MSP430FR6041IPNR [TI]

具有 32KB FRAM、LCD、12 位高速 8MSPS Σ-Δ ADC 和集成传感器 AFE 的 16MHz MCU | PN | 80 | -40 to 85;
MSP430FR6041IPNR
型号: MSP430FR6041IPNR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 32KB FRAM、LCD、12 位高速 8MSPS Σ-Δ ADC 和集成传感器 AFE 的 16MHz MCU | PN | 80 | -40 to 85

CD 传感器
文件: 总197页 (文件大小:5019K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
MSP430FR604xMSP430FR504x 16MHz MCU 64KB FRAM12 位高8-  
MSPS Σ-Δ ADC 和集成传感AFE  
• 低功耗加速(LEA)  
1 特性  
– 独立CPU 运行  
• 功耗超低的一流超声波水流和气流测量  
– 水  
CPU 8KB RAM  
– 高效256 点复FFTArm® Cortex®-M0+  
内核最多40 倍  
• 在低流速到高流速的情况下以及工作温度范  
围内的差分飞行时(dToF) 精度±12.5ps  
• 可500:1 的宽动态范围内实±1% 精度  
• 在直径25mm 的管道上能够测量的最大  
流速8800 /小时40 加仑/分钟)  
• 能够检测的最小流速小1 /小时0.005  
加仑/分钟)  
• 高精度时间测量分辨率小5ps  
• 在每秒获取一组结果的条件下总体电流消耗  
大约3µA  
• 嵌入式微控制器  
– 时钟频率高16MHz 16 位精简指令集计算  
(RISC) 架构  
– 宽电源电压范围1.8V 3.6V 1  
• 优化的超低功耗模式  
– 激活模式120 µA/MHz  
– 具有实时时(RTC) 的待机模(LPM3.5):  
450nA 2  
– 关(LPM4.5)30nA  
• 能够支持直径15mm 1000mm 的宽管  
道尺寸  
• 铁电随机存取存储(FRAM)  
– 容量高64KB 的非易失性存储器  
– 超低功耗写入  
– 气体  
• 在低流速到高流速的情况下以及工作温度范  
围内的差分飞行时(dToF) 精度±250ps  
• 可在流速高12000 /小时的条件下实现  
±1% 的精度200:1 的宽动态范围  
• 能够测量的流速大25000 /小时  
• 能够检测的最小流速小3 /小时  
• 高精度时间测量分辨率小100ps  
• 在每秒获取一组结果的条件下总体电流消耗  
大约20µA  
125ns/4ms 内写64KB的速度快速写  
– 统一的存储= + + 存储都处于同一  
存储空间  
– 耐写次数1015 次  
– 抗辐射和非磁性  
• 智能数字外设  
32 位硬件乘法(MPY)  
6 通道内DMA  
– 带有日历和报警功能RTC  
6 16 位计时器每个计时器具有多7 个捕  
/比较寄存器  
• 符合并超ISO4064OIML R49EN 14236 和  
EN 1434 精度标准  
• 能够直接与标准超声波传感器2.5MHz连  
• 集成模拟前声波传感解决方(USS_A),  
包括  
32 16 位循环冗余校(CRC)  
• 高性能模拟  
12 通道模拟比较器  
– 用于在各种频率下生成多音调脉冲的可编程脉冲  
发生(PPG)  
– 用于控制输入和输出通道且具有低阻抗输出驱动  
(4Ω) 的集PHY  
– 具有高8Msps 输出数据速率的高性能高12  
位模数转换(SDHS)  
– 具6.5dB 30.8dB 增益的可编程增益放大  
(PGA)  
12 ADC具有窗口比较器、内部基准和采样  
保持功能以及多8 条外部输入通道  
– 具有高248 段对比度控制的集LCD 驱动器  
• 多功能输入/输出端口  
– 所有引脚均支持电容式触控功能无需外部组件  
– 可按位、字节和字进行访问成对访问)  
– 所有端口均可LPM 进行边沿可选唤醒  
– 所有端口均具有可设定的上拉电阻或下拉电阻  
• 代码安全性和加密  
– 输出范围68MHz 80MHz 的高性PLL  
• 计量测试接(MTIF)  
128 256 AES 安全加密和解密协处理器  
– 用于随机数生成算法的随机数种子  
IP 封装可保护存储器免遭外部访问  
FRAM 可提供固有安全性优势  
– 脉冲发生器和脉冲计数器  
– 脉冲率高1024 次脉冲/(p/s)  
– 计数容量高6553516 )  
LPM3.5 200nA典型值运行  
最低电源电压受限SVS 电平请参SVS 规格)  
RTC 3.7pF 晶振计时。  
1
2
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASEF5  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
• 增强型串行通信  
超声波感应设计中心图形用户界面  
超声波感应软件库  
EVM430-FR6043 燃气表评估模块板  
80 引脚封装MSP-TS430PN80C 目标插  
座板  
– 多4 eUSCI_A 串行通信端口  
• 支持自动波特率检测UART  
IrDA 编码和解码  
– 多2 eUSCI_B 串行通信端口  
• 支持多从器件寻址I2C  
EnergyTrace++ 技术的免费专业开发环境  
MSP 微控制器MSP430Ware™  
器件比较汇总了可用的器件型号和封装选项  
– 硬UART I2C 引导加载程(BSL)  
• 灵活的时钟系统  
2 应用  
– 具10 个可选厂家调整频率的固定频率数控振  
(DCO)  
– 低功耗低频内部时钟(VLO)  
32kHz (LFXT)  
超声波智能水表  
超声波智能燃气表  
超声波智能热量计  
流量变送器  
– 高频晶(HFXT)  
• 开发工具和软件  
3 说明  
德州仪(TI) MSP430FR604x MSP430FR504x SoC MSP430 超声波传感微控制器 (MCU) 系列且功能  
强大、集成度高专为各种工业应用而设计:  
高分辨率超声波液位感应  
液体浓度感应  
高分辨率风速计  
超声波表面感应  
超声波泄漏检测  
氧浓度感应  
超声波智能燃气表  
超声波智能水表  
MCU 提供集成的超声波传感解决方(USS_A) 模块该模块可针对多种流速提供高精度测量。USS 模块高  
度集成需要的外部组件极少因而有助于实现超低功耗计量并降低系统成本。  
MSP430FR604x MSP430FR504x 器件采用低功耗加速器 (LEA)可实现基于 ADC 的高速信号采集以及后续  
优化数字信号处理为电池供电型计量应用提供了一款理想的超低功耗、高精度计量解决方案。  
USS_A 模块包括可编程脉冲发生器 (PPG) 和具有低阻抗输出驱动器的物理接口 (PHY)以实现最佳传感器激励  
和准确的阻抗匹配从而在零流量漂移 (ZFD) 方面达到最佳效果。USS_A 模块还包含可编程增益放大器 (PGA)  
和高12 8Msps Σ-ΔADC (SDHS)便于通过行业标准超声波传感器实现精确的信号采集。  
此外MSP430FR604x MSP430FR504x 还集成了其他外设可提高系统在计量方面的集成度。它具有计量测  
试接口 (MTIF) 模块能够通过脉冲生成来指示仪表测量的流量。它还具有片上 8 通道多路复用器 LCD 驱动器  
仅限 MSP430FR604x、实时时钟 (RTC)12 SAR ADC、模拟比较器、高级加密 (AES256) 模块和循环冗  
余校(CRC) 模块。  
MSP430FR604x MSP430FR504x MCU 由广泛的硬件和软件生态系统提供支持随附参考设计和代码示例,  
便于您快速开始设计。开发套件包括 MSP-TS430PN80C 80 引脚目标开发板EVM430-FR6043 超声波气流计  
EVMTI 还提供免费软件包括超声波感应设计中心、超声波感应软件库MSP430Ware软件。  
MSP430FR604x MSP430FR504x MCU 系列集成了 TI FRAM铁电 RAM和功耗整体超低 MSP 系统架  
从而使系统设计人员能够在降低能耗的同时提升性能。FRAM 技术兼有 RAM 的低功耗快速写入、灵活性、  
耐用性和闪存非易失性等特性。  
有关完整的模块说明请参阅MSP430FR58xxMSP430FR59xx MSP430FR6xx 系列用户指南》。  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
器件信息  
封装(2)  
器件型号(1)  
封装尺寸(3)  
12mm x 12mm  
12mm x 12mm  
12mm x 12mm  
10mm x 10mm  
10mm x 10mm  
10mm x 10mm  
9mm x 9mm  
MSP430FR6043IPN  
MSP430FR60431IPN  
MSP430FR6041IPN  
MSP430FR5043IPM  
MSP430FR50431IPM  
MSP430FR5041IPM  
MSP430FR5043IRGC  
MSP430FR50431IRGC  
MSP430FR5041IRGC  
LQFP (80)  
LQFP (80)  
LQFP (80)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
VQFN (64)  
VQFN (64)  
VQFN (64)  
9mm x 9mm  
9mm x 9mm  
(1) 如需获得所有可用器件的最新部件、封装和订购信息请参阅封装选项附录12或浏TI www.ti.com.cn。  
(2) 有关提供的所有器件变型的对比请参见6。  
(3) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸请参阅机械数据12 。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
4 功能方框图  
4-1 给出了功能方框图。  
P1.x, P2.x P3.x, P4.x P5.x, P6.x  
P7.x  
PJ.x  
1x8  
2x8  
2x8  
1
2x8  
LFXIN,  
HFXIN  
LFXOUT,  
HFXOUT  
ADC12_B  
I/O Ports  
P1, P2  
2x8 I/Os  
I/O Ports  
P3, P4  
2x8 I/Os  
I/O Ports  
P5, P6  
2x8 I/Os  
I/O Ports  
P7  
1x1 I/Os  
I/O Port  
PJ  
1x8 I/Os  
REF_A  
MCLK  
ACLK  
Comp_E  
(up to 16  
standard  
inputs,  
up to 8  
differential  
inputs)  
Clock  
System  
(up to 16  
inputs)  
Voltage  
Reference  
SMCLK  
PA PC  
1x16 I/Os 1x16 I/Os 1x16 I/Os  
PB  
PD  
1x1 I/Os  
DMA  
Controller  
Channel  
6
MAB  
MDB  
Bus  
Control  
Logic  
CPUXV2  
incl. 16  
Registers  
MPU  
IP Encap  
CRC16  
LCD_C  
Power  
Manage-  
ment  
RAM  
AES256  
TA2  
TA3  
CRC-16-  
CCITT  
(up to  
248 Seg:  
static,  
FRCTL_A  
64 KB  
32 KB  
4KB + 8KB  
Security  
Encryption,  
Decryption  
(128, 256)  
Timer_A  
2 CC  
Timer_A  
2 CC  
Registers Registers  
Watchdog  
MPY32  
CRC32  
LDO  
SVS  
Brownout  
2 to 8 mux)  
EEM  
(S: 3+1)  
(int)  
(int)  
Tiny RAM  
22B  
CRC-32-  
ISO-3309  
MDB  
MAB  
JTAG  
Interface  
Spy-Bi-Wire  
TB0  
TA0  
TA1  
TA4  
eUSCI_A0  
eUSCI_B0  
eUSCI_B1  
eUSCI_A1  
eUSCI_A2  
eUSCI_A3  
USS_A  
Subsystem  
LEA  
Subsystem  
Timer_B  
7 CC  
Timer_A  
3 CC  
Timer_A  
3 CC  
Timer_A  
2 CC  
RTC_C  
MTIF  
(I2C, SPI)  
Registers  
(int, ext)  
Registers  
(int, ext)  
Registers  
(int, ext)  
Registers  
(int, ext)  
(UART,  
IrDA, SPI)  
LPM3.5 Domain  
MTIF_PIN_EN, MTIF_OUT_IN  
CHx_IN, CHx_OUT, XPBx, USSXT_BOUT, USSXTOUT, USSXTIN  
注意该器件具12KB RAM8KB RAM LEA 子系统共享。  
4-1. 功能方框图  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
9.1 Overview...................................................................72  
9.2 CPU.......................................................................... 72  
9.3 Ultrasonic Sensing Solution (USS_A).......................72  
9.4 Low-Energy Accelerator (LEA) for Signal  
Processing...................................................................73  
9.5 Operating Modes...................................................... 74  
9.6 Interrupt Vector Table and Signatures.......................77  
9.7 Bootloader (BSL)...................................................... 80  
9.8 JTAG Operation........................................................ 81  
9.9 FRAM Controller A (FRCTL_A)................................ 82  
9.10 RAM........................................................................82  
9.11 Tiny RAM.................................................................82  
9.12 Memory Protection Unit (MPU) Including IP  
Encapsulation..............................................................82  
9.13 Peripherals..............................................................83  
9.14 Input/Output Diagrams............................................95  
9.15 Device Descriptors (TLV)......................................146  
9.16 Memory Map.........................................................149  
9.17 Identification..........................................................169  
10 Applications, Implementation, and Layout............. 170  
10.1 Device Connection and Layout Fundamentals..... 170  
10.2 Peripheral- and Interface-Specific Design  
Information................................................................ 176  
11 Device and Documentation Support........................178  
11.1 Getting Started......................................................178  
11.2 Device Nomenclature............................................178  
11.3 Tools and Software................................................179  
11.4 Documentation Support........................................ 181  
11.5 Support Resources............................................... 182  
11.6 Trademarks........................................................... 183  
11.7 Electrostatic Discharge Caution............................183  
11.8 术语表................................................................... 183  
11.9 Export Control Notice............................................183  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
4 功能方框图.........................................................................4  
5 Revision History.............................................................. 6  
6 Device Comparison.........................................................7  
6.1 Related Products........................................................ 8  
7 Terminal Configuration and Functions..........................9  
7.1 Pin Diagrams.............................................................. 9  
7.2 Pin Attributes.............................................................11  
7.3 Signal Descriptions................................................... 19  
7.4 Pin Multiplexing.........................................................28  
7.5 Buffer Type................................................................28  
7.6 Connection of Unused Pins...................................... 28  
8 Specifications................................................................ 29  
8.1 Absolute Maximum Ratings...................................... 29  
8.2 ESD Ratings............................................................. 29  
8.3 Recommended Operating Conditions.......................30  
8.4 Active Mode Supply Current Into VCC Excluding  
External Current.......................................................... 31  
8.5 Typical Characteristics, Active Mode Supply  
Currents.......................................................................32  
8.6 Low-Power Mode (LPM0, LPM1) Supply  
Currents Into VCC Excluding External Current............ 32  
8.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply  
Currents (Into VCC) Excluding External Current.......... 33  
8.8 Low-Power Mode With LCD Supply Currents  
(Into VCC) Excluding External Current.........................34  
8.9 Low-Power Mode (LPMx.5) Supply Currents  
(Into VCC) Excluding External Current.........................35  
8.10 Typical Characteristics, Low-Power Mode  
Supply Currents...........................................................36  
8.11 Current Consumption per Module...........................37  
8.12 Thermal Resistance Characteristics....................... 37  
8.13 Timing and Switching Characteristics..................... 39  
9 Detailed Description......................................................72  
Information.................................................................. 184  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changed from revision A to revision B  
Changes from December 2, 2020 to December 1, 2021  
Page  
• 更改了文档标题...................................................................................................................................................1  
• 在中添加了指向应用资源的链接................................................................................................................. 2  
Updated 11.5, Support Resources ............................................................................................................182  
Changed from initial release to revision A  
Changes from January 19, 2019 to December 1, 2020  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式。..................................................................................... 1  
Added notes to 8.12, Thermal Resistance Characteristics ......................................................................... 37  
Added the note that begins "XT1CLK and VLOCLK can be active during LPM4..." in 9.5, Operating Modes  
..........................................................................................................................................................................74  
Added the INTERRUPT VECTOR REGISTER column, moved register names from the INTERRUPT FLAG  
column, and corrected interrupt flag names as necessary in 9-4, Interrupt Sources, Flags, Vectors, and  
Signatures ........................................................................................................................................................77  
Corrected the interrupt flag bit numbers for ports P4 to P7 (changed PxIFG.2 to PxIFG.7) in 9-4, Interrupt  
Sources, Flags, and Vectors ............................................................................................................................77  
Corrected a typo in the PySEL0.x column header in 9-24, I/O Function Selection .....................................95  
Corrected the address range for "Main: interrupt vectors" in 9-52, Memory Organization ........................149  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
6 Device Comparison  
6-1 summarizes the available family members.  
6-1. Device Comparison  
FRAM SRAM  
CLOCK  
SYSTEM  
ADC12_B  
(Channels)  
Comp_E  
(Channels)  
DEVICE(1)  
LEA  
LCD  
MTIF  
Timer_A(3) Timer_B(4) eUSCI_A(5) eUSCI_B(6)  
AES  
BSL  
I/O  
PACKAGE  
(KB)(2)  
(KB)  
DCO  
HFXT  
LFXT  
8 external,  
2 internal  
3, 3(7)  
MSP430FR6043  
64  
12  
Yes  
Yes  
Yes  
12  
12  
12  
11  
11  
11  
7
7
7
7
7
7
4
4
4
4
4
4
2
2
2
2
2
2
Yes  
UART  
57  
80 PN (LQFP)  
2, 2,2(8)  
DCO  
HFXT  
LFXT  
8 external,  
2 internal  
3, 3(7)  
MSP430FR60431  
MSP430FR6041  
MSP430FR5043  
MSP430FR50431  
MSP430FR5041  
64  
32  
64  
64  
32  
12  
12  
12  
12  
12  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
I2C  
57  
57  
44  
44  
44  
80 PN (LQFP)  
80 PN (LQFP)  
2, 2,2(8)  
DCO  
HFXT  
LFXT  
8 external,  
2 internal  
3, 3(7)  
UART  
UART  
I2C  
2, 2,2(8)  
DCO  
HFXT  
LFXT  
7 external,  
2 internal  
3, 3(7)  
64 PM (LQFP)  
64 RGC (VQFN)  
2, 2,2(8)  
DCO  
HFXT  
LFXT  
7 external,  
2 internal  
3, 3(7)  
64 PM (LQFP)  
64 RGC (VQFN)  
No  
2, 2,2(8)  
DCO  
HFXT  
LFXT  
7 external,  
2 internal  
3, 3(7)  
64 PM (LQFP)  
64 RGC (VQFN)  
No  
UART  
2, 2,2(8)  
(1) For the most current package and ordering information, see the Package Option Addendum in 12, or see the TI website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.  
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 capture/compare registers and PWM output generators and the second  
instantiation having 5 capture/compare registers and PWM output generators, respectively.  
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 capture/compare registers and PWM output generators and the second  
instantiation having 5 capture/compare registers and PWM output generators, respectively.  
(5) eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI.  
(6) eUSCI_B supports I2C with multiple slave addresses and SPI.  
(7) Timers TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs.  
(8) Timers TA2 and TA3 provide only internal capture/compare inputs and only internal PWM outputs (if any) whereas Timer TA4 provides internal, external capture/compare inputs and  
internal, external PWM outputs (Note: TA4 in the RGZ package provide only internal capture/compare inputs and only internal PWM outputs.).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431 MSP430FR5041  
 
 
 
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers  
High-performance, low-power solutions to enable the autonomous future  
Products for MSP430 ultra-low-power sensing & measurement MCUs  
One platform. One ecosystem. Endless possibilities.  
Reference designs  
Find reference designs leveraging the best in TI technology to solve your system-level challenges  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
7-1 shows the pinout of the 80-pin PM package.  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
AVCC1  
P2.2/COUT/UCA0CLK/A14/C14  
P2.3/TA0.0/UCA0STE/A15/C15  
1
2
60 P6.3/COM7/R23  
59 DVCC3  
3
58 DVSS3  
P1.0/UCA1CLK/TA1.0/A0/C0/VREF-/VeREF-  
P1.1/UCA1STE/TA4.0/A1/C1/VREF+/VeREF+  
AVSS2  
4
57 P6.2/TB0CLK/R13/LCDREF/LCDS32  
56 P6.1/RTCCLK/R03/LCDS33  
55 P7.0/TA1.0/TA1.2/XPB0/LCDS30  
54 P6.6/ACLK/COM2/LCDS31  
53 P6.5/SMCLK/COM1/LCDS34  
52 P6.4/MCLK/COM0  
5
6
PJ.4/LFXIN  
7
PJ.5/LFXOUT  
8
AVSS3  
9
MSP430FR6043IPN  
MSP430FR60431IPN  
MSP430FR6041IPN  
PJ.6/HFXIN/USSXT_BOUT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
51 P6.0/TA0CLK/COUT/LCDS0  
50 P5.7/TA0.2/UCB1STE/LCDS1  
49 P5.6/TB0OUTH/UCB1SOMI/UCB1SCL/LCDS2  
48 P5.5/TA4.1/UCB1SIMO/UCB1SDA/LCDS3  
47 P5.4/TA0.0/UCB1CLK/TA4.0/LCDS4  
46 P5.3/TB0.3/UCA2STE/LCDS5  
45 P5.2/TB0.2/UAC2CLK/LCDS6  
44 P5.1/TB0.1/UCA2SOMI/UCA2RXD/LCDS7  
43 P5.0/TB0.0/UCA2SIMO/UCA2TXD/LCDS8  
42 P4.7/DMAE0/LCDS9  
PJ.7/HFXOUT  
P2.4/TA0CLK/TB0CLK/TA1CLK/LCDS24  
P2.6/UCA0SIMO/UCA0TXD/TA1.2/TA1.2C/LCDS23  
P2.7/UCA0SOMI/UCA0RXD/TA4.1/TA4.1C/LCDS22  
TEST/SBWCLK  
RST /NMI/SBWTDIO  
PJ.0/UAC2CLK/SRSCG1/DMAE0/C10/TDO  
PJ.1/UCA2STE/SRSCG0/TA4CLK/C11/TDI/TCLK  
PJ.2/UCA2SIMO/UCA2TXD/SROSCOFF/TB0OUTH/C12/TMS  
PJ.3/UCA2SOMI/UCA2RXD/SRCPUOFF/TB0.6/C13/TCK  
41 DVSS2  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
A. On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX  
B. On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL  
7-1. 80-Pin PN Package (Top View)  
7-2 shows the pinout of the 64-pin PM and 64-pin RGC package.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
AVCC1  
P2.2/COUT/UCA0CLK/A14/C14  
P1.0/UCA1CLK/TA1.0/A0/C0/VREF-/VeREF-  
P1.1/UCA1STE/TA4.0/A1/C1/VREF+/VeREF+  
AVSS2  
1
2
3
4
5
6
7
8
9
48 DVSS3  
47 P6.2/TB0CLK  
46 P7.0/TA1.0/TA1.2/XPB0  
45 P6.6/ACLK  
44 P6.5/SMCLK  
PJ.4/LFXIN  
43 P6.4/MCLK  
MSP430FR5043IPM  
MSP430FR50431IPM  
MSP430FR5041IPM  
MSP430FR5043IRGC  
MSP430FR50431IRGC  
MSP430FR5041IRGC  
PJ.5/LFXOUT  
42 P6.0/TA0CLK/COUT  
AVSS3  
41 P5.7/TA0.2/UCB1STE  
40 P5.6/TB0OUTH/UCB1SOMI/UCB1SCL  
39 P5.5/TA4.1/UCB1SIMO/UCB1SDA  
38 P5.4/TA0.0/UCB1CLK/TA4.0  
37 P5.3/TB0.3/UCA2STE  
36 P5.2/TB0.2/UAC2CLK  
35 P5.1/TB0.1/UCA2SOMI/UCA2RXD  
34 P5.0/TB0.0/UCA2SIMO/UCA2TXD  
33 DVSS2  
PJ.6/HFXIN/USSXT_BOUT  
PJ.7/HFXOUT  
10  
11  
12  
13  
14  
15  
16  
TEST/SBWCLK  
RST /NMI/SBWTDIO  
PJ.0/UAC2CLK/SRSCG1/DMAE0/C10/TDO  
PJ.1/UCA2STE/SRSCG0/TA4CLK/C11/TDI/TCLK  
PJ.2/UCA2SIMO/UCA2TXD/SROSCOFF/TB0OUTH/C12/TMS  
PJ.3/UCA2SOMI/UCA2RXD/SRCPUOFF/TB0.6/C13/TCK  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
A. On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX  
B. On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL  
7-2. 64-Pin PM or RGC Package (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7.2 Pin Attributes  
7-1. Pin Attributes  
PIN NUMBER(1)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(1) (4)  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
SOURCE(5)  
FR6043,  
FR6041  
FR5043,  
FR5041  
1
2
1
2
AVCC1  
P
I/O  
O
I/O  
I
Power  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
N/A  
P2.2  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
COUT  
UCA0CLK  
A14  
C14  
I
Analog  
P2.3  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0.0  
UCA0STE  
A15  
3
C15  
I
Analog  
P1.0  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1CLK  
TA1.0  
A0  
4
3
C0  
I
Analog  
VREF-  
VeREF-  
P1.1  
O
I
Analog  
Analog  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1STE  
TA4.0  
A1  
5
4
C1  
I
Analog  
VREF+  
VeREF+  
AVSS2  
PJ.4  
O
I
Analog  
Analog  
6
7
5
6
P
Power  
N/A  
OFF  
I/O  
I
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
LFXIN  
PJ.5  
I/O  
O
P
LVCMOS  
Analog  
OFF  
8
9
7
8
LFXOUT  
AVSS3  
PJ.6  
Power  
N/A  
I/O  
I
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
10  
11  
9
HFXIN  
USSXT_BOUT  
PJ.7  
O
I/O  
O
I/O  
I
Analog  
LVCMOS  
Analog  
OFF  
10  
HFXOUT  
P2.4  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0CLK  
TB0CLK  
TA1CLK  
S24  
12  
I
I
O
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-1. Pin Attributes (continued)  
PIN NUMBER(1)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(1) (4)  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
SOURCE(5)  
FR6043,  
FR6041  
FR5043,  
FR5041  
P2.6  
I/O  
O
I/O  
I/O  
I/O  
O
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
UCA0TXD  
UCA0SIMO  
TA1.2  
13  
TA1.2C  
S23  
P2.7  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0RXD  
UCA0SOMI  
TA4.1  
PD  
I/O  
I/O  
I/O  
O
I
14  
TA4.1C  
S22  
TEST  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
15  
16  
11  
12  
SBWTCK  
RST  
I
I/O  
I
PU  
NMI  
SBWTDIO  
PJ.0  
I/O  
I/O  
O
I/O  
O
I
OFF  
TDO  
UCA2CLK  
SRSCG1  
DMAE0  
C10  
17  
13  
I
PJ.1  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TDI  
TCLK  
I
18  
14  
UCA2STE  
SRSCG0  
TA4CLK  
C11  
I/O  
O
I
I
PJ.2  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TMS  
UCA2TXD  
UCA2SIMO  
SROSCOFF  
TB0OUTH  
C12  
O
I/O  
O
I
19  
15  
I
PJ.3  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TCK  
UCA2RXD  
UCA2SOMI  
SRCPUOFF  
TB0.6  
I
20  
16  
I/O  
O
I/O  
I
C13  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-1. Pin Attributes (continued)  
PIN NUMBER(1)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(1) (4)  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
SOURCE(5)  
FR6043,  
FR6041  
FR5043,  
FR5041  
21  
22  
17  
18  
DVSS1  
DVCC1  
P2.5  
P
P
Power  
N/A  
N/A  
OFF  
Power  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
TA0.2  
23  
24  
TA4.0  
S21  
P3.0  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.0  
S20  
P1.2  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1TXD  
UCA1SIMO  
TA1.0  
I/O  
I/O  
I
25  
19  
A8  
C8  
I
Analog  
P1.3  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1RXD  
UCA1SOMI  
TA1.1  
I/O  
I/O  
I
26  
20  
A9  
C9  
I
Analog  
P2.0  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1CLK  
UCA3TXD  
UCA3SIMO  
S19  
27  
28  
29  
21  
22  
23  
I/O  
O
P2.1  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA1STE  
UCA3RXD  
UCA3SOMI  
S18  
I/O  
O
P1.6  
I/O  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA3STE  
UCB0SIMO  
UCB0SDA  
S17  
P1.7  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
USSTRG  
UCA3CLK  
UCB0SOMI  
UCB0SCL  
S16  
I/O  
I/O  
I/O  
O
30  
24  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-1. Pin Attributes (continued)  
PIN NUMBER(1)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(1) (4)  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
SOURCE(5)  
FR6043,  
FR6041  
FR5043,  
FR5041  
P1.4  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
TB0.4  
31  
25  
26  
UCA0STE  
A2  
C2  
I
Analog  
P1.5  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.5  
32  
UCB0CLK  
A3  
C3  
I
Analog  
P3.1  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA1CLK  
TB0.1  
33  
34  
27  
28  
I/O  
I/O  
I/O  
O
MTIF_OUT_IN  
P4.0  
OFF  
RTCCLK  
TA4.1  
O
MTIF_PIN_EN  
P4.1  
I
I/O  
I/O  
I/O  
I
OFF  
UCA0CLK  
TB0.4  
35  
29  
UCA3RXD  
UCA3SOMI  
S15  
I/O  
O
P4.2  
I/O  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0STE  
TB0.5  
36  
30  
UCA3SIMO  
UCA3TXD  
S14  
O
P4.3  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0TXD  
UCA0SIMO  
S13  
37  
38  
39  
31  
32  
I/O  
O
P4.4  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCA0RXD  
UCA0SOMI  
S12  
I/O  
O
P4.5  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0CLK  
TA1CLK  
S11  
I
O
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-1. Pin Attributes (continued)  
PIN NUMBER(1)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(1) (4)  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
SOURCE(5)  
FR6043,  
FR6041  
FR5043,  
FR5041  
P4.6  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
OFF  
TB0CLK  
TA4CLK  
S10  
40  
I
O
41  
42  
33  
DVSS2  
P4.7  
P
Power  
N/A  
OFF  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DMAE0  
S9  
O
P5.0  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.0  
43  
44  
34  
35  
UCA2TXD  
UCA2SIMO  
S8  
I/O  
O
P5.1  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.1  
UCA2RXD  
UCA2SOMI  
S7  
I
I/O  
O
P5.2  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.2  
45  
46  
36  
37  
UCA2CLK  
S6  
I/O  
O
P5.3  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0.3  
UCA2STE  
S5  
I/O  
O
P5.4  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0.0  
47  
48  
49  
38  
39  
40  
UCB1CLK  
TA4.0  
S4  
O
P5.5  
I/O  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA4.1  
UCB1SIMO  
UCB1SDA  
S3  
P5.6  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0OUTH  
UCB1SOMI  
UCB1SCL  
S2  
I/O  
I/O  
O
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-1. Pin Attributes (continued)  
PIN NUMBER(1)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(1) (4)  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
SOURCE(5)  
FR6043,  
FR6041  
FR5043,  
FR5041  
P5.7  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
1.5 V  
OFF  
TA0.2  
UCB1STE  
S1  
50  
41  
P6.0  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0CLK  
COUT  
S0  
51  
52  
53  
42  
43  
44  
I
O
P6.4  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
MCLK  
COM0  
P6.5  
O
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
SMCLK  
COM1  
S34  
O
O
Analog  
P6.6  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
ACLK  
COM2  
S31  
54  
55  
56  
57  
45  
46  
O
O
Analog  
P7.0  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA1.0  
TA1.2  
XPB0  
S30  
O
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
-
P6.1  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
RTCCLK  
R03  
I/O  
O
S33  
Analog  
P6.2  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
OFF  
TB0CLK  
R13  
47  
I/O  
I
LCDREF  
S32  
Analog  
O
Analog  
DVCC  
58  
59  
48  
49  
DVSS3  
DVCC3  
P6.3  
P
Power  
N/A  
N/A  
OFF  
P
Power  
I/O  
O
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
60  
61  
COM7  
R23  
-
I/O  
I/O  
I/O  
I/O  
I/O  
O
Analog  
R33  
Analog  
LCDCAP  
P6.7  
Analog  
LVCMOS  
LVCMOS  
Analog  
OFF  
TA0.1  
COM4  
S29  
62  
O
Analog  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-1. Pin Attributes (continued)  
PIN NUMBER(1)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(1) (4)  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
SOURCE(5)  
FR6043,  
FR6041  
FR5043,  
FR5041  
P3.2  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
1.5 V  
OFF  
TA1.1  
63  
64  
COM5  
S28  
O
Analog  
P3.3  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
MCLK  
50  
TB0.3  
I/O  
O
XPB1  
S25  
O
Analog  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
PVCC  
PVCC  
P3.4  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
SMCLK  
COM6  
DMAE0  
S27  
65  
66  
51  
52  
O
I
LVCMOS  
Analog  
O
P3.5  
I/O  
O
LVCMOS  
LVCMOS  
Analog  
OFF  
ACLK  
COM3  
COUT  
O
O
LVCMOS  
Analog  
S26  
O
67  
68  
69  
70  
71  
72  
73  
74  
53  
54  
55  
56  
57  
58  
59  
60  
CH1_IN  
CH1_OUT  
PVSS  
I
Analog  
O
Analog  
P
Power  
N/A  
N/A  
N/A  
N/A  
PVCC  
P
Power  
PVCC  
P
Power  
PVSS  
P
Power  
CH0_OUT  
CH0_IN  
P3.6  
O
Analog  
PVCC  
PVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
DVCC  
I
Analog  
I/O  
I/O  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1SIMO  
UCB1SDA  
TB0.6  
75  
USSXT_BOUT  
S35  
P3.7  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
UCB1SOMI  
UCB1SCL  
TB0.2  
76  
TB0OUTH  
S36  
O
77  
78  
79  
61  
62  
63  
AVSS4  
USSXTIN(6)  
USSXTOUT(6)  
P
Power  
N/A  
I
Analog  
1.5 V  
1.5 V  
O
Analog  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-1. Pin Attributes (continued)  
PIN NUMBER(1)  
POWER  
RESET STATE  
AFTER BOR(7)  
SIGNAL NAME(1) (4)  
SIGNAL TYPE(2)  
BUFFER TYPE(3)  
SOURCE(5)  
FR6043,  
FR6041  
FR5043,  
FR5041  
80  
64  
AVSS1  
P
Power  
N/A  
(1) The signal that is listed first for each pin is the reset default pin name.  
(2) Signal Types: I = Input, O = Output, I/O = Input or Output.  
(3) Buffer Types: LVCMOS, Analog, or Power (see 7-3 for details)  
(4) To determine the pin mux encodings for each pin, see 9.14.  
(5) The power source shown in this table is the I/O power source, which may differ from the module power source.  
(6) Do not connect the USSXTIN and USSXTOUT pins to AVCC or DVCC. USSXTIN does not support bypass mode, so do not drive an  
external clock to USSXTIN pin.  
(7) Reset States:  
OFF = High impedance with Schmitt-trigger input and pullup or pulldown (if available) disabled  
PU = Pullup is enabled  
PD = Pulldown is enabled  
N/A = Not applicable  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7.3 Signal Descriptions  
7.3 describes the signals for all device variants and package options.  
7-2. Signal Descriptions  
PIN NO.(1)  
PIN TYPE(2)  
DESCRIPTION  
64-PIN  
80-PIN PN PM OR  
RGC  
FUNCTION SIGNAL NAME  
A0  
A1  
A2  
A3  
4
5
3
I
I
ADC analog input A0  
ADC analog input A1  
ADC analog input A2  
ADC analog input A3  
ADC analog input A4  
ADC analog input A5  
ADC analog input A6  
ADC analog input A7  
ADC analog input A8  
ADC analog input A9  
ADC analog input A10  
ADC analog input A11  
ADC analog input A12  
ADC analog input A13  
ADC analog input A14  
ADC analog input A15  
4
31  
25  
I
32  
26  
I
AVSS  
AVSS  
AVSS  
AVSS  
25  
AVSS  
AVSS  
AVSS  
AVSS  
19  
I
A8  
I
I
I
I
A9  
26  
20  
I
ADC  
AVSS  
AVSS  
AVSS  
AVSS  
2
AVSS  
AVSS  
AVSS  
AVSS  
2
I
I
I
I
A14  
I
A15  
3
I
VREF+  
VREF-  
VeREF+  
VeREF-  
ACLK  
HFXIN  
HFXOUT  
5
4
O
O
I
Output of positive reference voltage  
Output of negative reference voltage  
Input for an external positive reference voltage to the ADC  
Input for an external negative reference voltage to the ADC  
ACLK output  
4
3
5
4
4
3
45, 52  
9
I
54, 66  
10  
O
I
Input for high-frequency crystal oscillator HFXT  
Output for high-frequency crystal oscillator HFXT  
Input for low-frequency crystal oscillator LFXT  
Output of low-frequency crystal oscillator LFXT  
MCLK output  
11  
10  
O
I
Clock  
LFXIN  
7
6
LFXOUT  
MCLK  
8
7
O
O
O
52, 64  
53, 65  
43, 50  
44, 51  
SMCLK  
SMCLK output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN NO.(1)  
PIN TYPE(2)  
DESCRIPTION  
64-PIN  
80-PIN PN PM OR  
RGC  
FUNCTION SIGNAL NAME  
C0  
4
5
3
4
I
I
Comparator input C0  
Comparator input C1  
Comparator input C2  
Comparator input C3  
Comparator input C4  
Comparator input C5  
Comparator input C6  
Comparator input C7  
Comparator input C8  
Comparator input C9  
Comparator input C10  
Comparator input C11  
Comparator input C12  
Comparator input C13  
Comparator input C14  
Comparator input C15  
Comparator output  
C1  
C2  
31  
32  
4
25  
26  
3
I
C3  
Not connected  
Not connected  
Not connected  
Not connected  
Comparator C8  
C9  
I
I
4
3
I
4
3
I
4
3
I
25  
26  
17  
18  
19  
20  
2
19  
20  
13  
14  
15  
16  
2
I
I
C10  
I
C11  
I
C12  
I
C13  
I
C14  
I
C15  
3
I
COUT  
2, 51, 66 2, 42, 52  
O
I
DMA  
DMAE0  
SBWTCK  
SBWTDIO  
SRCPUOFF  
SROSCOFF  
SRSCG0  
SRSCG1  
TCK  
17, 42, 65  
15  
13, 51  
11  
External DMA trigger  
Spy-Bi-Wire input clock  
I
16  
12  
I/O  
O
O
O
O
I
Spy-Bi-Wire data input/output  
20  
16  
Low-power debug: CPU Status register bit CPUOFF  
Low-power debug: CPU Status register bit OSCOFF  
Low-power debug: CPU Status register bit SCG0  
Low-power debug: CPU Status register bit SCG1  
Test clock  
19  
15  
18  
14  
17  
13  
Debug  
20  
16  
TCLK  
18  
14  
I
Test clock input  
TDI  
18  
14  
I
Test data input  
TDO  
17  
13  
O
I
Test data output port  
TEST  
15  
11  
Test mode pin select digital I/O on JTAG pins  
Test mode select  
TMS  
19  
15  
I
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN NO.(1)  
PIN TYPE(2)  
DESCRIPTION  
64-PIN  
80-PIN PN PM OR  
RGC  
FUNCTION SIGNAL NAME  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P1.0  
P1.1  
P1.2  
4
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
5
4
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
25  
26  
31  
32  
29  
30  
27  
28  
2
19  
20  
25  
26  
23  
24  
21  
22  
2
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P1.3  
GPIO, P1  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P1.4  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P1.5  
P1.6  
P1.7  
P2.0  
P2.1  
P2.2  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P2.3  
GPIO, P2  
3
27  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P2.4  
12  
23  
13  
14  
24  
33  
63  
64  
65  
66  
75  
76  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
P3.2  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
50  
51  
52  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P3.3  
GPIO, P3  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P3.4  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P3.5  
P3.6  
P3.7  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN NO.(1)  
PIN TYPE(2)  
DESCRIPTION  
64-PIN  
80-PIN PN PM OR  
RGC  
FUNCTION SIGNAL NAME  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P4.0  
P4.1  
P4.2  
34  
35  
36  
37  
38  
39  
40  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
56  
57  
60  
52  
53  
54  
62  
55  
28  
29  
30  
31  
32  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P4.3  
GPIO, P4  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P4.4  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P4.5  
P4.6  
P4.7  
P5.0  
P5.1  
P5.2  
34  
35  
36  
37  
38  
39  
40  
41  
42  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P5.3  
GPIO, P5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P5.4  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P5.5  
P5.6  
P5.7  
P6.0  
P6.1  
P6.2  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
47  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P6.3  
GPIO, P6  
43  
44  
45  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P6.4  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
P6.5  
P6.6  
P6.7  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from  
LPMx.5  
GPIO, P7  
P7.0  
46  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN NO.(1)  
PIN TYPE(2)  
DESCRIPTION  
64-PIN  
80-PIN PN PM OR  
RGC  
FUNCTION SIGNAL NAME  
PJ.0  
PJ.1  
PJ.2  
17  
18  
13  
14  
15  
16  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
General-purpose digital I/O  
General-purpose digital I/O  
19  
General-purpose digital I/O  
PJ.3  
GPIO, PJ  
20  
General-purpose digital I/O  
PJ.4  
7
General-purpose digital I/O  
PJ.5  
8
7
General-purpose digital I/O  
PJ.6  
10  
9
General-purpose digital I/O  
PJ.7  
11  
10  
24  
23  
40  
39  
General-purpose digital I/O  
I2C clock eUSCI_B0 I2C mode  
UCB0SCL  
30  
I2C data eUSCI_B0 I2C mode  
UCB0SDA  
29  
I2C  
I2C clock eUSCI_B1 I2C mode  
UCB1SCL  
49, 76  
48, 75  
52  
I2C data eUSCI_B1 I2C mode  
UCB1SDA  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
LCD common output COM0 for LCD backplane  
LCD common output COM1 for LCD backplane  
LCD common output COM2 for LCD backplane  
LCD common output COM3 for LCD backplane  
LCD common output COM4 for LCD backplane  
LCD common output COM5 for LCD backplane  
LCD common output COM6 for LCD backplane  
LCD common output COM7 for LCD backplane  
53  
O
54  
O
66  
O
62  
O
63  
O
65  
O
60  
O
LCD capacitor connection  
CAUTION: LCDCAP/R33 must be connected to DVSS if not  
used.  
LCD  
LCDCAP  
61  
I/O  
LCDREF  
R03  
57  
56  
I
External reference voltage input for regulated LCD voltage  
Input/output port of lowest analog LCD voltage (V5)  
I/O  
Input/output port of third most positive analog LCD voltage (V3  
or V4)  
R13  
R23  
57  
60  
I/O  
I/O  
Input/output port of second most positive analog LCD voltage  
(V2)  
Input/output port of most positive analog LCD voltage (V1)  
CAUTION: LCDCAP/R33 must be connected to DVSS if not  
used.  
R33  
61  
I/O  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN NO.(1)  
PIN TYPE(2)  
DESCRIPTION  
64-PIN  
80-PIN PN PM OR  
RGC  
FUNCTION SIGNAL NAME  
S0  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
40  
39  
38  
37  
36  
35  
30  
29  
28  
27  
24  
23  
14  
13  
12  
64  
66  
65  
63  
62  
55  
54  
57  
56  
53  
75  
76  
34  
33  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
LCD segment output 0  
LCD segment output 1  
LCD segment output 2  
LCD segment output 3  
LCD segment output 4  
LCD segment output 5  
LCD segment output 6  
LCD segment output 7  
LCD segment output 8  
LCD segment output 9  
LCD segment output 10  
LCD segment output 11  
LCD segment output 12  
LCD segment output 13  
LCD segment output 14  
LCD segment output 15  
LCD segment output 16  
LCD segment output 17  
LCD segment output 18  
LCD segment output 19  
LCD segment output 20  
LCD segment output 21  
LCD segment output 22  
LCD segment output 23  
LCD segment output 24  
LCD segment output 25  
LCD segment output 26  
LCD segment output 27  
LCD segment output 28  
LCD segment output 29  
LCD segment output 30  
LCD segment output 31  
LCD segment output 32  
LCD segment output 33  
LCD segment output 34  
LCD segment output 35  
LCD segment output 36  
28  
27  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
LCD  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
MTIF_PIN_EN  
MTIF_OUT_IN  
Meter test Interface pin enable  
Meter test Interface In/Out  
MTIF  
I/O  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN NO.(1)  
PIN TYPE(2)  
DESCRIPTION  
64-PIN  
80-PIN PN PM OR  
RGC  
FUNCTION SIGNAL NAME  
AVCC1  
AVSS1  
AVSS2  
AVSS3  
AVSS4  
1
80  
1
64  
P
P
P
P
P
P
P
P
P
P
P
P
O
Analog power supply  
Analog ground supply  
Analog ground supply  
Analog ground supply  
Analog ground supply  
Digital power supply  
Digital power supply  
Digital ground supply  
Digital ground supply  
Digital ground supply  
USS power supply  
6
5
9
8
77  
61  
DVCC1  
Power  
22  
18  
DVCC3  
59  
49  
DVSS1  
DVSS2  
DVSS3  
PVCC  
21  
17  
41  
33  
58  
48  
70, 71  
69, 72  
34, 56  
56, 57  
55, 58  
28  
PVSS  
USS ground supply  
RTC  
RTCCLK  
RTC clock calibration output  
Clock signal input eUSCI_A0 SPI slave mode  
Clock signal output eUSCI_A0 SPI master mode  
UCA0CLK  
2, 35  
2, 29  
I/O  
UCA0SIMO  
UCA0SOMI  
UCA0STE  
13, 37  
14, 38  
3, 36  
31  
32  
30  
I/O  
I/O  
I/O  
Slave in/master out eUSCI_A0 SPI mode  
Slave out/master in eUSCI_A0 SPI mode  
Slave transmit enable eUSCI_A0 SPI mode  
Clock signal input eUSCI_A1 SPI slave mode  
Clock signal output eUSCI_A1 SPI master mode  
UCA1CLK  
4, 27  
3, 21  
I/O  
UCA1SIMO  
UCA1SOMI  
UCA1STE  
25  
26  
19  
20  
I/O  
I/O  
I/O  
Slave in/master out eUSCI_A1 SPI mode  
Slave out/master in eUSCI_A1 SPI mode  
Slave transmit enable eUSCI_A1 SPI mode  
5, 28  
4, 22  
Clock signal input eUSCI_A2 SPI slave mode  
Clock signal output eUSCI_A2 SPI master mode  
UCA2CLK  
45  
36  
I/O  
UCA2SIMO  
UCA2SOMI  
UCA2STE  
19, 43  
20, 44  
46  
34  
35  
37  
I/O  
I/O  
I/O  
Slave in/master out eUSCI_A2 SPI mode  
Slave out/master in eUSCI_A2 SPI mode  
Slave transmit enable eUSCI_A2 SPI mode  
SPI  
Clock signal input eUSCI_A3 SPI slave mode  
Clock signal output eUSCI_A3 SPI master mode  
UCA3CLK  
30  
24  
I/O  
UCA3SIMO  
UCA3SOMI  
UCA3STE  
27, 36  
28, 35  
29  
21, 30  
22, 29  
23  
I/O  
I/O  
I/O  
Slave in/master out eUSCI_A3 SPI mode  
Slave out/master in eUSCI_A3 SPI mode  
Slave transmit enable eUSCI_A3 SPI mode  
Clock signal input eUSCI_B0 SPI slave mode  
Clock signal output eUSCI_B0 SPI master mode  
UCB0CLK  
32  
26  
I/O  
UCB0SIMO  
UCB0SOMI  
UCB0STE  
29  
30  
31  
23  
24  
25  
I/O  
I/O  
I/O  
Slave in/master out eUSCI_B0 SPI mode  
Slave out/master in eUSCI_B0 SPI mode  
Slave transmit enable eUSCI_B0 SPI mode  
Clock signal input eUSCI_B1 SPI slave mode  
Clock signal output eUSCI_B1 SPI master mode  
UCB1CLK  
47  
38  
I/O  
UCB1SIMO  
UCB1SOMI  
UCB1STE  
48, 75  
49, 76  
50  
39  
40  
41  
I/O  
I/O  
I/O  
Slave in/master out eUSCI_B1 SPI mode  
Slave out/master in eUSCI_B1 SPI mode  
Slave transmit enable eUSCI_B1 SPI mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN NO.(1)  
PIN TYPE(2)  
DESCRIPTION  
64-PIN  
80-PIN PN PM OR  
RGC  
FUNCTION SIGNAL NAME  
NMI  
System  
16  
12  
12  
I
Nonmaskable interrupt input  
RST  
16  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Reset input active low  
TA0.0  
TA0.0  
3
TA0 CCR0 capture: CCI0A input, compare: Out0  
TA0 CCR0 capture: CCI0B input, compare: Out0  
TA0 CCR1 capture: CCI1A input, compare: Out1  
TA0 CCR2 capture: CCI2A input, compare: Out2  
TA0 compare: Out2 enabled by COUT  
TA0 input clock  
47  
38  
TA0.1  
Timer_A0  
62  
TA0.2  
50  
41  
TA0.2  
TA0CLK  
TA1.0  
TA1.0  
TA1.0  
TA1.1  
23  
42  
3
12, 39, 51  
I
4
I/O  
I/O  
O
TA1 CCR0 capture: CCI0A input, compare: Out0  
TA1 CCR0 capture: CCI0B input, compare: Out0  
TA1 CCR0 compare: Out0  
55  
46  
19  
25  
63  
I/O  
O
TA1 CCR1 capture: CCI1A input, compare: Out1  
TA1 CCR1 compare: Out1  
Timer_A1  
TA1.1  
26  
20  
TA1.2  
13  
I/O  
O
TA1 CCR2 capture: CCI2A input, compare: Out2  
TA1 CCR2 compare: Out2  
TA1.2  
55  
46  
TA1.2C  
TA1CLK  
TA4.0  
13  
O
TA1 CCR2 compare: Out2 enabled by COUT  
TA1 input clock  
27  
4
12, 33, 39  
I
5
23  
I/O  
I/O  
O
TA4 CCR0 capture: CCI0A input, compare: Out0  
TA4 CCR0 capture: CCI0B input, compare: Out0  
TA4 CCR0 compare: Out0  
TA4.0  
TA4.0  
47  
38  
TA4.1  
14  
I/O  
I/O  
O
TA4CCR1 capture: CCI1B input, compare: Out1  
TA4 CCR1 capture: CCI1A input, compare: Out1  
TA4 CCR1 compare: Out1  
39  
28  
Timer_A4  
TA4.1  
48  
TA4.1  
34  
TA4.1C  
TA4CLK  
TB0.0  
TB0.0  
TB0.1  
TB0.1  
TB0.2  
TB0.2  
TB0.3  
TB0.3  
TB0.4  
TB0.4  
TB0.5  
TB0.5  
TB0.6  
TB0.6  
TB0CLK  
TB0OUTH  
14  
O
TA4 CCR1 compare: Out1 enabled by COUT  
TA4 input clock  
14  
34  
18, 40  
43  
I
I/O  
I/O  
I/O  
O
TB0 CCR0 capture: CCI0B input, compare: Out0  
TB0 CCR0 capture: CCI0A input, compare: Out0  
TB0 CCR1 capture: CCI1A input, compare: Out1  
TB0 CCR1 compare: Out1  
24  
27  
35  
33  
44  
76  
I/O  
O
TB0 CCR2 capture: CCI2A input, compare: Out2  
TB0 CCR2 compare: Out2  
36  
37  
50  
25  
29  
26  
30  
45  
46  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
TB0 CCR3 capture: CCI3A input, compare: Out3  
TB0 CCR3 capture: CCI3B input, compare: Out3  
TB0 CCR4 capture: CCI4A input, compare: Out4  
TB0 CCR4 capture: CCI4B input, compare: Out4  
TB0 CCR5 capture: CCI5A input, compare: Out5  
TB0CCR5 capture: CCI5B input, compare: Out5  
TB0 CCR6 capture: CCI6B input, compare: Out6  
TB0 CCR6 capture: CCI6A input, compare: Out6  
TB0 clock input  
64  
Timer_B0  
31  
35  
32  
36  
75  
16  
47  
20  
12, 40,57  
19, 49, 76  
15  
I
Switch all PWM outputs high impedance input TB0  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7-2. Signal Descriptions (continued)  
PIN NO.(1)  
PIN TYPE(2)  
DESCRIPTION  
64-PIN  
80-PIN PN PM OR  
RGC  
FUNCTION SIGNAL NAME  
UCA0RXD  
UCA0TXD  
UCA1RXD  
14, 38  
13, 37  
26  
32  
31  
I
O
I
Receive data eUSCI_A0 UART mode  
Transmit data eUSCI_A0 UART mode  
Receive data eUSCI_A1 UART mode  
Transmit data eUSCI_A1 UART mode  
Receive data eUSCI_A2 UART mode  
Transmit data eUSCI_A2 UART mode  
Receive data eUSCI_A3 UART mode  
Transmit data eUSCI_A3 UART mode  
USS UUPS trigger  
20  
UCA1TXD  
UART  
25  
19  
O
I
UCA2RXD  
20, 44  
19, 43  
28, 35  
27, 36  
30  
16, 35  
15, 34  
22, 29  
21, 30  
24  
UCA2TXD  
UCA3RXD  
UCA3TXD  
USSTRG  
O
I
O
I
USSXTIN  
78  
62  
I
Input for an oscillator USSXT  
Output for an oscillator USSXT  
Buffered output clock of USSXT  
USS Channel 0 RX  
USSXTOUT  
USSXT_BOUT  
79  
63  
O
O
I
75, 10  
74  
9
CH0_IN  
USS_A  
60  
CH0_OUT  
73  
59  
I/O  
I
USS Channel 0 TX  
CH1_IN  
CH1_OUT  
XPB0  
67  
53  
USS Channel 1 RX  
68  
54  
I/O  
O
O
USS Channel 1 TX  
55  
46  
External bias output  
XPB1  
64  
50  
External bias output  
(1) N/A = not available  
(2) I = input, O = output, P = power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7.4 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the  
device is in test mode). For details of the settings for each pin and diagrams of the multiplexed ports, see 节  
9.14.  
7.5 Buffer Type  
7-3 describes the buffer types that are referenced in 7-1.  
7-3. Buffer Type  
NOMINAL  
PULLUP (PU)  
OR PULLDOWN  
(PD)  
OUTPUT DRIVE  
STRENGTH  
(mA)  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)  
OTHER  
CHARACTERISTICS  
HYSTERESIS  
See analog modules in  
Specifications for details  
Analog(2)  
3.0 V  
3.0 V  
3.0 V  
N
Y(1)  
N
N/A  
Programmable  
N/A  
N/A  
N/A  
See Typical  
Characteristics  
Outputs  
See General-  
Purpose I/Os  
LVCMOS  
SVS enables hysteresis on  
DVCC  
Power (DVCC)(3)  
N/A  
N/A  
Power (AVCC)(3)  
Power (PVCC)(3)  
3.0 V  
3.0 V  
N
N
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Power (DVSS  
and AVSS)(3)  
0 V  
N
N/A  
N/A  
N/A  
(1) Only for input pins  
(2) This is a switch, not a buffer.  
(3) This is supply input, not a buffer.  
7.6 Connection of Unused Pins  
7-4 lists the correct termination of all unused pins.  
7-4. Connection of Unused Pins  
COMMENT  
PIN(1)  
AVCC  
PVCC  
AVSS  
PVSS  
POTENTIAL  
DVCC  
DVCC  
DVSS  
DVSS  
USS_CHx_IN,  
USS_CHx_OUT  
DVSS  
USSXTIN  
DVSS  
USSXTOUT  
Px.0 to Px.7  
RST/NMI  
DVSS  
Open  
Switched to port function, output direction (PxDIR.n = 1)  
47-kpullup or internal pullup selected with 10-nF (2.2 nF(2)) pulldown  
DVCC or VCC  
PJ.0/TDO  
PJ.1/TDI  
PJ.2/TMS  
PJ.3/TCK  
The JTAG pins are shared with general-purpose I/O function (PJ.x). If not being used, these should  
be switched to port function, output direction. When used as JTAG pins, these pins should remain  
open.  
Open  
Open  
TEST  
This pin always has an internal pulldown enabled.  
(1) For any unused pin with a secondary function that is shared with general-purpose I/O, follow the guidelines for the Px.0 to Px.7 pins.  
(2) The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire  
JTAG mode with TI tools like FET interfaces or GANG programmers.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
MAX  
4.1  
UNIT  
V
Voltage applied at DVCC and AVCC pins to VSS  
Voltage applied at DVCC, AVCC, and PVCC pins to VSS  
Voltage difference between DVCC and AVCC pins(2)  
Voltage difference between DVCC, AVCC, and PVCC pins(2)  
Voltage applied to CHx_IN  
4.1  
V
±0.3  
±0.3  
1.65  
1.8  
V
V
V
0.3  
0.3  
0.3  
Voltage applied to CHx_IN (duty cycle of 10% over 1ms)  
Voltage applied to USSXTIN (USSXTOUT)  
V
1.5  
V
VCC + 0.3 V  
(4.1 V Max)  
Voltage applied to any other pin (3)  
V
0.3  
Diode current at any device pin  
±2  
mA  
°C  
(4)  
Storage temperature, Tstg  
125  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltage differences between DVCC and AVCC exceeding the specified limits may cause malfunction of the device including erroneous  
writes to RAM and FRAM.  
(3) All voltages referenced to VSS  
.
(4) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
8.2 ESD Ratings  
VALUE  
UNIT  
Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) (all except CHx_OUT  
terminals)  
±1000  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
±250  
±1000  
±250  
Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) (on CHx_OUT  
terminals)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as  
±250 V may actually have higher performance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
MAX UNIT  
8.3 Recommended Operating Conditions  
TYP data are based on VCC = 3.0 V and TA = 25°C (unless otherwise noted)  
MIN NOM  
VCC  
VCC  
VSS  
TA  
Supply voltage range applied at all DVCC and AVCC pins (1) (3) (4) (2)  
Supply voltage range applied at PVCC pin(1)  
1.8(7)  
2.2  
0
3.6  
3.6  
V
V
Supply voltage applied at all DVSS, AVSS, and PVSS pins.  
Operating free-air temperature  
V
-40  
85  
°C  
1 –  
20%  
CDVCC  
Capacitor value at DVCC(5)  
µF  
No FRAM wait states  
(NWAITSx = 0)  
0
8(9)  
fSYSTEM  
Processor frequency (maximum MCLK frequency)(6)  
With FRAM wait states  
(NWAITSx = 1)(8)  
MHz  
0
0
16(10)  
16(10)  
fLEA  
LEA processor frequency  
Maximum ACLK frequency  
Maximum SMCLK frequency  
fACLK  
fSMCLK  
50 kHz  
16(10) MHz  
(1) TI recommends powering AVCC, DVCC, PVCC pins from the same source. At a minimum, during power up, power down, and device  
operation, the voltage difference among AVCC, DVCC, PVCC must not exceed the limits specified under Absolute Maximum Ratings.  
Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.  
(2) USS module must be disabled if AVCC and DVCC are lower than 2.2 V.  
(3) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the data sheet recommendation  
for capacitor CDVCC should limit the slopes accordingly.  
(4) Modules may have a different supply voltage range specification. Refer to the specification of the respective module in this data sheet.  
(5) As decoupling capacitor for each supply pin pair of DVCC/ DVSS and AVCC/AVSS, place a low-ESR ceramic capacitor of 100 nF  
(minimum) as close as possible (few millimeters) to the respective pin pairs, for PVCC/PVSS pair, place a low-ESR ceramic capacitor  
of 22 uF (minimum) as close as possible (few millimeters) to the respective pin pairs.  
(6) Modules may have a different maximum input clock specification. See the specification of each module in this data sheet.  
(7) The minimum supply voltage is defined by the supervisor SVS levels. See the PMM SVS threshold parameters for the exact values.  
(8) Wait states only occur on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always  
excecuted without wait states.  
(9) DCO settings and HF cyrstals with a typical value less than or equal to the specified MAX value are permitted.  
(10) DCO settings and HF cyrstals with a typical value less than or equal to the specified MAX value are permitted. If a clock source with a  
higher typical value is used, the clock must be divided in the clock system.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.4 Active Mode Supply Current Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1) (2)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
4 MHz  
8 MHz  
12 MHz  
16 MHz  
1 WAIT STATE  
(NWAITSx = 1)  
EXECUTION  
MEMORY  
PARAMETER  
VCC  
0 WAIT STATES 0 WAIT STATES 0 WAIT STATES 1 WAIT STATE  
(NWAITSx = 0) (NWAITSx = 0) (NWAITSx = 0) (NWAITSx = 1)  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
IAM, FRAM_UNI  
FRAM  
3.0 V  
3.0 V  
225  
665  
1275  
1550  
1970  
µA  
µA  
(Unified memory)(3)  
FRAM  
0% cache hit  
ratio  
IAM, FRAM(0%)(4) (5)  
420  
275  
220  
192  
125  
1455  
855  
650  
535  
237  
2850  
1650  
1240  
1015  
450  
2330  
1770  
1490  
1290  
670  
3000  
2265  
1880  
1620  
790  
FRAM  
50% cache hit  
ratio  
IAM, FRAM(50%)(4) (5)  
IAM, FRAM(66%)(4) (5)  
IAM, FRAM(75%)(4) (5)  
IAM, FRAM(100%(4) (5)  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
1022  
1888  
1443  
1170  
2041  
1735  
1490  
2606  
2197  
1870  
µA  
µA  
µA  
µA  
FRAM  
66% cache hit  
ratio  
FRAM  
75% cache hit  
ratio  
261  
182  
FRAM  
100% cache hit  
ratio  
(6) (5)  
IAM, RAM  
RAM  
RAM  
3.0 V  
3.0 V  
140  
90  
323  
292  
590  
540  
880  
830  
1070  
1020  
µA  
µA  
(7) (5)  
IAM, RAM only  
1313  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Characterized with program executing typical data processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO = 24 MHz and  
fMCLK = fSMCLK = fDCO/2.  
At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency  
(fMCLK,eff) decreases. The effective MCLK frequency also depends on the cache hit ratio. SMCLK is not affected by the number of wait  
states or the cache hit ratio.  
The following equation can be used to compute fMCLK,eff  
:
fMCLK,eff = fMCLK / [wait states × (1 cache hit ratio) + 1]  
For example, with 1 wait state and 75% cache hit ratio, fMCKL,eff = fMCLK / [1 × (1 0.75) + 1] = fMCLK / 1.25.  
(3) Represents typical program execution. Program and data reside entirely in FRAM. All execution is from FRAM.  
(4) Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache  
hit ratio represents number cache accesess divided by the total number of FRAM accesses. For example, a 75% ratio implies three of  
every four accesses is from cache, and the remaining are FRAM accesses.  
(5) See 8.5 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best  
linear fit using the typical data shown in 8.4.  
(6) Program and data reside entirely in RAM. All execution is from RAM.  
(7) Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5 Typical Characteristics, Active Mode Supply Currents  
3000  
I(AM,0%)  
I(AM,50%)  
2500  
I(AM,66%)  
I(AM,75%)  
I(AM,75%)[µA] ~ 120 × f[MHz] + 68  
2000  
1500  
1000  
500  
0
I(AM,100%)  
I(AM,RAMonly)  
0
1
2
3
4
5
6
7
8
9
MCLK Frequency (MHz)  
A. I(AM, cache hit ratio): Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as  
specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 75% ratio  
implies three of every four accesses is from cache, and the remaining are FRAM accesses.  
B. I(AM, RAM only): Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
8-1. Typical Active Mode Supply Currents, No Wait States  
8.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1) (2)  
FREQUENCY (fSMCLK  
)
PARAMETER  
VCC  
1 MHz  
TYP  
4 MHz  
TYP  
8 MHz  
12 MHz  
TYP  
276  
16 MHz  
TYP  
250  
UNIT  
MAX  
148  
70  
MAX  
TYP  
180  
190  
136  
136  
MAX  
MAX  
MAX  
316  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
80  
95  
40  
40  
115  
125  
70  
ILPM0  
µA  
µA  
178  
245  
286  
340  
265  
230  
205  
ILPM1  
70  
235  
210  
250  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO = 24 MHz and  
fMCLK = fSMCLK = fDCO / 2.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External  
Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEMPERATURE  
PARAMETER  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
40°C  
TYP  
VCC  
MAX  
MAX  
MAX  
MAX  
2.2 V  
3 V  
0.8  
0.8  
0.6  
0.6  
0.5  
0.5  
0.8  
1.3  
1.3  
1.2  
1.2  
1.0  
1.0  
1.0  
4.1  
4.1  
4.0  
4.0  
3.8  
3.8  
2.2  
10.8  
10.8  
10.7  
10.7  
10.5  
10.5  
4.5  
Low-power mode 2, 12-pF  
crystal(1) (3) (4)  
ILPM2,XT12  
ILPM2,XT3.7  
ILPM2,VLO  
μA  
μA  
μA  
2.2 V  
3 V  
Low-power mode 2, 3.7-pF  
crystal(1) (2) (4)  
2.2 V  
3 V  
Low-power mode 2, VLO,  
includes SVS(5)  
Low-power mode 3, 12-pF  
2.2 V  
1.1  
10.1  
ILPM3,XT12  
crystal, includes SVS(1) (3)  
μA  
(6)  
3 V  
2.2 V  
3 V  
0.8  
0.5  
0.5  
1.0  
0.7  
0.7  
2.2  
2.1  
2.1  
4.5  
4.4  
4.4  
Low-power mode 3, 3.7-pF  
9.8  
9.8  
9.6  
ILPM3,XT3.7  
crystal, excludes SVS(1) (2)  
μA  
μA  
(7)  
2.2 V  
3 V  
0.4  
0.4  
0.5  
0.5  
1.2  
1.1  
1.9  
1.9  
1.4  
4.2  
4.2  
2.6  
Low-power mode 3,  
ILPM3,VLO  
VLO, excludes SVS(8)  
Low-power mode 3,  
VLO, excludes SVS, RAM  
powered-down  
2.2 V  
0.36  
0.47  
2.9  
8.2  
ILPM3,VLO,  
μA  
RAMoff  
3 V  
0.36  
0.47  
1.4  
2.6  
completely(8)  
2.2 V  
3 V  
0.5  
0.5  
0.3  
0.3  
0.3  
0.6  
0.6  
1.2  
1.1  
1.0  
1.9  
1.9  
1.7  
1.7  
1.2  
4.3  
4.3  
4.0  
4.0  
2.5  
9.7  
9.4  
8
Low-power mode 4,  
includes SVS(9)  
ILPM4,SVS  
μA  
μA  
0.8  
2.2 V  
3 V  
0.4  
Low-power mode 4,  
excludes SVS(10)  
ILPM4  
0.4  
Low-power mode 4,  
excludes SVS, RAM  
powered-down  
2.2 V  
0.37  
2.8  
ILPM4,RAMoff  
IIDLE,GroupA  
IIDLE,GroupB  
IIDLE,GroupC  
μA  
μA  
μA  
μA  
3 V  
3 V  
0.3  
0.37  
0.02  
1.2  
2.5  
completely(10)  
Additional idle current if one  
or more modules from  
Group A (see 9-3) are  
activated in LPM3 or LPM4  
0.3  
Additional idle current if one  
or more modules from  
Group B (see 9-3) are  
activated in LPM3 or LPM4  
3 V  
3 V  
0.02  
0.02  
0.35  
0.38  
Additional idle current if one  
or more modules from  
Group C (see 9-3) are  
activated in LPM3 or LPM4  
(1) Not applicable for devices with HF crystal oscillator only.  
(2) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7-pF load.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance  
are chosen to closely match the required 12.5-pF load.  
(4) Low-power mode 2, crystal oscillator test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 2, VLO test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
(6) Low-power mode 3, 12-pF crystal including SVS test conditions:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current. Refer to the idle currents specified for the respective peripheral groups.  
(7) Low-power mode 3, 3.7-pF crystal excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE  
= 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current. Refer to the idle currents specified for the respective peripheral groups.  
(8) Low-power mode 3, VLO excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). RAM disabled (RCCTL0 = 5A55h). Current for  
brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current. Refer to the idle currents specified for the respective peripheral groups.  
(9) Low-power mode 4 including SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current. Refer to the idle currents specified for the respective peripheral groups.  
(10) Low-power mode 4 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). RAM disabled (RCCTL0 = 5A55h).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current. Refer to the idle currents specified for the respective peripheral groups.  
8.8 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
-40°C  
TYP  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
MAX  
MAX  
MAX  
MAX  
Low-power mode 3 (LPM3)  
current,12 pF crystal, LCD  
4-mux mode, external  
ILPM3,XT12  
LCD,  
ext. bias  
3.0 V  
0.9  
1.1  
2.5  
5.1  
µA  
biasing, excludes SVS(1) (2)  
Low-power mode 3 (LPM3)  
current,12 pF crystal, LCD  
4-mux mode, internal  
ILPM3,XT12  
LCD,  
int. bias  
3.0 V  
1.3  
1.4  
2.0  
2.2  
4.5  
4.9  
12.5  
µA  
biasing, charge pump  
disabled, excludes SVS(1)  
(3)  
Low-power mode 3 (LPM3)  
current,12 pF crystal, LCD  
4-mux mode, internal  
biasing, charge pump  
enabled, 1/3 bias, excludes  
SVS(1) (4)  
2.2 V  
3.0 V  
3.6  
3.4  
4
5.1  
4.9  
8.1  
8.1  
µA  
µA  
ILPM3,XT12  
LCD,CP  
3.7  
(1) Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE  
= 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to  
additional idle current - idle current of Group containing LCD module already included. Refer to the idle currents specified for the  
respective peripheral groups.  
(2) LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Current through external resistors not included (voltage levels are supplied by test equipment).  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(3) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(4) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump  
enabled), VLCDx = 1000 (VLCD = 3 V typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
8.9 Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEMPERTURE (TA)  
PARAMETER  
VCC  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP MAX  
UNIT  
40°C  
TYP  
MAX  
MAX  
MAX  
Low-power mode 3.5, 12-  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.45  
0.45  
0.3  
0.5  
0.5  
0.55  
0.55  
0.4  
0.75  
0.75  
0.65  
0.65  
ILPM3.5,XT12  
pF crystal including SVS(1)  
μA  
μA  
(3) (4)  
Low-power mode 3.5, 3.7-  
0.35  
0.35  
ILPM3.5,XT3.7 pF crystal excluding SVS(1)  
(2) (5)  
0.3  
0.4  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.23  
0.23  
0.2  
0.2  
0.28  
0.28  
0.4  
0.4  
Low-power mode 4.5,  
ILPM4.5,SVS  
μA  
μA  
including SVS(6)  
0.035  
0.035  
0.045  
0.045  
0.075  
0.075  
0.15  
0.15  
Low-power mode 4.5,  
ILPM4.5  
excluding SVS(7)  
(1) Not applicable for devices with HF crystal oscillator only.  
(2) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7-pF load.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance  
are chosen to closely match the required 12.5-pF load.  
(4) Low-power mode 3.5, 1-pF crystal including SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 3.5, 3.7-pF crystal excluding SVS test conditions:  
Current for RTC clocked by XT1 included.Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(6) Low-power mode 4.5 including SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(7) Low-power mode 4.5 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.10 Typical Characteristics, Low-Power Mode Supply Currents  
8-2, 8-3, 8-4, and 8-5 show the supply current vs temperature typical characterstics for selected low-power  
modes.  
3
2.5  
2
3
2.5  
2
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS on  
2.2 V, SVS on  
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS on  
2.2 V, SVS on  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
8-2. LPM3 Supply Current vs Temperature (LPM3,XT3.7)  
8-3. LPM4 Supply Current vs Temperature (LPM4,SVS)  
0.7  
0.7  
3.0 V, SVS off  
3.0 V, SVS off  
2.2 V, SVS off  
0.6  
2.2 V, SVS off  
0.6  
3.0 V, SVS on  
2.2 V, SVS on  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
8-4. LPM3.5 Supply Current vs Temperature (LPM3.5,XT3.7)  
8-5. LPM4.5 Supply Current vs Temperature (LPM4.5)  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.11 Current Consumption per Module  
MODULE(1)  
Timer_A  
Timer_B  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC_C  
MPY  
TEST CONDITIONS  
REFERENCE CLOCK  
Module input clock  
MIN  
TYP MAX  
UNIT  
2.5  
3.7  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
nA  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
UART mode  
SPI mode  
SPI mode  
6.3  
4.4  
4.4  
4.4  
100  
28  
7.0  
4.8  
I2C mode, 100 kbaud  
Only from start to end of operation  
Only from start to end of operation  
Only from start to end of operation  
256-point complex FFT, data = non-zero  
256-point complex FFT, data = zero  
MCLK  
μA/MHz  
μA/MHz  
μA/MHz  
CRC16  
CRC32  
LEA  
MCLK  
3.3  
3.3  
78  
MCLK  
MCLK  
70  
85 µA/MHz  
60 µA/MHz  
LEA  
MCLK  
55  
Generator and counter are enabled at 256 Hz, no  
terminal activity. Pulse rate:15 pulses  
MTIF  
LFXT  
0.20  
µA  
(1) For other module currents not listed here, see the module-specific parameter sections.  
8.12 Thermal Resistance Characteristics  
THERMAL METRIC(1)  
PACKAGE  
VALUE(2)  
53.3  
15.2  
28.4  
28.0  
0.7  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
RθJA  
RθJC(TOP)  
RθJB  
Junction-to-board thermal resistance  
QFP-80 (PN)  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
ΨJB  
ΨJT  
N/A(3)  
56.6  
16.4  
27.8  
27.5  
0.8  
RθJC(BOTTOM)  
RθJA  
RθJC(TOP)  
RθJB  
Junction-to-board thermal resistance  
QFP-64 (PM)  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
ΨJB  
ΨJT  
N/A  
RθJC(BOTTOM)  
RθJA  
24.7  
12.3  
8.8  
RθJC(TOP)  
RθJB  
Junction-to-board thermal resistance  
RGC-64  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.7  
ΨJB  
0.1  
ΨJT  
N/A  
RθJC(BOTTOM)  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC  
standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
(3) N/A = Not applicable  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13 Timing and Switching Characteristics  
8.13.1 Power Supply Sequencing  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power  
down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits  
specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device  
including erroneous writes to RAM and FRAM.  
8.13.1.1 lists the power ramp requirements for brownout and power up.  
8.13.1.1 Brownout and Device Reset Power Ramp Requirements  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Brownout power-down level(1)  
Brownout power-up level(1)  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s(2)  
MIN  
MAX UNIT  
VVCC_BOR–  
VVCC_BOR+  
0.7  
1.66  
1.68  
V
V
0.79  
(1) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the data sheet recommendation  
for capacitor CDVCC should limit the slopes accordingly.  
(2) The brownout levels are measured with a slowly changing supply.  
8.13.1.2 lists the characteristics of the SVS.  
8.13.1.2 SVS  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISVSH,LPM  
VSVSH-  
SVSH current consumption, low power modes  
SVSH power-down level  
170  
300  
1.85  
1.99  
120  
10  
nA  
V
1.75  
1.77  
40  
1.80  
1.88  
VSVSH+  
SVSH power-up level  
V
VSVSH_hys  
tPD,SVSH, AM  
SVSH hysteresis  
mV  
µs  
SVSH propagation delay, active mode  
dVVcc/dt = 10 mV/µs  
8.13.2 Reset Timing  
8.13.2.1 lists the requirements for the reset input.  
8.13.2.1 Reset Input  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
t(RST) External reset pulse duration on RST (1)  
VCC  
MIN  
TYP MAX UNIT  
2.2 V, 3.0 V  
2
µs  
(1) Not applicable if RST/NMI pin configured as NMI .  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.3 Clock Specifications  
8.13.3.1 Low-Frequency Crystal Oscillator, LFXT  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP MAX UNIT  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
TA = 25°C, CL,eff = 3.7 pF, ESR 44 kΩ  
IVCC.LFXT  
Current consumption  
3.0 V  
180  
185  
225  
nA  
nA  
nA  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
TA = 25°C, CL,eff = 6 pF, ESR 40 kΩ  
3.0 V  
3.0 V  
3.0 V  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {2},  
TA = 25°C, CL,eff = 9 pF, ESR 40 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF, ESR 40 kΩ  
330  
nA  
Hz  
LFXT oscillator crystal  
frequency  
fLFXT  
LFXTBYPASS = 0  
32768  
Measured at ACLK,  
fLFXT = 32768 Hz  
DCLFXT  
LFXT oscillator duty cycle  
30%  
10.5  
70%  
LFXT oscillator logic-level  
square-wave input  
frequency  
fLFXT,SW  
LFXTBYPASS = 1(5) (8)  
32.768  
50 kHz  
LFXT oscillator logic-level  
square-wave input duty  
cycle  
DCLFXT, SW  
LFXTBYPASS = 1  
30%  
70%  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
fLFXT = 32768 Hz, CL,eff = 6 pF  
210  
300  
2
Oscillation allowance for  
LF crystals(9)  
OALFXT  
kΩ  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
Integrated load capacitance  
at LFXIN terminal(6) (7)  
CLFXIN  
pF  
pF  
Integrated load capacitance  
at LFXOUT terminal(6) (7)  
CLFXOUT  
2
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
TA = 25°C, CL,eff = 3.7 pF  
3.0 V  
3.0 V  
800  
tSTART,LFXT  
Start-up time(2)  
ms  
Hz  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
1000  
Oscillator fault frequency(3)  
fFault,LFXT  
0
3500  
(1)  
(1) Measured with logic-level input frequency but also applies to operation with crystals.  
(2) Includes start-up counter of 1024 clock cycles.  
(3) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications may set the  
flag. A static condition or stuck at fault condition will set the flag.  
(4) To improve EMI on the LFXT oscillator, observe the following guidelines:  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins LFXIN and LFXOUT.  
Avoid running PCB traces underneath or adjacent to the LFXIN and LFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(5) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
.
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
(6) This represents all the parasitic capacitance present at the LFXIN and LFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT is the  
total capacitance at the LFXIN and LFXOUT terminals, respectively.  
(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers.  
Recommended effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF.  
The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective  
load capacitance of the selected crystal is met.  
(8) Maximum frequency of operation of the entire device cannot be exceeded.  
(9) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff f = 3.7 pF  
For LFXTDRIVE = {1}, CL,eff f = 6 pF  
For LFXTDRIVE = {2}, 6 pF CL,eff 9 pF  
For LFXTDRIVE = {3}, 9 pF CL,eff 12.5 pF  
8.13.3.2 High-Frequency Crystal Oscillator, HFXT  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(5)  
PARAMETER  
TEST CONDITIONS  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1(8)  
VCC  
MIN  
TYP  
MAX UNIT  
,
75  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
fOSC = 8 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 1,  
HFFREQ = 1,  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
120  
190  
250  
HFXT oscillator crystal current HF  
mode at typical ESR  
IDVCC.HFXT  
3.0 V  
μA  
fOSC = 16 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 2,  
HFFREQ = 2,  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
fOSC = 24 MHz  
HFXTBYPASS = 0, HFXTDRIVE = 3,  
HFFREQ = 3,  
TA = 25°C, CL,eff = 18 pF,  
typical ESR, Cshunt  
HFXTBYPASS = 0, HFFREQ = 1(8) (7)  
HFXTBYPASS = 0, HFFREQ = 2(7)  
HFXTBYPASS = 0, HFFREQ = 3(7)  
Measured at SMCLK, fHFXT = 16 MHz  
HFXTBYPASS = 1, HFFREQ = 0(6) (7)  
HFXTBYPASS = 1, HFFREQ = 1(6) (7)  
HFXTBYPASS = 1, HFFREQ = 2(6) (7)  
HFXTBYPASS = 1, HFFREQ = 3(6) (7)  
4
8.01  
16.01  
40%  
0.9  
8
HFXT oscillator crystal frequency,  
crystal mode  
fHFXT  
16 MHz  
24  
60%  
4
DCHFXT  
HFXT oscillator duty cycle  
50%  
HFXT oscillator logic-level  
square-wave input frequency,  
bypass mode  
4.01  
8.01  
16.01  
8
fHFXT,SW  
MHz  
16  
24  
HFXT oscillator logic-level  
square-wave input duty cycle  
DCHFXT, SW  
HFXTBYPASS = 1  
40%  
60%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
MAX UNIT  
8.13.3.2 High-Frequency Crystal Oscillator, HFXT (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(5)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1(8)  
,
450  
fHFXT,HF = 4 MHz, CL,eff = 16 pF  
HFXTBYPASS = 0, HFXTDRIVE = 1,  
HFFREQ = 1,  
fHFXT,HF = 8 MHz, CL,eff = 16 pF  
320  
200  
200  
Oscillation allowance for  
HFXT crystals(9)  
OAHFXT  
HFXTBYPASS = 0, HFXTDRIVE = 2,  
HFFREQ = 2,  
fHFXT,HF = 16 MHz, CL,eff = 16 pF  
HFXTBYPASS = 0, HFXTDRIVE = 3,  
HFFREQ = 3,  
fHFXT,HF = 24 MHz, CL,eff = 16 pF  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0,  
HFFREQ = 1,  
TA = 25°C, CL,eff = 16 pF  
3.0 V  
3.0 V  
1.6  
0.6  
tSTART,HFXT Start-up time(10)  
ms  
pF  
fOSC = 24 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 3,  
HFFREQ = 3,  
TA = 25°C, CL,eff = 16 pF  
Integrated load capacitance at  
CHFXIN  
2
2
HFXIN terminaI(1) (2)  
Integrated load capacitance at  
HFXOUT terminaI(1) (2)  
CHFXOUT  
fFault,HFXT  
pF  
Oscillator fault frequency(4) (3)  
0
800 kHz  
(1) This represents all the parasitic capacitance present at the HFXIN and HFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT is the  
total capacitance at the HFXIN and HFXOUT terminals, respectively.  
(2) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers.  
Recommended effective load capacitance values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. The  
PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load  
capacitance of the selected crystal is met.  
(3) Measured with logic-level input frequency but also applies to operation with crystals.  
(4) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the  
flag. A static condition or stuck at fault condition will set the flag.  
(5) To improve EMI on the HFXT oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins HFXIN and HFXOUT.  
Avoid running PCB traces underneath or adjacent to the HFXIN and HFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(6) When HFXTBYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DCHFXT, SW  
(7) Maximum frequency of operation of the entire device cannot be exceeded.  
(8) HFFREQ = {0} is not supported for HFXT crystal mode of operation.  
.
(9) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(10) Includes start-up counter of 1024 clock cycles.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.3.3 DCO  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 0,  
DCORSEL = 1, DCOFSEL = 0  
DCO frequency range 1 MHz,  
trimmed  
fDCO1  
1
±3.5%  
MHz  
DCO frequency range  
2.7 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 1  
fDCO2.7  
fDCO3.5  
fDCO4  
2.667  
3.5  
4
±3.5%  
±3.5%  
±3.5%  
MHz  
MHz  
MHz  
DCO frequency range  
3.5 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 2  
DCO frequency range 4 MHz, Measured at SMCLK, divide by 1,  
trimmed  
DCORSEL = 0, DCOFSEL = 3  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 4,  
DCORSEL = 1, DCOFSEL = 1  
DCO frequency range  
5.3 MHz, trimmed  
fDCO5.3  
fDCO7  
fDCO8  
5.333  
±3.5%  
±3.5%  
±3.5%  
MHz  
MHz  
MHz  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 5,  
DCORSEL = 1, DCOFSEL = 2  
DCO frequency range 7 MHz,  
trimmed  
7
8
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 6,  
DCORSEL = 1, DCOFSEL = 3  
DCO frequency range 8 MHz,  
trimmed  
DCO frequency range  
16 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 1, DCOFSEL = 4  
fDCO16  
fDCO21  
fDCO24  
16 ±3.5%(2)  
21 ±3.5%(2)  
24 ±3.5%(2)  
MHz  
MHz  
MHz  
DCO frequency range  
21 MHz, trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 5  
DCO frequency range  
24 MHz, trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 6  
Measured at SMCLK, divide by 1,  
No external divide, all DCORSEL and  
DCOFSEL settings except DCORSEL = 1,  
DCOFSEL = 5 and DCORSEL = 1,  
DCOFSEL = 6  
fDCO,DC  
Duty cycle  
48%  
50%  
52%  
3
Based on fsignal = 10 kHz and DCO used  
for 12-bit SAR ADC sampling source. This  
achieves >74-dB SNR due to jitter; that is,  
limited by ADC performance.  
tDCO, JITTER  
DCO jitter  
2
ns  
dfDCO/dT  
DCO temperature drift(1)  
3.0 V  
0.01  
%/°C  
(1) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C) / (85°C (40°C))  
(2) After a wakeup from LPM1, LPM2, LPM3, or LPM4, the DCO frequency fDCO might exceed the specified frequency range for a few  
clock cycles by up to 5% before settling to the specified steady state frequency range.  
8.13.3.4 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Current consumption  
VLO frequency  
TEST CONDITIONS  
MIN  
TYP  
100  
9.4  
MAX UNIT  
IVLO  
nA  
fVLO  
Measured at ACLK  
6
14  
kHz  
%/°C  
%/V  
dfVLO/dT  
dfVLO/dVCC  
fVLO,DC  
VLO frequency temperature drift  
VLO frequency supply voltage drift  
Duty cycle  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
0.2  
0.7  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C) / (85°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.3.5 Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
μA  
IMODOSC  
Current consumption  
Enabled  
25  
fMODOSC  
MODOSC frequency  
4.0  
4.8  
5.4 MHz  
%/℃  
fMODOSC/dT  
MODOSC frequency temperature drift(1)  
0.08  
MODOSC frequency supply voltage  
drift(2)  
fMODOSC/dVCC  
DCMODOSC  
1.4  
%/V  
Duty cycle (excl. first clock cycle; DC =  
thigh × f)  
Measured at SMCLK, divide by 1  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C) / (85°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)  
8.13.4 Wake-up Characteristics  
8.13.4.1 Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
(Additional) wake-up time to activate the  
FRAM in AM if previously disabled by the  
FRAM controller or from an LPM if  
immediate activation is selected for  
wake up  
tWAKE-UP FRAM  
6
10  
μs  
Wake-up time from LPM0 to active  
mode(1)  
400 +  
1.5 / fDCO  
tWAKE-UP LPM0  
tWAKE-UP LPM1  
tWAKE-UP LPM2  
tWAKE-UP LPM3  
tWAKE-UP LPM4  
tWAKE-UP LPM3.5  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
ns  
Wake-up time from LPM1 to active  
mode(1)  
6
6
μs  
μs  
μs  
μs  
μs  
Wake-up time from LPM2 to active  
mode(1)  
Wake-up time from LPM3 to active  
mode(1)  
6.6 + 2.0/  
fDCO  
9.6 + 2.5/  
fDCO  
Wake-up time from LPM4 to active  
mode(1)  
6.6 +  
2.0 / fDCO  
9.6 +  
2.5 / fDCO  
Wake-up time from LPM3.5 to active  
mode(2)  
350  
450  
SVSHE = 1  
SVSHE = 0  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
350  
0.4  
450  
0.8  
μs  
Wake-up time from LPM4.5 to active  
mode(2)  
tWAKE-UP LPM4.5  
ms  
Wake-up time from a RST pin triggered  
reset to active mode(2)  
tWAKE-UP-RST  
tWAKE-UP-BOR  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
480  
0.5  
596  
1
μs  
Wake-up time from power-up to active  
mode (2)  
ms  
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge with MCLKREQEN = 1. This time includes the activation of the FRAM during wake up. With  
MCLKREQEN = 0, the externally observable MCLK clock is gated one additional cycle.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.4.2 Typical Wake-up Charges  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Charge used for activating the FRAM in AM or during wakeup  
from LPM0 if previously disabled by the FRAM controller.  
QWAKE-UP FRAM  
QWAKE-UP LPM0  
QWAKE-UP LPM1  
QWAKE-UP LPM2  
QWAKE-UP LPM3  
16.5  
nAs  
Charge used to wake up from LPM0 to active mode (with  
FRAM active)  
3.8  
21  
22  
28  
28  
nAs  
nAs  
nAs  
nAs  
Charge used to wake up from LPM1 to active mode (with  
FRAM active)  
Charge used to wake up from LPM2 to active mode (with  
FRAM active)  
Charge used to wake up from LPM3 to active mode (with  
FRAM active)  
Charge used to wake up from LPM4 to active mode (with  
FRAM active)  
QWAKE-UP LPM4  
QWAKE-UP LPM3.5  
QWAKE-UP LPM4.5  
nAs  
nAs  
Charge used to wake up from LPM3.5 to active mode(2)  
170  
173  
171  
SVSHE = 1  
SVSHE = 0  
Charge used to wake up from LPM4.5 to active mode(2)  
nAs  
nAs  
Charge used for reset from RST or BOR event to active  
mode(2)  
QWAKE-UP-RESET  
148  
(1) Charge used during the wake-up time from a given low-power mode to active mode. This does not include the energy required in  
active mode (for example, for an interrupt service routine).  
(2) Charge required until start of user code. This does not include the energy required to reconfigure the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.4.3 Typical Characteristics, Average LPM Currents vs Wake-up Frequency  
10000.00  
LPM0  
LPM1  
LPM2,XT12  
1000.00  
LPM3,XT12  
LPM3.5,XT12  
100.00  
10.00  
1.00  
0.10  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
NOTE: The average wake-up current does not include the energy required in active mode; for example, for an  
interrupt service routine or to reconfigure the device.  
8-6. Average LPM Currents vs Wake-up Frequency at 25°C  
10000.00  
LPM0  
LPM1  
LPM2,XT12  
1000.00  
LPM3,XT12  
LPM3.5,XT12  
100.00  
10.00  
1.00  
0.10  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
NOTE: The average wake-up current does not include the energy required in active mode; for example, for an  
interrupt service routine or to reconfigure the device.  
8-7. Average LPM Currents vs Wake-up Frequency at 85°C  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.5 Digital I/Os  
8.13.5.1 Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
1.2  
1.65  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.65  
0.55  
0.75  
0.44  
0.60  
2.25  
1.00  
V
1.35  
Negative-going input threshold voltage  
0.98  
V
1.30  
Input voltage hysteresis (VIT+ VIT–  
)
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI,dig  
CI,ana  
Pullup or pulldown resistor  
20  
35  
3
50  
kΩ  
pF  
pF  
nA  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
Input capacitance, port pins with shared analog  
functions(1)  
VIN = VSS or VCC  
5
Ilkg(Px.y) High-impedance input leakage current  
Refer to notes (2) and (3)  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
+20  
20  
20  
Ports with interrupt  
capability (see block  
diagram and terminal  
function descriptions).  
External interrupt timing (external trigger pulse  
t(int)  
ns  
µs  
duration to set interrupt flag)(4)  
t(RST)  
External reset pulse duration on RST (5)  
2
(1) If the port pins PJ.4/LFXIN and PJ.5/LFXOUT are used as digital I/Os, they are connected by a 4-pF capacitor and a 35-Mresistor in  
series. At frequencies of approximately 1 kHz and lower, the 4-pF capacitor can add to the pin capacitance of PJ.4/LFXIN and/or PJ.5/  
LFXOUT.  
(2) The input leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(3) The input leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor  
is disabled.  
(4) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
(5) Not applicable if RST/NMI pin configured as NMI .  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.5.2 Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC –  
0.25  
I(OHmax) = 1 mA(1)  
VCC  
2.2 V  
VCC –  
0.60  
I(OHmax) = 3 mA(2)  
I(OHmax) = 2 mA(1)  
I(OHmax) = 6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC –  
0.25  
VCC  
3.0 V  
2.2 V  
3.0 V  
VCC –  
0.60  
VCC  
VSS  
+
VSS  
VSS  
VSS  
VSS  
0.25  
VSS  
+
0.60  
VOL  
Low-level output voltage  
V
VSS  
+
0.25  
VSS  
+
0.60  
2.2 V  
3.0 V  
2.2 V  
16  
16  
16  
Port output frequency (with load)(5)  
Clock output frequency(5)  
CL = 20 pF, RL  
MHz  
MHz  
(3) (4)  
fPx.y  
ACLK, MCLK, or SMCLK at  
configured output port,  
CL = 20 pF(4)  
fPort_CLK  
3.0 V  
16  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
4
3
4
3
6
4
6
4
15  
15  
15  
15  
15  
15  
15  
15  
trise,dig  
Port output rise time, digital only port pins  
Port output fall time, digital only port pins  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
ns  
ns  
ns  
ns  
tfall,dig  
Port output rise time, port pins with shared  
analog functions  
trise,ana  
Port output fall time, port pins with shared  
analog functions  
tfall,ana  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) A resistive divider with 2 × R1 and R1 = 1.6 kΩbetween VCC and VSS is used as load. The output is connected to the center tap of the  
divider. CL = 20 pF is connected from the output to VSS  
.
(4) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
(5) The port can output frequencies at least up to the specified limit, and the port might support higher frequencies.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.5.3 Typical Characteristics, Digital Outputs  
15  
30  
20  
10  
0
25°C  
25°C  
85°C  
85°C  
10  
5
P1.1  
P1.1  
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
3
Low-Level Output Voltage (V)  
Low-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
VCC = 3.0 V  
8-8. Typical Low-Level Output Current vs Low-Level Output  
8-9. Typical Low-Level Output Current vs Low-Level Output  
Voltage  
Voltage  
0
0
25°C  
25°C  
85°C  
85°C  
-5  
-10  
-10  
-20  
P1.1  
P1.1  
-15  
-30  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
3
High-Level Output Voltage (V)  
High-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
VCC = 3.0 V  
8-10. Typical High-Level Output Current vs High-Level  
8-11. Typical High-Level Output Current vs High-Level Output  
Output Voltage  
Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.6 LEA  
8.13.6.1 lists the characteristics of the LEA.  
8.13.6.1 Low-Energy Accelerator (LEA) Performance  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Frequency for specified  
performance  
fLEA  
MCLK  
16  
350  
2.6  
MHz  
nJ  
LEA-SC subsystem energy on Complex FFT 128 pt. Q.15 with  
fast fourier transform random data in LEA-RAM  
VCORE = 3 V,  
MCLK = 16 MHz  
W_LEA_FFT  
W_LEA_FIR  
LEA-SC subsystem energy on Real FIR on random Q.31 data with  
finite impulse response  
VCORE = 3 V,  
MCLK = 16 MHz  
µJ  
128 taps on 24 points  
On 32 Q.31 elements with random  
value out of LEA-RAM with linear  
address increment  
LEA-SC subsystem energy on  
additions  
VCORE = 3 V,  
MCLK = 16 MHz  
W_LEA_ADD  
6.6  
nJ  
8.13.7 Timer_A and Timer_B  
8.13.7.1 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TACLK,  
fTA  
Timer_A input clock frequency  
2.2 V, 3.0 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTA,cap  
Timer_A capture timing  
2.2 V, 3.0 V  
20  
ns  
8.13.7.2 Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
fTB  
Timer_B input clock frequency  
2.2 V, 3.0 V  
16 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTB,cap  
Timer_B capture timing  
2.2 V, 3.0 V  
20  
ns  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.8 eUSCI  
8.13.8.1 eUSCI (UART Mode) Clock Frequency  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
16  
MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
4
MHz  
8.13.8.2 eUSCI (UART Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
UCGLITx = 0  
5
30  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
20  
35  
50  
90  
ns  
tt  
UART receive deglitch time(1)  
2.2 V, 3.0 V  
160  
220  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. Thus the selected deglitch  
time can limit the maximum useable baud rate. To ensure that pulses are correctly recognized, their duration should exceed the  
maximum specification of the deglitch time.  
8.13.8.3 eUSCI (SPI Master Mode) Clock Frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Internal: SMCLK or ACLK,  
Duty cycle = 50% ±10%  
feUSCI  
eUSCI input clock frequency  
16  
MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.8.4 eUSCI (SPI Master Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
STE lead time, STE active to  
clock  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
UCSTEM = 1, UCMODEx = 01 or 10  
1
UCxCLK  
cycles  
STE lag time, Last clock to STE  
inactive  
UCSTEM = 1, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
1
STE access time, STE active to  
SIMO data out  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
60  
80  
ns  
ns  
STE disable time, STE inactive to  
SOMI high impedance  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
40  
40  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
ns  
ns  
ns  
ns  
tHD,MI  
0
11  
10  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO  
0
0
tHD,MO  
CL = 20 pF  
(1) fUCxCLK = 1/2 tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)).  
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in 8-12 and 8-13.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in  
Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in 8-12 and 8-13.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.8.5 eUSCI (SPI Master Mode) Timing Diagrams  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
CKPL = 0  
1/fUCxCLK  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,ACC  
tSTE,DIS  
8-12. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,DIS  
tSTE,ACC  
8-13. SPI Master Mode, CKPH = 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.8.6 eUSCI (SPI Slave Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
45  
40  
2
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
STE lag time, Last clock to STE inactive  
ns  
3
45  
ns  
40  
STE access time, STE active to SOMI data out  
50  
ns  
45  
STE disable time, STE inactive to SOMI high  
impedance  
4
4
7
7
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
ns  
tHD,SI  
35  
ns  
35  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
0
0
tHD,SO  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2 tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in 8-14 and 8-15.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in 8-14  
and 8-15.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.8.7 eUSCI (SPI Slave Mode) Timing Diagrams  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
8-14. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
8-15. SPI Slave Mode, CKPH = 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.8.8 eUSCI (I2C Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 8-16)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3.0 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
ns  
ns  
100  
4.0  
0.6  
4.7  
1.3  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2.2 V, 3.0 V  
µs  
Bus free time between a STOP and  
START condition  
tBUF  
us  
250  
25  
125  
ns  
62.5  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
12.5  
6.3  
31.5  
27  
30  
33  
tTIMEOUT  
Clock low time-out  
ms  
8.13.8.9 eUSCI (SPI Slave Mode) Timing Diagrams  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
8-16. I2C Mode Timing  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.9 Segment LCD Controller  
8.13.9.1 LCD_C Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
NOM  
MAX UNIT  
LCDCPEN = 1,  
0000b < VLCDx 1111b (charge pump  
enabled, VLCD 3.6 V)  
Supply voltage range, charge  
pump enabled, VLCD 3.6 V  
VCC,LCD_C,CP en,3.6  
2.2  
3.6  
3.6  
V
V
LCDCPEN = 1,  
0000b < VLCDx 1100b (charge pump  
enabled, VLCD 3.3 V)  
Supply voltage range, charge  
pump enabled, VLCD 3.3 V  
VCC,LCD_C,CP en,3.3  
2.0  
Supply voltage range, internal  
biasing, charge pump disabled  
VCC,LCD_C,int. bias  
VCC,LCD_C,ext. bias  
LCDCPEN = 0, VLCDEXT = 0  
LCDCPEN = 0, VLCDEXT = 0  
2.4  
2.4  
3.6  
3.6  
V
V
Supply voltage range, external  
biasing, charge pump disabled  
Supply voltage range, external  
VCC,LCD_C,VLCDEXT  
LCD voltage, internal or external LCDCPEN = 0, VLCDEXT = 1  
biasing, charge pump disabled  
2.0  
2.4  
3.6  
V
External LCD voltage at  
VLCDCAP  
LCDCAP, internal or external  
biasing, charge pump disabled  
LCDCPEN = 0, VLCDEXT = 1  
3.6  
V
Capacitor value on LCDCAP  
when charge pump enabled  
LCDCPEN = 1, VLCDx > 0000b (charge  
pump enabled)  
CLCDCAP  
fACLK,in  
fLCD  
4.720%  
4.7  
10+20%  
µF  
ACLK input frequency range  
LCD frequency range  
30  
0
32.768  
40 kHz  
fFRAME = (1 / (2 × mux)) × fLCD with  
mux = 1 (static) to 8  
1024  
Hz  
Hz  
fFRAME,4mux(MAX) = (1 / (2 × 4)) ×  
fLCD(MAX) = (1 / (2 × 4)) × 1024 Hz  
fFRAME,4mux  
LCD frame frequency range  
128  
fLCD = 1024 Hz, all common lines  
equally loaded  
CPanel  
VR33  
Panel capacitance  
10000  
pF  
V
Analog input voltage at R33  
LCDCPEN = 0, VLCDEXT = 1  
2.4  
VCC + 0.2  
VR03  
2/3 ×  
(VR33  
VR03  
+
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR23,1/3bias  
Analog input voltage at R23  
VR13  
VR33  
VR23  
VR33  
V
V
V
)
VR03  
+
1/3 ×  
(VR33  
VR03  
Analog input voltage at R13 with LCDREXT = 1, LCDEXTBIAS = 1,  
1/3 biasing LCD2B = 0  
VR13,1/3bias  
VR03  
)
VR03  
+
1/2 ×  
(VR33  
VR03  
Analog input voltage at R13 with LCDREXT = 1, LCDEXTBIAS = 1,  
VR13,1/2bias  
VR03  
1/2 biasing  
LCD2B = 1  
)
VR03  
LCD VR03  
VLCDREF  
Analog input voltage at R03  
R0EXT = 1  
VSS  
2.4  
V
V
Voltage difference between VLCD  
and R03  
LCDCPEN = 0, R0EXT = 1  
VCC + 0.2  
1.2  
V
External LCD reference voltage  
applied at LCDREF  
VLCDREFx = 01  
0.8  
1.0  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.9.2 LCD_C Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VLCDx = 0000, VLCDEXT = 0  
LCDCPEN = 1, VLCDx = 0001b  
LCDCPEN = 1, VLCDx = 0010b  
LCDCPEN = 1, VLCDx = 0011b  
LCDCPEN = 1, VLCDx = 0100b  
LCDCPEN = 1, VLCDx = 0101b  
LCDCPEN = 1, VLCDx = 0110b  
LCDCPEN = 1, VLCDx = 0111b  
LCDCPEN = 1, VLCDx = 1000b  
LCDCPEN = 1, VLCDx = 1001b  
LCDCPEN = 1, VLCDx = 1010b  
LCDCPEN = 1, VLCDx = 1011b  
LCDCPEN = 1, VLCDx = 1100b  
LCDCPEN = 1, VLCDx = 1101b  
LCDCPEN = 1, VLCDx = 1110b  
LCDCPEN = 1, VLCDx = 1111b  
VCC  
MIN  
TYP  
VCC  
MAX UNIT  
VLCD,0  
VLCD,1  
VLCD,2  
VLCD,3  
VLCD,4  
VLCD,5  
VLCD,6  
VLCD,7  
VLCD,8  
VLCD,9  
VLCD,10  
VLCD,11  
VLCD,12  
VLCD,13  
VLCD,14  
VLCD,15  
2.4 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2 V to 3.6 V  
2.49  
2.60  
2.66  
2.72  
2.78  
2.84  
2.90  
2.96  
3.02  
3.08  
3.14  
3.20  
3.26  
3.32  
3.38  
3.44  
2.72  
LCD voltage  
V
3.32  
3.6  
LCD voltage with external  
reference of 0.8 V  
LCDCPEN = 1, VLCDx = 0111b,  
VLCDREFx = 01b, VLCDREF = 0.8 V  
2.96 ×  
0.8 V  
VLCD,7,0.8  
VLCD,7,1.0  
VLCD,7,1.2  
ΔVLCD  
V
LCD voltage with external  
reference of 1.0 V  
LCDCPEN = 1, VLCDx = 0111b,  
VLCDREFx = 01b, VLCDREF = 1.0 V  
2 V to 3.6 V  
2.96 ×  
1.0 V  
V
V
LCD voltage with external  
reference of 1.2 V  
LCDCPEN = 1, VLCDx = 0111b,  
VLCDREFx = 01b, VLCDREF = 1.2 V  
2.2 V to 3.6 V  
2.96 ×  
1.2 V  
Voltage difference between  
consecutive VLCDx settings  
ΔVLCD = VLCD,x VLCD,x1  
with x = 0010b to 1111b  
40  
60  
600  
100  
80 mV  
LCDCPEN = 1, VLCDx = 1111b  
external, with decoupling capacitor on  
DVCC supply 1 µF  
Peak supply currents due to  
charge pump activities  
ICC,Peak,CP  
2.2 V  
µA  
Time to charge CLCD when  
discharged  
CLCD = 4.7 µF, LCDCPEN = 01,  
VLCDx = 1111b  
tLCD,CP,on  
ICP,Load  
RLCD,Seg  
RLCD,COM  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
500  
ms  
µA  
kΩ  
kΩ  
Maximum charge pump load  
current  
LCDCPEN = 1, VLCDx = 1111b  
LCDCPEN = 0, ILOAD = ±10 µA  
LCDCPEN = 0, ILOAD = ±10 µA  
50  
LCD driver output impedance,  
segment lines  
10  
10  
LCD driver output impedance,  
common lines  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.10 ADC12_B  
8.13.10.1 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3.0 V  
2.2 V  
MIN  
NOM  
MAX UNIT  
V(Ax)  
Analog input voltage range(1)  
All ADC12 analog input pins Ax  
0
AVCC  
V
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
145  
199  
I(ADC12_B)  
Operating supply current into  
µA  
single-ended  
mode  
AVCC and DVCC terminals(2) (3)  
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
140  
190  
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 1,  
3.0 V  
2.2 V  
175  
170  
245  
230  
I(ADC12_B)  
Operating supply current into  
µA  
µA  
µA  
differential  
mode  
AVCC and DVCC terminals(2) (3) REFON = 0, ADC12SHTx= 0,  
ADC12DIV = 0  
fADC12CLK = MODCLK/4, ADC12ON = 1,  
ADC12PWRMD = 1, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
3.0 V  
2.2 V  
85  
83  
125  
120  
I(ADC12_B)  
Operating supply current into  
single-ended  
low-power  
mode  
AVCC and DVCC terminals(2) (3)  
fADC12CLK = MODCLK/4, ADC12ON = 1,  
ADC12PWRMD = 1, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
I(ADC12_B)  
fADC12CLK = MODCLK/4, ADC12ON = 1,  
ADC12PWRMD = 1, ADC12DIF = 1,  
3.0 V  
2.2 V  
110  
109  
165  
160  
Operating supply current into  
differential  
low-power  
mode  
AVCC and DVCC terminals(2) (3) REFON = 0, ADC12SHTx= 0,  
ADC12DIV = 0  
Only one terminal Ax can be selected at  
one time  
CI  
RI  
Input capacitance  
2.2 V  
10  
15  
pF  
>2 V  
<2 V  
0.5  
1
4
Input MUX ON resistance  
0 V V(Ax) AVCC  
kΩ  
10  
(1) The analog input voltage range must be within the selected reference voltage range VR+ to VRfor valid conversion results.  
(2) The internal reference supply current is not included in current consumption parameter I(ADC12_B).  
(3) Approximately 60% (typical) of the total current into the AVCC and DVCC terminal is from AVCC.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.10.2 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC12 linearity parameters with  
ADC12PWRMD = 0,  
specified performance If ADC12PWRMD = 1, the maximum is 1/4 of the value shown  
here  
Frequency for  
fADC12CLK  
0.45  
5.4 MHz  
Frequency for  
fADC12CLK  
fADC12OSC  
Linearity parameters have reduced performance  
reduced performance  
32.768  
4.8  
kHz  
Internal oscillator(3)  
ADC12DIV = 0, fADC12CLK = fADC12OSC from MODCLK  
4
5.4 MHz  
REFON = 0, Internal oscillator, fADC12CLK = fADC12OSC from  
MODCLK, ADC12WINC = 0  
2.6  
3.5  
µs  
tCONVERT  
Conversion time  
External fADC12CLK from ACLK, MCLK, or SMCLK,  
ADC12SSEL 0  
See (2)  
Turnon settling time of  
the ADC  
tADC12ON  
See (1)  
100  
ns  
ns  
Time ADC must be off  
before can be turned  
on again  
Note: tADC12OFF must be met to make sure that tADC12ON time  
holds  
tADC12OFF  
100  
1
All pulse sample mode  
(ADC12SHP = 1) and extended  
sample mode (ADC12SHP = 0) with  
buffered reference  
(ADC12VRSEL = 0x1, 0x3, 0x5,  
0x7, 0x9, 0xB, 0xD, 0xF)  
µs  
µs  
RS = 400 Ω, RI = 4 kΩ,  
tSample  
Sampling time  
CI = 15 pF, Cpext= 8 pF(4)  
Extended sample mode  
(ADC12SHP = 0) with unbuffered  
reference (ADC12VRSEL= 0x0,  
0x2, 0x4, 0x6, 0xC, 0xE)  
See (5)  
(1) The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
(2) 14 × 1 / fADC12CLK. If ADC12WINC = 1 then 15 × 1 / fADC12CLK  
.
(3) The ADC12OSC is sourced directly from MODOSC in the UCS.  
(4) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB: tsample = ln(2n+2) × (RS + RI) × (CI + Cpext), where n = ADC  
resolution = 12, RS= external source resistance, Cpext = external parasitic capacitance.  
(5) 6 × 1 / fADC12CLK  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.10.3 12-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
With external voltage reference  
(ADC12VRSEL = 0x2,0x3, 0x4, 0x14, or 0x15),  
1.2 V VR+ VRAVCC  
Integral linearity error (INL) for  
differential input  
±1.8  
LSB  
EI  
With external voltage reference  
(ADC12VRSEL = 0x2,0x3, 0x4, 0x14, or 0x15),  
1.2 V VR+ VRAVCC  
Integral linearity error (INL) for  
single ended inputs  
±2.2  
+1.0  
±1.5  
LSB  
LSB  
mV  
With external voltage reference  
(ADC12VRSEL = 0x2, 0x3, 0x4, 0x14, or 0x15)  
ED  
EO  
Differential linearity error (DNL)  
Offset error(1) (2)  
0.99  
ADC12VRSEL = 0x1 without TLV calibration,  
TLV calibration data can be used to improve the  
parameter(3)  
±0.5  
With internal voltage reference VREF = 2.5 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
±0.2%  
±0.2%  
±1.7%  
±2.5%  
With internal voltage reference VREF = 1.2 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
EG  
Gain error  
With external voltage reference without internal  
buffer (ADC12VRSEL = 0x2 or 0x4) without TLV  
calibration, VR+ = 2.5 V, VR= AVSS  
±1  
±3  
LSB  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3), VR+ = 2.5 V, VR= AVSS  
±2  
±0.2%  
±0.2%  
±27  
±1.8%  
±2.6%  
With internal voltage reference VREF = 2.5 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
With internal voltage reference VREF = 1.2 V  
(ADC12VRSEL = 0x1, 0x7, 0x9, 0xB, or 0xD)  
ET  
Total unadjusted error  
With external voltage reference without internal  
buffer (ADC12VRSEL = 0x2 or 0x4) without TLV  
calibration, VR+ = 2.5 V, VR= AVSS  
±1  
±1  
±5  
LSB  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3), VR+ = 2.5 V, VR= AVSS  
±28  
(1) Offset is measured as the input voltage (at which ADC output transitions from 0 to 1) minus 0.5 LSB.  
(2) Offset increases as IR drop increases when VRis AVSS.  
(3) For details, see the Device Descriptor Table section in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's  
Guide.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.10.4 12-Bit ADC, Dynamic Performance With External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Resolution Number of no missing code output-code bits  
12  
bits  
Signal-to-noise with differential inputs  
SNR  
VR+ = 2.5 V, VR= AVSS  
71  
70  
dB  
Signal-to-noise with single-ended inputs  
VR+ = 2.5 V, VR= AVSS  
VR+ = 2.5 V, VR= AVSS  
Effective number of bits with differential  
inputs(1)  
11.4  
11.1  
Effective number of bits with single-ended  
VR+ = 2.5 V, VR= AVSS  
ENOB  
inputs(1)  
bits  
Reduced performance with fADC12CLK  
from ACLK LFXT 32.768 kHz,  
VR+ = 2.5 V, VR= AVSS  
Effective number of bits with 32.768-kHz  
clock (reduced performance)(1)  
10.9  
(1) ENOB = (SINAD 1.76) / 6.02  
8.13.10.5 12-Bit ADC, Dynamic Performance With Internal Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Resolution Number of no missing code output-code bits  
12  
bits  
Signal-to-noise with differential inputs  
SNR  
VR+ = 2.5 V, VR= AVSS  
70  
69  
dB  
Signal-to-noise with single-ended inputs  
VR+ = 2.5 V, VR= AVSS  
VR+ = 2.5 V, VR= AVSS  
Effective number of bits with differential  
inputs(1)  
11.4  
11.0  
Effective number of bits with single-ended  
VR+ = 2.5 V, VR= AVSS  
ENOB  
inputs(1)  
bits  
Reduced performance with fADC12CLK  
from ACLK LFXT 32.768 kHz,  
VR+ = 2.5 V, VR= AVSS  
Effective number of bits with 32.768-kHz  
clock (reduced performance)(1)  
10.9  
(1) ENOB = (SINAD 1.76) / 6.02  
8.13.10.6 12-Bit ADC, Temperature Sensor and Built-In V1/2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Temperature sensor voltage(1) (2)  
See (2)  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
ADC12ON = 1, ADC12TCMAP = 1,  
TA = 0°C  
VSENSOR  
700  
2.5  
mV  
mV/°C  
µs  
TCSENSOR  
tSENSOR(sample)  
ADC12ON = 1, ADC12TCMAP = 1  
Sample time required if ADCTCMAP = 1 and ADC12ON = 1, ADC12TCMAP = 1,  
channel (MAX 1) is selected(3)  
30  
Error of conversion result 1 LSB  
AVCC voltage divider for ADC12BATMAP = 1  
on MAX input channel  
V1/2  
ADC12ON = 1, ADC12BATMAP = 1  
47.5%  
50% 52.5%  
IV1/2  
Current for battery monitor during sample time ADC12ON = 1, ADC12BATMAP = 1  
38  
72  
µA  
µs  
Sample time required if ADC12BATMAP = 1  
ADC12ON = 1, ADC12BATMAP = 1  
and channel MAX is selected(4)  
tV1/2 (sample)  
1.7  
(1) The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor.  
(2) The device descriptor structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage  
levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR  
can be computed from the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 250 kΩ. The sample time required includes the sensor-on time, tSENSOR(on)  
.
(4) The on-time tV1/2(on) is included in the sampling time tV1/2(sample); no additional on time is needed.  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.10.7 12-Bit ADC, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Positive external reference voltage input  
VeREF+ or VeREF- based on  
ADC12VRSEL bit  
VR+  
VR+ > VR–  
1.2  
AVCC  
V
Negative external reference voltage input  
VeREF+ or VeREF- based on  
ADC12VRSEL bit  
VR–  
VR+ > VR–  
0
1.2  
AVCC  
±10  
V
V
VR+ –  
VR–  
Differential external reference voltage input VR+ > VR–  
1.2  
1.2 V VeREF+VAVCC, VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 0, ADC12PWRMD = 0  
µA  
IVeREF+  
IVeREF-  
,
,
Static input current singled-ended input  
mode  
1.2 V VeREF+VAVCC , VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 0, ADC12PWRMD = 01  
±2.5  
±20  
±5  
µA  
µA  
µA  
1.2 V VeREF+VAVCC, VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 1, ADC12PWRMD = 0  
IVeREF+  
IVeREF-  
Static input current differential input mode  
1.2 V VeREF+VAVCC , VeREF- = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 1, ADC12PWRMD = 1  
IVeREF+  
IVeREF+  
Peak input current with single-ended input  
Peak input current with differential input  
1.5  
3
mA  
mA  
0 V VeREF+ VAVCC, ADC12DIF = 0  
0 V VeREF+ VAVCC, ADC12DIF = 1  
Capacitance at VeREF+ or VeREF-  
terminal  
CVeREF+/-  
See (2)  
10  
µF  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance (CI) is  
also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) Connect two decoupling capacitors, 10 µF and 470 nF, to VeREF to decouple the dynamic current required for an external reference  
source if it is used for the ADC12_B. Also see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
8.13.10.8 Temperature Sensor Typical Characteristics  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
–40  
–20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
8-17. Typical Temperature Sensor Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.11 Reference  
8.13.11.1 REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
2.5 ±1.5%  
2.0 ±1.5%  
1.2 ±1.8%  
MAX UNIT  
REFVSEL = {2} for 2.5 V, REFON = 1  
REFVSEL = {1} for 2.0 V, REFON = 1  
REFVSEL = {0} for 1.2 V, REFON = 1  
From 0.1 Hz to 10 Hz, REFVSEL = {0}  
2.7 V  
2.2 V  
1.8 V  
Positive built-in reference  
voltage output  
VREF+  
V
Noise  
RMS noise at VREF (3)  
30  
130  
+16  
µV  
VREF ADC BUF_INT buffer TA = 25°C, ADC on, REFVSEL = {0},  
offset(5)  
REFON = 1, REFOUT = 0  
VOS_BUF_INT  
mV  
16  
16  
VREF ADC BUF_EXT buffer TA = 25°C, REFVSEL = {0} , REFOUT = 1,  
VOS_BUF_EXT  
AVCC(min)  
IREF+  
+16  
mV  
V
offset(4)  
REFON = 1 or ADC on  
REFVSEL = {0} for 1.2 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
1.8  
2.2  
2.7  
AVCC minimum voltage,  
Positive built-in reference  
active  
Operating supply current  
into AVCC terminal(1)  
REFON = 1  
3 V  
3 V  
19  
26  
µA  
ADC ON, REFOUT = 0,  
REFVSEL = {0, 1, or 2},  
ADC12PWRMD = 0  
247  
400  
ADC ON, REFOUT = 1,  
REFVSEL = {0, 1, 2}, ADC12PWRMD = 0  
3 V  
3 V  
3 V  
3 V  
1053  
153  
1820  
240  
Operating supply current  
into AVCC terminal(1)  
IREF+_ADC_BUF  
ADC ON, REFOUT = 0,  
REFVSEL = {0, 1, 2}, ADC12PWRMD = 1  
µA  
µA  
ADC ON, REFOUT = 1,  
REFVSEL = {0, 1, 2}, ADC12PWRMD = 1  
581  
1030  
1890  
ADC OFF, REFON = 1, REFOUT = 1,  
REFVSEL = {0, 1, 2}  
1105  
REFVSEL = {0, 1, 2}, AVCC = AVCC(min) for  
each reference level,  
REFON = REFOUT = 1  
VREF maximum load  
current, VREF+ terminal  
IO(VREF+)  
+10  
1000  
REFVSEL = {0, 1, 2},  
ΔVout  
/
Load-current regulation,  
VREF+ terminal  
IO(VREF+) = +10 µA or 1000 µA,  
AVCC = AVCC(min) for each reference level,  
REFON = REFOUT = 1  
1500 µV/mA  
ΔIo(VREF+)  
CVREF+/-  
TCREF+  
Capacitance at VREF+ and  
VREF- terminals  
REFON = REFOUT = 1  
0
100  
pF  
REFVSEL = {0, 1, 2},  
REFON = REFOUT = 1,  
TA = 40°C to 85°C(6)  
Temperature coefficient of  
built-in reference  
24  
50 ppm/K  
AVCC = AVCC (min) to AVCC(max)  
TA = 25°C, REFVSEL = {0, 1, 2},  
REFON = REFOUT = 1  
,
Power supply rejection ratio  
(DC)  
PSRR_DC  
100  
400 µV/V  
mV/V  
Power supply rejection ratio  
(AC)  
PSRR_AC  
tSETTLE  
dAVCC= 0.1 V at 1 kHz  
3.0  
40  
AVCC = AVCC (min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 0 1  
,
Settling time of reference  
voltage(2)  
80  
2
µs  
µs  
Settling time of ADC  
AVCC = AVCC (min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 1  
,
Tbuf_settle  
0.4  
reference voltage buffer(2)  
(1) The internal reference current is supplied through the AVCC terminal.  
(2) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
(3) Internal reference noise affects ADC performance when ADC uses the internal reference. See Designing With the MSP430FR59xx  
and MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external  
reference.  
(4) Buffer offset affects ADC gain error and thus total unadjusted error.  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
(5) Buffer offset affects ADC gain error and thus total unadjusted error.  
(6) Calculated using the box method: (MAX(40°C to 85°C) MIN(40°C to 85°C)) / MIN(40°C to 85°C)/(85°C (40°C)).  
8.13.12 Comparator  
8.13.12.1 Comparator_E  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
CEPWRMD = 00, CEON = 1,  
CERSx = 00 (fast)  
12  
16  
CEPWRMD = 01, CEON = 1,  
CERSx = 00 (medium)  
Comparator operating  
supply current into AVCC,  
excludes reference resistor  
ladder  
10  
0.1  
0.3  
14  
µA  
0.3  
IAVCC_COMP  
2.2 V, 3.0 V  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 30°C  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 85°C  
1.3  
CEREFLx = 01, CERSx = 10,  
REFON = 0, CEON = 1,  
CEREFACC = 0  
31  
16  
38  
µA  
19  
Quiescent current of  
resistor ladder into AVCC,  
including REF module  
current  
IAVCC_COMP_REF  
2.2 V, 3.0 V  
CEREFLx = 01, CERSx = 10,  
REFON = 0, CEON = 1,  
CEREFACC = 1  
CERSx = 11, CEREFLx = 01,  
CEREFACC = 0  
1.8 V  
2.2 V  
2.7 V  
1.8 V  
2.2 V  
2.7 V  
1.152  
1.92  
2.40  
1.10  
1.90  
2.35  
1.2  
2.0  
2.5  
1.2  
2.0  
2.5  
1.248  
2.08  
CERSx = 11, CEREFLx = 10,  
CEREFACC = 0  
CERSx = 11, CEREFLx = 11,  
CEREFACC = 0  
2.60  
V
VREF  
Reference voltage level  
CERSx = 11, CEREFLx = 01,  
CEREFACC = 1  
1.245  
CERSx = 11, CEREFLx = 10,  
CEREFACC = 1  
2.08  
2.60  
CERSx = 11, CEREFLx = 11,  
CEREFACC = 1  
VIC  
Common-mode input range  
Input offset voltage  
0
16  
12  
37  
V
VCC 1  
CEPWRMD = 00  
CEPWRMD = 01  
CEPWRMD = 10  
16  
12  
37  
VOFFSET  
mV  
CEPWRMD = 00 or  
CEPWRMD = 01  
10  
CIN  
Input capacitance  
pF  
CEPWRMD = 10  
ON (switch closed)  
OFF (switch open)  
10  
1
3
kΩ  
RSIN  
Series input resistance  
50  
MΩ  
CEPWRMD = 00, CEF = 0,  
Overdrive 20 mV  
193  
230  
5
330  
400  
15  
ns  
µs  
CEPWRMD = 01, CEF = 0,  
Overdrive 20 mV  
Propagation delay,  
response time  
tPD  
CEPWRMD = 10, CEF = 0,  
Overdrive 20 mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
MAX UNIT  
8.13.12.1 Comparator_E (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 00  
700  
1000  
1.9  
ns  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 01  
1.0  
2.0  
4.0  
Propagation delay with  
filter active  
tPD,filter  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 10  
3.7  
µs  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 11  
7.7  
CEON = 0 1, VIN+,  
VIN- from pins,  
Overdrive 20 mV,  
CEPWRMD = 00  
0.9  
0.9  
15  
1.5  
1.5  
65  
CEON = 0 1, VIN+,  
VIN- from pins,  
Overdrive 20 mV,  
CEPWRMD = 01  
tEN_CMP  
Comparator enable time  
µs  
CEON = 0 1,  
VIN+, VIN- from pins,  
Overdrive 20 mV,  
CEPWRMD = 10  
CEON = 0 1, CEREFLX = 10,  
CERSx = 10 or 11,  
CEREF0 = CEREF1 = 0x0F,  
REFON = 0  
Comparator and reference  
ladder and reference  
voltage enable time  
tEN_CMP_VREF  
120  
220  
µs  
V
CEON = 0 1, CEREFLX = 10,  
CERSx = 10, REFON = 1,  
CEREF0 = CEREF1 = 0x0F  
Comparator and reference  
ladder enable time  
tEN_CMP_RL  
10  
30  
VIN ×  
VIN ×  
VIN ×  
Reference voltage for a  
given tap  
VIN = reference into resistor ladder,  
n = 0 to 31  
VCE_REF  
(n + 0.5) (n + 1) / (n + 1.5) /  
/ 32 32 32  
8.13.13 FRAM  
8.13.13.1 FRAM Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TJ  
MIN  
1015  
100  
40  
TYP  
MAX UNIT  
Read and write endurance  
cycles  
25°C  
70°C  
85°C  
tRetention Data retention duration  
years  
10  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM(1)  
Erase current(2)  
IREAD  
N/A(3)  
nA  
nA  
ns  
ns  
ns  
Write time(4)  
tREAD  
NWAITSx = 0  
NWAITSx = 1  
1 / fSYSTEM  
2 / fSYSTEM  
tREAD  
Read time(5)  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current IREAD is included in the active mode current consumption, IAM,FRAM  
(2) FRAM does not require a special erase sequence.  
(3) N/A = Not applicable  
.
(4) Writing into FRAM is as fast as reading.  
(5) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.14 USS  
8.13.14.1 USS Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
2.2  
TYP  
MAX UNIT  
PVCC  
PVCC  
Analog supply voltage at PVCC pins for LDO operation  
Analog supply voltage at PVCC pins for USS operation  
3.6  
3.6  
V
V
2.2  
8.13.14.2 USS LDO  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCC_ldo  
Vuss  
Analog supply voltage at PVCC pins  
USS voltage  
2.2  
3.6  
V
V
1.52  
1.6  
0
1.65  
0 ILOAD ILOAD,MAX  
LBHDEL = 0  
LBHDEL = 1  
LBHDEL = 2  
LBHDEL = 3  
100  
200  
300  
Tholdoff  
Hold off delay on power up  
µs  
µs  
Ttimeout  
Time-out on transition OFF to READY  
160 +  
Tholdoff  
8.13.14.3 USSXTAL  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Nphase_osc Integrated phase noise  
fosc = 4 MHz or 8 MHz, range = 10 kHz to 4 MHz  
dBc  
74  
FRQXTAL  
DCosc  
Resonator frequency  
Duty cycle  
4
8
MHz  
%
35  
65  
fosc = 4 MHz or 8 MHz, CL = 18 pF, CS = 4 pF, fully  
settled, ceramic resonator  
180  
240  
Iosc  
OSC supply current  
Oscillation allowance  
Startup time (gate)  
µA  
fosc = 4 MHz or 8 MHz, CL = 12 pF (4 MHz) or  
16 pF(8 MHz), CS = 7 pF, fully settled, crystal  
resonator  
fosc = 4 MHz, CL = 18 pF, CS = 4 pF, ceramic  
resonator  
1500  
1000  
500  
fosc = 4 MHz, CL = 12 pF, CS = 7 pF, crystal  
resonator  
Aosc  
Ω
fosc = 8 MHz, CL = 18 pF, CS = 4 pF, ceramic  
resonator  
fosc = 8 MHz, CL = 16 pF, CS = 7 pF, crystal  
resonator  
350  
fosc = 4 MHz, crystal resonator  
fosc = 8 MHz, crystal resonator  
fosc = 4 MHz, ceramic resonator  
fosc = 8 MHz, ceramic resonator  
2.8  
1
4.6  
1.9  
Tstart_osc  
ms  
0.14  
0.08  
0.17  
0.12  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
MAX UNIT  
8.13.14.4 USS HSPLL  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
PLL_CLKin  
Input clock to HSPLL  
4
8
MHz  
PLL_CLKout Output clock from HSPLL  
68  
80 MHz  
Reference clock = PLL_CLKin,  
Sequence: Set USS.CTL.USSPWRUP bit = 1, then  
measure the time between PSQ_PLLUP (internal  
control signal) is set to 1 and  
LOCKpwr  
Lock time from PLL power up  
64 cycles  
HSPLL.CTL.PLL_LOCK is set to 1  
8.13.14.5 USS SDHS  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SDHS power domain  
supply voltage  
Vsdhs  
Vsdhs = Vuss  
1.52  
1.6  
1.65  
V
Operating supply current Includes PLL, PGA, SDHS, and DTC,  
Isdhs_product  
Fm  
5.2  
1.5  
mA  
into AVCC and DVCC  
modulator clock = 80 MHz, output data rate = 8 Msps  
Modulator clock(1)  
68  
80 MHz  
MHz  
Modulator clock = 80 MHz, modulator only (no filter is  
enabled)  
BWmod  
Frequency at -3dB SNR  
Bandwidth from 200 kHz  
to 1.5 MHz, PGA gain: a Input signal level = 1000 mVpp,  
gain from the PGA gain PVCC = 3.0 V, Fm = 80 MHz,  
58.5  
57.5  
54.5  
49  
62.5  
table for the maximum  
SNR  
OSR = 20  
Bandwidth from 200 kHz  
to 1.5 MHz, PGA gain: a Input signal level = 760 mVpp,  
gain from the PGA gain PVCC = 2.5 V, Fm = 80 MHz,  
62  
57  
53  
43  
table for the maximum  
SNR  
OSR = 20  
Bandwidth from 200 kHz  
to 1.5 MHz, PGA gain: a Input signal level = 200 mVpp,  
gain from the PGA gain PVCC = 2.5 V, Fm = 80 MHz,  
SNR  
Signal-to-noise ratio(2)  
dB  
table for the maximum  
SNR  
OSR = 20  
Bandwidth from 200 kHz  
to 1.5 MHz, PGA gain: a Input signal level = 100 mVpp,  
gain from the PGA gain PVCC = 2.5 V, Fm = 80 MHz,  
table for the maximum  
SNR  
OSR = 20  
Bandwidth from 200 kHz  
to 1.5 MHz, PGA gain: a Input signal level = 30 mVpp,  
gain from the PGA gain PVCC = 2.5 V, Fm = 80 MHz,  
38.5  
table for the maximum  
SNR  
OSR = 20  
TM2 - TM1, AUTOSSDIS = 0, 1% of settled DC level  
TM2 - TM1, AUTOSSDIS = 1, 1% of settled DC level  
40  
µs  
40  
SDHS settling time (PGA  
+ Modulator)  
TMOD_Settle  
DROUTsdhs Output data rate  
8
Msps  
(1) Informative parameter, not characterized  
(2) SNR as specified, SINAD and THD not specified over complete signal chain  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.14.6 USS PHY Output Stage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
PHY supply voltage  
Output impedance of CH0OUT and CH1OUT for  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PVCC  
RDSonT  
PVCC = VCC, PVSS = VSS  
2.2  
3.6  
V
3
3
PVCC 2.5 V  
PVCC 2.5 V  
Ω
high and low side (trimmed at 3-V PVDD  
)
Termination impedance of CH0OUT and  
CH1OUT towards PVSS (trimmed)  
RTerm  
DrvM  
Ω
High side to low side drive mismatch (trimmed)  
5%  
5%  
12.5%  
12.5%  
PVCC 2.5 V  
PVCC 2.5 V  
PVCC = VCC (2.5 V to 3.6 V)  
PVCC = VCC  
TermM Termination to drive mismatch (trimmed)  
fMAX  
Maximum output frequency  
4.5  
22  
MHz  
µF  
CSUPP  
RSUPP  
Supply buffering capacitance (low ESR type)  
Series resistance to CSUPP  
100  
22  
PVCC = VCC  
Ω
8.13.14.7 USS PHY Input Stage, Multiplexer  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.8  
PVSS  
0.3  
VIN  
Input voltage on CH0IN or CH1IN  
PVCC = VCC, PVSS = VSS  
V
8.13.14.8 USS_PGA  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Supply voltage  
Gain(1)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PVcc  
GN  
2.2  
3.6  
V
30.8  
dB  
6.5  
30  
Vinr1  
Vinr2  
Gtol  
Input range  
Input range  
Gain tolerance  
800 mVpp  
2.2 V PVCC  
2.5 V PVCC  
30  
1000 mVpp  
Full PGA gain range, VOUT = 600 mV  
Full PGA gain range, VOUT = 600 mV  
1.5  
dB  
1.5  
Gain drift over  
temperature  
GTdrift  
0.0019  
dB/℃  
GVdrift  
TSET  
Gain drift over voltage  
Gain settling time  
Full PGA gain range, VOUT = 600 mV  
Gain setting: from 0 dB to 6 dB, to ±5%  
0.15  
0.65  
dB/V  
µs  
1.4  
DC offset (PGA and  
SDHS)  
DCoffset  
DCdrift  
Full PGA gain range, measured at SDHS output  
Full PGA gain range, measured at SDHS output  
5.5  
4.7  
mV  
DC offset drift (PGA and  
SDHS)  
µV/℃  
PGA gain = 0 dB  
-41  
-37  
-19  
VCC = 3 V + 50 mVpp × sin (2π× fC)  
where fC = 1 MHz, VIN = ground,  
PSRR_AC = 20log(VOUT / 50 mV)  
AC power supply  
rejection ratio  
PSRR_AC  
PGA gain = 10 dB  
PGA gain = 30 dB  
dB  
(1) See PGA Gain Table in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.14.9 USS Bias Voltage Generator  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PVCC = VCC (2.2 V to 3.6 V), EXCBIAS = 0  
PVCC = VCC (2.2 V to 3.6 V), EXCBIAS = 1  
PVCC = VCC (2.2 V to 3.6 V), EXCBIAS = 2  
PVCC = VCC (2.2 V to 3.6 V), EXCBIAS = 3  
PVCC = VCC (2.2 V to 3.6 V), BIMP = 0  
PVCC = VCC (2.2 V to 3.6 V), BIMP = 1  
PVCC = VCC (2.2 V to 3.6 V), BIMP = 2  
PVCC = VCC (2.2 V to 3.6 V), BIMP = 3  
200  
300  
Excitation bias voltage  
(coupling capacitors)  
Vexc_bias  
mV  
400  
600  
450  
850  
Impedance of excitation bias  
generator  
RVBE  
Ω
µs  
1450  
2900  
PVCC = VCC (2.2 V to 3.6 V) to 0.1% end value  
RET = 200 Ω, CK + C0P = 1 nF, BIMP = 2  
TSBE  
Excitation bias settling time  
20  
PVCC = VCC (2.2 V to 3.6 V), PGABIAS = 0  
PVCC = VCC (2.2 V to 3.6 V), PGABIAS = 1  
PVCC = VCC (2.2 V to 3.6 V), PGABIAS = 2  
PVCC = VCC (2.2 V to 3.6 V), PGABIAS = 3  
PVCC = VCC (2.2 V to 3.6 V), BIMP = 0  
PVCC = VCC (2.2 V to 3.6 V), BIMP = 1  
PVCC = VCC (2.2 V to 3.6 V), BIMP = 2  
PVCC = VCC (2.2 V to 3.6 V), BIMP = 3  
750  
800  
PGA bias voltage (coupling  
caps)  
Vpga_bias  
mV  
900  
950  
500  
900  
Impedance of acquisition bias  
generator  
RVBA  
Ω
1500  
2950  
PVCC = VCC (2.2 V to 3.6 V)to 0.1% end value  
RET = 200 Ω, CK + C0P = 1 nF, BIMP = 2  
TSBA  
Acquisition bias settling time  
22  
µs  
Impedance of bias switches  
on XPB0/1 terminals on top of  
RVBA  
PVCC = VCC (2.2 V to 3.6 V), PGABIAS = 0;1;2;3 ,  
BIMP = 0;1;2;3  
RVBX  
1000  
Ω
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.13.15 Emulation and Debug  
8.13.15.1 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
IJTAG  
Supply current adder when JTAG active (but not clocked)  
Spy-Bi-Wire input frequency  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
40  
100  
10  
μA  
MHz  
μs  
fSBW  
0
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.04  
15  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
edge)(1)  
tSBW, En  
tSBW,Rst  
2.2 V, 3.0 V  
110  
μs  
μs  
Spy-Bi-Wire return to normal operation time  
TCK input frequency, 4-wire JTAG(2)  
15  
0
100  
16  
2.2 V  
3.0 V  
fTCK  
MHz  
0
16  
Rinternal  
fTCLK  
tTCLK,Low/High  
fTCLK,FRAM  
Internal pulldown resistance on TEST  
2.2 V, 3.0 V  
20  
35  
50  
kΩ  
TCLK/MCLK frequency during JTAG access, no FRAM access  
16 MHz  
(limited by fSYSTEM  
)
TCLK low or high clock pulse duration, no FRAM access  
25  
4
ns  
MHz  
ns  
TCLK/MCLK frequency during JTAG access, including FRAM access  
(limited by fSYSTEM with no FRAM wait states)  
tTCLK,FRAM, Low/ TCLK low or high clock pulse duration, including FRAM accesses  
100  
High  
(1) Tools that access the Spy-Bi-Wire and the BSL interfaces must wait for the tSBW,En time after the first transition of the TEST/SBWTCK  
pin (low to high), before the second transition of the pin (high to low) during the entry sequence.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The MSP430FR604x and MSP430FR504x ultra-low-power microcontrollers feature different sets of peripherals.  
The architecture, combined with seven low-power modes, is optimized to achieve extended battery life for  
example in portable measurement applications. The devices features a powerful 16-bit RISC CPU, 16-bit  
registers, and constant generators that contribute to maximum code efficiency.  
The MSP430FR604x and MSP430FR504x MCUs feature an ultrasonic sensing solution (USS) module, a low-  
energy accelerator (LEA), up to six 16-bit timers, up to six eUSCIs that support UART, SPI, and I2C, a  
comparator, a hardware multiplier, an AES accelerator, a 6-channel DMA, an RTC module with alarm  
capabilities, up to 57 I/O pins, and a high-performance 12-bit ADC. The MSP430FR604x MCUs also include an  
LCD controller module with contrast control for displays with up to 248 segments.  
9.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations  
other than program-flow instructions are performed as register operations in conjunction with seven addressing  
modes for the source operand and four addressing modes for the destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant  
generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses, and can be managed with all  
instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes and  
additional instructions for the expanded address range. Each instruction can operate on word and byte data.  
9.3 Ultrasonic Sensing Solution (USS_A)  
The USS_A module provides a high-precision ultrasonic-sensing solution. The USS_A module is a sophisticated  
system that consists of six submodules:  
UUPS (universal USS power supply)  
HSPLL (high-speed PLL) with oscillator  
ASQ (acquisition sequencer)  
PHY (physical interface)  
PPG_A (programmable pulse generator "A") with low output impedance driver  
PGA (programmable gain amplifier)  
SDHS (sigma-delta high-speed ADC) with DTC (data transfer controller)  
The submodules have different roles, and together the enable high-precision data acquisition in ultrasonic  
applications. See the dedicated chapter for each submodule in the MSP430FR58xx, MSP430FR59xx, and  
MSP430FR6xx Family User's Guide.  
The USS module performs complete measurement sequence without CPU involvement to achieve ultra-low  
power consumption for ultrasonic metrology. 7.1 shows the USS subsystem block diagram. The USS module  
has dedicated I/O pins without secondary functions. See the Ultrasonic Sensing Solution (USS) chapter in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for details.  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
USS_A Module  
USSXT  
USSXTOUT  
USSXTIN  
USSXT_BOUT  
SAPH_A  
OSC  
CH0_OUT  
CH1_OUT  
PPG_A  
PHY  
ASQ  
PLL_CLK  
PVSS  
PLL  
HSPLL  
PVCC  
VOUT  
UUPS  
PVSS  
SDHS  
CH1_IN  
CH0_IN  
RAM  
(shared with LEA)  
PGA  
MOD Filter  
DTC  
Optional external  
signal handling  
Bias  
Generator  
GPIOs  
(software  
control)  
MSP430FRxxxx  
9-1. USS_A Subsystem Block Diagram  
9.4 Low-Energy Accelerator (LEA) for Signal Processing  
The LEA is a hardware engine designed for operations that involve vector-based signal processing, such as FIR,  
IIR, and FFT. The LEA offers fast performance and low energy consumption when performing vector-based  
digital signal processing computations. For performance benchmarks comparing LEA to using the CPU or other  
processors, see Benchmarking the Signal-Processing Capabilities of the Low-Energy Accelerator.  
The LEA requires MCLK to be operational; therefore, LEA runs only in active mode or LPM0. While the LEA is  
running, the LEA data operations are performed on a shared 8KB of RAM out of the 12KB of total RAM (see 表  
9-52). This shared RAM can also be used by the regular application. The MSP CPU and the LEA can run  
simultaneously and independently unless they access the same system RAM.  
Direct access to LEA registers is not supported, and TI recommends using the optimized Digital Signal  
Processing (DSP) Library for MSP Microcontrollers for the operations that the LEA module supports.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.5 Operating Modes  
The MCU has one active mode and seven software selectable low-power modes of operation. An interrupt event can wake up the device from low-power  
modes LPM0 through LPM4, service the request, and restore back to the low-power mode on return from the interrupt program. Low-power modes  
LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.  
Note  
XT1CLK and VLOCLK can be active during LPM4 if requested by low-frequency peripherals such as RTC or WDT.  
9-1. Operating Modes  
AM  
LPM0  
CPU OFF(2)  
16 MHz  
LPM1  
CPU OFF  
16 MHz  
35 µA at 1 MHz  
6 µs  
LPM2  
STANDBY  
50 kHz  
0.7 µA  
LPM3  
STANDBY  
50 kHz  
0.4 µA  
LPM4  
OFF  
LPM3.5  
RTC ONLY  
50 kHz  
LPM4.5  
MODE  
ACTIVE,  
SHUTDOWN  
SHUTDOWN  
ACTIVE  
FRAM OFF(1)  
WITH SVS  
WITHOUT SVS  
Maximum system clock  
16 MHz  
0(3)  
0(3)  
Typical current consumption,  
TA = 25°C  
103 µA/MHz  
N/A  
65 µA/MHz  
70 µA at 1 MHz  
instant  
0.3 µA  
7 µs  
0.25 µA  
250 µs  
0.2 µA  
250 µs  
0.02 µA  
1000 µs  
Typical wake-up time  
Wake-up events  
6 µs  
7 µs  
LF, RTC, I/O,  
Comp  
LF, RTC, I/O,  
Comp  
N/A  
all  
all  
I/O, Comp  
RTC, I/O  
I/O  
CPU  
on  
on  
on  
off  
on  
off  
off  
off  
off  
off  
off  
off  
off  
off  
off  
off  
off  
reset  
reset  
reset  
reset  
reset  
reset  
USS_A  
LEA  
on(10)  
off  
standby  
FRAM  
on  
off(1)  
off  
off  
off  
off  
off  
off  
off  
off  
off  
off  
(or off(1)  
)
High-frequency peripherals  
Low-frequency peripherals  
available  
available  
available  
available  
available  
available  
available  
reset  
reset  
reset  
RTC  
MTIF  
available  
available (4)  
Unclocked peripherals(5)  
MCLK  
available  
on  
available  
off  
available  
off  
available (4)  
off  
available (4)  
off  
reset  
off  
reset  
off  
on(10)  
off  
SMCLK  
optional(6)  
on  
optional(6)  
on  
optional(6)  
on  
off  
off  
off  
off  
off  
ACLK  
on  
on  
off  
off  
off  
Full retention  
SVS  
yes  
yes  
yes  
yes  
yes  
yes  
no  
no  
always  
always  
always  
always  
always  
always  
optional(7)  
always  
optional(7)  
always  
optional(7)  
always  
optional(7)  
always  
on(8)  
off(9)  
Brownout  
always  
(1) FRAM is disabled in the FRAM controller A (FRCTL_A).  
(2) Disabling the FRAM through the FRAM controller A (FRCTL_A) allows the application to lower the LPM current consumption but the wake-up time increases as soon as FRAM is  
accessed (for example, to fetch an interrupt vector). For a non-FRAM wake-up (for example, DMA transfer to RAM) the wake-up is not delayed.  
(3) All clocks are disabled.  
(4) See 9.5.2, which describes the use of peripherals in LPM3 and LPM4.  
(5) "Unclocked peripherals" are peripherals that do not require a clock source to operate; for example, the comparator and REF, or the eUSCI when operated as an SPI slave.  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431 MSP430FR5041  
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
(6) Controlled by SMCLKOFF.  
(7) Activated SVS (SVSHE = 1) results in higher current consumption. SVS is not included in typical current consumption.  
(8) SVSHE = 1  
(9) SVSHE = 0  
(10) Only while LEA is performing the task enabled by CPU during AM. LEA cannot be enabled in LPM0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431 MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.5.1 Peripherals in Low-Power Modes  
Peripherals can be in different states that impact the achievable power modes of the device. The states depend  
on the operational modes of the peripherals (see 9-2). The states are:  
A peripheral is in a "high-frequency state" if it requires or uses a clock with a "high" frequency of more than  
50 kHz.  
A peripheral is in a "low-frequency state" if it requires or uses a clock with a "low" frequency of 50 kHz or less.  
A peripheral is in an "unclocked state" if it does not require or use an internal clock.  
If the CPU requests a power mode that does not support the current state of all active peripherals, the device  
does not enter the requested power mode, but it does enter a power mode that still supports the current state of  
the peripherals, except if an external clock is used. If an external clock is used, the application must use the  
correct frequency range for the requested power mode.  
9-2. Peripheral States  
PERIPHERAL  
WDT  
IN HIGH-FREQUENCY STATE (1)  
Clocked by SMCLK  
Not applicable  
IN LOW-FREQUENCY STATE (2)  
IN UNCLOCKED STATE (3)  
Not applicable  
Clocked by ACLK  
DMA(4)  
RTC_C  
LCD_C  
Not applicable  
Waiting for a trigger.  
Not applicable  
Not applicable  
Clocked by LFXT.  
Not applicable  
Clocked by ACLK or VLOCLK.  
Not applicable  
Clocked by ACLK or  
clocked by external clock 50 kHz  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Timer_A TAx  
Timer_B TBx  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
Waiting for first edge of START bit.  
Not applicable  
Clocked by ACLK or  
clocked by external clock 50 kHz  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
eUSCI_Ax in  
UART mode  
Clocked by SMCLK  
Clocked by SMCLK  
Clocked by ACLK  
Clocked by ACLK  
eUSCI_Ax in SPI  
master mode  
eUSCI_Ax in SPI  
slave mode  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
Not applicable  
eUSCI_Bx in I2C  
master mode  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
eUSCI_Bx in I2C  
slave mode  
Waiting for START condition or  
clocked by external clock 50 kHz  
Clocked by external clock >50 kHz  
Clocked by SMCLK  
Clocked by external clock 50 kHz  
Clocked by ACLK  
eUSCI_Bx in SPI  
master mode  
Not applicable  
eUSCI_Bx in SPI  
slave mode  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
ADC12_B  
REF_A  
COMP_E  
CRC(5)  
Clocked by SMCLK or by MODOSC  
Not applicable  
Clocked by ACLK  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Waiting for a trigger  
Always  
Not applicable  
Always  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
MPY(5)  
Not applicable  
AES(5)  
Not applicable  
(1) Peripherals are in a state that requires or uses a clock with a "high" frequency of more than 50 kHz.  
(2) Peripherals are in a state that requires or uses a clock with a "low" frequency of 50 kHz or less.  
(3) Peripherals are in a state that does not require or does not use an internal clock.  
(4) The DMA always transfers data in active mode but can wait for a trigger in any low-power mode. A DMA trigger during a low-power  
mode causes a temporary transition into active mode for the time of the transfer.  
(5) This peripheral operates during active mode only and will delay the transition into a low-power mode until its operation is completed.  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.5.2 Idle Currents of Peripherals in LPM3 and LPM4  
Most peripherals can be operational in LPM3 if clocked by ACLK. Some modules are operational in LPM4,  
because they do not require a clock to operate (for example, the comparator). Activating a peripheral in LPM3 or  
LPM4 increases the current consumption due to its active supply current contribution but also due to an  
additional idle current. To reduce the idle current adder, certain peripherals are grouped together. To achieve  
optimal current consumption, use modules within one group and limit the number of groups with active modules.  
9-3 lists the groups. Modules not listed in this table are either already included in the standard LPM3 current  
consumption or cannot be used in LPM3 or LPM4.  
The idle current adder is very small at room temperature (25°C) but increases at high temperatures (85°C). See  
the IIDLE current parameters in 8 for details.  
9-3. Peripheral Groups  
GROUP A  
Timer TA1  
Timer TA2  
Timer TB0  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
GROUP B  
Timer TA0  
Timer TA3  
Comparator  
ADC12_B  
REF_A  
GROUP C  
Timer TA4  
eUSCI_A2  
eUSCI_A3  
eUSCI_B1  
LCD_C  
9.6 Interrupt Vector Table and Signatures  
The interrupt vectors, the power-up start address and signatures are in the address range 0FFFFh to 0FF80h. 图  
9-2 summarizes the content of this address range.  
0FFFFh  
Reset Vector  
BSL Password  
Interrupt  
Vectors  
0FFE0h  
JTAG Password  
Reserved  
0FF88h  
0FF80h  
Signatures  
9-2. Interrupt Vectors, Signatures and Passwords  
The power-up start address or reset vector is at 0FFFFh to 0FFFEh. It contains the 16-bit address pointing to the  
start address of the application program.  
The interrupt vectors start at 0FFFDh and extend to lower addresses. Each vector contains the 16-bit address of  
the appropriate interrupt-handler instruction sequence. 9-4 shows the device specific interrupt vector  
locations.  
The vectors programmed into the address range from 0FFFFh to 0FFE0h are used as BSL password (if enabled  
by the corresponding signature).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
The signatures are located at 0FF80h and extend to higher addresses. Signatures are evaluated during device  
start-up. 9-5 shows the device specific signature locations.  
A JTAG password can be programmed starting from address 0FF88h and extending to higher addresses. The  
password can extend into the interrupt vector locations using the interrupt vector addresses as additional bits for  
the password. The length of the JTAG password depends on the JTAG signature.  
Refer to the chapter "System Resets, Interrupts, and Operating Modes, System Control Module (SYS)" in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for details.  
9-4. Interrupt Sources, Flags, and Vectors  
INTERRUPT  
VECTOR  
REGISTER  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
System Reset  
INTERRUPT FLAG  
PRIORITY  
Power up, brownout,  
supply supervisor  
SVSHIFG  
External reset, RST  
PMMRSTIFG  
WDTIFG  
Watchdog time-out  
(watchdog mode)  
SYSRSTIV(1)  
Reset  
0FFFEh  
Highest  
WDT, FRCTL MPU, CS,  
PMM password violation  
WDTPW, FRCTLPW, MPUPW, CSPW,  
PMMPW  
FRAM uncorrectable bit  
error detection  
UBDIFG  
MPU segment violation  
MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
Software POR, BOR  
PMMPORIFG, PMMBORIFG  
System NMI  
Vacant memory access(2)  
JTAG mailbox  
VMAIFG  
JMBINIFG, JMBOUTIFG  
ACCTEIFG  
FRAM access time error  
SYSSNIV(1)  
(Non)maskable(3)  
0FFFCh  
FRAM write protection  
error  
WPIFG  
FRAM bit error detection  
CBDIFG, UBDIFG  
MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
MPU segment violation  
User NMI  
External NMI  
NMIIFG  
OFIFG  
SYSUNIV(1)  
(Non)maskable(3)  
0FFFAh  
Oscillator fault  
LEA RAM access conflict  
DACCESSIFG  
Comparator_E  
TB0  
CEIFG, CEIIFG  
CEIV(1)  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
TB0CCR0 CCIFG  
TB0CCR1 CCIFG to TB0CCR6 CCIFG,  
TB0CTL.TBIFG  
TB0  
TB0IV(1)  
Maskable  
Maskable  
0FFF4h  
0FFF2h  
Watchdog timer (interval  
timer mode)  
WDTIFG  
UCRXIFG, UCTXIFG (SPI mode)  
eUSCI_A0 receive or  
transmit  
UCA0IV(1)  
Maskable  
0FFF0h  
UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-4. Interrupt Sources, Flags, and Vectors (continued)  
INTERRUPT  
VECTOR  
REGISTER  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
UCRXIFG, UCTXIFG (SPI mode)  
UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1, UCRXIFG2,  
UCTXIFG2, UCRXIFG3, UCTXIFG3,  
UCCNTIFG, UCBIT9IFG (I2C mode)  
eUSCI_B0 receive or  
transmit  
UCB0IV(1)  
Maskable  
0FFEEh  
ADC12IFG0 to ADC12IFG31,  
ADC12LOIFG, ADC12INIFG,  
ADC12HIIFG, ADC12RDYIFG,  
ADC21OVIFG, ADC12TOVIFG  
ADC12_B(4)  
ADC12IV(1)  
Maskable  
0FFECh  
TA0  
TA0  
TA0CCR0 CCIFG  
Maskable  
Maskable  
0FFEAh  
0FFE8h  
TA0CCR1 CCIFG, TA0CCR2 CCIFG,  
TA0CTL.TAIFG  
TA0IV(1)  
UCA1IV(1)  
DMAIV(1)  
UCRXIFG, UCTXIFG (SPI mode)  
eUSCI_A1 receive or  
transmit  
Maskable  
0FFE6h  
UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
DMA0CTL.DMAIFG, DMA1CTL.DMAIFG,  
DMA2CTL.DMAIFG  
DMA  
TA1  
TA1  
Maskable  
Maskable  
Maskable  
0FFE4h  
0FFE2h  
0FFE0h  
TA1CCR0 CCIFG  
TA1CCR1 CCIFG, TA1CCR2 CCIFG,  
TA1CTL.TAIFG  
TA1IV(1)  
P1IV(1)  
I/O port P1  
TA2  
P1IFG.0 to P1IFG.7  
TA2CCR0 CCIFG  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
0FFDAh  
0FFD8h  
0FFD6h  
0FFD4h  
0FFD2h  
0FFD0h  
TA2  
TA2CCR1 CCIFG, TA2CTL.TAIFG  
P2IFG.0 to P2IFG.7  
TA2IV(1)  
P2IV(1)  
I/O port P2  
TA3  
TA3CCR0 CCIFG  
TA3  
TA3CCR1 CCIFG, TA3CTL.TAIFG  
P3IFG.0 to P3IFG.7  
TA3IV(1)  
P3IV(1)  
P4IV(1)  
I/O port P3  
I/O port P4  
P4IFG.0 to P4IFG.7  
LCDNOCAPIFG, LCDBLKOFFIFG,  
LCDBLKONIFG, LCDFRMIFG  
LCD_C  
RTC_C  
LCDCIV(1)  
RTCIV(1)  
Maskable  
Maskable  
0FFCEh  
0FFCCh  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RT0PSIFG, RT1PSIFG, RTCOFIFG  
AES  
TA4  
AESRDYIFG  
TA4CCR0 CCIFG  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFCAh  
0FFC8h  
0FFC6h  
0FFC4h  
0FFC2h  
TA4  
TA4CCR1 CCIFG, TA4CTL.TAIFG  
P5IFG.0 to P5IFG.7  
TA4IV(1)  
P5IV(1)  
P6IV(1)  
I/O port P5  
I/O port P6  
P6IFG.0 to P6IFG.7  
UCRXIFG, UCTXIFG (SPI mode)  
eUSCI_A2 receive or  
transmit  
UCA2IV(1)  
UCA3IV(1)  
Maskable  
Maskable  
0FFC0h  
0FFBEh  
UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
eUSCI_A3 receive or  
transmit  
UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1, UCRXIFG2,  
UCTXIFG2, UCRXIFG3, UCTXIFG3,  
UCCNTIFG, UCBIT9IFG (I2C mode)  
eUSCI_B1 receive or  
transmit  
UCB1IV(1)  
Maskable  
0FFBCh  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
PRIORITY  
9-4. Interrupt Sources, Flags, and Vectors (continued)  
INTERRUPT  
VECTOR  
REGISTER  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
I/O port P7  
LEA  
P7IFG.0 to P7IFG.7  
P7IV(1)  
Maskable  
Maskable  
0FFBAh  
0FFB8h  
CMDIFG, SDIIFG, OORIFG, TIFG,  
COVLIFG  
LEAIV(1)  
UUPS  
HSPLL  
PTMOUT, PREQIG  
PLLUNLOCK  
IIDX(1)  
IIDX(1)  
IIDX(1)  
Maskable  
Maskable  
Maskable  
0FFB6h  
0FFB4h  
0FFB2h  
SAPH_A  
DATAERR, TAMTO, SEQDN, PNGDN  
OVF, ACQDONE, SSTRG, DTRDY,  
WINHI, WINLO  
SDHS  
IIDX(1)  
Maskable  
0FFB0h  
Lowest  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space.  
(3) (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it.  
(4) Only on devices with ADC, otherwise reserved.  
9-5. Signatures  
SIGNATURE  
IP Encapsulation Signature2  
IP Encapsulation Signature1(1)  
BSL Signature2  
WORD ADDRESS  
0FF8Ah  
0FF88h  
0FF86h  
BSL Signature1  
0FF84h  
JTAG Signature2  
0FF82h  
JTAG Signature1  
0FF80h  
(1) Must not contain 0AAAAh if used as the JTAG password.  
9.7 Bootloader (BSL)  
The BSL can program the FRAM or RAM using a UART serial interface (FRxxxx devices) or an I2C interface  
(FRxxxx1 devices). Access to the device memory through the BSL is protected by an user-defined password. 表  
9-6 lists the pins that are required for use of the BSL. BSL entry requires a specific entry sequence on the  
RST/NMI/SBWTDIO and TEST/SBWTCK pins. For a complete description of the features of the BSL and its  
implementation, see the MSP430™ FRAM Devices Bootloader (BSL) User's Guide. More information on the  
BSL can be found at www.ti.com/tool/mspbsl.  
9-6. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P2.0  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Devices with UART BSL (FRxxxx): Data transmit  
Devices with UART BSL (FRxxxx): Data receive  
Devices with I2C BSL (FRxxxx1): Data  
Devices with I2C BSL (FRxxxx1): Clock  
Power supply  
P2.1  
P1.6  
P1.7  
DVCC, AVCC  
DVSS, AVSS  
Ground supply  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.8 JTAG Operation  
9.8.1 JTAG Standard Interface  
The MSP family supports the standard JTAG interface, which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP  
development tools and device programmers. 9-7 lists the JTAG pin requirements. For further details on  
interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a  
complete description of the features of the JTAG interface and its implementation, see MSP430 Programming  
With the JTAG Interface.  
9-7. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
PJ.3/TCK  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC, AVCC  
DVSS, AVSS  
IN  
Power supply  
Ground supply  
9.8.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP family supports the two wire Spy-Bi-Wire interface. Spy-Bi-  
Wire can be used to interface with MSP development tools and device programmers. The Spy-Bi-Wire interface  
pin requirements are shown in 9-8. For further details on interfacing to development tools and device  
programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the  
JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface.  
9-8. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
DVCC, AVCC  
DIRECTION  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN  
IN, OUT  
DVSS, AVSS  
Ground supply  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.9 FRAM Controller A (FRCTL_A)  
The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU.  
Features of the FRAM include:  
Ultra-low-power ultra-fast-write nonvolatile memory  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
Note  
Wait States  
For MCLK frequencies >8 MHz, wait states must be configured as described in the Wait State Control  
section of the FRAM Controller A (FRCTRL_A) chapter in the MSP430FR58xx, MSP430FR59xx, and  
MSP430FR6xx Family User's Guide.  
For important software design information regarding FRAM including but not limited to partitioning the memory  
layout according to application-specific code, constant, and data space requirements, the use of FRAM to  
optimize application energy consumption, and the use of the memory protection unit (MPU) to maximize  
application robustness by protecting the program code against unintended write accesses, see MSP430™  
FRAM Technology How to and Best Practices.  
9.10 RAM  
The RAM is made up of three sectors. Sector 0 = 2KB, Sector 1 = 2KB, Sector 2 = 8KB (shared with LEA). Each  
sector can be individually powered down in LPM3 and LPM4 to save leakage. Data is lost when sectors are  
powered down in LPM3 and LPM4.  
9.11 Tiny RAM  
22 bytes of Tiny RAM are provided in addition to the complete RAM (see 9-52). This memory is always  
available, even in LPM3 and LPM4, while the complete RAM can be powered down in LPM3 and LPM4. Tiny  
RAM can be used to hold data or a very small stack when the complete RAM is powered down in LPM3 and  
LPM4. No memory is available in LPMx.5.  
9.12 Memory Protection Unit (MPU) Including IP Encapsulation  
The FRAM can be protected by the MPU from inadvertent CPU execution, read access, or write access.  
Features of the MPU include:  
IP encapsulation with programmable boundaries in steps of 1KB (prevents reads from "outside"; for example,  
through JTAG or by non-IP software).  
Main memory partitioning is programmable up to three segments in steps of 1KB.  
Access rights of each segment can be individually selected (main and information memory).  
Access violation flags with interrupt capability for easy servicing of access violations.  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.13 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be controlled  
using all instructions. For complete module descriptions, see the MSP430FR58xx, MSP430FR59xx, and  
MSP430FR6xx Family User's Guide.  
9.13.1 Digital I/O  
Up to eight 8-bit I/O ports are implemented:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wakeup input capability is available for all pins of ports  
P1, P2, P3, P4, P5, P6, and P7.  
Read and write access to port control registers is supported by all instructions.  
Ports P1/P2, P3/P4, P5/P6, P7/(P8) can be accessed byte-wise or word-wise in pairs.  
No cross-currents during start-up.  
Note  
Configuration of Digital I/Os After BOR Reset  
To prevent any cross currents during start-up of the device, all port pins are high-impedance with  
Schmitt triggers and their module functions disabled. To enable the I/O functionality after a BOR reset,  
the ports must be configured first and then the LOCKLPM5 bit must be cleared. For details, refer to  
the "Configuration After Reset" section of the Digital I/O chapter in the MSP430FR58xx,  
MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
9.13.2 Oscillator and Clock System (CS)  
The clock system includes support for a 32-kHz watch-crystal oscillator XT1 (LF), an internal very-low-power  
low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency  
crystal oscillator XT2 (HF). The clock system module is designed to meet the requirements of both low system  
cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The clock system module  
provides the following clock signals:  
Auxiliary clock (ACLK). ACLK can be sourced from a 32-kHz watch crystal (LFXT1), the internal VLO, or a  
digital external low-frequency (<50 kHz) clock source.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced from a high-frequency crystal  
(HFXT2), the internal DCO, a 32-kHz watch crystal (LFXT1), the internal VLO, or a digital external clock  
source.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
same sources made available to MCLK.  
The high frequency oscillator XT2 (HF) can be sourced from the oscillator of the ultrasonic subsystem  
USSXT through an internal connection.  
9.13.3 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also  
includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit provides the proper  
internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage  
drops below a safe level and below a user-selectable level. SVS circuitry is available on the primary and core  
supplies.  
9.13.4 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations  
with 32-, 24-, 16-, and 8-bit operands. The module supports signed multiplication, unsigned multiplication, signed  
multiply-and-accumulate, and unsigned multiply-and-accumulate operations.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.13.5 Real-Time Clock (RTC_C)  
The RTC_C module contains an integrated real-time clock (RTC) with the following features:  
Calendar mode with leap year correction  
General-purpose counter mode  
The internal calendar compensates for months with fewer than 31 days and includes leap year correction. The  
RTC_C also supports flexible alarm functions and offset-calibration hardware. RTC operation is available in  
LPM3.5 modes to minimize power consumption.  
9.13.6 Measurement Test Interface (MTIF)  
The MTIF module provides a simple pulse-based test interface that is used to implement consumption  
monitoring of "legal relevant data" with high integrity. MTIF consists of the a pulse generator, a pulse counter,  
and a pulse interface. MTIF has following features:  
Independent passwords for generator counter and pulse interface  
Pulse rates up to 1016 pulses/second  
Pulse frame duration from 1/16 s to 16 s  
Count capacity up to 65535 (16 bit)  
Operating in LPM3.5 with 200 nA  
2-pin interface with MTIF_OUT_IN and MTIF_PIN_EN  
9.13.7 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart if a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals. 9-9 lists the clocks that can be selected by the WDT.  
9-9. WDT_A Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER  
MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
LFMODCLK  
9.13.8 System Module (SYS)  
The SYS module manages many of the system functions within the device. These include power-on reset (POR)  
and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators,  
bootloader (BSL) entry mechanisms, and configuration management (device descriptors). The SYS module also  
includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application.  
9-10 lists the SYS module interrupt vector registers.  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-10. System Module Interrupt Vector Registers  
INTERRUPT VECTOR REGISTER  
ADDRESS  
INTERRUPT EVENT  
VALUE  
00h  
PRIORITY  
No interrupt pending  
Brownout (BOR)  
02h  
Highest  
RSTIFG RST/NMI (BOR)  
04h  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
06h  
08h  
Security violation (BOR)  
0Ah  
0Ch  
0Eh  
10h  
Reserved  
SVSHIFG SVSH event (BOR)  
Reserved  
Reserved  
12h  
PMMSWPOR software POR (POR)  
WDTIFG watchdog timeout (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection (PUC)  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
MPUPW MPU password violation (PUC)  
CSPW CS password violation (PUC)  
MPUSEGIPIFG encapsulated IP memory segment violation (PUC)  
Reserved  
14h  
16h  
SYSRSTIV, System Reset  
019Eh  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
MPUSEG1IFG segment 1 memory violation (PUC)  
MPUSEG2IFG segment 2 memory violation (PUC)  
MPUSEG3IFG segment 3 memory violation (PUC)  
Reserved  
2Ah  
2Ch  
2Eh  
30h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
Reserved  
02h  
Uncorrectable FRAM bit error detection  
FRAM Access Time Error  
04h  
06h  
MPUSEGIPIFG encapsulated IP memory segment violation  
Reserved  
08h  
0Ah  
0Ch  
0Eh  
10h  
MPUSEG1IFG segment 1 memory violation  
MPUSEG2IFG segment 2 memory violation  
MPUSEG3IFG segment 3 memory violation  
VMAIFG Vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
FRAM Write Protection Detection  
LEA Time-out Fault  
SYSSNIV, System NMI  
019Ch  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
00h  
LEA Command Fault  
Lowest  
Highest  
No interrupt pending  
NMIIFG NMI pin  
02h  
OFIFG oscillator fault  
04h  
SYSUNIV, User NMI  
019Ah  
DACCESSIFG  
06h  
Reserved  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.13.9 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
For example, the DMA controller can be used to move data from the ADC12_B conversion memory to RAM.  
Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces  
system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move  
data to or from a peripheral. 9-11 lists the available DMA trigger assignments.  
9-11. DMA Trigger Assignments(1)  
TRIGGER  
CHANNEL 0  
DMAREQ  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
DMAREQ  
CHANNEL 5  
DMAREQ  
0
1
DMAREQ  
DMAREQ  
DMAREQ  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
TA4CCR0 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA2RXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA2TXIFG  
UCA2TXIFG  
UCA2TXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA3RXIFG  
UCA3RXIFG  
UCA3RXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCA3TXIFG  
UCA3TXIFG  
UCA3TXIFG  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
18  
19  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
20  
21  
22  
23  
24  
25  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
UCB1RXIFG1 (I2C)  
UCB1TXIFG1 (I2C)  
UCB1RXIFG2 (I2C)  
UCB1TXIFG2 (I2C)  
UCB1RXIFG3 (I2C)  
UCB1TXIFG3 (I2C)  
UCB1RXIFG1 (I2C)  
UCB1TXIFG1 (I2C)  
UCB1RXIFG2 (I2C)  
UCB1TXIFG2 (I2C)  
UCB1RXIFG3 (I2C)  
UCB1TXIFG3 (I2C)  
UCB1RXIFG1 (I2C)  
UCB1TXIFG1 (I2C)  
UCB1RXIFG2 (I2C)  
UCB1TXIFG2 (I2C)  
UCB1RXIFG3 (I2C)  
UCB1TXIFG3 (I2C)  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
ADC12 end of  
conversion  
26  
27  
28  
29  
30  
31  
LEA Ready  
Reserved  
MPY ready  
DMA2IFG  
DMAE0  
LEA Ready  
Reserved  
MPY ready  
DMA0IFG  
DMAE0  
USS_A PPGTRIG  
Reserved  
USS_A PPGTRIG  
Reserved  
LEA Ready  
Reserved  
MPY ready  
DMA3IFG  
DMAE0  
LEA Ready  
Reserved  
MPY ready  
DMA4IFG  
DMAE0  
MPY ready  
DMA1IFG  
MPY ready  
DMA5IFG  
DMAE0  
DMAE0  
(1) If a reserved trigger source is selected, no trigger is generated.  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.13.10 Enhanced Universal Serial Communication Interface (eUSCI)  
The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous  
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baud-rate detection, and IrDA.  
The eUSCI_A0, eUSCI_A1, eUSCI_A2, and eUSCI_A3 modules support SPI (3- or 4-pin), UART, enhanced  
UART, and IrDA.  
The eUSCI_B0 and eUSCI_B1 modules support SPI (3- or 4-pin) and I2C.  
Up to four eUSCI_A modules and up to two eUSCI_B modules are implemented.  
9.13.11 TA0, TA1, and TA4  
TA0, TA1, and TA4 are 16-bit timers and counters (Timer_A type) with three (TA0 and TA1) or two (TA4) capture/  
compare registers each. Each timer can support multiple captures or compares, PWM outputs, and interval  
timing (see 9-12, 9-13, and 9-14). Each timer has extensive interrupt capabilities. Interrupts may be  
generated from the counter on overflow conditions and from each of the capture/compare registers.  
9-12. TA0 Signal Connections  
DEVICE INPUT MODULE INPUT  
MODULE  
BLOCK  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
SIGNAL  
SIGNAL  
TACLK  
ACLK  
P2.4, P4.5, P6.0  
TA0CLK  
ACLK (internal)  
SMCLK (internal)  
TA0CLK  
Timer  
CCR0  
N/A  
TA0  
N/A  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
P2.4. P4.5, P6.0  
P2.3  
TA0.0  
P2.3  
P5.4  
P5.4  
TA0.0  
TA0.0  
DVSS  
DVCC  
VCC  
P6.7  
P5.7  
TA0.1  
CCI1A  
P6.7  
ADC12(internal)(1)  
ADC12SHSx = {1}  
COUT (internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA0.1  
TA0.2  
DVSS  
DVCC  
GND  
VCC  
TA0.2  
CCI2A  
CCI2B  
P5.7  
P2.5  
ACLK (internal)  
UUPS Trigger  
(USSPWRUP)  
UUPS.CTL.USSPWR  
UPSEL = {2}  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-13. TA1 Signal Connections  
DEVICE INPUT MODULE INPUT  
MODULE  
BLOCK  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
SIGNAL  
SIGNAL  
TACLK  
ACLK  
P2.4, P4.5, P3.1  
TA1CLK  
ACLK (internal)  
SMCLK (internal)  
TA1CLK  
Timer  
CCR0  
N/A  
TA0  
N/A  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
P2.4. P4.5, P3.1  
P1.0  
TA1.0  
P1.0  
P1.2  
P7.0  
P7.0  
TA1.0  
TA1.0  
DVSS  
DVCC  
VCC  
P3.2  
P2.6  
TA1.1  
CCI1A  
CCI1B  
P1.3  
P3.2  
COUT (internal)  
ADC12(internal)(1)  
ADC12SHSx = {4}  
CCR1  
CCR2  
TA1  
TA2  
TA1.1  
TA1.2  
DVSS  
GND  
DVCC  
TA1.2  
VCC  
CCI2A  
CCI2B  
P2.6  
P7.0  
ACLK (internal)  
ASQ Trigger  
(ASQTRIG)  
SAPH.ASCTL0.TRIG  
SEL={2}  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC.  
9-14. TA4 Signal Connections  
DEVICE INPUT MODULE INPUT  
MODULE  
BLOCK  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
SIGNAL  
SIGNAL  
PJ.1, P4.6,  
PPGTick  
TA4CLK  
TACLK  
ACLK (internal)  
ACLK  
Timer  
N/A  
N/A  
SMCLK (internal)  
SMCLK  
PJ.1, P4.6,  
PPGTick  
TA4CLK  
INCLK  
P1.1  
P2.5  
TA4.0  
TA4.0  
DVSS  
DVCC  
TA4.1  
TA4.1  
CCI0A  
CCI0B  
GND  
P1.1  
P2.5  
CCR0  
CCR1  
TA0  
TA1  
TA4.0  
TA4.1  
VCC  
P5.5  
P2.7  
CCI1A  
CCI1B  
P5.5  
P2.7  
ADC12(internal)(1)  
ADC12SHSx = {7}  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.13.12 TA2 and TA3  
TA2 and TA3 are 16-bit timers and counters (Timer_A type) with two capture/compare registers each and with  
internal connections only. Each timer can support multiple captures or compares, PWM outputs, and interval  
timing (see 9-15 and 9-16). Each timer has extensive interrupt capabilities. Interrupts may be generated  
from the counter on overflow conditions and from each of the capture/compare registers.  
9-15. TA2 Signal Connections  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
Reserved  
TACLK  
ACLK  
Timer  
N/A  
TA0  
SMCLK  
INCLK  
TA3 CCR0 output  
(internal)  
CCI0A  
TA3 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
DVCC  
ADC12(internal)(1)  
ADC12SHSx = {5}  
Reserved  
CCI1A  
CCI1B  
PPG Trigger (PPGTRIG)  
SAPH.PGCTL.TRSEL={2}  
COUT (internal)  
TA1  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with ADC  
9-16. TA3 Signal Connections  
MODULE OUTPUT  
DEVICE OUTPUT  
SIGNAL  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
SIGNAL  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
Reserved  
TACLK  
ACLK  
Timer  
N/A  
SMCLK  
INCLK  
TA2 CCR0 output  
(internal)  
CCI0A  
TA2 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
DVCC  
ADC12(internal)(1)  
ADC12SHSx = {6}  
Reserved  
CCI1A  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
DVCC  
(1) Only on devices with ADC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.13.13 TB0  
TB0 is a 16-bit timer and counter (Timer_B type) with seven capture/compare registers. TB0 can support  
multiple captures or compares, PWM outputs, and interval timing (see 9-17). TB0 has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/  
compare registers.  
9-17. TB0 Signal Connections  
DEVICE INPUT MODULE INPUT  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
MODULE BLOCK  
OUTPUT PORT PIN  
SIGNAL  
SIGNAL  
TBCLK  
ACLK  
P2.4, P4.6, P6.2  
TB0CLK  
ACLK (internal)  
SMCLK (internal)  
TB0CLK  
Timer  
N/A  
N/A  
SMCLK  
INCLK  
CCI0A  
CCI0B  
P2.4, P4.6, P6.2  
P3.0  
TB0.0  
P3.0  
P5.0  
P5.0  
TB0.0  
ADC12 (internal)(1)  
ADC12SHSx = {2}  
CCR0  
CCR1  
TB0  
TB0.0  
DVSS  
GND  
DVCC  
TB0.1  
VCC  
P3.1  
P3.7  
CCI1A  
CCI1B  
P3.1  
P5.1  
COUT (internal)  
ADC12 (internal)(1)  
ADC12SHSx = {3}  
TB1  
TB0.1  
DVSS  
GND  
DVCC  
TB0.2  
VCC  
CCI2A  
CCI2B  
GND  
P3.7  
P5.2  
ACLK (internal)  
DVSS  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
TB2  
TB3  
TB4  
TB5  
TB6  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
DVCC  
TB0.3  
VCC  
P5.3  
P3.3  
CCI3A  
CCI3B  
GND  
P5.3  
P3.3  
TB0.3  
DVSS  
DVCC  
TB0.4  
VCC  
P1.4  
P4.1  
CCI4A  
CCI4B  
GND  
P1.4  
P4.1  
TB0.4  
DVSS  
DVCC  
TB0.5  
VCC  
P1.5  
P4.2  
CCI5A  
CCI5B  
GND  
P1.5  
P4.2  
TB0.5  
DVSS  
DVCC  
TB0.6  
VCC  
PJ.3  
P3.6  
CCI6A  
CCI6B  
GND  
PJ.3  
P3.6  
TB0.6  
DVSS  
DVCC  
VCC  
(1) Only on devices with ADC.  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.13.14 ADC12_B  
The ADC12_B module supports fast 12-bit analog-to-digital conversions with differential and single-ended  
inputs. The module implements a 12-bit SAR core, sample select control, a reference generator, and a  
conversion result buffer. A window comparator with lower and upper limits allows CPU-independent result  
monitoring with three window comparator interrupt flags.  
9-18 lists the available external trigger sources. 9-19 lists the available multiplexing between internal and  
external analog inputs.  
9-18. ADC12_B Trigger Signal Connections  
ADC12SHSx  
CONNECTED TRIGGER  
SOURCE  
BINARY  
DECIMAL  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
Software (ADC12SC)  
TA0 CCR1 output  
TB0 CCR0 output  
TB0 CCR1 output  
TA1 CCR1 output  
TA2 CCR1 output  
TA3 CCR1 output  
TA4 CCR1 output  
9-19. ADC12_B External and Internal Signal Mapping  
CONTROL BIT IN ADC12CTL3  
EXTERNAL ADC INPUT  
(CONTROL BIT = 0)  
INTERNAL ADC INPUT  
REGISTER  
(CONTROL BIT = 1)  
Battery monitor  
Temperature sensor  
N/A(1)  
ADC12BATMAP  
ADC12TCMAP  
ADC12CH0MAP  
ADC12CH1MAP  
ADC12CH2MAP  
ADC12CH3MAP  
A31  
A30  
A29  
A28  
A27  
A26  
N/A(1)  
N/A(1)  
N/A(1)  
(1) N/A = No internal signal is available on this device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.13.15 USS_A  
9-20 lists the available connections for the UUPS trigger signal.  
9-20. UUPS Trigger Signal Connections  
UUPS.CTL.USSPWRUPSEL  
CONNECTED TRIGGER SOURCE  
Software (UUPS.CTL.USSPWRUP)  
RTC (any enabled interrupt events)  
TA0 CCR2 output  
00b  
01b  
10b  
11b  
P1.7  
9-21 lists the available connections for the PPF trigger signal.  
9-21. PPG Trigger Signal Connections  
SAPH.PGCTL.TRSEL  
CONNECTED TRIGGER SOURCE  
Software (SAPH.PPGTRIG.PPGTRIG)  
ASQ (acquisition sequencer)  
TA2 CCR1 output  
00b  
01b  
10b  
11b  
Reserved  
9-22 lists the available connections for the ASQ trigger signal.  
9-22. ASQ Trigger Signal Connections  
SAPH.ASCTL0.TRIGSEL  
CONNECTED TRIGGER SOURCE  
Software (SAPH.ASQTRIG.ASQTRIG)  
PSQ (power sequencer)  
TA1 CCR2 output  
00b  
01b  
10b  
11b  
Reserved  
9.13.16 Comparator_E  
The primary function of the Comparator_E module is to support precision slope analog-to-digital conversions,  
battery voltage supervision, and monitoring of external analog signals.  
9.13.17 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
9.13.18 CRC32  
The CRC32 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC32 signature is based on the ISO 3309 standard.  
9.13.19 AES256 Accelerator  
The AES accelerator module performs encryption and decryption of 128-bit data with 128-, 192-, or 256-bit keys  
according to the Advanced Encryption Standard (AES) (FIPS PUB 197) in hardware.  
9.13.20 True Random Seed  
The Device Descriptor Information (TLV) section contains a 128-bit true random seed that can be used to  
implement a deterministic random number generator.  
9.13.21 Shared Reference (REF)  
The REF module is responsible for generation of all critical reference voltages that can be used by the various  
analog peripherals in the device.  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.13.22 LCD_C  
The LCD_C driver generates the segment and common signals required to drive a liquid crystal display (LCD).  
The LCD_C controller has dedicated data memories to hold segment drive information. Common and segment  
signals are generated as defined by the mode. Static, and 2-mux up to 8-mux LCDs are supported. The module  
can provide an LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to  
control the level of the LCD voltage and thus contrast by software. The module also provides an automatic  
blinking capability for individual segments in static, 2-mux, 3-mux, and 4-mux modes.  
To reduce system noise the charge pump can be temporarily disabled. 9-23 lists the available automatic  
charge pump disable options.  
9-23. LCD Automatic Charge Pump Disable Bits (LCDCPDISx)  
CONTROL BIT  
DESCRIPTION  
LCD charge pump disable during ADC12 conversion  
LCDCPDIS0  
0b = LCD charge pump not automatically disabled during conversion.  
1b = LCD charge pump automatically disabled during conversion.  
LCDCPDIS1 to  
LCDCPDIS7  
No functionality  
9.13.23 Embedded Emulation  
9.13.23.1 Embedded Emulation Module (EEM) (S Version)  
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.13.23.2 EnergyTrace++ Technology  
The devices implement circuitry to support EnergyTrace++ technology. The EnergyTrace++ technology allows  
you to observe information about the internal states of the microcontroller. These states include the CPU  
Program Counter (PC), the ON or OFF status of the peripherals and the system clocks (regardless of the clock  
source), and the low-power mode currently in use. These states can always be read by a debug tool, even when  
the microcontroller sleeps in LPMx.5 modes.  
The activity of the following modules can be observed:  
LEA is running.  
MPY is calculating.  
WDT is counting.  
RTC is counting.  
ADC: a sequence, sample, or conversion is active.  
REF: REFBG or REFGEN active and BG in static mode.  
COMP is on.  
AES is encrypting or decrypting.  
eUSCI_A0 is transferring (receiving or transmitting) data.  
eUSCI_A1 is transferring (receiving or transmitting) data.  
eUSCI_A2 is transferring (receiving or transmitting) data.  
eUSCI_A3 is transferring (receiving or transmitting) data.  
eUSCI_B0 is transferring (receiving or transmitting) data.  
eUSCI_B1 is transferring (receiving or transmitting) data.  
TB0 is counting.  
TA0 is counting.  
TA1 is counting.  
TA2 is counting.  
TA3 is counting.  
TA4 is counting.  
LCD_C is running.  
USS status  
Copyright © 2022 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14 Input/Output Diagrams  
9.14.1 Port Function Select Registers (PySEL1 , PySEL0)  
Port pins are multiplexed with peripheral module functions as described in the MSP430FR58xx,  
MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide. The functions of each port pin are  
controlled by its port function select registers, PySEL1 and PySEL0, where y = port number. The bits in the  
registers are mapped to the pins in the port. The primary module function, secondary module function, and  
tertiary module function of the pins are determined by the configuration of the PySEL1.x bit and the PySEL0.x bit  
as shown in 9-24. For example, P1SEL1.0 and P1SEL0.0 determine the primary module function, secondary  
module function, and tertiary module function of the P1.0 pin, which is in port 1. The module functions may also  
require the PxDIR bits to be configured according to the direction needed for the module function.  
9-24. I/O Function Selection  
I/O FUNCTIONS  
PySEL1.x(1)  
PySEL0.x(1)  
General purpose I/O is selected  
0
0
1
1
0
1
0
1
Primary module function is selected  
Secondary module function is selected  
Tertiary module function is selected  
(1) y = port, x = bit  
See the port pin function tables in the following sections for the configurations of the function and direction for  
each pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.2 Port P1 (P1.0 and P1.1) Input/Output With Schmitt Trigger  
9-3 shows the port diagram. 9-25 summarizes the selection of the pin function.  
Pad Logic  
(ADC) Reference  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-3. Port P1 (P1.0 to P1.1) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-25. Port P1 (P1.0 to P1.1) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PM  
PIN NAME (P1.x)  
PN 80  
FUNCTION  
RGC 64  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
0 = Input,  
1 = Output  
P1.0 (I/O)  
0
0
0
1
UCA1CLK  
TA1.CCI0A  
TA1.0  
X(4)  
P1.0/UCA1CLK/TA1.0/A0/  
C0/VREF-/VeREF-  
4
3
4
0
1
0
1
A0, C0, VREF-, VeREF-(2) (3)  
X
1
0
0
1
0
1
0 = Input,  
1 = Output  
P1.1 (I/O)  
UCA1STE  
X(4)  
P1.1/UCA1STE/TA4.0/A1/  
C1/VREF+/VeREF+  
5
TA4.CCI0A  
0
1
1
0
1
TA4.0  
1
A1, C1, VREF+, VeREF+(2) (3)  
X
(1) X = Don't care  
(2) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator  
module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
(4) Direction is controlled by the eUSCI_A1 module.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.3 Port P1 (P1.2 to P1.5) Input/Output With Schmitt Trigger  
9-4 shows the port diagram. 9-26 summarizes the selection of the pin function.  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-4. Port P1 (P1.2 to P1.5) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-26. Port P1 (P1.2 to P1.5) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PM  
PIN NAME (P1.x)  
PN 80  
FUNCTION  
RGC 64  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
0 = Input,  
1 = Output  
P1.2 (I/O)  
0
0
0
1
UCA1SIMO/UCA1TXD  
X(3)  
P1.2/UCA1SIMO/  
UCA1TXD/TA1.0/A8/C8  
25  
19  
20  
25  
26  
N/A  
0
1
0
TA1.0  
1
A8, C8(4) (5)  
X
1
0
0
1
0
1
0 = Input,  
1 = Output  
P1.3 (I/O)  
UCA1SOMI/UCA1RXD  
X(3)  
P1.3/UCA1SOMI/  
UCA1RXD/TA1.1/A9/C9  
26  
31  
32  
N/A  
0
1
0
TA1.1  
1
A9, C9(4) (5)  
X
1
0
1
0
0 = Input,  
1 = Output  
P1.4 (I/O)  
TB0.CCI4A  
TB0.4  
0
1
P1.4/TB0.4/UCB0STE/  
A2/C2  
0
1
UCB0STE  
A2, C2(4) (5)  
X(2)  
1
1
0
1
X
0 = Input,  
1 = Output  
P1.5(I/O)  
0
0
0
1
TB0.CCI5A  
TB0.5  
0
1
P1.5/TB0.5/UCB0CLK/  
A3/C3  
UCB0CLK  
A3, C3(4) (5)  
X(2)  
1
1
0
1
X
(1) X = Don't care  
(2) Direction is controlled by the eUSCI_B0 module.  
(3) Direction is controlled by the eUSCI_A1 module.  
(4) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(5) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator  
module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.4 Port P1 (P1.6 to P1.7) Input/Output With Schmitt Trigger  
9-5 shows the port diagram. 9-27 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-5. Port P1 (P1.6 to P1.7) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-27. Port P1 (P1.6 to P1.7) Pin Functions  
PM  
RGC  
64  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P1.x)  
PN 80  
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P1.6(I/O)  
0
0
0
UCA3STE  
X(3)  
X(2)  
0
0
1
1
0
0
0
P1.6/UCA3STE/  
UCB0SIMO/UCB0SDA/  
LCDS17  
UCB0SIMO/UCB0SDA  
29  
23  
N/A  
1
1
0
Internally tied to DVSS  
Sz (4)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P1.7(I/O)  
X
1
0
1
1
X
1
0
USSTRG (independent function)  
0
X
P1.7/USSTRG/  
UCA3CLK/UCB0SOMI/  
UCB0SCL/LCDS16  
UCA3CLK  
X(3)  
X(2)  
0
0
0
30  
24  
UCB0SOMI/UCB0SCL  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (4)  
1
X
X
X
(1) X = Don't care  
(2) Direction is controlled by the eUSCI_B0 module.  
(3) Direction is controlled by the eUSCI_A3 module.  
(4) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.5 Port P2 (P2.0 to P2.1) Input/Output With Schmitt Trigger  
9-6 shows the port diagram. 9-28 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-6. Port P2 (P2.0 to P2.1) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-28. Port P2 (P2.0 to P2.1) Pin Functions  
PM  
RGC  
64  
CONTROL BITS OR SIGNALS (1)  
PIN NAME (P2.x)  
PN 80  
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P2.0(I/O)  
0
0
0
UCA1CLK  
X(2)  
X(3)  
0
0
1
1
0
0
0
P2.0/UCA1CLK/  
UCA3SIMO/UCA3TXD/  
LCDS19  
UCA3SIMO/UCA3TXD  
27  
21  
N/A  
1
1
0
Internally tied to DVSS  
Sz (4)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P2.1(I/O)  
UCA1STE  
X(2)  
X(3)  
0
0
1
1
0
0
0
P2.1/UCA1STE/  
UCA3SOMI/UCA3RXD/  
LCDS18  
UCA3SOMI/UCA3RXD  
N/A  
30  
24  
1
1
0
1
Internally tied to DVSS  
Sz (4)  
1
X
X
X
(1) X = Don't care  
(2) Direction is controlled by the eUSCI_A1 module.  
(3) Direction is controlled by the eUSCI_A3 module.  
(4) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.6 Port P2 (P2.2 to P2.3) Input/Output With Schmitt Trigger  
9-7 shows the port diagram. 9-29 summarizes the selection of the pin function.  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CBPD.x  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-7. Port P2 (P2.2 to P2.3) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-29. Port P2 (P2.2 to P2.3) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PM RGC  
64  
PIN NAME (P2.x)  
PN 80  
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
0 = Input,  
1 = Output  
P2.2 (I/O)  
0
0
N/A  
0
1
P2.2/COUT/UCA0CLK/  
A14/C14  
0
1
2
2
COUT  
UCA0CLK  
A14, C14(3) (4)  
X(2)  
1
1
0
1
X
0 = Input,  
1 = Output  
P2.3(I/O)  
0
0
0
1
TA0.CCI0A  
TA0.0  
0
1
P2.3/TA0.0/UCA0STE/  
A15/C15  
3
--  
UCA0STE  
A15, C15(3) (4)  
X(2)  
1
1
0
1
X
(1) X = Don't care  
(2) Direction is controlled by the eUSCI_A0 module.  
(3) Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator  
module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.7 Port P2 (P2.4 to P2.5) Input/Output With Schmitt Trigger  
9-8 shows the port diagram. 9-30 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-8. Port P2 (P2.4 to P2.5) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-30. Port P2 (P2.4 to P2.5) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
RGC 64  
PIN NAME (P2.x)  
PN 80  
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P2.4 (I/O)  
TA0CLK  
0
0
0
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TB0CLK  
P2.4/TA0CLK/TB0CLK/  
TA1CLK/LCDS24  
12  
--  
Internally tied to DVSS  
TA1CLK  
Internally tied to DVSS  
Sz (2)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P2.5 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
TA0.2  
TA4.CCI0B  
P2.5/TA0.2/TA4.0/ LCDS21  
23  
--  
TA4.0  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (2)  
X
X
(1) X = Don't care  
(2) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.8 Port P2 (P2.6 to P2.7) Input/Output With Schmitt Trigger  
9-9 shows the port diagram. 9-31 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
DVSS  
DVCC  
0
1
Module 2 or PxDIR.x  
Comparator COUT  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-9. Port P2 (P2.6 to P2.7) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-31. Port P2 (P2.6 to P2.7) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
RGC 64  
PIN NAME (P2.x)  
PN 80  
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P2.6 (I/O)  
0
0
0
1
0
0
UCA0SIMO/UCA0TXD  
TA1.CCI2A  
TA1.2  
X(2)  
P2.6/UCA0SIMO/  
UCA0TXD/TA1.2/TA1.2C/  
LCDS23  
0
13  
--  
1
0
0
1
TA1.2C  
X(3)  
1
1
0
1
Sz (4)  
X
X
X
0 = Input,  
1 = Output  
P2.7 (I/O)  
0
0
0
1
0
0
UCA0SOMI/UCA0RXD  
TA4.CCI1B  
TA4.1  
X(2)  
P2.7/UCA0SOMI/  
UCA0RXD/TA4.1/TA4.1C/  
LCDS22  
0
14  
--  
1
0
0
1
TA4.1C  
X(3)  
1
1
0
1
Sz (4)  
X
X
X
(1) X = Don't care  
(2) Direction is controlled by the eUSCI_A0 module.  
(3) Direction / HiZ controlled by comparator output COUT.  
(4) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.9 Port P3 (P3.0) Input/Output With Schmitt Trigger  
9-10 shows the port diagram. 9-32 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-10. Port P3 (P3.0) Diagram  
9-32. Port P3 (P3.0) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
RGC 64  
PIN NAME (P3.x)  
PN 80  
FUNCTION  
P3DIR.x P3SEL1.x P3SEL0.x LCDSz  
0 = Input,  
1 = Output  
P3.0 (I/O)  
0
0
0
1
0
0
N/A  
0
1
0
1
0
1
X
Internally tied to DVSS  
TB0.CCI0A  
P3.0/TB0.0/LCDS20  
24  
--  
1
0
0
TB0.0  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (2)  
X
X
(1) X = Don't care  
(2) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.10 Port P3 (P3.1) Input/Output With Schmitt Trigger  
9-11 shows the port diagram. 9-33 summarizes the selection of the pin function.  
ACTIVATE  
Pad Logic  
1
0
MTIF_PIN_EN  
TPOE  
1
From MTIF  
PxREN.x  
0
1
0
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
DVSS  
DVCC  
0
1
Module 1 or PxDIR.x  
Direction  
0: Input  
1: Output  
1
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
1
0
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
1
0
PxSEL1.x  
PxSEL0.x  
PxIN.x  
EN  
D
Bus  
Keeper  
To module  
selector  
To MTIF  
TPIE  
Functional representation only.  
9-11. Port P3 (P3.1) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-33. Port P3 (P3.1) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
PN 80 RGC  
64  
PIN NAME  
(P3.x)  
Signal on  
MTIF_PIN_E  
N pin(3)  
FUNCTION  
P3SEL1. P3SEL0.  
ACTIVATE  
P3DIR.x  
TPOE (2) TPIE(2)  
(2)  
x
x
0 = Input,  
1 = Outp  
ut  
P3.1 (I/O)  
0
0
0
0
X
X
TA1CLK  
0
1
0
1
1
1
0
1
0
0
0
0
0
0
X
X
X
X
X
X
Internally tied to  
DVSS  
TB0.CCI1A  
TB0.1  
0
1
0
P3.1/TA1CLK/  
TB0.1/  
MTIF_OUT_IN  
33  
27  
N/A  
Internally tied to  
DVSS  
1
MTIF_IN  
X
X
X
X
X
X
0
1
1
X
0
X
X
MTIF_OUT(2)  
X
Internally tied to  
DVSS(2)  
X
X
X
X
X
X
1
1
X
X
1
1
0
1
MTIF_OUT(2)  
(1) X = Don't care  
(2) See MTIF.TPCTL register  
(3) When P3.1 pin is configured as MTIF_PIN_EN (see 9.13.6 for details)  
Copyright © 2022 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.11 Port P3 (P3.2) Input/Output With Schmitt Trigger  
9-12 shows the port diagram. 9-34 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
COMx  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-12. Port P3 (P3.2) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-34. Port P3 (P3.2) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
PIN NAME (P3.x)  
PN 80  
FUNCTION  
RGC 64  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P3.2 (I/O)  
0
0
0
TA1.CCI1A  
TA1.1  
0
1
0
1
0
1
1
0
0
P3.2/TA1.1/COM5/  
LCDS28  
DMAE0  
63  
--  
0
X
1
Internally tied to DVSS  
COM5(2)  
1
X
0
1
0
X
Sz (3)  
X
(1) X = Don't care  
(2) Setting P6SEL1.x and P6SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.12 Port P3 (P3.3) Input/Output With Schmitt Trigger  
9-13 shows the port diagram. 9-35 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
From USS_A  
From USS_A  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-13. Port P3 (P3.3) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-35. Port P3 (P3.3) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
PIN NAME (P3.x)  
PN 80  
FUNCTION  
RGC 64  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P3.4 (I/O)  
0
0
0
N/A  
0
1
0
1
1
0
0
MCLK  
TB0.CCI3B  
TB0.3  
P3.3/MCLK/TB0.3/XPB1/  
LCDS25  
0
64  
50  
0
X
1
1
XPB1  
X(2)  
X
X
0
X
0
Sz (3)  
X
X
(1) X = Don't care  
(2) XPB1 enable disables digital and LCD functions on this pin implicitly  
(3) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.13 Port P3 (P3.4 to P3.5) Input/Output With Schmitt Trigger  
9-14 shows the port diagram. 9-36 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
COMx  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-14. Port P3 (P3.4 to P3.5) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-36. Port P3 (P3.4 to P3.5) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
RGC 64  
PIN NAME (P3.x)  
PN 80  
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P3.4 (I/O)  
0
0
0
N/A  
0
1
0
1
0
1
1
0
0
SMCLK  
DMAE0  
P3.4/SMCLK/DMAE0/  
COM6/LCDS27  
65  
51  
0
X
1
Internally tied to DVSS  
COM6  
1
X
0
1
0
X
Sz  
X
0 = Input,  
1 = Output  
P3.5 (I/O)  
0
0
0
1
0
0
N/A  
0
1
0
1
X
ACLK  
N/A  
P3.5/ACLK/COUT/ COM3/  
LCDS26  
66  
52  
1
0
0
X
1
COUT  
COM3  
1
X
0
1
0
X
Sz (2)  
X
(1) X = Don't care  
(2) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.14 Port P3 (P3.6 to P3.7) Input/Output With Schmitt Trigger  
9-15 shows the port diagram. 9-37 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-15. Port P3 (P3.6 to P3.7) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-37. Port P3 (P3.6 to P3.7) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
RGC 64  
PIN NAME (P3.x)  
PN 80  
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P3.6 (I/O)  
0
0
0
1
0
0
UCB1SIMO/UCB1SDA  
TB0.CCI6B  
TB0.6  
X(2)  
P3.6/UCB1SIMO/  
0
1
1
0
1
0
0
UCB1SDA/TB0.6/  
75  
--  
1
USSXT_BOUT/LCDS35  
N/A  
0
USSXT_BOUT  
Sz (3)  
1
X
X
0
0
X
0
1
1
0
0
0 = Input,  
1 = Output  
P3.7 (I/O)  
UCB1SOMI/UCB1SCL  
TB0.CCI2A  
X(2)  
P3.7/UCB1SOMI/  
UCB1SCL/TB0.2/  
TB0OUTH/LCDS36  
0
1
0
0
76  
--  
TB0.2  
1
TB0OUTH  
0
1
1
0
1
Internally tied to DVSS  
Sz (3)  
1
X
X
X
(1) X = Don't care  
(2) Direction is controlled by the eUSCI_B1 module.  
(3) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.15 Port P4 (P4.0) Input/Output With Schmitt Trigger  
9-16 shows the port diagram. 9-38 summarizes the selection of the pin function.  
Pad Logic  
ACTIVATE  
0
1
0
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
1
0
0
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
EN  
D
Bus  
Keeper  
To module  
selector  
MTIF_PIN_EN  
Functional representation only.  
9-16. Port P4 (P4.0) Diagram  
9-38. Port P4 (P4.0) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PM  
PIN NAME (P4.x)  
PN 80  
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x ACTIVATE(2)  
RGC 64  
0 = Input,  
1 = Output  
P4.0(I/O)  
0
0
1
0
0
N/A  
0
1
0
1
0
1
X
0
1
Internally tied to DVSS  
P4.0/RTCCLK/TA4.1/  
MTIF_PIN_EN  
N/A  
34  
28  
0
0
RTCCLK  
N/A  
1
1
0
1
TA4.1  
MTIF_PIN_EN  
X
X
(1) X = Don't care  
(2) See MTIF.TPCTL register  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.16 Port P4 (P4.1 to P4.7) Input/Output With Schmitt Trigger  
9-17 shows the port diagram. 9-39 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-17. Port P4 (P4.1 to P4.7) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-39. Port P4 (P4.1 to P4.7) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
RGC 64  
PIN NAME (P4.x)  
PN 80  
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P4.1 (I/O)  
0
0
0
1
0
0
UCA0CLK  
TB0.CCI4B  
TB0.4  
X(2)  
P4.1/UCA0CLK/TB0.4/  
UCA3SOMI/UCA3RXD/  
LCDS15  
0
35  
29  
1
0
0
1
UCA3SOMI/UCA3RXD  
Sz (4)  
X(3)  
1
1
0
1
X
X
X
0 = Input,  
1 = Output  
P4.2 (I/O)  
0
0
0
1
0
0
UCA0STE  
TB0.CCI5B  
TB0.5  
X(2)  
P4.2/UCA0STE/TB0.5/  
UCA3SIMO/UCA3TXD/  
LCDS14  
0
36  
30  
1
0
0
1
UCA3SIMO/UCA3TXD  
Sz (4)  
X(3)  
1
1
0
1
X
X
X
0 = Input,  
1 = Output  
P4.3 (I/O)  
0
0
0
1
0
0
UCA0SIMO/UCA0TXD  
X(2)  
N/A  
0
P4.3/UCA0SIMO/  
UCA0TXD/LCDS13  
1
1
0
1
0
0
37  
31  
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
Sz (4)  
1
X
X
0
0
X
0
1
1
0
0
0 = Input,  
1 = Output  
P4.4 (I/O)  
UCA0SOMI/UCA0RXD  
X(2)  
N/A  
0
P4.4/UCA0SOMI/  
UCA0RXD/LCDS12  
1
1
0
1
0
0
38  
32  
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
Sz (4)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P4.5 (I/O)  
TA0CLK  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
TA1CLK  
P4.5/TA0LCK/TA1CLK/  
LCDS11  
39  
--  
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (4)  
X
X
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-39. Port P4 (P4.1 to P4.7) Pin Functions (continued)  
CONTROL BITS OR SIGNALS (1)  
PM  
RGC 64  
PIN NAME (P4.x)  
PN 80  
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P4.6 (I/O)  
TB0CLK  
0
0
0
0
1
0
1
0
1
X
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
TA4CLK  
P4.6/TB0CLK/TA4CLK/  
LCDS10  
40  
--  
Internally tied to DVSS  
N/A  
Internally tied to DVSS  
Sz (4)  
X
0
X
0
1
0
0 = Input,  
1 = Output  
P4.7 (I/O)  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
DMAE0  
P4.7/DMAE0/LCDS9  
42  
--  
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (4)  
X
X
(1) X = Don't care  
(2) Direction is controlled by the eUSCI_A0 module.  
(3) Direction is controlled by the eUSCI_A3 module.  
(4) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.17 Port P5 (P5.0 to P5.7) Input/Output With Schmitt Trigger  
9-18 shows the port diagram. 9-40 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-18. Port P5 (P5.0 to P5.7) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-40. Port P5 (P5.0 to P5.7) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
RGC 64  
PIN NAME (P5.x)  
PN 80  
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P5.0 (I/O)  
0
0
0
TB0.CCI0B  
TB0.0  
0
1
0
1
1
1
0
1
0
0
0
P5.0/TB0.0/UCA2SIMO/  
UCA2TXD/LCDS8  
43  
34  
35  
36  
37  
38  
UCA2SIMO/UCA2TXD  
X(2)  
N/A  
0
Internally tied to DVSS  
Sz (3)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P5.1 (I/O)  
N/A  
0
1
0
1
1
1
0
1
0
0
0
TB0.1  
P5.1/TB0.1/UCA2SOMI/  
UCA2RXD/LCDS7  
44  
45  
46  
47  
UCA2SOMI/UCA2RXD  
X(2)  
N/A  
0
Internally tied to DVSS  
Sz (3)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P5.2 (I/O)  
N/A  
0
0
1
1
1
0
1
0
0
0
TB0.2  
1
P5.2/TB0.2/UCA2CLK/  
LCDS6  
UCA2CLK  
X(2)  
0
N/A  
Internally tied to DVSS  
Sz (3)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P5.3 (I/O)  
TB0.CCI3A  
TB0.3  
0
0
1
1
1
0
1
0
0
0
1
P5.3/TB0.3/UCA2STE/  
LCDS5  
UCA2STE  
N/A  
X(2)  
0
Internally tied to DVSS  
Sz (3)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P5.4 (I/O)  
TA0.CCI0B  
TA0.0  
0
0
1
1
X
1
0
1
X
0
0
0
1
1
P5.4/TA0.0/UCB1CLK/  
TA4.0/LCDS4  
UCB1CLK  
N/A  
X(4)  
0
TA4.0  
1
Sz (3)  
X
Copyright © 2022 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-40. Port P5 (P5.0 to P5.7) Pin Functions (continued)  
CONTROL BITS OR SIGNALS (1)  
PM  
RGC 64  
PIN NAME (P5.x)  
PN 80  
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P5.5 (I/O)  
0
0
0
TA4.CCI1A  
TA4.1  
0
1
0
1
1
1
0
1
0
0
0
P5.5/TA4.1/UCB1SIMO/  
UCB1SDA/LCDS3  
48  
39  
40  
--  
UCB1SIMO/UCB1SDA  
X(4)  
N/A  
0
Internally tied to DVSS  
Sz (3)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P5.6 (I/O)  
TB0OUTH  
0
1
0
1
1
1
0
1
0
0
0
P5.6/TB0OUTH/  
UCB1SOMI/UCB1SCL/  
LCDS2  
Internally tied to DVSS  
UCB1SOMI/UCB1SCL  
N/A  
49  
X(4)  
0
Internally tied to DVSS  
Sz (3)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
P5.7 (I/O)  
TA0.CCI2A  
TA0.2  
0
0
1
1
X
1
0
1
X
0
0
0
1
1
P5.7/TA0.2/UCB1STE/  
LCDS1  
42  
UCB1STE  
N/A  
X(4)  
0
Internally tied to DVSS  
Sz (3)  
1
X
(1) X = Don't care  
(2) Direction is controlled by the eUSCI_A2 module.  
(3) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
(4) Direction is controlled by the eUSCI_B1 module.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.18 Port P6 (P6.0) Input/Output With Schmitt Trigger  
9-19 shows the port diagram. 9-41 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To modules  
Functional representation only.  
9-19. Port P6 (P6.0) Diagram  
9-41. Port P6 (P6.0) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
PIN NAME (P6.x)  
PN 80  
FUNCTION  
RGC 64  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P6.0 (I/O)  
0
0
0
TA0CLK  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
P6.0/TA0CLK/COUT/  
LCDS0  
N/A  
51  
41  
COUT  
N/A  
1
1
0
1
Internally tied to DVSS  
Sz (2)  
X
X
(1) X = Don't care  
(2) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.19 Port P6 (P6.1 to P6.2) Input/Output With Schmitt Trigger  
9-20 shows the port diagram. 9-42 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
To/From LCD  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-20. Port P6 (P6.1 to P6.2) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-42. Port P6 (P6.1 to P6.2) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PM  
RGC 64  
PIN NAME (P6.x)  
PN 80  
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P6.1 (I/O)  
0
0
0
N/A  
0
1
0
1
X
0
1
1
0
0
RTCCLK  
N/A  
P6.1/RTCCLK/R03/  
LCDS33  
56  
--  
0
X
1
Internally tied to DVSS  
R03 (2)  
1
X
0
1
0
X
Sz (3)  
X
0 = Input,  
1 = Output  
P6.2 (I/O)  
0
0
0
1
0
0
TB0CLK  
0
1
0
1
X
Internally tied to DVSS  
N/A  
P6.2/TB0CLK/R13/  
LCDREF/LCDS32  
57  
47  
1
0
0
X
1
Internally tied to DVSS  
R13/LCDREF (2)  
1
X
0
1
0
X
Sz (3)  
X
(1) X = Don't care  
(2) Setting P6SEL1.x and P6SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.20 Port P6 (P6.3) Input/Output With Schmitt Trigger  
9-21 shows the port diagram. 9-43 summarizes the selection of the pin function.  
Pad Logic  
R23  
COMx  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
DVSS  
DVSS  
DVCC  
0
1
1
Direction  
0: Input  
1: Output  
DVSS  
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
DVSS  
DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-21. Port P6 (P6.3) Diagram  
9-43. Port P6 (P6.3) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
PIN NAME (P6.x)  
PN 80  
FUNCTION  
RGC 64  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
0 = Input,  
1 = Output  
P6.3 (I/O)  
0
0
N/A  
0
1
0
1
P6.3/COM7/R23  
60  
--  
Internally tied to DVSS  
COM7(2)  
X
X
1
1
0
1
R23(2)  
(1) X = Don't care  
(2) Setting P6SEL1.x and P6SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.21 Port P6 (P6.4) Input/Output With Schmitt Trigger  
9-22 shows the port diagram. 9-44 summarizes the selection of the pin function.  
Pad Logic  
To/From LCD  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-22. Port P6 (P6.4) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-44. Port P6 (P6.4) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM RGC  
64  
PIN NAME (P6.x)  
PN 80  
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
0 = Input,  
1 = Output  
P6.4 (I/O)  
0
0
1
N/A  
0
1
0
1
X
0
MCLK  
N/A  
P6.4/MCLK/COM0  
(1) X = Don't care  
52  
43  
1
1
0
1
Internally tied to DVSS  
COM0 (2)  
(2) Setting P6SEL1.x = P6SEL0.x = 1 disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.22 Port P6 (P6.5 and P6.7) Input/Output With Schmitt Trigger  
9-23 shows the port diagram. 9-45 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
COMx  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
module 1 or PxDIR.x  
module 2 or PxDIR.x  
module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
module 1 or DVSS  
module 2 or DVSS  
module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-23. Port P6 (P6.5 and P6.7) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-45. Port P6 (P6.5 to P6.7) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
RGC 64  
PIN NAME (P6.x)  
PN 80  
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
LCDSz  
0 = Input,  
1 = Output  
P6.5(I/O)  
0
0
0
N/A  
0
1
0
1
X
0
1
1
0
0
SMCLK  
N/A  
P6.5/SMCLK/COM1/  
LCDS34  
53  
44  
45  
--  
0
X
1
Internally tied to DVSS  
COM1(2)  
1
X
0
1
0
X
Sz (3)  
X
0 = Input,  
1 = Output  
P6.6(I/O)  
0
0
0
1
0
0
N/A  
0
1
0
1
X
ACLK  
P6.6/ACLK/COM2/  
LCDS31  
N/A  
54  
1
0
0
X
1
Internally tied to DVSS  
COM2(2)  
1
X
0
1
0
X
Sz (3)  
X
0 = Input,  
1 = Output  
P6.7(I/O)  
0
0
0
1
0
0
TA0.CCI1A  
TA0.1  
0
1
0
1
X
P6.7/TA0.1/COM4/  
LCDS29  
N/A  
62  
1
0
0
X
1
Internally tied to DVSS  
COM4(2)  
1
X
0
1
0
X
Sz (3)  
X
(1) X = Don't care  
(2) Setting P6SEL1.x and P6SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.23 Port P7 (P7.0) Input/Output With Schmitt Trigger  
9-24 shows the port diagram. 9-46 summarizes the selection of the pin function.  
Pad Logic  
Sz  
LCDSz  
From USS_A  
From USS_A  
PxREN.x  
0 0  
0 1  
1 0  
1 1  
PxDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.x  
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PxSEL1.x  
PxSEL0.x  
PxIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-24. Port P7 (P7.0) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-46. Port P7 (P7.0) Pin Functions  
CONTROL BITS OR SIGNALS (1)  
PM  
PIN NAME (P7.x)  
PN 80  
FUNCTION  
RGC 64  
P7DIR.x  
P7SEL1.x  
P7EL0.x  
LCDSz  
0 = Input,  
1 = Output  
P7.0 (I/O)  
0
0
0
TA1.CCI0B  
TA1.0  
0
1
0
1
1
0
0
0
P7.0/TA1.0./TA1.2/XPB0/  
LCDS30  
N/A  
0
55  
46  
TA1.2  
1
XPB0  
X(2)  
X
X
0
X
0
X
1
1
Sz (3)  
X
X
(1) X = Don't care  
(2) Enabling XPB0 implicitly disables digital and LCD functions on this pin.  
(3) Associated LCD segment is package dependent. Refer to the pin diagrams and signal descriptions in 7.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.24 Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger  
9-25 shows the port diagram. 9-47 summarizes the selection of the pin function.  
To Comparator  
From Comparator  
Pad Logic  
CBPD.x  
JTAG enable  
From JTAG  
From JTAG  
PJREN.x  
0 0  
0 1  
1 0  
1 1  
PJDIR.x  
Module 1 or PxDIR.x  
Module 2 or PxDIR.x  
Module 3 or PxDIR.x  
1
0
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.x  
1
0
Module 1 or DVSS  
Module 2 or DVSS  
Module 3 or DVSS  
PJSEL1.x  
PJSEL0.x  
PJIN.x  
Bus  
Keeper  
EN  
D
To module  
selector  
and JTAG  
Functional representation only.  
9-25. Port PJ (PJ.0 to PJ.3) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-47. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS/ SIGNALS(1)  
PM  
RGC 64  
PIN NAME (PJ.x)  
PN 80  
FUNCTION  
CEPDx  
(Cx)  
PJDIR.x  
PJSEL1.x  
PJSEL0.x  
0 = Input,  
1 = Output  
PJ.0 (I/O)(2)  
0
0
0
TDO(3)  
UCA2CLK  
N/A  
X
X(6)  
0
X
0
X
1
0
0
PJ.0/TDO/UCA2CLK/  
SRSCG1/DMAE0/C10  
17  
13  
14  
15  
16  
1
1
0
1
0
0
CPU Status Register Bit SCG1  
DMAE0  
1
0
Internally tied to DVSS  
C10(4)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
PJ.1 (I/O)(2)  
TDI/TCLK(3) (5)  
X
X(6)  
0
X
0
X
1
0
0
UCA2STE  
PJ.1/TDI/TCLK/ UCA2STE/  
SRSCG0/ TA4CLK/C11  
N/A  
18  
19  
20  
1
1
0
1
0
0
CPU Status Register Bit SCG0  
TA4CLK  
1
0
Internally tied to DVSS  
C11(4)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
PJ.2 (I/O)(2)  
TMS(3) (5)  
X
X(6)  
0
X
0
X
1
0
0
UCA2SIMO/UCA2TXD  
N/A  
PJ.2/TMS/UCA2SIMO/  
UCA2TXD/SROSCOFF/  
TB0OUTH/C12  
1
1
0
1
0
0
CPU Status Register Bit OSCOFF  
TB0OUTH  
1
0
Internally tied to DVSS  
C12(4)  
1
X
X
0
X
0
1
0
0 = Input,  
1 = Output  
PJ.3 (I/O)(2)  
TCK(3) (5)  
X
X(6)  
0
X
0
X
1
0
0
UCA2SOMI/UCA2RXD  
PJ.3/TCK/UCA2SOMI/  
UCA2RXD/SRCPUOFF/  
TB0.6/C13  
N/A  
1
0
0
CPU Status Register Bit CPUOFF  
1
TB0.CCI6A  
0
1
1
0
1
TB0.6  
1
C13(4)  
X
X
X
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module. JTAG mode selection is made through the SYS module or by the Spy-Bi-Wire four-  
wire entry sequence. Neither PJSEL1.x and PJSEL0.x nor CEPDx bits have an effect in these cases.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator  
module automatically disables The output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
(5) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
(6) Direction is controlled by the eUSCI_A2 module.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.25 Port PJ (PJ.4 and PJ.5) Input/Output With Schmitt Trigger  
9-26 and 9-27 show the port diagrams. 9-48 summarizes the selection of the pin function.  
Pad Logic  
To LFXT XIN  
PJREN.4  
0 0  
0 1  
1 0  
1 1  
PJDIR.4  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.4  
DVSS  
DVSS  
DVSS  
PJ.4/LFXIN  
PJSEL1.4  
PJSEL0.4  
PJIN.4  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-26. Port PJ (PJ.4) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
Pad Logic  
To LFXT XOUT  
PJSEL0.4  
PJSEL1.4  
LFXTBYPASS  
PJREN.5  
0 0  
0 1  
1 0  
1 1  
PJDIR.5  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.5  
DVSS  
DVSS  
DVSS  
PJ.5/LFXOUT  
PJSEL1.5  
PJSEL0.5  
PJIN.5  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-27. Port PJ (PJ.5) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
LFXTBYPA  
9-48. Port PJ (PJ.4 and PJ.5) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PM RGC  
64  
PIN NAME (PJ.x)  
PN 80  
FUNCTION  
PJDIR.x  
PJSEL1.5  
PJSEL0.5  
PJSEL1.4  
PJSEL0.4  
SS  
0 = Input,  
1 = Output  
PJ.4 (I/O)  
N/A  
X
X
0
0
X
0
1
X
X
1
X
X
PJ.4/LFXIN  
7
6
Internally tied to DVSS  
LFXIN crystal mode(2)  
LFXIN bypass mode(2)  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
0
0
1(3)  
0
0 = Input,  
1 = Output  
PJ.5 (I/O)  
N/A  
0
0
X
X
0
0
see(4)  
see(4)  
X
X
0
PJ.5/LFXOUT  
8
7
1(3)  
0
Internally tied to DVSS  
LFXOUT crystal mode(2)  
1
see(4)  
see(4)  
X
X
1
1(3)  
0
X
X
X
(1) X = Don't care  
(2) If PJSEL1.4 = 0 and PJSEL0.4 = 1, the general-purpose I/O is disabled. When LFXTBYPASS = 0, PJ.4 and PJ.5 are configured for  
crystal operation and PJSEL1.5 and PJSEL0.5 are don't care. When LFXTBYPASS = 1, PJ.4 is configured for bypass operation and  
PJ.5 is configured as general-purpose I/O.  
(3) When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.  
(4) If PJSEL0.5 = 1 or PJSEL1.5 = 1, the general-purpose I/O functionality is disabled. No input function is available. Configured as output,  
the pin is actively pulled to zero.  
Copyright © 2022 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.14.26 Port PJ (PJ.6 and PJ.7) Input/Output With Schmitt Trigger  
9-28 and 9-29 show the port diagrams. 9-49 summarizes the selection of the pin function.  
Pad Logic  
To HFXT XIN  
PJREN.6  
0 0  
0 1  
1 0  
1 1  
PJDIR.6  
Direction  
0: Input  
1: Output  
DVSS  
DVCC  
0
1
1
0 0  
0 1  
1 0  
1 1  
PJOUT.6  
DVSS  
DVSS  
USSXT_BOUT  
PJ.6/HFXIN  
PJSEL1.6  
PJSEL0.6  
PJIN.6  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-28. Port PJ (PJ.6) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
Pad Logic  
To HFXT XOUT  
PJSEL0.6  
PJSEL1.6  
HFXTBYPASS  
PJREN.7  
0 0  
0 1  
1 0  
1 1  
PJDIR.7  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.7  
DVSS  
DVSS  
DVSS  
PJ.7/HFXOUT  
PJSEL1.7  
PJSEL0.7  
PJIN.7  
Bus  
Keeper  
EN  
D
To module  
selector  
Functional representation only.  
9-29. Port PJ (PJ.7) Diagram  
Copyright © 2022 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
PIN NAME (PJ.x)  
9-49. Port PJ (PJ.6 and PJ.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PM RGC  
64  
PN 80  
FUNCTION  
HFXTBYPA  
SS  
PJDIR.x  
PJSEL1.7  
PJSEL0.7  
PJSEL1.6  
PJSEL0.6  
0 = Input,  
1 = Output  
PJ.6 (I/O)  
X
X
0
0
X
HFXIN crystal mode(2)  
HFXIN bypass mode(2)  
N/A  
X
X
0
0
0
1
X
X
X
X
0
0
1
1
0
1
PJ.6/HFXIN/  
USSXT_BOUT  
10  
9
X
X
X
X
1
1
0
1
X
X
Internally tied to DVSS  
N/A  
USSXT_BOUT (3)  
0
1
X
0
1
X
0
1
X
0
0
X
X
0
0
1(5)  
0
0 = Input,  
1 = Output  
PJ.7 (I/O)(4)  
0
0
N/A  
0
see (4)  
see (4)  
X
X
0
PJ.7/HFXOUT  
11  
10  
1(5)  
0
Internally tied to DVSS  
HFXOUT crystal mode(2)  
1
see (4)  
see (4)  
X
X
1
1(5)  
0
X
X
X
(1) X = Don't care  
(2) Setting PJSEL1.6 = 0 and PJSEL0.6 = 1 causes the general-purpose I/O to be disabled. When HFXTBYPASS = 0, PJ.6 and PJ.7 are  
configured for crystal operation and PJSEL1.7 and PJSEL0.7 are do not care. When HFXTBYPASS = 1, PJ.6 is configured for bypass  
operation and PJ.7 is configured as general-purpose I/O.  
(3) HFXT is connected to USSXT_BOUT ; USSXT and HFXT operate at same frequency bur without phase control; PJ.6 acts as output.  
(4) With PJSEL0.7 = 1 or PJSEL1.7 =1 the general-purpose I/O functionality is disabled. No input function is available. Configured as  
output the pin is actively pulled to zero.  
(5) When PJ.6 is configured in bypass mode, PJ.7 is configured as general-purpose I/O.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.15 Device Descriptors (TLV)  
9-50 lists the Device IDs. 9-51 lists the contents of the device descriptor tag-length-value (TLV) structure.  
9-50. Device IDs  
DEVICE ID  
DEVICE  
PACKAGE  
01A05h  
83h  
01A04h  
12h  
MSP430FR6043  
MSP430FR60431  
MSP430FR6041  
PN  
PN  
83h  
1Ah  
14h  
PN  
83h  
PM  
83h  
17h  
MSP430FR5043  
MSP430FR50431  
MSP430FR5041  
RGC  
PM  
83h  
17h  
83h  
0Fh  
0Fh  
18h  
RGC  
PM  
83h  
83h  
RGC  
83h  
18h  
9-51. Device Descriptor Table  
VALUE(1)  
DESCRIPTION  
ADDRESS  
FR604x  
(UART BSL)  
FR60431  
(I2C BSL)  
FR504x  
(UART BSL)  
FR50431  
(I2C BSL)  
Info Length  
CRC Length  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
06h  
06h  
06h  
06h  
06h  
06h  
06h  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
CRC Value  
Device ID  
Info Block  
See 9-50.  
See 9-50.  
See 9-50.  
See 9-50.  
Hardware Revision  
Firmware Revision  
Die Record Tag  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Die Record length  
0Ah  
0Ah  
0Ah  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot/Wafer ID  
Die Record  
Die X Position  
Die Y Position  
Test Results  
Copyright © 2022 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-51. Device Descriptor Table (continued)  
VALUE(1)  
DESCRIPTION  
ADDRESS  
FR604x  
(UART BSL)  
FR60431  
FR504x  
(UART BSL)  
FR50431  
(I2C BSL)  
(I2C BSL)  
ADC12 Calibration Tag  
01A14h  
01A15h  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
01A26h  
01A27h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
01A2Eh  
01A2Fh  
01A30h  
01A31h  
01A32h  
01A33h  
01A34h  
01A35h  
01A36h  
01A37h  
01A38h  
01A39h  
01A3Ah  
01A3Bh  
01A3Ch  
01A3Dh  
01A3Eh  
01A3Fh  
11h  
11h  
11h  
11h  
ADC12 Calibration Length  
10h  
10h  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
ADC Gain Factor(2)  
ADC Offset(3)  
ADC 1.2-V Reference  
Temperature Sensor 30°C  
ADC12  
Calibration  
ADC 1.2-V Reference  
Temperature Sensor 85°C  
ADC 2.0-V Reference  
Temperature Sensor 30°C  
ADC 2.0-V Reference  
Temperature Sensor 85°C  
ADC 2.5-V Reference  
Temperature Sensor 30°C  
ADC 2.5-V Reference  
Temperature Sensor 85°C  
REF Calibration Tag  
REF Calibration Length  
06h  
06h  
06h  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
15h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
15h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
15h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
15h  
REF 1.2-V Reference  
REF 2.0-V Reference  
REF 2.5-V Reference  
REF Calibration  
128-Bit Random Number Tag  
Random Number Length  
10h  
10h  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Random  
Number  
128-Bit Random Number(4)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-51. Device Descriptor Table (continued)  
VALUE(1)  
DESCRIPTION  
ADDRESS  
FR604x  
(UART BSL)  
FR60431  
FR504x  
(UART BSL)  
FR50431  
(I2C BSL)  
(I2C BSL)  
BSL Tag  
01A40h  
01A41h  
01A42h  
01A43h  
1Ch  
02h  
00h  
00h  
1Ch  
1Ch  
02h  
00h  
00h  
1Ch  
02h  
01h  
48h  
BSL Length  
02h  
BSL  
Configuration  
BSL Interface  
01h  
BSL Interface Configuration  
48h  
(1) N/A = Not applicable, Per unit = content can differ from device to device  
(2) ADC Gain: the gain correction factor is measured at room temperature using a 2.5-V external voltage reference without internal buffer  
(ADC12VRSEL = 0x2, 0x4, or 0xE). Other settings (for example, using internal reference) can result in different correction factors.  
(3) ADC Offset: the offset correction factor is measured at room temperature using ADC12VRSEL = 0x2 or 0x4, an external reference, VR+  
= external 2.5 V, VR- = AVSS.  
(4) 128-Bit Random Number: The random number is generated during production test using the Microsoft® CryptGenRandom() function.  
Copyright © 2022 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.16 Memory Map  
9-52 summarizes the memory map for all device variants.  
9-52. Memory Organization(1)  
MSP430FR5043(1),  
MSP430FR5041, MSP430FR6041  
MSP430FR6043(1)  
Memory (FRAM)  
Total Size  
Size  
64KB  
32KB  
Main: code memory  
015FFFh to 006000h  
00FFFFh to 00FF80h  
8KB  
00FFFFh to 008000h  
00FFFFh to 00FF80h  
8KB  
Main: interrupt vectors and signatures  
RAM (Shared with LEA)  
(Sector 2)  
(005FFFh to 004000h)  
005FFFh to 005000h  
004FFFh to 004000h  
4KB  
(005FFFh to 004000h)  
005FFFh to 005000h  
004FFFh to 004000h  
4KB  
Block 1  
Block 0  
System RAM  
Size  
(Sector 1 base location)  
(Sector 0 base location)  
Mirrored location: 001FFFh to 001C00h  
Mirrored location: 002BFFh to 001C00h  
Main: base location  
(002BFFh to 002400h)  
(0023FFh to 001C00h)  
003FFFh to 003C00h  
003BFFh to 002C00h  
002BFFh to 001C00h  
003BFFh to 003B80h  
(002BFFh to 002400h)  
(0023FFh to 001C00h)  
003FFFh to 003C00h  
003BFFh to 002C00h  
002BFFh to 001C00h  
003BFFh to 003B80h  
Main: interrupt vectors  
Device descriptor info (TLV) (FRAM)  
Size  
Size  
256 bytes  
001AFFh to 001A00h  
256 bytes  
001AFFh to 001A00h  
TI calibration and configuration (FRAM)  
Bootloader (BSL) memory (ROM)  
256 bytes  
0019FFh to 001900h  
256 bytes  
0019FFh to 001900h  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
512 bytes  
0017FFh to 001600h  
512 bytes  
0017FFh to 001600h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0015FFh to 001400h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0013FFh to 001200h  
512 bytes  
0011FFh to 001000h  
512 bytes  
0011FFh to 001000h  
Peripherals  
Tiny RAM  
Reserved  
4KB  
4KB  
000FFFh to 000020h  
000FFFh to 000020h  
Size  
22 bytes  
000001Fh to 00000Ah  
22 bytes  
000001Fh to 00000Ah  
Size  
10 bytes  
10 bytes  
000009h to 000000h  
000009h to 000000h  
(1) All address space not listed is considered vacant memory.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.16.1 Peripheral File Map  
For complete module register descriptions, see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx  
Family User's Guide.  
9-53. Peripherals  
MODULE NAME  
Special Functions (see 9-54)  
BASE ADDRESS  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
0200h  
0340h  
0380h  
03C0h  
0400h  
0440h  
04A0h  
04C0h  
0500h  
05A0h  
05C0h  
05E0h  
0600h  
0620h  
0640h  
0680h  
07C0h  
0800h  
08C0h  
0980h  
09C0h  
0A00h  
0A80h  
0E00h  
0E80h  
0EC0h  
0EE0h  
0F00h  
END ADDRESS  
011Fh  
013Fh  
014Fh  
0157h  
0159h  
015Dh  
016Fh  
019Fh  
01B1h  
033Fh  
036Fh  
03AFh  
03EFh  
042Fh  
046Fh  
04BFh  
04EFh  
056Fh  
05AFh  
05DFh  
05FFh  
061Fh  
063Fh  
066Fh  
06AFh  
07EFh  
089Fh  
08CFh  
09AFh  
09CFh  
0A5Fh  
0AFFh  
0E7Fh  
0EBFh  
0EDFh  
0EFFh  
0F1Fh  
PMM (see 9-55)  
FRAM Control (see 9-56)  
CRC (see 9-57)  
RAM Control (see 9-58)  
Watchdog (see 9-59)  
CS (see 9-60)  
SYS (see 9-61)  
Shared Reference (see 9-62)  
Digital I/O (see 9-63)  
TA0 (see 9-64)  
TA1 (see 9-65)  
TB0 (see 9-66)  
TA2 (see 9-67)  
TA3 (see 9-68)  
RTC_C (see 9-69)  
32-bit Hardware Multiplier (see 9-70)  
DMA (see 9-71)  
MPU Control (see 9-72)  
eUSCI_A0 (see 9-73)  
eUSCI_A1 (see 9-74)  
eUSCI_A2 (see 9-75)  
eUSCI_A3 (see 9-76)  
eUSCI_B0 (see 9-77)  
eUSCI_B1 (see 9-78)  
TA4 (see 9-79)  
ADC12_B (see 9-80)  
Comparator E (see 9-81)  
CRC32 (see 9-82)  
AES256 (see 9-83)  
LCD_C (see 9-90)  
LEA (see 9-84)  
SAPH_A (see 9-85)  
SDHS (see 9-86)  
UUPS (see 9-87)  
HSPLL (see 9-88)  
MTIF (see 9-89)  
Copyright © 2022 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-54. Special Functions Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
0100h  
Interrupt Enable  
Interrupt Flag  
SFRIE1  
SFRIFG1  
SFRRPCR  
0102h  
Reset Pin Control  
0104h  
9-55. PMM Registers  
9-56. FRAM Control Registers  
9-57. CRC Registers  
REGISTER DESCRIPTION  
ACRONYM  
PMMCTL0  
PMMIFG  
ADDRESS  
0120h  
PMM control register 0  
PMM interrupt flag register  
012Ah  
Power mode 5 control register 0  
PM5CTL0  
0130h  
REGISTER DESCRIPTION  
ACRONYM  
FRCTL0  
ADDRESS  
0140h  
FRAM Controller A Control Register 0  
General Control Register 0  
GCCTL0  
GCCTL1  
0144h  
General Control Register 1  
0146h  
REGISTER DESCRIPTION  
ACRONYM  
CRCDI  
ADDRESS  
0150h  
CRC Data In  
CRC Data In Reverse Byte  
CRC Initialization and Result  
CRC Result Reverse  
CRCDIRB  
CRCINIRES  
CRCRESR  
0152h  
0154h  
0156h  
9-58. RAM Control Registers  
REGISTER DESCRIPTION  
ACRONYM  
RCCTL0  
ADDRESS  
0158h  
RAM Controller Control 0  
RAM Controller Control 1  
RCCTL1  
015Ah  
9-59. Watchdog Registers  
9-60. CS Registers  
REGISTER DESCRIPTION  
Watchdog Timer Control Register  
ACRONYM  
ADDRESS  
WDTCTL  
015Ch  
REGISTER DESCRIPTION  
ACRONYM  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
ADDRESS  
0160h  
Clock System Control 0  
Clock System Control 1  
Clock System Control 2  
Clock System Control 3  
Clock System Control 4  
Clock System Control 5  
Clock System Control 6  
0162h  
0164h  
0166h  
0168h  
016Ah  
016Ch  
9-61. SYS Registers  
REGISTER DESCRIPTION  
ACRONYM  
SYSCTL  
ADDRESS  
0180h  
System Control  
JTAG Mailbox Control  
JTAG Mailbox Input  
JTAG Mailbox Input  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
0186h  
0188h  
018Ah  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-61. SYS Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
SYSJMBO0  
SYSJMBO1  
SYSUNIV  
ADDRESS  
JTAG Mailbox Output  
JTAG Mailbox Output  
User NMI Vector Generator  
018Ch  
018Eh  
019Ah  
019Ch  
019Eh  
System NMI Vector Generator  
Reset Vector Generator  
SYSSNIV  
SYSRSTIV  
9-62. Shared Reference Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
REF Control Register 0  
REFCTL0  
01B0h  
9-63. Digital I/O Registers  
REGISTER DESCRIPTION  
ACRONYM  
PAIN  
ADDRESS  
0200h  
0200h  
0201h  
0202h  
0202h  
0203h  
0204h  
0204h  
0205h  
0206h  
0206h  
0207h  
020Ah  
020Ah  
020Bh  
020Ch  
020Ch  
020Dh  
020Eh  
0216h  
0216h  
0217h  
0218h  
0218h  
0219h  
021Ah  
021Ah  
021Bh  
021Ch  
021Ch  
021Dh  
021Eh  
0220h  
0220h  
Port A Input  
Port 1 Input  
P1IN  
Port 2 Input  
P2IN  
Port A Output  
PAOUT  
P1OUT  
P2OUT  
PADIR  
P1DIR  
P2DIR  
PAREN  
P1REN  
P2REN  
PASEL0  
P1SEL0  
P2SEL0  
PASEL1  
P1SEL1  
P2SEL1  
P1IV  
Port 1 Output  
Port 2 Output  
Port A Direction  
Port 1 Direction  
Port 2 Direction  
Port A Resistor Enable  
Port 1 Resistor Enable  
Port 2 Resistor Enable  
Port A Select 0  
Port 1 Select 0  
Port 2 Select 0  
Port A Select 1  
Port 1 Select 1  
Port 2 Select 1  
Port 1 Interrupt Vector Register  
Port A Complement Select  
Port 1 Complement Select  
Port 2 Complement Select  
Port A Interrupt Edge Select  
Port 1 Interrupt Edge Select  
Port 2 Interrupt Edge Select  
Port A Interrupt Enable  
Port 1 Interrupt Enable  
Port 2 Interrupt Enable  
Port A Interrupt Flag  
PASELC  
P1SELC  
P2SELC  
PAIES  
P1IES  
P2IES  
PAIE  
P1IE  
P2IE  
PAIFG  
P1IFG  
P2IFG  
P2IV  
Port 1 Interrupt Flag  
Port 2 Interrupt Flag  
Port 2 Interrupt Vector Register  
Port B Input  
PBIN  
Port 3 Input  
P3IN  
Copyright © 2022 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-63. Digital I/O Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
0221h  
0222h  
0222h  
0223h  
0224h  
0224h  
0225h  
0226h  
0226h  
0227h  
022Ah  
022Ah  
022Bh  
022Ch  
022Ch  
022Dh  
022Eh  
0236h  
0236h  
0237h  
0238h  
0238h  
0239h  
023Ah  
023Ah  
023Bh  
023Ch  
023Ch  
023Dh  
023Eh  
0240h  
0240h  
0241h  
0242h  
0242h  
0243h  
0244h  
0244h  
0245h  
0246h  
0246h  
0247h  
024Ah  
024Ah  
024Bh  
Port 4 Input  
P4IN  
PBOUT  
P3OUT  
P4OUT  
PBDIR  
P3DIR  
P4DIR  
PBREN  
P3REN  
P4REN  
PBSEL0  
P3SEL0  
P4SEL0  
PBSEL1  
P3SEL1  
P4SEL1  
P3IV  
Port B Output  
Port 3 Output  
Port 4 Output  
Port B Direction  
Port 3 Direction  
Port 4 Direction  
Port B Resistor Enable  
Port 3 Resistor Enable  
Port 4 Resistor Enable  
Port B Select 0  
Port 3 Select 0  
Port 4 Select 0  
Port B Select 1  
Port 3 Select 1  
Port 4 Select 1  
Port 3 Interrupt Vector Register  
Port B Complement Select  
Port 3 Complement Select  
Port 4 Complement Select  
Port B Interrupt Edge Select  
Port 3 Interrupt Edge Select  
Port 4 Interrupt Edge Select  
Port B Interrupt Enable  
Port 3 Interrupt Enable  
Port 4 Interrupt Enable  
Port B Interrupt Flag  
Port 3 Interrupt Flag  
Port 4 Interrupt Flag  
Port 4 Interrupt Vector Register  
Port C Input  
PBSELC  
P3SELC  
P4SELC  
PBIES  
P3IES  
P4IES  
PBIE  
P3IE  
P4IE  
PBIFG  
P3IFG  
P4IFG  
P4IV  
PCIN  
Port 5 Input  
P5IN  
Port 6 Input  
P6IN  
Port C Output  
PCOUT  
P5OUT  
P6OUT  
PCDIR  
P5DIR  
P6DIR  
PCREN  
P5REN  
P6REN  
PCSEL0  
P5SEL0  
P6SEL0  
Port 5 Output  
Port 6 Output  
Port C Direction  
Port 5 Direction  
Port 6 Direction  
Port C Resistor Enable  
Port 5 Resistor Enable  
Port 6 Resistor Enable  
Port C Select 0  
Port 5 Select 0  
Port 6 Select 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-63. Digital I/O Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
PCSEL1  
P5SEL1  
P6SEL1  
P5IV  
ADDRESS  
Port C Select 1  
Port 5 Select 1  
Port 6 Select 1  
024Ch  
024Ch  
024Dh  
024Eh  
0256h  
0256h  
0257h  
0258h  
0258h  
0259h  
025Ah  
025Ah  
025Bh  
025Ch  
025Ch  
025Dh  
025Eh  
0260h  
0260h  
0262h  
0262h  
0264h  
0264h  
0266h  
0266h  
026Ah  
026Ah  
026Ch  
026Ch  
026Eh  
0276h  
0276h  
0278h  
0278h  
027Ah  
027Ah  
027Ch  
027Ch  
0320h  
0322h  
0324h  
0326h  
032Ah  
032Ch  
0336h  
Port 5 Interrupt Vector Register  
Port C Complement Select  
Port 5 Complement Select  
Port 6 Complement Select  
Port C Interrupt Edge Select  
Port 5 Interrupt Edge Select  
Port 6 Interrupt Edge Select  
Port C Interrupt Enable  
Port 5 Interrupt Enable  
Port 6 Interrupt Enable  
Port C Interrupt Flag  
Port 5 Interrupt Flag  
Port 6 Interrupt Flag  
Port 6 Interrupt Vector Register  
Port D Input  
PCSELC  
P5SELC  
P6SELC  
PCIES  
P5IES  
P6IES  
PCIE  
P5IE  
P6IE  
PCIFG  
P5IFG  
P6IFG  
P6IV  
PDIN  
Port 7 Input  
P7IN  
Port D Output  
PDOUT  
P7OUT  
PDDIR  
P7DIR  
PDREN  
P7REN  
PDSEL0  
P7SEL0  
PDSEL1  
P7SEL1  
P7IV  
Port 7 Output  
Port D Direction  
Port 7 Direction  
Port D Resistor Enable  
Port 7 Resistor Enable  
Port D Select 0  
Port 7 Select 0  
Port D Select 1  
Port 7 Select 1  
Port 7 Interrupt Vector Register  
Port D Complement Select  
Port 7 Complement Select  
Port D Interrupt Edge Select  
Port 7 Interrupt Edge Select  
Port D Interrupt Enable  
Port 7 Interrupt Enable  
Port D Interrupt Flag  
Port 7 Interrupt Flag  
Port J Input  
PDSELC  
P7SELC  
PDIES  
P7IES  
PDIE  
P7IE  
PDIFG  
P7IFG  
PJIN  
Port J Output  
PJOUT  
PJDIR  
PJREN  
PJSEL0  
PJSEL1  
PJSELC  
Port J Direction  
Port J Resistor Enable  
Port J Select 0  
Port J Select 1  
Port J Complement Select  
Copyright © 2022 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-64. TA0 Registers  
9-65. TA1 Registers  
9-66. TB0 Registers  
REGISTER DESCRIPTION  
ACRONYM  
TA0CTL  
ADDRESS  
0340h  
0342h  
0344h  
0346h  
0350h  
0352h  
0354h  
0356h  
0360h  
036Eh  
Timer_A0 Control Register  
Timer_A0 Capture/Compare Control Register  
Timer_A0 Capture/Compare Control Register  
Timer_A0 Capture/Compare Control Register  
Timer_A0 register  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
Timer_A0 Capture/Compare Register  
Timer_A0 Capture/Compare Register  
Timer_A0 Capture/Compare Register  
Timer_A0 Expansion 0 Register  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
Timer_A0 Interrupt Vector Register  
TA0IV  
REGISTER DESCRIPTION  
ACRONYM  
TA1CTL  
ADDRESS  
0380h  
0382h  
0384h  
0386h  
0390h  
0392h  
0394h  
0396h  
03A0h  
03AEh  
Timer_A1 Control Register  
Timer_A1 Capture/Compare Control Register  
Timer_A1 Capture/Compare Control Register  
Timer_A1 Capture/Compare Control Register  
Timer_A1 register  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Timer_A1 Capture/Compare Register  
Timer_A1 Capture/Compare Register  
Timer_A1 Capture/Compare Register  
Timer_A1 Expansion 0 Register  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
Timer_A1 Interrupt Vector Register  
TA1IV  
REGISTER DESCRIPTION  
ACRONYM  
TB0CTL  
ADDRESS  
03C0h  
03C2h  
03C4h  
03C6h  
03C8h  
03CAh  
03CCh  
03CEh  
03D0h  
03D2h  
03D4h  
03D6h  
03D8h  
03DAh  
03DCh  
03DEh  
03E0h  
03EEh  
Timer_B0 Control Register  
Timer_B0 Capture/Compare Control Register  
Timer_B0 Capture/Compare Control Register  
Timer_B0 Capture/Compare Control Register  
Timer_B0 Capture/Compare Control Register  
Timer_B0 Capture/Compare Control Register  
Timer_B0 Capture/Compare Control Register  
Timer_B0 Capture/Compare Control Register  
Timer_B0 count register  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Timer_B0 Capture/Compare Register  
Timer_B0 Capture/Compare Register  
Timer_B0 Capture/Compare Register  
Timer_B0 Capture/Compare Register  
Timer_B0 Capture/Compare Register  
Timer_B0 Capture/Compare Register  
Timer_B0 Capture/Compare Register  
Timer_B0 Expansion Register 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Timer_B0 Interrupt Vector Register  
TB0IV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-67. TA2 Registers  
REGISTER DESCRIPTION  
ACRONYM  
TA2CTL  
ADDRESS  
Timer_A2 Control Register  
0400h  
0402h  
0404h  
0410h  
0412h  
0414h  
0420h  
042Eh  
Timer_A2 Capture/Compare Control Register  
Timer_A2 Capture/Compare Control Register  
Timer_A2 register  
TA2CCTL0  
TA2CCTL1  
TA2R  
Timer_A2 Capture/Compare Register  
Timer_A2 Capture/Compare Register  
Timer_A2 Expansion 0 Register  
TA2CCR0  
TA2CCR1  
TA2EX0  
Timer_A2 Interrupt Vector Register  
TA2IV  
9-68. TA3 Registers  
REGISTER DESCRIPTION  
ACRONYM  
TA3CTL  
ADDRESS  
0440h  
0442h  
0444h  
0450h  
0452h  
0454h  
0460h  
046Eh  
Timer_A3 Control Register  
Timer_A3 Capture/Compare Control Register  
Timer_A3 Capture/Compare Control Register  
Timer_A3 register  
TA3CCTL0  
TA3CCTL1  
TA3R  
Timer_A3 Capture/Compare Register  
Timer_A3 Capture/Compare Register  
Timer_A3 Expansion 0 Register  
Timer_A3 Interrupt Vector Register  
TA3CCR0  
TA3CCR1  
TA3EX0  
TA3IV  
9-69. RTC_C Registers  
REGISTER DESCRIPTION  
ACRONYM  
RTCCTL0  
RTCCTL13  
RTCOCAL  
RTCTCMP  
RTCPS0CTL  
RTCPS1CTL  
RTCPS  
ADDRESS  
04A0h  
04A2h  
04A4h  
04A6h  
04A8h  
04AAh  
04ACh  
04ACh  
04ADh  
04AEh  
04B0h  
04B2h  
04B4h  
04B6h  
04B8h  
04BAh  
04BCh  
04BEh  
RTCCTL0 Register  
RTCCTL13 Register  
RTCOCAL Register  
RTCTCMP Register  
Real-Time Clock Prescale Timer 0 Control Register  
Real-Time Clock Prescale Timer 1 Control Register  
Real-Time Clock Prescale Timer Counter Register  
Prescale timer 0 counter value  
RT0PS  
Prescale timer 1 counter value  
RT1PS  
Real-Time Clock Interrupt Vector Register  
RTCTIM0 Register Hexadecimal Format  
Real-Time Clock Hour, Day of Week  
RTCDATE - Hexadecimal Format  
RTCYEAR Register Hexadecimal Format  
RTCMINHR - Hexadecimal Format  
RTCADOWDAY - Hexadecimal Format  
Binary-to-BCD Conversion Register  
BCD-to-Binary Conversion Register  
RTCIV  
RTCTIM0  
RTCTIM1  
RTCDATE  
RTCYEAR  
RTCAMINHR  
RTCADOWDAY  
BIN2BCD  
BCD2BIN  
9-70. 32-bit Hardware Multiplier Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
04C0h  
MPY  
MPYS  
MAC  
16-bit operand one multiply  
04C2h  
16-bit operand one signed multiply  
16-bit operand one multiply accumulate  
04C4h  
Copyright © 2022 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-70. 32-bit Hardware Multiplier Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
04C6h  
04C8h  
04CAh  
04CCh  
04CEh  
04D0h  
04D2h  
04D4h  
04D6h  
04D8h  
04DAh  
04DCh  
04DEh  
04E0h  
04E2h  
04E4h  
04E6h  
04E8h  
04EAh  
04ECh  
MACS  
16-bit operand one signed multiply accumulate  
16-bit operand two  
OP2  
16x16-bit result low word  
RESLO  
RESHI  
16x16-bit result high word  
16x16-bit sum extension register  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 multiply low word  
32-bit operand 1 multiply high word  
32-bit operand 1 signed multiply low word  
32-bit operand 1 signed multiply high word  
32-bit operand 1 multiply accumulate low word  
32-bit operand 1 multiply accumulate high word  
32-bit operand 1 signed multiply accumulate low word  
32-bit operand 1 signed multiply accumulate high word  
32-bit operand 2 low word  
OP2H  
32-bit operand 2 high word  
RES0  
32x32-bit result 0 least significant word  
32x32-bit result 1  
RES1  
32x32-bit result 2  
RES2  
RES3  
32x32-bit result 3 most significant word  
MPY32 control register 0  
MPY32CTL0  
9-71. DMA Registers  
REGISTER DESCRIPTION  
ACRONYM  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL4  
DMAIV  
ADDRESS  
0500h  
0502h  
0504h  
0508h  
050Eh  
0510h  
0512h  
0516h  
051Ah  
0520h  
0522h  
0526h  
052Ah  
0530h  
0532h  
0536h  
053Ah  
0540h  
0542h  
0546h  
054Ah  
0550h  
DMA Control 0  
DMA Control 1  
DMA Control 2  
DMA Control 4  
DMA Interrupt Vector  
DMA Channel 0 Control  
DMA0CTL  
DMA0SA  
DMA0DA  
DMA0SZ  
DMA1CTL  
DMA1SA  
DMA1DA  
DMA1SZ  
DMA2CTL  
DMA2SA  
DMA2DA  
DMA2SZ  
DMA3CTL  
DMA3SA  
DMA3DA  
DMA3SZ  
DMA4CTL  
DMA Channel 0 Source Address  
DMA Channel 0 Destination Address  
DMA Channel 0 Transfer Size  
DMA Channel 1 Control  
DMA Channel 1 Source Address  
DMA Channel 1 Destination Address  
DMA Channel 1 Transfer Size  
DMA Channel 2 Control  
DMA Channel 2 Source Address  
DMA Channel 2 Destination Address  
DMA Channel 2 Transfer Size  
DMA Channel 3 Control  
DMA Channel 3 Source Address  
DMA Channel 3 Destination Address  
DMA Channel 3 Transfer Size  
DMA Channel 4 Control  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-71. DMA Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
DMA4SA  
DMA4DA  
DMA4SZ  
DMA5CTL  
DMA5SA  
DMA5DA  
DMA5SZ  
ADDRESS  
DMA Channel 4 Source Address  
0552h  
0556h  
055Ah  
0560h  
0562h  
0566h  
056Ah  
DMA Channel 4 Destination Address  
DMA Channel 4 Transfer Size  
DMA Channel 5 Control  
DMA Channel 5 Source Address  
DMA Channel 5 Destination Address  
DMA Channel 5 Transfer Size  
9-72. MPU Control Registers  
REGISTER DESCRIPTION  
ACRONYM  
MPUCTL0  
ADDRESS  
05A0h  
05A2h  
05A4h  
05A6h  
05A8h  
05AAh  
05ACh  
05AEh  
Memory Protection Unit Control 0  
Memory Protection Unit Control 1  
MPUCTL1  
Memory Protection Unit Segmentation Border 2 Register  
Memory Protection Unit Segmentation Border 1 Register  
Memory Protection Unit Segmentation Access Management Register  
Memory Protection Unit IP Control 0 Register  
MPUSEGB2  
MPUSEGB1  
MPUSAM  
MPUIPC0  
Memory Protection Unit IP Encapsulation Segment Border 2 Register  
Memory Protection Unit IP Encapsulation Segment Border 1 Register  
MPUIPSEGB2  
MPUIPSEGB1  
9-73. eUSCI_A0 Registers  
REGISTER DESCRIPTION  
ACRONYM  
UCA0CTLW0  
UCA0CTLW1  
UCA0BRW  
UCA0MCTLW  
UCA0STATW  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRCTL  
UCA0IE  
ADDRESS  
05C0h  
05C2h  
05C6h  
05C8h  
05CAh  
05CCh  
05CEh  
05D0h  
05D2h  
05DAh  
05DCh  
05DEh  
eUSCI_A0 Control Word Register 0  
eUSCI_A0 Control Word Register 1  
eUSCI_A0 Baud Rate Control Word Register  
eUSCI_A0 Modulation Control Word Register  
eUSCI_A0 Status Register  
eUSCI_A0 Receive Buffer Register  
eUSCI_A0 Transmit Buffer Register  
eUSCI_A0 Auto Baud Rate Control Register  
eUSCI_A0 IrDA Control Word Register  
eUSCI_A0 Interrupt Enable Register  
eUSCI_A0 Interrupt Flag Register  
UCA0IFG  
eUSCI_A0 Interrupt Vector Register  
UCA0IV  
9-74. eUSCI_A1 Registers  
REGISTER DESCRIPTION  
ACRONYM  
UCA1CTLW0  
UCA1CTLW1  
UCA1BRW  
ADDRESS  
05E0h  
05E2h  
05E6h  
05E8h  
05EAh  
05ECh  
05EEh  
05F0h  
05F2h  
05FAh  
05FCh  
eUSCI_A1 Control Word Register 0  
eUSCI_A1 Control Word Register 1  
eUSCI_A1 Baud Rate Control Word Register  
eUSCI_A1 Modulation Control Word Register  
eUSCI_A1 Status Register  
UCA1MCTLW  
UCA1STATW  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRCTL  
UCA1IE  
eUSCI_A1 Receive Buffer Register  
eUSCI_A1 Transmit Buffer Register  
eUSCI_A1 Auto Baud Rate Control Register  
eUSCI_A1 IrDA Control Word Register  
eUSCI_A1 Interrupt Enable Register  
eUSCI_A1 Interrupt Flag Register  
UCA1IFG  
Copyright © 2022 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-74. eUSCI_A1 Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
eUSCI_A1 Interrupt Vector Register  
UCA1IV  
05FEh  
9-75. eUSCI_A2 Registers  
9-76. eUSCI_A3 Registers  
9-77. eUSCI_B0 Registers  
REGISTER DESCRIPTION  
ACRONYM  
UCA2CTLW0  
UCA2CTLW1  
UCA2BRW  
UCA2MCTLW  
UCA2STATW  
UCA2RXBUF  
UCA2TXBUF  
UCA2ABCTL  
UCA2IRCTL  
UCA2IE  
ADDRESS  
0600h  
0602h  
0606h  
0608h  
060Ah  
060Ch  
060Eh  
0610h  
0612h  
061Ah  
061Ch  
061Eh  
eUSCI_A2 Control Word Register 0  
eUSCI_A2 Control Word Register 1  
eUSCI_A2 Baud Rate Control Word Register  
eUSCI_A2 Modulation Control Word Register  
eUSCI_A2 Status Register  
eUSCI_A2 Receive Buffer Register  
eUSCI_A2 Transmit Buffer Register  
eUSCI_A2 Auto Baud Rate Control Register  
eUSCI_A2 IrDA Control Word Register  
eUSCI_A2 Interrupt Enable Register  
eUSCI_A2 Interrupt Flag Register  
UCA2IFG  
eUSCI_A2 Interrupt Vector Register  
UCA2IV  
REGISTER DESCRIPTION  
ACRONYM  
UCA3CTLW0  
UCA3CTLW1  
UCA3BRW  
UCA3MCTLW  
UCA3STATW  
UCA3RXBUF  
UCA3TXBUF  
UCA3ABCTL  
UCA3IRCTL  
UCA3IE  
ADDRESS  
0620h  
0622h  
0626h  
0628h  
062Ah  
062Ch  
062Eh  
0630h  
0632h  
063Ah  
063Ch  
063Eh  
eUSCI_A3 Control Word Register 0  
eUSCI_A3 Control Word Register 1  
eUSCI_A3 Baud Rate Control Word Register  
eUSCI_A3 Modulation Control Word Register  
eUSCI_A3 Status Register  
eUSCI_A3 Receive Buffer Register  
eUSCI_A3 Transmit Buffer Register  
eUSCI_A3 Auto Baud Rate Control Register  
eUSCI_A3 IrDA Control Word Register  
eUSCI_A3 Interrupt Enable Register  
eUSCI_A3 Interrupt Flag Register  
UCA3IFG  
eUSCI_A3 Interrupt Vector Register  
UCA3IV  
REGISTER DESCRIPTION  
ACRONYM  
UCB0CTLW0  
UCB0CTLW1  
UCB0BRW  
ADDRESS  
0640h  
0642h  
0646h  
0648h  
064Ah  
064Ch  
064Eh  
0654h  
0656h  
0658h  
065Ah  
065Ch  
065Eh  
eUSCI_B0 Control Word Register 0  
eUSCI_B0 Control Word Register 1  
eUSCI_B0 Baud Rate Control Word Register  
eUSCI_B0 Status Register  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
eUSCI_B0 Byte Counter Threshold Register  
eUSCI_B0 Receive Buffer Register  
eUSCI_B0 Transmit Buffer Register  
eUSCI_B0 I2C Own Address 0 Register  
eUSCI_B0 I2C Own Address 1 Register  
eUSCI_B0 I2C Own Address 2 Register  
eUSCI_B0 I2C Own Address 3 Register  
eUSCI_B0 I2C Received Address Register  
eUSCI_B0 I2C Address Mask Register  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-77. eUSCI_B0 Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
UCB0I2CSA  
UCB0IE  
ADDRESS  
eUSCI_B0 I2C Slave Address Register  
0660h  
066Ah  
066Ch  
066Eh  
eUSCI_B0 Interrupt Enable Register  
eUSCI_B0 Interrupt Flag Register  
eUSCI_B0 Interrupt Vector Register  
UCB0IFG  
UCB0IV  
9-78. eUSCI_B1 Registers  
REGISTER DESCRIPTION  
ACRONYM  
UCB1CTLW0  
UCB1CTLW1  
UCB1BRW  
ADDRESS  
0680h  
0682h  
0686h  
0688h  
068Ah  
068Ch  
068Eh  
0694h  
0696h  
0698h  
069Ah  
069Ch  
069Eh  
06A0h  
06AAh  
06ACh  
06AEh  
eUSCI_B1 Control Word Register 0  
eUSCI_B1 Control Word Register 1  
eUSCI_B1 Baud Rate Control Word Register  
eUSCI_B1 Status Register  
UCB1STATW  
UCB1TBCNT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA0  
UCB1I2COA1  
UCB1I2COA2  
UCB1I2COA3  
UCB1ADDRX  
UCB1ADDMASK  
UCB1I2CSA  
UCB1IE  
eUSCI_B1 Byte Counter Threshold Register  
eUSCI_B1 Receive Buffer Register  
eUSCI_B1 Transmit Buffer Register  
eUSCI_B1 I2C Own Address 0 Register  
eUSCI_B1 I2C Own Address 1 Register  
eUSCI_B1 I2C Own Address 2 Register  
eUSCI_B1 I2C Own Address 3 Register  
eUSCI_B1 I2C Received Address Register  
eUSCI_B1 I2C Address Mask Register  
eUSCI_B1 I2C Slave Address Register  
eUSCI_B1 Interrupt Enable Register  
eUSCI_B1 Interrupt Flag Register  
UCB1IFG  
eUSCI_B1 Interrupt Vector Register  
UCB1IV  
9-79. TA4 Registers  
REGISTER DESCRIPTION  
ACRONYM  
TA4CTL  
ADDRESS  
07C0h  
07C2h  
07C4h  
07D0h  
07D2h  
07D4h  
07E0h  
07EEh  
Timer_A4 Control Register  
Timer_A4 Capture/Compare Control Register  
Timer_A4 Capture/Compare Control Register  
Timer_A4 register  
TA4CCTL0  
TA4CCTL1  
TA4R  
Timer_A4 Capture/Compare Register  
Timer_A4 Capture/Compare Register  
Timer_A4 Expansion 0 Register  
Timer_A4 Interrupt Vector Register  
TA4CCR0  
TA4CCR1  
TA4EX0  
TA4IV  
9-80. ADC12_B Registers  
REGISTER DESCRIPTION  
ACRONYM  
ADC12CTL0  
ADC12CTL1  
ADC12CTL2  
ADC12CTL3  
ADC12LO  
ADDRESS  
0800h  
0802h  
0804h  
0806h  
0808h  
080Ah  
080Ch  
080Eh  
0810h  
ADC12_B Control 0  
ADC12_B Control 1  
ADC12_B Control 2  
ADC12_B Control 3  
ADC12_B Window Comparator Low Threshold Register  
ADC12_B Window Comparator High Threshold Register  
ADC12_B Interrupt Flag 0  
ADC12HI  
ADC12IFGR0  
ADC12IFGR1  
ADC12IFGR2  
ADC12_B Interrupt Flag 1  
ADC12_B Interrupt Flag 2  
Copyright © 2022 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-80. ADC12_B Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
0812h  
0814h  
0816h  
0818h  
0820h  
0822h  
0824h  
0826h  
0828h  
082Ah  
082Ch  
082Eh  
0830h  
0832h  
0834h  
0836h  
0838h  
083Ah  
083Ch  
083Eh  
0840h  
0842h  
0844h  
0846h  
0848h  
084Ah  
084Ch  
084Eh  
0850h  
0852h  
0854h  
0856h  
0858h  
085Ah  
085Ch  
085Eh  
0860h  
0862h  
0864h  
0866h  
0868h  
086Ah  
086Ch  
086Eh  
0870h  
ADC12_B Interrupt Enable 0  
ADC12_B Interrupt Enable 1  
ADC12_B Interrupt Enable 2  
ADC12_B Interrupt Vector  
ADC12IER0  
ADC12IER1  
ADC12IER2  
ADC12IV  
ADC12_B Memory Control 0 Register  
ADC12_B Memory Control 1 Register  
ADC12_B Memory Control 2 Register  
ADC12_B Memory Control 3 Register  
ADC12_B Memory Control 4 Register  
ADC12_B Memory Control 5 Register  
ADC12_B Memory Control 6 Register  
ADC12_B Memory Control 7 Register  
ADC12_B Memory Control 8 Register  
ADC12_B Memory Control 9 Register  
ADC12_B Memory Control 10 Register  
ADC12_B Memory Control 11 Register  
ADC12_B Memory Control 12 Register  
ADC12_B Memory Control 13 Register  
ADC12_B Memory Control 14 Register  
ADC12_B Memory Control 15 Register  
ADC12_B Memory Control 16 Register  
ADC12_B Memory Control 17 Register  
ADC12_B Memory Control 18 Register  
ADC12_B Memory Control 19 Register  
ADC12_B Memory Control 20 Register  
ADC12_B Memory Control 21 Register  
ADC12_B Memory Control 22 Register  
ADC12_B Memory Control 23 Register  
ADC12_B Memory Control 24 Register  
ADC12_B Memory Control 25 Register  
ADC12_B Memory Control 26 Register  
ADC12_B Memory Control 27 Register  
ADC12_B Memory Control 28 Register  
ADC12_B Memory Control 29 Register  
ADC12_B Memory Control 30 Register  
ADC12_B Memory Control 31 Register  
ADC12_B Memory 0 Register  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MCTL16  
ADC12MCTL17  
ADC12MCTL18  
ADC12MCTL19  
ADC12MCTL20  
ADC12MCTL21  
ADC12MCTL22  
ADC12MCTL23  
ADC12MCTL24  
ADC12MCTL25  
ADC12MCTL26  
ADC12MCTL27  
ADC12MCTL28  
ADC12MCTL29  
ADC12MCTL30  
ADC12MCTL31  
ADC12MEM0  
ADC12MEM1  
ADC12MEM2  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12_B Memory 1 Register  
ADC12_B Memory 2 Register  
ADC12_B Memory 3 Register  
ADC12_B Memory 4 Register  
ADC12_B Memory 5 Register  
ADC12_B Memory 6 Register  
ADC12_B Memory 7 Register  
ADC12_B Memory 8 Register  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-80. ADC12_B Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
ADC12_B Memory 9 Register  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
ADC12MEM16  
ADC12MEM17  
ADC12MEM18  
ADC12MEM19  
ADC12MEM20  
ADC12MEM21  
ADC12MEM22  
ADC12MEM23  
ADC12MEM24  
ADC12MEM25  
ADC12MEM26  
ADC12MEM27  
ADC12MEM28  
ADC12MEM29  
ADC12MEM30  
ADC12MEM31  
0872h  
0874h  
0876h  
0878h  
087Ah  
087Ch  
087Eh  
0880h  
0882h  
0884h  
0886h  
0888h  
088Ah  
088Ch  
088Eh  
0890h  
0892h  
0894h  
0896h  
0898h  
089Ah  
089Ch  
089Eh  
ADC12_B Memory 10 Register  
ADC12_B Memory 11 Register  
ADC12_B Memory 12 Register  
ADC12_B Memory 13 Register  
ADC12_B Memory 14 Register  
ADC12_B Memory 15 Register  
ADC12_B Memory 16 Register  
ADC12_B Memory 17 Register  
ADC12_B Memory 18 Register  
ADC12_B Memory 19 Register  
ADC12_B Memory 20 Register  
ADC12_B Memory 21 Register  
ADC12_B Memory 22 Register  
ADC12_B Memory 23 Register  
ADC12_B Memory 24 Register  
ADC12_B Memory 25 Register  
ADC12_B Memory 26 Register  
ADC12_B Memory 27 Register  
ADC12_B Memory 28 Register  
ADC12_B Memory 29 Register  
ADC12_B Memory 30 Register  
ADC12_B Memory 31 Register  
9-81. Comparator E Registers  
REGISTER DESCRIPTION  
ACRONYM  
CECTL0  
CECTL1  
CECTL2  
CECTL3  
CEINT  
ADDRESS  
08C0h  
Comparator Control Register 0  
Comparator Control Register 1  
08C2h  
Comparator Control Register 2  
08C4h  
Comparator Control Register 3  
08C6h  
Comparator Interrupt Control Register  
Comparator Interrupt Vector Word Register  
08CCh  
08CEh  
CEIV  
9-82. CRC32 Registers  
REGISTER DESCRIPTION  
ACRONYM  
CRC32DIW0  
ADDRESS  
0980h  
0982h  
0984h  
0986h  
0988h  
098Ah  
098Ch  
098Eh  
0990h  
0996h  
0998h  
CRC32 Data Input Word 0  
CRC32 Data Input Word 1  
CRC32DIW1  
CRC32 Data In Reverse Word 1  
CRC32 Data In Reverse Word 0  
CRC32 Initialization and Result Word 0  
CRC32 Initialization and Result Word 1  
CRC32 Result Reverse Word 1  
CRC32 Result Reverse Word 0  
CRC16 Data Input  
CRC32DIRBW1  
CRC32DIRBW0  
CRC32INIRESW0  
CRC32INIRESW1  
CRC32RESRW1  
CRC32RESRW0  
CRC16DIW0  
CRC16 Data In Reverse  
CRC16DIRBW0  
CRC16INIRESW0  
CRC16 Init and Result  
Copyright © 2022 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-82. CRC32 Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
CRC16 Result Reverse  
CRC16RESRW0  
099Eh  
9-83. AES256 Registers  
REGISTER DESCRIPTION  
ACRONYM  
AESACTL0  
AESACTL1  
AESASTAT  
AESAKEY  
AESADIN  
ADDRESS  
09C0h  
09C2h  
09C4h  
09C6h  
09C8h  
09CAh  
09CCh  
09CEh  
AES Accelerator Control Register 0  
AES Accelerator Control Register 1  
AES Accelerator Status Register  
AES Accelerator Key Register  
AES Accelerator Data In Register  
AES Accelerator Data Out Register  
AES Accelerator XORed Data In Register  
AES Accelerator XORed Data In Register  
AESADOUT  
AESAXDIN  
AESAXIN  
9-84. LEA Registers  
REGISTER DESCRIPTION  
ACRONYM  
LEACAP  
ADDRESS  
0A80h  
0A84h  
0A88h  
0A8Ch  
0A90h  
0A94h  
0A98h  
0A9Ch  
0AA8h  
0AACh  
0AB0h  
0AB4h  
0AC0h  
0AC4h  
0AC8h  
0ACCh  
0AD0h  
0AF0h  
0AF4h  
0AF8h  
0AFCh  
LEA Capability Register  
Configuration Register 0  
Configuration Register 1  
Configuration Register 2  
Memory Bottom Register  
Memory Top Register  
LEACNF0  
LEACNF1  
LEACNF2  
LEAMB  
LEAMT  
Code Memory Access Register  
Code Memory Control Register  
LEA Command Status Register  
LEA Source 1 Status Register  
LEA Source 0 Status Register  
LEA Result Status Register  
PM Control Register  
LEACMA  
LEACMCTL  
LEACMDSTAT  
LEAS1STAT  
LEAS0STAT  
LEADSTSTAT  
LEAPMCTL  
LEAPMDST  
LEAPMS1  
LEAPMS0  
LEAPMCB  
LEAIFGSET  
LEAIE  
PM Result Register  
PM Source 1 Register  
PM Source 0 Register  
PM Command Buffer Register  
Interrupt Flag and Set Register  
Interrupt Enable Register  
Interrupt Flag and Clear Register  
Interrupt Vector Register  
LEAIFG  
LEAIV  
9-85. SAPH_A Registers  
REGISTER DESCRIPTION  
ACRONYM  
SAPH_AIIDX  
SAPH_AMIS  
ADDRESS  
0E00h  
0E02h  
0E04h  
0E06h  
0E08h  
0E0Ah  
0E0Ch  
0E0Eh  
Interrupt Index  
Masked Interrupt Satus  
Raw Interrupt Status  
Interrupt Mask  
SAPH_ARIS  
SAPH_AIMSC  
SAPH_AICR  
Interrupt Clear  
Interrupt Set  
SAPH_AISR  
Module-Descriptor Low Word  
Module-Descriptor High Word  
SAPH_ADESCLO  
SAPH_ADESCHI  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-85. SAPH_A Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
Key  
SAPH_AKEY  
0E10h  
0E12h  
0E14h  
0E16h  
0E20h  
0E22h  
0E24h  
0E26h  
0E28h  
0E2Ah  
0E2Ch  
0E2Eh  
0E30h  
0E34h  
0E40h  
0E42h  
0E44h  
0E46h  
0E48h  
0E4Ah  
0E4Ch  
0E4Eh  
0E60h  
0E62h  
0E64h  
0E66h  
0E68h  
0E6Ah  
0E6Eh  
0E70h  
0E72h  
0E74h  
0E76h  
0E78h  
0E7Ah  
0E7Ch  
0E7Eh  
Physical Interface Output Control #0  
Physical Interface Output Control #1  
Physical Interface Output Function Select  
Channel 0 Pull UpTrim Register  
Channel 0 Pull DownTrim Register  
Channel 0 Termination Trim  
Channel 1 Pull UpTrim  
SAPH_AOCTL0  
SAPH_AOCTL1  
SAPH_AOSEL  
SAPH_ACH0PUT  
SAPH_ACH0PDT  
SAPH_ACH0TT  
SAPH_ACH1PUT  
SAPH_ACH1PDT  
SAPH_ACH1TT  
SAPH_AMCNF  
SAPH_ATACTL  
SAPH_AICTL0  
Channel 1 Pull DownTrim  
Channel 1 Termination Trim  
Mode Configuration  
Trim Access Control  
Physical Interface Input Control #0  
Bias Control  
SAPH_ABCTL  
PPG Count  
SAPH_APGC  
Pulse Generator Low Period  
Pulse Generator High Period  
PPG Control  
SAPH_APGLPER  
SAPH_APGHPER  
SAPH_APGCTL  
SAPH_APPGTRIG  
SAPH_AXPGCTL  
SAPH_AXPGLPER  
SAPH_AXPGHPER  
SAPH_AASCTL0  
SAPH_AASCTL1  
SAPH_AASQTRIG  
SAPH_AAPOL  
PPG Software Trigger  
Extended Pulse Control Register  
Extra Pulse Low Period Register  
Extra Pulse High Period Register  
A-SEQ control register 0  
A-SEQ control register 1  
ASQ Software Trigger  
ASQ ping output polarity  
ASQ ping pause level  
SAPH_AAPLEV  
SAPH_AAPHIZ  
SAPH_AATM_A  
SAPH_AATM_B  
SAPH_AATM_C  
SAPH_AATM_D  
SAPH_AATM_E  
SAPH_AATM_F  
SAPH_ATBCTL  
SAPH_AATIMLO  
SAPH_AATIMHI  
ASQ ping pause impedance  
A-SEQ start to 1st ping  
ASQ start to ADC arm  
Count for the TIMEMARK C Event  
ASQ start to ADC trig  
ASQ start to restart  
ASQ start to timeout  
Time Base Control  
Acquisition Timer Low Part  
Acquisition Timer High Part  
9-86. SDHS Registers  
REGISTER DESCRIPTION  
ACRONYM  
SDHSIIDX  
SDHSMIS  
SDHSRIS  
SDHSIMSC  
SDHSICR  
SDHSISR  
ADDRESS  
0E80h  
Interrupt Index Register  
Masked Interrupt Status and Clear Register  
Raw Interrupt Status Register  
Interrupt Mask Register  
0E82h  
0E84h  
0E86h  
Interrupt Clear Register.  
0E88h  
Interrupt Set Register.  
0E8Ah  
Copyright © 2022 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-86. SDHS Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
0E8Ch  
0E8Eh  
0E90h  
0E92h  
0E94h  
0E96h  
0E98h  
0E9Ah  
0E9Ch  
0E9Eh  
0EA2h  
0EA4h  
0EA6h  
0EA8h  
SDHS Descriptor Register L.  
SDHS Descriptor Register H.  
SDHS Control Register 0  
SDHS Control Register 1  
SDHS Control Register 2  
SDHS Control Register 3  
SDHS Control Register 4  
SDHS Control Register 5  
SDHS Control Register 6  
SDHS Control Register 7  
SDHSDESCLO  
SDHSDESCHI  
SDHSCTL0  
SDHSCTL1  
SDHSCTL2  
SDHSCTL3  
SDHSCTL4  
SDHSCTL5  
SDHSCTL6  
SDHSCTL7  
SDHSDT  
SDHS Data Converstion Register  
SDHS Window Comparator High Threshold Register.  
SDHS Window Comparator Low Threshold Register.  
DTC destination address register  
SDHSWINHITH  
SDHSWINLOTH  
SDHSDTCDA  
9-87. UUPS Registers  
REGISTER DESCRIPTION  
ACRONYM  
UUPSIIDX  
ADDRESS  
0EC0h  
0EC2h  
0EC4h  
0EC6h  
0EC8h  
0ECAh  
0ECCh  
0ECEh  
0ED0h  
Interrupt Index Register  
Masked Interrupt Status Register  
Raw Interrupt Status Register  
Interrupt Mask Register  
UUPSMIS  
UUPSRIS  
UUPSIMSC  
UUPSICR  
Interrupt Clear Register.  
Interrupt Flag Set Register.  
UUPS Descriptor Register L.  
UUPS Descriptor Register H.  
UUPS Control  
UUPSISR  
UUPSDESCLO  
UUPSDESCHI  
UUPSCTL  
9-88. HSPLL Registers  
REGISTER DESCRIPTION  
ACRONYM  
HSPLLIIDX  
ADDRESS  
0EE0h  
0EE2h  
0EE4h  
0EE6h  
0EE8h  
0EEAh  
0EECh  
0EEEh  
0EF0h  
0EF2h  
Interrupt Index Register  
Masked Interrupt Status Register.  
Raw Interrupt Status Register  
Interrupt Mask Register  
HSPLLMIS  
HSPLLRIS  
HSPLLIMSC  
HSPLLICR  
Interrupt Flag Clear Register.  
Interrupt Flag Set Register.  
HSPLL Descriptor Register L.  
HSPLL Descriptor Register H.  
HSPLL Control Register  
HSPLLISR  
HSPLLDESCLO  
HSPLLDESCHI  
HSPLLCTL  
USSXT Control Register  
HSPLLUSSXTLCTL  
9-89. MTIF Registers  
REGISTER DESCRIPTION  
ACRONYM  
MTIFPGCNF  
MTIFPGKVAL  
MTIFPGCTL  
MTIFPGSR  
ADDRESS  
0F00h  
Pulse Generator Configuration Register  
Pulse Generator Value Register  
0F02h  
Pulse Generator Control Register  
Pulse Generator Status Register  
Pulse Counter Configuration Register  
0F04h  
0F06h  
MTIFPCCNF  
0F08h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-89. MTIF Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
Pulse Counter Value Register  
MTIFPCR  
0F0Ah  
0F0Ch  
0F0Eh  
0F10h  
Pulse Counter Control Register  
Pulse Counter Status Register  
MTIFPCCTL  
MTIFPCSR  
MTIFTPCTL  
Measurement Test Port Control Register  
9-90. LCD_C Registers  
REGISTER DESCRIPTION  
ACRONYM  
LCDCCTL0  
LCDCCTL1  
LCDCBLKCTL  
LCDCMEMCTL  
LCDCVCTL  
LCDCPCTL0  
LCDCPCTL1  
LCDCPCTL2  
LCDCPCTL3  
LCDCCPCTL  
LCDCIV  
ADDRESS  
0A00h  
0A02h  
0A04h  
0A06h  
0A08h  
0A0Ah  
0A0Ch  
0A0Eh  
0A10h  
0A12h  
0A1Eh  
LCD_C control 0  
LCD_C control 1  
LCD_C blinking control  
LCD_C memory control  
LCD_C voltage control  
LCD_C port control 0  
LCD_C port control 1  
LCD_C port control 2 (256 segments)  
LCD_C port control 3 (384 segments)  
LCD_C charge pump control register  
LCD_C interrupt vector  
Static and 2 to 4 mux modes  
LCD_C memory 1  
LCDM1  
LCDM2  
LCDM3  
LCDM4  
LCDM5  
LCDM6  
LCDM7  
LCDM8  
LCDM9  
LCDM10  
LCDM11  
LCDM12  
LCDM13  
LCDM14  
LCDM15  
LCDM16  
LCDM17  
LCDM18  
LCDM19  
LCDM20  
0A20h  
0A21h  
0A22h  
0A23h  
0A24h  
0A25h  
0A26h  
0A27h  
0A28h  
0A29h  
0A2Ah  
0A2Bh  
0A2Ch  
0A2Dh  
0A2Eh  
0A2Fh  
0A30h  
0A31h  
0A32h  
0A33h  
0A34h to 0A3Bh  
0A40h  
0A41h  
0A42h  
0A43h  
0A44h  
0A45h  
LCD_C memory 2  
LCD_C memory 3  
LCD_C memory 4  
LCD_C memory 5  
LCD_C memory 6  
LCD_C memory 7  
LCD_C memory 8  
LCD_C memory 9  
LCD_C memory 10  
LCD_C memory 11  
LCD_C memory 12  
LCD_C memory 13  
LCD_C memory 14  
LCD_C memory 15  
LCD_C memory 16  
LCD_C memory 17  
LCD_C memory 18  
LCD_C memory 19  
LCD_C memory 20  
Reserved  
LCD_C blinking memory 1  
LCD_C blinking memory 2  
LCD_C blinking memory 3  
LCD_C blinking memory 4  
LCD_C blinking memory 5  
LCD_C blinking memory 6  
LCDBM1  
LCDBM2  
LCDBM3  
LCDBM4  
LCDBM5  
LCDBM6  
Copyright © 2022 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-90. LCD_C Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
0A46h  
LCD_C blinking memory 7  
LCD_C blinking memory 8  
LCD_C blinking memory 9  
LCD_C blinking memory 10  
LCD_C blinking memory 11  
LCD_C blinking memory 12  
LCD_C blinking memory 13  
LCD_C blinking memory 14  
LCD_C blinking memory 15  
LCD_C blinking memory 16  
LCD_C blinking memory 17  
LCD_C blinking memory 18  
LCD_C blinking memory 19  
LCD_C blinking memory 20  
Reserved  
LCDBM7  
LCDBM8  
0A47h  
LCDBM9  
0A48h  
LCDBM10  
LCDBM11  
LCDBM12  
LCDBM13  
LCDBM14  
LCDBM15  
LCDBM16  
LCDBM17  
LCDBM18  
LCDBM19  
LCDBM20  
0A49h  
0A4Ah  
0A4Bh  
0A4Ch  
0A4Dh  
0A4Eh  
0A4Fh  
0A50h  
0A51h  
0A52h  
0A53h  
0A54h to 0A5Bh  
5 to 8 mux modes  
LCD_C memory 1  
LCDM1  
LCDM2  
0A20h  
0A21h  
0A22h  
0A23h  
0A24h  
0A25h  
0A26h  
0A27h  
0A28h  
0A29h  
0A2Ah  
0A2Bh  
0A2Ch  
0A2Dh  
0A2Eh  
0A2Fh  
0A30h  
0A31h  
0A32h  
0A33h  
0A34h  
0A35h  
0A36h  
0A37h  
0A38h  
0A39h  
0A3Ah  
0A3Bh  
0A3Ch  
LCD_C memory 2  
LCD_C memory 3  
LCDM3  
LCD_C memory 4  
LCDM4  
LCD_C memory 5  
LCDM5  
LCD_C memory 6  
LCDM6  
LCD_C memory 7  
LCDM7  
LCD_C memory 8  
LCDM8  
LCD_C memory 9  
LCDM9  
LCD_C memory 10  
LCDM10  
LCDM11  
LCDM12  
LCDM13  
LCDM14  
LCDM15  
LCDM16  
LCDM17  
LCDM18  
LCDM19  
LCDM20  
LCDM21  
LCDM22  
LCDM23  
LCDM24  
LCDM25  
LCDM26  
LCDM27  
LCDM28  
LCDM29  
LCD_C memory 11  
LCD_C memory 12  
LCD_C memory 13  
LCD_C memory 14  
LCD_C memory 15  
LCD_C memory 16  
LCD_C memory 17  
LCD_C memory 18  
LCD_C memory 19  
LCD_C memory 20  
LCD_C memory 21  
LCD_C memory 22  
LCD_C memory 23  
LCD_C memory 24  
LCD_C memory 25  
LCD_C memory 26  
LCD_C memory 27  
LCD_C memory 28  
LCD_C memory 29  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9-90. LCD_C Registers (continued)  
REGISTER DESCRIPTION  
ACRONYM  
LCDM30  
LCDM31  
LCDM32  
LCDM33  
LCDM34  
LCDM35  
LCDM36  
ADDRESS  
LCD_C memory 30  
LCD_C memory 31  
LCD_C memory 32  
LCD_C memory 33  
LCD_C memory 34  
LCD_C memory 35  
LCD_C memory 36  
Reserved  
0A3Dh  
0A3Eh  
0A3Fh  
0A40h  
0A41h  
0A42h  
0A43h  
0A44h to 0A53h  
LDC memory is implemented for groups of segments. Memory for non-existent segment lines is accessible but  
cannot be used.  
Copyright © 2022 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.17 Identification  
9.17.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The device-  
specific errata sheet describes these markings. For links to all of the errata sheets for the devices in this data  
sheet, see 11.4.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on  
this value, see the "Hardware Revision" entries in the Device Descriptor structure (see 9.15).  
9.17.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific errata  
sheet describes these markings. For links to all of the errata sheets for the devices in this data sheet, see 节  
11.4.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details  
on this value, see the "Device ID" entries in the Device Descriptor structure (see 9.15).  
9.17.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in MSP430  
Programming With the JTAG Interface.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
10 Applications, Implementation, and Layout  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Device Connection and Layout Fundamentals  
This section discusses the recommended guidelines when designing with the MSP430 MCU. These guidelines  
are to make sure that the device has proper connections for powering, programming, debugging, and optimum  
analog performance.  
10.1.1 Power Supply and Bulk Capacitors  
TI recommends connecting a combination of a 1-µF plus a 100-nF low-ESR ceramic decoupling capacitor to  
each AVCC and DVCC pin. Higher-value capacitors may be used but can impact supply rail ramp-up time.  
Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few  
millimeters). Additionally, TI recommends separated grounds with a single-point connection for better noise  
isolation from digital to analog circuits on the board and to achieve high analog accuracy.  
DVCC  
Digital Power  
Supply Decoupling  
+
DVSS  
AVCC  
1 µF  
100 nF  
Analog Power  
Supply Decoupling  
+
AVSS  
1 µF  
100 nF  
10-1. Power Supply Decoupling  
For PVCC and PVSS, TI recommends connecting a combination of a 1-µF plus a 22-µF low-ESR ceramic  
decoupling capacitor between the PVCC and PVSS pins and a serial 22-Ω resistor to filter low-frequency noise  
on the supply line (see 10-2).  
22 W  
PVCC  
+
1 nF  
22 µF  
PVSS  
USS module power supply decoupling  
10-2. Power Supply Decoupling for PVCC and PVSS  
10.1.2 External Oscillator (HFXT and LFXT)  
Depending on the device variant (see 6), the device can support a low-frequency crystal (32 kHz) on the  
LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the crystal  
oscillator pins are required.  
It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the specifications of  
the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is selected. In this case, the  
Copyright © 2022 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
associated LFXOUT and HFXOUT pins can be used for other purposes. If they are left unused, they must be  
terminated according to 7.6.  
10-3 shows a typical connection diagram.  
LFXIN  
or  
LFXOUT  
or  
HFXIN  
HFXOUT  
CL1  
CL2  
10-3. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with MSP430 MCUs.  
10.1.3 USS Oscillator (USSXT)  
Depending on the device variant (see 6), the device with USS module supports a high-frequency crystal on  
the USSXT pins. External bypass capacitors for the crystal oscillator pins are required. A 22-Ω resistor is  
required to be serially connected closely to the USSXTOUT pin as shown in 10-4. The USSXT does not  
support bypass mode, so it is not possible to apply digital clock signals to the USSXTIN pin. Never connect the  
USSXTIN pin to a power supply line (AVCC, DVCC, or PVCC). If the USSXT pins are not used, terminate them  
according to 7.6.  
10-4 shows a typical connection diagram.  
USSXTIN  
USSXTOUT  
22 W  
CL2  
CL1  
10-4. Typical Crystal Connection  
Consider the following items for the USSXT layout:  
Keep the trace of USSXTIN and USSXTOUT as short as possible. In case one must be longer than the other,  
keep USSXTIN shorter because USSXTIN is more sensitive to EMI  
Make ground shield open ended without making a loop  
Use ground plane to reduce the impedance of ground trace  
In case USSXT_BOUT is used, keep coupling to USSXTIN and CH0_IN to a minimum  
In case USSXT_BOUT is feeding other clock or device inputs, apply a small capacitor (10 pF) as the line  
termination load at end of line. This avoids reflection artifacts on sensitive inputs (for example, HFXTIN).  
10-5 shows recommended PCB layout.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
Plane  
Plane  
Transducer  
Interface  
Area  
Transducer  
Interface  
Area  
Oscillator  
Area  
CL2  
CL1  
Oscillator  
Area  
XTAL  
XTAL  
22R  
22R  
Keep-out area for  
high currents down  
to next GND plane  
Keep-out area for  
high currents down  
to next GND plane  
10-5. USSXT PCB Layout Recommendation  
10.1.4 Transducer Connection to the USS Module  
10-6 shows a typical connection of two transducers to the USS output and input pins. TI recommends 1%  
error tolerance for the external termination resistors (Rterm0 and Rterm1) and the AC coupling capacitors (Cac0  
and Cac1). Typical value of the termination resistors is in the range of 150 to 400 Ω, the AC coupling capacitors  
are 1 to 2 nF. Actual values should be determined to meet the requirements of each application.  
Rterm0  
CH0_OUT  
Rterm1  
CH1_OUT  
T0  
T1  
Cac0  
Cac1  
CH1_IN  
CH0_IN  
10-6. Typical Transducer Connection  
10.1.5 Charge Pump Control of Input Multiplexer  
10-7 shows the control logic of the charge pump control of the input multiplexer of CHx_IN. The charge pump  
is enabled as long the SAPH_AMCNF.CPEO is high and during the arming of the SDHS. Use the CPDA bit to  
control the CP during data acquisition.  
Copyright © 2022 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
SAPH_ABCTL.CPDA  
ASQ.acquisition  
Charge  
pump  
enable  
ASQ.adc_arming  
en CP  
SAPH_AMCNF.CPEO  
SDHS.adc_arming  
SDHS.acquisition  
CH0_IN  
CH1_IN  
PGA  
To SDHS  
10-7. Control Of Input Multiplexer  
10.1.6 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-  
FET430UIF) can be used to program and debug code on the target board. In addition, the connections also  
support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if  
desired. 10-8 shows the connections between the 14-pin JTAG connector and the target device required to  
support in-system programming and debugging for 4-wire JTAG communication. 10-9 shows the connections  
for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical.  
Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF  
interface modules and MSP-GANG have a VCC-sense feature that, if used, requires an alternate connection (pin  
4 instead of pin 2). The VCC-sense feature senses the local VCC present on the target board (that is, a battery or  
other local power supply) and adjusts the output signals accordingly. 10-8 and 10-9 show a jumper block  
that supports both scenarios of supplying VCC to the target board. If this flexibility is not required, the desired VCC  
connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same  
time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools Users Guide.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
AVCC/DVCC  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection  
J2.  
B. The upper limit for C1 is 2.2 nF when using current TI tools.  
10-8. Signal Connections for 4-Wire JTAG Communication  
Copyright © 2022 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
AVCC/DVCC  
J1 (see Note A)  
J2 (see Note A)  
R1  
47 kΩ  
See Note B  
JTAG  
VCC TOOL  
VCC TARGET  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
See Note B  
Copyright © 2016, Texas Instruments Incorporated  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or  
programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and  
any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is  
2.2 nF when using current TI tools.  
10-9. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
10.1.7 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the SFRRPCR register.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge  
sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI.  
When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown resistor that is enabled or not. SYSRSTUP selects either  
pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the  
RST/NMI pin is unused, either select and enable the internal pullup or connect an external 47-kΩpullup resistor  
to the RST/NMI pin with a 2.2-nF pulldown capacitor. The pulldown capacitor should not exceed 2.2 nF when  
using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET  
interfaces or GANG programmers.  
See the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for more information on the  
referenced control registers and bits.  
10.1.8 Unused Pins  
For details on the connection of unused pins, see 7.6.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
10.1.9 General Layout Recommendations  
Use proper grounding and short traces for the external crystal to reduce parasitic capacitance. See MSP430  
32-kHz Crystal Oscillators for recommended layout guidelines.  
Place the proper bypass capacitors on DVCC, AVCC, and reference pins, if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching  
signals (for example, PWM or JTAG signals) away from the oscillator circuit.  
Design for proper ESD level protection to protect the device from unintended high-voltage electrostatic  
discharge. See MSP430 System-Level ESD Considerations for guidelines.  
10.1.10 Do's and Don'ts  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power  
down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits  
specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device  
including erroneous writes to RAM and FRAM.  
10.2 Peripheral- and Interface-Specific Design Information  
10.2.1 ADC12_B Peripheral  
10.2.1.1 Partial Schematic  
10-10 shows the recommended decoupling circuit when an external voltage reference is used. The internal  
reference module has a maximum drive current as specified in the IO(VREF+) specification of the REF module.  
AVSS  
VREF+/VEREF+  
Using an  
External  
+
Positive  
Reference  
4.7 µF  
10 µF  
VEREF-  
Using an  
External  
+
Negative  
Reference  
10 µF  
4.7 µF  
10-10. ADC12_B Grounding and Noise Considerations  
10.2.1.2 Design Requirements  
As with any high-resolution ADC, follow appropriate PCB layout and grounding techniques to eliminate ground  
loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with other  
analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can  
add to or subtract from the reference or input voltages of the ADC. The general guidelines in 10.1.1 combined  
with the connections shown in 10.2.1.1 prevent these offsets.  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital switching or  
switching power supplies can corrupt the conversion result. TI recommends a noise-free design using separate  
analog and digital ground planes with a single-point connection to achieve high accuracy.  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor buffers the reference pin and filters low-frequency ripple. A  
4.7-µF bypass capacitor filters out high-frequency noise.  
Copyright © 2022 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.1.3 Detailed Design Procedure  
For additional design information, see the application report Designing With the MSP430FR58xx, FR59xx,  
FR68xx, and FR69xx ADC.  
10.2.1.4 Layout Guidelines  
Component that are shown in the partial schematic (see 10-10) should be placed as close as possible to the  
respective device pins. Avoid long traces, because they add additional parasitic capacitance, inductance, and  
resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because  
the high-frequency switching can be coupled into the analog signal.  
If differential mode is used for the ADC12_B, the analog differential input signals must be routed closely together  
to minimize the effect of noise on the resulting signal.  
10.2.2 LCD_C Peripheral  
10.2.2.1 Partial Schematic  
Required LCD connections greatly vary by the type of display that is used (static or multiplexed), whether  
external or internal biasing is used, and whether the on-chip charge pump is employed. Also, there is a fair  
amount of flexibility as to how the segment (Sx) and common (COMx) signals are connected to the MCU which  
can provide unique benefits. Since LCD connections are application specific, it is difficult to provide a single one-  
fits-all schematic. However, for examples and how-to circuit-design guidance, see Designing With MSP430™  
MCUs and Segment LCDs.  
10.2.2.2 Design Requirements  
Due to the flexibility of the LCD_C peripheral module to accommodate various segment-based LCDs, selecting  
the right display for the application in combination with determining specific design requirements is often an  
iterative process. TI strongly recommends reviewing the LCD_C peripheral module chapter in the  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide and Designing With MSP430™  
MCUs and Segment LCDs during the initial design requirements and decision process.  
10.2.2.3 Detailed Design Procedure  
A major component in designing the LCD solution is determining the exact connections between the LCD_C  
peripheral module and the display itself. Two basic design processes can be employed for this step, although in  
reality often a balanced co-design approach is recommended:  
PCB layout-driven design, optimizing signal routing  
Software-driven design, focusing on optimizing computational overhead  
For a detailed discussion of the design procedure as well as for design information regarding the LCD controller  
input voltage selection including internal and external options, contrast control, and bias generation, see  
Designing With MSP430™ MCUs and Segment LCDs and the LCD_C Controller chapter in the MSP430FR58xx,  
MSP430FR59xx, and MSP430FR6xx Family User's Guide.  
10.2.2.4 Layout Guidelines  
LCD segment (Sx) and common (COMx) signal traces are continuously switching while the LCD is enabled and  
should, therefore, be kept away from sensitive analog signals such as ADC inputs to prevent any noise coupling.  
TI recommends keeping the LCD signal traces on one side of the PCB grouped together in a bus-like fashion. A  
ground plane underneath the LCD traces and guard traces employed alongside the LCD traces can provide  
shielding.  
If the internal charge pump of the LCD module is used, place the externally provided capacitor on the LCDCAP  
pin as close as possible to the MCU. Connect the capacitor to the device using a short and direct trace and have  
a solid connection to the ground plane that supplies the VSS pins of the MCU.  
For an example layouts and a more in-depth discussion of this topic, see Designing With MSP430™ MCUs and  
Segment LCDs.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Getting Started  
For more information on the MSP family of microcontrollers and the tools and libraries that are available to help  
with your development, visit the MSP430™ ultra-low-power sensing & measurement MCUs overview.  
11.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. 11-1 provides a legend for reading the complete device name.  
MSP 430 FR  
6
0431  
I
PN  
R
Feature Set  
Processor Family  
Distribution Format  
MCU Platform  
Packaging  
Memory Type  
Temperature Range  
Series  
AES  
Oscillators, LEA  
Optional: BSL  
FRAM  
Processor Family  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
MCU Platform  
Memory Type  
Series  
430 = MSP430 16-Bit Low-Power Platform  
FR = FRAM  
6 = FRAM 6 Series up to 16 MHz with LCD  
5 = FRAM 5 Series up to 16 MHz without LCD  
Feature Set  
First Digit: Feature Second Digit: Oscillators, LEA Third Digit: FRAM (KB) Optional Fourth Digit: BSL  
0 = USS  
4 = HFXT + LFXT + LEA + USS  
3 = HFXT + LFXT + LEA  
2 = HFXT + LFXT  
7 = 256  
6 = 192  
5 = 128  
4 = 96  
3 = 64  
1 = 32  
1 = I2C  
No value = UART  
1 = LFXT  
Temperature Range  
Packaging  
I = –40°C to 85°C  
http://www.ti.com/packaging  
Distribution Format  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
11-1. Device Nomenclature  
Copyright © 2022 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
11.3 Tools and Software  
11-1 lists the debug features supported by these microcontrollers.  
For details on the available features, see the Code Composer Studio™ IDE for MSP430™ MCUs User's Guide.  
For further usage information, see these application reports:  
Advanced Debugging Using the Enhanced Emulation Module (EEM) With Code Composer Studio™ IDE  
MSP430™ Advanced Power Optimizations: ULP Advisor™ and EnergyTrace™ Technology  
11-1. Hardware Features  
BREAK-  
POINTS  
(N)  
RANGE  
BREAK-  
POINTS  
LPMx.5  
MSP  
ARCHITECTURE  
4-WIRE  
JTAG  
2-WIRE  
JTAG  
CLOCK  
CONTROL SEQUENCER  
STATE  
TRACE  
BUFFER  
DEBUGGING EnergyTrace++™  
SUPPORT  
MSP430Xv2  
Yes  
Yes  
3
Yes  
Yes  
No  
No  
Yes  
Yes  
Design Kits and Evaluation Modules  
EVM430-FR6043  
The EVM430-FR6043 is a development platform to evaluate the performance of the MSP430FR6043 MCU for  
ultrasonic sensing applications.  
MSP-TS430PN80C  
The MSP-TS430PN80C is a stand-alone 80-pin ZIF socket target board used to program and debug the  
MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.  
Ultrasonic Sensing Subsystem Reference Design for Gas Flow Measurement  
This reference design helps designers develop an ultrasonic gas-metering subsystem using an integrated,  
ultrasonic sensing solution (USS) module, which provides superior metrology performance, with low-power  
consumption and maximum integration.  
Software  
MSP430WareSoftware  
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all  
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This  
library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of CCS  
or as a stand-alone package.  
MSP430FR604x, MSP430FR504x Code Examples  
C code examples are available for every MSP device that configures each of the integrated peripherals for  
various application needs.  
MSP Driver Library  
The abstracted API of MSP Driver Library provides easy-to-use function calls that free you from directly  
manipulating the bits and bytes of the MSP430 hardware. Thorough documentation is delivered through a  
helpful API Guide, which includes details on each function call and the recognized parameters. Developers can  
use Driver Library functions to write complete projects with minimal overhead.  
MSP EnergyTraceTechnology  
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and  
displays the energy profile of the application and helps to optimize it for ultra-low-power consumption.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
ULP (Ultra-Low Power) Advisor  
ULP Advisorsoftware is a tool for guiding developers to write more efficient code to fully use the unique ultra-  
low-power features of MSP430 and MSP432microcontrollers. Aimed at both experienced and new  
microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to help minimize  
the energy consumption of your application. At build time, ULP Advisor provides notifications and remarks to  
highlight areas of your code that can be further optimized for lower power.  
FRAM Embedded Software Utilities for MSP Ultra-Low-Power Microcontrollers  
The FRAM Utilities is designed to grow as a collection of embedded software utilities that leverage the ultra-low-  
power and virtually unlimited write endurance of FRAM. The utilities are available for MSP430FRxx FRAM  
microcontrollers and provide example code to help start application development. Included utilities include  
Compute Through Power Loss (CTPL). CTPL is utility API set that enables ease of use with LPMx.5 low-power  
modes and a powerful shutdown mode that allows an application to save and restore critical system components  
when a power loss is detected.  
IEC60730 Software Package  
The IEC60730 MSP430 software package was developed to help customers comply with IEC 60730-1:2010  
(Automatic Electrical Controls for Household and Similar Use Part 1: General Requirements) for up to Class B  
products, which includes home appliances, arc detectors, power converters, power tools, e-bikes, and many  
others. The IEC60730 MSP430 software package can be embedded in customer applications running on  
MSP430 MCUs to help simplify the customer's certification efforts of functional safety-compliant consumer  
devices to IEC 60730-1:2010 Class B.  
Fixed Point Math Library for MSP  
The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical  
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and  
MSP432 devices. These routines are typically used in computationally intensive real-time applications where  
optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath  
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably  
lower than equivalent code written using floating-point math.  
Floating Point Math Library for MSP430  
Continuing to innovate in the low-power and low-cost microcontroller space, TI provides MSPMATHLIB.  
Leveraging the intelligent peripherals of our devices, this floating-point math library of scalar functions that are up  
to 26 times faster than the standard MSP430 math functions. Mathlib is easy to integrate into your designs. This  
library is free and is integrated in both Code Composer Studio IDE and IAR Embedded Workbench IDE.  
Development Tools  
Code Composer StudioIntegrated Development Environment for MSP Microcontrollers  
Code Composer Studio (CCS) integrated development environment (IDE) supports all MSP microcontroller  
devices. CCS comprises a suite of embedded software utilities used to develop and debug embedded  
applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger,  
profiler, and many other features.  
IAR Embedded Workbench® IDE  
IAR Embedded Workbench IDE for MSP430 MCUs is a complete C/C++ compiler toolchain for building and  
debugging embedded applications based on MSP430 microcontrollers. The debugger can be used for source  
and disassembly code with support for complex code and data breakpoints. It also provides a hardware  
simulator that allows debugging without a physical target connected.  
Copyright © 2022 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
Uniflash Standalone Flash Tool  
CCS Uniflash is a stand-alone tool used to program on-chip flash memory on TI MCUs. Uniflash has a GUI,  
command line, and scripting interface. Uniflash is a software tool available by TI Cloud Tools or desktop  
application download from the TI web page.  
MSP MCU Programmer and Debugger  
The MSP-FET is a powerful emulation development tool often called a debug probe which lets users  
quickly begin application development on MSP low-power MCUs. Creating MCU software usually requires  
downloading the resulting binary program to the MSP device for validation and debugging.  
MSP-GANG Production Programmer  
The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight  
identical MSP430 or MSP432 flash or FRAM devices at the same time. The MSP Gang Programmer connects to  
a host PC using a standard RS-232 or USB connection and provides flexible programming options that let the  
user fully customize the process.  
TIREX Resource Explorer (TIRex)  
An online portal to examples, libraries, executables, and documentation for your device and development board.  
TIRex can be accessed directly in Code Composer Studio IDE or in TI Cloud Tools.  
TI Cloud Tools  
Start development immediately on dev.ti.com. Begin by using the Resource Explorer interface to quickly find all  
the files you need. Then, edit, build, and debug embedded applications in the cloud, using industry-leading Code  
Composer Studio Cloud IDE.  
GCC - Compiler for MSP  
MSP430 and MSP432 GCC open source packages are complete debugger and open source C/C++ compiler  
toolchains for building and debugging embedded applications based on MSP430 and MSP432 microcontrollers.  
These free GCC compilers support all MSP430 and MSP432 devices without code size limitations. In addition,  
these compilers can be used stand-alone from the command-line or within Code Composer Studio v6.0 or later.  
Get started today whether you are using a Windows®, Linux®, or OS X® environment.  
11.4 Documentation Support  
The following documents describe the MSP430FR604x and MSP430FR504x MCUs. Copies of these documents  
are available on the Internet at www.ti.com.  
Receiving Notification of Document Updates  
To receive notification of documentation updatesincluding silicon erratago to the product folder for your  
device on ti.com (for example, MSP430FR6043). In the upper right corner, click the "Alert me" button. This  
registers you to receive a weekly digest of product information that has changed (if any). For change details,  
check the revision history of any revised document.  
Errata  
MSP430FR6043 Device Errata  
Describes the known exceptions to the functional specifications for each silicon revision of this device.  
MSP430FR60431 Device Errata  
Describes the known exceptions to the functional specifications for each silicon revision of this device.  
MSP430FR6041 Device Errata  
Describes the known exceptions to the functional specifications for each silicon revision of this device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
MSP430FR5043 Device Errata  
Describes the known exceptions to the functional specifications for each silicon revision of this device.  
MSP430FR50431 Device Errata  
Describes the known exceptions to the functional specifications for each silicon revision of this device.  
MSP430FR5041 Device Errata  
Describes the known exceptions to the functional specifications for each silicon revision of this device.  
User's Guides  
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide  
Detailed description of all modules and peripherals available in this device family.  
MSP430 FRAM Devices Bootloader (BSL) User's Guide  
The bootloader (BSL) on MSP430 MCUs lets users communicate with embedded memory in the MSP430 MCU  
during the prototyping phase, final production, and in service. Both the programmable memory (FRAM memory)  
and the data memory (RAM) can be modified as required.  
MSP430 Programming With the JTAG Interface  
This document describes the functions that are required to erase, program, and verify the memory module of the  
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition,  
it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This  
document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG  
interface, which is also referred to as Spy-Bi-Wire (SBW).  
MSP430 Hardware Tools User's Guide  
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the  
program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the  
parallel port interface and the USB interface, are described.  
Application Reports  
MSP430 32-kHz Crystal Oscillators  
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal  
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the  
correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout  
are given. The document also contains detailed information on the possible oscillator tests to ensure stable  
oscillator operation in mass production.  
MSP430 System-Level ESD Considerations  
System-level ESD has become increasingly demanding with silicon technology scaling towards lower voltages  
and the need for designing cost-effective and ultra-low-power components. This application report addresses  
three different ESD topics to help board designers and OEMs understand and design robust system-level  
designs. A few real-world system-level ESD protection design examples and their results are also discussed.  
11.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
MSP Academy is a starting point for all developers to learn about the MSP430 MCU Platform, which provides  
affordable solutions for many applications. MSP Academy delivers easy-to-use training modules that span a  
wide range of topics and LaunchPad development kits in the MSP430 MCU portfolio.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
Copyright © 2022 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
11.6 Trademarks  
MSP430Ware, EnergyTrace, ULP Advisor, MSP432, Code Composer Studio, and TI E2Eare  
trademarks of Texas Instruments.  
Arm® and Cortex® are registered trademarks of Arm Limited.  
Microsoft® and Windows® are registered trademarks of Microsoft Corporation.  
IAR Embedded Workbench® is a registered trademark of IAR Systems.  
Linux® is a registered trademark of Linus Torvalds.  
OS X® is a registered trademark of Apple, Inc.  
所有商标均为其各自所有者的财产。  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11.9 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
 
 
MSP430FR6043, MSP430FR60431, MSP430FR6041  
MSP430FR5043, MSP430FR50431, MSP430FR5041  
ZHCSJA6B JANUARY 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: MSP430FR6043 MSP430FR60431 MSP430FR6041 MSP430FR5043 MSP430FR50431  
MSP430FR5041  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR5041IPM  
MSP430FR5041IPMR  
MSP430FR5041IRGCR  
MSP430FR5041IRGCT  
MSP430FR50431IPM  
MSP430FR50431IPMR  
MSP430FR50431IRGCR  
MSP430FR50431IRGCT  
MSP430FR5043IPM  
MSP430FR5043IPMR  
MSP430FR5043IRGCR  
MSP430FR5043IRGCT  
MSP430FR6041IPN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
VQFN  
VQFN  
LQFP  
LQFP  
VQFN  
VQFN  
LQFP  
LQFP  
VQFN  
VQFN  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
80  
80  
80  
80  
80  
80  
160  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR5041  
1000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
FR5041  
FR5041  
FR5041  
FR50431  
FR50431  
FR50431  
FR50431  
FR5043  
FR5043  
FR5043  
FR5043  
FR6041  
FR6041  
FR60431  
FR60431  
FR6043  
FR6043  
RGC  
RGC  
PM  
250  
160  
RoHS & Green  
RoHS & Green  
PM  
1000 RoHS & Green  
2000 RoHS & Green  
RGC  
RGC  
PM  
250  
160  
RoHS & Green  
RoHS & Green  
PM  
1000 RoHS & Green  
2000 RoHS & Green  
RGC  
RGC  
PN  
250  
119  
RoHS & Green  
RoHS & Green  
MSP430FR6041IPNR  
MSP430FR60431IPN  
MSP430FR60431IPNR  
MSP430FR6043IPN  
PN  
1000 RoHS & Green  
119 RoHS & Green  
1000 RoHS & Green  
119 RoHS & Green  
1000 RoHS & Green  
PN  
PN  
PN  
MSP430FR6043IPNR  
PN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Dec-2021  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR5041IPMR  
MSP430FR50431IPMR  
LQFP  
LQFP  
PM  
PM  
64  
64  
64  
64  
64  
64  
80  
1000  
1000  
2000  
1000  
2000  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
330.0  
24.4  
24.4  
16.4  
24.4  
16.4  
16.4  
24.4  
13.0  
13.0  
9.3  
13.0  
13.0  
9.3  
2.1  
2.1  
1.1  
2.1  
1.1  
1.1  
2.1  
16.0  
16.0  
12.0  
16.0  
12.0  
12.0  
20.0  
24.0  
24.0  
16.0  
24.0  
16.0  
16.0  
24.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
MSP430FR50431IRGCR VQFN  
RGC  
PM  
MSP430FR5043IPMR  
MSP430FR5043IRGCR  
MSP430FR5043IRGCT  
MSP430FR6043IPNR  
LQFP  
VQFN  
VQFN  
LQFP  
13.0  
9.3  
13.0  
9.3  
RGC  
RGC  
PN  
9.3  
9.3  
1000  
15.0  
15.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR5041IPMR  
MSP430FR50431IPMR  
MSP430FR50431IRGCR  
MSP430FR5043IPMR  
MSP430FR5043IRGCR  
MSP430FR5043IRGCT  
MSP430FR6043IPNR  
LQFP  
LQFP  
VQFN  
LQFP  
VQFN  
VQFN  
LQFP  
PM  
PM  
64  
64  
64  
64  
64  
64  
80  
1000  
1000  
2000  
1000  
2000  
250  
336.6  
336.6  
367.0  
336.6  
367.0  
210.0  
350.0  
336.6  
336.6  
367.0  
336.6  
367.0  
185.0  
350.0  
41.3  
41.3  
38.0  
41.3  
38.0  
35.0  
43.0  
RGC  
PM  
RGC  
RGC  
PN  
1000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jul-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
MSP430FR5041IPM  
MSP430FR50431IPM  
MSP430FR5043IPM  
MSP430FR6041IPN  
MSP430FR60431IPN  
MSP430FR6043IPN  
PM  
PM  
PM  
PN  
PN  
PN  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
64  
64  
64  
80  
80  
80  
160  
160  
160  
119  
119  
119  
8 X 20  
8 X 20  
8 X 20  
7 x 17  
7 x 17  
7 x 17  
150  
150  
150  
150  
150  
150  
315 135.9 7620 15.2  
315 135.9 7620 15.2  
315 135.9 7620 15.2  
315 135.9 7620 17.9  
315 135.9 7620 17.9  
315 135.9 7620 17.9  
13.1  
13.1  
13.1  
13  
13  
13  
14.3 13.95  
14.3 13.95  
14.3 13.95  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PM0064A  
LQFP - 1.6 mm max height  
SCALE 1.400  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
33  
16  
32  
17  
A
0.27  
0.17  
64X  
60X 0.5  
4X 7.5  
0.08  
C A B  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
1.6 MAX  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215162/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
49  
64  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
33  
16  
17  
32  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215162/A 03/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
16  
33  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4215162/A 03/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
PN0080A  
LQFP - 1.6 mm max height  
SCALE 1.250  
PLASTIC QUAD FLATPACK  
12.2  
11.8  
B
PIN 1 ID  
A
80  
61  
1
60  
12.2  
11.8  
14.2  
TYP  
13.8  
20  
41  
40  
21  
76X 0.5  
0.27  
80X  
0.17  
4X 9.5  
0.08  
C A B  
1.6 MAX  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215166/A 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PN0080A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
80  
61  
80X (1.5)  
1
60  
80X (0.3)  
SYMM  
(13.4)  
76X (0.5)  
(R0.05) TYP  
20  
41  
21  
40  
(13.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215166/A 08/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
6. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PN0080A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
80  
61  
80X (1.5)  
1
60  
80X (0.3)  
SYMM  
(13.4)  
76X (0.5)  
(R0.05) TYP  
20  
41  
21  
40  
(13.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:6X  
4215166/A 08/2022  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY