owners.  
8.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.8 Export Control Notice  
版权 © 2017–2018, Texas Instruments Incorporated  
器件和文档支持  
179  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
 
MSP430FR6047, MSP430FR60471, MSP430FR6045  
MSP430FR6037, MSP430FR60371, MSP430FR6035  
ZHCSGO9C JUNE 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data  
(as defined by the U.S., EU, and other Export Administration Regulations) including software, or any  
controlled product restricted by other applicable national regulations, received from disclosing party under  
nondisclosure obligations (if any), or any direct product of such technology, to any destination to which  
such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior  
authorization from U.S. Department of Commerce and other competent Government authorities to the  
extent required by those laws.  
8.9 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
180  
机械、封装和可订购信息  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6047 MSP430FR60471 MSP430FR6045 MSP430FR6037 MSP430FR60371  
MSP430FR6035  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR6035IPZ  
MSP430FR6035IPZR  
MSP430FR60371IPZ  
MSP430FR60371IPZR  
MSP430FR6037IPZ  
MSP430FR6037IPZR  
MSP430FR6045IPZ  
MSP430FR6045IPZR  
MSP430FR60471IPZ  
MSP430FR60471IPZR  
MSP430FR6047IPZ  
MSP430FR6047IPZR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
90  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR6035  
1000 RoHS & Green  
90 RoHS & Green  
1000 RoHS & Green  
90 RoHS & Green  
1000 RoHS & Green  
90 RoHS & Green  
1000 RoHS & Green  
90 RoHS & Green  
1000 RoHS & Green  
90 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
FR6035  
FR60371  
FR60371  
FR6037  
FR6037  
FR6045  
FR6045  
FR60471  
FR60471  
FR6047  
FR6047  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR6035IPZR  
MSP430FR60371IPZR  
MSP430FR6037IPZR  
MSP430FR6045IPZR  
MSP430FR60471IPZR  
MSP430FR6047IPZR  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
100  
100  
100  
100  
100  
100  
1000  
1000  
1000  
1000  
1000  
1000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
17.0  
17.0  
17.0  
17.0  
17.0  
17.0  
17.0  
17.0  
17.0  
17.0  
17.0  
17.0  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR6035IPZR  
MSP430FR60371IPZR  
MSP430FR6037IPZR  
MSP430FR6045IPZR  
MSP430FR60471IPZR  
MSP430FR6047IPZR  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
100  
100  
100  
100  
100  
100  
1000  
1000  
1000  
1000  
1000  
1000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jun-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
MSP430FR6035IPZ  
MSP430FR60371IPZ  
MSP430FR6037IPZ  
MSP430FR6045IPZ  
MSP430FR60471IPZ  
MSP430FR6047IPZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
100  
100  
100  
100  
100  
100  
90  
90  
90  
90  
90  
90  
6 x 15  
6 x 15  
6 x 15  
6 x 15  
6 x 15  
6 x 15  
150  
150  
150  
150  
150  
150  
315 135.9 7620 20.3  
315 135.9 7620 20.3  
315 135.9 7620 20.3  
315 135.9 7620 20.3  
315 135.9 7620 20.3  
315 135.9 7620 20.3  
15.4 15.45  
15.4 15.45  
15.4 15.45  
15.4 15.45  
15.4 15.45  
15.4 15.45  
Pack Materials-Page 3  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY