MSP430G2001IRSA16R [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430G2001IRSA16R
型号: MSP430G2001IRSA16R
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总45页 (文件大小:847K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
MIXED SIGNAL MICROCONTROLLER  
1
FEATURES  
Low Supply-Voltage Range: 1.8 V to 3.6 V  
16-Bit Timer_A With Two Capture/Compare  
Registers  
Ultralow Power Consumption  
Brownout Detector  
Active Mode: 220 µA at 1 MHz, 2.2 V  
Standby Mode: 0.5 µA  
On-Chip Comparator for Analog Signal  
Compare Function or Slope A/D (See Table 1)  
Off Mode (RAM Retention): 0.1 µA  
Serial Onboard Programming,  
No External Programming Voltage Needed,  
Programmable Code Protection by Security  
Fuse  
Five Power-Saving Modes  
Ultrafast Wake-Up From Standby Mode in Less  
Than 1 µs  
16-Bit RISC Architecture, 62.5-ns Instruction  
Cycle Time  
On-Chip Emulation Logic With Spy-Bi-Wire  
Interface  
Basic Clock Module Configurations  
For Family Members Details, See Table 1  
Internal Frequencies up to 16 MHz With  
One Calibrated Frequency  
Available in a 14-Pin Plastic Small-Outline Thin  
Package (TSSOP), 14-Pin Plastic Dual Inline  
Package (PDIP), and 16-Pin QFN  
Internal Very Low Power Low-Frequency  
(LF) Oscillator  
For Complete Module Descriptions, See the  
MSP430x2xx Family User’s Guide (SLAU144)  
32-kHz Crystal  
External Digital Clock Source  
DESCRIPTION  
The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features a  
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs.  
The MSP430G2x01/11 series is an ultralow-power mixed signal microcontroller with a built-in 16-bit timer and ten  
I/O pins. The MSP430G2x11 family members have a versatile analog comparator. For configuration details see  
Table 1.  
Typical applications include low-cost sensor systems that capture analog signals, convert them to digital values,  
and then process the data for display or for transmission to a host system.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2010, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Table 1. Available Options(1)  
FLASH  
(KB)  
RAM  
(B)  
COMP_A+  
CHANNEL  
PACKAGE  
TYPE(2)  
DEVICE  
BSL  
EEM  
Timer_A  
CLOCK  
I/O  
MSP430G2211IRSA16  
MSP430G2211IPW14  
MSP430G2211IN14  
16-QFN  
14-TSSOP  
14-PDIP  
-
1
2
2
128  
128  
128  
128  
128  
1x TA2  
8
-
LF, DCO, VLO  
10  
MSP430G2201IRSA16  
MSP430G2201IPW14  
MSP430G2201IN14  
16-QFN  
14-TSSOP  
14-PDIP  
-
-
-
-
1
1
1
1
1x TA2  
1x TA2  
1x TA2  
1x TA2  
LF, DCO, VLO  
LF, DCO, VLO  
LF, DCO, VLO  
LF, DCO, VLO  
10  
10  
10  
10  
MSP430G2111IRSA16  
MSP430G2111IPW14  
MSP430G2111IN14  
16-QFN  
14-TSSOP  
14-PDIP  
1
8
-
MSP430G2101IRSA16  
MSP430G2101IPW14  
MSP430G2101IN14  
16-QFN  
14-TSSOP  
14-PDIP  
1
MSP430G2001IRSA16  
MSP430G2001IPW14  
MSP430G2001IN14  
16-QFN  
14-TSSOP  
14-PDIP  
0.5  
-
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
2
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Device Pinout, MSP430G2x01  
N OR PW PACKAGE  
(TOP VIEW)  
14  
DVSS  
DVCC  
1
2
3
4
5
6
7
13  
12  
11  
10  
9
XIN/P2.6/TA0.1  
XOUT/P2.7  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
P1.7/TDO/TDI  
P1.2/TA0.1  
P1.3  
P1.4/SMCLK/TCK  
8
P1.6/TA0.1/TDI/TCLK  
P1.5/TA0.0/TMS  
NOTE: See port schematics in Application Information for detailed I/O information.  
RSA PACKAGE  
(TOP VIEW)  
16 15 14 13  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3  
12  
11  
10  
9
XIN/P2.6/TA0.1  
XOUT/P2.7  
1
2
3
4
TEST/SBWTCK  
RST/NMI/SBWTDIO  
5
6
7
8
NOTE: See port schematics in Application Information for detailed I/O information.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Device Pinout, MSP430G2x11  
N OR PW PACKAGE  
(TOP VIEW)  
14  
DVSS  
DVCC  
1
2
3
4
5
6
7
13  
12  
11  
10  
9
XIN/P2.6/TA0.1  
P1.0/TA0CLK/ACLK/CA0  
P1.1/TA0.0/CA1  
XOUT/P2.7  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
P1.7/CAOUT/CA7/TDO/TDI  
P1.6/TA0.1/CA6/TDI/TCLK  
P1.2/TA0.1/CA2  
P1.3/CAOUT/CA3  
P1.4/SMCLK/CA4/TCK  
8
P1.5/TA0.0/CA5/TMS  
NOTE: See port schematics in Application Information for detailed I/O information.  
RSA PACKAGE  
(TOP VIEW)  
16 15 14 13  
P1.0/TA0CLK/ACLK/CA0  
P1.1/TA0.0/CA1  
1
2
3
4
12 XIN/P2.6/TA0.1  
11 XOUT/P2.7  
10 TEST/SBWTCK  
RST/NMI/SBWTDIO  
P1.2/TA0.1/CA2  
P1.3/CAOUT/CA3  
9
5
6
7
8
NOTE: See port schematics in Application Information for detailed I/O information.  
4
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Functional Block Diagram, MSP430G2x11  
XIN XOUT  
DVCC  
DVSS  
P1.x  
8
P2.x  
2
ACLK  
Port P2  
Port P1  
Clock  
System  
SMCLK  
Flash  
RAM  
128B  
2 I/O  
Interrupt  
8 I/O  
Interrupt  
2KB  
1KB  
capability  
pullup/down  
resistors  
capability  
pullup/down  
resistors  
MCLK  
16MHz  
CPU  
MAB  
incl. 16  
Registers  
MDB  
Emulation  
2BP  
Comp_A+ Watchdog Timer0_A2  
WDT+  
Brownout  
Protection  
JTAG  
Interface  
8
Channels  
2 CC  
Registers  
15-Bit  
Spy-Bi  
Wire  
RST/NMI  
Functional Block Diagram, MSP430G2x01  
XIN XOUT  
DVCC  
DVSS  
P1.x  
8
P2.x  
2
ACLK  
Port P2  
Port P1  
Clock  
System  
Flash  
SMCLK  
RAM  
128B  
2 I/O  
Interrupt  
8 I/O  
Interrupt  
2KB  
1KB  
capability  
pull-up/down  
resistors  
capability  
pull-up/down  
resistors  
MCLK  
0.5KB  
16MHz  
CPU  
MAB  
incl. 16  
Registers  
MDB  
Emulation  
2BP  
Watchdog Timer0_A2  
WDT+  
2 CC  
Brownout  
Protection  
JTAG  
Interface  
15-Bit  
Registers  
Spy-Bi  
Wire  
RST/NMI  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Table 2. Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
P1.0/  
14  
16  
N, PW RSA  
General–purpose digital I/O pin  
TA0CLK/  
ACLK/  
CA0  
Timer0_A, clock signal TACLK input  
ACLK signal output  
Comparator_A+, CA0 input(1)  
2
1
I/O  
P1.1/  
General–purpose digital I/O pin  
TA0.0/  
CA1  
3
4
5
2
3
4
I/O  
I/O  
I/O  
Timer0_A, capture: CCI0A input, compare: Out0 output  
Comparator_A+, CA1 input(1)  
P1.2/  
General–purpose digital I/O pin  
TA0.1/  
CA2  
Timer0_A, capture: CCI1A input, compare: Out1 output  
Comparator_A+, CA2 input(1)  
P1.3/  
General–purpose digital I/O pin  
Comparator_A+, CA3 input(1)  
CA3/  
CAOUT  
P1.4/  
Comparator_A+, output(1)  
General–purpose digital I/O pin  
SMCLK/  
CA4/  
SMCLK signal output  
Comparator_A+, CA4 input(1)  
6
7
8
9
5
6
7
8
I/O  
I/O  
I/O  
I/O  
TCK  
JTAG test clock, input terminal for device programming and test  
General–purpose digital I/O pin  
P1.5/  
TA0.0/  
CA5/  
Timer0_A, compare: Out0 output  
Comparator_A+, CA5 input(1)  
TMS  
JTAG test mode select, input terminal for device programming and test  
General–purpose digital I/O pin  
P1.6/  
TA0.1/  
CA6/  
Timer0_A, compare: Out1 output  
Comparator_A+, CA6 input(1)  
TDI/TCLK  
P1.7/  
JTAG test data input or test clock input during programming and test  
General–purpose digital I/O pin  
CA7 input(1)  
CA7/  
CAOUT/  
TDO/TDI(2)  
XIN/  
Comparator_A+, output(1)  
JTAG test data output terminal or test data input during programming and test  
Input terminal of crystal oscillator  
General–purpose digital I/O pin  
P2.6/  
13  
12  
10  
11  
12  
11  
9
I/O  
TA0.1  
XOUT/  
P2.7  
Timer0_A, compare: Out1 output  
Output terminal of crystal oscillator(3)  
General–purpose digital I/O pin  
I/O  
RST/  
Reset  
NMI/  
I
I
Nonmaskable interrupt input  
SBWTDIO  
TEST/  
SBWTCK  
DVCC  
DVSS  
NC  
Spy–Bi–Wire test data input/output during programming and test  
Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to TEST.  
10  
Spy–Bi–Wire test clock input during programming and test  
1
14  
-
16  
14  
15  
NA  
NA  
NA  
Supply voltage  
Ground reference  
Not connected  
(1) MSP430G2x11 only  
(2) TDO or TDI is selected via JTAG instruction.  
(3) If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection  
to this pad after reset.  
6
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Table 2. Terminal Functions (continued)  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
QFN Pad  
14  
16  
N, PW RSA  
-
Pad  
NA  
QFN package pad connection to VSS recommended.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
SHORT-FORM DESCRIPTION  
CPU  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions, are  
performed as register operations in conjunction with  
seven addressing modes for source operand and four  
addressing modes for destination operand.  
Program Counter  
PC/R0  
SP/R1  
Stack Pointer  
Status Register  
SR/CG1/R2  
CG2/R3  
R4  
Constant Generator  
The CPU is integrated with 16 registers that provide  
reduced  
instruction  
execution  
time.  
The  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
register-to-register operation execution time is one  
cycle of the CPU clock.  
R5  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and  
constant generator, respectively. The remaining  
registers are general-purpose registers.  
R6  
R7  
R8  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled with  
all instructions.  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
The instruction set consists of the original 51  
instructions with three formats and seven address  
modes and additional instructions for the expanded  
address range. Each instruction can operate on word  
and byte data.  
Instruction Set  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 3 shows examples of the three types of  
instruction formats; Table 4 shows the address  
modes.  
Table 3. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g., ADD R4,R5  
e.g., CALL R8  
e.g., JNE  
R4 + R5 –-> R5  
PC –>(TOS), R8–> PC  
Jump-on-equal bit = 0  
Table 4. Address Mode Descriptions(1)  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
R10 – –> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5) – –> M(6+R6)  
M(EDE) – –> M(TONI)  
M(MEM) – –> M(TCDAT)  
M(R10) – –> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) – –> R11  
R10 + 2– –> R10  
Indirect autoincrement  
Immediate  
MOV @Rn+,Rm  
MOV #X,TONI  
#45 – –> M(TONI)  
(1) S = source, D = destination  
8
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
 
 
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Operating Modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the low-power modes, service the request, and restore back to the  
low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 1 (LPM1)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
DCO's dc generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO's dc generator remains enabled  
ACLK remains active  
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO's dc generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO's dc generator is disabled  
Crystal oscillator is stopped  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Interrupt Vector Addresses  
The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FFC0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g., flash is not programmed) the CPU will go  
into LPM4 immediately after power-up.  
Table 5. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
Power-Up  
External Reset  
Watchdog Timer+  
Flash key violation  
PC out-of-range(1)  
PORIFG  
RSTIFG  
WDTIFG  
KEYV(2)  
Reset  
0FFFEh  
31, highest  
NMI  
Oscillator fault  
Flash memory access violation  
NMIIFG  
OFIFG  
(non)-maskable  
(non)-maskable  
(non)-maskable  
0FFFCh  
30  
ACCVIFG(2)(3)  
0FFFAh  
0FFF8h  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
0FFEAh  
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
COMP_A+  
Watchdog Timer+  
Timer_A2  
CAIFG(4)(5)  
WDTIFG  
TACCR0 CCIFG(4)  
TACCR1 CCIFG, TAIFG(2)(4)  
maskable  
maskable  
maskable  
Timer_A2  
I/O Port P2 (two flags)  
I/O Port P1 (eight flags)  
P2IFG.6 to P2IFG.7(2)(4)  
P1IFG.0 to P1IFG.7(2)(4)  
maskable  
maskable  
(6)  
See  
0FFDEh to  
0FFC0h  
15 to 0, lowest  
(1) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from  
within unused address ranges.  
(2) Multiple source flags  
(3) (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
(4) Interrupt flags are located in the module.  
(5) Devices with COMP_A+ only  
(6) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if  
necessary.  
10  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Special Function Registers (SFRs)  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
Legend  
rw:  
Bit can be read and written.  
rw-0,1:  
rw-(0,1):  
Bit can be read and written. It is reset or set by PUC.  
Bit can be read and written. It is reset or set by POR.  
SFR bit is not present in device.  
Table 6. Interrupt Enable Register 1 and 2  
Address  
00h  
7
6
5
4
3
2
1
0
ACCVIE  
rw-0  
NMIIE  
rw-0  
OFIE  
rw-0  
WDTIE  
rw-0  
WDTIE  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in  
interval timer mode.  
OFIE  
Oscillator fault interrupt enable  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
NMIIE  
ACCVIE  
Address  
7
6
5
4
3
2
1
0
01h  
Table 7. Interrupt Flag Register 1 and 2  
Address  
02h  
7
6
5
4
3
2
1
0
NMIIFG  
rw-0  
RSTIFG  
rw-(0)  
PORIFG  
rw-(1)  
OFIFG  
rw-1  
WDTIFG  
rw-(0)  
WDTIFG  
Set on watchdog timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode.  
OFIFG  
Flag set on oscillator fault.  
PORIFG  
RSTIFG  
NMIIFG  
Power-On Reset interrupt flag. Set on VCC power-up.  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power-up.  
Set via RST/NMI pin  
Address  
03h  
7
6
5
4
3
2
1
0
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Memory Organization  
Table 8. Memory Organization  
MSP430G2001  
MSP430G2011  
MSP430G2101  
MSP430G2111  
MSP430G2201  
MSP430G2211  
Memory  
Size  
Flash  
Flash  
Size  
512B  
1kB  
2kB  
Main: interrupt vector  
Main: code memory  
Information memory  
0xFFFF to 0xFFC0  
0xFFFF to 0xFE00  
256 Byte  
0xFFFF to 0xFFC0  
0xFFFF to 0xFC00  
256 Byte  
0xFFFF to 0xFFC0  
0xFFFF to 0xF800  
256 Byte  
Flash  
Size  
010FFh to 01000h  
128B  
010FFh to 01000h  
128B  
010FFh to 01000h  
128B  
RAM  
027Fh to 0200h  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
027Fh to 0200h  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
027Fh to 0200h  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
Peripherals  
16–bit  
8–bit  
8–bit SFR  
Flash Memory  
The flash memory can be programmed via the Spy-Bi-Wire/JTAG port or in-system by the CPU. The CPU can  
perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
64 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually or as a group with segments 0 to n. Segments A to D are also  
called information memory.  
Segment A contains calibration data. After reset segment A is protected against programming and erasing. It  
can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is  
required.  
12  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).  
Oscillator and System Clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal very-low-power low-frequency oscillator and an internal digitally controlled oscillator (DCO).  
The basic clock module is designed to meet the requirements of both low system cost and low power  
consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1µs. The basic  
clock module provides the following clock signals:  
Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
Table 9. DCO Calibration Data  
(Provided From Factory In Flash Information Memory Segment A)  
CALIBRATION  
REGISTER  
DCO FREQUENCY  
SIZE  
ADDRESS  
CALBC1_1MHZ  
CALDCO_1MHZ  
byte  
byte  
010FFh  
010FEh  
1 MHz  
Brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and  
power off.  
Digital I/O  
There is one 8-bit I/O port implemented—port P1—and two bits of I/O port P2:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt condition is possible.  
Edge-selectable interrupt input capability for all the eight bits of port P1 and the two bits of port P2.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pull-up/pull-down resistor.  
WDT+ Watchdog Timer  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be disabled or configured as an interval timer and can  
generate interrupts at selected time intervals.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Timer_A2  
Timer_A2 is a 16-bit timer/counter with two capture/compare registers. Timer_A2 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A2 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 10. Timer_A2 Signal Connections – Devices With No Analog  
INPUT PIN NUMBER  
MODULE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE  
INPUT NAME  
MODULE  
BLOCK  
PW, N  
RSA  
PW, N  
RSA  
2 - P1.0  
1 - P1.0  
TACLK  
ACLK  
SMCLK  
TACLK  
TA0  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
CCR1  
NA  
TA0  
TA1  
2 - P1.0  
3 - P1.1  
1 - P1.0  
2 - P1.1  
3 - P1.1  
7 - P1.5  
2 - P1.1  
6 - P1.5  
ACLK (internal)  
VSS  
VCC  
VCC  
4 - P1.2  
3 - P1.2  
TA1  
CCI1A  
CCI1B  
GND  
4 - P1.2  
8 - P1.6  
13 - P2.6  
3 - P1.2  
7 - P1.6  
12 - P2.6  
TA1  
VSS  
VCC  
VCC  
Table 11. Timer_A2 Signal Connections – Devices With COMP_A+  
INPUT PIN NUMBER  
MODULE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE  
INPUT NAME  
MODULE  
BLOCK  
PW, N  
RSA  
PW, N  
RSA  
2 - P1.0  
1 - P1.0  
TACLK  
ACLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
SMCLK  
TACLK  
TA0  
2 - P1.0  
3 - P1.1  
1 - P1.0  
2 - P1.1  
3 - P1.1  
7 - P1.5  
2 - P1.1  
6 - P1.5  
ACLK (internal)  
VSS  
TA0  
VCC  
VCC  
4 - P1.2  
3 - P1.2  
TA1  
CCI1A  
4 - P1.2  
8 - P1.6  
13 - P2.6  
3 - P1.2  
7 - P1.6  
12 - P2.6  
CAOUT  
(internal)  
CCI1B  
CCR1  
TA1  
VSS  
VCC  
GND  
VCC  
Comparator_A+ (MSP430G2x11 only)  
The primary function of the comparator_A+module is to support precision slope analog-to-digital conversions,  
battery-voltage supervision, and monitoring of external analog signals.  
14  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Peripheral File Map  
Table 12. Peripherals With Word Access  
REGISTER  
NAME  
MODULE  
Timer_A  
REGISTER DESCRIPTION  
OFFSET  
0174h  
Capture/compare register  
TACCR1  
Capture/compare register  
Timer_A register  
TACCR0  
TAR  
0172h  
0170h  
0164h  
0162h  
0160h  
012Eh  
012Ch  
012Ah  
0128h  
0120h  
Capture/compare control  
Capture/compare control  
Timer_A control  
TACCTL1  
TACCTL0  
TACTL  
TAIV  
Timer_A interrupt vector  
Flash control 3  
Flash Memory  
FCTL3  
FCTL2  
FCTL1  
WDTCTL  
Flash control 2  
Flash control 1  
Watchdog Timer+  
Watchdog/timer control  
Table 13. Peripherals With Byte Access  
REGISTER  
NAME  
MODULE  
REGISTER DESCRIPTION  
OFFSET  
Comparator_A+  
(MSP430G2x11 only)  
Comparator_A+ port disable  
Comparator_A+ control 2  
Comparator_A+ control 1  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
Port P2 resistor enable  
Port P2 selection  
CAPD  
05Bh  
05Ah  
059h  
053h  
058h  
057h  
056h  
02Fh  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
003h  
002h  
001h  
000h  
CACTL2  
CACTL1  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
P2REN  
P2SEL  
P2IE  
Basic Clock System+  
Port P2  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P2 output  
Port P2 input  
Port P1  
Port P1 resistor enable  
Port P1 selection  
P1REN  
P1SEL  
P1IE  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
Special Function  
SFR interrupt flag 2  
IFG2  
SFR interrupt flag 1  
IFG1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IE2  
IE1  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Absolute Maximum Ratings(1)  
Voltage applied at VCC to VSS  
–0.3 V to 4.1 V  
Voltage applied to any pin(2)  
–0.3 V to VCC + 0.3 V  
±2 mA  
Diode current at any device pin  
Unprogrammed device  
Programmed device  
–55°C to 150°C  
–40°C to 85°C  
(3)  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is  
applied to the TEST pin when blowing the JTAG fuse.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
During program execution  
During flash program/erase  
1.8  
2.2  
0
3.6  
V
VCC  
Supply voltage  
3.6  
VSS  
TA  
Supply voltage  
V
Operating free-air temperature  
I version  
–40  
85  
°C  
VCC = 1.8 V,  
Duty cycle = 50% ± 10%  
dc  
dc  
dc  
4.15  
VCC = 2.7 V,  
Duty cycle = 50% ± 10%  
fSYSTEM  
Processor frequency (maximum MCLK frequency)(1)(2)  
12 MHz  
16  
VCC 3.3 V,  
Duty cycle = 50% ± 10%  
(1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the  
specified maximum frequency.  
(2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
Legend:  
16 MHz  
Supply voltage range  
during flash memory  
programming  
12 MHz  
Supply voltage range  
during program execution  
7.5 MHz  
4.15 MHz  
1.8 V  
2.2 V  
2.7 V  
3.3 V 3.6 V  
Supply Voltage −V  
Note: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC  
of 2.2 V.  
Figure 1. Safe Operating Area  
16  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Electrical Characteristics  
Active Mode Supply Current Into VCC Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fDCO = fMCLK = fSMCLK = 1 MHz,  
fACLK = 32768 Hz,  
2.2 V  
220  
Program executes in flash,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active mode (AM)  
current (1 MHz)  
IAM,1MHz  
µA  
3 V  
300  
370  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
Typical Characteristics – Active Mode Supply Current (Into VCC)  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
3.0  
2.0  
1.0  
0.0  
f
= 16 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
V
= 3 V  
CC  
f
= 12 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
f
= 8 MHz  
DCO  
f
= 1 MHz  
V
CC  
= 2.2 V  
DCO  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
CC  
− Supply Voltage − V  
f
DCO  
− DCO Frequency − MHz  
Figure 2. Active Mode Current vs VCC, TA = 25°C  
Figure 3. Active Mode Current vs DCO Frequency  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(2)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fMCLK = 0 MHz,  
fSMCLK = fDCO = 1 MHz,  
fACLK = 32768 Hz,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Low-power mode 0  
(LPM0) current(3)  
ILPM0,1MHz  
25°C  
2.2 V  
65  
µA  
fMCLK = fSMCLK = 0 MHz,  
fDCO = 1 MHz,  
fACLK = 32768 Hz,  
Low-power mode 2  
(LPM2) current(4)  
ILPM2  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 1,  
OSCOFF = 0  
25°C  
2.2 V  
22  
µA  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 32768 Hz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
Low-power mode 3  
(LPM3) current(4)  
ILPM3,LFXT1  
ILPM3,VLO  
ILPM4  
25°C  
25°C  
2.2 V  
2.2 V  
0.7  
0.5  
1.5  
0.7  
µA  
µA  
µA  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK from internal LF oscillator (VLO),  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
Low-power mode 3  
current, (LPM3)(4)  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 0 Hz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
25°C  
85°C  
2.2 V  
2.2 V  
0.1  
0.8  
0.5  
1.5  
Low-power mode 4  
(LPM4) current(5)  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF.  
(3) Current for brownout and WDT clocked by SMCLK included.  
(4) Current for brownout and WDT clocked by ACLK included.  
(5) Current for brownout included.  
Typical Characteristics Low-Power Mode Supply Currents  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
Vcc = 3.6 V  
Vcc = 3 V  
Vcc = 3.6 V  
Vcc = 3 V  
Vcc = 2.2 V  
Vcc = 2.2 V  
Vcc = 1.8 V  
Vcc = 1.8 V  
60 80  
-40  
-20  
0
20  
TA – Temperature – °C  
Figure 5. LPM4 Current vs Temperature  
40  
-40  
-20  
0
20  
40  
60  
80  
TA – Temperature – °C  
Figure 4. LPM3 Current vs Temperature  
18  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Schmitt-Trigger Inputs – Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45 VCC  
1.35  
TYP  
MAX UNIT  
0.75 VCC  
VIT+  
Positive-going input threshold voltage  
V
V
3 V  
2.25  
0.55 VCC  
1.65  
0.25 VCC  
0.75  
VIT–  
Negative-going input threshold voltage  
3 V  
3 V  
Vhys  
RPull  
CI  
Input voltage hysteresis (VIT+ – VIT–  
Pullup/pulldown resistor  
Input capacitance  
)
0.3  
1
V
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
3 V  
20  
35  
5
50  
kΩ  
pF  
VIN = VSS or VCC  
Leakage Current – Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
±50 nA  
(1) (2)  
Ilkg(Px.x)  
High-impedance leakage current  
3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
Outputs – Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –6 mA(1)  
I(OLmax) = 6 mA(1)  
VCC  
3 V  
3 V  
MIN  
TYP  
VCC – 0.3  
VSS + 0.3  
MAX UNIT  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
Output Frequency – Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Px.y, CL = 20 pF, RL = 1 kΩ(1) (2)  
Px.y, CL = 20 pF(2)  
VCC  
3 V  
3 V  
MIN  
TYP  
12  
MAX UNIT  
MHz  
Port output frequency  
(with load)  
fPx.y  
fPort_CLK  
Clock output frequency  
16  
MHz  
(1) A resistive divider with 2 × 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider.  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Typical Characteristics – Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
V
= 2.2 V  
V
= 3 V  
CC  
CC  
T
= 25°C  
= 85°C  
A
T
= 25°C  
= 85°C  
P1.7  
A
P1.7  
T
A
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 6.  
Figure 7.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−5.0  
0.0  
−10.0  
−20.0  
−30.0  
−40.0  
−50.0  
V
= 2.2 V  
V
= 3 V  
CC  
CC  
P1.7  
P1.7  
−10.0  
−15.0  
−20.0  
−25.0  
T
A
= 85°C  
T
= 85°C  
A
T
A
= 25°C  
0.5  
T
= 25°C  
0.5  
A
0.0  
1.0  
1.5  
2.0  
2.5  
0.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 8.  
Figure 9.  
20  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
POR/Brownout Reset (BOR)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
See Figure 10  
TEST CONDITIONS  
dVCC/dt 3 V/s  
VCC  
MIN  
TYP  
MAX UNIT  
VCC(start)  
V(B_IT–)  
Vhys(B_IT–)  
td(BOR)  
0.7 × V(B_IT–)  
1.35  
V
V
See Figure 10 through Figure 12  
See Figure 10  
dVCC/dt 3 V/s  
dVCC/dt 3 V/s  
140  
mV  
See Figure 10  
2000  
µs  
Pulse length needed at RST/NMI pin to  
accepted reset internally  
t(reset)  
2.2 V/3 V  
2
µs  
(1) The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT–)  
+
Vhys(B_IT–)is 1.8 V.  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
 
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Typical Characteristics – POR/Brownout Reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
Typical Conditions  
CC  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 11. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(drop)  
0.5  
t = t  
f
r
0
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 12. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
22  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Main DCO Characteristics  
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
DCO control bits DCOx have a step size as defined by parameter SDCO.  
Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK  
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to:  
32 × f  
× f  
DCO(RSEL,DCO+1)  
DCO(RSEL,DCO)  
f
=
average  
MOD × f  
+ (32 – MOD) × f  
DCO(RSEL,DCO+1)  
DCO(RSEL,DCO)  
DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.8  
2.2  
3
TYP  
MAX UNIT  
RSELx < 14  
RSELx = 14  
RSELx = 15  
3.6  
3.6  
3.6  
V
V
V
VCC  
Supply voltage  
fDCO(0,0)  
fDCO(0,3)  
fDCO(1,3)  
fDCO(2,3)  
fDCO(3,3)  
fDCO(4,3)  
fDCO(5,3)  
fDCO(6,3)  
fDCO(7,3)  
fDCO(8,3)  
fDCO(9,3)  
fDCO(10,3)  
fDCO(11,3)  
fDCO(12,3)  
fDCO(13,3)  
fDCO(14,3)  
fDCO(15,3)  
fDCO(15,7)  
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
0.06  
0.14 MHz  
MHz  
0.12  
0.15  
0.21  
0.3  
MHz  
MHz  
MHz  
0.41  
0.58  
0.8  
MHz  
MHz  
MHz  
0.8  
1.5 MHz  
MHz  
1.6  
2.3  
MHz  
3.4  
MHz  
4.25  
MHz  
4.3  
8.6  
7.3 MHz  
MHz  
7.8  
13.9 MHz  
MHz  
15.25  
21  
MHz  
Frequency step between  
range RSEL and  
RSEL+1  
SRSEL  
SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO)  
3 V  
1.35  
ratio  
Frequency step between  
tap DCO and DCO+1  
SDCO  
SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO)  
Measured at SMCLK output  
3 V  
3 V  
1.08  
50  
ratio  
%
Duty cycle  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
MAX UNIT  
Calibrated DCO Frequencies – Tolerance  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
BCSCTL1= CALBC1_1MHz,  
1-MHz tolerance over temperature(1) DCOCTL = CALDCO_1MHz,  
calibrated at 30°C and 3 V  
0°C to 85°C  
3 V  
-3  
±0.5  
+3  
+3  
+6  
%
%
%
BCSCTL1= CALBC1_1MHz,  
1-MHz tolerance over VCC  
1-MHz tolerance overall  
DCOCTL = CALDCO_1MHz,  
calibrated at 30°C and 3 V  
30°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
-3  
-6  
±2  
±3  
BCSCTL1= CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
(1) This is the frequency change from the measured frequency at 30°C over temperature.  
Wake-Up From Lower-Power Modes (LPM3/4) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DCO clock wake-up time from  
LPM3/4(1)  
BCSCTL1= CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz  
tDCO,LPM3/4  
tCPU,LPM3/4  
3 V  
1.5  
µs  
1/fMCLK  
+
CPU wake-up time from LPM3/4(2)  
tClock,LPM3/4  
(1) The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge  
observable externally on a clock pin (MCLK or SMCLK).  
(2) Parameter applicable only if DCOCLK is used for MCLK.  
Typical Characteristics – DCO Clock Wake-Up Time From LPM3/4  
10.00  
RSELx = 0...11  
RSELx = 12...15  
1.00  
0.10  
0.10  
1.00  
DCO Frequency − MHz  
Figure 13. DCO Wake-Up Time From LPM3 vs DCO Frequency  
10.00  
24  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Crystal Oscillator, XT1, Low-Frequency Mode(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
fLFXT1,LF  
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V to 3.6 V  
32768  
Hz  
LFXT1 oscillator logic level  
fLFXT1,LF,logic  
square wave input frequency, XTS = 0, XCAPx = 0, LFXT1Sx = 3  
LF mode  
1.8 V to 3.6 V 10000  
32768 50000  
Hz  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 6 pF  
500  
200  
Oscillation allowance for  
LF crystals  
OALF  
kΩ  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 12 pF  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
8.5  
11  
Integrated effective load  
capacitance, LF mode(2)  
CL,eff  
pF  
XTS = 0, Measured at P2.0/ACLK,  
fLFXT1,LF = 32768 Hz  
Duty cycle  
fFault,LF  
LF mode  
2.2 V  
2.2 V  
30  
10  
50  
70  
%
Oscillator fault frequency,  
LF mode(3)  
XTS = 0, XCAPx = 0, LFXT1Sx = 3(4)  
10000  
Hz  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This  
signal is no longer required for the serial programming adapter.  
(2) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(3) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(4) Measured with logic-level input frequency but also applies to operation with crystals.  
Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TA  
VCC  
3 V  
MIN  
TYP  
12  
MAX UNIT  
20 kHz  
%/°C  
fVLO  
-40°C to 85°C  
-40°C to 85°C  
25°C  
4
dfVLO/dT  
3 V  
0.5  
4
dfVLO/dVCC VLO frequency supply voltage drift  
1.8 V to 3.6 V  
%/V  
Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
fTA  
Timer_A input clock frequency  
Timer_A capture timing  
External: TACLK, INCLK  
Duty cycle = 50% ± 10%  
fSYSTEM  
MHz  
ns  
tTA,cap  
TA0, TA1  
3 V  
20  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Comparator_A+ (MSP430G2x11 only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
I(DD)  
CAON = 1, CARSEL = 0, CAREF = 0  
3 V  
45  
µA  
CAON = 1, CARSEL = 0, CAREF = 1/2/3,  
No load at CA0 and CA1  
I(Refladder/RefDiode)  
3 V  
3 V  
45  
µA  
V(IC)  
Common–mode input voltage  
Voltage @ 0.25 V node  
CAON = 1  
0
VCC-1  
V
CC  
PCA0 = 1, CARSEL = 1, CAREF = 1,  
No load at CA0 and CA1  
V(Ref025)  
3 V  
0.24  
V
CC  
Voltage @ 0.5 V  
CC  
node  
PCA0 = 1, CARSEL = 1, CAREF = 2,  
No load at CA0 and CA1  
V(Ref050)  
3 V  
3 V  
0.48  
490  
V
CC  
PCA0 = 1, CARSEL = 1, CAREF = 3,  
No load at CA0 and CA1, TA = 85°C  
V(RefVT)  
See Figure 14 and Figure 15  
mV  
V(offset)  
Vhys  
Offset voltage(1)  
Input hysteresis  
3 V  
3 V  
±10  
0.7  
mV  
mV  
CAON = 1  
TA = 25°C, Overdrive 10 mV,  
Without filter: CAF = 0  
120  
1.5  
ns  
µs  
Response time  
(low-high and high-low)  
t(response)  
3 V  
TA = 25°C, Overdrive 10 mV,  
With filter: CAF = 1  
(1) The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The  
two successive measurements are then summed together.  
26  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Typical Characteristics – Comparator_A+  
650  
650  
600  
550  
500  
450  
400  
VCC = 3 V  
VCC = 2.2 V  
600  
550  
500  
450  
400  
Typical  
Typical  
-45  
-25  
-5  
15  
35  
55  
75  
95  
115  
-45  
-25  
-5  
15  
35  
55  
75  
95  
115  
TA – Free-Air Temperature – °C  
TA – Free-Air Temperature – °C  
Figure 14. V(RefVT) vs Temperature, VCC = 3 V  
Figure 15. V(RefVT) vs Temperature, VCC = 2.2 V  
100  
VCC = 1.8 V  
VCC = 2.2 V  
VCC = 3 V  
10  
VCC = 3.6 V  
1
0
0.4  
0.6  
0.8  
1
0.2  
VIN/VCC – Normalized Input Voltage – V/V  
Figure 16. Short Resistance vs VIN/VCC  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX  
UNIT  
VCC(PGM/ERASE) Program and erase supply voltage  
2.2  
3.6  
476  
5
V
kHz  
mA  
fFTG  
Flash timing generator frequency  
Supply current from VCC during program  
Supply current from VCC during erase  
Cumulative program time(1)  
257  
IPGM  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
1
1
IERASE  
tCPT  
7
mA  
10  
ms  
tCMErase  
Cumulative mass erase time  
20  
104  
100  
ms  
Program/erase endurance  
105  
cycles  
years  
tFTG  
tFTG  
tRetention  
tWord  
Data retention duration  
TJ = 25°C  
(2)  
Word or byte program time  
30  
25  
(2)  
(2)  
tBlock, 0  
Block program time for first byte or word  
Block program time for each additional byte or  
word  
tBlock, 1-63  
18  
tFTG  
(2)  
(2)  
(2)  
tBlock, End  
tMass Erase  
tSeg Erase  
Block program end-sequence wait time  
Mass erase time  
6
10593  
4819  
tFTG  
tFTG  
tFTG  
Segment erase time  
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
(2) These values are hardwired into the Flash Controller's state machine (tFTG = 1/fFTG).  
RAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
MAX  
UNIT  
(1)  
V(RAMh)  
RAM retention supply voltage  
1.6  
V
(1) This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should  
happen during this supply voltage condition.  
28  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
JTAG and Spy-Bi-Wire Interface – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0
TYP  
MAX  
20  
UNIT  
MHz  
µs  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V/3 V  
2.2 V/3 V  
tSBW,Low Spy-Bi-Wire low clock pulse length  
0.025  
15  
Spy-Bi-Wire enable time  
tSBW,En  
2.2 V/3 V  
1
µs  
(TEST high to acceptance of first clock edge(1)  
)
tSBW,Ret  
fTCK  
Spy-Bi-Wire return to normal operation time  
TCK input frequency(2)  
2.2 V/3 V  
2.2 V  
15  
0
100  
5
µs  
MHz  
MHz  
kΩ  
3 V  
0
10  
90  
RInternal  
Internal pulldown resistance on TEST  
2.2 V/3 V  
25  
60  
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before  
applying the first SBWCLK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
JTAG Fuse(1) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA = 25°C  
MIN  
2.5  
6
MAX  
UNIT  
V
VCC(FB)  
VFB  
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
7
100  
1
V
IFB  
mA  
ms  
tFB  
(1) Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to  
bypass mode.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
APPLICATION INFORMATION  
Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger – MSP430G2x01  
PxSEL.y  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
0
1
From Timer  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
Table 14. Port P1 (P1.0 to P1.3) Pin Functions – MSP430G2x01  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0/  
P1.x (I/O)  
TA0CLK  
ACLK  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
TA0CLK/  
ACLK  
P1.1/  
0
0
1
P1.x (I/O)  
TA0.CCI0A  
TA0.0  
I: 0; O: 1  
TA0.0  
1
1
0
P1.2/  
P1.x (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
TA0.1  
2
3
1
0
P1.3  
P1.x (I/O)  
I: 0; O: 1  
30  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Port P1 Pin Schematic: P1.4 to P1.7, Input/Output With Schmitt Trigger – MSP430G2x01  
PxSEL.y  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
0
1
From Module  
P1.4/SMCLK/TCK  
P1.5/TA0.0/TMS  
P1.6/TA0.1/TDI/TCLK  
P1.7/TDO/TDI  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
From JTAG  
To JTAG  
Table 15. Port P1 (P1.4 to P1.7) Pin Functions – MSP430G2x01  
CONTROL BITS / SIGNALS  
PIN NAME (P1.x)  
P1.4/  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
JTAG Mode  
CAPD.y  
P1.x (I/O)  
SMCLK  
TCK  
I: 0; O: 1  
0
1
x
0
1
x
0
1
x
0
x
0
0
1
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
SMCLK/  
TCK  
4
5
1
x
P1.5/  
P1.x (I/O)  
TA0.0  
I: 0; O: 1  
TA0.0/  
TMS  
1
TMS  
x
P1.6/  
P1.x (I/O)  
TA0.1  
I: 0; O: 1  
TA0.1/  
TDI/TCLK  
P1.7/  
6
7
1
TDI/TCLK  
P1.x (I/O)  
TDO/TDI  
x
I: 0; O: 1  
x
TDO/TDI  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger – MSP430G2x11  
To Comparator  
from Comparator  
PxSEL.y  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
ACLK  
0
1
Bus  
Keeper  
EN  
P1.0/TA0CLK/ACLK/CA0  
P1.1/TA0.0/CA1  
P1.2/TA0.1/CA2  
P1.3/CAOUT/CA3  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
32  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Table 16. Port P1 (P1.0 to P1.3) Pin Functions – MSP430G2x11  
CONTROL BITS / SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
CAPD.y  
P1.0/  
P1.x (I/O)  
TA0.TACLK  
ACLK  
I: 0; O: 1  
0
1
1
x
0
1
1
x
0
1
1
x
0
1
x
0
TA0CLK/  
ACLK/  
CA0  
0
0
0
1
0
CA0  
x
1 (y = 0)  
P1.1/  
P1.x (I/O)  
TA0.0  
I: 0; O: 1  
0
TA0.0/  
1
0
1
TA0.CCI0A  
CA1  
0
0
CA1  
x
1 (y = 1)  
P1.2/  
TA0.1/  
P1.x (I/O)  
TA0.1  
I: 0; O: 1  
0
1
0
2
3
TA0.CCI1A  
CA2  
0
0
CA2  
x
1 (y = 2)  
P1.3/  
CAOUT/  
CA3  
P1.x (I/O)  
CAOUT  
CA3  
I: 0; O: 1  
0
0
1
x
1 (y = 3)  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Port P1 Pin Schematic: P1.4 to P1.7, Input/Output With Schmitt Trigger – MSP430G2x11  
To Comparator  
from Comparator  
CAPD.y  
PxSEL.y  
PxDIR.y  
1
Direction  
0: Input  
1: Output  
0
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
0
1
From Module  
P1.4/SMCLK/CA4/TCK  
P1.5/TA0.0/CA5/TMS  
P1.6/TA0.1/CA6/TDI/TCLK  
P1.7/CAOUT/CA7/TDO/TDI  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
From JTAG  
To JTAG  
34  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Table 17. Port P1 (P1.4 to P1.7) Pin Functions – MSP430G2x11  
CONTROL BITS / SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
JTAG Mode  
CAPD.y  
P1.4/  
P1.x (I/O)  
SMCLK  
CA4  
I: 0; O: 1  
0
1
x
x
0
1
x
x
0
1
x
x
0
1
x
x
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
SMCLK/  
CA4/  
1
0
4
x
1 (y = 4)  
TCK  
TCK  
x
0
P1.5/  
P1.x (I/O)  
TA0.0  
I: 0; O: 1  
0
TA0.0/  
CA5/  
1
0
5
6
7
CA5  
x
1 (y = 5)  
TMS  
TMS  
x
0
P1.6/  
P1.x (I/O)  
TA0.1  
I: 0; O: 1  
0
TA0.1/  
CA6/  
1
0
CA6  
x
1 (y = 6)  
TDI/TCLK  
P1.7/  
TDI/TCLK  
P1.x (I/O)  
CAOUT  
CA7  
x
0
I: 0; O: 1  
0
CAOUT/  
CA7/  
1
x
x
0
1 (y = 7)  
0
TDO/TDI  
TDO/TDI  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger – MSP430G2x01 and  
MSP430G2x11  
XOUT/P2.7  
LF off  
PxSEL.6  
PxSEL.7  
BCSCTL3.LFXT1Sx = 11  
LFXT1CLK  
0
1
PxSEL.6  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.6  
1
PxOUT.y  
0
1
from Module  
Bus  
Keeper  
EN  
XIN/P2.6/TA0.1  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Q
Set  
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
Table 18. Port P2 (P2.6) Pin Functions – MSP430G2x01 and MSP430G2x11  
CONTROL BITS / SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL.6  
P2SEL.7  
XIN  
XIN  
0
I: 0; O: 1  
1
1
0
1
1
x
x
P2.6  
6
P2.x (I/O)  
Timer0_A3.TA1  
TA0.1  
36  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
MSP430G2x11  
MSP430G2x01  
www.ti.com  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger – MSP430G2x01 and  
MSP430G2x11  
XIN/P2.6/TA0.1  
LF off  
PxSEL.6  
PxSEL.7  
BCSCTL3.LFXT1Sx = 11  
LFXT1CLK  
0
1
from P2.6/XIN  
PxSEL.7  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.7  
1
PxOUT.y  
0
1
from Module  
Bus  
Keeper  
EN  
XOUT/P2.7  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Q
Set  
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
Table 19. Port P2 (P2.7) Pin Functions – MSP430G2x01 and MSP430G2x11  
CONTROL BITS / SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2SEL.6  
P2SEL.7  
P2DIR.x  
P2SEL.7  
XOUT  
P2.7  
XOUT  
1
1
0
1
x
7
P2.x (I/O)  
I: 0; O: 1  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
MSP430G2x11  
MSP430G2x01  
SLAS695C FEBRUARY 2010REVISED JULY 2010  
www.ti.com  
REVISION HISTORY  
REVISION  
DESCRIPTION  
SLAS695  
Limited Product Preview release  
Updated Product Preview  
Changes throughout for sampling  
Updated Product Preview  
Production Data release  
SLAS695A  
SLAS695B  
SLAS695C  
38  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Jun-2010  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430G2001IN14  
MSP430G2001IPW14R  
MSP430G2001IRSA16R  
MSP430G2001IRSA16T  
MSP430G2101IN14  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
TSSOP  
QFN  
N
14  
14  
16  
16  
14  
14  
14  
16  
16  
25  
2000  
3000  
250  
25  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
Contact TI Distributor  
or Sales Office  
PW  
RSA  
RSA  
N
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Request Free Samples  
Purchase Samples  
Purchase Samples  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
PDIP  
Pb-Free (RoHS)  
Contact TI Distributor  
or Sales Office  
MSP430G2101IPW14  
MSP430G2101IPW14R  
MSP430G2101IRSA16R  
MSP430G2101IRSA16T  
TSSOP  
TSSOP  
QFN  
PW  
PW  
RSA  
RSA  
90  
Green (RoHS  
& no Sb/Br)  
Purchase Samples  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Contact TI Distributor  
or Sales Office  
Green (RoHS  
& no Sb/Br)  
Purchase Samples  
Purchase Samples  
Purchase Samples  
QFN  
Green (RoHS  
& no Sb/Br)  
MSP430G2111IN14  
MSP430G2111IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
14  
14  
25  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
Contact TI Distributor  
or Sales Office  
MSP430G2111IPW14R  
MSP430G2111IRSA16R  
MSP430G2111IRSA16T  
MSP430G2201IN14  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
QFN  
PW  
RSA  
RSA  
N
14  
16  
16  
14  
14  
14  
2000  
3000  
250  
25  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
Purchase Samples  
Purchase Samples  
Purchase Samples  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
PDIP  
Pb-Free (RoHS)  
Contact TI Distributor  
or Sales Office  
MSP430G2201IPW14  
MSP430G2201IPW14R  
TSSOP  
TSSOP  
PW  
PW  
90  
Green (RoHS  
& no Sb/Br)  
Purchase Samples  
2000  
Green (RoHS  
& no Sb/Br)  
Contact TI Distributor  
or Sales Office  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Jun-2010  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430G2201IRSA16R  
MSP430G2201IRSA16T  
MSP430G2211IPW14R  
MSP430G2211IRSA16R  
MSP430G2211IRSA16T  
QFN  
QFN  
RSA  
RSA  
PW  
16  
16  
14  
16  
16  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Contact TI Distributor  
or Sales Office  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Purchase Samples  
Request Free Samples  
Request Free Samples  
Purchase Samples  
TSSOP  
QFN  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
RSA  
RSA  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY