MSP430G2231IRSA16T [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430G2231IRSA16T
型号: MSP430G2231IRSA16T
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器和处理器 外围集成电路 装置 PC 时钟
文件: 总61页 (文件大小:1276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
D
D
Low Supply Voltage Range 1.8 V to 3.6 V  
D
Universal Serial Interface (USI) Supporting  
SPI and I2C (See Table 1)  
Brownout Detector  
10-Bit 200-ksps A/D Converter With Internal  
Reference, Sample-and-Hold, and Autoscan  
(See Table 1)  
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by  
Security Fuse  
Ultralow Power Consumption  
-- Active Mode: 220 µA at 1 MHz, 2.2 V  
-- Standby Mode: 0.5 µA  
-- Off Mode (RAM Retention): 0.1 µA  
Five Power-Saving Modes  
Ultrafast Wake-Up From Standby Mode in  
Less Than 1 µs  
16-Bit RISC Architecture, 62.5 ns  
Instruction Cycle Time  
Basic Clock Module Configurations:  
-- Internal Frequencies up to 16 MHz With  
One Calibrated Frequency  
-- Internal Very Low Power LF Oscillator  
-- 32-kHz Crystal  
-- External Digital Clock Source  
D
D
D
D
D
D
D
D
On-Chip Emulation Logic With Spy-Bi-Wire  
Interface  
D
D
Family Members Details See Table 1  
Available in a 14-Pin Plastic Small-Outline  
Thin Package (TSSOP), 14-Pin Plastic Dual  
Inline Package (PDIP), and 16-Pin QFN  
For Complete Module Descriptions, See the  
MSP430x2xx Family User’s Guide  
D
D
16-Bit Timer_A With Two Capture/Compare  
Registers  
description  
The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less  
than 1µs.  
The MSP430G2x21/31 series is an ultralow-power mixed signal microcontroller with a built-in 16-bit timer and  
ten I/O pins. The MSP430G2x31 family members have a 10-bit A/D converter and built-in communication  
capability using synchronous protocols (SPI or I2C). For configuration details, see Table 1.  
Typical applications include low-cost sensor systems that capture analog signals, convert themto digitalvalues,  
and then process the data for display or for transmission to a host system.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
Copyright 2010 Texas Instruments Incorporated  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Table 1. Available Options -- MSP430G2x21 and MSP430G2x31  
Flash RAM  
ADC10  
Package  
Type  
BSL EEM  
Timer_A  
USI  
CLOCK  
I/O  
10  
Device  
(KB)  
(B)  
Channel  
MSP430G2231IRSA16  
MSP430G2231IPW14  
MSP430G2231IN14  
16-QFN  
14-TSSOP  
14-PDIP  
--  
--  
--  
--  
1
1
1
1
2
128  
1x TA2  
1
8
--  
LF, DCO, VLO  
MSP430G2221IRSA16  
MSP430G2221IPW14  
MSP430G2221IN14  
16-QFN  
14-TSSOP  
14-PDIP  
2
1
1
128  
128  
128  
1x TA2  
1x TA2  
1x TA2  
1
1
1
LF, DCO, VLO  
LF, DCO, VLO  
LF, DCO, VLO  
10  
10  
10  
MSP430G2131IRSA16  
MSP430G2131IPW14  
MSP430G2131IN14  
16-QFN  
14-TSSOP  
14-PDIP  
8
--  
MSP430G2121IRSA16  
MSP430G2121IPW14  
MSP430G2121IN14  
16-QFN  
14-TSSOP  
14-PDIP  
For the most current package and ordering information, see the Package Option Addendum at the end of this document,  
or see the TI web site at www.ti.com.  
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
device pinout, MSP430G2x21  
14  
13  
12  
11  
10  
9
DVSS  
XIN/P2.6/TA0.1  
XOUT/P2.7  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
P1.7/SDI/SDA/TDO/TDI  
P1.6/TA0.1/SDO/SCL/TDI/TCLK  
DVCC  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3  
P1.4/SMCLK/TCK  
1
2
3
4
5
6
7
N14  
PW14  
8
P1.5/TA0.0/SCLK/TMS  
NOTE: See port schematics section for detailed I/O information.  
16 15 14 13  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3  
1
2
3
4
12 XIN/P2.6/TA0.1  
11 XOUT/P2.7  
10 TEST/SBWTCK  
RST/NMI/SBWTDIO  
RSA  
9
5
6
7
8
NOTE: See port schematics section for detailed I/O information.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
device pinout, MSP430G2x31  
14  
13  
12  
11  
10  
9
DVSS  
XIN/P2.6/TA0.1  
XOUT/P2.7  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
P1.7/A7/SDI/SDA/TDO/TDI  
P1.6/TA0.1/A6/SDO/SCL/TDI/TCLK  
DVCC  
P1.0/TA0CLK/ACLK/A0  
P1.1/TA0.0/A1  
P1.2/TA0.1/A2  
P1.3/ADC10CLK/A3/VREF-/VEREF-  
P1.4/SMCLK/A4/VREF+/VEREF+/TCK  
1
2
3
4
5
6
7
N14  
PW14  
8
P1.5/TA0.0/A5/SCLK/TMS  
NOTE: See port schematics section for detailed I/O information.  
16 15 14 13  
P1.0/TA0CLK/ACLK/A0  
P1.1/TA0.0/A1  
P1.2/TA0.1/A2  
P1.3/ADC10CLK/A3/VREF-/VEREF-  
1
2
3
4
12 XIN/P2.6/TA0.1  
11 XOUT/P2.7  
10 TEST/SBWTCK  
RST/NMI/SBWTDIO  
RSA  
9
5
6
7
8
NOTE: See port schematics section for detailed I/O information.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
functional block diagram, MSP430G2x21  
XIN  
XOUT  
DVCC  
DVSS  
P1.x  
8
P2.x  
2
ACLK  
SMCLK  
Port P2  
Port P1  
Clock  
System  
Flash  
RAM  
128B  
2 I/O  
Interrupt  
8 I/O  
Interrupt  
capability  
pull-up/down  
resistors  
2KB  
1KB  
capability  
pull-up/down  
resistors  
MCLK  
16MHz  
CPU  
MAB  
incl. 16  
MDB  
Registers  
Emulation  
2BP  
USI  
Watchdog Timer0_A2  
Brownout  
Protection  
WDT+  
2 CC  
Universal  
Serial  
JTAG  
Interface  
15-Bit  
Registers  
Interface  
SPI, I2C  
Spy-Bi  
Wire  
RST/NMI  
functional block diagram, MSP430G2x31  
XIN  
XOUT  
DVCC  
Flash  
DVSS  
P1.x  
8
P2.x  
2
ACLK  
SMCLK  
Port P2  
Port P1  
ADC  
Clock  
System  
RAM  
128B  
2 I/O  
Interrupt  
8 I/O  
Interrupt  
capability  
pull-up/down  
resistors  
10-Bit  
8 Ch.  
2kB  
1kB  
capability  
pull-up/down  
resistors  
Autoscan  
1 ch DMA  
MCLK  
16MHz  
CPU  
MAB  
incl. 16  
MDB  
Registers  
Emulation  
2BP  
USI  
Watchdog Timer0_A2  
Brownout  
Protection  
WDT+  
2 CC  
Universal  
Serial  
JTAG  
Interface  
15-Bit  
Registers  
Interface  
SPI, I2C  
Spy-Bi  
Wire  
RST/NMI  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Terminal Functions, MSP430G2x21 and MSP430G2x31  
TERMINAL  
14  
16  
DESCRIPTION  
N, PW RSA  
NAME  
I/O  
NO.  
NO.  
P1.0/  
General-purpose digital I/O pin  
Timer0_A, clock signal TACLK input  
ACLK signal ouput  
TA0CLK/  
ACLK/  
A0  
2
1
I/O  
ADC10 analog input A0 (see Note 1)  
P1.1/  
TA0.0/  
A1  
General-purpose digital I/O pin  
I/O Timer0_A, capture: CCI0A input, compare: Out0 output  
ADC10 analog input A1 (see Note 1)  
3
4
2
3
P1.2/  
TA0.1/  
A2/  
General-purpose digital I/O pin  
I/O Timer0_A, capture: CCI1A input, compare: Out1 output  
ADC10 analog input A2 (see Note 1)  
P1.3/  
ADC10CLK/  
A3/  
General-purpose digital I/O pin  
ADC10, conversion clock output (see Note 1)  
5
6
4
5
I/O  
ADC10 analog input A3 (see Note 1)  
ADC10 negative reference voltage (see Note 1)  
VREF--/VEREF/  
P1.4/  
General-purpose digital I/O pin  
SMCLK signal output  
ADC10 analog input A4 (see Note 1)  
ADC10 positive reference voltage (see Note 1)  
JTAG test clock, input terminal for device programming and test  
SMCLK/  
A4/  
I/O  
I/O  
VREF+/VEREF+/  
TCK  
P1.5/  
TA0.0/  
A5/  
SCLK/  
TMS  
General-purpose digital I/O pin  
Timer0_A, compare: Out0 output  
ADC10 analog input A5 (see Note 1)  
7
8
6
7
USI: clk input in I2C mode; clk in/output in SPI mode  
JTAG test mode select, input terminal for device programming and test  
P1.6/  
TA0.1/  
A6/  
General-purpose digital I/O pin  
Timer0_A, compare: Out1 output  
ADC10 analog input A6 (see Note 1)  
USI: Data output in SPI mode  
USI: I2C clock in I2C mode  
SDO/  
SCL/  
TDI/  
I/O  
I/O  
JTAG test data input or test clock input during programming and test  
TCLK  
P1.7/  
A7/  
SDI/  
SDA/  
TDO/  
TDI  
General-purpose digital I/O pin  
ADC10 analog input A7 (see Note 1)  
USI: Data input in SPI mode  
USI: I2C data in I2C mode  
JTAG test data output terminal or test data input during programming and test  
9
8
NOTES: 1. MSP430G2x31 only  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Terminal Functions, MSP430G2x21 and MSP430G2x31 (continued)  
TERMINAL  
14  
N, PW RSA  
16  
DESCRIPTION  
NAME  
I/O  
NO.  
NO.  
XIN/  
P2.6/  
TA0.1  
Input terminal of crystal oscillator  
I/O General-purpose digital I/O pin  
Timer0_A, compare: Out1 output  
13  
12  
XOUT/  
P2.7  
Output terminal of crystal oscillator (see Note 1)  
General-purpose digital I/O pin  
12  
10  
11  
9
I/O  
RST/  
NMI/  
SBWTDIO  
Reset  
I
I
Nonmaskable interrupt input  
Spy-Bi-Wire test data input/output during programming and test  
TEST/  
SBWTCK  
Selects test mode for JTAG pins on Port1. The device protection fuse is connected to TEST.  
Spy-Bi-Wire test clock input during programming and test  
11  
1
10  
16  
15  
DVCC  
DVSS  
NA Supply voltage  
14  
13  
14  
NA Ground reference  
NA Not connected  
NC  
--  
--  
--  
QFN Pad  
Pad  
NA QFN package pad connection to V recommended.  
SS  
NOTES: 1. If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver  
connection to this pad after reset.  
TDO or TDI is selected via JTAG instruction.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 2 shows examples of the three types of  
instruction formats; Table 3 shows the address  
modes.  
R14  
R15  
Table 2. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g., ADD R4,R5  
R4 + R5 ------> R5  
e.g., CALL  
e.g., JNE  
R8  
PC ---->(TOS), R8----> PC  
Jump-on-equal bit = 0  
Table 3. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
F
F
F
F
F
F
F
F
F
MOV Rs,Rd  
R10 ----> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5)----> M(6+R6)  
M(EDE) ----> M(TONI)  
M(MEM) ----> M(TCDAT)  
M(R10) ----> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) ----> R11  
R10 + 2----> R10  
F
MOV @Rn+,Rm  
Immediate  
F
MOV #X,TONI  
#45 ----> M(TONI)  
NOTE: S = source  
D = destination  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
operating modes  
The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request, and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
Active mode (AM)  
-- All clocks are active  
Low-power mode 0 (LPM0)  
D
-- CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
D
D
Low-power mode 1 (LPM1)  
-- CPU is disabled  
-- ACLK and SMCLK remain active. MCLK is disabled  
-- DCO’s dc-generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2)  
-- CPU is disabled  
-- MCLK and SMCLK are disabled  
-- DCO’s dc-generator remains enabled  
-- ACLK remains active  
D
D
Low-power mode 3 (LPM3)  
-- CPU is disabled  
-- MCLK and SMCLK are disabled  
-- DCO’s dc-generator is disabled  
-- ACLK remains active  
Low-power mode 4 (LPM4)  
-- CPU is disabled  
-- ACLK is disabled  
-- MCLK and SMCLK are disabled  
-- DCO’s dc-generator is disabled  
-- Crystal oscillator is stopped  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFC0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g., flash is not programmed) the CPU will  
go into LPM4 immediately after power-up.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
PORIFG  
RSTIFG  
WDTIFG  
KEYV  
Watchdog Timer+  
Reset  
0FFFEh  
31, highest  
Flash key violation  
PC out-of-range (see Note 1)  
(see Note 2)  
NMIIFG  
OFIFG  
NMI  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
Oscillator fault  
0FFFCh  
30  
ACCVIFG  
Flash memory access violation  
(see Notes 2 and 5)  
0FFFAh  
0FFF8h  
0FFF6h  
0FFF4h  
0FFF2h  
29  
28  
27  
26  
25  
Watchdog Timer+  
Timer_A2  
WDTIFG  
maskable  
maskable  
TACCR0 CCIFG (see Note 3)  
TACCR1 CCIFG.  
TAIFG (see Notes 2 and 3)  
Timer_A2  
maskable  
0FFF0h  
24  
0FFEEh  
0FFECh  
0FFEAh  
23  
22  
21  
ADC10 (see Note 4)  
USI  
ADC10IFG (see Note 3 and 4)  
maskable  
maskable  
USIIFG, USISTTIFG  
(see Notes 2, 3)  
0FFE8h  
0FFE6h  
0FFE4h  
20  
19  
18  
I/O Port P2  
(two flags)  
P2IFG.6 to P2IFG.7  
(see Notes 2 and 3)  
maskable  
maskable  
I/O Port P1  
(eight flags)  
P1IFG.0 to P1IFG.7  
(see Notes 2 and 3)  
0FFE2h  
0FFE0h  
17  
16  
(see Note 6)  
0FFDEh ... 0FFC0h  
15 ... 0, lowest  
NOTES: 1. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or  
from within unused address ranges.  
2. Multiple source flags  
3. Interrupt flags are located in the module  
4. MSP430G2x31 only.  
5. (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
6. The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if  
necessary.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
notallocated to a functionalpurpose are notphysically presentin the device. Simple software access is provided  
with this arrangement.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
OFIE  
WDTIE  
ACCVIE  
NMIIE  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer  
is configured in interval timer mode.  
OFIE:  
NMIIE:  
ACCVIE:  
Oscillator fault enable  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
7
6
5
4
3
2
1
0
Address  
01h  
interrupt flag register 1 and 2  
7
6
5
4
3
2
1
0
Address  
02h  
NMIIFG  
RSTIFG  
PORIFG  
OFIFG  
WDTIFG  
rw-0  
rw-(0)  
rw-1  
rw-(0)  
rw-(1)  
WDTIFG:  
Set on Watchdog Timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.  
Flag set on oscillator fault  
OFIFG:  
RSTIFG:  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC  
power-up  
PORIFG:  
NMIIFG:  
Power-On Reset interrupt flag. Set on VCC power-up.  
Set via RST/NMI-pin  
7
6
5
4
3
2
1
0
Address  
03h  
Legend  
rw:  
Bit can be read and written.  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
rw-0,1:  
rw-(0,1):  
SFR bit is not present in device  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
memory organization  
MSP430G2021  
MSP430G2031  
MSP430G2121  
MSP430G2131  
MSP430G2221  
MSP430G2231  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
512B  
0xFFFF to 0xFFC0  
0xFFFF to  
1kB  
0xFFFF to 0xFFC0  
0xFFFF to  
2kB  
0xFFFF to 0xFFC0  
0xFFFF to  
0xFE00  
0xFC00  
0xF800  
Information memory  
RAM  
Size  
256 Byte  
256 Byte  
256 Byte  
Flash  
010FFh -- 01000h  
010FFh -- 01000h  
010FFh -- 01000h  
Size  
128B  
027Fh -- 0200h  
128B  
027Fh -- 0200h  
128B  
027Fh -- 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh -- 0100h  
0FFh -- 010h  
0Fh -- 00h  
01FFh -- 0100h  
0FFh -- 010h  
0Fh -- 00h  
01FFh -- 0100h  
0FFh -- 010h  
0Fh -- 00h  
flash memory  
The flash memory can be programmed via the Spy-Bi-Wire/JTAG port, or in-system by the CPU. The CPU can  
perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
64 bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n.  
Segments A to D are also called information memory.  
D
Segment A contains calibration data. After reset segment A is protected against programming and erasing.  
It can be unlocked but care should be taken not to erase this segment if the device-specific calibration data  
is required.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, see the MSP430x2xx Family User’s Guide.  
oscillator and system clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal very-low-power low-frequency oscillator and an internal digitally controlled oscillator  
(DCO). The basic clock module is designed to meet the requirements of both low system cost and low power  
consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic  
clock module provides the following clock signals:  
D
D
D
Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
DCO CALIBRATION DATA (PROVIDED FROM FACTORY IN FLASH INFO MEMORY  
SEGMENT A)  
DCO FREQUENCY  
CALIBRATION  
REGISTER  
SIZE  
ADDRESS  
1 MHz  
CALBC1_1MHZ  
CALDCO_1MHZ  
byte  
byte  
010FFh  
010FEh  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off.  
digital I/O  
There is one 8-bit I/O port implemented—port P1—and two bits of I/O port P2:  
D
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt condition is possible.  
Edge-selectable interrupt input capability for all the eight bits of port P1 and the two bits of port P2.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pull-up/pull-down resistor.  
WDT+ watchdog timer  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be disabled or configured as an interval timer and can  
generate interrupts at selected time intervals.  
Timer_A2  
Timer_A2 is a 16-bit timer/counter with two capture/compare registers. Timer_A2 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A2 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A2 Signal Connections -- Device with ADC10  
Input  
Pin Number  
Device  
Input Signal  
Module  
Input Name  
Module  
Block  
Module  
Output Signal  
Output  
Pin Number  
PW, N  
RSA  
PW, N  
RSA  
2 - P1.0  
1 - P1.0  
TACLK  
ACLK  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
NA  
TA0  
TA1  
SMCLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
2 - P1.0  
3 - P1.1  
7 - P1.5  
1 - P1.0  
2 - P1.1  
6 - P1.5  
TACLK  
TA0  
3 - P1.1  
7 - P1.5  
2 - P1.1  
6 - P1.5  
ACLK (internal)  
V
SS  
CC  
V
V
CC  
4 - P1.2  
8 - P1.6  
3 - P1.2  
7 - P1.6  
TA1  
TA1  
CCI1A  
CCI1B  
GND  
4 - P1.2  
8 - P1.6  
13 - P2.6  
3 - P1.2  
7 - P1.6  
12 - P2.6  
V
SS  
CC  
V
V
CC  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
USI  
The universal serial interface (USI) module is used for serial data communication and provides the basic  
hardware for synchronous communication protocols like SPI and I2C.  
ADC10 (MSP430G2x31 only)  
The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion  
result handling, allowing ADC samples to be converted and stored without any CPU intervention.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
ADC10  
(MSP430G2x31 only)  
ADC control 0  
ADC control 1  
ADC memory  
ADC10CTL0  
ADC10CTL0  
ADC10MEM  
01B0h  
01B2h  
01B4h  
Timer_A  
Capture/compare register  
Capture/compare register  
Timer_A register  
TACCR1  
TACCR0  
TAR  
TACCTL1  
TACCTL0  
TACTL  
TAIV  
0174h  
0172h  
0170h  
0164h  
0162h  
0160h  
012Eh  
Capture/compare control  
Capture/compare control  
Timer_A control  
Timer_A interrupt vector  
Flash Memory  
Flash control 3  
Flash control 2  
Flash control 1  
FCTL3  
FCTL2  
FCTL1  
012Ch  
012Ah  
0128h  
Watchdog Timer+  
Watchdog/timer control  
WDTCTL  
0120h  
PERIPHERALS WITH BYTE ACCESS  
Analog enable  
ADC10  
(MSP430G2x31 only)  
ADC10AE  
04Ah  
USI  
USI control 0  
USICTL0  
USICTL1  
USICKCTL  
USICNT  
USISR  
078h  
079h  
07Ah  
07Bh  
07Ch  
USI control 1  
USI clock control  
USI bit counter  
USI shift register  
Basic Clock System+  
Port P2  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
053h  
058h  
057h  
056h  
Port P2 resistor enable  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
P2REN  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
02Fh  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
Port P2 output  
Port P2 input  
Port P1  
Port P1 resistor enable  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1REN  
P1SEL  
P1IE  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
Port P1 output  
Port P1 input  
Special Function  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
absolute maximum ratings†  
Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to 4.1 V  
Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC+0.3 V  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA  
Storage temperature, Tstg (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . --55°C to 150°C  
Storage temperature, Tstg (programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . --40°C to 85°C  
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended  
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
2. All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage  
SS  
FB  
is applied to the TEST pin when blowing the JTAG fuse.  
3. Higher temperature may be applied during board soldering process according to the current JEDEC J--STD--020 specification with  
peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.  
recommended operating conditions  
MIN  
1.8  
NOM  
MAX  
3.6  
UNIT  
V
Supply voltage during program execution, V  
CC  
Supply voltage during program/erase flash memory, V  
2.2  
3.6  
V
CC  
Supply voltage, V  
0
V
SS  
Operating free-air temperature range, T  
I Version  
= 1.8 V,  
-- 4 0  
dc  
85  
°C  
A
V
CC  
4.15  
Duty Cycle = 50% ±10%  
V
= 2.7 V,  
CC  
dc  
dc  
12  
16  
Processor frequency f  
(Maximum MCLK frequency)  
MHz  
SYSTEM  
Duty Cycle = 50% ±10%  
V
3.3 V,  
CC  
Duty Cycle = 50% ±10%  
NOTES: 1. The MSP430 CPU is clocked directly with MCLK.  
Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.  
2. Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
Legend:  
16 MHz  
Supply voltage range,  
during flash memory  
programming  
12 MHz  
Supply voltage range,  
during program execution  
7.5 MHz  
4.15 MHz  
1.8 V  
2.2 V  
2.7 V  
3.3 V 3.6 V  
Supply Voltage --V  
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V of 2.2 V.  
CC  
Figure 1. Save Operating Area  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
active mode supply current (into VCC) excluding external current (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
= f = f = 1MHz,  
MCLK  
T
A
V
MIN  
TYP  
MAX UNIT  
CC  
f
f
DCO  
SMCLK  
= 32,768Hz,  
2.2 V  
3 V  
220  
ACLK  
Program executes in flash,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active mode (AM)  
current (1MHz)  
I
µA  
AM, 1MHz  
300  
370  
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a Micro Crystal CC4V--T1A SMD crystal with a load capacitance of 9 pF.  
The internal and external load capacitance is chosen to closely match the required 9pF.  
typical characteristics -- active mode supply current (into VCC  
)
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
3.0  
2.0  
1.0  
0.0  
f
= 16 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
V
= 3 V  
CC  
f
= 12 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
f
= 8 MHz  
DCO  
f
= 1 MHz  
V
= 2.2 V  
CC  
DCO  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
-- Supply Voltage -- V  
f
DCO  
-- DCO Frequency -- MHz  
CC  
Figure 2. Active mode current vs VCC, TA = 25°C  
Figure 3. Active mode current vs DCO frequency  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
low-power mode supply currents (into VCC) excluding external current (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
T
A
V
MIN  
TYP  
MAX UNIT  
CC  
f
f
f
= 0 MHz,  
SMCLK  
MCLK  
= f  
= 1 MHz,  
DCO  
= 32,768 Hz,  
Low-power mode 0  
(LPM0) current,  
see Note 3  
ACLK  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
I
I
25°C  
25°C  
2.2 V  
2.2 V  
65  
µA  
LPM0, 1MHz  
f
f
f
= f  
= 0 MHz,  
SMCLK  
MCLK  
DCO  
ACLK  
= 1 MHz,  
= 32,768 Hz,  
Low-power mode 2  
(LPM2) current,  
see Note 4  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 1,  
OSCOFF = 0  
22  
µA  
LPM2  
f
f
= f  
ACLK  
= f  
= 0 MHz,  
SMCLK  
DCO  
MCLK  
= 32,768 Hz,  
Low-power mode 3  
(LPM3) current,  
see Note 4  
I
I
I
25°C  
25°C  
2.2 V  
2.2 V  
0.7  
0.5  
1.5  
0.7  
µA  
µA  
LPM3,LFXT1  
LPM3,VLO  
LPM4  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
f
f
= f  
= f  
= 0 MHz,  
SMCLK  
DCO  
MCLK  
Low-power mode 3  
current, (LPM3)  
see Note 4  
from internal LF oscillator (VLO),  
ACLK  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
f
f
= f  
= f  
= 0MHz,  
SMCLK  
DCO  
MCLK  
25°C  
85°C  
2.2 V  
2.2 V  
0.1  
0.8  
1.5  
1.5  
µA  
µA  
Low-power mode 4  
(LPM4) current,  
see Note 5  
= 0 Hz,  
ACLK  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF.  
3. Current for brownout and WDT clocked by SMCLK included.  
4. Current for brownout and WDT clocked by ACLK included.  
5. Current for brownout included.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics -- LPM3 current  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
Vcc = 3.6 V  
4.0  
Vcc = 3 V  
3.0  
Vcc = 2.2V  
2.0  
1.0  
Vcc = 1.8 V  
0.0  
--40.0 --20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0  
T
A
-- Temperature -- °C  
typical characteristics -- LPM4 current  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Vcc = 3.6 V  
Vcc = 3 V  
Vcc = 2.2V  
Vcc = 1.8 V  
--40.0 --20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0  
-- Temperature -- °C  
T
A
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Schmitt-trigger inputs -- Ports Px  
PARAMETER  
TEST CONDITIONS  
V
MIN  
0.45  
1.35  
0.25  
0.75  
TYP  
MAX UNIT  
CC  
0.75  
2.25  
0.55  
1.65  
V
CC  
Positive-going input threshold  
voltage  
V
IT+  
3 V  
V
V
CC  
Negative-going input threshold  
voltage  
V
V
IT--  
3 V  
3 V  
V
Input voltage hysteresis (V  
--  
IT+  
0.3  
20  
1.0  
50  
V
hys  
V
)
IT--  
For pullup: V = V  
;
SS  
IN  
R
C
Pull-up/pull-down resistor  
Input Capacitance  
3V  
35  
k  
Pull  
For pulldown: V = V  
IN  
CC  
V
= V or V  
CC  
5
pF  
I
IN  
SS  
NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t  
is met. It may be set even with trigger signals  
(int)  
shorter than t  
.
(int)  
leakage current -- Ports Px  
PARAMETER  
TEST CONDITIONS  
see Notes 1 and 2  
NOTES: 1. The leakage current is measured with V or V applied to the corresponding pin(s), unless otherwise noted.  
V
MIN  
TYP  
MAX UNIT  
±50 nA  
CC  
I
High-impedance leakage current  
3 V  
lkg(Px.x)  
SS  
CC  
2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pull-up/pull-down resistor is  
disabled.  
outputs -- Ports Px  
MA  
X
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
-- 0 . 3  
UNIT  
CC  
V
V
High-level output voltage  
Low-level output voltage  
I
I
= --6 mA (see Notes 2)  
= 6 mA (see Notes 2)  
3 V  
3 V  
V
V
V
OH  
OL  
(OHmax)  
(OLmax)  
CC  
V
+0.3  
SS  
NOTES: 1. The maximum total current, I  
voltage drop specified.  
and I  
, for all outputs combined, should not exceed ±12 mA to hold the maximum  
OHmax  
OHmax  
OLmax  
2. The maximum total current, I  
voltage drop specified.  
and I  
, for all outputs combined, should not exceed ±48 mA to hold the maximum  
OLmax  
output frequency -- Ports Px  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
Port output frequency  
Px.y, C = 20 pF, R = 1 kOhm  
L
L
f
f
3 V  
3 V  
12  
MHz  
Px.y  
(with load)  
(see Note 1 and 2)  
Px.y, C = 20 pF  
L
Clock output frequency  
16  
MHz  
Port_CLK  
(see Note 2)  
NOTES: 1. A resistive divider with 2 times 0.5 kbetween V and V is used as load. The output is connected to the center tap of the divider.  
CC  
SS  
2. The output voltage reaches at least 10% and 90% V at the specified toggle frequency.  
CC  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics -- outputs  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
= 2.2 V  
V
P1.7  
= 3 V  
CC  
CC  
P1.7  
T
= 25°C  
= 85°C  
A
T
= 25°C  
= 85°C  
A
T
A
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
-- Low-Level Output Voltage -- V  
V
-- Low-Level Output Voltage -- V  
OL  
OL  
Figure 4  
Figure 5  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
--10.0  
--20.0  
--30.0  
--40.0  
--50.0  
0.0  
-- 5 . 0  
V
= 3 V  
V
= 2.2 V  
CC  
P1.7  
CC  
P1.7  
--10.0  
--15.0  
--20.0  
--25.0  
T
A
= 85°C  
T
= 85°C  
A
T
A
= 25°C  
T
= 25°C  
A
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
-- High-Level Output Voltage -- V  
V
-- High-Level Output Voltage -- V  
OH  
OH  
Figure 6  
Figure 7  
NOTE: One output loaded at a time.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
POR/brownout reset (BOR) (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
V
V
V
(see Figure 8)  
dV /dt 3 V/s  
0.7 × V  
(B_IT--)  
V
V
CC(start)  
CC  
(see Figure 8 through Figure 10)  
(see Figure 8)  
dV /dt 3 V/s  
CC  
1.35  
140  
(B_IT--)  
hys(B_IT--)  
d(BOR)  
dV /dt 3 V/s  
CC  
mV  
µs  
t
(see Figure 8)  
2000  
Pulse length needed at RST/NMI pin  
to accepted reset internally  
t
2.2 V/3 V  
2
µs  
(reset)  
NOTES: 1. The current consumption of the brownout module is already included in the I current consumption data. The voltage level V  
CC  
(B_IT--)  
+ V  
is 1.8V.  
hys(B_IT--)  
2. During power up, the CPU begins code execution following a period of t  
after V = V  
+ V  
. The default  
hys(B_IT--)  
d(BOR)  
CC  
(B_IT--)  
DCO settings must not be changed until V V  
, where V  
is the minimum supply voltage for the desired  
CC  
CC(min)  
CC(min)  
operating frequency.  
V
CC  
V
hys(B_IT--)  
V
(B_IT--)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics -- POR/brownout reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
-- Pulse Width -- µs  
t
pw  
-- Pulse Width -- µs  
t
pw  
Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(drop)  
0.5  
0
t = t  
f
r
0.001  
1
1000  
t
f
t
r
t
pw  
-- Pulse Width -- µs  
t
pw  
-- Pulse Width -- µs  
Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
main DCO characteristics  
D
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
D
D
DCO control bits DCOx have a step size as defined by parameter SDCO.  
Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK  
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal  
to:  
32 × fDCO(RSEL,DCO) × fDCO(RSEL,DCO+1)  
MOD × fDCO(RSEL,DCO)+(32MOD) × fDCO(RSEL,DCO+1)  
faverage  
=
DCO frequency  
PARAMETER  
TEST CONDITIONS  
V
MIN  
1.8  
TYP MAX UNIT  
CC  
RSELx < 14  
3.6  
3.6  
3.6  
V
V
V
RSELx = 14  
RSELx = 15  
2.2  
Vcc  
Supply voltage range  
3.0  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
0.06  
0.14 MHz  
MHz  
DCO(0,0)  
DCO(0,3)  
DCO(1,3)  
DCO(2,3)  
DCO(3,3)  
DCO(4,3)  
DCO(5,3)  
DCO(6,3)  
DCO(7,3)  
DCO(8,3)  
DCO(9,3)  
DCO(10,3)  
DCO(11,3)  
DCO(12,3)  
DCO(13,3)  
DCO(14,3)  
DCO(15,3)  
DCO(15,7)  
0.12  
0.15  
0.21  
0.30  
0.41  
0.58  
0.80  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
0.80  
1.50 MHz  
MHz  
1.60  
2.30  
3.40  
4.25  
MHz  
MHz  
MHz  
4.30  
8.60  
7.30 MHz  
MHz  
7.80  
13.9 MHz  
MHz  
15.25  
21.00  
MHz  
Frequency step between  
range RSEL and RSEL+1  
S
S
S
S
= f /f  
DCO(RSEL+1,DCO) DCO(RSEL,DCO)  
3 V  
1.35  
RSEL  
DCO  
RSEL  
DCO  
ratio  
%
Frequency step between  
tap DCO and DCO+1  
= f  
/f  
3 V  
3 V  
1.08  
50  
DCO(RSEL,DCO+1) DCO(RSEL,DCO)  
Duty Cycle  
Measured at SMCLK output  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
calibrated DCO frequencies -- tolerance  
PARAMETER  
TEST CONDITIONS  
T
V
MIN  
-- 3  
TYP  
MAX UNIT  
A
CC  
BCSCTL1= CALBC1_1MHz  
DCOCTL = CALDCO_1MHz  
calibrated at 30°C and 3.0V  
1 MHz tolerance over temperature  
(see Note 1)  
0°C to 85°C  
30°C  
3.0 V  
±0.5  
+3  
+3  
+6  
%
%
%
BCSCTL1= CALBC1_1MHz  
DCOCTL = CALDCO_1MHz  
calibrated at 30°C and 3.0V  
1 MHz tolerance over V  
1.8 V -- 3.6 V  
1.8 V -- 3.6 V  
-- 3  
-- 6  
±2  
±3  
CC  
BCSCTL1= CALBC1_1MHz  
DCOCTL = CALDCO_1MHz  
calibrated at 30°C and 3.0V  
-- 4 0 °C to  
85°C  
1 MHz tolerance overall  
NOTES: 1. This is the frequency change from the measured frequency at 30°C over temperature.  
wake-up from low-power modes (LPM3/4)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
DCO clock wake-up time from  
LPM3/4  
BCSCTL1= CALBC1_1MHz  
DCOCTL = CALDCO_1MHz  
t
t
3 V  
1.5  
µs  
DCO,LPM3/4  
CPU,LPM3/4  
(see Note 1)  
CPU wake-up time from LPM3/4  
(see Note 2)  
1/f  
+
MCLK  
Clock,LPM3/4  
t
NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g. port interrupt) to the first clock edge  
observable externally on a clock pin (MCLK or SMCLK).  
2. Parameter applicable only if DCOCLK is used for MCLK.  
typical characteristics -- DCO clock wake-up time from LPM3/4  
10.00  
RSELx = 0...11  
1.00  
RSELx = 12...15  
0.10  
0.10  
1.00  
DCO Frequency -- MHz  
10.00  
Figure 11. DCO wake-up time from LPM3 vs DCO frequency  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
crystal oscillator, LFXT1, low frequency modes (see Note 4)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
f
f
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V to 3.6 V  
32768  
Hz  
LFXT1,LF  
LFXT1 oscillator logic level  
square wave input frequency,  
LF mode  
XTS = 0, XCAPx = 0,  
LFXT1Sx = 3  
1.8 V to 3.6 V  
10000  
32768  
500  
50000  
Hz  
LFXT1,LF,logic  
XTS = 0, LFXT1Sx = 0,  
f
= 32,768 kHz,  
LFXT1,LF  
C
L,eff  
= 6 pF  
Oscillation allowance for  
LF crystals  
OA  
kΩ  
LF  
XTS = 0, LFXT1Sx = 0,  
= 32,768 kHz,  
f
200  
LFXT1,LF  
C
L,eff  
= 12 pF  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
8.5  
11  
Integrated effective load  
capacitance, LF mode  
(see Note )  
C
L,eff  
pF  
XTS = 0,  
Duty cycle  
LF mode  
Measured at P2.0/ACLK,  
2.2 V  
2.2 V  
30  
10  
50  
70  
%
f
= 32,768Hz  
LFXT1,LF  
Oscillator fault frequency,  
LF mode (see Note 3)  
XTS = 0, XCAPx = 0.  
LFXT1Sx = 3 (see Note 2)  
f
10000  
Hz  
Fault,LF  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Measured with logic level input frequency but also applies to operation with crystals.  
3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and  
frequencies in between might set the flag.  
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.  
-- Keep the trace between the device and the crystal as short as possible.  
-- Design a good ground plane around the oscillator pins.  
-- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
-- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
-- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
-- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
-- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
internal very low power, low frequency oscillator (VLO)  
PARAMETER  
TEST CONDITIONS  
T
A
V
MIN  
TYP  
MAX UNIT  
CC  
f
VLO frequency  
-40 -- 85°C  
3.0 V  
4
12  
20  
kHz  
VLO  
VLO frequency  
temperature drift  
df  
df  
/dT  
/dV  
-40 -- 85°C  
3.0 V  
0.5  
4
%/°C  
VLO  
VLO  
VLO frequency supply  
voltage drift  
25°C  
1.8 V -- 3.6 V  
%/V  
CC  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Timer_A  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
Internal: SMCLK, ACLK;  
External: TACLK, INCLK;  
Duty Cycle = 50% ±10%  
f
t
Timer_A clock frequency  
Timer_A, capture timing  
f
f
MHz  
ns  
TA  
SYSTEM  
TA0, TA1  
3.0 V  
20  
TA,cap  
USI, Universal Serial Interface  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
External: SCLK;  
Duty Cycle = 50% ±10%;  
SPI Slave Mode  
f
USI clock frequency  
MHz  
USI  
SYSTEM  
Low-level output voltage on SDA  
and SCL  
USI module in I2C mode  
(OLmax)  
V
3.0 V  
V
V +0.4  
SS  
V
OL,I2C  
SS  
I
= 1.5 mA  
typical characteristics -- USI low-level output voltage on SDA and SCL  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
T = 25°C  
A
V
= 2.2 V  
V
= 3 V  
CC  
CC  
T
= 25°C  
= 85°C  
A
T
A
= 85°C  
T
A
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
V
-- Low-Level Output Voltage -- V  
V
-- Low-Level Output Voltage -- V  
OL  
OL  
Figure 12. USI Low-Level Output Voltage vs.  
Output Current  
Figure 13. USI Low-Level Output Voltage vs.  
Output Current  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, power supply and input range conditions -- MSP430G2x31 only  
PARAMETER  
TEST CONDITIONS  
T
A
V
MIN  
2.2  
TYP  
MAX UNIT  
CC  
Analog supply voltage  
range  
V
V
= 0 V  
SS  
3.6  
V
CC  
All Ax terminals.  
Analog inputs selected in  
ADC10AE register.  
Analog input voltage range  
(see Note 2)  
V
3 V  
3 V  
0
V
CC  
V
Ax  
f
= 5.0 MHz  
ADC10CLK  
ADC10ON = 1, REFON = 0  
ADC10SHT0 = 1,  
ADC10 supply current  
(see Note 3)  
I
25°C  
0.6  
mA  
ADC10  
ADC10SHT1 = 0, ADC10DIV  
= 0  
f
= 5.0 MHz  
ADC10CLK  
ADC10ON = 0, REF2_5V = 0,  
REFON = 1, REFOUT = 0  
25°C  
25°C  
Reference supply current,  
reference buffer disabled  
(see Note 4)  
I
I
I
3 V  
3 V  
3 V  
0.25  
1.1  
mA  
mA  
mA  
REF+  
f
= 5.0 MHz  
ADC10CLK  
ADC10ON = 0, REF2_5V = 1,  
REFON = 1, REFOUT = 0  
f
= 5.0 MHz  
ADC10CLK  
ADC10ON = 0,  
Reference buffer supply  
current with ADC10SR=0  
(see Note 4)  
REFON = 1, REF2_5V = 0,  
REFOUT = 1,  
ADC10SR=0  
25°C  
25°C  
REFB,0  
REFB,1  
f
= 5.0 MHz  
ADC10CLK  
ADC10ON = 0,  
REFON = 1,  
Reference buffer supply  
current with ADC10SR=1  
(see Note 4)  
0.5  
REF2_5V = 0,  
REFOUT = 1,  
ADC10SR=1  
Only one terminal Ax selected  
at a time  
C
R
Input capacitance  
25°C  
25°C  
3 V  
3 V  
27  
pF  
I
Input MUX ON resistance  
0V V V  
1000  
I
Ax  
CC  
NOTES: 1. The leakage current is defined in the leakage current table with Px.x/Ax parameter.  
2. The analog input voltage range must be within the selected reference voltage range V to V for valid conversion results.  
R+  
R--  
.
3. The internal reference supply current is not included in current consumption parameter I  
ADC10  
4. The internal reference current is supplied via terminal V . Consumption is independent of the ADC10ON control bit, unless a  
CC  
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, built-in voltage reference -- MSP430G2x31 only  
PARAMETER  
TEST CONDITIONS  
1mA, REF2_5V=0  
1mA, REF2_5V=1  
V
MIN TYP  
MAX UNIT  
CC  
I
I
I
I
2.2  
2.9  
VREF+  
VREF+  
VREF+  
VREF+  
Positive built-in reference analog  
supply voltage range  
V
V
V
CC,REF+  
I  
I  
max, REF2_5V = 0  
VREF+  
max, REF2_5V = 1  
VREF+  
3 V  
3 V  
3 V  
1.41  
2.35  
1.5  
2.5  
1.59  
2.65  
±1  
V
V
Positive built-in reference voltage  
REF+  
I
Maximum V  
load current  
REF+  
mA  
LD,VREF+  
I
= 500 µA +/-- 100 µA  
VREF+  
Analog input voltage V 0.75 V;  
3 V  
3 V  
±2  
±2  
LSB  
LSB  
Ax  
REF2_5V = 0  
V
V
load regulation  
REF+  
REF+  
I
= 500 µA ± 100 µA  
VREF+  
Analog input voltage V 1.25 V;  
Ax  
REF2_5V = 1  
I
=
VREF+  
100µA900µA,  
Ax  
V
0.5 x V  
load regulation response time  
ADC10SR = 0  
3 V  
400  
100  
ns  
REF+  
Error of conversion  
result 1 LSB  
I
≤ ±1mA,  
VREF+  
C
VREF+  
Max. capacitance at pin V  
Temperature coefficient  
3 V  
3 V  
pF  
REF+  
REFON = 1, REFOUT = 1  
I
= const. with  
VREF+  
VREF+  
TC  
±100 ppm/°C  
REF+  
0 mA I  
1 mA  
Settling time of internal reference  
voltage to 99.9% VREF  
I
= 0.5 mA, REF2_5V=0  
VREF+  
3.6 V  
3 V  
30  
2
µs  
µs  
t
t
REFON  
REFON = 0 1,  
I
= 0.5 mA,  
VREF+  
Settling time of reference buffer to  
99.9% VREF  
REF2_5V=1,  
REFON = 1,  
ADC10SR = 0  
REFBURST  
REFBURST = 1  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, external reference -- MSP430G2x31 only  
PARAMETER  
TEST CONDITIONS  
V
MIN  
1.4  
TYP  
MAX UNIT  
CC  
VEREF > VEREF  
+
--  
V
V
V
V
CC  
SREF1 = 1, SREF0 = 0  
Positive external reference input  
voltage range (see Note 2)  
VEREF  
VEREF  
+
VEREF VEREF V -- 0.15V  
--  
+
CC  
1.4  
0
3.0  
1.2  
SREF1 = 1, SREF0 = 1 (see Note 3)  
Negative external reference input  
voltage range (see Note 4)  
VEREF > VEREF  
--  
+
--  
Differential external reference input  
voltage range  
VEREF  
VEREF > VEREF (see Note 5)  
1.4  
V
CC  
V
+
--  
VEREF = VEREF -- VEREF  
+
--  
0V VEREF V  
,
+
CC  
3 V  
±1  
µA  
SREF1 = 1, SREF0 = 0  
I
I
Static input current into VEREF  
Static input current into VEREF  
VEREF+  
VEREF--  
+
0V VEREF V -- 0.15V 3V  
+
CC  
3 V  
3 V  
0
µA  
µA  
SREF1 = 1, SREF0 = 1 (see Note 3)  
0V VEREF V  
±1  
--  
--  
CC  
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C , is also  
I
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
3. Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer  
supply current I  
. The current consumption can be limited to the sample and conversion period with REBURST = 1.  
REFB  
4. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied  
with reduced accuracy requirements.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, timing parameters -- MSP430G2x31 only  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
For specified  
ADC10SR = 0  
ADC10SR = 1  
3 V  
3 V  
3 V  
0.45  
6.3  
MHz  
1.5  
performance of  
ADC10 linearity  
parameters  
f
f
ADC10 input clock frequency  
ADC10CLK  
ADC10OSC  
0.45  
3.7  
ADC10DIVx=0, ADC10SSELx = 0  
= f  
ADC10 built-in oscillator frequency  
6.3 MHz  
f
ADC10CLK  
ADC10OSC  
ADC10 built-in oscillator,  
ADC10SSELx = 0  
3 V  
2.06  
3.51  
µs  
f
= f  
ADC10CLK  
ADC10OSC  
t
t
Conversion time  
CONVERT  
ADC10ON  
13×  
f
from ACLK, MCLK or  
ADC10CLK  
SMCLK: ADC10SSELx 0  
ADC10DIV×  
µs  
1/f  
ADC10CLK  
Turn on settling time of the ADC  
(see Note 1)  
100  
ns  
NOTES: 1. The condition is that the error in a conversion started after t  
settled.  
is less than ±0.5 LSB. The reference and input signal are already  
ADC10ON  
10-bit ADC, linearity parameters -- MSP430G2x31 only  
PARAMETER  
Integral linearity error  
Differential linearity error  
Offset error  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
±1 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±5 LSB  
CC  
E
E
E
E
E
3 V  
3 V  
3 V  
3 V  
3 V  
I
D
O
G
T
Source impedance R < 100 ,  
S
±1.1  
±2  
Gain error  
Total unadjusted error  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
10-bit ADC, temperature sensor and built-in VMID -- MSP430G2x31 only  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
60  
3.55  
MAX  
UNIT  
CC  
Temperature sensor supply  
current (see Note 1)  
REFON = 0, INCHx = 0Ah,  
I
3 V  
3 V  
µA  
SENSOR  
T
A
= 25_C  
ADC10ON = 1, INCHx = 0Ah  
(see Note 2)  
mV/°C  
µs  
TC  
SENSOR  
Sensor(sample)  
VMID  
Sample time required if  
channel 10 is selected (see  
Note 4)  
ADC10ON = 1, INCHx = 0Ah,  
Error of conversion result 1 LSB  
3 V  
30  
t
I
Current into divider at channel  
11 (see Note 5)  
ADC10ON = 1, INCHx = 0Bh,  
ADC10ON = 1, INCHx = 0Bh,  
3 V  
3 V  
NA  
µA  
V
V
divider at channel 11  
CC  
1.5  
V
MID  
V
is 0.5 x V  
MID  
CC  
Sample time required if  
channel 11 is selected  
(see Note 6)  
ADC10ON = 1, INCHx = 0Bh,  
Error of conversion result 1 LSB  
t
3 V  
1220  
ns  
VMID(sample)  
NOTES: 1. The sensor current I  
is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON=1 and INCH=0Ah and sample signal  
SENSOR  
is high). When REFON = 1, I  
sensor input (INCH = 0Ah).  
2. The following formula can be used to calculate the temperature sensor output voltage:  
is included in I  
. When REFON = 0, I  
applies during conversion of the temperature  
SENSOR  
REF+  
SENSOR  
V
V
= TC  
= TC  
( 273 + T [°C] ) + V  
[mV] or  
Sensor,typ  
Sensor,typ  
Sensor  
Sensor  
Offset,sensor  
(T = 0°C) [mV]  
T [°C] + V  
Sensor  
A
3. Values are not based on calculations using TC  
or V  
but on measurements.  
Offset,sensor  
Sensor  
4. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time t  
.
SENSOR(on)  
5. No additional current is needed. The V  
is used during sampling.  
MID  
6. The on-time t  
is included in the sampling time t  
; no additional on time is needed.  
VMID(on)  
VMID(sample)  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
flash memory  
PARAMETER  
TEST CONDITIONS  
V
MIN  
2.2  
TYP  
MAX UNIT  
CC  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from V during program  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
1
1
PGM  
CC  
Supply current from V during erase  
CC  
7
mA  
ERASE  
CPT  
Cumulative program time (see Note 1)  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
10  
ms  
20  
ms  
CMErase  
4
5
10  
10  
cycles  
years  
t
T = 25°C  
J
100  
Retention  
t
t
t
t
t
t
Word or byte program time  
30  
25  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
18  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 2  
t
FTG  
6
10593  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. These values are hardwired into the Flash Controller’s state machine (t  
= 1/f  
).  
FTG  
FTG  
RAM  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
TYP  
MAX UNIT  
V
RAM retention supply voltage (see Note 1)  
1.6  
V
(RAMh)  
NOTE 1: This parameter defines the minimum supply voltage V when the data in RAM remains unchanged. No program execution should  
CC  
happen during this supply voltage condition.  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
JTAG and Spy-Bi-Wire interface  
TEST  
CONDITIONS  
PARAMETER  
V
MIN  
TYP  
MAX  
UNIT  
CC  
f
t
Spy-Bi-Wire input frequency  
2.2 V / 3 V  
2.2 V / 3 V  
0
20  
15  
MHz  
us  
SBW  
Spy-Bi-Wire low clock pulse length  
0.025  
SBW,Low  
Spy-Bi-Wire enable time  
(TEST high to acceptance of first clock edge, see  
Note 1)  
t
2.2 V/ 3 V  
1
us  
SBW,En  
t
f
Spy-Bi-Wire return to normal operation time  
2.2 V/ 3 V  
2.2 V  
15  
0
100  
5
us  
SBW,Ret  
TCK  
MHz  
MHz  
kΩ  
TCK input frequency -- 4-wire JTAG (see Note 2)  
Internal pull-down resistance on TEST  
3 V  
0
10  
90  
R
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum t  
before applying the first SBWTCK clock edge.  
time after pulling the TEST/SBWTCK pin high  
SBW,En  
2.  
f
may be restricted to meet the timing requirements of the module selected.  
TCK  
JTAG fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
V
MIN  
TYP  
MAX  
UNIT  
CC  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse-blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
T
A
= 25°C  
2.5  
6
V
V
CC(FB)  
FB  
7
100  
1
I
t
mA  
ms  
FB  
FB  
NOTES: 1. Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible and JTAG is switched  
to bypass mode.  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.0 -- P1.3, input/output with Schmitt trigger -- MSP430G2x21  
PxSEL.y  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
From Timer  
0
1
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
Port P1 (P1.0 to P1.3) pin functions -- MSP430G2x21  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0/  
0
P1.x (I/O)  
TA0.TACLK  
ACLK  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
TA0CLK/  
ACLK/  
P1.1/  
0
1
1
2
3
P1.x (I/O)  
TA0.0  
I: 0; O: 1  
TA0.0/  
1
TA0.CCI0A  
P1.x (I/O)  
TA0.1  
0
P1.2/  
I: 0; O: 1  
TA0.1/  
1
0
TA0.CCI1A  
P1.x (I/O)  
P1.3/  
I: 0; O: 1  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 pin schematic: P1.0 -- P1.3, input/output with Schmitt trigger -- MSP430G2x21  
PxSEL.y  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
From Module  
0
1
P1.4/SMCLK/TCK  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
From JTAG  
To JTAG  
Port P1 (P1.4) pin functions -- MSP430G2x21  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
JTAG  
Mode  
P1DIR.x  
P1SEL.x  
P1.4/  
4
P1.x (I/O)  
SMCLK  
TCK  
I: 0; O: 1  
0
1
x
0
0
1
SMCLK/  
TCK  
1
x
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 pin schematic: P1.5, input/output with Schmitt trigger -- MSP430G2x21  
PxSEL.y  
PxDIR.y  
From USI  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
PxSEL.y or  
USIPE5  
DVSS  
DVCC  
0
1
1
PxOUT.y  
From USI  
0
1
P1.5/TA0.0/SCLK/TMS  
PxSEL.y  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
From JTAG  
To JTAG  
Port P1 (P1.5) pin functions -- MSP430G2x21  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
JTAG  
Mode  
P1DIR.x  
P1SEL.x  
USIP.x  
P1.5/  
5
P1.x (I/O)  
TA0.0  
I: 0; O: 1  
0
1
x
1
x
0
0
1
0
0
0
0
0
0
1
TA0.0/  
SCLK/  
SIMO0/  
TMS  
1
x
x
x
SCLK  
SIMO0  
TMS  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 pin schematic: P1.6, input/output with Schmitt trigger -- MSP430G2x21  
PxSEL.y  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
PxSEL.y or  
USIPE6  
DVSS  
DVCC  
0
1
1
PxOUT.y  
From Module  
0
1
P1.6/TA0.1/SDO/SCL/TDI  
PxSEL.y  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
From JTAG  
To JTAG  
Port P1 (P1.6) pin functions -- MSP430G2x21  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
JTAG  
Mode  
P1DIR.x  
P1SEL.x  
USIP.x  
P1.6/  
6
P1.x (I/O)  
TA0.1  
I: 0; O: 1  
0
1
x
x
0
0
1
0
0
0
0
1
TA0.1/  
1
x
x
SDO/  
SDO  
TDI/TCLK  
TDI/TCLK  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 pin schematic: P1.7, input/output with Schmitt trigger -- MSP430G2x21  
USIPE7  
PxDIR.y  
From USI  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
PxSEL.y or  
USIPE7  
DVSS  
DVCC  
0
1
1
PxOUT.y  
From USI  
0
1
P1.7/SDI/SDA/TDO/TDI  
PxSEL.y  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
From JTAG  
To JTAG  
From JTAG  
To JTAG  
Port P1 (P1.7) pin functions -- MSP430G2x21  
P1.7/  
7
P1.x (I/O)  
SDI/SDO  
TDO/TDI  
I: 0; O: 1  
0
x
x
0
1
0
0
0
0
0
0
1
SDI/SDO  
TDO/TDI  
x
x
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 pin schematic: P1.0 -- P1.2, input/output with Schmitt trigger -- MSP430G2x31  
To ADC10  
INCHx  
PxSEL.y  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
0
1
ACLK  
P1.0/TA0CLK/ACLK/A0  
P1.1/TA0.0/A1  
Bus  
Keeper  
EN  
P1.2/TA0.1/A2  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 (P1.0 to P1.2) pin functions -- MSP430G2x31  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
ADC10AE.x  
(INCH.y = 1)  
P1DIR.x  
P1SEL.x  
P1.0/  
0
P1.x (I/O)  
TA0.TACLK  
ACLK  
I: 0; O: 1  
0
1
1
x
0
1
1
x
0
1
1
x
0
TA0CLK/  
ACLK/  
A0/  
0
0
1
0
A0  
x
1 (y = 0)  
P1.1/  
1
2
P1.x (I/O)  
TA0.0  
I: 0; O: 1  
0
TA0.0/  
1
0
TA0.CCI0A  
A1  
0
0
A1/  
x
1 (y = 1)  
P1.2/  
TA0.1/  
P1.x (I/O)  
TA0.1  
I: 0; O: 1  
0
1
0
x
0
0
TA0.CCI1A  
A2  
A2/  
1 (y = 2)  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 pin schematic: P1.3, input/output with Schmitt trigger -- MSP430G2x31  
SREF2  
VSS  
0
1
To ADC10 VREF-  
To ADC10  
INCHx = y  
ADC10AE0.y  
PxDIR.y  
PxSEL.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
0
1
ACLK  
P1.3/ADC10CLK/A3/VREF-/VEREF-  
Bus  
Keeper  
EN  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
Port P1 (P1.3) pin functions -- MSP430G2x31  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
ADC10AE.x  
(INCH.x = 1)  
P1DIR.x  
P1SEL.x  
CAPD.y  
P1.3/  
3
P1.x (I/O)  
ADC10CLK  
A3  
I: 0; O: 1  
0
1
x
x
x
x
0
0
ADC10CLK/  
A3  
1
x
x
x
x
0
0
1 (y = 3)  
0
VREF--/  
VEREF--  
CA3  
VREF--  
VEREF--  
CA3  
1
1
0
0
0
1 (y = 3)  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 pin schematic: P1.4, input/output with Schmitt trigger -- MSP430G2x31  
To ADC10 VREF+  
To ADC10  
INCHx = y  
ADC10AE0.y  
PxSEL.y  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
0
1
ACLK  
Bus  
Keeper  
EN  
P1.4/SMCLK/A4/VREF+/VEREF+/TCK  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
From JTAG  
To JTAG  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 (P1.4) pin functions -- MSP430G2x31  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
ADC10AE.x  
(INCH.x = 1)  
JTAG  
Mode  
P1DIR.x  
P1SEL.x  
P1.4/  
4
P1.x (I/O)  
SMCLK  
A4  
I: 0; O: 1  
0
1
x
x
x
x
x
0
0
0
0
0
0
0
1
SMCLK/  
A4/  
1
x
x
x
x
x
0
1 (y = 4)  
VREF+/  
VEREF+/  
CA4/  
VREF+  
VEREF+  
CA4  
1
1
0
0
TCK  
TCK  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 pin schematic: P1.5, input/output with Schmitt trigger -- MSP430G2x31  
To ADC10  
INCHx  
ADC10EA.y  
PxSEL.y  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.y  
1
PxOUT.y  
From Module  
0
1
Bus  
Keeper  
EN  
P1.5/TA0.0/A5/TMS  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
From JTAG  
To JTAG  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 (P1.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
ADC10AE.x  
(INCH.x = 1)  
JTAG  
Mode  
P1DIR.x  
P1SEL.x  
USIP.x  
P1.5/  
5
P1.x (I/O)  
TA0.0  
A5  
I: 0; O: 1  
0
1
x
x
1
x
0
0
0
1
0
0
0
0
0
0
0
0
1
TA0.0/  
A5/  
1
x
x
x
x
0
1 (y = 5)  
SCLK/  
SIMO0/  
TMS  
SCLK  
SIMO0  
TMS  
0
0
0
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 pin schematic: P1.6, input/output with Schmitt trigger -- MSP430G2x31  
To ADC10  
INCHx  
ADC10EA.y  
USIPE6  
PxDIR.y  
from USI  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
PxSEL.y or  
USIPE6  
DVSS  
DVCC  
0
1
1
PxOUT.y  
From USI  
0
1
Bus  
Keeper  
EN  
P1.6/TA0.1/SDO/SCL/A6/TDI  
PxSEL.y  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
From JTAG  
To JTAG  
USI in I2C mode: Output driver drives low level only. Driver is disabled in JTAG mode.  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 (P1.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
ADC10AE.x  
(INCH.x = 1)  
JTAG  
Mode  
P1DIR.x  
P1SEL.x  
USIP.x  
P1.6/  
6
P1.x (I/O)  
TA0.1  
I: 0; O: 1  
0
1
x
x
x
0
0
0
1
0
0
0
0
0
0
1
TA0.1/  
A6/  
1
x
x
x
0
A6  
1 (y = 6)  
SDO/  
SDO  
0
0
TDI/TCLK  
TDI/TCLK  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 pin schematic: P1.7, input/output with Schmitt trigger -- MSP430G2x31  
To ADC10  
INCHx  
ADC10EA.y  
USIPE7  
PxDIR.y  
from USI  
1
0
Direction  
0: Input  
1: Output  
PxSEL.y  
PxREN.y  
PxSEL.y or  
USIPE7  
DVSS  
DVCC  
0
1
1
PxOUT.y  
From USI  
0
1
Bus  
Keeper  
EN  
P1.7/SDI/SDA/A7/TDO/TDI  
PxSEL.y  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
From JTAG  
To JTAG  
From JTAG  
To JTAG  
USI in I2C mode: Output driver drives low level only. Driver is disabled in JTAG mode.  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P1 (P1.7) pin functions -- MSP430G2x31  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
ADC10AE.x  
(INCH.x = 1)  
JTAG  
Mode  
P1DIR.x  
P1SEL.x  
USIP.x  
P1.7/  
7
P1.x (I/O)  
A7  
I: 0; O: 1  
0
x
x
x
0
0
1
0
0
0
0
0
1
A7/  
x
x
x
1 (y = 7)  
SDI/SDO  
TDO/TDI  
SDI/SDO  
TDO/TDI  
0
0
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P2 pin schematic: P2.6, input/output with Schmitt trigger -- MSP430G2x21 and MSP430G2x31  
XOUT/P2.7  
LF off  
PxSEL.6  
PxSEL.7  
BCSCTL3.LFXT1Sx = 11  
LFXT1CLK  
0
1
PxSEL.6  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.6  
1
PxOUT.y  
from Module  
0
1
Bus  
Keeper  
EN  
XIN/P2.6/TA0.1  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Q
Set  
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
Port P2 (P2.6) pin functions -- MSP430G2x21 and MSP430G2x31  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.6  
PSEL2.7  
XIN  
6
XIN  
0
I: 0; O: 1  
1
1
0
1
1
x
x
P2.6  
P2.x (I/O)  
Timer0_A3.TA1  
TA0.1  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P2 pin schematic: P2.7, input/output with Schmitt trigger -- MSP430G2x21 and MSP430G2x31  
XIN/P2.6/TA0.1  
LF off  
PxSEL.6  
PxSEL.7  
BCSCTL3.LFXT1Sx = 11  
LFXT1CLK  
0
1
from P2.6/XIN  
PxSEL.7  
PxDIR.y  
1
0
Direction  
0: Input  
1: Output  
PxREN.y  
DVSS  
DVCC  
0
1
PxSEL.7  
1
PxOUT.y  
from Module  
0
1
Bus  
Keeper  
EN  
XOUT/P2.7  
PxIN.y  
To Module  
PxIRQ.y  
PxIE.y  
EN  
Q
Set  
PxIFG.y  
Interrupt  
Edge  
PxSEL.y  
PxIES.y  
Select  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430G2x21, MSP430G2x31  
MIXED SIGNAL MICROCONTROLLER  
SLAS694B -- FEBRUARY 2010 -- REVISED MAY 2010  
Port P2 (P2.7) pin functions -- MSP430G2x21 and MSP430G2x31  
CONTROL BITS / SIGNALS  
P2SEL.6  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.7  
P2SEL.7  
XOUT  
P2.7  
7
XOUT  
1
1
0
1
x
P2.x (I/O)  
I: 0; O: 1  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-May-2010  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
Purchase Samples  
Purchase Samples  
MSP430G2121IN14  
MSP430G2121IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
14  
14  
25  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
MSP430G2121IPW14R  
MSP430G2121IRSA16R  
MSP430G2121IRSA16T  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
QFN  
PW  
RSA  
RSA  
14  
16  
16  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Purchase Samples  
Purchase Samples  
Purchase Samples  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
MSP430G2131IN14  
MSP430G2131IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
14  
14  
25  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
Purchase Samples  
Purchase Samples  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
MSP430G2131IPW14R  
MSP430G2131IRSA16R  
MSP430G2131IRSA16T  
MSP430G2221IN14  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
QFN  
PW  
RSA  
RSA  
N
14  
16  
16  
14  
14  
14  
16  
16  
2000  
3000  
250  
25  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Purchase Samples  
Purchase Samples  
Purchase Samples  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
PDIP  
Pb-Free (RoHS)  
Contact TI Distributor  
or Sales Office  
MSP430G2221IPW14  
MSP430G2221IPW14R  
MSP430G2221IRSA16R  
MSP430G2221IRSA16T  
TSSOP  
TSSOP  
QFN  
PW  
PW  
RSA  
RSA  
90  
Green (RoHS  
& no Sb/Br)  
Purchase Samples  
Purchase Samples  
Purchase Samples  
Purchase Samples  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
MSP430G2231IN14  
MSP430G2231IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
14  
14  
25  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
Request Free Samples  
Purchase Samples  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
MSP430G2231IPW14R  
ACTIVE  
TSSOP  
PW  
14  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Contact TI Distributor  
or Sales Office  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-May-2010  
Status (1)  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430G2231IRSA16R  
MSP430G2231IRSA16T  
QFN  
QFN  
RSA  
RSA  
16  
16  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Request Free Samples  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Purchase Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY