MSP430FR6979IPZR [TI]

具有 128KB FRAM、2KB SRAM、LCD、AES、12 位 ADC、比较器、DMA、UART/SPI/I2C 和计时器的 16MHz MCU | PZ | 100 | -40 to 85;
MSP430FR6979IPZR
型号: MSP430FR6979IPZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 128KB FRAM、2KB SRAM、LCD、AES、12 位 ADC、比较器、DMA、UART/SPI/I2C 和计时器的 16MHz MCU | PZ | 100 | -40 to 85

CD 静态存储器 比较器
文件: 总176页 (文件大小:3059K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
MSP430FR697x(1)MSP430FR692x(1) 混合信号微控制器  
1 器件概述  
1.1 特性  
1
可每位、每字节和每字访问(成对访问)  
嵌入式微控制器  
可通过 P1P2P3 P4 端口从 LPM 唤醒,  
边沿可选  
高达 16MHz 时钟频率的 16 RISC 架构  
– 3.6V 1.8V 的宽电源电压范围(最低电源电压  
受限于 SVS 电平,请参阅 SVS 规格)  
所有端口上可编程上拉和下拉  
代码安全性和加密  
经优化的超低功耗模式  
– 128 位或 256 AES 安全加密和解密协处理器  
针对随机数生成算法的真随机种子  
增强型串行通信  
工作模式:大约 100µA/MHz  
待机(具有低功率低频内部时钟源 (VLO) 的  
LPM3):0.4µA(典型值)  
实时时钟 (RTC) (LPM3.5)0.35µA(典型值)  
– eUSCI_A0 eUSCI_A1 支持:  
(1)  
支持自动波特率侦测的通用异步收发器  
关断 (LPM4.5)0.02µA(典型值)  
超低功耗铁电 RAM (FRAM)  
(UART)  
– IrDA 编码和解码  
– SPI  
高达 128KB 的非易失性存储器  
超低功耗写入  
– 125ns 每个字的快速写入(4ms 内写入 64KB)  
统一标准存储器 = 单个空间内的程序 + 数据 + 存  
– 1015 写入周期持久性  
抗辐射和非磁性  
– eUSCI_B0 eUSCI_B1 均支持:  
支持多从设备寻址的 I2C  
– SPI  
硬件 UART I2C 引导加载程序 (BSL)  
灵活时钟系统  
具有 10 个可选厂家调整频率的定频数控振荡器  
智能数字外设  
(DCO)  
– 32 位硬件乘法器 (MPY)  
三通道内部直接存储器存取 (DMA)  
带有日历和和报警功能的 RTC  
低功率低频内部时钟源 (VLO)  
– 32kHz 晶振 (LFXT)  
高频晶振 (HFXT)  
– 5 16 位计时器,每个计时器具有多达 7 个捕  
/比较寄存器  
– 16 位和 32 位循环冗余校验器(CRC16、  
CRC32)  
开发工具和软件  
自由的专业开发环境 具有 EnergyTrace++™技术  
实验和开发套件  
系列产品成员  
高性能模拟  
器件比较 总结了器件型号和可用封装类型  
– 16 通道模拟比较器  
– 12 位模数转换器 (ADC),具有内部基准和采样保  
持以及多达 16 个外部输入通道  
要获得完整的模块说明,请参见  
MSP430FR58xxMSP430FR59xx 和  
MSP430FR6xx 系列用户指南》  
具有高达 320 段对比度控制的集成 LCD 驱动器  
多功能输入/输出端口  
所有 P1 P10 以及 PJ 引脚均支持电容式触控  
功能,无需外部组件  
(1) 实时时钟 (RTC) 3.7pF 晶振计时。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLAS797  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
1.2 应用  
水表  
便携式医疗仪表  
数据日志  
热量计  
热量分配表  
1.3 说明  
MSP430™超低功耗 (ULP) FRAM 平台将独特的嵌入式 FRAM 和整体超低功耗系统架构组合在一起,从而  
使得创新人员能够以较少的能源预算增加性能。FRAM 技术以低很多的功耗将 SRAM 的速度、灵活性和耐  
久性与闪存的稳定性和可靠性组合在一起。  
MSP430 ULP FRAM 产品系列由多种采用 FRAM ULP 16 MSP430 CPU 的器件和智能外设组成,可  
适用于各种 应用。ULP 架构具有七种低功耗模式,这些模式都经过优化,可在能源受限的应用中实现较长  
的 电池寿命。  
器件信息(1)  
封装  
器件型号  
MSP430FR6979IPZ  
MSP430FR6979IPN  
MSP430FR6928IPM  
MSP430FR6927IRGC  
封装尺寸(2)  
14mm x 14mm  
12mm x 12mm  
10mm x 10mm  
9mm x 9mm  
LQFP (100)  
LQFP (80)  
LQFP (64)  
VQFN (64)  
(1) 要获得最新的产品、封装和订购信息,请参见封装选项附录9),或者访问德州仪器 (TI) 网站  
www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据9)。  
2
器件概述  
版权 © 2014–2018, Texas Instruments Incorporated  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
1.4 功能方框图  
1-1 1-2 显示 功能方框图。  
P1.x/P2.x P3.x/P4.x P5.x/P6.x P7.x/P8.x P9.x/P10.x  
2x8 2x8 2x8 2x8 2x8  
PJ.x  
1x8  
LFXIN,  
HFXIN  
LFXOUT,  
HFXOUT  
Capacitive Touch I/O 0, Capacitive Touch I/O 1  
I/O Ports I/O Ports  
P3, P4  
2x8 I/Os  
I/O Port  
P5, P6  
2x8 I/Os  
I/O Port  
P7, P8  
2x8 I/Os  
I/O Port  
P9, P10  
1x8 I/Os  
I/O Port  
PJ  
1x8 I/Os  
Comp_E  
ADC12_B  
REF_A  
P1, P2  
2x8 I/Os  
MCLK  
ACLK  
Clock  
System  
(up to 16  
inputs)  
(up to 16  
std. inputs,  
up to 8  
Voltage  
Reference  
SMCLK  
PA  
PB  
PC  
PD  
1x16 I/Os 1x16 I/Os 1x16 I/Os 1x16 I/Os 1x16 I/Os  
PE  
diff. inputs)  
DMA  
Controller  
Channel  
3
MAB  
MDB  
Bus  
Control  
Logic  
CPUXV2  
incl. 16  
Registers  
MPU  
IP Encap  
CRC16  
TA2  
TA3  
Power  
Mgmt  
AES256  
CRC-16-  
CCITT  
FRAM  
RAM  
2KB  
Security  
Encryption,  
Decryption  
(128, 256)  
Watchdog  
Timer_A  
2 CC  
Registers  
(int. only)  
Timer_A  
5 CC  
Registers  
(int. only)  
MPY32  
LDO  
SVS  
Brownout  
CRC32  
EEM  
Up to  
128KB  
(S: 3 + 1)  
EnergyTrace++  
Technology  
CRC-32-  
ISO-3309  
MDB  
MAB  
JTAG  
Interface  
Spy-Bi-  
Wire  
TB0  
TA0  
TA1  
RTC_C  
LCD_C  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
eUSCI_B1  
Calendar  
and  
Counter  
Mode  
(up to  
320 seg;  
static,  
Timer_B  
7 CC  
Registers  
(int./ext.)  
Timer_A  
3 CC  
Registers  
(int./ext.)  
Timer_A  
3 CC  
Registers  
(int./ext.)  
(I2C,  
SPI)  
(UART,  
IrDA,  
SPI)  
2 to 8 mux)  
LPM3.5 Domain  
Copyright © 2016, Texas Instruments Incorporated  
1-1. 功能方框图 – MSP430FR697xMSP430FR697x1  
版权 © 2014–2018, Texas Instruments Incorporated  
器件概述  
3
 
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
P1.x/P2.x P3.x/P4.x P5.x/P6.x P7.x/P8.x P9.x/P10.x  
2x8 2x8 2x8 2x8 2x8  
PJ.x  
1x8  
LFXIN,  
HFXIN  
LFXOUT,  
HFXOUT  
Capacitive Touch I/O 0, Capacitive Touch I/O 1  
I/O Ports I/O Ports  
P3, P4  
2x8 I/Os  
I/O Port  
P5, P6  
2x8 I/Os  
I/O Port  
P7, P8  
2x8 I/Os  
I/O Port  
P9, P10  
1x8 I/Os  
I/O Port  
PJ  
1x8 I/Os  
Comp_E  
ADC12_B  
REF_A  
P1, P2  
2x8 I/Os  
MCLK  
ACLK  
Clock  
System  
(up to 16  
inputs)  
(up to 16  
std. inputs,  
up to 8  
Voltage  
Reference  
SMCLK  
PA  
PB  
PC  
PD  
1x16 I/Os 1x16 I/Os 1x16 I/Os 1x16 I/Os 1x16 I/Os  
PE  
diff. inputs)  
DMA  
Controller  
Channel  
3
MAB  
MDB  
Bus  
Control  
Logic  
CPUXV2  
incl. 16  
Registers  
MPU  
IP Encap  
CRC16  
TA2  
TA3  
Power  
Mgmt  
AES256  
CRC-16-  
CCITT  
FRAM  
RAM  
2KB  
Security  
Encryption,  
Decryption  
(128, 256)  
Watchdog  
Timer_A  
2 CC  
Registers  
(int. only)  
Timer_A  
5 CC  
Registers  
(int. only)  
MPY32  
LDO  
SVS  
Brownout  
CRC32  
EEM  
Up to  
128KB  
(S: 3 + 1)  
EnergyTrace++  
Technology  
CRC-32-  
ISO-3309  
MDB  
MAB  
JTAG  
Interface  
Spy-Bi-  
Wire  
TB0  
TA0  
TA1  
RTC_C  
LCD_C  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
eUSCI_B1  
Calendar  
and  
Counter  
Mode  
(up to  
320 seg;  
static,  
Timer_B  
7 CC  
Registers  
(int./ext.)  
Timer_A  
3 CC  
Registers  
(int./ext.)  
Timer_A  
3 CC  
Registers  
(int./ext.)  
(I2C,  
SPI)  
(UART,  
IrDA,  
SPI)  
2 to 8 mux)  
LPM3.5 Domain  
Copyright © 2016, Texas Instruments Incorporated  
NOTE: HF 晶体振荡器与对应的 HFXIN HFXOUT 引脚未在 MSP430FR692x 器件中实现。  
1-2. 功能方框图 – MSP430FR692x(1)  
4
器件概述  
版权 © 2014–2018, Texas Instruments Incorporated  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
5.13 Timing and Switching Characteristics ............... 38  
Detailed Description ................................... 69  
6.1 Overview ............................................ 69  
6.2 CPU ................................................. 69  
6.3 Operating Modes .................................... 70  
6.4 Interrupt Vector Table and Signatures .............. 73  
6.5 Bootloader (BSL).................................... 76  
6.6 JTAG Operation ..................................... 76  
6.7 FRAM................................................ 77  
6.8 RAM ................................................. 77  
6.9 Tiny RAM............................................ 77  
6.10 Memory Protection Unit Including IP Encapsulation 77  
6.11 Peripherals .......................................... 78  
6.12 Device Descriptors (TLV) .......................... 124  
6.13 Memory ............................................ 127  
6.14 Identification........................................ 143  
Applications, Implementation, and Layout ...... 144  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能方框图............................................ 3  
修订历史记录............................................... 6  
Device Comparison ..................................... 7  
3.1 Related Products ..................................... 8  
Terminal Configuration and Functions.............. 9  
4.1 Pin Diagrams ......................................... 9  
4.2 Signal Descriptions.................................. 12  
4.3 Pin Multiplexing ..................................... 27  
4.4 Connection of Unused Pins ......................... 27  
Specifications ........................................... 28  
5.1 Absolute Maximum Ratings......................... 28  
5.2 ESD Ratings ........................................ 28  
5.3 Recommended Operating Conditions............... 28  
6
2
3
4
5
7
8
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Active Mode Supply Current Into VCC Excluding  
External Current .................................... 29  
Typical Characteristics, Active Mode Supply  
7.1  
Device Connection and Layout Fundamentals .... 144  
7.2  
Peripheral- and Interface-Specific Design  
Information ......................................... 148  
Currents ............................................. 30  
Low-Power Mode (LPM0, LPM1) Supply Currents  
Into VCC Excluding External Current ................ 30  
Low-Power Mode (LPM2, LPM3, LPM4) Supply  
Currents (Into VCC) Excluding External Current .... 31  
Low-Power Mode With LCD Supply Currents (Into  
VCC) Excluding External Current.................... 33  
Low-Power Mode LPMx.5 Supply Currents (Into  
VCC) Excluding External Current.................... 34  
器件和文档支......................................... 152  
8.1 入门和后续步骤 .................................... 152  
8.2 器件命名规则....................................... 152  
8.3 工具和软件 ......................................... 153  
8.4 文档支持 ........................................... 155  
8.5 相关链接 ........................................... 156  
8.6 社区资源 ........................................... 157  
8.7 商标 ................................................ 157  
8.8 静电放电警告....................................... 157  
8.9 出口管制提示....................................... 157  
8.10 Glossary............................................ 157  
机械、封装和可订购信息 .............................. 158  
5.10 Typical Characteristics, Low-Power Mode Supply  
Currents ............................................. 35  
5.11 Typical Characteristics, Current Consumption per  
Module .............................................. 36  
9
5.12 Thermal Resistance Characteristics ................ 37  
版权 © 2014–2018, Texas Instruments Incorporated  
内容  
5
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from March 10, 2017 to August 29, 2018  
Page  
Updated Section 3.1, Related Products ........................................................................................... 8  
Added note (1) to 5-2, SVS..................................................................................................... 39  
Changed capacitor value from 4.7 µF to 470 nF in 7-5, ADC12_B Grounding and Noise Considerations ........ 148  
Changed capacitor value from 4.7 µF to 470 nF in the last paragraph of 7.2.1.2, Design Requirements ......... 149  
更新了 8.2器件命名规则 中的文本和图 ................................................................................... 152  
6
修订历史记录  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
3 Device Comparison  
Table 3-1 and Table 3-2 summarize the available family members.  
Table 3-1. Family Members With UART BSL(1)(2)  
eUSCI  
FRAM SRAM  
Clock  
System  
ADC12_  
B
Package  
Type  
Device  
Timer_A Timer_B  
AES  
LCD_C  
I/O  
(KB)  
(KB)  
A
B
DCO  
HFXT  
LFXT  
3, 3  
7
12 ext  
16 ext  
240 seg  
320 seg  
63  
83  
80 PN  
100 PZ  
MSP430FR6979  
128  
2
2
2
yes  
2, 5  
DCO  
HFXT  
LFXT  
3, 3  
7
12 ext  
16 ext  
240 seg  
320 seg  
63  
83  
80 PN  
100 PZ  
MSP430FR6977  
64  
2
2
2
yes  
2, 5  
DCO  
LFXT  
3, 3  
7
116 seg  
(4 mux)  
MSP430FR6928  
MSP430FR6927  
96  
64  
2
2
2
2
2
2
yes  
yes  
8 ext  
8 ext  
52  
52  
64 PM  
2, 5  
DCO  
LFXT  
3, 3  
7
116 seg  
(4 mux)  
64 PM  
64 RGC  
2, 5  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/package.  
Table 3-2. Family Members With I2C BSL(1)(2)  
eUSCI  
FRAM SRAM  
Clock  
System  
ADC12_  
B
Package  
Type  
Device  
Timer_A Timer_B  
AES  
LCD_C  
I/O  
(KB)  
(KB)  
A
B
DCO  
HFXT  
LFXT  
3, 3  
7
12 ext  
16 ext  
240 seg  
320 seg  
63  
83  
80 PN  
100 PZ  
MSP430FR69791  
MSP430FR69271  
128  
2
2
2
yes  
yes  
2, 5  
DCO  
LFXT  
3, 3  
7
116 seg  
(4 mux)  
64 PM  
64 RGC  
64  
2
2
2
8 ext  
52  
2, 5  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/package.  
Copyright © 2014–2018, Texas Instruments Incorporated  
Device Comparison  
7
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
3.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers High-performance, low-power solutions to enable the autonomous  
future  
Products for MSP430 ultra-low-power sensing and measurement microcontrollers One platform.  
One ecosystem. Endless possibilities.  
Products for MSP430 ultrasonic and performance sensing microcontrollers Ultra-low-power single-  
chip MCUs with integrated sensing peripherals  
Companion products for MSP430FR6979 Review products that are frequently purchased or used with  
this product.  
Reference designs for MSP430FR6979 The TI Designs Reference Design Library is a robust reference  
design library that spans analog, embedded processor, and connectivity. Created by TI  
experts to help you jump start your system design, all TI Designs include schematic or block  
diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at ti.com/tidesigns.  
8
Device Comparison  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
4 Terminal Configuration and Functions  
4.1 Pin Diagrams  
Figure 4-1 shows the pinout of the 100-pin PZ package for the MSP430FR697x and MSP430FR697x1  
MCUs.  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
P4.3/UCA0SOMI/UCA0RXD/UCB1STE  
P1.4/UCB0CLK/UCA0STE/TA1.0/S1  
P1.5/UCB0STE/UCA0CLK/TA0.0/S0  
P1.6/UCB0SIMO/UCB0SDA/TA0.1  
P1.7/UCB0SOMI/UCB0SCL/TA0.2  
R33/LCDCAP  
1
75  
DVCC4  
2
74 P9.7/A15/C15  
3
73 P9.6/A14/C14  
4
72 P9.5/A13/C13  
5
71 P9.4/A12/C12  
6
70 P9.3/A11/C11  
P6.0/R23  
7
69 P9.2/A10/C10  
P6.1/R13/LCDREF  
8
68 P9.1/A9/C9  
P6.2/COUT/R03  
9
67 P9.0/A8/C8  
P6.3/COM0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
66 P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF-  
65 P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+  
64 P1.2/TA1.1/TA0CLK/COUT/A2/C2  
63 P1.3/TA1.2/A3/C3  
62 P8.7/A4/C4  
P6.4/TB0.0/COM1  
P6.5/TB0.1/COM2  
P6.6/TB0.2/COM3  
P2.4/TB0.3/COM4/S43  
P2.5/TB0.4/COM5/S42  
P2.6/TB0.5/COM6/S41  
P2.7/TB0.6/COM7/S40  
P10.2/TA1.0/SMCLK/S39  
P5.0/TA1.1/MCLK/S38  
P5.1/TA1.2/S37  
61 P8.6/A5/C5  
60 P8.5/A6/C6  
59 P8.4/A7/C7  
58 DVCC2  
57 DVSS2  
56 P7.4/SMCLK/S13  
55 P7.3/TA0.2/S14  
P5.2/TA1.0/TA1CLK/ACLK/S36  
P5.3/UCB1STE/S35  
54 P7.2/TA0.1/S15  
P3.0/UCB1CLK/S34  
53 P7.1/TA0.0/ACLK/S16  
52 P7.0/TA0CLK/S17  
51 P2.0/UCA0SIMO/UCA0TXD/TB0.6/TB0CLK  
P3.1/UCB1SIMO/UCB1SDA/S33  
P3.2/UCB1SOMI/UCB1SCL/S32  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NOTE: On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX  
NOTE: On devices with I2C BSL: P1.6: BSLSDA; P1.7: BSLSCL  
Figure 4-1. 100-Pin PZ Package (Top View) – MSP430FR697x and MSP430FR697x1  
Copyright © 2014–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Figure 4-2 shows the pinout of the 80-pin PN package for the MSP430FR697x and MSP430FR697x1  
MCUs.  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
P4.3/UCA0SOMI/UCA0RXD/UCB1STE  
P1.4/UCB0CLK/UCA0STE/TA1.0/S3  
P1.5/UCB0STE/UCA0CLK/TA0.0/S2  
P1.6/UCB0SIMO/UCB0SDA/TA0.1/S1  
P1.7/UCB0SOMI/UCB0SCL/TA0.2/S0  
R33/LCDCAP  
1
60 DVCC4  
2
59 P9.7/A15/C15  
3
58 P9.6/A14/C14  
4
57 P9.5/A13/C13  
5
56 P9.4/A12/C12  
6
55 P9.3/A11/C11  
P6.0/R23  
7
54 P9.2/A10/C10  
P6.1/R13/LCDREF  
8
53 P9.1/A9/C9  
P6.2/COUT/R03  
9
52 P9.0/A8/C8  
P6.3/COM0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
51 P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF-  
50 P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+  
49 P1.2/TA1.1/TA0CLK/COUT/A2/C2  
48 P1.3/TA1.2/A3/C3  
47 DVCC2  
P6.4/TB0.0/COM1/S36  
P6.5/TB0.1/COM2/S35  
P6.6/TB0.2/COM3/S34  
P2.4/TB0.3/COM4/S33  
P2.5/TB0.4/COM5/S32  
P2.6/TB0.5/COM6/S31  
P2.7/TB0.6/COM7/S30  
P3.0/UCB1CLK/S29  
46 DVSS2  
45 P7.3/TA0.2/S10  
44 P7.2/TA0.1/S11  
43 P7.1/TA0.0/ACLK/S12  
42 P7.0/TA0CLK/S13  
41 P2.0/UCA0SIMO/UCA0TXD/TB0.6/TB0CLK/S14  
P3.1/UCB1SIMO/UCB1SDA/S28  
P3.2/UCB1SOMI/UCB1SCL/S27  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NOTE: On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX  
NOTE: On devices with I2C BSL: P1.6: BSLSDA; P1.7: BSLSCL  
Figure 4-2. 80-Pin PN Package (Top View) – MSP430FR697x and MSP430FR697x1  
10  
Terminal Configuration and Functions  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Figure 4-3 shows the pinout of the 64-pin PM and RGC packages for the MSP430FR692x,  
MSP430FR692x1 MCUs.  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P4.3/UCA0SOMI/UCA0RXD/UCB1STE  
P1.4/UCB0CLK/UCA0STE/TA1.0/S3  
P1.5/UCB0STE/UCA0CLK/TA0.0/S2  
P1.6/UCB0SIMO/UCB0SDA/TA0.1/S1  
P1.7/UCB0SOMI/UCB0SCL/TA0.2/S0  
R33/LCDCAP  
1
48 P9.7/A15/C15  
2
47 P9.6/A14/C14  
3
46 P9.5/A13/C13  
4
45 P9.4/A12/C12  
5
44 P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF-  
43 P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+  
42 P1.2/TA1.1/TA0CLK/COUT/A2/C2  
41 P1.3/TA1.2/A3/C3  
6
P6.0/R23  
7
P6.1/R13/LCDREF  
8
P6.2/COUT/R03  
9
40 DVCC2  
P6.3/COM0  
10  
11  
12  
13  
14  
15  
16  
39 DVSS2  
P6.4/TB0.0/COM1/S31  
38 P7.4/SMCLK/S12  
P6.5/TB0.1/COM2/S30  
37 P7.3/TA0.2/S13  
P6.6/TB0.2/COM3/S29  
36 P7.2/TA0.1/S14  
P3.0/UCB1CLK/S28  
35 P7.1/TA0.0/ACLK/S15  
34 P7.0/TA0CLK/S16  
P3.1/UCB1SIMO/UCB1SDA/S27  
P3.2/UCB1SOMI/UCB1SCL/S26  
33 P2.0/UCA0SIMO/UCA0TXD/TB0.6/TB0CLK/S17  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NOTE: TI recommends connecting the RGC package pad to VSS.  
NOTE: On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX  
NOTE: On devices with I2C BSL: P1.6: BSLSDA; P1.7: BSLSCL  
Figure 4-3. 64-Pin PM or RGC Package (Top View)  
Copyright © 2014–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
4.2 Signal Descriptions  
Table 4-1 and Table 4-2 describe the device signals.  
Table 4-1. Signal Descriptions – MSP430FR697x and MSP430FR697x1  
TERMINAL  
PZ  
PN  
DESCRIPTION  
NAME  
NO.  
Seg.  
NO.  
Seg.  
General-purpose digital I/O  
USCI_A0: Slave out, master in (SPI mode)  
USCI_A0: Receive data (UART mode)  
P4.3/UCA0SOMI/UCA0RXD/  
UCB1STE  
1
2
1
USCI_B1: Slave transmit enable (SPI mode)  
General-purpose digital I/O  
USCI_B0: Clock signal input (SPI slave mode), Clock signal output (SPI  
master mode)  
P1.4/UCB0CLK/UCA0STE/  
TA1.0/Sx  
S1  
2
S3  
USCI_A0: Slave transmit enable (SPI mode)  
Timer_A TA1 CCR0 capture: CCI0A input, compare: Out0 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B0: Slave transmit enable (SPI mode)  
P1.5/UCB0STE/  
UCA0CLK/TA0.0/Sx  
USCI_A0: Clock signal input (SPI slave mode), Clock signal output (SPI  
master mode)  
3
S0  
3
S2  
Timer_A TA0 CCR0 capture: CCI0A input, compare: Out0 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B0: Slave in, master out (SPI mode)  
USCI_B0: I2C data (I2C mode)  
P1.6/UCB0SIMO/UCB0SDA/  
TA0.1/Sx  
4
4
S1  
BSL data (I2C BSL)  
Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B0: Slave out, master in (SPI mode)  
USCI_B0: I2C clock (I2C mode)  
P1.7/UCB0SOMI/UCB0SCL/  
TA0.2/Sx  
5
5
S0  
BSL clock (I2C BSL)  
Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output (segment number is package specific)  
Input/output port of most positive analog LCD voltage (V1)  
R33/LCDCAP  
P6.0/R23  
6
7
6
7
LCD capacitor connection  
General-purpose digital I/O  
Input/output port of second most positive analog LCD voltage (V2)  
General-purpose digital I/O  
P6.1/R13/LCDREF  
P6.2/COUT/R03  
8
9
8
9
Input/output port of third most positive analog LCD voltage (V3 or V4)  
External reference voltage input for regulated LCD voltage  
General-purpose digital I/O  
Comparator output  
Input/output port of lowest analog LCD voltage (V5)  
12  
Terminal Configuration and Functions  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Signal Descriptions – MSP430FR697x and MSP430FR697x1 (continued)  
TERMINAL  
PZ  
PN  
DESCRIPTION  
NAME  
NO.  
Seg.  
NO.  
Seg.  
General-purpose digital I/O  
P6.3/COM0  
10  
10  
LCD common output COM0 for LCD backplane  
General-purpose digital I/O  
Timer_B TB0 CCR0 capture: CCI0B input, compare: Out0 output  
LCD common output COM1 for LCD backplane  
P6.4/TB0.0/COM1/Sx  
11  
12  
13  
14  
15  
16  
17  
18  
11  
12  
13  
14  
15  
16  
17  
S36  
S35  
S34  
S33  
S32  
S31  
S30  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_B TB0 CCR1 capture: CCI1A input, compare: Out1 output  
LCD common output COM2 for LCD backplane  
P6.5/TB0.1/COM2/Sx  
P6.6/TB0.2/COM3/Sx  
P2.4/TB0.3/COM4/Sx  
P2.5/TB0.4/COM5/Sx  
P2.6/TB0.5/COM6/Sx  
P2.7/TB0.6/COM7/Sx  
P10.2/TA1.0/SMCLK/Sx  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_B TB0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD common output COM3 for LCD backplane  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_B TB0 CCR3 capture: CCI3A input, compare: Out3 output  
LCD common output COM4 for LCD backplane  
S43  
S42  
S41  
S40  
S39  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_B TB0 CCR4 capture: CCI4A input, compare: Out4 output  
LCD common output COM5 for LCD backplane  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_B TB0 CCR5 capture: CCI5A input, compare: Out5 output  
LCD common output COM6 for LCD backplane  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_B TB0 CCR6 capture: CCI6A input, compare: Out6 output  
LCD common output COM7 for LCD backplane  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_A TA1 CCR0 capture: CCI0B input, compare: Out0 output  
SMCLK output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output  
MCLK output  
P5.0/TA1.1/MCLK/Sx  
P5.1/TA1.2/Sx  
19  
20  
S38  
S37  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output (segment number is package specific)  
Copyright © 2014–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Signal Descriptions – MSP430FR697x and MSP430FR697x1 (continued)  
TERMINAL  
PZ  
PN  
DESCRIPTION  
NAME  
NO.  
Seg.  
NO.  
Seg.  
General-purpose digital I/O  
Timer_A TA1 CCR0 capture: CCI0B input, compare: Out0 output  
Timer_A TA1 clock signal TA0CLK input  
ACLK output  
P5.2/TA1.0/TA1CLK/ACLK/Sx  
21  
S36  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
P5.3/UCB1STE/Sx  
P3.0/UCB1CLK/Sx  
22  
23  
S35  
S34  
USCI_B1: Slave transmit enable (SPI mode)  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Clock signal input (SPI slave mode), Clock signal output (SPI  
master mode)  
18  
19  
S29  
S28  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Slave in, master out (SPI mode)  
USCI_B1: I2C data (I2C mode)  
P3.1/UCB1SIMO/UCB1SDA/  
Sx  
24  
25  
S33  
S32  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Slave out, master in (SPI mode)  
USCI_B1: I2C clock (I2C mode)  
P3.2/UCB1SOMI/UCB1SCL/  
Sx  
20  
S27  
LCD segment output (segment number is package specific)  
Digital ground supply  
DVSS1  
DVCC1  
26  
27  
21  
22  
Digital power supply  
Test mode pin - select digital I/O on JTAG pins  
TEST/SBWTCK  
28  
23  
Spy-Bi-Wire input clock  
Reset input, active low  
RST/NMI/SBWTDIO  
29  
24  
Nonmaskable interrupt input  
Spy-Bi-Wire data input/output  
General-purpose digital I/O  
Test data output port  
PJ.0/TDO/TB0OUTH/  
SMCLK/SRSCG1  
30  
25  
Switch all PWM outputs high impedance input - Timer_B TB0  
SMCLK output  
Low-power debug: CPU Status register SCG1  
General-purpose digital I/O  
Test data input or test clock input  
MCLK output  
PJ.1/TDI/TCLK/MCLK/  
SRSCG0  
31  
32  
26  
27  
Low-power debug: CPU Status register SCG0  
General-purpose digital I/O  
Test mode select  
PJ.2/TMS/ACLK/SROSCOFF  
ACLK output  
Low-power debug: CPU Status register OSCOFF  
14  
Terminal Configuration and Functions  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Signal Descriptions – MSP430FR697x and MSP430FR697x1 (continued)  
TERMINAL  
PZ  
PN  
DESCRIPTION  
NAME  
NO.  
Seg.  
NO.  
Seg.  
General-purpose digital I/O  
Test clock  
PJ.3/TCK/COUT/SRCPUOFF  
33  
28  
Comparator output  
Low-power debug: CPU Status register CPUOFF  
General-purpose digital I/O  
P6.7/TA0CLK/Sx  
P7.5/TA0.2/Sx  
P7.6/TA0.1/Sx  
P10.1/TA0.0/Sx  
34  
35  
36  
37  
S31  
S30  
S29  
S28  
29  
30  
31  
S26 Timer_A TA0 clock signal TA0CLK input  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
S25 Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
S24 Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_A TA0 CCR0 capture: CCI0B input, compare: Out0 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output  
P7.7/TA1.2/TB0OUTH/Sx  
P3.3/TA1.1/TB0CLK/Sx  
38  
39  
S27  
S26  
32  
33  
S23  
Switch all PWM outputs high impedance input - Timer_B TB0  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output  
S22  
Timer_B TB0 clock signal TB0CLK input  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A1: Slave in, master out (SPI mode)  
S21 USCI_A1: Transmit data (UART mode)  
P3.4/UCA1SIMO/UCA1TXD/  
TB0.0/Sx  
40  
S25  
34  
Timer_B TB0 CCR0 capture: CCI0A input, compare: Out0 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A1: Slave out, master in (SPI mode)  
S20 USCI_A1: Receive data (UART mode)  
P3.5/UCA1SOMI/UCA1RXD/  
TB0.1/Sx  
41  
42  
S24  
S23  
35  
36  
Timer_B TB0 CCR1 capture: CCI1A input, compare: Out1 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A1: Clock signal input (SPI slave mode), Clock signal output (SPI  
master mode)  
P3.6/UCA1CLK/TB0.2/Sx  
S19  
Timer_B TB0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output (segment number is package specific)  
Copyright © 2014–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Signal Descriptions – MSP430FR697x and MSP430FR697x1 (continued)  
TERMINAL  
PZ  
PN  
DESCRIPTION  
NAME  
NO.  
Seg.  
NO.  
Seg.  
General-purpose digital I/O  
USCI_A1: Slave transmit enable (SPI mode)  
P3.7/UCA1STE/TB0.3/Sx  
43  
S22  
37  
S18  
Timer_B TB0 CCR3 capture: CCI3B input, compare: Out3 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
P8.0/RTCCLK/Sx  
44  
S21  
RTC clock output for calibration  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
P8.1/DMAE0/Sx  
P8.2/Sx  
45  
46  
47  
S20  
S19  
S18  
DMA external trigger input  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
P8.3/MCLK/Sx  
MCLK output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A0: Slave transmit enable (SPI mode)  
P2.3/UCA0STE/TB0OUTH/Sx  
48  
49  
38  
39  
S17  
S16  
Switch all PWM outputs high impedance input - Timer_B TB0  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A0: Clock signal input (SPI slave mode), Clock signal output (SPI  
master mode)  
P2.2/UCA0CLK/TB0.4/  
RTCCLK/Sx  
Timer_B TB0 CCR4 capture: CCI4B input, compare: Out4 output  
RTC clock output for calibration  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A0: Slave out, master in (SPI mode)  
USCI_A0: Receive data (UART mode)  
P2.1/UCA0SOMI/UCA0RXD/  
TB0.5/DMAE0/Sx  
50  
40  
S15 BSL receive (UART BSL)  
Timer_B TB0 CCR5 capture: CCI5B input, compare: Out5 output  
DMA external trigger input  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A0: Slave in, master out (SPI mode)  
USCI_A0: Transmit data (UART mode)  
P2.0/UCA0SIMO/UCA0TXD/  
TB0.6/TB0CLK/Sx  
51  
41  
S14 BSL transmit (UART BSL)  
Timer_B TB0 CCR6 capture: CCI6B input, compare: Out6 output  
Timer_B TB0 clock signal TB0CLK input  
LCD segment output (segment number is package specific)  
16  
Terminal Configuration and Functions  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Signal Descriptions – MSP430FR697x and MSP430FR697x1 (continued)  
TERMINAL  
PZ  
PN  
DESCRIPTION  
NAME  
NO.  
Seg.  
NO.  
Seg.  
General-purpose digital I/O  
P7.0/TA0CLK/Sx  
52  
S17  
42  
S13 Timer_A TA0 clock signal TA0CLK input  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_A TA0 CCR0 capture: CCI0B input, compare: Out0 output  
P7.1/TA0.0/ACLK/Sx  
53  
S16  
43  
S12  
ACLK output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
P7.2/TA0.1/Sx  
P7.3/TA0.2/Sx  
P7.4/SMCLK/Sx  
54  
55  
56  
S15  
S14  
S13  
44  
45  
S11 Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
S10 Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
SMCLK output  
LCD segment output (segment number is package specific)  
Digital ground supply  
DVSS2  
DVCC2  
57  
58  
46  
47  
Digital power supply  
General-purpose digital I/O  
P8.4/A7/C7  
P8.5/A6/C6  
P8.6/A5/C5  
P8.7/A4/C4  
59  
60  
61  
62  
Analog input A7  
Comparator input C7  
General-purpose digital I/O  
Analog input A6  
Comparator input C6  
General-purpose digital I/O  
Analog input A5  
Comparator input C5  
General-purpose digital I/O  
Analog input A4  
Comparator input C4  
General-purpose digital I/O  
Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output  
Analog input A3  
P1.3/TA1.2/A3/C3  
63  
64  
48  
49  
Comparator input C3  
General-purpose digital I/O  
Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output  
Timer_A TA0 clock signal TA0CLK input  
Comparator output  
P1.2/TA1.1/TA0CLK/  
COUT/A2/C2  
Analog input A2  
Comparator input C2  
Copyright © 2014–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Signal Descriptions – MSP430FR697x and MSP430FR697x1 (continued)  
TERMINAL  
PZ  
PN  
DESCRIPTION  
NAME  
NO.  
Seg.  
NO.  
Seg.  
General-purpose digital I/O  
Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output  
Timer_A TA1 clock signal TA1CLK input  
Comparator output  
P1.1/TA0.2/TA1CLK/  
COUT/A1/C1/VREF+/VeREF+  
65  
50  
Analog input A1  
Comparator input C1  
Output of positive reference voltage  
Input for an external positive reference voltage to the ADC  
General-purpose digital I/O  
Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output  
DMA external trigger input  
P1.0/TA0.1/DMAE0/  
RTCCLK/A0/C0/ VREF-  
/VeREF-  
RTC clock output for calibration  
Analog input A0  
66  
51  
Comparator input C0  
Output of negative reference voltage  
Input for an external negative reference voltage to the ADC  
General-purpose digital I/O  
P9.0/A8/C8  
67  
52  
Analog input A8  
Comparator input C8  
General-purpose digital I/O  
P9.1/A9/C9  
68  
69  
70  
53  
54  
55  
Analog input A9  
Comparator input C9  
General-purpose digital I/O  
P9.2/A10/C10  
P9.3/A11/C11  
Analog input A10; comparator input C10  
General-purpose digital I/O  
Analog input A11  
Comparator input C11  
General-purpose digital I/O  
P9.4/A12/C12  
P9.5/A13/C13  
P9.6/A14/C14  
P9.7/A15/C15  
71  
72  
73  
74  
56  
57  
58  
59  
Analog input A12  
Comparator input C12  
General-purpose digital I/O  
Analog input A13  
Comparator input C13  
General-purpose digital I/O  
Analog input A14  
Comparator input C14  
General-purpose digital I/O  
Analog input A15  
Comparator input C15  
Digital power supply  
Digital ground supply  
DVCC4  
DVSS4  
75  
76  
60  
61  
18  
Terminal Configuration and Functions  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Signal Descriptions – MSP430FR697x and MSP430FR697x1 (continued)  
TERMINAL  
PZ  
PN  
DESCRIPTION  
NAME  
NO.  
77  
Seg.  
NO.  
62  
Seg.  
NC  
No connect  
NC  
78  
63  
No connect  
AVCC1  
AVSS3  
79  
64  
Analog power supply  
Analog ground supply  
General-purpose digital I/O  
80  
65  
PJ.7/HFXOUT  
81  
66  
Output terminal of crystal oscillator XT2  
General-purpose digital I/O  
PJ.6/HFXIN  
AVSS1  
82  
83  
84  
67  
68  
69  
Input terminal for crystal oscillator XT2  
Analog ground supply  
General-purpose digital I/O  
PJ.4/LFXIN  
Input terminal for crystal oscillator XT1  
General-purpose digital I/O  
PJ.5/LFXOUT  
AVSS2  
85  
86  
70  
71  
Output terminal of crystal oscillator XT1  
Analog ground supply  
General-purpose digital I/O  
USCI_A1: Slave in, master out (SPI mode)  
USCI_A1: Transmit data (UART mode)  
P5.4/UCA1SIMO/UCA1TXD/Sx  
87  
S12  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A1: Slave out, master in (SPI mode)  
USCI_A1: Receive data (UART mode)  
P5.5/UCA1SOMI/UCA1RXD/  
Sx  
88  
89  
90  
S11  
S10  
S9  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A1: Clock signal input (SPI slave mode), Clock signal output (SPI  
master mode)  
P5.6/UCA1CLK/Sx  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A1: Slave transmit enable (SPI mode)  
Timer_B TB0 clock signal TB0CLK input  
P5.7/UCA1STE/TB0CLK/Sx  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Slave transmit enable (SPI mode)  
Timer_A TA1 clock signal TA1CLK input  
P4.4/UCB1STE/TA1CLK/Sx  
P4.5/UCB1CLK/TA1.0/Sx  
91  
92  
S8  
S7  
72  
73  
S9  
S8  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Clock signal input (SPI slave mode), Clock signal output (SPI  
master mode)  
Timer_A TA1 CCR0 capture: CCI0A input, compare: Out0 output  
LCD segment output (segment number is package specific)  
Copyright © 2014–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-1. Signal Descriptions – MSP430FR697x and MSP430FR697x1 (continued)  
TERMINAL  
PZ  
PN  
DESCRIPTION  
NAME  
NO.  
Seg.  
NO.  
Seg.  
General-purpose digital I/O  
USCI_B1: Slave in, master out (SPI mode)  
USCI_B1: I2C data (I2C mode)  
P4.6/UCB1SIMO/UCB1SDA/  
TA1.1/Sx  
93  
S6  
74  
S7  
Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Slave out, master in (SPI mode)  
USCI_B1: I2C clock (I2C mode)  
P4.7/UCB1SOMI/UCB1SCL/  
TA1.2/Sx  
94  
95  
96  
S5  
S4  
S3  
75  
S6  
Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
P10.0/SMCLK/Sx  
SMCLK output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Slave in, master out (SPI mode)  
USCI_B1: I2C data (I2C mode)  
MCLK output  
P4.0/UCB1SIMO/UCB1SDA/  
MCLK/Sx  
76  
77  
S5  
S4  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Slave out, master in (SPI mode)  
USCI_B1: I2C clock (I2C mode)  
ACLK output  
P4.1/UCB1SOMI/UCB1SCL/  
ACLK/Sx  
97  
S2  
LCD segment output (segment number is package specific)  
Digital ground supply  
DVSS3  
DVCC3  
98  
99  
78  
79  
Digital power supply  
General-purpose digital I/O  
USCI_A0: Slave in, master out (SPI mode)  
USCI_A0: Transmit data (UART mode)  
P4.2/UCA0SIMO/UCA0TXD/  
UCB1CLK  
100  
80  
USCI_B1: Clock signal input (SPI slave mode), Clock signal output (SPI  
master mode)  
20  
Terminal Configuration and Functions  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions – MSP430FR692x(1)  
TERMINAL  
NAME  
PM  
RGC  
DESCRIPTION  
NO. Seg.  
General-purpose digital I/O  
USCI_A0: Slave out, master in (SPI mode)  
USCI_A0: Receive data (UART mode)  
P4.3/UCA0SOMI/UCA0RXD/  
UCB1STE  
1
USCI_B1: Slave transmit enable (SPI mode)  
General-purpose digital I/O  
USCI_B0: Clock signal input (SPI slave mode), Clock signal output (SPI master mode)  
P1.4/UCB0CLK/UCA0STE/TA1.0/  
Sx  
2
3
S3 USCI_A0: Slave transmit enable (SPI mode)  
Timer_A TA1 CCR0 capture: CCI0A input, compare: Out0 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B0: Slave transmit enable (SPI mode)  
P1.5/UCB0STE/UCA0CLK/TA0.0/  
Sx  
S2 USCI_A0: Clock signal input (SPI slave mode), Clock signal output (SPI master mode)  
Timer_A TA0 CCR0 capture: CCI0A input, compare: Out0 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B0: Slave in, master out (SPI mode)  
USCI_B0: I2C data (I2C mode)  
P1.6/UCB0SIMO/UCB0SDA/TA0.1/  
Sx  
4
S1  
BSL data (I2C BSL)  
Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B0: Slave out, master in (SPI mode)  
USCI_B0: I2C clock (I2C mode)  
P1.7/UCB0SOMI/UCB0SCL/TA0.2/  
Sx  
5
S0  
BSL clock (I2C BSL)  
Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output (segment number is package specific)  
Input/output port of most positive analog LCD voltage (V1)  
R33/LCDCAP  
P6.0/R23  
6
7
LCD capacitor connection  
General-purpose digital I/O  
Input/output port of second most positive analog LCD voltage (V2)  
General-purpose digital I/O  
P6.1/R13/LCDREF  
8
Input/output port of third most positive analog LCD voltage (V3 or V4)  
External reference voltage input for regulated LCD voltage  
General-purpose digital I/O  
P6.2/COUT/R03  
P6.3/COM0  
9
Comparator output  
Input/output port of lowest analog LCD voltage (V5)  
General-purpose digital I/O  
10  
LCD common output COM0 for LCD backplane  
Copyright © 2014–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions – MSP430FR692x(1) (continued)  
TERMINAL  
PM  
RGC  
DESCRIPTION  
NAME  
NO. Seg.  
General-purpose digital I/O  
Timer_B TB0 CCR0 capture: CCI0B input, compare: Out0 output  
LCD common output COM1 for LCD backplane  
P6.4/TB0.0/COM1/Sx  
P6.5/TB0.1/COM2/Sx  
11  
12  
S31  
S30  
S29  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_B TB0 CCR1 capture: CCI1A input, compare: Out1 output  
LCD common output COM2 for LCD backplane  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_B TB0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD common output COM3 for LCD backplane  
P6.6/TB0.2/COM3/Sx  
13  
14  
15  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
P3.0/UCB1CLK/Sx  
S28 USCI_B1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode)  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Slave in, master out (SPI mode)  
P3.1/UCB1SIMO/UCB1SDA/Sx  
S27  
USCI_B1: I2C data (I2C mode)  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Slave out, master in (SPI mode)  
P3.2/UCB1SOMI/UCB1SCL/Sx  
16  
S26  
USCI_B1: I2C clock (I2C mode)  
LCD segment output (segment number is package specific)  
Digital ground supply  
DVSS1  
DVCC1  
17  
18  
Digital power supply  
Test mode pin - select digital I/O on JTAG pins  
TEST/SBWTCK  
19  
Spy-Bi-Wire input clock  
Reset input, active low  
RST/NMI/SBWTDIO  
20  
Nonmaskable interrupt input  
Spy-Bi-Wire data input/output  
General-purpose digital I/O  
Test data output port  
PJ.0/TDO/TB0OUTH/SMCLK/  
SRSCG1  
21  
22  
Switch all PWM outputs high impedance input - Timer_B TB0  
SMCLK output  
Low-power debug: CPU Status register SCG1  
General-purpose digital I/O  
Test data input or test clock input  
MCLK output  
PJ.1/TDI/TCLK/MCLK/SRSCG0  
Low-power debug: CPU Status register SCG0  
22  
Terminal Configuration and Functions  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions – MSP430FR692x(1) (continued)  
TERMINAL  
PM  
RGC  
DESCRIPTION  
NAME  
NO. Seg.  
General-purpose digital I/O  
Test mode select  
PJ.2/TMS/ACLK/SROSCOFF  
PJ.3/TCK/COUT/SRCPUOFF  
P3.3/TA1.1/TB0CLK/Sx  
23  
ACLK output  
Low-power debug: CPU Status register OSCOFF  
General-purpose digital I/O  
Test clock  
24  
Comparator output  
Low-power debug: CPU Status register CPUOFF  
General-purpose digital I/O  
Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output  
Timer_B TB0 clock signal TB0CLK input  
25  
26  
S25  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A1: Slave in, master out (SPI mode)  
P3.4/UCA1SIMO/UCA1TXD/  
TB0.0/Sx  
S24 USCI_A1: Transmit data (UART mode)  
Timer_B TB0 CCR0 capture: CCI0A input, compare: Out0 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A1: Slave out, master in (SPI mode)  
S23 USCI_A1: Receive data (UART mode)  
P3.5/UCA1SOMI/UCA1RXD/  
TB0.1/Sx  
27  
Timer_B TB0 CCR1 capture: CCI1A input, compare: Out1 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode)  
P3.6/UCA1CLK/TB0.2/Sx  
P3.7/UCA1STE/TB0.3/Sx  
P2.3/UCA0STE/TB0OUTH/Sx  
28  
29  
30  
S22  
Timer_B TB0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A1: Slave transmit enable (SPI mode)  
S21  
Timer_B TB0 CCR3 capture: CCI3B input, compare: Out3 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A0: Slave transmit enable (SPI mode)  
S20  
Switch all PWM outputs high impedance input - Timer_B TB0  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A0: Clock signal input (SPI slave mode), Clock signal output (SPI master mode)  
S19 Timer_B TB0 CCR4 capture: CCI4B input, compare: Out4 output  
RTC clock output for calibration  
P2.2/UCA0CLK/TB0.4/RTCCLK/Sx  
31  
LCD segment output (segment number is package specific)  
Copyright © 2014–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions – MSP430FR692x(1) (continued)  
TERMINAL  
PM  
RGC  
DESCRIPTION  
NAME  
NO. Seg.  
General-purpose digital I/O  
USCI_A0: Slave out, master in (SPI mode), Receive data (UART mode)  
BSL receive (UART BSL)  
P2.1/UCA0SOMI/UCA0RXD/  
TB0.5/DMAE0/Sx  
32  
S18  
Timer_B TB0 CCR5 capture: CCI5B input, compare: Out5 output  
DMA external trigger input  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A0: Slave in, master out (SPI mode)  
USCI_A0: Transmit data (UART mode)  
P2.0/UCA0SIMO/UCA0TXD/  
TB0.6/TB0CLK/Sx  
33  
S17 BSL transmit (UART BSL)  
Timer_B TB0 CCR6 capture: CCI6B input, compare: Out6 output  
Timer_B TB0 clock signal TB0CLK input  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
P7.0/TA0CLK/Sx  
34  
35  
S16 Timer_A TA0 clock signal TA0CLK input  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
Timer_A TA0 CCR0 capture: CCI0B input, compare: Out0 output  
P7.1/TA0.0/ACLK/Sx  
S15  
ACLK output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
P7.2/TA0.1/Sx  
P7.3/TA0.2/Sx  
P7.4/SMCLK/Sx  
36  
37  
38  
S14 Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
S13 Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
S12 SMCLK output  
LCD segment output (segment number is package specific)  
Digital ground supply  
DVSS2  
DVCC2  
39  
40  
Digital power supply  
General-purpose digital I/O  
Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output  
Analog input A3  
P1.3/TA1.2/A3/C3  
41  
Comparator input C3  
24  
Terminal Configuration and Functions  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions – MSP430FR692x(1) (continued)  
TERMINAL  
PM  
RGC  
DESCRIPTION  
NAME  
NO. Seg.  
General-purpose digital I/O  
Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output  
Timer_A TA0 clock signal TA0CLK input  
Comparator output  
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
42  
Analog input A2  
Comparator input C2  
General-purpose digital I/O  
Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output  
Timer_A TA1 clock signal TA1CLK input  
Comparator output  
P1.1/TA0.2/TA1CLK/COUT/A1/C1/  
VREF+/VeREF+  
43  
Analog input A1  
Comparator input C1  
Output of positive reference voltage  
Input for an external positive reference voltage to the ADC  
General-purpose digital I/O  
Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output  
DMA external trigger input  
RTC clock output for calibration  
Analog input A0  
P1.0/TA0.1/DMAE0/RTCCLK/A0/  
C0/VREF-/VeREF-  
44  
Comparator input C0  
Output of negative reference voltage  
Input for an external negative reference voltage to the ADC  
Analog power supply  
AVCC1  
AVSS1  
49  
50  
Analog ground supply  
General-purpose digital I/O  
PJ.4/LFXIN  
51  
Input terminal for crystal oscillator XT1  
General-purpose digital I/O  
PJ.5/LFXOUT  
AVSS2  
52  
53  
Output terminal of crystal oscillator XT1  
Analog ground supply  
General-purpose digital I/O  
USCI_A1: Slave in, master out (SPI mode)  
USCI_A1: Transmit data (UART mode)  
P5.4/UCA1SIMO/UCA1TXD/Sx  
54  
S11  
S10  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_A1: Slave out, master in (SPI mode)  
USCI_A1: Receive data (UART mode)  
P5.5/UCA1SOMI/UCA1RXD/Sx  
P5.6/UCA1CLK/Sx  
55  
56  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
S9 USCI_A1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode)  
LCD segment output (segment number is package specific)  
Copyright © 2014–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
25  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 4-2. Signal Descriptions – MSP430FR692x(1) (continued)  
TERMINAL  
PM  
RGC  
DESCRIPTION  
NAME  
NO. Seg.  
General-purpose digital I/O  
USCI_A1: Slave transmit enable (SPI mode)  
Timer_B TB0 clock signal TB0CLK input  
P5.7/UCA1STE/TB0CLK/Sx  
P4.4/UCB1STE/TA1CLK/Sx  
P4.5/UCB1CLK/TA1.0/Sx  
57  
58  
59  
S8  
S7  
S6  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Slave transmit enable (SPI mode)  
Timer_A TA1 clock signal TA1CLK input  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode)  
Timer_A TA1 CCR0 capture: CCI0A input, compare: Out0 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Slave in, master out (SPI mode)  
P4.6/UCB1SIMO/UCB1SDA/  
TA1.1/Sx  
60  
61  
S5 USCI_B1: I2C data (I2C mode)  
Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output  
LCD segment output (segment number is package specific)  
General-purpose digital I/O  
USCI_B1: Slave out, master in (SPI mode)  
S4 USCI_B1: I2C clock (I2C mode)  
P4.7/UCB1SOMI/UCB1SCL/  
TA1.2/Sx  
Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output (segment number is package specific)  
Digital ground supply  
DVSS3  
DVCC3  
62  
63  
Digital power supply  
General-purpose digital I/O  
USCI_A0: Slave in, master out (SPI mode)  
USCI_A0: Transmit data (UART mode)  
P4.2/UCA0SIMO/UCA0TXD/  
UCB1CLK  
64  
USCI_B1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode)  
RGC package only. QFN package exposed thermal pad. TI recommends connection to  
Thermal pad  
Pad  
VSS  
.
26  
Terminal Configuration and Functions  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
4.3 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for  
example, if the device is in test mode). For details of the settings for each pin and diagrams of the  
multiplexed ports, see 6.11.23.  
4.4 Connection of Unused Pins  
Table 4-3 lists the correct termination of all unused pins.  
Table 4-3. Connection of Unused Pins(1)  
PIN  
AVCC  
POTENTIAL  
DVCC  
COMMENT  
AVSS  
DVSS  
Px.0 to Px.7  
R33/LCDCAP  
RST/NMI  
Open  
Set to port function, output direction (PxDIR.n = 1)  
DVSS or DVCC  
DVCC or VCC  
If the pin is not used, it can be tied to either supply.  
47-kpullup or internal pullup selected with 2.2-nF (10-nF(2)) pulldown  
PJ.0/TDO  
PJ.1/TDI  
PJ.2/TMS  
PJ.3/TCK  
The JTAG pins are shared with general-purpose I/O function (PJ.x). If not used as JTAG pins,  
these pins should be switched to port function, output direction. When used as JTAG pins, these  
pins should remain open.  
Open  
Open  
TEST  
This pin always has an internal pulldown enabled.  
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection  
guidelines.  
(2) The pulldown capacitor should not exceed 2.2 nF when using devices in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like  
FET interfaces or GANG programmers. If JTAG or Spy-Bi-Wire access is not needed, up to a 10-nF pulldown capacitor may be used.  
Copyright © 2014–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
27  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5 Specifications  
5.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
4.1  
UNIT  
V
Voltage applied at DVCC and AVCC pins to VSS  
Voltage difference between DVCC and AVCC pins(2)  
–0.3  
±0.3  
V
VCC + 0.3 V  
(4.1 Max)  
(3)  
Voltage applied to any pin  
–0.3  
–40  
V
Diode current at any device pin  
±2  
mA  
°C  
(4)  
Storage temperature, Tstg  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltage differences between DVCC and AVCC exceeding the specified limits may cause malfunction of the device including erroneous  
writes to RAM and FRAM.  
(3) All voltages referenced to VSS  
.
(4) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
5.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V  
may actually have higher performance.  
5.3 Recommended Operating Conditions  
Typical data are based on VCC = 3.0 V, TA = 25°C unless otherwise noted.  
MIN NOM  
MAX UNIT  
VCC  
VSS  
TA  
Supply voltage range applied at all DVCC and AVCC pins(1) (2) (3)  
Supply voltage applied at all DSS and AVSS pins  
Operating free-air temperature  
1.8(4)  
3.6  
V
V
0
–40  
–40  
1–20%  
0
85  
85  
°C  
°C  
µF  
TJ  
Operating junction temperature  
(5)  
CDVCC  
Capacitor value at DVCC  
No FRAM wait states (NWAITSx = 0)  
With FRAM wait states (NWAITSx = 1)(8)  
8(7)  
16(9)  
Processor frequency (maximum MCLK  
frequency)(6)  
fSYSTEM  
MHz  
0
fACLK  
Maximum ACLK frequency  
Maximum SMCLK frequency  
50 kHz  
16(9) MHz  
fSMCLK  
(1) TI recommends powering the DVCC and AVCC pins from the same source. At a minimum, during power up, power down, and device  
operation, the voltage difference between DVCC and AVCC must not exceed the limits specified in Absolute Maximum Ratings.  
Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.  
(2) See 5-1 for additional important information.  
(3) Modules may have a different supply voltage range specification. See the specification of each module in this data sheet.  
(4) The minimum supply voltage is defined by the supervisor SVS levels. See 5-2 for the exact values.  
(5) Connect a low-ESR capacitor with at least the value specified and a maximum tolerance of 20% as close as possible to the DVCC pin.  
(6) Modules may have a different maximum input clock specification. See the specification of each module in this data sheet.  
(7) DCO settings and HF crystals with a typical value less than or equal to the specified MAX value are permitted.  
(8) Wait states only occur on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always executed  
without wait states.  
(9) DCO settings and HF crystals with a typical value less than or equal to the specified MAX value are permitted. If a clock sources with a  
larger typical value is used, the clock must be divided in the clock system.  
28  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.4 Active Mode Supply Current Into VCC Excluding External Current  
(2)  
over recommended operating free-air temperature (unless otherwise noted)(1)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
0 WAIT  
STATES  
4 MHz  
0 WAIT  
STATES  
8 MHz  
0 WAIT  
STATES  
12 MHz  
1 WAIT STATE 1 WAIT STATE  
(NWAITSx = 1) (NWAITSx = 1)  
16 MHz  
EXECUTION  
MEMORY  
PARAMETER  
VCC  
UNIT  
(NWAITSx = 0)  
(NWAITSx = 0)  
(NWAITSx = 0)  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
IAM, FRAM_UNI  
FRAM  
3.0 V  
3.0 V  
210  
640  
1220  
1475  
1845  
µA  
µA  
(Unified memory)(3)  
FRAM  
0% cache hit  
ratio  
IAM, FRAM(0%)(4)  
375  
240  
200  
170  
110  
1290  
745  
560  
480  
235  
2525  
1440  
1070  
890  
2100  
1575  
1300  
1155  
640  
2675  
1990  
1620  
1420  
730  
(5)  
FRAM  
50% cache hit  
ratio  
IAM, FRAM(50%)(4)  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
µA  
µA  
µA  
µA  
(5)  
FRAM  
66% cache hit  
ratio  
IAM, FRAM(66%)(4)  
(5)  
FRAM  
75% cache hit  
ratio  
IAM, FRAM(75%)(4)  
255  
180  
1085  
1310  
1620  
1300  
(5)  
FRAM  
100% cache hit  
ratio  
IAM, FRAM(100%(4)  
420  
(5)  
(6) (5)  
IAM, RAM  
RAM  
RAM  
3.0 V  
3.0 V  
130  
100  
320  
290  
585  
555  
890  
860  
1070  
1040  
µA  
µA  
(7) (5)  
IAM, RAM only  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Characterized with program executing typical data processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO = 24 MHz and  
fMCLK = fSMCLK = fDCO / 2.  
At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency  
(fMCLK,eff) decreases. The effective MCLK frequency also depends on the cache hit ratio. SMCLK is not affected by the number of wait  
states or the cache hit ratio.  
The following equation can be used to compute fMCLK,eff  
:
fMCLK,eff = fMCLK / [wait states × (1 – cache hit ratio) + 1]  
For example, with 1 wait state and 75% cache hit ratio fMCKL,eff = fMCLK / [1 × (1 – 0.75) + 1] = fMCLK / 1.25.  
(3) Represents typical program execution. Program and data reside entirely in FRAM. All execution is from FRAM.  
(4) Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit  
ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 75% ratio implies three of  
every four accesses is from cache, and the remaining are FRAM accesses.  
(5) See Figure 5-1 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best  
linear fit using the typical data shown in Section 5.4.  
(6) Program and data reside entirely in RAM. All execution is from RAM.  
(7) Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.5 Typical Characteristics, Active Mode Supply Currents  
3000  
I(AM,0%)  
I(AM,50%)  
2500  
I(AM,66%)  
I(AM,75%)  
2000  
1500  
1000  
500  
0
I(AM,100%)  
I(AM,75%)[µA] = 103 × f[MHz] + 68  
I(AM,RAMonly)  
0
1
2
3
4
5
6
7
8
9
MCLK Frequency (MHz)  
I(AM, cache hit ratio): Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with  
cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of  
FRAM accesses. For example, a 75% ratio implies three of every four accesses is from cache, and the remaining are  
FRAM accesses.  
I(AM, RAMonly): Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
Figure 5-1. Typical Active Mode Supply Currents, No Wait States  
5.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current  
(2)  
over recommended operating free-air temperature (unless otherwise noted)(1)  
FREQUENCY (fSMCLK  
8 MHz  
)
PARAMETER  
VCC  
1 MHz  
TYP  
4 MHz  
TYP  
12 MHz  
TYP  
16 MHz  
TYP  
UNIT  
MAX  
120  
65  
MAX  
TYP  
165  
175  
130  
130  
MAX  
MAX  
MAX  
275  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
75  
85  
40  
40  
105  
115  
65  
250  
260  
215  
215  
230  
240  
195  
195  
ILPM0  
µA  
µA  
ILPM1  
65  
220  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO at specified frequency, except for 12 MHz: here fDCO = 24 MHz and fSMCLK = fDCO / 2.  
30  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External  
Current  
(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
–40°C  
TYP  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
MAX  
MAX  
MAX  
MAX  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
0.6  
0.6  
0.5  
0.5  
0.3  
0.3  
0.5  
0.5  
0.4  
1.2  
1.2  
1.1  
1.1  
0.9  
0.9  
0.7  
0.7  
0.6  
3.1  
3.1  
3.0  
3.0  
2.8  
2.8  
1.2  
1.2  
1.1  
8.8  
8.8  
8.7  
8.7  
8.5  
8.5  
2.5  
2.5  
2.4  
Low-power mode 2, 12-pF  
ILPM2,XT12  
ILPM2,XT3.7  
ILPM2,VLO  
ILPM3,XT12  
μA  
μA  
μA  
μA  
(3) (4)  
crystal(2)  
2.2  
20.8  
Low-power mode 2, 3.7-pF  
(5) (4)  
crystal(2)  
Low-power mode 2, VLO,  
includes SVS(6)  
2.0  
1.0  
20.5  
6.4  
Low-power mode 3, 12-pF  
(3) (7)  
crystal, excludes SVS(2)  
Low-power mode 3, 3.7-pF  
(5) (8)  
ILPM3,XT3.7  
crystal, excludes SVS(2)  
(also see Figure 5-2)  
μA  
μA  
μA  
3.0 V  
0.4  
0.6  
1.1  
2.4  
2.2 V  
3.0 V  
2.2 V  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.9  
0.9  
0.8  
2.2  
2.2  
2.1  
Low-power mode 3,  
VLO, excludes SVS  
ILPM3,VLO  
(9)  
0.8  
0.7  
6.1  
5.2  
Low-power mode 3,  
ILPM3,VLO,  
VLO, excludes SVS, RAM  
powered-down completely(10)  
RAMoff  
3.0 V  
0.3  
0.4  
0.8  
2.1  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are  
chosen to closely match the required 12.5 pF load.  
(4) Low-power mode 2, crystal oscillator test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7-pF load.  
(6) Low-power mode 2, VLO test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout and SVS included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2),  
fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
(7) Low-power mode 3, 12-pF crystal excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE =  
0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
(8) Low-power mode 3, 3.7-pF crystal excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE =  
0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
(9) Low-power mode 3, VLO excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout included. SVS disabled  
(SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
(10) Low-power mode 3, VLO excluding SVS test conditions:  
Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). RAM disabled (RCCTL0 = 5A55h). Current for  
brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External  
Current (continued)  
(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
–40°C  
TYP  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
MAX  
MAX  
MAX  
0.8  
MAX  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
0.4  
0.4  
0.2  
0.2  
0.2  
0.5  
0.5  
0.3  
0.3  
0.3  
0.9  
0.9  
0.7  
0.7  
0.7  
2.3  
2.3  
2.0  
2.0  
1.9  
Low-power mode 4, includes  
SVS(11)  
ILPM4,SVS  
μA  
6.2  
Low-power mode 4, excludes  
SVS(12)  
ILPM4  
μA  
0.6  
6.0  
Low-power mode 4, excludes  
SVS, RAM powered-down  
completely(13)  
ILPM4,RAMoff  
μA  
3.0 V  
0.2  
0.3  
0.6  
0.7  
1.9  
5.1  
Additional idle current if one or  
more modules from Group A  
(see 6-3) are activated in  
LPM3 or LPM4  
IIDLE,GroupA  
3.0V  
0.02  
0.3  
1.2  
1.2  
1.5  
1.0  
μA  
μA  
μA  
μA  
Additional idle current if one or  
more modules from Group B  
(see 6-3) are activated in  
LPM3 or LPM4  
IIDLE,GroupB  
IIDLE,GroupC  
IIDLE,GroupD  
3.0V  
3.0V  
3.0V  
0.02  
0.02  
0.3  
0.38  
0.25  
Additional idle current if one or  
more modules from Group C  
(see 6-3) are activated in  
LPM3 or LPM4  
Additional idle current if one or  
more modules from Group D  
(see 6-3) are activated in  
LPM3 or LPM4  
0.015  
(11) Low-power mode 4 including SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
(12) Low-power mode 4 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
(13) Low-power mode 4 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). RAM disabled (RCCTL0 = 5A55h).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current. See the idle currents specified for the respective peripheral groups.  
32  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.8 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
–40°C  
TYP  
25°C  
TYP  
60°C  
TYP  
85°C  
TYP  
UNIT  
MAX  
MAX  
MAX  
MAX  
Low-power mode 3 (LPM3)  
current,12-pF crystal, LCD 4-  
mux mode, external biasing,  
ILPM3,XT12  
LCD,  
ext. bias  
3.0 V  
0.7  
2.0  
0.9  
2.2  
1.5  
2.8  
3.1  
4.4  
µA  
(2)  
excludes SVS(1)  
Low-power mode 3 (LPM3)  
current, 12-pF crystal, LCD 4-  
mux mode, internal biasing,  
charge pump disabled,  
ILPM3,XT12  
LCD,  
int. bias  
3.0 V  
2.9  
9.3  
µA  
µA  
(3)  
excludes SVS(1)  
Low-power mode 3 (LPM3)  
current,12-pF crystal, LCD 4-  
mux mode, internal biasing,  
charge pump enabled, 1/3 bias,  
2.2 V  
3.0 V  
5.0  
4.5  
5.2  
4.7  
5.8  
5.3  
7.4  
6.9  
ILPM3,XT12  
LCD,CP  
(4)  
excludes SVS(1)  
(1) Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE =  
0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional  
idle current - idle current of Group containing LCD module already included. See the idle currents specified for the respective peripheral  
groups.  
(2) LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Current through external resistors not included (voltage levels are supplied by test equipment).  
Even segments S0, S2, ... = 0, odd segments S1, S3, ... = 1. No LCD panel load.  
(3) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2, ...=0, odd segments S1, S3, ... = 1. No LCD panel load.  
(4) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump  
enabled), VLCDx = 1000 (VLCD= 3 V typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2, ...=0, odd segments S1, S3, ... = 1. No LCD panel load. CLCDCAP = 10 µF  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.9 Low-Power Mode LPMx.5 Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
–40°C  
25°C  
60°C  
85°C  
PARAMETER  
VCC  
UNIT  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.4  
0.4  
0.45  
0.45  
0.35  
0.35  
0.2  
0.55  
0.55  
0.4  
0.75  
0.75  
0.65  
0.65  
0.35  
0.35  
0.14  
0.13  
Low-power mode 3.5, 12-pF  
ILPM3.5,XT12  
ILPM3.5,XT3.7  
ILPM4.5,SVS  
ILPM4.5  
μA  
(3) (4)  
crystal including SVS(2)  
0.7  
1.6  
0.3  
Low-power mode 3.5, 3.7-pF  
μA  
(5) (6)  
crystal excluding SVS(2)  
0.3  
0.4  
0.2  
0.25  
0.25  
0.03  
0.03  
Low-power mode 4.5, including  
SVS(7)  
μA  
0.2  
0.2  
0.4  
0.7  
0.02  
0.02  
0.02  
0.02  
Low-power mode 4.5,  
excluding SVS(8)  
μA  
0.5  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are  
chosen to closely match the required 12.5 pF load.  
(4) Low-power mode 3.5, 1-pF crystal including SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are  
chosen to closely match the required 3.7-pF load.  
(6) Low-power mode 3.5, 3.7-pF crystal excluding SVS test conditions:  
Current for RTC clocked by XT1 included.Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(7) Low-power mode 4.5 including SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(8) Low-power mode 4.5 excluding SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
34  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.10 Typical Characteristics, Low-Power Mode Supply Currents  
3
2.5  
2
3
2.5  
2
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS on  
2.2 V, SVS on  
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS on  
2.2 V, SVS on  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Figure 5-2. LPM3 Supply Current vs Temperature (LPM3, XT3.7) Figure 5-3. LPM4 Supply Current vs Temperature (LPM4, SVS)  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS off  
2.2 V, SVS off  
3.0 V, SVS on  
2.2 V, SVS on  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Figure 5-4. LPM3.5 Supply Current vs Temperature (LPM3.5,  
XT3.7)  
Temperature (°C)  
Figure 5-5. LPM4.5 Supply Current vs Temperature (LPM4.5)  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.11 Typical Characteristics, Current Consumption per Module(1)  
MODULE  
Timer_A  
TEST CONDITIONS  
REFERENCE CLOCK  
Module input clock  
MIN  
TYP  
3
MAX  
UNIT  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
nA  
Timer_B  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC_C  
MPY  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
5
UART mode  
5.5  
3.5  
3.5  
3.5  
100  
25  
SPI mode  
SPI mode  
I2C mode, 100 kbaud  
Only from start to end of operation  
Only from start to end of operation  
Only from start to end of operation  
Only from start to end of operation  
MCLK  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
AES  
MCLK  
21  
CRC16  
CRC32  
MCLK  
2.5  
2.5  
MCLK  
(1) LCD_C: See Section 5.8. For other module currents not listed here, see the module-specific parameter sections.  
36  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.12 Thermal Resistance Characteristics  
THERMAL METRIC(1)  
PACKAGE  
VALUE(2)  
49.8  
9.7  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
Junction-to-ambient thermal resistance, still air(3)  
Junction-to-case (top) thermal resistance(4)  
Junction-to-board thermal resistance(5)  
θJC(TOP)  
θJB  
26.0  
25.7  
0.2  
LQFP-100 (PZ)  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance(6)  
Junction-to-ambient thermal resistance, still air(3)  
Junction-to-case (top) thermal resistance(4)  
Junction-to-board thermal resistance(5)  
ΨJT  
θJC(BOTTOM)  
θJA  
θJC(TOP)  
θJB  
N/A  
49.5  
14.7  
24.1  
23.8  
0.7  
LQFP-80 (PN)  
LQFP-64 (PM)  
VQFN-64 (RGC)  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance(6)  
Junction-to-ambient thermal resistance, still air(3)  
Junction-to-case (top) thermal resistance(4)  
Junction-to-board thermal resistance(5)  
ΨJT  
θJC(BOTTOM)  
θJA  
θJC(TOP)  
θJB  
N/A  
55.3  
16.8  
26.8  
26.5  
0.8  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance(6)  
Junction-to-ambient thermal resistance, still air(3)  
Junction-to-case (top) thermal resistance(4)  
Junction-to-board thermal resistance(5)  
ΨJT  
θJC(BOTTOM)  
θJA  
θJC(TOP)  
θJB  
N/A  
29.2  
13.9  
8.1  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance(6)  
8.0  
ΨJT  
0.2  
θJC(BOTTOM)  
1.0  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) N/A = not applicable  
(3) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(4) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(5) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(6) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
版权 © 2014–2018, Texas Instruments Incorporated  
Specifications  
37  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13 Timing and Switching Characteristics  
5.13.1 Power Supply Sequencing  
TI recommends powering the AVCC and DVCC pins from the same source. At a minimum, during power  
up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed  
the limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of  
the device including erroneous writes to RAM and FRAM.  
At power up, the device does not start executing code before the supply voltage reached VSVSH+ if the  
supply rises monotonically to this level.  
5-1 lists the power ramp requirements.  
5-1. Brownout and Device Reset Power Ramp Requirements  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Brownout power-down level(1)(2)  
Brownout power-up level(2)  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s(3)  
| dDVCC/dt | > 300 V/s(3)  
| dDVCC/dt | < 3 V/s(4)  
MIN  
0.7  
0
MAX UNIT  
1.66  
V
VVCC_BOR–  
VVCC_BOR+  
0.79  
1.68  
V
(1) In case of a supply voltage brownout, the device supply voltages must ramp down to the specified brownout power-down level  
(VVCC_BOR-) before the voltage is ramped up again to ensure a reliable device start-up and performance according to the data sheet  
including the correct operation of the on-chip SVS module.  
(2) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the data sheet recommendation for  
capacitor CDVCC should limit the slopes accordingly.  
(3) The brownout levels are measured with a slowly changing supply. With faster slopes, the MIN level required to reset the device properly  
can decrease to 0 V. Use the graph in 5-6 to estimate the VVCC_BOR- level based on the down slope of the supply voltage. After  
removing VCC, the down slope can be estimated based on the current consumption and the capacitance on DVCC: dV/dt = I/C where  
dV/dt = slope, I = current, C = capacitance.  
(4) The brownout levels are measured with a slowly changing supply.  
2
1.5  
1
0.5  
0
1
10  
100  
1000  
10000  
100000  
Supply Voltage Power-Down Slope (V/s)  
5-6. Brownout Power-Down Level vs Supply Voltage Down Slope  
38  
Specifications  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5-2 lists the characteristics of the SVS.  
5-2. SVS  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
170  
MAX UNIT  
ISVSH,LPM  
VSVSH-  
SVSH current consumption, low-power modes  
SVSH power-down level(1)  
SVSH power-up level(1)  
300  
1.85  
1.99  
120  
10  
nA  
V
1.75  
1.77  
40  
1.80  
1.88  
VSVSH+  
V
VSVSH_hys  
tPD,SVSH, AM  
SVSH hysteresis  
mV  
µs  
SVSH propagation delay, active mode  
dVVcc/dt = –10 mV/µs  
(1) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference  
Design.  
5.13.2 Reset Timing  
Table 5-11 lists the input requirements for the RST signal.  
5-3. Reset Input  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
External reset pulse duration on RST(1)  
VCC  
MIN  
MAX UNIT  
t(RST)  
2.2 V, 3.0 V  
2
µs  
(1) Not applicable if RST/NMI pin configured as NMI.  
版权 © 2014–2018, Texas Instruments Incorporated  
Specifications  
39  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.3 Clock Specifications  
Table 5-4 lists the characteristics of the LFXT.  
Table 5-4. Low-Frequency Crystal Oscillator, LFXT(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
180  
TA = 25°C, CL,eff = 3.7 pF, ESR 44 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
TA = 25°C, CL,eff = 6 pF, ESR 40 kΩ  
185  
225  
IVCC.LFXT  
Current consumption  
3.0 V  
nA  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {2},  
TA = 25°C, CL,eff = 9 pF, ESR 40 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF, ESR 40 kΩ  
330  
fLFXT  
LFXT oscillator crystal frequency LFXTBYPASS = 0  
32768  
Hz  
Measured at ACLK,  
LFXT oscillator duty cycle  
DCLFXT  
30%  
70%  
fLFXT = 32768 Hz  
LFXT oscillator logic-level  
LFXTBYPASS = 1(2) (3)  
fLFXT,SW  
10.5 32.768  
50 kHz  
70%  
square-wave input frequency  
LFXT oscillator logic-level  
LFXTBYPASS = 1  
DCLFXT, SW  
30%  
210  
300  
2
square-wave input duty cycle  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
fLFXT = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(4)  
OALFXT  
kΩ  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
Integrated load capacitance at  
LFXIN terminal(5) (6)  
CLFXIN  
pF  
pF  
Integrated load capacitance at  
LFXOUT terminal(5) (6)  
CLFXOUT  
2
(1) To improve EMI on the LFXT oscillator, observe the following guidelines.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins LFXIN and LFXOUT.  
Avoid running PCB traces underneath or adjacent to the LFXIN and LFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
.
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF.  
For LFXTDRIVE = {1}, CL,eff = 6 pF  
For LFXTDRIVE = {2}, 6 pF CL,eff 9 pF  
For LFXTDRIVE = {3}, 9 pF CL,eff 12.5 pF  
(5) This represents all the parasitic capacitance present at the LFXIN and LFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT are the  
total capacitance at the LFXIN and LFXOUT terminals, respectively.  
(6) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
40  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-4. Low-Frequency Crystal Oscillator, LFXT(1) (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
TA = 25°C, CL,eff = 3.7 pF  
3.0 V  
800  
tSTART,LFXT  
Start-up time(7)  
ms  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
3.0 V  
1000  
fFault,LFXT  
Oscillator fault frequency(8) (9)  
0
3500  
Hz  
(7) Includes start-up counter of 1024 clock cycles.  
(8) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specification may set the  
flag. A static condition or stuck at fault condition sets the flag.  
(9) Measured with logic-level input frequency but also applies to operation with crystals.  
Table 5-5 lists the characteristics of the HFXT.  
Table 5-5. High-Frequency Crystal Oscillator, HFXT(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1(2)  
TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt  
75  
fOSC = 8 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 1,  
TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt  
120  
190  
250  
HFXT oscillator  
crystal current HF  
mode at typical  
ESR  
IDVCC.HFXT  
3.0 V  
μA  
fOSC = 16 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 2, HFFREQ = 2,  
TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt  
fOSC = 24 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3,  
TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt  
HFXTBYPASS = 0, HFFREQ = 1(2)(3)  
crystal frequency, HFXTBYPASS = 0, HFFREQ = 2(3)  
4
8.01  
8
HFXT oscillator  
fHFXT  
16  
24  
MHz  
MHz  
crystal mode  
HFXTBYPASS = 0, HFFREQ = 3(3)  
16.01  
HFXT oscillator  
DCHFXT  
Measured at SMCLK, fHFXT = 16 MHz  
duty cycle  
40%  
50%  
60%  
HFXTBYPASS = 1, HFFREQ = 0(4)(3)  
0.9  
4.01  
4
8
HFXT oscillator  
HFXTBYPASS = 1, HFFREQ = 1(4)(3)  
logic-level square-  
fHFXT,SW  
wave input  
HFXTBYPASS = 1, HFFREQ = 2(4)(3)  
8.01  
16  
24  
frequency, bypass  
HFXTBYPASS = 1, HFFREQ = 3(4)(3)  
mode  
16.01  
HFXT oscillator  
logic-level square-  
HFXTBYPASS = 1  
wave input duty  
DCHFXT, SW  
40%  
60%  
cycle  
(1) To improve EMI on the HFXT oscillator, observe the following guidelines.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins HFXIN and HFXOUT.  
Avoid running PCB traces underneath or adjacent to the HFXIN and HFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator HFXIN and HFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) HFFREQ = {0} is not supported for HFXT crystal mode of operation.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) When HFXTBYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DCHFXT, SW  
.
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
41  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-5. High-Frequency Crystal Oscillator, HFXT(1) (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1,  
TA = 25°C, CL,eff = 16 pF  
3.0 V  
1.6  
tSTART,HFXT  
Start-up time(5)  
ms  
fOSC = 24 MHz ,  
HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3,  
TA = 25°C, CL,eff = 16 pF  
3.0 V  
0.6  
2
Integrated load  
capacitance at  
CHFXIN  
pF  
pF  
HFXIN terminaI(6)  
(7)  
Integrated load  
capacitance at  
HFXOUT  
CHFXOUT  
2
terminaI(6) (7)  
Oscillator fault  
frequency(8) (9)  
fFault,HFXT  
0
800  
kHz  
(5) Includes start-up counter of 1024 clock cycles.  
(6) This represents all the parasitic capacitance present at the HFXIN and HFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT are the  
total capacitance at the HFXIN and HFXOUT terminals, respectively.  
(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
(8) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX might set the flag. A static  
condition or stuck at fault condition set the flag.  
(9) Measured with logic-level input frequency but also applies to operation with crystals.  
42  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-6 lists the characteristics of the DCO.  
Table 5-6. DCO  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 0,  
DCORSEL = 1, DCOFSEL = 0  
DCO frequency range  
1 MHz, trimmed  
fDCO1  
1
±3.5%  
MHz  
DCO frequency range  
2.7 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 1  
fDCO2.7  
fDCO3.5  
fDCO4  
2.667  
3.5  
4
±3.5%  
±3.5%  
±3.5%  
MHz  
MHz  
MHz  
DCO frequency range  
3.5 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 2  
DCO frequency range  
4 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 3  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 4,  
DCORSEL = 1, DCOFSEL = 1  
DCO frequency range  
5.3 MHz, trimmed  
fDCO5.3  
fDCO7  
fDCO8  
5.333  
±3.5%  
±3.5%  
±3.5%  
MHz  
MHz  
MHz  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 5,  
DCORSEL = 1, DCOFSEL = 2  
DCO frequency range  
7 MHz, trimmed  
7
8
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 6,  
DCORSEL = 1, DCOFSEL = 3  
DCO frequency range  
8 MHz, trimmed  
DCO frequency range  
16 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 1, DCOFSEL = 4  
fDCO16  
fDCO21  
fDCO24  
16  
21  
24  
±3.5%(1)  
±3.5%(1)  
±3.5%(1)  
MHz  
MHz  
MHz  
DCO frequency range  
21 MHz, trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 5  
DCO frequency range  
24 MHz, trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 6  
Measured at SMCLK, divide by 1,  
no external divide, all  
fDCO,DC  
Duty cycle  
DCORSEL/DCOFSEL settings except  
DCORSEL = 1, DCOFSEL = 5 and  
DCORSEL = 1, DCOFSEL = 6  
48%  
50%  
52%  
Based on fsignal = 10 kHz and DCO used  
for 12-bit SAR ADC sampling source.  
This achieves >74 dB SNR due to jitter  
(that is, it is limited by ADC  
tDCO, JITTER DCO jitter  
2
3
ns  
performance).  
dfDCO/dT  
DCO temperature drift(2)  
3.0 V  
0.01  
%/ºC  
(1) After a wakeup from LPM1, LPM2, LPM3, or LPM4, the DCO frequency fDCO might exceed the specified frequency range for a few clock  
cycles by up to 5% before settling into the specified steady-state frequency range.  
(2) Calculated using the box method: (MAX(–40ºC to 85ºC) – MIN(–40ºC to 85ºC)) / MIN(–40ºC to 85ºC) / (85ºC – (–40ºC))  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-7 lists the characteristics of the VLO.  
Table 5-7. Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Current consumption  
VLO frequency  
TEST CONDITIONS  
MIN  
TYP  
100  
9.4  
MAX UNIT  
IVLO  
nA  
fVLO  
Measured at ACLK  
6
14  
kHz  
%/°C  
%/V  
dfVLO/dT  
dfVLO/dVCC  
fVLO,DC  
VLO frequency temperature drift  
VLO frequency supply voltage drift  
Duty cycle  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
0.2  
0.7  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40ºC to 85°C) – MIN(–40ºC to 85°C)) / MIN(–40ºC to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Table 5-8 lists the characteristics of the MODOSC.  
Table 5-8. Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
25  
MAX UNIT  
IMODOSC  
Current consumption  
Enabled  
μA  
fMODOSC  
MODOSC frequency  
4.0  
4.8  
5.4  
MHz  
fMODOSC/dT  
MODOSC frequency temperature drift(1)  
0.08  
%/℃  
MODOSC frequency supply voltage  
drift(2)  
fMODOSC/dVCC  
DCMODOSC  
1.4  
%/V  
Duty cycle  
Measured at SMCLK, divide by 1  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40ºC to 85°C) – MIN(–40ºC to 85°C)) / MIN(–40ºC to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
44  
Specifications  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.4 Wake-up Characteristics  
Table 5-9 lists the wake-up times.  
Table 5-9. Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
(Additional) wake-up time to activate the FRAM  
in AM if previously disabled by the FRAM  
controller or from an LPM if immediate  
activation is selected for wakeup  
tWAKE-UP FRAM  
6
10  
μs  
400 +  
1.5 / fDCO  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode(1)  
2.2 V, 3.0 V  
ns  
tWAKE-UP LPM1  
tWAKE-UP LPM2  
tWAKE-UP LPM3  
tWAKE-UP LPM4  
Wake-up time from LPM1 to active mode(1)  
Wake-up time from LPM2 to active mode(1)  
Wake-up time from LPM3 to active mode(1)  
Wake-up time from LPM4 to active mode(1)  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
6
6
μs  
μs  
μs  
μs  
μs  
μs  
ms  
7
10  
10  
7
tWAKE-UP LPM3.5 Wake-up time from LPM3.5 to active mode(2)  
250  
250  
1
375  
375  
1.5  
SVSHE = 1  
SVSHE = 0  
tWAKE-UP LPM4.5 Wake-up time from LPM4.5 to active mode(2)  
Wake-up time from a RST pin triggered reset to  
tWAKE-UP-RST  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
250  
1
375  
1.5  
μs  
active mode(2)  
(2)  
tWAKE-UP-BOR  
Wake-up time from power-up to active mode  
ms  
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge. MCLK is sourced by the DCO and the MCLK divider is set to divide-by-1 (DIVMx = 000b,  
fMCLK = fDCO). This time includes the activation of the FRAM during wakeup.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
Table 5-10 lists the typical charge consumed during wakeup from various low-power modes.  
Table 5-10. Typical Wake-up Charge(1)  
also see Figure 5-7 and Figure 5-8  
PARAMETER  
TEST CONDITIONS MIN  
TYP  
MAX UNIT  
Charge used for activating the FRAM in AM or during wake-up  
from LPM0 if previously disabled by the FRAM controller.  
QWAKE-UP FRAM  
QWAKE-UP LPM0  
QWAKE-UP LPM1  
QWAKE-UP LPM2  
QWAKE-UP LPM3  
QWAKE-UP LPM4  
15.1  
nAs  
Charge used for wake-up from LPM0 to active mode (with  
FRAM active)  
4.4  
nAs  
nAs  
nAs  
nAs  
Charge used for wake-up from LPM1 to active mode (with  
FRAM active)  
15.1  
15.3  
16.5  
16.5  
Charge used for wake-up from LPM2 to active mode (with  
FRAM active)  
Charge used for wake-up from LPM3 to active mode (with  
FRAM active)  
Charge used for wake-up from LPM4 to active mode (with  
FRAM active)  
nAs  
nAs  
QWAKE-UP LPM3.5 Charge used for wake-up from LPM3.5 to active mode(2)  
QWAKE-UP LPM4.5 Charge used for wake-up from LPM4.5 to active mode(2)  
QWAKE-UP-RESET Charge used for reset from RST or BOR event to active mode(2)  
76  
77  
SVSHE = 1  
SVSHE = 0  
nAs  
nAs  
77.5  
75  
(1) Charge used during the wake-up time from a given low-power mode to active mode. This does not include the energy required in active  
mode (for example, for an interrupt service routine).  
(2) Charge required until start of user code. This does not include the energy required to reconfigure the device.  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.4.1 Typical Characteristics, Average LPM Currents vs Wake-up Frequency  
10000.00  
LPM0  
LPM1  
LPM2,XT12  
1000.00  
LPM3,XT12  
LPM3.5,XT12  
100.00  
10.00  
1.00  
0.10  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
NOTE: The average wake-up current does not include the energy required in active mode; for example, for an interrupt  
service routine or to reconfigure the device.  
Figure 5-7. Average LPM Currents vs Wake-up Frequency at 25°C  
10000.00  
LPM0  
LPM1  
LPM2,XT12  
1000.00  
LPM3,XT12  
LPM3.5,XT12  
100.00  
10.00  
1.00  
0.10  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
NOTE: The average wake-up current does not include the energy required in active mode; for example, for an interrupt  
service routine or to reconfigure the device.  
Figure 5-8. Average LPM Currents vs Wake-up Frequency at 85°C  
46  
Specifications  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.5 Peripherals  
5.13.5.1 Digital I/Os  
Table 5-11 lists the characteristics of the digital inputs.  
Table 5-11. Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.2  
TYP  
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
1.65  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.65  
0.55  
0.75  
0.44  
0.60  
2.25  
1.00  
V
Negative-going input threshold voltage  
1.35  
0.98  
V
Input voltage hysteresis (VIT+ – VIT–  
Pullup or pulldown resistor  
)
1.30  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI,dig  
CI,ana  
20  
35  
3
50  
kΩ  
pF  
pF  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
Input capacitance, port pins with shared analog  
functions(1)  
VIN = VSS or VCC  
5
2.2 V,  
3.0 V  
(2) (3)  
Ilkg(Px.y)  
t(int)  
High-impedance input leakage current  
See  
–20  
20  
2
+20  
nA  
ns  
µs  
External interrupt timing (external trigger pulse Ports with interrupt capability  
2.2 V,  
3.0 V  
duration to set interrupt flag)(4)  
(see 1.4 and Section 4.2)  
2.2 V,  
3.0 V  
t(RST)  
External reset pulse duration on RST(5)  
(1) If the port pins PJ.4/LFXIN and PJ.5/LFXOUT are used as digital I/Os, they are connected by a 4-pF capacitor and a 35-Mresistor in  
series. At frequencies of approximately 1 kHz and lower, the 4-pF capacitor can add to the pin capacitance of PJ.4/LFXIN or  
PJ.5/LFXOUT.  
(2) The input leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(3) The input leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
(4) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It might be set by trigger signals  
shorter than t(int)  
.
(5) Not applicable if RST/NMI pin configured as NMI.  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
47  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-12 lists the characteristics of the digital outputs.  
Table 5-12. Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-9,  
Figure 5-10, Figure 5-11, and Figure 5-12)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(1)  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
VCC  
0.25  
2.2 V  
VCC  
I(OHmax) = –3 mA(2)  
I(OHmax) = –2 mA(1)  
I(OHmax) = –6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
0.60  
VOH  
High-level output voltage  
V
VCC  
VCC  
0.25  
3.0 V  
2.2 V  
3.0 V  
VCC  
VCC  
0.60  
VSS  
+
VSS  
VSS  
VSS  
VSS  
0.25  
VSS  
+
0.60  
VOL  
Low-level output voltage  
V
VSS  
+
0.25  
VSS  
+
0.60  
2.2 V  
3.0 V  
2.2 V  
16  
16  
16  
Port output frequency (with load)(3)  
Clock output frequency(3)  
CL = 20 pF, RL  
MHz  
MHz  
(4) (5)  
fPx.y  
ACLK, MCLK, or SMCLK at  
configured output port,  
CL = 20 pF(5)  
fPort_CLK  
3.0 V  
16  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
4
3
4
3
6
4
6
4
15  
15  
15  
15  
15  
15  
15  
15  
trise,dig  
Port output rise time, digital only port pins  
Port output fall time, digital only port pins  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
ns  
ns  
ns  
ns  
tfall,dig  
Port output rise time, port pins with shared  
analog functions  
trise,ana  
Port output fall time, port pins with shared  
analog functions  
tfall,ana  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) The port can output frequencies at least up to the specified limit - it might support higher frequencies.  
(4) A resistive divider with 2 × R1 and R1 = 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the  
divider. CL = 20 pF is connected from the output to VSS  
.
(5) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
48  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.5.1.1 Typical Characteristics, Digital Outputs at 3.0 V and 2.2 V  
15  
10  
5
30  
20  
10  
0
25°C  
85°C  
25°C  
85°C  
P1.1  
P1.1  
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
3
Low-Level Output Voltage (V)  
Low-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
VCC = 3.0 V  
Figure 5-9. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
Figure 5-10. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
0
0
25°C  
25°C  
85°C  
85°C  
-5  
-10  
-10  
-20  
P1.1  
P1.1  
-15  
-30  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
3
High-Level Output Voltage (V)  
High-Level Output Voltage (V)  
C001  
C001  
VCC = 2.2 V  
VCC = 3.0 V  
Figure 5-11. Typical High-Level Output Current vs High-Level  
Output Voltage  
Figure 5-12. Typical High-Level Output Current vs High-Level  
Output Voltage  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
49  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-13 lists the frequencies of the pin oscillator.  
Table 5-13. Pin-Oscillator Frequency, Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-13  
and Figure 5-14)  
PARAMETER  
TEST CONDITIONS  
Px.y, CL = 10 pF(1)  
Px.y, CL = 20 pF(1)  
VCC  
MIN  
TYP  
1200  
650  
MAX UNIT  
foPx.y  
Pin-oscillator frequency  
3.0 V  
kHz  
(1) CL is the external load capacitance connected from the output to VSS and includes all parasitic effects such as PCB traces.  
5.13.5.1.2 Typical Characteristics, Pin-Oscillator Frequency  
fitted  
25°C  
85°C  
fitted  
25°C  
1000  
1000  
85°C  
100  
100  
10  
100  
10  
100  
External Load Capacitance (pF) (Including Board)  
External Load Capacitance (pF) (Including Board)  
VCC = 3.0 V  
One output active at a time.  
VCC = 2.2 V  
One output active at a time.  
Figure 5-14. Typical Oscillation Frequency vs Load Capacitance  
Figure 5-13. Typical Oscillation Frequency vs Load Capacitance  
50  
Specifications  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.5.2 Timer_A and Timer_B  
Table 5-14 lists the characteristics of the Timer_A.  
Table 5-14. Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TACLK,  
Duty cycle = 50% ±10%  
2.2 V,  
3.0 V  
fTA  
Timer_A input clock frequency  
16 MHz  
All capture inputs, minimum pulse  
duration required for capture  
2.2 V,  
3.0 V  
tTA,cap  
Timer_A capture timing  
20  
ns  
Table 5-15 lists the characteristics of the Timer_B.  
Table 5-15. Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
Duty cycle = 50% ±10%  
2.2 V,  
3.0 V  
fTB  
Timer_B input clock frequency  
16 MHz  
All capture inputs, minimum pulse  
duration required for capture  
2.2 V,  
3.0 V  
tTB,cap  
Timer_B capture timing  
20  
ns  
版权 © 2014–2018, Texas Instruments Incorporated  
Specifications  
51  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.5.3 eUSCI  
Table 5-16 lists the supported clock frequencies of the eUSCI in UART mode.  
Table 5-16. eUSCI (UART Mode) Clock Frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
feUSCI  
eUSCI input clock frequency  
External: UCLK,  
Duty cycle = 50% ±10%  
16  
4
MHz  
MHz  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
Table 5-17 lists the characteristics of the eUSCI in UART mode.  
Table 5-17. eUSCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
UCGLITx = 0  
VCC  
MIN  
5
TYP  
MAX UNIT  
30  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
20  
35  
50  
90  
ns  
tt  
UART receive deglitch time(1)  
2.2 V, 3.0 V  
160  
220  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. Thus the selected deglitch  
time can limit the maximum useable baud rate. To ensure that pulses are correctly recognized, their duration should exceed the  
maximum specification of the deglitch time.  
Table 5-18 lists the supported clock frequencies of the eUSCI in SPI master mode.  
Table 5-18. eUSCI (SPI Master Mode) Clock Frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
16 MHz  
Internal: SMCLK or ACLK,  
Duty cycle = 50% ±10%  
feUSCI  
eUSCI input clock frequency  
52  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-19 lists the characteristics of the eUSCI in SPI master mode.  
Table 5-19. eUSCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
UCSTEM = 1,  
UCMODEx = 01 or 10  
UCxCLK  
cycles  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
STE lead time, STE active to clock  
1
UCSTEM = 1,  
UCMODEx = 01 or 10  
UCxCLK  
cycles  
STE lag time, last clock to STE inactive  
1
STE access time, STE active to SIMO data  
out  
UCSTEM = 0,  
UCMODEx = 01 or 10  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
60  
80  
ns  
ns  
STE disable time, STE inactive to SOMI high UCSTEM = 0,  
impedance  
UCMODEx = 01 or 10  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
40  
40  
0
tSU,MI  
SOMI input data setup time  
ns  
ns  
ns  
ns  
tHD,MI  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
0
10  
10  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO  
0
0
tHD,MO  
CL = 20 pF  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-15 and Figure 5-16.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-  
15 and Figure 5-16.  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
53  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
CKPL = 0  
1/fUCxCLK  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,ACC  
tSTE,DIS  
Figure 5-15. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,DIS  
tSTE,ACC  
Figure 5-16. SPI Master Mode, CKPH = 1  
54  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-20 lists the characteristics of the eUSCI in SPI slave mode.  
Table 5-20. eUSCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
45  
40  
2
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
STE lag time, Last clock to STE inactive  
ns  
3
45  
ns  
40  
STE access time, STE active to SOMI data out  
50  
ns  
45  
STE disable time, STE inactive to SOMI high  
impedance  
4
4
7
7
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
ns  
tHD,SI  
35  
ns  
35  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
0
0
tHD,SO  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-17 and Figure 5-18.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams inFigure 5-17  
and Figure 5-18.  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
55  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 5-17. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 5-18. SPI Slave Mode, CKPH = 1  
56  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-21 lists the characteristics of the eUSCI in I2C mode.  
Table 5-21. eUSCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-19)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3.0 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
ns  
ns  
100  
4.0  
0.6  
4.7  
1.3  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2.2 V, 3.0 V  
µs  
Bus free time between STOP and START  
conditions  
tBUF  
µs  
250  
25  
125  
ns  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2.2 V, 3.0 V  
12.5  
6.3  
62.5  
31.5  
27  
30  
33  
tTIMEOUT  
Clock low time-out  
2.2 V, 3.0 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 5-19. I2C Mode Timing  
版权 © 2014–2018, Texas Instruments Incorporated  
Specifications  
57  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.5.4 LCD Controller  
Table 5-22 lists the operating conditions of the LCD_C.  
Table 5-22. LCD_C, Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
Supply voltage range,  
charge pump enabled,  
LCDCPEN = 1, 0000b < VLCDx 1111b  
(charge pump enabled, VLCD 3.6 V)  
VCC,LCD_C,CP en,3.6  
VCC,LCD_C,CP en,3.3  
VCC,LCD_C,int. bias  
VCC,LCD_C,ext. bias  
2.2  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
VLCD 3.6 V  
Supply voltage range,  
charge pump enabled,  
LCDCPEN = 1, 0000b < VLCDx 1100b  
(charge pump enabled, VLCD 3.3 V)  
2.0  
2.4  
2.4  
VLCD 3.3 V  
Supply voltage range,  
internal biasing, charge  
pump disabled  
LCDCPEN = 0, VLCDEXT = 0  
LCDCPEN = 0, VLCDEXT = 0  
Supply voltage range,  
external biasing, charge  
pump disabled  
Supply voltage range,  
external LCD voltage,  
internal or external  
biasing, charge pump  
disabled  
VCC,LCD_C,VLCDEXT  
LCDCPEN = 0, VLCDEXT = 1  
LCDCPEN = 0, VLCDEXT = 1  
2.0  
3.6  
V
External LCD voltage at  
LCDCAP, internal or  
external biasing, charge  
pump disabled  
VLCDCAP  
2.4  
3.6  
V
Capacitor value on  
LCDCAP when charge  
pump enabled  
LCDCPEN = 1, VLCDx > 0000b (charge  
pump enabled)  
CLCDCAP  
4.7-20%  
4.7  
10+20%  
µF  
ACLK input frequency  
range  
fACLK,in  
fLCD  
30  
0
32.768  
40  
1024  
kHz  
Hz  
Hz  
Hz  
pF  
V
fFRAME = 1/(2 × mux) × fLCD with mux = 1  
(static) to 8  
LCD frequency range  
LCD frame frequency  
range  
fFRAME,4mux(MAX) = 1/(2 × 4) × fLCD(MAX)  
= 1/(2 × 4) × 1024 Hz  
fFRAME,4mux  
fFRAME,8mux  
CPanel  
128  
LCD frame frequency  
range  
fFRAME,8mux(MAX) = 1/(2 × 4) × fLCD(MAX)  
= 1/(2 × 8) × 1024 Hz  
64  
fLCD = 1024 Hz, all common lines equally  
loaded  
Panel capacitance  
10000  
VCC+0.2  
Analog input voltage at  
R33  
VR33  
LCDCPEN = 0, VLCDEXT = 1  
2.4  
VR03 + 2/3  
Analog input voltage at  
R23  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR23,1/3bias  
VR13,1/3bias  
VR13,1/2bias  
VR13  
× (VR33  
-
)
VR33  
VR23  
VR33  
V
V
V
VR03  
VR03 + 1/3  
VR03 × (VR33  
VR03  
Analog input voltage at  
R13 with 1/3 biasing  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
)
VR03 + 1/2  
Analog input voltage at  
R13 with 1/2 biasing  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 1  
VR03 × (VR33  
VR03  
)
Analog input voltage at  
R03  
VR03  
R0EXT = 1  
VSS  
2.4  
V
V
Voltage difference  
between VLCD and R03  
VLCD-VR03  
LCDCPEN = 0, R0EXT = 1  
VCC+0.2  
1.2  
External LCD reference  
voltage applied at  
LCDREF  
VLCDREF  
VLCDREFx = 01  
0.8  
1.0  
V
58  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-23 lists the characteristics of the LCD_C.  
Table 5-23. LCD_C Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
VCC  
MAX  
UNIT  
VLCD,0  
VLCD,1  
VLCD,2  
VLCD,3  
VLCD,4  
VLCD,5  
VLCD,6  
VLCD,7  
VLCD,8  
VLCD,9  
VLCD,10  
VLCD,11  
VLCD,12  
VLCD,13  
VLCD,14  
VLCD,15  
VLCDx = 0000, VLCDEXT = 0  
LCDCPEN = 1, VLCDx = 0001b  
LCDCPEN = 1, VLCDx = 0010b  
LCDCPEN = 1, VLCDx = 0011b  
LCDCPEN = 1, VLCDx = 0100b  
LCDCPEN = 1, VLCDx = 0101b  
LCDCPEN = 1, VLCDx = 0110b  
LCDCPEN = 1, VLCDx = 0111b  
LCDCPEN = 1, VLCDx = 1000b  
LCDCPEN = 1, VLCDx = 1001b  
LCDCPEN = 1, VLCDx = 1010b  
LCDCPEN = 1, VLCDx = 1011b  
LCDCPEN = 1, VLCDx = 1100b  
LCDCPEN = 1, VLCDx = 1101b  
LCDCPEN = 1, VLCDx = 1110b  
LCDCPEN = 1, VLCDx = 1111b  
2.4 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.49  
2.60  
2.66  
2.72  
2.78  
2.84  
2.90  
2.96  
3.02  
3.08  
3.14  
3.20  
3.26  
3.32  
3.38  
3.44  
2.72  
LCD voltage  
V
3.32  
3.6  
LCDCPEN = 1, VLCDx = 0111b,  
VLCDREFx = 01b,  
VLCDREF = 0.8 V  
LCD voltage with external  
reference of 0.8 V  
2.96 ×  
0.8 V  
VLCD,7,0.8  
2 V to 3.6 V  
2 V to 3.6 V  
2.2 V to 3.6 V  
V
V
LCDCPEN = 1, VLCDx = 0111b,  
VLCDREFx = 01b,  
VLCDREF = 1.0 V  
LCD voltage with external  
reference of 1.0 V  
2.96 ×  
1.0 V  
VLCD,7,1.0  
LCDCPEN = 1, VLCDx = 0111b,  
VLCDREFx = 01b,  
VLCDREF = 1.2 V  
LCD voltage with external  
reference of 1.2 V  
2.96 ×  
1.2 V  
VLCD,7,1.2  
V
Voltage difference between  
consecutive VLCDx settings  
ΔVLCD = VLCD,x - VLCD,x-1  
with x = 0010b to 1111b  
ΔVLCD  
40  
50  
60  
600  
100  
80  
mV  
µA  
LCDCPEN = 1, VLCDx = 1111b  
external, with decoupling capacitor  
on DVCC supply 1 µF  
Peak supply currents due to  
charge pump activities  
ICC,Peak,CP  
2.2 V  
Time to charge CLCD when  
discharged  
CLCD = 4.7 µF, LCDCPEN = 01,  
VLCDx = 1111b  
tLCD,CP,on  
ICP,Load  
RLCD,Seg  
RLCD,COM  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
500  
ms  
µA  
kΩ  
kΩ  
Maximum charge pump load  
current  
LCDCPEN = 1, VLCDx = 1111b  
LCDCPEN = 0, ILOAD = ±10 µA  
LCDCPEN = 0, ILOAD = ±10 µA  
LCD driver output impedance,  
segment lines  
10  
10  
LCD driver output impedance,  
common lines  
版权 © 2014–2018, Texas Instruments Incorporated  
Specifications  
59  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.5.5 ADC  
5-24 lists the input requirements of the ADC.  
5-24. 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN NOM  
MAX UNIT  
V(Ax)  
Analog input voltage range(1)  
All ADC12 analog input pins Ax  
0
AVCC  
199  
V
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
145  
I(ADC12_B)  
single-ended  
mode  
Operating supply current into  
µA  
AVCC and DVCC terminals(2) (3)  
140  
175  
170  
190  
245  
230  
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 1,  
REFON = 0, ADC12SHTx= 0,  
ADC12DIV = 0  
I(ADC12_B)  
differential  
mode  
Operating supply current into  
µA  
AVCC and DVCC terminals(2) (3)  
Only one terminal Ax can be selected  
at one time  
CI  
RI  
Input capacitance  
2.2 V  
10  
15  
pF  
>2 V  
<2 V  
0.5  
1
4
Input MUX ON resistance  
0 V V(Ax) AVCC  
kΩ  
10  
(1) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results.  
(2) The internal reference supply current is not included in current consumption parameter I(ADC12_B)  
(3) Approximately 60% (typical) of the total current into the AVCC and DVCC terminals is from AVCC.  
.
60  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-25 lists the timing parameters of the ADC.  
Table 5-25. 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
For specified performance of ADC12 linearity parameters  
Frequency for specified with ADC12PWRMD = 0.  
fADC12CLK  
0.45  
5.4  
MHz  
performance  
If ADC12PWRMD = 1, the maximum is 1/4 of the value  
shown here.  
Frequency for reduced  
performance  
Internal oscillator(1)  
fADC12CLK  
fADC12OSC  
Linearity parameters have reduced performance  
ADC12DIV = 0, fADC12CLK = fADC12OSC from MODCLK  
32.768  
4.8  
kHz  
4
5.4  
3.5  
MHz  
REFON = 0, Internal oscillator,  
fADC12CLK = fADC12OSC from MODCLK, ADC12WINC = 0  
2.6  
tCONVERT  
Conversion time  
µs  
External fADC12CLK from ACLK, MCLK, or SMCLK,  
ADC12SSEL 0  
(2)  
See  
Turnon settling time of  
the ADC  
(3)  
tADC12ON  
See  
100  
ns  
ns  
Time ADC must be off  
before it can be turned  
on again  
tADC12OFF must be met to make sure that tADC12ON time  
holds.  
tADC12OFF  
100  
All pulse sample mode  
(ADC12SHP = 1) and  
extended sample mode  
(ADC12SHP = 0) with  
buffered reference  
1
µs  
µs  
(ADC12VRSEL = 0x1, 0x3,  
0x5, 0x7, 0x9, 0xB, 0xD,  
RS = 400 Ω, RI = 4 kΩ,  
tSample  
Sampling time  
CI = 15 pF, Cpext= 8 pF(4)  
0xF)  
Extended sample mode  
(ADC12SHP = 0) with  
unbuffered reference  
(ADC12VRSEL= 0x0, 0x2,  
0x4, 0x6, 0xC, 0xE)  
(5)  
See  
(1) The ADC12OSC is sourced directly from MODOSC inside the UCS.  
(2) 14 × 1 / fADC12CLK. If ADC12WINC = 1, then 15 × 1 / fADC12CLK  
(3) The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
(4) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB: tsample = ln(2n+2) × (RS + RI) × (CI + Cpext), RS < 10 kΩ,  
where n = ADC resolution = 12, RS= external source resistance, Cpext = external parasitic capacitance.  
(5) 6 × 1 / fADC12CLK  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
61  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-26 lists the linearity parameters of the ADC when using an external reference.  
Table 5-26. 12-Bit ADC, Linearity Parameters With External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Number of no missing code  
output-code bits  
Resolution  
EI  
12  
bits  
Integral linearity error (INL) for  
differential input  
1.2 V VR+ – VR– AVCC  
±1.8  
LSB  
Integral linearity error (INL) for  
single ended inputs  
EI  
1.2 V VR+ – VR– AVCC  
±2.2  
+1.0  
LSB  
LSB  
ED  
Differential linearity error (DNL)  
–0.99  
ADC12VRSEL = 0x2 or 0x4 without TLV calibration,  
TLV calibration data can be used to improve the  
parameter(4)  
EO  
Offset error(2) (3)  
±0.5  
±0.8  
±1  
±1.5  
±2.5  
±20  
mV  
With external voltage reference without internal  
buffer (ADC12VRSEL = 0x2 or 0x4) without TLV  
calibration,  
TLV calibration data can be used to improve the  
parameter(4)  
,
EG,ext  
Gain error  
LSB  
VR+ = 2.5 V, VR– = AVSS  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3),  
VR+ = 2.5 V, VR– = AVSS  
With external voltage reference without internal  
buffer (ADC12VRSEL = 0x2 or 0x4) without TLV  
calibration,  
±1.4  
±3.5  
TLV calibration data can be used to improve the  
parameter(4)  
,
ET,ext  
Total unadjusted error  
LSB  
VR+ = 2.5 V, VR– = AVSS  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3),  
±1.4  
±21.0  
VR+ = 2.5 V, VR– = AVSS  
(1) See Table 5-28 and Table 5-34 for more information on internal reference performance, and see Designing With the MSP430FR59xx  
and MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external  
reference.  
(2) Offset is measured as the input voltage (at which ADC output transitions from 0 to 1) minus 0.5 LSB.  
(3) Offset increases as IR drop increases when VR– is AVSS.  
(4) For details, see the device descriptor in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's  
Guide.  
62  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-27 lists the dynamic performance characteristics of the ADC with differential inputs and an  
external reference.  
Table 5-27. 12-Bit ADC, Dynamic Performance for Differential Inputs With External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Signal-to-noise  
Effective number of bits(2)  
TEST CONDITIONS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
MIN  
68  
TYP  
71  
MAX UNIT  
SNR  
dB  
ENOB  
10.7  
11.2  
bits  
(1) See Table 5-28 and Table 5-34 for more information on internal reference performance, and see Designing With the MSP430FR59xx  
and MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external  
reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 5-28 lists the dynamic performance characteristics of the ADC with differential inputs and an internal  
reference.  
Table 5-28. 12-Bit ADC, Dynamic Performance for Differential Inputs With Internal Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Effective number of bits(2)  
TEST CONDITIONS  
VR+ = 2.5 V, VR– = AVSS  
MIN  
TYP  
MAX  
UNIT  
ENOB  
10.3  
10.7  
Bits  
(1) See Table 5-34 for more information on internal reference performance, and see Designing With the MSP430FR59xx and  
MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 5-29 lists the dynamic performance characteristics of the ADC with single-ended inputs and an  
external reference.  
Table 5-29. 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Signal-to-noise  
Effective number of bits(2)  
TEST CONDITIONS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
MIN  
64  
TYP  
68  
MAX  
UNIT  
dB  
SNR  
ENOB  
10.2  
10.7  
bits  
(1) See Table 5-30 and Table 5-34 for more information on internal reference performance, and see Designing With the MSP430FR59xx  
and MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external  
reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 5-30 lists the dynamic performance characteristics of the ADC with single-ended inputs and an  
internal reference.  
Table 5-30. 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With Internal Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Effective number of bits(2)  
TEST CONDITIONS  
VR+ = 2.5 V, VR– = AVSS  
MIN  
TYP  
MAX  
UNIT  
ENOB  
9.4  
10.4  
bits  
(1) See Table 5-34 for more information on internal reference performance, and see Designing With the MSP430FR59xx and  
MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 5-31 lists the dynamic performance characteristics of the ADC using a 32.678-kHz clock.  
Table 5-31. 12-Bit ADC, Dynamic Performance With 32.768-kHz Clock  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TYP UNIT  
Reduced performance with fADC12CLK from ACLK LFXT 32.768 kHz,  
VR+ = 2.5 V, VR– = AVSS  
ENOB  
Effective number of bits(1)  
10  
bits  
(1) ENOB = (SINAD – 1.76) / 6.02  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
63  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
 
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-32 lists the characteristics of the temperature sensor and built-in V1/2 of the ADC.  
Table 5-32. 12-Bit ADC, Temperature Sensor and Built-In V1/2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
700  
2.5  
MAX UNIT  
mV  
ADC12ON = 1, ADC12TCMAP = 1,  
TA = 0°C  
VSENSOR  
See (1) (2) (also see Figure 5-20)  
(2)  
TCSENSOR  
tSENSOR(sample)  
See  
ADC12ON = 1, ADC12TCMAP = 1  
mV/°C  
µs  
Sample time required if ADCTCMAP = 1 and  
channel (MAX – 1) is selected(3)  
ADC12ON = 1, ADC12TCMAP = 1,  
Error of conversion result 1 LSB  
30  
AVCC voltage divider for ADC12BATMAP = 1  
on MAX input channel  
V1/2  
ADC12ON = 1, ADC12BATMAP = 1  
47.5%  
50% 52.5%  
38 63  
IV 1/2  
Current for battery monitor during sample time ADC12ON = 1, ADC12BATMAP = 1  
µA  
µs  
Sample time required if ADC12BATMAP = 1  
ADC12ON = 1, ADC12BATMAP = 1  
and channel MAX is selected(4)  
tV 1/2 (sample)  
1.7  
(1) The temperature sensor offset can be as much as ±30°C. TI recommends a single-point calibration to minimize the offset error of the  
built-in temperature sensor.  
(2) The device descriptor structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each available reference voltage level. The  
sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR can be  
computed from the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 250 kΩ. The sample time required includes the sensor-on time tSENSOR(on)  
.
(4) The on-time tV1/2(on) is included in the sampling time tV1/2(sample); no additional on time is needed.  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
–40  
–20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
Figure 5-20. Typical Temperature Sensor Voltage  
64  
Specifications  
Copyright © 2014–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Table 5-33 lists the external reference requirements for the ADC.  
Table 5-33. 12-Bit ADC, External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Positive external reference voltage input  
VeREF+ or VeREF- based on ADC12VRSEL bit  
VR+  
VR+ > VR–  
1.2  
AVCC  
V
Negative external reference voltage input  
VeREF+ or VeREF- based on ADC12VRSEL bit  
VR–  
VR+ > VR–  
VR+ > VR–  
0
1.2  
V
V
VR+ – VR–  
Differential external reference voltage input  
Static input current, singled-ended input mode  
1.2  
AVCC  
1.2 V VeREF+ VAVCC, VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 0, ADC12PWRMD = 0  
±10  
±2.5  
±20  
±5  
IVeREF+  
IVeREF-  
,
µA  
µA  
1.2 V VeREF+ VAVCC , VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 0, ADC12PWRMD = 01  
1.2 V VeREF+ VAVCC, VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 1, ADC12PWRMD = 0  
IVeREF+  
IVeREF-  
,
Static input current, differential input mode  
1.2 V VeREF+ VAVCC , VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 1, ADC12PWRMD = 1  
IVeREF+  
IVeREF+  
CVeREF+/-  
Peak input current with single-ended input  
Peak input current with differential input  
Capacitance at VeREF+ or VeREF- terminal  
0 V VeREF+ VAVCC, ADC12DIF = 0  
0 V VeREF+ VAVCC, ADC12DIF = 1  
1.5 mA  
3
mA  
µF  
(2)  
See  
10  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) Connect two decoupling capacitors, 10 µF and 470 nF, to VeREF to decouple the dynamic current required for an external reference  
source if it is used for the ADC12_B. Also see the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family  
User's Guide.  
版权 © 2014–2018, Texas Instruments Incorporated  
Specifications  
65  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.5.6 Reference  
Table 5-34 lists the characteristics of the built-in voltage reference.  
Table 5-34. REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
2.5 ±1.5%  
2.0 ±1.5%  
1.2 ±1.8%  
MAX UNIT  
REFVSEL = {2} for 2.5 V, REFON = 1  
REFVSEL = {1} for 2.0 V, REFON = 1  
REFVSEL = {0} for 1.2 V, REFON = 1  
From 0.1 Hz to 10 Hz, REFVSEL = {0}  
2.7 V  
2.2 V  
1.8 V  
Positive built-in reference  
voltage output  
VREF+  
V
Noise  
RMS noise at VREF(1)  
110  
600  
µV  
VREF ADC BUF_INT buffer TA = 25°C , ADC ON, REFVSEL = {0},  
VOS_BUF_INT  
–12  
–12  
+12  
mV  
offset(2)  
REFON = 1, REFOUT = 0  
VREF ADC BUF_EXT  
buffer offset(2)  
TA = 25°C, REFVSEL = {0} , REFOUT = 1,  
REFON = 1 or ADC ON  
VOS_BUF_EXT  
AVCC(min)  
IREF+  
+12  
mV  
V
REFVSEL = {0} for 1.2 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
1.8  
2.2  
2.7  
AVCC minimum voltage,  
Positive built-in reference  
active  
Operating supply current  
into AVCC terminal(3)  
REFON = 1  
3 V  
8
225  
15  
355  
µA  
ADC ON, REFOUT = 0, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 0,  
ADC ON, REFOUT = 1, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 0  
1030  
120  
1660  
185  
Operating supply current  
into AVCC terminal(3)  
ADC ON, REFOUT = 0, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 1  
IREF+_ADC_BUF  
3 V  
µA  
µA  
ADC ON, REFOUT = 1, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 1  
545  
895  
ADC OFF, REFON = 1, REFOUT = 1,  
REFVSEL = {0, 1, 2}  
1085  
1780  
REFVSEL = {0, 1, 2}, AVCC = AVCC(min) for  
each reference level,  
REFON = REFOUT = 1  
VREF maximum load  
current, VREF+ terminal  
IO(VREF+)  
–1000  
+10  
REFVSEL = {0, 1, 2},  
ΔVout/ΔIo  
(VREF+)  
Load-current regulation,  
VREF+ terminal  
IO(VREF+) = +10 µA or –1000 µA,  
AVCC = AVCC(min) for each reference level,  
REFON = REFOUT = 1  
2500 µV/mA  
Capacitance at VREF+ and  
VREF- terminals  
CVREF+/-  
TCREF+  
REFON = REFOUT = 1  
0
100  
pF  
Temperature coefficient of  
built-in reference  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1,  
TA = –40°C to 85°C(4)  
18  
120  
3.0  
75  
50 ppm/K  
400 µV/V  
mV/V  
Power supply rejection ratio AVCC = AVCC(min) to AVCC(max), TA = 25°C,  
(DC)  
PSRR_DC  
PSRR_AC  
tSETTLE  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1  
Power supply rejection ratio  
(AC)  
dAVCC= 0.1 V at 1 kHz  
Settling time of reference  
voltage(5)  
AVCC = AVCC (min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 0 1  
,
80  
µs  
(1) Internal reference noise affects ADC performance when ADC uses internal reference. See Designing With the MSP430FR59xx and  
MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal versus external  
reference.  
(2) Buffer offset affects ADC gain error and thus total unadjusted error.  
(3) The internal reference current is supplied through the AVCC terminal.  
(4) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).  
(5) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
66  
Specifications  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.5.7 Comparator  
Table 5-35 lists the characteristics of the comparator.  
Table 5-35. Comparator_E  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
CEPWRMD = 00, CEON = 1,  
CERSx = 00 (fast)  
11  
20  
CEPWRMD = 01, CEON = 1,  
CERSx = 00 (medium)  
9
17  
µA  
0.5  
Comparator operating supply  
current into AVCC, excludes  
reference resistor ladder  
2.2 V,  
3.0 V  
IAVCC_COMP  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 30°C  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 85°C  
1.3  
CEREFLx = 01, CERSx = 10, REFON = 0,  
CEON = 0, CEREFACC = 0  
12  
5
15  
µA  
7
Quiescent current of resistor  
ladder into AVCC, including  
REF module current  
2.2 V,  
3.0 V  
IAVCC_REF  
CEREFLx = 01, CERSx = 10, REFON = 0,  
CEON = 0, CEREFACC = 1  
CERSx = 11, CEREFLx = 01, CEREFACC = 0  
CERSx = 11, CEREFLx = 10, CEREFACC = 0  
CERSx = 11, CEREFLx = 11, CEREFACC = 0  
CERSx = 11, CEREFLx = 01, CEREFACC = 1  
CERSx = 11, CEREFLx = 10, CEREFACC = 1  
CERSx = 11, CEREFLx = 11, CEREFACC = 1  
1.8 V  
2.2 V  
2.7 V  
1.8 V  
2.2 V  
2.7 V  
1.17  
1.92  
2.40  
1.10  
1.90  
2.35  
0
1.2  
2.0  
2.5  
1.2  
2.0  
2.5  
1.23  
2.08  
2.60  
V
1.245  
VREF  
Reference voltage level  
2.08  
2.60  
VIC  
Common-mode input range  
Input offset voltage  
VCC – 1  
V
CEPWRMD = 00  
–32  
–32  
–30  
32  
32  
30  
VOFFSET  
CEPWRMD = 01  
mV  
CEPWRMD = 10  
CEPWRMD = 00 or CEPWRMD = 01  
CEPWRMD = 10  
9
9
1
CIN  
Input capacitance  
pF  
On (switch closed)  
3
k  
RSIN  
Series input resistance  
Off (switch open)  
50  
MΩ  
CEPWRMD = 00, CEF = 0, Overdrive 20 mV  
CEPWRMD = 01, CEF = 0, Overdrive 20 mV  
CEPWRMD = 10, CEF = 0, Overdrive 20 mV  
260  
350  
330  
460  
15  
ns  
Propagation delay, response  
time  
tPD  
µs  
ns  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 00  
700  
1.0  
2.0  
4.0  
0.9  
0.9  
15  
1000  
1.8  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 01  
Propagation delay with filter  
active  
tPD,filter  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 10  
3.5  
µs  
µs  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 11  
7.0  
CEON = 0 1, VIN+, VIN- from pins,  
Overdrive 20 mV, CEPWRMD = 00  
1.5  
CEON = 0 1, VIN+, VIN- from pins,  
Overdrive 20 mV, CEPWRMD = 01  
tEN_CMP  
Comparator enable time  
Comparator and reference  
1.5  
CEON = 0 1, VIN+, VIN- from pins,  
Overdrive 20 mV, CEPWRMD = 10  
100  
CEON = 0 1, CEREFLX = 10, CERSx = 10 or 11,  
tEN_CMP_VREF  
ladder and reference voltage CEREF0 = CEREF1 = 0x0F,  
350  
1500  
µs  
V
enable time  
Overdrive 20 mV  
VIN ×  
VIN ×  
(n + 0.5) (n + 1)  
/ 32 / 32  
VIN ×  
(n + 1.5)  
/ 32  
Reference voltage for a  
given tap  
VIN = reference into resistor ladder,  
n = 0 to 31  
VCE_REF  
Copyright © 2014–2018, Texas Instruments Incorporated  
Specifications  
67  
Submit Documentation Feedback  
Product Folder Links: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
5.13.5.8 FRAM Controller  
Table 5-36 lists the characteristics of the FRAM.  
Table 5-36. FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1015  
100  
40  
TYP  
MAX UNIT  
Read and write endurance  
cycles  
TJ = 25°C  
tRetention  
Data retention duration  
TJ = 70°C  
TJ = 85°C  
years  
10  
(1)  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM  
Erase current  
IREAD  
nA  
nA  
ns  
n/a(2)  
(3)  
Write time  
tREAD  
(4)  
(4)  
NWAITSx = 0  
NWAITSx = 1  
1 / fSYSTEM  
2 / fSYSTEM  
tREAD  
Read time  
ns  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current IREAD is included in the active mode current consumption numbers IAM,FRAM  
.
(2) FRAM does not require a special erase sequence.  
(3) Writing into FRAM is as fast as reading.  
(4) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
5.13.6 Emulation and Debug  
Table 5-37 lists the characteristics of the JTAG and Spy-Bi-Wire interface.  
Table 5-37. JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
PARAMETER  
MIN  
TYP  
MAX UNIT  
CONDITIONS  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
IJTAG  
Supply current adder when JTAG active (but not clocked)  
Spy-Bi-Wire input frequency  
40  
100  
μA  
fSBW  
0
10 MHz  
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.04  
15  
110  
100  
μs  
μs  
μs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
edge)(1)  
tSBW, En  
tSBW,Rst  
2.2 V, 3.0 V  
Spy-Bi-Wire return to normal operation time  
TCK input frequency, 4-wire JTAG(2)  
15  
0
2.2 V  
3.0 V  
16 MHz  
16 MHz  
fTCK  
0
Rinternal  
Internal pulldown resistance on TEST  
2.2 V, 3.0 V  
20  
35  
50  
kΩ  
TCLK/MCLK frequency during JTAG access, no FRAM access  
fTCLK  
16 MHz  
(limited by fSYSTEM  
)
tTCLK,Low/High  
fTCLK,FRAM  
TCLK low or high clock pulse duration, no FRAM access  
25  
4
ns  
MHz  
ns  
TCLK/MCLK frequency during JTAG access, including FRAM access  
(limited by fSYSTEM with no FRAM wait states)  
tTCLK,FRAM,Low/High TCLK low or high clock pulse duration, including FRAM accesses  
100  
(1) Tools that access the Spy-Bi-Wire and BSL interfaces must wait for the tSBW,En time after the first transition of the TEST/SBWTCK pin  
(low to high), before the second transition of the pin (high to low) during the entry sequence.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
68  
Specifications  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
The TI MSP430FR697x and MSP430FR692x families of ultra-low-power microcontrollers consists of  
several devices featuring different sets of peripherals. The architecture, combined with seven low-power  
modes, is optimized to achieve extended battery life for example in portable measurement applications.  
The devices features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that  
contribute to maximum code efficiency.  
The MSP430FR697x devices are microcontroller configurations with up to five 16-bit timers, Comparator,  
eUSCIs that support UART, SPI, and I2C, a hardware multiplier, an AES accelerator, DMA, an RTC  
module with alarm capabilities, up to 83 I/O pins, a high-performance 12-bit ADC, and an LCD module  
with contrast control for displays with up to 320 segments (8-mux).  
The MSP430FR692x devices are microcontroller configurations with up to five 16-bit timers, Comparator,  
eUSCIs that support UART, SPI, and I2C, a hardware multiplier, an AES accelerator, DMA, an RTC  
module with alarm capabilities, up to 52 I/O pins, a high-performance 12-bit ADC, and an LCD module  
with contrast control for displays with up to 116 segments (4-mux).  
6.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and  
constant generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be  
managed with all instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes  
and additional instructions for the expanded address range. Each instruction can operate on word and  
byte data.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
69  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.3 Operating Modes  
The MSP430FR697x(1) and MSP430FR692x(1) MCUs have one active mode and seven software selectable low-power modes of operation (see  
6-1). An interrupt event can wake up the device from a low-power mode (LPM0 to LPM4), service the request, and restore back to the low-  
power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.  
6-1. Operating Modes  
MODE  
AM  
LPM0  
CPU OFF  
16 MHz  
LPM1  
LPM2  
LPM3  
LPM4  
OFF  
LPM3.5  
LPM4.5  
ACTIVE,  
SHUTDOWN  
SHUTDOWN  
(2)  
ACTIVE  
FRAM OFF  
CPU OFF  
STANDBY  
STANDBY  
RTC ONLY  
WITH SVS  
WITHOUT SVS  
(1)  
(3)  
(3)  
Maximum system clock  
16 MHz  
103 µA/MHz 65 µA/MHz  
N/A  
16 MHz  
40 µA at 1 MHz  
6 µs  
50 kHz  
0.9 µA  
6 µs  
50 kHz  
0.4 µA  
7 µs  
0
50 kHz  
0.35 µA  
250 µs  
0
Typical current consumption,  
TA = 25°C  
75 µA at 1 MHz  
instant.  
0.3 µA  
7 µs  
0.2 µA  
250 µs  
0.02 µA  
1000 µs  
Typical wake-up time  
LF  
I/O  
Comp  
LF  
I/O  
Comp  
_
I/O  
Comp  
RTC  
I/O  
_
I/O  
Wake-up events  
N/A  
all  
all  
CPU  
on  
off  
off  
off  
off  
off  
off  
off  
off  
off  
reset  
off  
reset  
off  
(1)  
FRAM  
on  
off(1)  
standby (or off  
)
off  
High-frequency peripherals(4)  
Low-frequency peripherals(4)  
Unclocked peripherals(4)  
available  
available  
available  
available  
available  
available  
available  
available  
available  
off  
off  
reset  
RTC  
reset  
reset  
reset  
reset  
(5)  
available  
available  
available  
available  
off  
(5)  
(5)  
available  
on  
MCLK  
off  
off  
off  
off  
off  
off  
off  
off  
off  
off  
off  
off  
(16MHzMAX  
)
(6)  
(6)  
(6)  
opt.  
opt.  
(16MHzMAX  
opt.  
(16MHzMAX)  
SMCLK  
ACLK  
off  
off  
(16MHzMAX  
)
)
on  
on  
on  
on  
on  
off  
(50 kHzMAX  
)
(50 kHzMAX  
)
(50 kHzMAX  
)
(50 kHzMAX  
)
(50 kHzMAX  
)
)
optional  
(16MHzMAX  
optional  
optional  
optional  
(50 kHzMAX  
optional  
(50 kHzMAX  
optional  
(50 kHzMAX)  
External clock  
off  
no  
off  
no  
)
(16MHzMAX  
yes  
)
(16MHzMAX  
yes  
)
)
(7)  
(7)  
Full retention  
SVS  
yes  
yes  
yes  
yes  
(8)  
(8)  
(8)  
(8)  
(9)  
(10)  
always  
always  
always  
always  
always  
always  
opt.  
opt.  
opt.  
opt.  
on  
off  
Brownout  
always  
always  
always  
always  
always  
(1) FRAM disabled in FRAM controller  
(2) Disabling the FRAM through the FRAM controller decreases the LPM current consumption, but the wake-up time can increase. If the wake-up is for FRAM access (for example, to fetch an  
interrupt vector), wake-up time is increased. If the wake-up is for an operation other than FRAM access (for example, DMA transfer to RAM), wake-up time is not increased.  
(3) All clocks disabled  
(4) See 6-2 for a detailed description of peripherals in high-frequency, low-frequency, or unclocked state.  
(5) See 6.3.1, which describes the use of peripherals in LPM3 and LPM4.  
(6) Controlled by SMCLKOFF  
(7) Using the RAM controller, the RAM can be completely powered down to save leakage; however, all data are lost.  
(8) Activated SVS (SVSHE = 1) results in higher current consumption. SVS is not included in typical current consumption.  
(9) SVSHE = 1  
(10) SVSHE = 0  
70  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927 MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.3.1 Peripherals in Low-Power Modes  
Peripherals can be in different states that impact the achievable power modes of the device. The states  
depend on the operational modes of the peripherals (see 6-2). The states are:  
A peripheral is in a high-frequency state if it requires or uses a clock with a "high" frequency of more  
than 50 kHz.  
A peripheral is in a low-frequency state if it requires or uses a clock with a "low" frequency of 50 kHz or  
less.  
A peripheral is in an unclocked state if it does not require or use an internal clock.  
If the CPU requests a power mode that does not support the current state of all active peripherals, the  
device does not enter the requested power mode and instead enters a power mode that still supports the  
current state of the peripherals, unless an external clock is used. If an external clock is used, the  
application must ensure that the correct frequency range for the requested power mode is selected.  
6-2. Peripheral States  
PERIPHERAL  
WDT  
DMA(4)  
RTC_C  
LCD_C  
IN HIGH-FREQUENCY STATE(1)  
Clocked by SMCLK  
Not applicable  
IN LOW-FREQUENCY STATE(2)  
Clocked by ACLK  
IN UNCLOCKED STATE(3)  
Not applicable  
Not applicable  
Waiting for a trigger  
Not applicable  
Not applicable  
Clocked by LFXT  
Not applicable  
Clocked by ACLK or VLOCLK  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz.  
Timer_A, TAx  
Timer_B, TBx  
Clocked by external clock 50 kHz.  
Clocked by external clock 50 kHz  
Waiting for first edge of START bit  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
eUSCI_Ax in  
UART mode  
Clocked by SMCLK  
Clocked by ACLK  
eUSCI_Ax in SPI  
master mode  
Clocked by SMCLK  
Clocked by ACLK  
eUSCI_Ax in SPI  
slave mode  
eUSCI_Bx in I2C Clocked by SMCLK or  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
Not applicable  
Clocked by ACLK or  
clocked by external clock 50 kHz  
master mode  
clocked by external clock >50 kHz  
eUSCI_Bx in I2C  
slave mode  
Waiting for START condition or  
clocked by external clock 50 kHz  
Clocked by external clock >50 kHz  
Clocked by SMCLK  
Clocked by external clock 50 kHz  
Clocked by ACLK  
eUSCI_Bx in SPI  
master mode  
Not applicable  
eUSCI_Bx in SPI  
slave mode  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
ADC12_B  
REF_A  
COMP_E  
CRC(5)  
MPY(5)  
AES(5)  
Clocked by SMCLK or by MODOSC  
Not applicable  
Clocked by ACLK  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Waiting for a trigger  
Always  
Not applicable  
Always  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
(1) Peripherals are in a state that requires or uses a clock with a "high" frequency of more than 50 kHz.  
(2) Peripherals are in a state that requires or uses a clock with a "low" frequency of 50 kHz or less.  
(3) Peripherals are in a state that does not require or does not use an internal clock.  
(4) The DMA always transfers data in active mode but can wait for a trigger in any low-power mode. A DMA trigger during a low-power  
mode will cause a temporary transition into active mode for the time of the transfer.  
(5) Operates only during active mode and will delay the transition into a low-power mode until its operation is completed.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
71  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.3.1.1 Idle Currents of Peripherals in LPM3 and LPM4  
Most peripherals can be activated to be operational in LPM3 if clocked by ACLK. Some modules are even  
operational in LPM4 because they do not require a clock to operate (for example, the comparator).  
Activating a peripheral in LPM3 or LPM4 increases the current consumption due to its active supply  
current contribution but also due to an additional idle current. To limit the idle current adder certain  
peripherals are group together. To achieve optimal current consumption try to use modules within one  
group and to limit the number of groups with active modules. 6-3 lists the group for each peripheral.  
Modules not listed in this table are either already included in the standard LPM3 current consumption  
specifications or cannot be used in LPM3 or LPM4.  
The idle current adder is very small at room temperature (25°C) but increases at high temperatures  
(85°C). See the IIDLE parameters in Section 5.7 for details.  
6-3. Peripheral Groups  
GROUP A  
Timer TA0  
Comparator  
ADC12_B  
REF_A  
GROUP B  
GROUP C  
Timer TA2  
Timer B0  
GROUP D  
Timer TA3  
LCD_C  
Timer TA1  
eUSCI_A0  
eUSCI_B0  
eUSCI_B1  
eUSCI_A1  
72  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.4 Interrupt Vector Table and Signatures  
The interrupt vectors, the power-up start address and signatures are in the address range 0FFFFh to  
0FF80h. 6-1 summarizes the content of this address range.  
0FFFFh  
Reset Vector  
BSL Password  
Interrupt  
Vectors  
0FFE0h  
JTAG Password  
Reserved  
0FF88h  
0FF80h  
Signatures  
6-1. Interrupt Vectors, Signatures, and Passwords  
The power-up start address or reset vector is located at 0FFFFh to 0FFFEh. It contains the 16-bit address  
pointing to the start address of the application program.  
The interrupt vectors start at 0FFFDh and extend to lower addresses. Each vector contains the 16-bit  
address of the appropriate interrupt-handler instruction sequence. 6-4 shows the device-specific  
interrupt vector locations.  
The vectors programmed into the address range from 0FFFFh to 0FFE0h are used as the BSL password  
(if enabled by the corresponding signature).  
The signatures are located at 0FF80h and extend to higher addresses. Signatures are evaluated during  
device start-up. 6-5 shows the device-specific signature locations.  
A JTAG password can be programmed starting at address 0FF88h and extending to higher addresses.  
The password can extend into the interrupt vector locations using the interrupt vector addresses as  
additional bits for the password. The length of the JTAG password depends on the JTAG signature.  
See the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the  
MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide for details.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
73  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
PRIORITY  
6-4. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
System Reset  
Power up, Brownout, Supply  
Supervisor  
External Reset RST  
Watchdog time-out (watchdog  
mode)  
WDT, FRCTL MPU, CS, PMM  
password violation  
FRAM uncorrectable bit error  
detection  
SVSHIFG  
PMMRSTIFG  
WDTIFG  
WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW  
UBDIFG  
MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
Reset  
0FFFEh  
Highest  
ACCTEIFG  
PMMPORIFG, PMMBORIFG  
MPU segment violation  
FRAM access time error  
Software POR, BOR  
(1) (2)  
(SYSRSTIV)  
System NMI  
Vacant memory access  
JTAG mailbox  
VMAIFG  
JMBINIFG, JMBOUTIFG  
CBDIFG, UBDIFG  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
FRAM bit error detection  
MPU segment violation  
MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
(1) (3)  
(SYSSNIV)  
User NMI  
External NMI  
Oscillator fault  
NMIIFG, OFIFG  
(1) (3)  
(SYSUNIV)  
Comparator_E interrupt flags  
Comparator_E  
Timer_B TB0  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
(1)  
(CEIV)  
TB0CCR0.CCIFG  
TB0CCR1.CCIFG to TB0CCR6.CCIFG,  
TB0CTL.TBIFG  
Timer_B TB0  
Maskable  
Maskable  
0FFF4h  
0FFF2h  
(TB0IV)(1)  
Watchdog timer  
(interval timer mode)  
WDTIFG  
UCA0IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA0IFG:UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A0 receive or transmit  
eUSCI_B0 receive or transmit  
ADC12_B  
Maskable  
Maskable  
Maskable  
0FFEEh  
0FFECh  
0FFEAh  
(UCA0IV)(1)  
UCB0IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCB0IFG: UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,  
UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB0IV)(1)  
ADC12IFG0 to ADC12IFG31  
ADC12LOIFG, ADC12INIFG, ADC12HIIFG,  
ADC12RDYIFG, ADC12OVIFG, ADC12TOVIFG  
(1)  
(ADC12IV)  
Timer_A TA0  
Timer_A TA0  
TA0CCR0.CCIFG  
Maskable  
Maskable  
0FFE8h  
0FFE6h  
TA0CCR1.CCIFG to TA0CCR2.CCIFG,  
TA0CTL.TAIFG  
(TA0IV)(1)  
UCA1IFG:UCRXIFG, UCTXIFG (SPI mode)  
UCA1IFG:UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A1 receive or transmit  
Maskable  
Maskable  
0FFE4h  
0FFE2h  
(UCA1IV)(1)  
UCB1IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCB1IFG: UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,  
UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB1IV)(1)  
eUSCI_B1 receive or transmit)  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space  
(3) (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
74 Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-4. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
INTERRUPT  
Maskable  
Maskable  
Maskable  
DMA0CTL.DMAIFG, DMA1CTL.DMAIFG,  
DMA2CTL.DMAIFG  
DMA  
0FFE0h  
0FFDEh  
0FFDCh  
(DMAIV)(1)  
Timer_A TA1  
Timer_A TA1  
TA1CCR0.CCIFG  
TA1CCR1.CCIFG to TA1CCR2.CCIFG,  
TA1CTL.TAIFG  
(TA1IV)(1)  
P1IFG.0 to P1IFG.7  
(P1IV)(1)  
I/O Port P1  
Maskable  
Maskable  
0FFDAh  
0FFD8h  
Timer_A TA2  
TA2CCR0.CCIFG  
TA2CCR1.CCIFG  
TA2CTL.TAIFG  
(TA2IV)(1)  
Timer_A TA2  
Maskable  
0FFD6h  
P2IFG.0 to P2IFG.7  
I/O Port P2  
Maskable  
Maskable  
0FFD4h  
0FFD2h  
(1)  
(P2IV)  
Timer_A TA3  
TA3CCR0.CCIFG  
TA3CCR1.CCIFG  
TA3CTL.TAIFG  
(TA3IV)(1)  
Timer_A TA3  
I/O Port P3  
Maskable  
Maskable  
0FFD0h  
0FFCEh  
P3IFG.0 to P3IFG.7  
(1)  
(P3IV)  
P4IFG.0 to P4IFG.7  
I/O Port P4  
LCD_C  
Maskable  
Maskable  
0FFCCh  
0FFCAh  
(1)  
(P4IV)  
(1)  
LCD_C interrupt flags (LCDCIV)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RT0PSIFG, RT1PSIFG, RTCOFIFG  
RTC_C  
AES  
Maskable  
Maskable  
0FFC8h  
0FFC6h  
(1)  
(RTCIV)  
AESRDYIFG  
Lowest  
6-5. Signatures  
SIGNATURE  
WORD ADDRESS  
IP Encapsulation Signature2  
0FF8Ah  
0FF88h  
0FF86h  
0FF84h  
0FF82h  
0FF80h  
(1)  
IP Encapsulation Signature1  
BSL Signature2  
BSL Signature1  
JTAG Signature2  
JTAG Signature1  
(1) Must not contain 0AAAAh if used as JTAG password and IP encapsulation functionality is not desired.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
75  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.5 Bootloader (BSL)  
The BSL enables programming of the FRAM or RAM using a UART serial interface (FRxxxx devices) or  
an I2C interface (FRxxxx1 devices). Access to the device memory through the BSL is protected by an  
user-defined password. 6-6 lists the BSL pin requirements. BSL entry requires a specific entry  
sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features  
of the BSL and its implementation, see MSP430 Programming With the Bootloader (BSL).  
6-6. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P2.0  
Entry sequence signal  
Devices with UART BSL (FRxxxx): Data transmit  
Devices with UART BSL (FRxxxx): Data receive  
Devices with I2C BSL (FRxxxx1): Data  
Devices with I2C BSL (FRxxxx1): Clock  
Power supply  
P2.1  
P1.6  
P1.7  
VCC  
VSS  
Ground supply  
6.6 JTAG Operation  
6.6.1 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface, which requires four signals for sending and  
receiving data. The JTAG signals are shared with general-purpose I/Os. The TEST/SBWTCK pin is used  
to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO signal is required to  
interface with MSP430 development tools and device programmers. 6-7 lists the JTAG pin  
requirements. For details on interfacing to development tools and device programmers, see the MSP430  
Hardware Tools User's Guide. For details on the JTAG implementation in MSP MCUs, see MSP430  
Programming With the JTAG Interface.  
6-7. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
6.6.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the 2-wire Spy-Bi-Wire interface.  
Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. 6-8  
lists the Spy-Bi-Wire interface pin requirements. For details on interfacing to development tools and device  
programmers, see the MSP430 Hardware Tools User's Guide. For details on the SBW implementation in  
MSP MCUs, see MSP430 Programming With the JTAG Interface.  
76  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-8. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
IN  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN, OUT  
VSS  
Ground supply  
6.7 FRAM  
The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in system by the  
CPU. Features of the FRAM include:  
Ultra-low-power ultra-fast-write nonvolatile memory  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
Wait States  
For MCLK frequencies > 8 MHz, wait states must be configured following the flow described  
in the "FRAM Controller (FRCTRL)" chapter, section "Wait State Control" of the  
MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide.  
For important software design information regarding FRAM including but not limited to partitioning the  
memory layout according to application-specific code, constant, and data space requirements, the use of  
FRAM to optimize application energy consumption, and the use of the memory protection unit (MPU) to  
maximize application robustness by protecting the program code against unintended write accesses, see  
MSP430 FRAM Technology – How To and Best Practices.  
6.8 RAM  
The RAM is made up of one sector. The sector can be completely powered down in LPM3 and LPM4 to  
save leakage; however, all data is lost during shutdown.  
6.9 Tiny RAM  
The Tiny RAM can be used to hold data or a very small stack if the complete RAM is powered down in  
LPM3 and LPM4.  
6.10 Memory Protection Unit Including IP Encapsulation  
The FRAM can be protected from inadvertent CPU execution, read or write access by the MPU. Features  
of the MPU include:  
IP Encapsulation with programmable boundaries (prevents reads from "outside" like JTAG or non-IP  
software) in steps of 1KB.  
Main memory partitioning programmable up to three segments in steps of 1KB.  
The access rights of each segment (main and information memory) can be individually selected.  
Access violation flags with interrupt capability for easy servicing of access violations.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
77  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be  
managed using all instructions. For complete module descriptions, see the MSP430FR58xx,  
MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide.  
6.11.1 Digital I/O  
Up to eleven 8-bit I/O ports are implemented:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all pins of  
ports P1, P2, P3, and P4.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise in pairs.  
Capacitive touch functionality is supported on all pins of ports P1 to P10 and PJ.  
No cross-currents during start-up  
Configuration of Digital I/Os After BOR Reset  
To prevent any cross-currents during start-up of the device all port pins are high-impedance  
with Schmitt triggers and their module functions disabled. To enable the I/O functionality after  
a BOR reset the ports must be configured first and then the LOCKLPM5 bit must be cleared.  
For details, see the Configuration After Reset section of the Digital I/O chapter in the  
MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide.  
6.11.2 Oscillator and Clock System (CS)  
The clock system includes support for a 32-kHz watch crystal oscillator XT1 (LF), an internal very-low-  
power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a  
high-frequency crystal oscillator XT2 (HF). The clock system module is designed to meet the requirements  
of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources.  
The clock system module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (LFXT1), the internal low-frequency  
oscillator (VLO), or a digital external low frequency (<50 kHz) clock source.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced from a high-frequency  
crystal (HFXT2), the internal digitally controlled oscillator DCO, a 32-kHz watch crystal (LFXT1), the  
internal low-frequency oscillator (VLO), or a digital external clock source.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be  
sourced by same sources made available to MCLK.  
6.11.3 Power-Management Module (PMM)  
The primary functions of the PMM are:  
Supply regulated voltages to the core logic  
Supervise voltages that are connected to the device (at DVCC pins)  
Give reset signals to the device during power on and power off  
78  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.4 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs  
operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication  
as well as signed and unsigned multiply-and-accumulate operations.  
6.11.5 Real-Time Clock (RTC_C)  
The RTC_C module contains an integrated real-time clock (RTC) with the following features implemented:  
Calendar mode with leap year correction  
General-purpose counter mode  
The internal calendar compensates months with less than 31 days and includes leap year correction. The  
RTC_C also supports flexible alarm functions and offset-calibration hardware. RTC operation is available  
in LPM3.5 modes to minimize power consumption.  
6.11.6 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart after a software  
problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function  
is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals. 6-9 lists the clocks that can be used by the WDT.  
In watchdog mode, the watchdog timer prevents entry into LPM3.5 or LPM4.5 because this  
would deactivate the watchdog.  
6-9. WDT_A Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
LFMODCLK  
6.11.7 System Module (SYS)  
The SYS module handles many of the system functions within the device. These system functions include  
power-on reset and power-up clear handling, NMI source selection and management, reset interrupt  
vector generators, bootloader entry mechanisms, and configuration management (device descriptors). The  
SYS module also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be  
used in the application. 6-10 lists the interrupt vector registers of the SYS module.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
79  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-10. System Module Interrupt Vector Registers  
INTERRUPT  
VECTOR REGISTER  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
Highest  
RSTIFG RST/NMI (BOR)  
04h  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
06h  
08h  
Security violation (BOR)  
0Ah  
0Ch  
0Eh  
10h  
Reserved  
SVSHIFG SVSH event (BOR)  
Reserved  
Reserved  
12h  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection (PUC)  
Peripheral area fetch (PUC)  
14h  
16h  
18h  
SYSRSTIV,  
System Reset  
019Eh  
1Ah  
1Ch  
1Eh  
20h  
PMMPW PMM password violation (PUC)  
MPUPW MPU password violation (PUC)  
CSPW CS password violation (PUC)  
MPUSEGPIFG encapsulated IP memory segment violation (PUC)  
MPUSEGIIFG information memory segment violation (PUC)  
MPUSEG1IFG segment 1 memory violation (PUC)  
MPUSEG2IFG segment 2 memory violation (PUC)  
MPUSEG3IFG segment 3 memory violation (PUC)  
ACCTEIFG access time error (PUC)(1)  
Reserved  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
Reserved  
02h  
Uncorrectable FRAM bit error detection  
Reserved  
04h  
06h  
MPUSEGPIFG encapsulated IP memory segment violation  
MPUSEGIIFG information memory segment violation  
MPUSEG1IFG segment 1 memory violation  
MPUSEG2IFG segment 2 memory violation  
MPUSEG3IFG segment 3 memory violation  
VMAIFG Vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
Reserved  
08h  
0Ah  
0Ch  
0Eh  
10h  
SYSSNIV,  
System NMI  
019Ch  
12h  
14h  
16h  
18h  
1Ah to 1Eh  
00h  
Lowest  
Highest  
No interrupt pending  
NMIIFG NMI pin  
02h  
OFIFG oscillator fault  
04h  
SYSUNIV,  
User NMI  
019Ah  
Reserved  
06h  
Reserved  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
(1) Indicates incorrect wait state settings.  
80 Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.8 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU  
intervention. For example, the DMA controller can be used to move data from the ADC10_B conversion  
memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA  
controller reduces system power consumption by allowing the CPU to remain in sleep mode, without  
having to awaken to move data to or from a peripheral. 6-11 lists the triggers that can be used to start  
DMA operation.  
6-11. DMA Trigger Assignments(1)  
TRIGGER  
CHANNEL 0  
DMAREQ  
CHANNEL 1  
DMAREQ  
CHANNEL 2  
DMAREQ  
0
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2 CCR0 CCIFG  
TA3 CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2 CCR0 CCIFG  
TA3 CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2 CCR0 CCIFG  
TA3 CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Reserved  
Reserved  
Reserved  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
18  
19  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
20  
21  
22  
23  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
UCB1RXIFG (SPI)  
UCB1RXIFG0 (I2C)  
24  
25  
26  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
UCB1TXIFG (SPI)  
UCB1TXIFG0 (I2C)  
ADC12 end of  
conversion  
ADC12 end of conversion  
ADC12 end of conversion  
27  
28  
29  
30  
31  
Reserved  
Reserved  
MPY ready  
DMA2IFG  
DMAE0  
Reserved  
Reserved  
MPY ready  
DMA0IFG  
DMAE0  
Reserved  
Reserved  
MPY ready  
DMA1IFG  
DMAE0  
(1) If a reserved trigger source is selected, no trigger is generated.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
81  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.9 Enhanced Universal Serial Communication Interface (eUSCI)  
The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous  
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols  
such as UART, enhanced UART with automatic baud-rate detection, and IrDA.  
The eUSCI_An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, and IrDA.  
The eUSCI_Bn module provides support for SPI (3 pin or 4 pin) and I2C.  
Two eUSCI_A modules and one or two eUSCI_B module are implemented.  
6.11.10 Timer_A TA0, Timer_A TA1  
TA0 and TA1 are 16-bit timers/counters (Timer_A type) with three capture/compare registers each. TA0  
and TA1 can support multiple capture/compares, PWM outputs, and interval timing (see 6-12 and 6-  
13). TA0 and TA1 have extensive interrupt capabilities. Interrupts can be generated from the counter on  
overflow conditions and from each of the capture/compare registers.  
6-12. Timer_A TA0 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
P1.2 or P6.7 or  
P7.0  
TA0CLK  
TACLK  
ACLK (internal)  
ACLK  
Timer  
CCR0  
N/A  
TA0  
N/A  
SMCLK (internal)  
SMCLK  
P1.2 or P6.7 or  
P7.0  
TA0CLK  
INCLK  
P1.5  
TA0.0  
TA0.0  
DVSS  
DVCC  
CCI0A  
CCI0B  
GND  
P1.5  
P7.1  
P7.1 or P10.1  
TA0.0  
P10.1  
VCC  
P1.0  
P1.6  
P7.2  
P7.6  
P1.0 or P1.6 or  
P7.2 or P7.6  
TA0.1  
CCI1A  
CCI1B  
COUT (internal)  
CCR1  
CCR2  
TA1  
TA2  
TA0.1  
TA0.2  
DVSS  
DVCC  
GND  
VCC  
ADC12 (internal)  
ADC12SHSx = {1}  
P1.1 or P1.7 or  
P7.3 or P7.5  
TA0.2  
CCI2A  
P1.1  
ACLK (internal)  
DVSS  
CCI2B  
GND  
VCC  
P1.7  
P7.3  
P7.5  
DVCC  
82  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-13. Timer_A TA1 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
P1.1 or P4.4 or  
P5.2  
TA1CLK  
TACLK  
ACLK (internal)  
ACLK  
Timer  
CCR0  
N/A  
TA0  
N/A  
SMCLK (internal)  
SMCLK  
P1.1 or P4.4 or  
P5.2  
TA1CLK  
INCLK  
P1.4 or P4.5  
P5.2 or P10.2  
TA1.0  
TA1.0  
DVSS  
DVCC  
CCI0A  
CCI0B  
GND  
P1.4  
P4.5  
P5.2  
P10.2  
P1.2  
P4.6  
P3.3  
P5.0  
TA1.0  
VCC  
P1.2 or P3.3 or  
P4.6 or P5.0  
TA1.1  
CCI1A  
CCI1B  
COUT (internal)  
CCR1  
CCR2  
TA1  
TA2  
TA1.1  
TA1.2  
DVSS  
DVCC  
GND  
VCC  
ADC12 (internal)  
ADC12SHSx = {4}  
P1.3 or P4.7 or  
P5.1 or P7.7  
TA1.2  
CCI2A  
P1.3  
ACLK (internal)  
DVSS  
CCI2B  
GND  
VCC  
P4.7  
P5.1  
P7.7  
DVCC  
6.11.11 Timer_A TA2  
TA2 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers each and with internal  
connections only. TA2 can support multiple capture/compares, PWM outputs, and interval timing (see 表  
6-14). TA2 has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow  
conditions and from each of the capture/compare registers.  
6-14. Timer_A TA2 Signal Connections  
MODULE OUTPUT  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
DEVICE OUTPUT SIGNAL  
SIGNAL  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
TACLK  
ACLK  
Timer  
N/A  
SMCLK  
From Capacitive Touch  
I/O 0 (internal)  
INCLK  
CCI0A  
TA3 CCR0 output  
(internal)  
TA3 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
DVCC  
From Capacitive Touch  
I/O 0 (internal)  
ADC12 (internal)  
ADC12SHSx = {5}  
CCI1A  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
DVCC  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
83  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.12 Timer_A TA3  
TA3 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers each and with internal  
connections only. TA3 can support multiple capture/compares, PWM outputs, and interval timing (see 表  
6-15). TA3 has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow  
conditions and from each of the capture/compare registers.  
6-15. Timer_A TA3 Signal Connections  
MODULE OUTPUT  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
DEVICE OUTPUT SIGNAL  
SIGNAL  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
TACLK  
ACLK  
Timer  
N/A  
SMCLK  
From Capacitive Touch  
I/O 1 (internal)  
INCLK  
CCI0A  
TA2 CCR0 output  
(internal)  
TA2 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
DVCC  
From Capacitive Touch  
I/O 1 (internal)  
ADC12 (internal)  
ADC12SHSx = {6}  
CCI1A  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
DVCC  
DVSS  
CCI2A  
CCI2B  
GND  
VCC  
DVSS  
CCR2  
CCR3  
CCR4  
TA2  
TA3  
TA4  
DVSS  
DVCC  
DVSS  
CCI3A  
CCI3B  
GND  
VCC  
DVSS  
DVSS  
DVCC  
DVSS  
CCI4A  
CCI4B  
GND  
VCC  
DVSS  
DVSS  
DVCC  
84  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.13 Timer_B TB0  
TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers each. TB0 can support  
multiple capture/compares, PWM outputs, and interval timing (see 6-16). TB0 has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the  
capture/compare registers.  
6-16. Timer_B TB0 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
DEVICE OUTPUT  
SIGNAL  
INPUT PORT PIN  
OUTPUT PORT PIN  
P2.0 or P3.3 or  
P5.7  
TB0CLK  
TBCLK  
ACLK (internal)  
ACLK  
Timer  
N/A  
N/A  
SMCLK (internal)  
SMCLK  
P2.0 or P3.3 or  
P5.7  
TB0CLK  
INCLK  
P3.4  
P6.4  
TB0.0  
TB0.0  
CCI0A  
CCI0B  
P3.4  
P6.4  
CCR0  
CCR1  
TB0  
TB1  
TB0.0  
TB0.1  
ADC12 (internal)  
ADC12SHSx = {2}  
DVSS  
GND  
DVCC  
TB0.1  
VCC  
P3.5 or P6.5  
P3.6 or P6.6  
CCI1A  
CCI1B  
P3.5  
P6.5  
COUT (internal)  
ADC12 (internal)  
ADC12SHSx = {3}  
DVSS  
GND  
DVCC  
TB0.2  
ACLK (internal)  
DVSS  
VCC  
CCI2A  
CCI2B  
GND  
P3.6  
P6.6  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
TB2  
TB3  
TB4  
TB5  
TB6  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
DVCC  
VCC  
P2.4  
P3.7  
TB0.3  
TB0.3  
DVSS  
CCI3A  
CCI3B  
GND  
P2.4  
P3.7  
DVCC  
VCC  
P2.5  
P2.2  
TB0.4  
TB0.4  
DVSS  
CCI4A  
CCI4B  
GND  
P2.5  
P2.2  
DVCC  
VCC  
P2.6  
P2.1  
TB0.5  
TB0.5  
DVSS  
CCI5A  
CCI5B  
GND  
P2.6  
P2.1  
DVCC  
VCC  
P2.7  
P2.0  
TB0.6  
TB0.6  
DVSS  
CCI6A  
CCI6B  
GND  
P2.7  
P2.0  
DVCC  
VCC  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
85  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.14 ADC12_B  
The ADC12_B module supports fast 12-bit analog-to-digital conversions with differential and single-ended  
inputs. The module implements a 12-bit SAR core, sample select control, a reference generator, and a  
conversion result buffer. A window comparator with lower and upper limits allows CPU-independent result  
monitoring with three window comparator interrupt flags.  
6-17 lists the external trigger sources. 6-18 lists the available multiplexing between internal and  
external analog inputs.  
6-17. ADC12_B Trigger Signal Connections  
ADC12SHSx  
CONNECTED TRIGGER  
SOURCE  
BINARY  
DECIMAL  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
Software (ADC12SC)  
Timer_A TA0 CCR1 output  
Timer_B TB0 CCR0 output  
Timer_B TB0 CCR1 output  
Timer_A TA1 CCR1 output  
Timer_A TA2 CCR1 output  
Timer_A TA3 CCR1 output  
Reserved (DVSS)  
6-18. ADC12_B External and Internal Signal Mapping  
EXTERNAL  
(CONTROL BIT = 0)  
INTERNAL  
CONTROL BIT  
(CONTROL BIT = 1)  
Battery Monitor  
Temperature Sensor  
N/A(1)  
ADC12BATMAP  
ADC12TCMAP  
ADC12CH0MAP  
ADC12CH1MAP  
ADC12CH2MAP  
ADC12CH3MAP  
A31  
A30  
A29  
A28  
A27  
A26  
N/A(1)  
N/A(1)  
N/A(1)  
(1) N/A = No internal signal available on this device.  
6.11.15 Comparator_E  
The primary function of the Comparator_E module is to support precision slope analog-to-digital  
conversions, battery voltage supervision, and monitoring of external analog signals.  
6.11.16 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used  
for data checking purposes. The CRC16 signature is based on the CRC-CCITT standard.  
6.11.17 CRC32  
The CRC32 module produces a signature based on a sequence of entered data values and can be used  
for data checking purposes. The CRC32 signature is based on the ISO 3309 standard.  
6.11.18 AES256 Accelerator  
The AES accelerator module performs encryption and decryption of 128-bit data with 128-, 192-, or 256-  
bit keys according to the Advanced Encryption Standard (AES) (FIPS PUB 197) in hardware.  
86  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.19 True Random Seed  
The Device Descriptor Information (TLV) section contains a 128-bit true random seed that can be used to  
implement a deterministic random number generator.  
6.11.20 Shared Reference (REF_A)  
The reference module (REF_A) generates all critical reference voltages that can be used by the various  
analog peripherals in the device.  
6.11.21 LCD_C  
The LCD_C driver generates the segment and common signals required to drive a liquid crystal display  
(LCD). The LCD_C controller has dedicated data memories to hold segment drive information. Common  
and segment signals are generated as defined by the mode. Static and 2-mux to 8-mux LCDs are  
supported. The module can provide a LCD voltage independent of the supply voltage with its integrated  
charge pump. It is possible to control the level of the LCD voltage and thus contrast by software. The  
module also provides an automatic blinking capability for individual segments in static, 2-mux, 3-mux, and  
4-mux modes.  
To reduce system noise, the charge pump can be temporarily disabled. 6-19 lists the available  
automatic charge pump disable options.  
6-19. LCD Automatic Charge Pump Disable Bits (LCDCPDISx)  
CONTROL BIT  
DESCRIPTION  
LCD charge pump disable during ADC12 conversion  
LCDCPDIS0  
0b = LCD charge pump not automatically disabled during conversion  
1b = LCD charge pump automatically disabled during conversion  
LCDCPDIS1 to  
LCDCPDIS7  
No functionality  
6.11.22 Embedded Emulation  
6.11.22.1 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers that can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
6.11.22.2 EnergyTrace++™ Technology  
These MCUs implement circuitry to support EnergyTrace++ technology. The EnergyTrace++ technology  
allows you to observe information about the internal states of the microcontroller. These states include the  
CPU Program Counter (PC), the ON or OFF status of the peripherals and the system clocks (regardless of  
the clock source), and the low-power mode currently in use. These states can always be read by a debug  
tool, even when the microcontroller sleeps in LPMx.5 modes.  
The activity of the following modules can be observed:  
MPY is calculating.  
WDT is counting.  
RTC is counting.  
ADC: a sequence, sample, or conversion is active.  
REF: REFBG or REFGEN active and BG in static mode.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
87  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
COMP is on.  
AES is encrypting or decrypting.  
eUSCI_A0 is transferring (receiving or transmitting) data.  
eUSCI_A1 is transferring (receiving or transmitting) data.  
eUSCI_B0 is transferring (receiving or transmitting) data.  
eUSCI_B1 is transferring (receiving or transmitting) data.  
TB0 is counting.  
TA0 is counting.  
TA1 is counting.  
TA2 is counting.  
TA3 is counting.  
LCD: timing generator is active.  
88  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23 Input/Output Diagrams  
6.11.23.1 Digital I/O Functionality – Ports P1 to P10  
The port pins provide the following features:  
Interrupt and wakeup from LPMx.5 capability for ports P1, P2, P3, and P4  
Capacitive touch functionality (see 6.11.23.2)  
Up to three digital module input or output functions  
LCD segment functionality (not all pins, package dependent)  
6-2 shows the features and the corresponding control logic (not including the capacitive touch logic). It  
is applicable for all port pins P1.0 to P10.2 unless a dedicated diagram is available in the following  
sections. The module functions provided per pin and whether the direction is controlled by the module or  
by the port direction register for the selected secondary function are described in the pin function tables.  
Pad Logic  
Sz  
LCDSz  
PxREN.y  
0 0  
0 1  
1 0  
1 1  
PxDIR.y  
From module 1(B)  
From module 2(B)  
From module 3(B)  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PxOUT.y  
From module 1  
From module 2  
From module 3  
Px.y/Mod1/Mod2/Mod3/Sz  
PxSEL1.y  
PxSEL0.y  
PxIN.y  
To module 1(A)  
To module 2(A)  
To module 3(A)  
A. The inputs from several pins toward a module are ORed together.  
B. The direction is controlled either by the connected module or by the corresponding PxDIR.y bit. See the pin function  
tables.  
NOTE: Functional representation only.  
6-2. General Port Pin Diagram  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
89  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.2 Capacitive Touch Functionality Ports P1 to P10 and PJ  
6-3 shows the Capacitive Touch functionality that all port pins provide. The Capacitive Touch  
functionality is controlled using the Capacitive Touch I/O control registers CAPTIO0CTL and CAPTIO1CTL  
as described in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family  
User's Guide. The Capacitive Touch functionality is not shown in the other pin diagrams.  
Analog Enable  
PxREN.y  
Capacitive Touch Enable 0  
Capacitive Touch Enable 1  
DVSS  
DVCC  
0
1
1
Direction Control  
PxOUT.y  
0
1
Output Signal  
Px.y  
Input Signal  
D
Q
EN  
Capacitive Touch Signal 0  
Capacitive Touch Signal 1  
NOTE: Functional representation only.  
6-3. Capacitive Touch I/O Diagram  
90  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.3 Port P1 (P1.0 to P1.3) Input/Output With Schmitt Trigger  
For the pin diagram, see 6-2. 6-20 summarizes the selection of the pin function.  
6-20. Port P1 (P1.0 to P1.3) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.0 (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
0
0
0
0
1
1
0
1
P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/  
VREF-/VeREF-  
0
DMAE0  
RTCCLK(2)  
0
1
(3) (4)  
A0, C0, VREF-, VeREF-  
P1.1 (I/O)  
X
1
0
1
0
I: 0; O: 1  
TA0.CCI2A  
TA0.2  
0
0
1
1
0
1
P1.1/TA0.2/TA1CLK/COUT/A1/C1/  
VREF+/VeREF+  
1
2
3
TA1CLK  
COUT(5)  
0
1
(3) (4)  
A1, C1, VREF+, VeREF+  
P1.2 (I/O)  
X
1
0
1
0
I: 0; O: 1  
TA1.CCI1A  
TA1.1  
0
0
1
1
0
1
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
TA0CLK  
COUT(6)  
0
1
(3) (4)  
A2, C2  
X
1
0
1
0
P1.3 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
0
1
0
1
X
0
1
P1.3/TA1.2/A3/C3  
(1) X = Don't care  
N/A  
1
1
0
1
(3) (4)  
A3, C3  
(2) Do not use this pin as RTCCLK output if the DMAE0 functionality is used on any other pin. Select an alternative RTCCLK output pin.  
(3) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPD.x bit.  
(5) Do not use this pin as COUT output if the TA1CLK functionality is used on any other pin. Select an alternative COUT output pin.  
(6) Do not use this pin as COUT output if the TA0CLK functionality is used on any other pin. Select an alternative COUT output pin.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
91  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.4 Port P1 (P1.4 to P1.7) Input/Output With Schmitt Trigger  
For the pin diagram, see 6-2. 6-21 summarizes the selection of the pin function.  
6-21. Port P1 (P1.4 to P1.7) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
LCDSz  
P1.4 (I/O)  
UCB0CLK  
UCA0STE  
TA1.CCI0A  
TA1.0  
I: 0; O: 1  
0
0
1
0
1
0
0
0
0
(2)  
X
(3)  
X
P1.4/UCB0CLK/UCA0STE/TA1.0/Sz  
4
0
1
1
0
1
X
(4)  
Sz  
X
0
0
1
X
0
1
0
1
0
0
0
P1.5 (I/O)  
UCB0STE  
UCA0CLK  
TA0.CCI0A  
TA0.0  
I: 0; O: 1  
(2)  
X
(3)  
X
P1.5/UCB0STE/UCA0CLK/TA0.0/Sz  
5
0
1
1
0
1
X
(4)  
Sz  
X
0
0
X
0
1
1
0
0
P1.6 (I/O)  
I: 0; O: 1  
(2)  
UCB0SIMO/UCB0SDA  
N/A  
X
0
1
1
0
1
0
0
P1.6/UCB0SIMO/UCB0SDA/TA0.1/  
Sz  
6
Internally tied to DVSS  
TA0.CCI1A  
1
0
TA0.1  
1
X
(4)  
Sz  
X
0
0
X
0
1
1
0
0
P1.7 (I/O)  
I: 0; O: 1  
(2)  
UCB0SOMI/UCB0SCL  
N/A  
X
0
1
0
1
X
1
0
0
P1.7/UCB0SOMI/UCB0SCL/TA0.2/  
Sz  
7
Internally tied to DVSS  
TA0.CCI2A  
1
1
0
1
TA0.2  
(4)  
Sz  
X
X
(1) X = Don't care  
(2) Direction controlled by eUSCI_B0 module.  
(3) Direction controlled by eUSCI_A0 module.  
(4) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
92  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.5 Port P2 (P2.0 to P2.3) Input/Output With Schmitt Trigger  
For the pin diagram, see 6-2. 6-22 summarizes the selection of the pin function.  
6-22. Port P2 (P2.0 to P2.3) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
LCDSz  
P2.0 (I/O)  
I: 0; O: 1  
0
0
0
1
0
0
(2)  
UCA0SIMO/UCA0TXD  
TB0.CCI6B  
X
0
1
1
0
1
0
0
P2.0/UCA0SIMO/UCA0TXD/TB0.6/  
TB0CLK/Sz  
0
TB0.6  
1
TB0CLK  
0
Internally tied to DVSS  
1
X
(3)  
Sz  
X
0
0
X
0
1
1
0
0
P2.1 (I/O)  
I: 0; O: 1  
(2)  
UCA0SOMI/UCA0RXD  
TB0.CCI5B  
X
0
1
1
0
1
0
0
P2.1/UCA0SOMI/UCA0RXD/TB0.5/  
DMAE0/Sz  
1
2
3
TB0.5  
1
DMA0E  
0
Internally tied to DVSS  
1
X
(3)  
Sz  
X
0
0
X
0
1
1
0
0
P2.2 (I/O)  
UCA0CLK  
TB0.CCI4B  
TB0.4  
I: 0; O: 1  
(2)  
X
0
1
1
0
1
0
0
P2.2/UCA0CLK/TB0.4/RTCCLK/Sz  
1
N/A  
0
RTCCLK  
1
X
(3)  
Sz  
X
0
0
X
0
1
1
0
0
P2.3 (I/O)  
I: 0; O: 1  
(2)  
UCA0STE  
X
TB0OUTH  
0
1
0
1
X
1
0
0
P2.3/UCA0STE/TB0OUTH/Sz  
(1) X = Don't care  
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
(3)  
Sz  
X
X
(2) Direction controlled by eUSCI_A0 module.  
(3) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
93  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.6 Port P2 (P2.4 to P2.7) Input/Output With Schmitt Trigger  
6-4 shows the port diagram. 6-23 summarizes the selection of the pin function.  
Sz  
LCDSz  
COM4/5/6/7  
Pad Logic  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
DVSS  
P2.4/TB0.3/COM4/Sz  
P2.5/TB0.4/COM5/Sz  
P2.6/TB0.5/COM6/Sz  
P2.7/TB0.6/COM7/Sz  
P2SEL1.x  
P2SEL0.x  
P2IN.x  
Bus  
Keeper  
To module 1(A)  
To module 2(A)  
A. The inputs from several pins toward a module are ORed together.  
NOTE: Functional representation only.  
6-4. Port P2 (P2.4 to P2.7) Diagram  
94  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-23. Port P2 (P2.4 to P2.7) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
LCDSz  
P2.4 (I/O)  
TB0.CCI3A  
TB0.3  
I: 0; O: 1  
0
0
0
0
0
1
1
0
0
1
P2.4/TB0.3/COM4/Sz  
P2.5/TB0.4/COM5/Sz  
P2.6/TB0.5/COM6/Sx  
4
N/A  
0
0
Internally tied to DVSS  
COM4  
1
X
1
X
0
1
X
0
0
1
0
(2)  
Sz  
X
P2.5 (I/O)  
TB0.CCI4A  
TB0.4  
I: 0; O: 1  
0
0
1
1
0
0
0
1
5
6
7
N/A  
0
Internally tied to DVSS  
1
COM5  
X
1
X
0
1
X
0
0
1
0
(2)  
Sz  
X
P2.6 (I/O)  
TB0.CCI5A  
TB0.5  
I: 0; O: 1  
0
0
1
1
0
0
0
1
N/A  
0
Internally tied to DVSS  
COM6  
1
X
1
X
0
1
X
0
0
1
0
(2)  
Sz  
X
P2.7 (I/O)  
TB0.CCI6A  
TB0.6  
I: 0; O: 1  
0
1
0
1
X
X
0
1
1
0
0
0
P2.7/TB0.6/COM7/Sx  
(1) X = Don't care  
N/A  
Internally tied to DVSS  
COM7  
1
1
0
1
(2)  
Sz  
X
X
(2) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
95  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.7 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger  
For the pin diagram, see 6-2. 6-24 and 6-25 summarize the selection of the pin function.  
6-24. Port P3 (P3.0 to P3.3) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
LCDSz  
P3.0 (I/O)  
UCB1CLK  
N/A  
I: 0; O: 1  
0
0
0
1
0
0
(2)  
X
0
1
1
0
1
0
0
P3.0/UCB1CLK/Sz  
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
X
(3)  
Sz  
X
0
0
X
0
1
1
0
0
P3.1 (I/O)  
I: 0; O: 1  
(2)  
UCB1SIMO/UCB1SDA  
N/A  
X
0
1
1
0
1
0
0
P3.1/UCB1SIMO/UCB1SDA/Sz  
1
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
X
(3)  
Sz  
X
0
0
X
0
1
1
0
0
P3.2 (I/O)  
I: 0; O: 1  
(2)  
UCB1SOMI/UCB1SCL  
N/A  
X
0
1
1
0
1
0
0
P3.2/UCB1SOMI/UCB1SCL/Sz  
2
Internally tied to DVSS  
1
0
1
(3)  
Sz  
X
X
0
X
0
1
0
P3.3 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
TA1.CCI1A  
TA1.1  
P3.3/TA1.1/TB0CLK/Sz  
(1) X = Don't care  
3
TB0CLK  
1
1
0
1
Internally tied to DVSS  
(3)  
Sz  
X
X
(2) Direction controlled by eUSCI_B1 module.  
(3) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
96  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-25. Port P3 (P3.4 to P3.7) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
LCDSz  
P3.4 (I/O)  
I: 0; O: 1  
0
0
0
1
0
0
(2)  
UCA1SIMO/UCA1TXD  
TB0CCI0A  
X
0
1
1
0
1
0
0
P3.4/UCA1SIMO/UCA1TXD/TB0.0/  
Sz  
4
TB0.0  
1
N/A  
0
Internally tied to DVSS  
1
X
(3)  
Sz  
X
0
0
X
0
1
1
0
0
P3.5 (I/O)  
I: 0; O: 1  
(2)  
UCA1SOMI/UCA1RXD  
TB0CCI1A  
X
0
1
1
0
1
0
0
P3.5/UCA1SOMI/UCA1RXD/TB0.1/  
Sz  
5
6
7
TB0.1  
1
N/A  
0
Internally tied to DVSS  
1
X
(3)  
Sz  
X
0
0
X
0
1
1
0
0
P3.6 (I/O)  
UCA1CLK  
TB0CCI2A  
TB0.2  
I: 0; O: 1  
(2)  
X
0
1
1
0
1
0
0
P3.6/UCA1CLK/TB0.2/Sz  
1
N/A  
0
Internally tied to DVSS  
1
X
(3)  
Sz  
X
0
0
X
0
1
1
0
0
P3.7 (I/O)  
UCA1STE  
TB0CCI3B  
TB0.3  
I: 0; O: 1  
(2)  
X
0
1
0
1
X
1
0
0
P3.7/UCA1STE/TB0.3/Sz  
(1) X = Don't care  
N/A  
1
1
0
1
Internally tied to DVSS  
(3)  
Sz  
X
X
(2) Direction controlled by eUSCI_A1 module.  
(3) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
97  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.8 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger  
For the pin diagram, see 6-2. 6-26 and 6-27 summarize the selection of the pin function.  
6-26. Port P4 (P4.0 to P4.3) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
LCDSz  
P4.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
0
0
0
0
1
1
1
0
1
Internally tied to DVSS  
UCB1SIMO/UCB1SDA  
N/A  
1
P4.0/UCB1SIMO/UCB1SDA/MCLK/  
Sz  
(2)  
0
X
0
MCLK  
1
(3)  
Sz  
X
X
0
X
0
1
0
P4.1 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
P4.1/UCB1SOMI/UCB1SCL/ACLK/  
Sz  
(2)  
1
UCB1SOMI/UCB1SCL  
X
N/A  
0
ACLK  
1
X
(3)  
Sz  
X
0
0
1
X
0
1
0
1
0
0
0
P4.2 (I/O)  
I: 0; O: 1  
(4)  
UCA0SIMO/UCA0TXD  
UCB1CLK  
X
(2)  
X
P4.2/UCA0SIMO/UCA0TXD/  
UCB1CLK/Sz  
2
3
N/A  
0
1
1
0
Internally tied to DVSS  
1
X
(3)  
Sz  
X
0
0
1
X
0
1
0
1
0
0
0
P4.3 (I/O)  
I: 0; O: 1  
(4)  
UCA0SOMI/UCA0RXD  
UCB1STE  
X
(2)  
X
P4.3/UCA0SOMI/UCA0RXD/  
UCB1STE/Sz  
N/A  
0
1
1
1
0
1
Internally tied to DVSS  
(3)  
Sz  
X
X
X
(1) X = Don't care  
(2) Direction controlled by eUSCI_B1 module.  
(3) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
(4) Direction controlled by eUSCI_A0 module.  
98  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-27. Port P4 (P4.4 to P4.7) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
LCDSz  
P4.4 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
0
0
0
0
1
1
1
0
1
Internally tied to DVSS  
UCB1STE  
1
(2)  
P4.4/UCB1STE/TA1CLK/Sz  
4
X
TA1CLK  
0
Internally tied to DVSS  
1
(3)  
Sz  
X
X
0
X
0
1
0
P4.5 (I/O)  
N/A  
I: 0; O: 1  
0
1
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCB1CLK  
TA1CCI0A  
TA1.0  
(2)  
P4.5/UCB1CLK/TA1.0/Sz  
5
6
7
X
0
1
(3)  
Sz  
X
X
0
X
0
1
0
P4.6 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
UCB1SIMO/UCB1SDA  
TA1CCI1A  
1
(2)  
P4.6/UCB1SIMO/UCB1SDA/TA1.1/  
Sz  
X
0
TA1.1  
1
(3)  
Sz  
X
X
0
X
0
1
0
P4.7 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
X
1
0
1
X
0
0
0
1
Internally tied to DVSS  
UCB1SOMI/UCB1SCL  
TA1CCI2A  
1
(2)  
P4.7/UCB1SOMI/UCB1SCL/TA1.2/  
Sz  
X
0
1
TA1.2  
(3)  
Sz  
X
(1) X = Don't care  
(2) Direction controlled by eUSCI_B1 module.  
(3) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
99  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.9 Port P5 (P5.0 to P5.7) Input/Output With Schmitt Trigger  
For the pin diagram, see 6-2. 6-28 and 6-29 summarize the selection of the pin function.  
6-28. Port P5 (P5.0 to P5.3) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
LCDSz  
P5.0 (I/O)  
TA1CCI1A  
TA1.1  
I: 0; O: 1  
0
0
0
0
0
1
1
1
0
1
0
1
N/A  
0
P5.0/TA1.1/MCLK/Sz  
0
0
0
Internally tied to DVSS  
1
N/A  
0
MCLK  
1
(2)  
Sz  
X
X
0
X
0
1
0
P5.1 (I/O)  
I: 0; O: 1  
TA1CCI2A  
0
0
1
1
1
0
1
0
0
0
TA1.2  
1
N/A  
0
P5.1/TA1.2/Sz  
1
Internally tied to DVSS  
1
N/A  
N/A  
0
1
(2)  
Sz  
X
X
0
X
0
1
0
P5.2 (I/O)  
TA1CCI0B  
TA1.0  
I: 0; O: 1  
0
0
1
1
1
0
1
0
0
0
1
TA1CLK  
0
P5.2/TA1.0/TA1CLK/ACLK/Sz  
2
Internally tied to DVSS  
N/A  
1
0
ACLK  
1
(2)  
Sz  
X
X
0
X
0
1
0
P5.3 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
X
1
0
1
X
0
0
0
1
Internally tied to DVSS  
UCB1STE  
1
(3)  
P5.3/UCB1STE/Sz  
(1) X = Don't care  
3
X
N/A  
0
1
Internally tied to DVSS  
(2)  
Sz  
X
(2) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
(3) Direction controlled by eUSCI_B1 module.  
100  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-29. Port P5 (P5.4 to P5.7) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL1.x  
P5SEL0.x  
LCDSz  
P5.4 (I/O)  
I: 0; O: 1  
0
0
0
1
0
0
(2)  
UCA1SIMO/UCA1TXD  
N/A  
X
0
1
1
0
1
0
0
P5.4/UCA1SIMO/UCA1TXD/Sz  
P5.5/UCA1SOMI/UCA1RXD/Sz  
P5.6/UCA1CLK/Sz  
4
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
X
(3)  
Sz  
X
0
0
X
0
1
1
0
0
P5.5 (I/O)  
I: 0; O: 1  
(2)  
UCA1SOMI/UCA1RXD  
N/A  
X
0
1
1
0
1
0
0
5
6
7
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
X
(3)  
Sz  
X
0
0
X
0
1
1
0
0
P5.6 (I/O)  
I: 0; O: 1  
(2)  
UCA1CLK  
X
N/A  
0
1
1
0
1
0
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
X
(3)  
Sz  
X
0
0
X
0
1
1
0
0
P5.7 (I/O)  
I: 0; O: 1  
(2)  
UCA1STE  
X
N/A  
0
1
0
1
X
1
0
0
P5.7/UCA1STE/TB0CLK/Sz  
(1) X = Don't care  
Internally tied to DVSS  
TB0CLK  
1
1
0
1
Internally tied to DVSS  
(3)  
Sz  
X
X
(2) Direction controlled by eUSCI_A1 module.  
(3) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
101  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.10 Port P6 (P6.0 to P6.6) Input/Output With Schmitt Trigger  
6-5 shows the port diagram. 6-30 and 6-31 summarize the selection of the pin function.  
To/From  
LCD module  
Pad Logic  
P6REN.x  
P6DIR.x  
0 0  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P6OUT.x  
From module 1  
From module 2  
DVSS  
P6.0/R23  
P6.1/R13/LCDREF  
P6.2/COUT/R03  
P6.3/COM0  
P6SEL1.x  
P6.4/TB0.0/COM1  
P6.5/TB0.1/COM2  
P6.6/TB0.2/COM3  
P6SEL0.x  
P6IN.x  
Bus  
Keeper  
To module 1(A)  
To module 2(A)  
A. The inputs from several pins toward a module are ORed together.  
NOTE: Functional representation only.  
6-5. Port P6 (P6.0 to P6.6) Diagram  
102  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-30. Port P6 (P6.0 to P6.2) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
LCDSz  
P6.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P6.0/R23  
0
0
Internally tied to DVSS  
1
(2)  
R23  
X
1
0
1
0
P6.1 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P6.1/R13/LCDREF  
1
2
0
Internally tied to DVSS  
1
(2)  
R13/LCDREF  
X
1
0
1
0
P6.2 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
COUT  
P6.2/COUT/R03  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
R03  
(1) X = Don't care  
(2) Setting P6SEL1.x and P6SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
103  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-31. Port P6 (P6.3 to P6.6) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
LCDSz  
P6.3 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P6.3/COM0  
3
0
Internally tied to DVSS  
1
(2)  
COM0  
X
1
0
1
0
P6.4 (I/O)  
TB0CCI0B  
TB0.0  
I: 0; O: 1  
0
0
1
1
0
1
P6.4/TB0.0/COM1  
P6.5/TB0.1/COM2  
4
5
6
N/A  
0
Internally tied to DVSS  
1
(2)  
COM1  
X
1
0
1
0
P6.5 (I/O)  
TB0CCI1A  
TB0.1  
I: 0; O: 1  
0
0
1
1
0
1
N/A  
0
Internally tied to DVSS  
1
(2)  
COM2  
X
1
0
1
0
P6.6 (I/O)  
TB0CCI2A  
TB0.2  
I: 0; O: 1  
0
1
0
1
X
0
1
P6.6/TB0.2/COM3  
(1) X = Don't care  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
COM3  
(2) Setting P6SEL1.x and P6SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
104  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.11 Port P6 (P6.7) Input/Output With Schmitt Trigger  
For the pin diagram, see 6-2. 6-32 summarizes the selection of the pin function.  
6-32. Port P6 (P6.7) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL1.x  
P6SEL0.x  
LCDSz  
P6.7 (I/O)  
TA0CLK  
I: 0; O: 1  
0
0
0
0
1
0
1
0
1
X
0
1
1
0
0
Internally tied to DVSS  
N/A  
P6.7/TA0CLK/Sz  
7
0
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
Sz  
X
X
(1) X = Don't care  
(2) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
105  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.12 Port P7 (P7.0 to P7.7) Input/Output With Schmitt Trigger  
For the pin diagram, see 6-2. 6-33 and 6-34 summarize the selection of the pin function.  
6-33. Port P7 (P7.0 to P7.3) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL1.x  
P7SEL0.x  
LCDSz  
P7.0 (I/O)  
TA0CLK  
I: 0; O: 1  
0
0
0
0
0
1
1
1
0
1
0
Internally tied to DVSS  
N/A  
1
0
P7.0/TA0CLK/Sz  
0
0
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P7.1 (I/O)  
I: 0; O: 1  
TA0CCI0B  
0
0
1
1
1
0
1
0
0
0
TA0.0  
1
N/A  
0
P7.1/TA0.0/ACLK/Sz  
1
2
3
Internally tied to DVSS  
1
N/A  
0
ACLK  
1
(2)  
Sz  
X
X
0
X
0
1
0
P7.2 (I/O)  
I: 0; O: 1  
TA0CCI1A  
0
0
1
1
1
0
1
0
0
0
TA0.1  
1
N/A  
0
P7.2/TA0.1/Sz  
Internally tied to DVSS  
1
N/A  
N/A  
0
1
(2)  
Sz  
X
X
0
X
0
1
0
P7.3 (I/O)  
I: 0; O: 1  
TA0CCI2A  
0
1
0
1
0
1
X
0
1
1
0
0
0
TA0.2  
N/A  
P7.3/TA0.2/Sz  
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
(2)  
Sz  
X
X
(1) X = Don't care  
(2) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
106  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-34. Port P7 (P7.4 to P7.7) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL1.x  
P7SEL0.x  
LCDSz  
P7.4 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
0
1
1
1
0
1
0
Internally tied to DVSS  
1
N/A  
0
P7.4/SMCLK/Sz  
P7.5/TA0.2/Sz  
P7.6/TA0.1/Sz  
4
0
0
Internally tied to DVSS  
1
N/A  
0
SMCLK  
1
(2)  
Sz  
X
X
0
X
0
1
0
P7.5 (I/O)  
I: 0; O: 1  
TA0CCI2A  
0
0
1
1
1
0
1
0
0
0
TA0.2  
1
N/A  
0
5
6
7
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P7.6 (I/O)  
I: 0; O: 1  
TA0CCI1A  
0
0
1
1
1
0
1
0
0
0
TA0.1  
1
N/A  
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P7.7 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
TA1.CCI2A  
TA1.2  
P7.7/TA1.2/TB0OUTH/Sz  
TB0OUTH  
1
1
0
1
Internally tied to DVSS  
(2)  
Sz  
X
X
(1) X = Don't care  
(2) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
107  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.13 Port P8 (P8.0 to P8.3) Input/Output With Schmitt Trigger  
For the pin diagram, see 6-2. 6-35 summarizes the selection of the pin function.  
6-35. Port P8 (P8.0 to P8.3) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL1.x  
P8SEL0.x  
LCDSz  
P8.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
1
N/A  
0
P8.0/RTCCLK/Sz  
0
Internally tied to DVSS  
1
N/A  
0
RTCCLK  
1
(2)  
Sz  
X
X
0
0
X
0
1
1
0
0
P8.1 (I/O)  
I: 0; O: 1  
N/A  
0
Internally tied to DVSS  
N/A  
1
0
P8.1/DMAE0/Sz  
1
2
3
1
1
0
1
0
0
Internally tied to DVSS  
DMA0E  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P8.2 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
1
0
1
0
0
0
Internally tied to DVSS  
N/A  
1
0
P8.2/Sz  
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P8.3 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
0
1
X
0
1
1
0
0
0
Internally tied to DVSS  
N/A  
P8.3/MCLK/Sz  
Internally tied to DVSS  
N/A  
1
1
0
1
MCLK  
(2)  
Sz  
X
X
(1) X = Don't care  
(2) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
108  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.14 Port P8 (P8.4 to P8.7) Input/Output With Schmitt Trigger  
6-6 shows the port diagram. 6-36 summarizes the selection of the pin function.  
To ADC  
From ADC  
To Comparator  
From Comparator  
CEPD.x  
Pad Logic  
P8REN.x  
P8DIR.x  
0 0  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P8OUT.x  
DVSS  
DVSS  
P8.4/A7/C7  
P8.5/A6/C6  
P8.6/A5/C5  
P8.7/A4/C4  
DVSS  
P8SEL1.x  
P8SEL0.x  
P8IN.x  
Bus  
Keeper  
NOTE: Functional representation only.  
6-6. Port P8 (P8.4 to P8.7) Diagram  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
109  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-36. Port P8 (P8.4 to P8.7) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL1.x  
P8SEL0.x  
P8.4 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P8.4/A7/C7  
P8.5/A6/C6  
P8.6/A5/C5  
P8.7/A4/C4  
4
0
Internally tied to DVSS  
1
(2) (3)  
A7/C7  
X
1
0
1
0
P8.5 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
5
6
7
0
Internally tied to DVSS  
1
(2) (3)  
A6/C6  
X
1
0
1
0
P8.6 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2) (3)  
A5/C5  
X
1
0
1
0
P8.7 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
Internally tied to DVSS  
N/A  
1
1
0
1
Internally tied to DVSS  
(2) (3)  
A4/C4  
(1) X = Don't care  
(2) Setting P8SEL1.x and P8SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Setting the CEPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPD.x bit.  
110  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.15 Port P9 (P9.0 to P9.3) Input/Output With Schmitt Trigger  
6-7 shows the port diagram. 6-37 summarizes the selection of the pin function.  
To ADC  
From ADC  
To Comparator  
From Comparator  
CEPD.x  
Pad Logic  
P9REN.x  
P9DIR.x  
0 0  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P9OUT.x  
DVSS  
DVSS  
P9.0/A8/C8  
P9.1/A9/C9  
DVSS  
P9.2/A10/C10  
P9.3/A11/C11  
P9SEL1.x  
P9SEL0.x  
P9IN.x  
Bus  
Keeper  
NOTE: Functional representation only.  
6-7. Port P9 (P9.0 to P9.3) Diagram  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
111  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-37. Port P9 (P9.0 to P9.3) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P9.x)  
x
FUNCTION  
P9DIR.x  
P9SEL1.x  
P9SEL0.x  
P9.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
P9.0/A8/C8  
P9.1/A9/C9  
0
Internally tied to DVSS  
N/A(2)  
1
X
1
1
0
0
1
0
(2)(3)  
A8/C8  
X
P9.1 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
2
3
Internally tied to DVSS  
N/A(2)  
1
X
1
1
0
0
1
0
(2)(3)  
A9/C9  
X
P9.2 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
P9.2/A10/C10  
Internally tied to DVSS  
N/A(2)  
1
X
1
1
0
0
1
0
(2)(3)  
A10/C10  
X
P9.3 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
P9.3/A11/C11  
Internally tied to DVSS  
N/A(2)  
X
X
1
1
0
1
(2) (3)  
A11/C11  
(1) X = Don't care  
(2) Setting P9SEL1.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals.  
(3) Setting the CEPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPD.x bit.  
112  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.16 Port P9 (P9.4 to P9.7) Input/Output With Schmitt Trigger  
6-8 shows the port diagram. 6-38 summarizes the selection of the pin function.  
To ADC  
From ADC  
To Comparator  
From Comparator  
CEPD.x  
Pad Logic  
P9REN.x  
P9DIR.x  
0 0  
0 1  
1 0  
1 1  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P9OUT.x  
DVSS  
DVSS  
P9.4/A12/C12  
P9.5/A13/C13  
P9.6/A14/C14  
P9.7/A15/C15  
DVSS  
P9SEL1.x  
P9SEL0.x  
P9IN.x  
Bus  
Keeper  
NOTE: Functional representation only.  
6-8. Port P9 (P9.4 to P9.7) Diagram  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
113  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-38. Port P9 (P9.4 to P9.7) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (P9.x)  
x
FUNCTION  
P9DIR.x  
P9SEL1.x  
P9SEL0.x  
P9.4 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P9.4/A12/C12  
4
0
Internally tied to DVSS  
1
(2) (3)  
A12/C12  
X
1
0
1
0
P9.5 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
P9.5/A13/C13  
P9.6/A14/C14  
5
6
7
0
Internally tied to DVSS  
1
(2) (3)  
A13/C13  
X
1
0
1
0
P9.6 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2) (3)  
A14/C14  
X
1
0
1
0
P9.7 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
Internally tied to DVSS  
N/A  
P9.7/A15/C15  
1
1
0
1
Internally tied to DVSS  
(2) (3)  
A15/C15  
(1) X = Don't care  
(2) Setting P9SEL1.x and P9SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Setting the CEPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPD.x bit.  
114  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.17 Port P10 (P10.0 to P10.2) Input/Output With Schmitt Trigger  
For the pin diagram, see 6-2. 6-39 summarizes the selection of the pin function.  
6-39. Port P10 (P10.0 to P10.2) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
P10DIR.x P10SEL1.x P10SEL0.x  
PIN NAME (P10.x)  
x
FUNCTION  
LCDSz  
P10.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
0
1
0
Internally tied to DVSS  
1
N/A  
0
P10.0/SMCLK/Sz  
0
1
1
0
1
0
0
Internally tied to DVSS  
1
N/A  
0
SMCLK  
1
(2)  
Sz  
X
X
0
X
0
1
0
P10.1 (I/O)  
I: 0; O: 1  
TA0.CCI0B  
0
0
1
1
1
0
1
0
0
0
TA0.0  
1
N/A  
0
P10.1/TA0.0/Sz  
1
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
Sz  
X
X
0
X
0
1
0
P10.2 (I/O)  
TA1.CCI0B  
TA1.0  
I: 0; O: 1  
0
1
0
1
0
1
X
0
1
1
0
0
0
N/A  
P10.2/TA1.0/SMCLK/Sz  
(1) X = Don't care  
2
Internally tied to DVSS  
N/A  
1
1
0
1
SMCLK  
(2)  
Sz  
X
X
(2) The associated LCD segment is package dependent. See the Signal Descriptions tables and Pin Diagrams figures.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
115  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.18 Port PJ (PJ.4 and PJ.5) Input/Output With Schmitt Trigger  
6-9 and 6-10 show the port diagrams. 6-40 summarizes the selection of the pin function.  
Pad Logic  
To LFXT XIN  
PJREN.4  
0 0  
0 1  
1 0  
1 1  
PJDIR.4  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.4  
DVSS  
DVSS  
DVSS  
PJ.4/LFXIN  
PJSEL1.4  
PJSEL0.4  
PJIN.4  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-9. Port PJ (PJ.4) Diagram  
116  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Pad Logic  
To LFXT XOUT  
PJSEL0.4  
PJSEL1.4  
LFXTBYPASS  
PJREN.5  
0 0  
0 1  
1 0  
1 1  
PJDIR.5  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.5  
DVSS  
DVSS  
PJ.5/LFXOUT  
DVSS  
PJSEL1.5  
PJSEL0.5  
PJIN.5  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-10. Port PJ (PJ.5) Diagram  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
117  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-40. Port PJ (PJ.4 and PJ.5) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (PJ.x)  
x
FUNCTION  
PJ.4 (I/O)  
LFXT  
BYPASS  
PJDIR.x  
PJSEL1.5  
PJSEL0.5  
PJSEL1.4  
PJSEL0.4  
I: 0; O: 1  
X
X
0
0
X
N/A  
0
1
X
X
1
X
X
PJ.4/LFXIN  
4
Internally tied to DVSS  
(2)  
LFXIN crystal mode  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
(2)  
LFXIN bypass mode  
0
0
1(3)  
0
PJ.5 (I/O)  
I: 0; O: 1  
0
0
X
X
0
N/A  
0
see(4)  
see(4)  
X
X
0
PJ.5/LFXOUT  
5
1(3)  
0
Internally tied to DVSS  
LFXOUT crystal mode  
1
see(4)  
X
see(4)  
X
X
X
1
1(3)  
0
(2)  
X
(1) X = Don't care  
(2) Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When LFXTBYPASS = 0, PJ.4 and PJ.5 are  
configured for crystal operation and PJSEL1.5 and PJSEL0.5 are don't care. When LFXTBYPASS = 1, PJ.4 is configured for bypass  
operation and PJ.5 is configured as general-purpose I/O.  
(3) When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.  
(4) With PJSEL0.5 = 1 or PJSEL1.5 =1 the general-purpose I/O functionality is disabled. No input function is available. When configured as  
output, the pin is actively pulled to zero.  
118  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.19 Port PJ (PJ.6 and PJ.7) Input/Output With Schmitt Trigger  
6-11 and 6-12 show the port diagrams. 6-41 summarizes the selection of the pin function.  
Pad Logic  
To HFXT XIN  
PJREN.6  
0 0  
0 1  
1 0  
1 1  
PJDIR.6  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.6  
DVSS  
DVSS  
DVSS  
PJ.6/HFXIN  
PJSEL1.6  
PJSEL0.6  
PJIN.6  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-11. Port PJ (PJ.6) Diagram  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
119  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
Pad Logic  
To HFXT XOUT  
PJSEL0.6  
PJSEL1.6  
HFXTBYPASS  
PJREN.7  
0 0  
0 1  
1 0  
1 1  
PJDIR.7  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.7  
DVSS  
DVSS  
DVSS  
PJ.7/HFXOUT  
PJSEL1.7  
PJSEL0.7  
PJIN.7  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
6-12. Port PJ (PJ.7) Diagram  
120  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-41. Port PJ (PJ.6 and PJ.7) Pin Functions  
(1)  
CONTROL BITS AND SIGNALS  
PIN NAME (PJ.x)  
x
FUNCTION  
PJ.6 (I/O)  
HFXT  
BYPASS  
PJDIR.x  
PJSEL1.7  
PJSEL0.7  
PJSEL1.6  
PJSEL0.6  
I: 0; O: 1  
X
X
0
0
X
N/A  
0
1
X
X
1
X
X
PJ.6/HFXIN  
6
Internally tied to DVSS  
(2)  
HFXIN crystal mode  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
(2)  
HFXIN bypass mode  
0
0
1(3)  
0
PJ.7 (I/O)  
I: 0; O: 1  
0
0
X
X
0
N/A  
0
see(4)  
see(4)  
X
X
0
PJ.7/HFXOUT  
7
1(3)  
0
Internally tied to DVSS  
HFXOUT crystal mode  
1
see(4)  
X
see(4)  
X
X
X
1
1(3)  
0
(2)  
X
(1) X = Don't care  
(2) Setting PJSEL1.6 = 0 and PJSEL0.6 = 1 causes the general-purpose I/O to be disabled. When HFXTBYPASS = 0, PJ.6 and PJ.7 are  
configured for crystal operation and PJSEL1.6 and PJSEL0.7 are don't care. When HFXTBYPASS = 1, PJ.6 is configured for bypass  
operation and PJ.7 is configured as general-purpose I/O.  
(3) When PJ.6 is configured in bypass mode, PJ.7 is configured as general-purpose I/O.  
(4) With PJSEL0.7 = 1 or PJSEL1.7 =1 the general-purpose I/O functionality is disabled. No input function is available. When configured as  
output, the pin is actively pulled to zero.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
121  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.11.23.20 Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt  
Trigger  
6-13 shows the port diagram. 6-42 summarizes the selection of the pin function.  
Pad Logic  
DVSS  
JTAG enable  
From JTAG  
From JTAG  
PJREN.x  
0 0  
0 1  
1 0  
1 1  
PJDIR.x  
1
0
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.x  
From module 1  
1
0
From Status Register (SR)  
DVSS  
PJ.0/TDO/TB0OUTH/  
SMCLK SRSCG1  
PJ.1/TDI/TCLK/MCLK/  
SRSCG0  
PJ.2/TMS/ACLK/  
SROSCOFF  
PJSEL1.x  
PJSEL0.x  
PJIN.x  
PJ.3/TCK/COUT/  
SRCPUOFF  
Bus  
Keeper  
EN  
D
To modules  
and JTAG  
NOTE: Functional representation only.  
6-13. Port PJ (PJ.0 to PJ.3) Diagram  
122  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-42. Port PJ (PJ.0 to PJ.3) Pin Functions  
(1)  
CONTROL BITS OR SIGNALS  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJSEL1.x  
PJSEL0.x  
(2)  
PJ.0 (I/O)  
I: 0; O: 1  
0
0
(3)  
TDO  
X
X
X
TB0OUTH  
SMCLK(4)  
N/A  
0
0
1
1
1
0
1
1
PJ.0/TDO/TB0OUTH/  
SMCLK/SRSCG1  
0
0
CPU Status Register Bit SCG1  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
PJ.1 (I/O)  
I: 0; O: 1  
0
0
(3) (5)  
TDI/TCLK  
X
X
X
N/A  
0
0
1
1
1
0
1
MCLK  
1
PJ.1/TDI/TCLK/  
MCLK/SRSCG0  
1
2
3
N/A  
0
CPU Status Register Bit SCG0  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
PJ.2 (I/O)  
I: 0; O: 1  
0
0
(3) (5)  
TMS  
X
X
X
N/A  
0
0
1
1
1
0
1
ACLK  
1
PJ.2/TMS/ACLK/  
SROSCOFF  
N/A  
0
CPU Status Register Bit OSCOFF  
N/A  
1
0
Internally tied to DVSS  
1
(2)  
PJ.3 (I/O)  
I: 0; O: 1  
0
0
(3) (5)  
TCK  
X
0
1
0
1
0
1
X
X
N/A  
0
1
1
1
0
1
COUT  
PJ.3/TCK/COUT/  
SRCPUOFF  
N/A  
CPU Status Register Bit CPUOFF  
N/A  
Internally tied to DVSS  
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module. JTAG mode selection is made through the SYS module or by the Spy-Bi-Wire 4-wire  
entry sequence. Neither PJSEL1.x and PJSEL0.x nor CEPD.x bits have an effect in these cases.  
(4) Do not use this pin as SMCLK output if the TB0OUTH functionality is used on any other pin. Select an alternative SMCLK output pin.  
(5) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
123  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.12 Device Descriptors (TLV)  
6-43 summarizes the Device IDs. 6-44 lists the contents of the device descriptor tag-length-value  
(TLV) structure for each device type.  
6-43. Device ID  
DEVICE ID  
DEVICE  
01A05h  
081h  
081h  
081h  
081h  
081h  
081h  
01A04h  
0AEh  
0ACh  
0B3h  
0B2h  
0AEh  
0B2h  
MSP430FR6979  
MSP430FR6977  
MSP430FR6928  
MSP430FR6927  
MSP430FR69791  
MSP430FR69271  
6-44. Device Descriptor Table(1)  
MSP430FRxxxx (UART BSL)  
MSP430FRxxxx1 (I2C BSL)  
DESCRIPTION  
Info length  
ADDRESS  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
VALUE  
06h  
ADDRESS  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
VALUE  
06h  
CRC length  
06h  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
CRC value  
Info Block  
Device ID  
Device ID  
See 6-43.  
See 6-43.  
Hardware revision  
Firmware revision  
Die record tag  
Die record length  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
0Ah  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot/wafer ID  
Die Record  
Die X position  
Die Y position  
Test results  
(1) NA = Not applicable  
Per unit = Content can differ from device to device  
124  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-44. Device Descriptor Table(1) (continued)  
MSP430FRxxxx (UART BSL)  
MSP430FRxxxx1 (I2C BSL)  
DESCRIPTION  
ADDRESS  
01A14h  
01A15h  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
01A26h  
01A27h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
VALUE  
11h  
ADDRESS  
01A14h  
01A15h  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
01A26h  
01A27h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
VALUE  
11h  
ADC12B calibration tag  
ADC12B calibration length  
ADC gain factor(2)  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
ADC offset(3)  
ADC 1.2-V reference  
Temperature sensor 30°C  
ADC12B  
Calibration  
ADC 1.2-V reference  
Temperature sensor 85°C  
ADC 2.0-V reference  
Temperature sensor 30°C  
ADC 2.0-V reference  
Temperature sensor 85°C  
ADC 2.5-V reference  
Temperature sensor 30°C  
ADC 2.5-V reference  
Temperature sensor 85°C  
REF calibration tag  
REF calibration length  
06h  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
REF 1.2-V reference  
REF 2.0-V reference  
REF 2.5-V reference  
REF Calibration  
(2) ADC gain: The gain correction factor is measured using the internal voltage reference with REFOUT = 0. Other settings (for example,  
with REFOUT = 1) can result in different correction factors.  
(3) ADC offset: The offset correction factor is measured using the internal 2.5-V reference.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
125  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-44. Device Descriptor Table(1) (continued)  
MSP430FRxxxx (UART BSL)  
MSP430FRxxxx1 (I2C BSL)  
DESCRIPTION  
ADDRESS  
01A2Eh  
01A2Fh  
01A30h  
01A31h  
01A32h  
01A33h  
01A34h  
01A35h  
01A36h  
01A37h  
01A38h  
01A39h  
01A3Ah  
01A3Bh  
01A3Ch  
01A3Dh  
01A3Eh  
01A3Fh  
01A40h  
01A41h  
01A42h  
01A43h  
VALUE  
15h  
ADDRESS  
01A2Eh  
01A2Fh  
01A30h  
01A31h  
01A32h  
01A33h  
01A34h  
01A35h  
01A36h  
01A37h  
01A38h  
01A39h  
01A3Ah  
01A3Bh  
01A3Ch  
01A3Dh  
01A3Eh  
01A3Fh  
01A40h  
01A41h  
01A42h  
01A43h  
VALUE  
15h  
128-bit random number tag  
Random number length  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
1Ch  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
1Ch  
Random Number  
128-bit random number(4)  
BSL tag  
BSL length  
02h  
02h  
BSL Configuration  
BSL interface  
00h  
01h  
BSL interface configuration  
00h  
48h  
(4) 128-bit random number: The random number is generated during production test using the CryptGenRandom() function from Microsoft®.  
126  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.13 Memory  
6-45 summarizes the memory map.  
6-45. Memory Organization(1)  
MSP430FRxxx9(1)  
MSP430FRxxx8(1)  
MSP430FRxxx7(1)  
Memory (FRAM)  
Main: interrupt vectors  
and signatures  
127KB  
00FFFFh–00FF80h  
023FFFh–004400h  
95KB  
00FFFFh–00FF80h  
01BFFFh–004400h  
63KB  
00FFFFh–00FF80h  
013FFFh–004400h  
Total Size  
Sect 1  
Main: code memory  
2KB  
2KB  
2KB  
RAM  
0023FFh–001C00h  
0023FFh–001C00h  
0023FFh–001C00h  
256 B  
001BFFh–001B00h  
256 B  
001BFFh–001B00h  
256 B  
001BFFh–001B00h  
Boot memory (ROM)  
Device Descriptor Info  
(TLV)  
256 B  
001AFFh–001A00h  
256 B  
001AFFh–001A00h  
256 B  
001AFFh–001A00h  
128 B  
0019FFh–001980h  
128 B  
0019FFh–001980h  
128 B  
0019FFh–001980h  
Info A  
Info B  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
128 B  
00197Fh–001900h  
128 B  
00197Fh–001900h  
128 B  
00197Fh–001900h  
Information memory  
(FRAM)  
128 B  
0018FFh–001880h  
128 B  
0018FFh–001880h  
128 B  
0018FFh–001880h  
128 B  
00187Fh–001800h  
128 B  
00187Fh–001800h  
128 B  
00187Fh–001800h  
512 B  
0017FFh–001600h  
512 B  
0017FFh–001600h  
512 B  
0017FFh–001600h  
512 B  
0015FFh–001400h  
512 B  
0015FFh–001400h  
512 B  
0015FFh–001400h  
Bootloader (BSL)  
memory (ROM)  
512 B  
0013FFh–001200h  
512 B  
0013FFh–001200h  
512 B  
0013FFh–001200h  
512 B  
0011FFh–001000h  
512 B  
0011FFh–001000h  
512 B  
0011FFh–001000h  
4KB  
4KB  
4KB  
Peripherals  
Tiny RAM  
000FFFh–000020h  
000FFFh–000020h  
000FFFh–000020h  
26 B  
26 B  
26 B  
Size  
000001Fh–000006h  
000001Fh–000006h  
000001Fh–000006h  
Reserved  
(Read Only)  
6 B  
6 B  
6 B  
Size  
000005h–000000h  
000005h–000000h  
000005h–000000h  
(1) All address space not listed is considered vacant memory.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
127  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6.13.1 Peripheral File Map  
6-46 lists the base address for each available peripheral. 6-47 through 6-81 list the registers and  
their offsets for each peripheral.  
6-46. Peripherals  
OFFSET ADDRESS  
MODULE NAME  
BASE ADDRESS  
RANGE  
Special Functions (see 6-47)  
PMM (see 6-48)  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
0200h  
0220h  
0240h  
0260h  
0280h  
0320h  
0340h  
0380h  
03C0h  
0400h  
0430h  
0440h  
0470h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
05A0h  
05C0h  
05E0h  
0640h  
0680h  
0800h  
08C0h  
0980h  
09C0h  
0A00h  
000h–01Fh  
000h–01Fh  
000h–00Fh  
000h–007h  
000h–001h  
000h–001h  
000h–00Fh  
000h–01Fh  
000h–001h  
000h–01Fh  
000h–01Fh  
000h–01Fh  
000h–01Fh  
000h–01Fh  
000h–01Fh  
000h–02Fh  
000h–02Fh  
000h–02Fh  
000h–02Fh  
000h–00Fh  
000h–02Fh  
000h–00Fh  
000h–01Fh  
000h–02Fh  
000h–00Fh  
000h–00Fh  
000h–00Fh  
000h–00Fh  
000h–00Fh  
000h–01Fh  
000h–01Fh  
000h–02Fh  
000h–02Fh  
000h–09Fh  
000h–00Fh  
000h–02Fh  
000h–00Fh  
000h–05Fh  
FRAM Control (see 6-49)  
CRC16 (see 6-50)  
RAM Controller (see 6-51)  
Watchdog Timer (see 6-52)  
CS (see 6-53)  
SYS (see 6-54)  
Shared Reference (see 6-55)  
Port P1, P2 (see 6-56)  
Port P3, P4 (see 6-57)  
Port P5, P6 (see 6-58)  
Port P7, P8 (see 6-59)  
Port P9, P10 (see 6-60)  
Port PJ (see 6-61)  
Timer_A TA0 (see 6-62)  
Timer_A TA1 (see 6-63)  
Timer_B TB0 (see 6-64)  
Timer_A TA2 (see 6-65)  
Capacitive Touch I/O 0 (see 6-66)  
Timer_A TA3 (see 6-67)  
Capacitive Touch I/O 1 (see 6-68)  
Real-Time Clock (RTC_C) (see 6-69)  
32-Bit Hardware Multiplier (see 6-70)  
DMA General Control (see 6-71)  
DMA Channel 0 (see 6-71)  
DMA Channel 1 (see 6-71)  
DMA Channel 2 (see 6-71)  
MPU (see 6-72)  
eUSCI_A0 (see 6-73)  
eUSCI_A1 (see 6-74)  
eUSCI_B0 (see 6-75)  
eUSCI_B1 (see 6-76)  
ADC12_B (see 6-77)  
Comparator_E (see 6-78)  
CRC32 (see 6-79)  
AES (see 6-80)  
LCD_C (see 6-81)  
128  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-47. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
OFFSET  
OFFSET  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
6-48. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMM control 0  
PMM interrupt flags  
PM5 control 0  
PMMCTL0  
PMMIFG  
00h  
0Ah  
10h  
PM5CTL0  
6-49. FRAM Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
FRCTL0  
FRAM control 0  
General control 0  
General control 1  
00h  
04h  
06h  
GCCTL0  
GCCTL1  
6-50. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC16DI  
CRC data input  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
6-51. RAM Controller Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
RCCTL0  
OFFSET  
OFFSET  
OFFSET  
RAM controller control 0  
Watchdog timer control  
00h  
00h  
6-52. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
WDTCTL  
6-53. CS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
CS control 0  
CS control 1  
CS control 2  
CS control 3  
CS control 4  
CS control 5  
CS control 6  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
6-54. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
System control  
SYSCTL  
00h  
06h  
JTAG mailbox control  
SYSJMBC  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
129  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-54. SYS Registers (Base Address: 0180h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
SYSJMBI0  
OFFSET  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
User NMI vector generator  
08h  
0Ah  
0Ch  
0Eh  
1Ah  
1Ch  
1Eh  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSUNIV  
System NMI vector generator  
Reset vector generator  
SYSSNIV  
SYSRSTIV  
6-55. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
REFCTL  
OFFSET  
OFFSET  
Shared reference control  
00h  
6-56. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
Port P1 direction  
Port P1 resistor enable  
Port P1 selection 0  
Port P1 selection 1  
Port P1 interrupt vector word  
P1SEL0  
P1SEL1  
P1IV  
Port P1 complement selection  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1SELC  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2SEL1  
P2SELC  
P2IV  
Port P2 direction  
Port P2 resistor enable  
Port P2 selection 0  
Port P2 selection 1  
Port P2 complement selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
6-57. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
Port P3 direction  
Port P3 resistor enable  
Port P3 selection 0  
Port P3 selection 1  
Port P3 interrupt vector word  
P3SEL0  
P3SEL1  
P3IV  
130  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-57. Port P3, P4 Registers (Base Address: 0220h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
P3SELC  
OFFSET  
Port P3 complement selection  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
Port P4 input  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
P3IES  
P3IE  
P3IFG  
P4IN  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4SEL0  
P4SEL1  
P4SELC  
P4IV  
Port P4 direction  
Port P4 resistor enable  
Port P4 selection 0  
Port P4 selection 1  
Port P4 complement selection  
Port P4 interrupt vector word  
Port P4 interrupt edge select  
Port P4 interrupt enable  
Port P4 interrupt flag  
P4IES  
P4IE  
P4IFG  
6-58. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P5 output  
Port P5 direction  
Port P5 resistor enable  
Port P5 selection 0  
Port P5 selection 1  
Reserved  
P5OUT  
P5DIR  
P5REN  
P5SEL0  
P5SEL1  
Port P5 complement selection  
Reserved  
P5SELC  
Reserved  
Reserved  
Port P6 input  
P6IN  
Port P6 output  
Port P6 direction  
Port P6 resistor enable  
Port P6 selection 0  
Port P6 selection 1  
Port P6 complement selection  
Reserved  
P6OUT  
P6DIR  
P6REN  
P6SEL0  
P6SEL1  
P6SELC  
Reserved  
Reserved  
Reserved  
6-59. Port P7, P8 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P7 input  
P7IN  
00h  
02h  
04h  
06h  
Port P7 output  
P7OUT  
P7DIR  
P7REN  
Port P7 direction  
Port P7 resistor enable  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
131  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-59. Port P7, P8 Registers (Base Address: 0260h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
P7SEL0  
OFFSET  
Port P7 selection 0  
Port P7 selection 1  
Reserved  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
P7SEL1  
Port P7 complement selection  
Reserved  
P7SELC  
Reserved  
Reserved  
Port P8 input  
P8IN  
Port P8 output  
Port P8 direction  
Port P8 resistor enable  
Port P8 selection 0  
Port P8 selection 1  
Port P8 complement selection  
Reserved  
P8OUT  
P8DIR  
P8REN  
P8SEL0  
P8SEL1  
P8SELC  
Reserved  
Reserved  
Reserved  
6-60. Port P9, P10 Registers (Base Address: 0280h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P9 input  
P9IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P9 output  
P9OUT  
P9DIR  
P9REN  
Port P9 direction  
Port P9 resistor enable  
Port P9 selection 0  
Port P9 selection 1  
Reserved  
P9SEL0  
P9SEL1  
Port P9 complement selection  
Reserved  
P9SELC  
Reserved  
Reserved  
Port P10 input  
P10IN  
Port P10 output  
Port P10 direction  
Port P10 resistor enable  
Port P10 selection 0  
Port P10 selection 1  
Port P10 complement selection  
Reserved  
P10OUT  
P10DIR  
P10REN  
P10SEL0  
P10SEL1  
P10SELC  
Reserved  
Reserved  
Reserved  
132  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-61. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
16h  
Port PJ output  
PJOUT  
PJDIR  
Port PJ direction  
Port PJ resistor enable  
Port PJ selection 0  
Port PJ selection 1  
Port PJ complement selection  
PJREN  
PJSEL0  
PJSEL1  
PJSELC  
6-62. Timer_A TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
TA0CTL  
OFFSET  
TA0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
TA0 interrupt vector  
TA0IV  
6-63. Timer_A TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
TA1CTL  
OFFSET  
TA1 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1 interrupt vector  
TA1IV  
6-64. Timer_B TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
TB0CTL  
OFFSET  
TB0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
133  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-64. Timer_B TB0 Registers (Base Address: 03C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
TB0CCTL5  
OFFSET  
Capture/compare control 5  
Capture/compare control 6  
TB0 counter  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
TB0CCTL6  
TB0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
TB0 interrupt vector  
TB0IV  
6-65. Timer_A TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
TA2CTL  
OFFSET  
TA2 control  
00h  
02h  
04h  
10h  
12h  
14h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
TA2 counter  
TA2CCTL0  
TA2CCTL1  
TA2R  
Capture/compare 0  
Capture/compare 1  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2EX0  
TA2IV  
TA2 interrupt vector  
6-66. Capacitive Touch I/O 0 Registers (Base Address: 0430h)  
REGISTER DESCRIPTION  
Capacitive Touch I/O 0 control  
REGISTER  
CAPTIO0CTL  
OFFSET  
OFFSET  
0Eh  
6-67. Timer_A TA3 Registers (Base Address: 0440h)  
REGISTER DESCRIPTION  
REGISTER  
TA3CTL  
TA3 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA3 counter  
TA3CCTL0  
TA3CCTL1  
TA3CCTL2  
TA3CCTL3  
TA3CCTL4  
TA3R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
TA3 expansion 0  
TA3CCR0  
TA3CCR1  
TA3CCR2  
TA3CCR3  
TA3CCR4  
TA3EX0  
TA3 interrupt vector  
TA3IV  
134  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-68. Capacitive Touch I/O 1 Registers (Base Address: 0470h)  
REGISTER DESCRIPTION  
REGISTER  
CAPTIO1CTL  
OFFSET  
OFFSET  
Capacitive Touch I/O 1 control  
0Eh  
6-69. RTC_C Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
RTC control 0  
00h  
01h  
02h  
03h  
04h  
06h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Eh  
RTC password  
RTCPWD  
RTC control 1  
RTCCTL1  
RTC control 3  
RTCCTL3  
RTC offset calibration  
RTC temperature compensation  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTCOCAL  
RTCTCMP  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTC prescaler 1  
RTCPS1  
RTC interrupt vector word  
RTC seconds/counter 1  
RTC minutes/counter 2  
RTC hours/counter 3  
RTC day of week/counter 4  
RTC days  
RTCIV  
RTCSEC/RTCNT1  
RTCMIN/RTCNT2  
RTCHOUR/RTCNT3  
RTCDOW/RTCNT4  
RTCDAY  
RTC month  
RTCMON  
RTC year  
RTCYEAR  
RTC alarm minutes  
RTC alarm hours  
RTCAMIN  
RTCAHOUR  
RTCADOW  
RTCADAY  
RTC alarm day of week  
RTC alarm days  
Binary-to-BCD conversion  
BCD-to-Binary conversion  
BIN2BCD  
BCD2BIN  
6-70. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
16-bit operand 1 – signed multiply  
MPYS  
MAC  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
135  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-70. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2L  
OP2H  
RES0  
RES1  
RES2  
RES3  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
32 × 32 result 2  
32 × 32 result 3 – most significant word  
MPY32 control 0  
MPY32CTL0  
6-71. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)  
REGISTER DESCRIPTION  
REGISTER  
DMA0CTL  
OFFSET  
DMA channel 0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Eh  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA module control 0  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA module control 1  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
6-72. MPU Control Registers (Base Address: 05A0h)  
REGISTER DESCRIPTION  
REGISTER  
MPUCTL0  
OFFSET  
MPU control 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
MPU control 1  
MPUCTL1  
MPU segmentation border 2  
MPU segmentation border 1  
MPU access management  
MPU IP control 0  
MPUSEGB2  
MPUSEGB1  
MPUSAM  
MPUIPC0  
MPU IP encapsulation segment border 2  
MPU IP encapsulation segment border 1  
MPUIPSEGB2  
MPUIPSEGB1  
136  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-73. eUSCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
UCA0CTLW0  
UCA0CTLW1  
UCA0BR0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
eUSCI_A baud rate 1  
UCA0BR1  
eUSCI_A modulation control  
eUSCI_A status word  
UCA0MCTLW  
UCA0STATW  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
UCA0IFG  
UCA0IV  
6-74. eUSCI_A1 Registers (Base Address:05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA1CTLW0  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA1CTLW1  
UCA1BR0  
eUSCI_A baud rate 1  
UCA1BR1  
eUSCI_A modulation control  
eUSCI_A status word  
UCA1MCTLW  
UCA1STATW  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
UCA1IFG  
UCA1IV  
6-75. eUSCI_B0 Registers (Base Address: 0640h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTLW0  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
UCB0CTLW1  
UCB0BR0  
eUSCI_B bit rate 1  
UCB0BR1  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B received address  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
137  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-75. eUSCI_B0 Registers (Base Address: 0640h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
OFFSET  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB0IFG  
eUSCI_B interrupt vector word  
UCB0IV  
6-76. eUSCI_B1 Registers (Base Address: 0680h)  
REGISTER DESCRIPTION  
REGISTER  
UCB1CTLW0  
OFFSET  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB1CTLW1  
UCB1BR0  
eUSCI_B bit rate 1  
UCB1BR1  
eUSCI_B status word  
UCB1STATW  
UCB1TBCNT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA0  
UCB1I2COA1  
UCB1I2COA2  
UCB1I2COA3  
UCB1ADDRX  
UCB1ADDMASK  
UCB1I2CSA  
UCB1IE  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B received address  
eUSCI_B address mask  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
eUSCI_B interrupt vector word  
UCB1IFG  
UCB1IV  
6-77. ADC12_B Registers (Base Address: 0800h)  
REGISTER DESCRIPTION  
REGISTER  
ADC12CTL0  
OFFSET  
ADC12_B control 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
20h  
22h  
24h  
26h  
28h  
ADC12_B control 1  
ADC12CTL1  
ADC12CTL2  
ADC12CTL3  
ADC12LO  
ADC12_B control 2  
ADC12_B control 3  
ADC12_B window comparator low threshold  
ADC12_B window comparator high threshold  
ADC12_B interrupt flag 0  
ADC12_B Interrupt flag 1  
ADC12_B interrupt flag 2  
ADC12_B interrupt enable 0  
ADC12_B interrupt enable 1  
ADC12_B interrupt enable 2  
ADC12_B interrupt vector  
ADC12_B memory control 0  
ADC12_B memory control 1  
ADC12_B memory control 2  
ADC12_B memory control 3  
ADC12_B memory control 4  
ADC12HI  
ADC12IFGR0  
ADC12IFGR1  
ADC12IFGR2  
ADC12IER0  
ADC12IER1  
ADC12IER2  
ADC12IV  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
138  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-77. ADC12_B Registers (Base Address: 0800h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
ADC12MCTL5  
OFFSET  
ADC12_B memory control 5  
ADC12_B memory control 6  
ADC12_B memory control 7  
ADC12_B memory control 8  
ADC12_B memory control 9  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
4Eh  
50h  
52h  
54h  
56h  
58h  
5Ah  
5Ch  
5Eh  
60h  
62h  
64h  
66h  
68h  
6Ah  
6Ch  
6Eh  
70h  
72h  
74h  
76h  
78h  
7Ah  
7Ch  
7Eh  
80h  
82h  
84h  
86h  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MCTL16  
ADC12MCTL17  
ADC12MCTL18  
ADC12MCTL19  
ADC12MCTL20  
ADC12MCTL21  
ADC12MCTL22  
ADC12MCTL23  
ADC12MCTL24  
ADC12MCTL25  
ADC12MCTL26  
ADC12MCTL27  
ADC12MCTL28  
ADC12MCTL29  
ADC12MCTL30  
ADC12MCTL31  
ADC12MEM0  
ADC12MEM1  
ADC12MEM2  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
ADC12MEM16  
ADC12MEM17  
ADC12MEM18  
ADC12MEM19  
ADC12_B memory control 10  
ADC12_B memory control 11  
ADC12_B memory control 12  
ADC12_B memory control 13  
ADC12_B memory control 14  
ADC12_B memory control 15  
ADC12_B memory control 16  
ADC12_B memory control 17  
ADC12_B memory control 18  
ADC12_B memory control 19  
ADC12_B memory control 20  
ADC12_B memory control 21  
ADC12_B memory control 22  
ADC12_B memory control 23  
ADC12_B memory control 24  
ADC12_B memory control 25  
ADC12_B memory control 26  
ADC12_B memory control 27  
ADC12_B memory control 28  
ADC12_B memory control 29  
ADC12_B memory control 30  
ADC12_B memory control 31  
ADC12_B memory 0  
ADC12_B memory 1  
ADC12_B memory 2  
ADC12_B memory 3  
ADC12_B memory 4  
ADC12_B memory 5  
ADC12_B memory 6  
ADC12_B memory 7  
ADC12_B memory 8  
ADC12_B memory 9  
ADC12_B memory 10  
ADC12_B memory 11  
ADC12_B memory 12  
ADC12_B memory 13  
ADC12_B memory 14  
ADC12_B memory 15  
ADC12_B memory 16  
ADC12_B memory 17  
ADC12_B memory 18  
ADC12_B memory 19  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
139  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-77. ADC12_B Registers (Base Address: 0800h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
ADC12MEM20  
OFFSET  
ADC12_B memory 20  
ADC12_B memory 21  
ADC12_B memory 22  
ADC12_B memory 23  
ADC12_B memory 24  
ADC12_B memory 25  
ADC12_B memory 26  
ADC12_B memory 27  
ADC12_B memory 28  
ADC12_B memory 29  
ADC12_B memory 30  
ADC12_B memory 31  
88h  
8Ah  
8Ch  
8Eh  
90h  
92h  
94h  
96h  
98h  
9Ah  
9Ch  
9Eh  
ADC12MEM21  
ADC12MEM22  
ADC12MEM23  
ADC12MEM24  
ADC12MEM25  
ADC12MEM26  
ADC12MEM27  
ADC12MEM28  
ADC12MEM29  
ADC12MEM30  
ADC12MEM31  
6-78. Comparator_E Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
CECTL0  
OFFSET  
Comparator control 0  
Comparator control 1  
Comparator control 2  
Comparator control 3  
Comparator interrupt  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
CECTL1  
CECTL2  
CECTL3  
CEINT  
Comparator interrupt vector word  
CEIV  
6-79. CRC32 Registers (Base Address: 0980h)  
REGISTER DESCRIPTION  
REGISTER  
CRC32DIW0  
OFFSET  
CRC32 data input  
Reserved  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
Reserved  
CRC32 data input reverse  
CRC32 initialization and result word 0  
CRC32 initialization and result word 1  
CRC32 result reverse word 1  
CRC32 result reverse word 0  
CRC16 data input  
Reserved  
CRC32DIRBW0  
CRC32INIRESW0  
CRC32INIRESW1  
CRC32RESRW1  
CRC32RESRW1  
CRC16DIW0  
Reserved  
CRC16 data input reverse  
CRC16 initialization and result word 0  
Reserved  
CRC16DIRBW0  
CRC16INIRESW0  
Reserved  
CRC16 result reverse word 0  
Reserved  
CRC16RESRW1  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
140  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-79. CRC32 Registers (Base Address: 0980h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
Reserved  
2Eh  
6-80. AES Accelerator Registers (Base Address: 09C0h)  
REGISTER DESCRIPTION  
REGISTER  
AESACTL0  
AES accelerator control 0  
AES accelerator control 1  
AES accelerator status  
AES accelerator key  
00h  
AESACTL1  
AESASTAT  
AESAKEY  
AESADIN  
02h  
04h  
06h  
AES accelerator data in  
AES accelerator data out  
008h  
00Ah  
00Ch  
00Eh  
AESADOUT  
AESAXDIN  
AESAXIN  
AES accelerator XORed data in  
AES accelerator XORed data in (no trigger)  
6-81. LCD_C Registers (Base Address: 0A00h)  
REGISTER DESCRIPTION  
REGISTER  
LCDCCTL0  
OFFSET  
LCD_C control 0  
000h  
002h  
004h  
006h  
008h  
00Ah  
00Ch  
00Eh  
012h  
01Eh  
LCD_C control 1  
LCDCCTL1  
LCDCBLKCTL  
LCDCMEMCTL  
LCDCVCTL  
LCDCPCTL0  
LCDCPCTL1  
LCDCPCTL2  
LCDCCPCTL  
LCDCIV  
LCD_C blinking control  
LCD_C memory control  
LCD_C voltage control  
LCD_C port control 0  
LCD_C port control 1  
LCD_C port control 2  
LCD_C charge pump control  
LCD_C interrupt vector  
Static and 2 to 4 mux modes  
LCD_C memory 1  
LCDM1  
LCDM2  
LCDM3  
LCDM4  
LCDM5  
LCDM6  
LCDM7  
LCDM8  
LCDM9  
LCDM10  
LCDM11  
LCDM12  
LCDM13  
LCDM14  
LCDM15  
LCDM16  
LCDM17  
LCDM18  
LCDM19  
LCDM20  
LCDM21  
020h  
021h  
022h  
023h  
024h  
025h  
026h  
027h  
028h  
029h  
02Ah  
02Bh  
02Ch  
02Dh  
02Eh  
02Fh  
030h  
031h  
032h  
033h  
034h  
LCD_C memory 2  
LCD_C memory 3  
LCD_C memory 4  
LCD_C memory 5  
LCD_C memory 6  
LCD_C memory 7  
LCD_C memory 8  
LCD_C memory 9  
LCD_C memory 10  
LCD_C memory 11  
LCD_C memory 12  
LCD_C memory 13  
LCD_C memory 14  
LCD_C memory 15  
LCD_C memory 16  
LCD_C memory 17  
LCD_C memory 18  
LCD_C memory 19  
LCD_C memory 20  
LCD_C memory 21  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
141  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-81. LCD_C Registers (Base Address: 0A00h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
LCDM22  
OFFSET  
LCD_C memory 22  
035h  
036h  
037h  
040h  
041h  
042h  
043h  
044h  
045h  
046h  
047h  
048h  
049h  
04Ah  
04Bh  
04Ch  
04Dh  
04Eh  
04Fh  
050h  
051h  
052h  
053h  
054h  
055h  
056h  
057h  
Reserved  
Reserved  
LCD_C blinking memory 1  
LCD_C blinking memory 2  
LCD_C blinking memory 3  
LCD_C blinking memory 4  
LCD_C blinking memory 5  
LCD_C blinking memory 6  
LCD_C blinking memory 7  
LCD_C blinking memory 8  
LCD_C blinking memory 9  
LCD_C blinking memory 10  
LCD_C blinking memory 11  
LCD_C blinking memory 12  
LCD_C blinking memory 13  
LCD_C blinking memory 14  
LCD_C blinking memory 15  
LCD_C blinking memory 16  
LCD_C blinking memory 17  
LCD_C blinking memory 18  
LCD_C blinking memory 19  
LCD_C blinking memory 20  
LCD_C blinking memory 21  
LCD_C blinking memory 22  
Reserved  
LCDBM1  
LCDBM2  
LCDBM3  
LCDBM4  
LCDBM5  
LCDBM6  
LCDBM7  
LCDBM8  
LCDBM9  
LCDBM10  
LCDBM11  
LCDBM12  
LCDBM13  
LCDBM14  
LCDBM15  
LCDBM16  
LCDBM17  
LCDBM18  
LCDBM19  
LCDBM20  
LCDBM21  
LCDBM22  
Reserved  
5 to 8 mux modes  
LCD_C memory 1  
LCDM1  
LCDM2  
LCDM3  
LCDM4  
LCDM5  
LCDM6  
LCDM7  
LCDM8  
LCDM9  
LCDM10  
LCDM11  
LCDM12  
LCDM13  
LCDM14  
LCDM15  
LCDM16  
LCDM17  
LCDM18  
LCDM19  
020h  
021h  
022h  
023h  
024h  
025h  
026h  
027h  
028h  
029h  
02Ah  
02Bh  
02Ch  
02Dh  
02Eh  
02Fh  
030h  
031h  
032h  
LCD_C memory 2  
LCD_C memory 3  
LCD_C memory 4  
LCD_C memory 5  
LCD_C memory 6  
LCD_C memory 7  
LCD_C memory 8  
LCD_C memory 9  
LCD_C memory 10  
LCD_C memory 11  
LCD_C memory 12  
LCD_C memory 13  
LCD_C memory 14  
LCD_C memory 15  
LCD_C memory 16  
LCD_C memory 17  
LCD_C memory 18  
LCD_C memory 19  
142  
Detailed Description  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
6-81. LCD_C Registers (Base Address: 0A00h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
LCDM20  
OFFSET  
LCD_C memory 20  
LCD_C memory 21  
LCD_C memory 22  
LCD_C memory 23  
LCD_C memory 24  
LCD_C memory 25  
LCD_C memory 26  
LCD_C memory 27  
LCD_C memory 28  
LCD_C memory 29  
LCD_C memory 30  
LCD_C memory 31  
LCD_C memory 32  
LCD_C memory 33  
LCD_C memory 34  
LCD_C memory 35  
LCD_C memory 36  
LCD_C memory 37  
LCD_C memory 38  
LCD_C memory 39  
LCD_C memory 40  
LCD_C memory 41  
LCD_C memory 42  
LCD_C memory 43  
033h  
034h  
035h  
036h  
037h  
038h  
039h  
03Ah  
03Bh  
03Ch  
03Dh  
03Eh  
03Fh  
040h  
041h  
042h  
043h  
044h  
045h  
046h  
047h  
048h  
049h  
04Ah  
LCDM21  
LCDM22  
LCDM23  
LCDM24  
LCDM25  
LCDM26  
LCDM27  
LCDM28  
LCDM29  
LCDM30  
LCDM31  
LCDM32  
LCDM33  
LCDM34  
LCDM35  
LCDM36  
LCDM37  
LCDM38  
LCDM39  
LCDM40  
LCDM41  
LCDM42  
LCDM43  
6.14 Identification  
6.14.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The  
device-specific errata sheet describes these markings. For links to all of the errata sheets for the devices  
in this data sheet, see 8.4.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Hardware Revision" entries in 6.12.  
6.14.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific  
errata sheet describes these markings. For links to all of the errata sheets for the devices in this data  
sheet, see 8.4.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Device ID" entries in 6.12.  
6.14.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in  
detail in MSP430 Programming With the JTAG Interface.  
版权 © 2014–2018, Texas Instruments Incorporated  
Detailed Description  
143  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
7 Applications, Implementation, and Layout  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
7.1 Device Connection and Layout Fundamentals  
This section discusses the recommended guidelines when designing with the MSP430. These guidelines  
are to make sure that the device has proper connections for powering, programming, debugging, and  
optimum analog performance.  
7.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 1-µF plus a 100-nF low-ESR ceramic decoupling capacitor  
to each AVCC and DVCC pin. Higher-value capacitors may be used but can impact supply rail ramp-up  
time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a  
few millimeters). Additionally, TI recommends separated grounds with a single-point connection for better  
noise isolation from digital to analog circuits on the board and to achieve high analog accuracy.  
DVCC  
Digital  
Power Supply  
Decoupling  
+
DVSS  
1 µF  
100 nF  
AVCC  
Analog  
Power Supply  
Decoupling  
+
AVSS  
1 µF  
100 nF  
7-1. Power Supply Decoupling  
7.1.2 External Oscillator  
Depending on the device variant (see Section 3), the device can support a low-frequency crystal (32 kHz)  
on the LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the  
crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the  
specifications of the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is  
selected. In this case, the associated LFXOUT and HFXOUT pins can be used for other purposes. If they  
are left unused, terminate them according to Section 4.4.  
7-2 shows a typical connection diagram.  
144  
Applications, Implementation, and Layout  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
LFXIN  
or  
LFXOUT  
or  
HFXIN  
HFXOUT  
CL1  
CL2  
7-2. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP430 devices.  
7.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or  
MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the  
connections also support the MSP-GANG production programmers, thus providing an easy way to  
program prototype boards, if desired. 7-3 shows the connections between the 14-pin JTAG connector  
and the target device required to support in-system programming and debugging for 4-wire JTAG  
communication. 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are  
identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-  
FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an  
alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the  
target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. 图  
7-3 and 7-4 show a jumper block that supports both scenarios of supplying VCC to the target board. If  
this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the jumper  
block. Pins 2 and 4 must not be connected at the same time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User's  
Guide.  
版权 © 2014–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
145  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
AVCC/DVCC  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
3
VCC TARGET  
4
TMS  
TMS  
6
5
TEST  
TCK  
8
7
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,  
make connection J2.  
B. The upper limit for C1 is 2.2 nF when using current TI tools.  
7-3. Signal Connections for 4-Wire JTAG Communication  
146  
Applications, Implementation, and Layout  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
AVCC/DVCC  
J1 (see Note A)  
J2 (see Note A)  
R1  
47 kΩ  
(See Note B)  
JTAG  
VCC TOOL  
VCC TARGET  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
4
6
TCK  
GND  
8
10  
12  
14  
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(See Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the  
debug or programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during  
JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with  
the device. The upper limit for C1 is 2.2 nF when using current TI tools.  
7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
7.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function  
Register (SFR), SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is  
edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the  
external NMI. When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either  
pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not.  
If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an  
external 47-kΩ pullup resistor to the RST/NMI pin with a 2.2-nF pulldown capacitor. The pulldown  
capacitor should not exceed 2.2 nF when using devices in Spy-Bi-Wire mode or in 4-wire JTAG mode with  
TI tools like FET interfaces or GANG programmers. If JTAG or Spy-Bi-Wire access is not needed, up to a  
10-nF pulldown capacitor may be used.  
See the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide for  
more information on the referenced control registers and bits.  
7.1.5 Unused Pins  
For details on the connection of unused pins, see Section 4.4.  
版权 © 2014–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
147  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
7.1.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430  
32-kHz Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC, AVCC, and reference pins if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital  
switching signals such as PWM or JTAG signals away from the oscillator circuit.  
See Circuit Board Layout Techniques for a detailed discussion of PCB layout considerations. This  
document is written primarily about op amps, but the guidelines are generally applicable for all mixed-  
signal applications.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
7.1.7 Do's and Don'ts  
TI recommends powering the AVCC and DVCC pins from the same source. At a minimum, during power  
up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed  
the limits specified in the Absolute Maximum Ratings section. Exceeding the specified limits may cause  
malfunction of the device including erroneous writes to RAM and FRAM.  
7.2 Peripheral- and Interface-Specific Design Information  
7.2.1 ADC12_B Peripheral  
7.2.1.1 Partial Schematic  
7-5 shows the recommended decoupling circuit when an external voltage reference is used.  
AVSS  
VREF+/VEREF+  
Using an  
External  
Positive  
Reference  
+
470 nF  
10 µF  
VEREF-  
Using an  
External  
+
Negative  
Reference  
10 µF  
470 nF  
7-5. ADC12_B Grounding and Noise Considerations  
7.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate PCB layout and grounding techniques should be followed to  
eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with  
other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset  
voltages that can add to or subtract from the reference or input voltages of the ADC. The general  
guidelines in 7.1.1 combined with the connections shown in 7.2.1.1 prevent this.  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital  
switching or switching power supplies can corrupt the conversion result. A noise-free design using  
separate analog and digital ground planes with a single-point connection is recommend to achieve high  
accuracy.  
148  
Applications, Implementation, and Layout  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
7-5 shows the recommended decoupling circuit when an external voltage reference is used. The  
internal reference module has a maximum drive current as specified in the Reference module's IO(VREF+)  
specification.  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor is used to buffer the reference pin and filter any low-  
frequency ripple. A 470-nF bypass capacitor is used to filter out any high-frequency noise.  
7.2.1.3 Detailed Design Procedure  
For additional design information, see Designing With the MSP430FR58xx, FR59xx, FR68xx, and FR69xx  
ADC.  
7.2.1.4 Layout Guidelines  
Component that are shown in the partial schematic (see 7-5) should be placed as close as possible to  
the respective device pins. Avoid long traces, because they add additional parasitic capacitance,  
inductance, and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM),  
because the high-frequency switching can be coupled into the analog signal.  
If differential mode is used for the ADC12_B, the analog differential input signals must be routed closely  
together to minimize the effect of noise on the resulting signal.  
版权 © 2014–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
149  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
7.2.2 LCD_C Peripheral  
7.2.2.1 Partial Schematic  
Required LCD connections greatly vary by the type of display that is used (static or multiplexed), whether  
external or internal biasing is used, and also whether the on-chip charge pump is employed. For any  
display used, there is flexibility as to how the segment (Sx) and common (COMx) signals are connected to  
the MCU, which (assuming that the correct choices are made) can be advantageous for the PCB layout  
and for the design of the application software.  
Because LCD connections are application specific, it is difficult to provide a single one-fits-all schematic.  
However, for an example of connecting a 4-mux LCD with 40 segment lines that has a total of  
4 × 40 = 160 individually addressable LCD segments to an MSP430FR6989, see the Water Meter  
Reference Design for Two LC Sensors, Using Extended Scan Interface (ESI).  
7.2.2.2 Design Requirements  
Due to the flexibility of the LCD_C peripheral module to accommodate various segment-based LCDs,  
selecting the correct display for the application in combination with determining specific design  
requirements is often an iterative process. There can be well defined requirements in terms of how many  
individually addressable LCD segments need to be controlled, what the requirements for LCD contrast  
are, which device pins are available for LCD use, and which are required by other application functions,  
and what the power budget is, to name just a few. TI recommends reviewing the LCD_C peripheral  
module chapter in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family  
User's Guide during the initial design requirements and decision process. 7-1 is a brief overview over  
different choices that can be made and their effects.  
7-1. LCD Features and Use Cases  
OPTION OR FEATURE  
IMPACT OR USE CASE  
Enable displays with more segments  
Use fewer device pins  
Multiplexed LCD  
LCD contrast decreases as mux level increases  
Power consumption increases with mux level  
Requires multiple intermediate bias voltages  
Limited number of segments that can be addressed  
Use a relatively large number of device pins  
Use the least amount of power  
Static LCD  
Use only VCC and GND to drive LCD signals  
Simpler solution – no external circuitry  
Independent of VLCD source  
Internal bias generation  
Somewhat higher power consumption  
Requires external resistor ladder divider  
Resistor size depends on display  
External bias generation  
Internal charge pump  
Ability to adjust drive strength to optimize tradeoff between power consumption and good drive of large  
segments (high capacitive load)  
External resistor ladder divider can be stabilized through capacitors to reduce ripple  
Helps ensure a constant level of contrast despite decaying supply voltage conditions (battery-powered  
applications)  
Programmable voltage levels allow software-driven contrast control  
Requires an external capacitor on the LCDCAP pin  
Higher current consumption than simply using VCC for the LCD driver  
150  
Applications, Implementation, and Layout  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
7.2.2.3 Detailed Design Procedure  
A major component in designing the LCD solution is determining the exact connections between the  
LCD_C peripheral module and the display itself. Two basic design processes can be employed for this  
step, although in reality often a balanced co-design approach is recommended:  
PCB layout-driven design  
Software-driven design  
In the PCB layout-driven design process, the segment Sx and common COMx signals are connected to  
respective MSP430 device pins so that the routing of the PCB can be optimized to minimize signal  
crossings and to keep signals on one side of the PCB only, typically the top layer. For example, using a  
multiplexed LCD, it is possible to arbitrarily connect the Sx and COMx signals between the LCD and the  
MSP430 device as long as segment lines are swapped with segment lines and common lines are  
swapped with common lines. It is also possible to not contiguously connect all segment lines but rather  
skip LCD_C module segment connections to optimize layout or to allow access to other functions that may  
be multiplexed on a particular device port pin. Employing a purely layout-driven design approach,  
however, can result in the LCD_C module control bits that are responsible for turning on and off segments  
to appear scattered throughout the memory map of the LCD controller (LCDMx registers). This approach  
potentially places a rather large burden on the software design that may also result in increased energy  
consumption due to the computational overhead required to work with the LCD.  
The other extreme is a purely software-driven approach that starts with the idea that control bits for LCD  
segments that are frequently turned on and off together should be co-located in memory in the same  
LCDMx register or in adjacent registers. For example, in case of a 4-mux display that contains several 7-  
segment digits, from a software perspective it can be very desirable to control all 7 segments of each digit  
though a single byte-wide access to an LCDMx register. And consecutive segments are mapped to  
consecutive LCDMx registers. This allows use of simple look-up tables or software loops to output  
numbers on an LCD, reducing computational overhead and optimizing the energy consumption of an  
application. Establishing of the most convenient memory layout needs to be performed in conjunction with  
the specific LCD that is being used to understand its design constraints in terms of which segment and  
which common signals are connected to, for example, a digit.  
For design information regarding the LCD controller input voltage selection including internal and external  
options, contrast control, and bias generation, see the LCD_C Controller chapter in the MSP430FR58xx,  
MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide.  
For additional design information, see Designing With MSP430 and Segment LCDs.  
7.2.2.4 Layout Guidelines  
LCD segment (Sx) and common (COMx) signal traces are continuously switching while the LCD is  
enabled and should, therefore, be kept away from sensitive analog signals such as ADC inputs to prevent  
any noise coupling. TI recommends keeping the LCD signal traces on one side of the PCB grouped  
together in a bus-like fashion. A ground plane underneath the LCD traces and guard traces employed  
alongside the LCD traces can provide shielding.  
If the internal charge pump of the LCD module is used, the externally provided capacitor on the LCDCAP  
pin should be located as close as possible to the MCU. The capacitor should be connected to the device  
using a short and direct trace and also have a solid connection to the ground plane that is supplying the  
VSS pins of the MCU.  
For an example layout of connecting a 4-mux LCD with 40 segments to an MSP430FR6989 and using the  
charge pump feature, see the Water Meter Reference Design for Two LC Sensors, Using Extended Scan  
Interface (ESI).  
版权 © 2014–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
151  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
8 器件和文档支持  
8.1 入门和后续步骤  
有关 MSP430 系列器件以及有助于开发的工具和库的更多信息,请访问入门页面。  
8.2 器件命名规则  
为了标示产品开发周期所处的阶段,TI 为所有 MSP MCU 器件的部件号分配了前缀。每个 MSP MCU 商用  
系列产品成员都具有以下两个前缀之一:MSP XMS。这些前缀代表了产品开发的发展阶段,即从工程原  
(XMS) 直到完全合格的生产器件 (MSP)。  
XMS - 实验器件,不一定代表最终器件的电气规格  
MSP - 完全合格的生产器件  
XMS 器件在供货时附带如下免责声明:  
开发中的产品用于内部评估用途。”  
MSP 器件的特性已经全部明确,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书对该器件适  
用。  
预测显示原型器件 (XMS) 的故障率大于标准生产器件。由于这些器件的预计最终使用故障率尚不确定,德  
州仪器 (TI) 建议不要将它们用于任何生产系统。请仅使用合格的生产器件。  
TI 器件的命名规则还包括一个带有器件系列名称的后缀。此后缀表示温度范围、封装类型和配送形式。8-  
1 提供了解读完整器件名称的图例。  
MSP  
430  
FR  
6
9891  
I
PZ  
R
Feature Set  
Processor Family  
MCU Platform  
Memory Type  
Distribution Format  
Packaging  
Temperature Range  
Series  
AES  
ESI  
Optional: BSL  
FRAM  
Processor Family  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
430 = TI’s 16-bit MSP430 Low-Power Microcontroller Platform  
FR = FRAM  
MCU Platform  
Memory Type  
Series  
6 = FRAM 6 Series up to 16 MHz with LCD  
5 = FRAM 5 Series up to 16 MHz without LCD  
Feature Set  
First Digit: AES Second Digit: Extended Scan Interface Third Digit: FRAM (KB) Optional Fourth Digit: BSL  
9 = AES  
8 = No AES  
8 = ESI  
7 = No ESI  
2 = No ESI, LCD, 64 pins  
9 = 128  
8 = 96  
7 = 64  
6 = 48  
1 = I2C  
No value = UART  
Temperature Range  
Packaging  
I = –40°C to 85°C  
www.ti.com/packaging  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
Distribution Format  
NOTE: 该图不代表可用 特性 和选项的完整列表, 也不表示 和选项都可用于给定的器件或系列。  
8-1. 器件命名规则 部件号解码器  
152  
器件和文档支持  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
8.3 工具和软件  
8-1 列出 了 MSP430FR697x(1) MSP430FR692x(1) 微控制器支持的调试特性。关于可用特性的详细  
信息,请参见《适用于 MSP430 Code Composer Studio 用户指南 》。  
8-1. 硬件 特性  
四线制  
JTAG  
断点  
(N)  
状态序列发生  
LPMX.5 调试支 EnergyTrace++ 技  
MSP430 架构  
2 线 JTAG  
范围断点  
时钟控制  
跟踪缓冲器  
MSP430Xv2  
3
EnergyTrace™技术可用于 Code Composer Studio 6.0 及更高版本。它需要专用的调试器电路,而新一代  
板载 eZ-FET 闪存仿真工具和新一代独立 MSP-FET JTAG 仿真器支持这种电路。有关更多信息,请参阅:  
《使用 Code Composer Studio 版本 6 与增强型仿真模块 (EEM) 进行高级调试》  
MSP430™ 高级功耗优化:ULP Advisor™ EnergyTrace™ 技术》  
设计套件与评估模块  
MSP430FR6989 LaunchPad™ 开发套件  
MSP-EXP430FR6989  
LaunchPad  
开发套件是适用于  
MSP40FR6989 微控制器 (MCU) 的易于使用的评估模块 (EVM)。它包含在超低功耗  
MSP430FRx FRAM 微控制器平台上开始开发所需的全部资源,其中包括用于编程、调试和能  
量测量的板载仿真。  
适用于 MSP430FRxx FRAM MCU MSP-TS430PZ100D 100 引脚目标开发板 MSP-TS430PZ100D 是一  
款独立的 100 引脚 ZIF 插座目标板,用于通过 JTAG 接口或 Spy-Bi-Wire2 线 JTAG)协议  
MSP430 MCU 系统内置器件进行编程和调试。  
适用于 MSP430FRxx FRAM MCU 100 引脚目标开发板和 MSP-FET 编程器包 MSP-FET430U100D 是  
一款捆绑包,其中采用了具有 MSP-TS430PZ100D(独立的 100 引脚 ZIF 插座目标板)的  
MSP-FET 编程器和调试器。该捆绑包可用于通过 JTAG 接口或 Spy-Bi-Wire2 线 JTAG)协  
议对 MSP430 MCU 系统内置器件进行编程和调试。  
软件  
MSP430Ware™ 软件 MSP430Ware 软件集合了所有 MSP430 器件的代码示例、数据表以及其他设计资  
源,打包提供给用户。除了提供已有 MSP430 MCU 设计资源的完整集合外,MSP430Ware  
软件还包含名为 MSP 驱动程序库的高级 API。借助该库可以轻松地对 MSP430 硬件进行编  
程。MSP430Ware 软件以 CCS 组件或独立软件包两种形式提供。  
MSP430FR5x8xMSP430FR692xMSP430FR6x7xMSP430FR6x8x 代码示例  
置各集成外设的每个 MSP 器件均具备相应的 C 代码示例。  
根据不同应用需求配  
适用于 MSP 超低功耗微控制器的 FRAM 嵌入式软件实用程序 TI FRAM 实用程序软件旨在用作不断扩充的  
嵌入式软件实用程序集合,其中的实用程序充分利用了 FRAM 的超低功耗和近乎无限次的写  
入寿命。这些实用程序适用于 MSP430FRxx FRAM 微控制器并提供示例代码,以帮助开始进  
行应用程序开发。  
适用于采用扩展扫描接口 (ESI) 的流量计配置的 FlowESI GUI 遵照简单的图形说明,将最多三个 LC 传感  
器连接至扩展扫描接口模块。该工具可提供完全实用的 CCS IAR 项目,或可整合到定制项  
目中的源代码。  
版权 © 2014–2018, Texas Instruments Incorporated  
器件和文档支持  
153  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
MSP430 Touch Pro GUI MSP430 Touch Pro 工具是基于 PC 的工具,可用于检验电容式触控按钮、滑块  
和滚轮设计。此工具可接收并显示 CapTouch 传感器数据,帮助用户快速轻松地评估、诊断和  
调整按钮、滑块和滚轮设计。  
MSP430 触控电源设计器 GUI 使用 MSP430 电容式触控电源设计器,可以计算给定的 MSP430 电容式触  
控系统的估计平均电流消耗。通过输入系统参数(如工作电压、频率、按钮数量和按钮选通时  
间),用户可以在数分钟内估计给定的器件系列的指定电容式触控配置的功耗。  
适用于 MSP 微控制器的数字信号处理 (DSP) 库  
该数字信号处理库是一组经高度优化的函数,可针对  
MSP430 MSP432 微控制器对定点数字执行许多常见的信号处理操作。该功能集通常 用于  
要求完成实时密集处理转换,从而以最低能耗实现高精度的应用。针对定点数学对 MSP 固有  
硬件的最佳利用可以极大地提高性能。  
MSP 驱动程序库 MSP 驱动程序库的抽象 API 提供易用的函数调用,无需直接操纵 MSP430 硬件的位与字  
节。完整的文档通过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证的  
参数的详细信息。开发人员可使用驱动程序库函数以尽可能低的费用编写全部项目。  
MSP EnergyTrace 技术 适用于 MSP430 微控制器的 EnergyTrace 技术是基于电能的代码分析工具,适用  
于测量和显示应用的电能系统配置并帮助优化应用以实现超低功耗。  
ULP(超低功耗)Advisor ULP Advisor™软件是一款辅助工具,旨在指导开发人员编写更为高效的代码,  
从而充分利用 MSP430 MSP432 微控制器 独特 功能。ULP Advisor 的目标人群是微控制器  
的资深开发者和开发新手,可以根据详尽的 ULP 检验表检查代码,以便最大限度地减少应用  
程序的能耗。在编译时,ULP Advisor 会提供通知和备注以突出显示代码中可以进一步优化的  
区域,进而实现更低功耗。  
IEC60730 软件包 IEC60730 MSP430 软件包经过专门开发,用于协助客户达到 IEC 60730-1:2010(家用  
及类似用途的自动化电气控制 - 1 部分:一般要求)B 类产品的要求。其中涵盖家用电器、  
电弧检测器、电源转换器、电动工具、电动自行车及其他诸多产品。IEC60730 MSP430 软件  
包可以嵌入在 MSP430 MCU 中 运行的客户应用, 从而帮助客户简化其消费类器件在功能安  
全方面遵循 IEC 60730-1:2010 B 类规范的认证工作。  
适用于 MSP 的定点数学运算库 MSP IQmath Qmath 库是为 C 语言开发者提供的一套经过高度优化的高  
精度数学运算函数集合,能够将浮点算法无缝嵌入 MSP430 MSP432 器件的定点代码中。  
这些例程通常用于计算密集型实时 应用, 而优化的执行速度、高精度以及超低能耗通常是影  
响这些实时应用的关键因素。与使用浮点数学算法编写的同等代码相比,使用  
Qmath 库可以大幅提高执行速度并显著降低能耗。  
IQmath  
适用于 MSP430 的浮点数学运算库  
TI  
在低功耗和低成本微控制器领域锐意创新,为您提供  
MSPMATHLIB。该标量函数的浮点数学运算库能够利用我们的器件的智能外设,其速度最高  
可为标准 MSP430 数学函数的 26 倍。Mathlib 能够轻松集成到您的设计中。该运算库免费使  
用并集成在 Code Composer Studio IDE IAR Embedded Workbench IDE 中。  
开发工具  
适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境 Code Composer Studio (CCS) 集成开  
发环境 (IDE) 支持所有 MSP 微控制器器件。CCS 含一整套用于开发和调试嵌入式 应用的  
嵌入式软件实用程序。CCS 包含了优化的 C/C++ 编译器、源代码编辑器、项目构建环境、调  
试器、描述器以及其他众多 功能。  
154  
器件和文档支持  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
命令行编程器 MSP Flasher 是一款基于 shell 的开源接口,可使用 JTAG Spy-Bi-Wire (SBW) 通信通过  
FET 编程器或 eZ430 MSP 微控制器进行编程。MSP Flasher 可用于将二进制文件(.txt 或  
.hex 文件)直接下载到 MSP 微控制器,而无需使用 IDE。  
MSP MCU 编程器和调试器 MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可帮助用户在  
MSP 低功耗微控制器 (MCU) 中快速开发应用。创建 MCU 软件通常需要将生成的二进制程序  
下载到 MSP 器件中,从而进行验证和调试。  
MSP-GANG 生产编程器 MSP Gang 编程器是一款 MSP430 MSP432 器件编程器,可同时对多达八个  
完全相同的 MSP430 MSP432 闪存或 FRAM 器件进行编程。MSP Gang 编程器可使用标  
准的 RS-232 USB 连接与主机 PC 相连并提供灵活的编程选项,允许用户完全自定义流  
程。  
8.4 文档支持  
以下文档介绍 MSP430FR697x(1) MSP430FR692x(1) MCUwww.ti.com.cn 网站上提供了这些文档的副  
本。  
接收文档更新通知  
要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹(关于产品文件  
夹的链接,请参见8.5)。请单击右上角的通知我按钮。点击注册后,即可收到产品信息更改每周摘要  
(如有)。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
勘误  
MSP430FR6979 器件勘误表》 介绍功能规格的已知例外情况。  
MSP430FR69791 器件勘误表》 介绍功能规格的已知例外情况。  
MSP430FR6977 器件勘误表》 介绍功能规格的已知例外情况。  
MSP430FR6928 器件勘误表》 介绍功能规格的已知例外情况。  
MSP430FR6927 器件勘误表》 介绍功能规格的已知例外情况。  
MSP430FR69271 器件勘误表》 介绍功能规格的已知例外情况。  
用户指南  
MSP430FR58xxMSP430FR59xx MSP430FR6xx 系列用户指南》 该器件系列提供的所有模块和外  
设的详细 说明 。  
MSP430 FRAM 器件引导加载程序 (BSL) 用户指南》 MSP430 MCU 上的引导加载程序 (BSL) 允许用户  
在原型设计、投产和维护等各阶段与 MSP430 MCU 中的嵌入式存储器进行通信。可编程存储  
器(FRAM 存储器)和数据存储器 (RAM) 均可按要求予以修改。  
《通过 JTAG 接口对 MSP430 进行编程》 此文档介绍了使用 JTAG 通信端口擦除、编程和验证基于  
MSP430 闪存和 FRAM 的微控制器系列的存储器模块所需的功能。此外,该文档还介绍了如  
何编程所有 MSP430 器件上均具备的 JTAG 访问安全保险丝。此文档介绍了使用标准四线制  
JTAG 接口和两线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))的器件访问。  
MSP430 硬件工具用户指南》 此手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针对  
MSP430  
超低功耗微控制器的程序开发工具。文中对提供的接口类型,即并行端口接口和  
USB 接口进行了说明。  
版权 © 2014–2018, Texas Instruments Incorporated  
器件和文档支持  
155  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
应用报告  
MSP430 FRAM 技术 操作方法和最佳实践 FRAM 采用非易失性存储器技术,行为与 SRAM 类似,支持  
大量新 应用的同时,还改变了固件的设计方式。该应用程序报告从嵌入式软件开发方面概述了  
FRAM 技术在 MSP430 中的使用方法和最佳实践。其中介绍了如何按照应用程序特定的代  
码、常量、数据空间要求实施存储器布局以及如何使用 FRAM 优化应用程序的能耗。  
MSP430 32kHz 晶体振荡器》 选择合适的晶体、正确的负载电路和适当的电路板布局是实现稳定的晶体  
振荡器的关键。该应用报告总结了晶体振荡器的功能,介绍了用于选择合适的晶体以实现  
MSP430 超低功耗运行的参数。此外,还给出了正确电路板布局的提示和示例。此外,为了确  
保振荡器在大规模生产后能够稳定运行,还可能需要进行一些振荡器测试,该文档中提供了有  
关这些测试的详细信息。  
MSP430 系统级 ESD 注意事项》  
随着硅晶技术向更低电压方向发展以及设计具有成本效益的超低功耗  
组件的需求的出现,系统级 ESD 要求变得越来越苛刻。该应用报告介绍了三个不同的 ESD 主  
题,旨在帮助电路板设计人员和 OEM 理解并设计出稳健耐用的系统级设计。  
8.5 相关链接  
8-2 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品  
的快速链接。  
8-2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
MSP430FR6979  
MSP430FR69791  
MSP430FR6977  
MSP430FR6928  
MSP430FR6927  
MSP430FR69271  
156  
器件和文档支持  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
 
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
8.6 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参见 TI 《使用条款》。  
TI E2E™ 社区  
TI 的工程师交流 (E2E) 社区. 此社区的创建目的是为了促进工程师之间协作。在 e2e.ti.com 中,您可以提  
问、共享知识、拓展思路,在同领域工程师的帮助下解决问题。  
TI 嵌入式处理器维基网页  
德州仪器 (TI) 嵌入式处理器维基网页。此网站的建立是为了帮助开发人员熟悉德州仪器 (TI) 的嵌入式处理  
器,并且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。  
8.7 商标  
EnergyTrace++, MSP430, EnergyTrace, LaunchPad, MSP430Ware, ULP Advisor, 适用于 MSP 微控制器  
Code Composer Studio, E2E are trademarks of Texas Instruments.  
Microsoft is a registered trademark of Microsoft Corporation.  
All other trademarks are the property of their respective owners.  
8.8 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.9 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过非披露义务的披露方获得的任何产品或技术数据  
(其中包括软件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制  
产品或此项技术的任何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政  
府机构授权的情况下,接收方不得在知情的情况下,以直接或间接的方式将其出口。  
8.10 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
版权 © 2014–2018, Texas Instruments Incorporated  
器件和文档支持  
157  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
MSP430FR6979, MSP430FR69791, MSP430FR6977  
MSP430FR6928, MSP430FR6927, MSP430FR69271  
ZHCSCU8C AUGUST 2014REVISED AUGUST 2018  
www.ti.com.cn  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
158  
机械、封装和可订购信息  
版权 © 2014–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR6979 MSP430FR69791 MSP430FR6977 MSP430FR6928 MSP430FR6927  
MSP430FR69271  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR69271IPM  
MSP430FR69271IPMR  
MSP430FR69271IRGCR  
MSP430FR69271IRGCT  
MSP430FR6927IPM  
MSP430FR6927IPMR  
MSP430FR6927IRGCR  
MSP430FR6927IRGCT  
MSP430FR6928IPM  
MSP430FR6928IPMR  
MSP430FR6977IPN  
MSP430FR6977IPZ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
VQFN  
VQFN  
LQFP  
LQFP  
VQFN  
VQFN  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
RGC  
RGC  
PM  
PM  
RGC  
RGC  
PM  
PM  
PN  
64  
64  
160  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR69271  
1000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
FR69271  
FR69271  
FR69271  
FR6927  
FR6927  
FR6927  
FR6927  
FR6928  
FR6928  
FR6977  
FR6977  
FR69791  
FR69791  
FR69791  
FR69791  
FR6979  
FR6979  
FR6979  
FR6979  
64  
64  
250  
160  
RoHS & Green  
RoHS & Green  
64  
64  
1000 RoHS & Green  
2000 RoHS & Green  
64  
64  
250  
160  
RoHS & Green  
RoHS & Green  
64  
64  
1000 RoHS & Green  
80  
119  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
PZ  
100  
80  
MSP430FR69791IPN  
MSP430FR69791IPNR  
MSP430FR69791IPZ  
MSP430FR69791IPZR  
MSP430FR6979IPN  
MSP430FR6979IPNR  
MSP430FR6979IPZ  
PN  
119  
PN  
80  
1000 RoHS & Green  
90 RoHS & Green  
1000 RoHS & Green  
119 RoHS & Green  
1000 RoHS & Green  
90 RoHS & Green  
1000 RoHS & Green  
PZ  
100  
100  
80  
PZ  
PN  
PN  
80  
PZ  
100  
100  
MSP430FR6979IPZR  
PZ  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR6928IPMR  
MSP430FR6979IPNR  
LQFP  
LQFP  
PM  
PN  
64  
80  
1000  
1000  
330.0  
330.0  
24.4  
24.4  
13.0  
15.0  
13.0  
15.0  
2.1  
2.1  
16.0  
20.0  
24.0  
24.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR6928IPMR  
MSP430FR6979IPNR  
LQFP  
LQFP  
PM  
PN  
64  
80  
1000  
1000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jul-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
MSP430FR6927IPM  
MSP430FR6928IPM  
MSP430FR6977IPN  
MSP430FR6977IPZ  
MSP430FR69791IPN  
MSP430FR69791IPZ  
MSP430FR6979IPN  
MSP430FR6979IPZ  
PM  
PM  
PN  
PZ  
PN  
PZ  
PN  
PZ  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
64  
64  
160  
160  
119  
90  
8 x 20  
8 x 20  
7 x 17  
6 x 15  
7 x 17  
6 x 15  
7 x 17  
6 x 15  
150  
150  
150  
150  
150  
150  
150  
150  
315 135.9 7620 15.2  
315 135.9 7620 15.2  
315 135.9 7620 17.9  
315 135.9 7620 20.3  
315 135.9 7620 17.9  
315 135.9 7620 20.3  
315 135.9 7620 17.9  
315 135.9 7620 20.3  
13.1  
13.1  
13  
13  
80  
14.3 13.95  
15.4 15.45  
14.3 13.95  
15.4 15.45  
14.3 13.95  
15.4 15.45  
100  
80  
119  
90  
100  
80  
119  
90  
100  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
RGC0064B  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.15  
8.85  
A
B
PIN 1 INDEX AREA  
9.15  
8.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
17  
32  
16  
33  
65  
SYMM  
2X 7.5  
4.25 0.1  
60X  
0.5  
1
48  
0.30  
0.18  
64X  
49  
64  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
64X  
0.05  
4219010/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.25)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.18) TYP  
(8.8)  
65  
SYMM  
(0.695) TYP  
(
0.2) TYP  
VIA  
33  
16  
32  
17  
(0.695) TYP  
(1.18) TYP  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219010/A 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
9X ( 1.19)  
65  
SYMM  
(8.8)  
(1.39)  
33  
16  
17  
32  
(1.39)  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
71% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219010/A 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PN0080A  
LQFP - 1.6 mm max height  
SCALE 1.250  
PLASTIC QUAD FLATPACK  
12.2  
11.8  
B
PIN 1 ID  
A
80  
61  
1
60  
12.2  
11.8  
14.2  
TYP  
13.8  
20  
41  
40  
21  
76X 0.5  
0.27  
80X  
0.17  
4X 9.5  
0.08  
C A B  
1.6 MAX  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215166/A 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PN0080A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
80  
61  
80X (1.5)  
1
60  
80X (0.3)  
SYMM  
(13.4)  
76X (0.5)  
(R0.05) TYP  
20  
41  
21  
40  
(13.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215166/A 08/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
6. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PN0080A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
80  
61  
80X (1.5)  
1
60  
80X (0.3)  
SYMM  
(13.4)  
76X (0.5)  
(R0.05) TYP  
20  
41  
21  
40  
(13.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:6X  
4215166/A 08/2022  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PM0064A  
LQFP - 1.6 mm max height  
SCALE 1.400  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
33  
16  
32  
17  
A
0.27  
0.17  
64X  
60X 0.5  
4X 7.5  
0.08  
C A B  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
1.6 MAX  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215162/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
49  
64  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
33  
16  
17  
32  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215162/A 03/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
16  
33  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4215162/A 03/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY